Tri-trophic effects of inter- and intra-population variate cabbage (Brassica oleracea)

Oecologia 166, 421-431 DOI: 10.1007/s00442-010-1861-4

Citation Report

#	Article	IF	CITATIONS
1	Population-Related Variation in Plant Defense more Strongly Affects Survival of an Herbivore than Its Solitary Parasitoid Wasp. Journal of Chemical Ecology, 2011, 37, 1081-1090.	0.9	33
2	Oleoresin Chemistry Mediates Oviposition Behavior and Fecundity of a Tree-Killing Bark Beetle. Journal of Chemical Ecology, 2011, 37, 1177-1183.	0.9	5
3	Smelling the Wood from the Trees: Non-Linear Parasitoid Responses to Volatile Attractants Produced by Wild and Cultivated Cabbage. Journal of Chemical Ecology, 2011, 37, 795-807.	0.9	85
4	Effects of Indole Glucosinolates on Performance and Sequestration by the Sawfly Athalia rosae and Consequences of Feeding on the Plant Defense System. Journal of Chemical Ecology, 2012, 38, 1366-1375.	0.9	43
5	Plant-mediated effects of different Salix species on the performance of the braconid parasitoid Perilitus brevicollis. Biological Control, 2012, 60, 54-58.	1.4	9
6	Effects of an invasive plant on the performance of two parasitoids with different host exploitation strategies. Biological Control, 2012, 62, 213-220.	1.4	17
7	Glucosinolate structures in evolution. Phytochemistry, 2012, 77, 16-45.	1.4	437
8	Consequences of constitutive and induced variation in the host's food plant quality for parasitoid larval development. Journal of Insect Physiology, 2012, 58, 367-375.	0.9	19
9	Can caterpillar density or host-plant quality explain host-plant-related parasitism of a generalist forest caterpillar assemblage?. Oecologia, 2013, 173, 971-983.	0.9	16
10	Heterodera schachtii Nematodes Interfere with Aphid-Plant Relations on Brassica oleracea. Journal of Chemical Ecology, 2013, 39, 1193-1203.	0.9	24
11	Elevated carbon dioxide impairs the performance of a specialized parasitoid of an aphid host feeding on Brassica plants. Biological Control, 2013, 66, 49-55.	1.4	35
13	The importance of aboveground–belowground interactions on the evolution and maintenance of variation in plant defense traits. Frontiers in Plant Science, 2013, 4, 431.	1.7	29
14	Exogenous Methyl Jasmonate Treatment Increases Glucosinolate Biosynthesis and Quinone Reductase Activity in Kale Leaf Tissue. PLoS ONE, 2014, 9, e103407.	1.1	32
15	Bottom-up and top-down herbivore regulation mediated by glucosinolates in Brassica oleracea var. acephala. Oecologia, 2014, 174, 893-907.	0.9	42
16	Intra-specific variation in wild Brassica oleracea for aphid-induced plant responses and consequences for caterpillar–parasitoid interactions. Oecologia, 2014, 174, 853-862.	0.9	32
17	Chemical Defenses (Glucosinolates) of Native and Invasive Populations of the Range Expanding Invasive Plant Rorippa austriaca. Journal of Chemical Ecology, 2014, 40, 363-370.	0.9	13
18	Development of a generalist predator, Podisus maculiventris, on glucosinolate sequestering and nonsequestering prey. Die Naturwissenschaften, 2014, 101, 707-714.	0.6	10
19	Plant Interactions with Multiple Insect Herbivores: From Community to Genes. Annual Review of Plant Biology, 2014, 65, 689-713.	8.6	361

CITATION REPORT

#	Article	IF	CITATIONS
20	Plant species variation in bottomâ€up effects across three trophic levels: a test of traits and mechanisms. Ecological Entomology, 2015, 40, 676-686.	1.1	14
21	Complex tritrophic interactions in response to crop domestication: predictions from the wild. Entomologia Experimentalis Et Applicata, 2015, 157, 40-59.	0.7	47
22	Optimizing Crops for Biocontrol of Pests and Disease. Trends in Plant Science, 2015, 20, 698-712.	4.3	137
23	Interactions Between a Belowground Herbivore and Primary and Secondary Root Metabolites in Wild Cabbage. Journal of Chemical Ecology, 2015, 41, 696-707.	0.9	29
24	Crop Domestication and Its Impact on Naturally Selected Trophic Interactions. Annual Review of Entomology, 2015, 60, 35-58.	5.7	316
25	Transcriptome and Metabolome Analyses of Glucosinolates in Two Broccoli Cultivars Following Jasmonate Treatment for the Induction of Glucosinolate Defense to Trichoplusia ni (Hübner). International Journal of Molecular Sciences, 2016, 17, 1135.	1.8	30
26	Differential induction of plant chemical defenses by parasitized and unparasitized herbivores: consequences for reciprocal, multitrophic interactions. Oikos, 2016, 125, 1398-1407.	1.2	34
27	The simultaneous inducibility of phytochemicals related to plant direct and indirect defences against herbivores is stronger at low elevation. Journal of Ecology, 2016, 104, 1116-1125.	1.9	72
28	Interactive Effects of Cabbage Aphid and Caterpillar Herbivory on Transcription of Plant Genes Associated with Phytohormonal Signalling in Wild Cabbage. Journal of Chemical Ecology, 2016, 42, 793-805.	0.9	23
29	Plant genotypes affect aboveground and belowground herbivore interactions by changing chemical defense. Oecologia, 2016, 182, 1107-1115.	0.9	17
30	Effects of population-related variation in plant primary and secondary metabolites on aboveground and belowground multitrophic interactions. Chemoecology, 2016, 26, 219-233.	0.6	20
31	Does Aphid Infestation Interfere with Indirect Plant Defense against Lepidopteran Caterpillars in Wild Cabbage?. Journal of Chemical Ecology, 2017, 43, 493-505.	0.9	12
32	Intraspecific chemical diversity among neighbouring plants correlates positively with plant size and herbivore load but negatively with herbivore damage. Ecology Letters, 2017, 20, 87-97.	3.0	50
33	The unