Influence of sea surface temperature on the European h observational study

Climate Dynamics 36, 1691-1703 DOI: 10.1007/s00382-010-0788-0

Citation Report

#	Article	IF	CITATIONS
1	Influence of sea surface temperature on the European heat wave of 2003 summer. Part II: a modeling study. Climate Dynamics, 2011, 36, 1705-1715.	3.8	35
2	Influence of the intraseasonal variability on heat waves in subtropical South America. Climate Dynamics, 2011, 36, 2265-2277.	3.8	47
3	Heatwave classification over Europe and the Mediterranean region. Environmental Research Letters, 2012, 7, 014023.	5.2	224
4	Heat waves in Central Europe (1991-2006). International Journal of Global Warming, 2012, 4, 261.	0.5	16
5	Does the Mediterranean Sea Influence the European Summer Climate? The Anomalous Summer 2003 as a Test Bed. Journal of Climate, 2012, 25, 7028-7045.	3.2	4
6	Dominant modes of Diurnal Temperature Range variability over Europe and their relationships with largeâ€scale atmospheric circulation and sea surface temperature anomaly patterns. Journal of Geophysical Research, 2012, 117, .	3.3	20
7	Effects of interactive vegetation phenology on the 2003 summer heat waves. Journal of Geophysical Research, 2012, 117, .	3.3	72
8	A decade of weather extremes. Nature Climate Change, 2012, 2, 491-496.	18.8	1,660
9	A possible cause of the AO polarity reversal from winter to summer in 2010 and its relation to hemispheric extreme summer weather. Climate Dynamics, 2013, 40, 1939-1947.	3.8	30
10	Exceptionally hot summers in Central and Eastern Europe (1951–2010). Theoretical and Applied Climatology, 2013, 112, 617-628.	2.8	47
11	Large-scale atmospheric response to eastern Mediterranean summer-autumn SST anomalies and the associated regional impact. Climate Dynamics, 2013, 41, 2251-2265.	3.8	6
12	Quasiresonant amplification of planetary waves and recent Northern Hemisphere weather extremes. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 5336-5341.	7.1	305
13	Simulating the effect of anthropogenic vegetation land cover on heatwave temperatures over central France. Climate Research, 2014, 60, 133-146.	1.1	17
14	Attributing the increase in Northern Hemisphere hot summers since the late 20th century. Geophysical Research Letters, 2014, 41, 5192-5199.	4.0	47
15	Analysis on the Extreme Heat Wave over China around Yangtze River Region in the Summer of 2013 and Its Main Contributing Factors. Advances in Meteorology, 2015, 2015, 1-15.	1.6	40
16	Trends of summer daily maximum temperature extremes in Turkey. Physical Geography, 2015, 36, 268-281.	1.4	19
17	MetUM-GOML1: a near-globally coupled atmosphere–ocean-mixed-layer model. Geoscientific Model Development, 2015, 8, 363-379.	3.6	45
18	Seasonal modes of dryness and wetness variability over Europe and their connections with large scale atmospheric circulation and global sea surface temperature. Climate Dynamics, 2015, 45, 2803-2829.	3.8	45

#	Article	IF	CITATIONS
19	Seasonal differences in intraseasonal and interannual variability of Mediterranean Sea surface temperature. Journal of Geophysical Research: Oceans, 2015, 120, 2813-2825.	2.6	9
20	Exceptionally Hot and Cold Summers in Europe (1951-2010). Acta Geophysica, 2015, 63, 275-300.	2.0	16
21	Identifying the sensitivity of precipitation of Anatolian peninsula to Mediterranean and Black Sea surface temperature. Climate Dynamics, 2015, 44, 1993-2015.	3.8	10
22	On the Variability and Increasing Trends of Heat Waves over India. Scientific Reports, 2016, 6, 26153.	3.3	212
23	Study of the relationship between African ITCZ variability and an extreme heat wave on Egypt in summer 2015. Arabian Journal of Geosciences, 2016, 9, 1.	1.3	5
24	Role of quasiresonant planetary wave dynamics in recent boreal spring-to-autumn extreme events. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 6862-6867.	7.1	73
25	Drivers of exceptionally cold North Atlantic Ocean temperatures and their link to the 2015 European heat wave. Environmental Research Letters, 2016, 11, 074004.	5.2	122
26	Impact of land-surface initialization on sub-seasonal to seasonal forecasts over Europe. Climate Dynamics, 2016, 47, 919-935.	3.8	59
27	Projection of heat waves over China for eight different global warming targets using 12 CMIP5 models. Theoretical and Applied Climatology, 2017, 128, 507-522.	2.8	105
28	Understanding the rapid summer warming and changes in temperature extremes since the mid-1990s over Western Europe. Climate Dynamics, 2017, 48, 1537-1554.	3.8	86
29	Trends and changes in tropical and summer days at the Adana Sub-Region of the Mediterranean Region, Southern Turkey. Atmospheric Research, 2017, 196, 182-199.	4.1	20
30	Spatiotemporal Patterns and Synoptics of Extreme Wetâ€Bulb Temperature in the Contiguous United States. Journal of Geophysical Research D: Atmospheres, 2017, 122, 13,108.	3.3	54
31	Can tree-ring density data reflect summer temperature extremes and associated circulation patterns over Fennoscandia?. Climate Dynamics, 2017, 49, 2721-2736.	3.8	6
32	The European 2015 drought from a climatological perspective. Hydrology and Earth System Sciences, 2017, 21, 1397-1419.	4.9	224
33	Heat Waves in China: Definitions, Leading Patterns, and Connections to Largeâ€Scale Atmospheric Circulation and SSTs. Journal of Geophysical Research D: Atmospheres, 2017, 122, 10,679.	3.3	105
34	Sea Surface Temperature in the Mediterranean: Trends and Spatial Patterns (1982–2016). Pure and Applied Geophysics, 2018, 175, 4017-4029.	1.9	111
35	Surveying of Heat waves Impact on the Urban Heat Islands: Case study, the Karaj City in Iran. Urban Climate, 2018, 24, 600-615.	5.7	26
36	A 15â€year hail streak climatology for the Alpine region. Quarterly Journal of the Royal Meteorological Society, 2018, 144, 1429-1449.	2.7	36

#	Article	IF	CITATIONS
37	On the relationship between tropospheric conditions and widespread hot days in Iran. Theoretical and Applied Climatology, 2018, 131, 805-817.	2.8	6
38	The Recent Atlantic Cold Anomaly: Causes, Consequences, and Related Phenomena. Annual Review of Marine Science, 2018, 10, 475-501.	11.6	82
39	Linking Northern Hemisphere temperature extremes to Rossby wave packets. Quarterly Journal of the Royal Meteorological Society, 2018, 144, 553-566.	2.7	51
40	Combined Influence of the Arctic Oscillation and the Scandinavia Pattern on Spring Surface Air Temperature Variations Over Eurasia. Journal of Geophysical Research D: Atmospheres, 2018, 123, 9410-9429.	3.3	26
41	Subcontinental heat wave triggers terrestrial and marine, multi-taxa responses. Scientific Reports, 2018, 8, 13094.	3.3	101
42	The leading interannual variability modes of winter surface air temperature over Southeast Asia. Climate Dynamics, 2019, 52, 4715-4734.	3.8	22
43	Impact of soil moisture initialization on boreal summer subseasonal forecasts: mid-latitude surface air temperature and heat wave events. Climate Dynamics, 2019, 52, 1695-1709.	3.8	47
44	Projections of climate changes over mid-high latitudes of Eurasia during boreal spring: uncertainty due to internal variability. Climate Dynamics, 2019, 53, 6309-6327.	3.8	18
45	Ocean and atmosphere influence on the 2015 European heatwave. Environmental Research Letters, 2019, 14, 114035.	5.2	18
46	Recent Strengthened Impact of the Winter Arctic Oscillation on the Southeast Asian Surface Air Temperature Variation. Atmosphere, 2019, 10, 164.	2.3	17
47	Interannual variability of surface air temperature over mid-high latitudes of Eurasia during boreal autumn. Climate Dynamics, 2019, 53, 1805-1821.	3.8	24
48	Sea Surface Temperature in the Mediterranean: Trends and Spatial Patterns (1982–2016). Pageoph Topical Volumes, 2019, , 297-309.	0.2	18
49	Synoptic climatology and sea surface temperatures teleconnections for warm season heat waves in Saudi Arabia. Atmospheric Research, 2019, 216, 130-140.	4.1	4
50	Present-day status and future projection of spring Eurasian surface air temperature in CMIP5 model simulations. Climate Dynamics, 2019, 52, 5431-5449.	3.8	14
51	Transient simulation of coupled heat and moisture transfer through multi-layer walls exposed to future climate in the hot and humid southern China area. Sustainable Cities and Society, 2020, 52, 101812.	10.4	23
52	Relationship between the thermal condition of the Tibetan Plateau and precipitation over the region from eastern Ukraine to North Caucasus during summer. Theoretical and Applied Climatology, 2020, 142, 1379-1395.	2.8	8
53	Unprecedented Europe Heat in June–July 2019: Risk in the Historical and Future Context. Geophysical Research Letters, 2020, 47, e2020GL087809.	4.0	56
54	Projection of heat wave in China under global warming targets of 1.5°C and 2°C by the ISIMIP models. Atmospheric Research, 2020, 244, 105057.	4.1	15

#	Article	IF	CITATIONS
55	Quantifying the internal variability in multi-decadal trends of spring surface air temperature over mid-to-high latitudes of Eurasia. Climate Dynamics, 2020, 55, 2013-2030.	3.8	12
56	Influence of persistence and oceanic forcing on global soil moisture predictability. Climate Dynamics, 2020, 54, 3375-3385.	3.8	9
57	Coherent Interannual Variations of Springtime Surface Temperature and Temperature Extremes Between Centralâ€Northern Europe and Northeast Asia. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD032226.	3.3	7
58	A methodology for attributing the role of climate change in extreme events: a global spectrally nudged storyline. Natural Hazards and Earth System Sciences, 2021, 21, 171-186.	3.6	35
59	A tripole pattern of summer surface air temperature anomalies over northern Eurasia and its precursory signals in the tropical Atlantic and northern Asian land. International Journal of Climatology, 2021, 41, 3688-3704.	3.5	2
60	Seasonally changing contribution of sea ice and snow cover to uncertainty in multi-decadal Eurasian surface air temperature trends based on CESM simulations. Climate Dynamics, 2021, 57, 917-932.	3.8	0
61	Relationship between circum-Arctic atmospheric wave patterns and large-scale wildfires in boreal summer. Environmental Research Letters, 2021, 16, 064009.	5.2	17
62	Spatio-temporal analysis of changes in heat and cold waves across Iran over the statistical period 1966–2018. Arabian Journal of Geosciences, 2021, 14, 1.	1.3	2
63	Relative Contribution of Trend and Interannually Varying SST Anomalies to the 2018 Heat Waves in the Extratropical Northern Hemisphere. Journal of Climate, 2021, 34, 6319-6333.	3.2	7
64	Seasonal prediction of European summer heatwaves. Climate Dynamics, 2022, 58, 2149-2166.	3.8	19
65	Influence of North Atlantic sea surface temperature anomalies on springtime surface air temperature variation over Eurasia in CMIP5 models. Climate Dynamics, 2021, 57, 2669-2686.	3.8	12
66	Influence of soil rock mixture in mountain area based on machine learning and psychological intervention of left-behind children. Arabian Journal of Geosciences, 2021, 14, 1.	1.3	0
68	Environmental change of rainfall erosivity based on GIS system and architectural design of sponge city. Arabian Journal of Geosciences, 2021, 14, 1.	1.3	0
71	Seasonal Acclimation Modulates the Impacts of Simulated Warming and Light Reduction on Temperate Seagrass Productivity and Biochemical Composition. Frontiers in Marine Science, 2021, 8, .	2.5	11
72	Exceptionally Hot Summers Months in Central and Eastern Europe During the Years 1951–2010. , 2013, , 17-35.		5
73	Extreme Cold Aır Wave: January 2017. Gaziantep University Journal of Social Sciences, 2018, 17, 761-773.	0.2	2
74	Role of soil moisture in the amplification of climate warming in the eastern Mediterranean and the Middle East. Climate Research, 2014, 59, 27-37.	1.1	42
75	Trends and possible causes of cloudiness variability in Montenegro in the period 1961-2017. Climate Research, 2020, 81, 187-205.	1.1	5

#	Article	IF	CITATIONS
77	The 2018 northern European hydrological drought and its drivers in a historical perspective. Hydrology and Earth System Sciences, 2020, 24, 5621-5653.	4.9	62
78	Projections and Hazards of Future Extreme Heat. , 0, , .		1
80	Role of Oceanic Memory Effects in the Barents Sea in the Seasonal Linkage Between the Winter and Summer Arctic Oscillation. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2021JD034799.	3.3	0
82	Evaluation the WRF Model with Different Land Surface Schemes: Heat Wave Event Simulations and Its Relation to Pacific Variability over Coastal Region, Karachi, Pakistan. Sustainability, 2021, 13, 12608.	3.2	2
83	Shifting of summertime weather extremes in Western Europe during 2012–2020. Advances in Climate Change Research, 2022, 13, 218-227.	5.1	12
84	Seasonal forecasts of Eurasian summer heat wave frequency. Environmental Research Communications, 2022, 4, 025007.	2.3	7
85	Deep demersal fish communities respond rapidly to warming in a frontal region between Arctic and Atlantic waters. Global Change Biology, 2022, 28, 2979-2990.	9.5	6
86	Using Explainable Machine Learning Forecasts to Discover Subseasonal Drivers of High Summer Temperatures in Western and Central Europe. Monthly Weather Review, 2022, 150, 1115-1134.	1.4	15
87	Interannual variability of heat waves over the Korean Peninsula based on integrated approach. Science of the Total Environment, 2022, 826, 154153.	8.0	6
88	Analysis of lower-boundary climate factors contributing to the summer heatwave frequency over eastern Europe using a machine-learning model. Atmospheric and Oceanic Science Letters, 2022, 15, 100256.	1.3	2
90	Severe Precipitation Phenomena in Crimea in Relation to Atmospheric Circulation. Atmosphere, 2022, 13, 1712.	2.3	2
91	Transient receptor potential (TRP) channels in the Manila clam (Ruditapes philippinarum): Characterization and expression patterns of the TRP gene family under heat stress in Manila clams based on genome-wide identification. Gene, 2023, 854, 147112.	2.2	1
92	Signatures of Eurasian heat waves in global Rossby wave spectra. Weather and Climate Dynamics, 2022, 3, 1399-1414.	3.5	1
93	Drivers and Mechanisms of the 2021 Pacific Northwest Heatwave. Earth's Future, 2022, 10, .	6.3	20
94	Intraseasonal mode of East Asian trough anomalies in boreal winter and specific possible mechanisms. Climate Dynamics, 2023, 61, 2421-2441.	3.8	1
96	Quantifying the statistical dependence of mid-latitude heatwave intensity and likelihood on prevalent physical drivers and climate change. Advances in Statistical Climatology, Meteorology and Oceanography, 2023, 9, 83-102.	0.9	0
97	Ekstrema ciepÅ,a w zmieniajÄ…cym siÄ™ klimacie Europy: definicje, przyczyny, tendencje, skutki. Prace Geograficzne (krakÓw), 2023, , 47-82.	0.1	0
98	Projected changes in the interannual variability of surface air temperature using CMIP6 simulations. Climate Dynamics, 0, , .	3.8	0

#	Article	IF	CITATIONS
99	Microbial community changes correlate with impaired host fitness of Aurelia aurita after environmental challenge. Animal Microbiome, 2023, 5, .	3.8	1
100	Record-breaking persistence of the 2022/23 marine heatwave in the Mediterranean Sea. Environmental Research Letters, 2023, 18, 114041.	5.2	2
102	Tropical nights in the Mediterranean: A <scp>spatiotemporal</scp> analysis of trends from 1950 to 2022. International Journal of Climatology, 2024, 44, 1472-1488.	3.5	0
103	Unveiling the dynamics of sequential extreme precipitation-heatwave compounds in China. Npj Climate and Atmospheric Science, 2024, 7, .	6.8	0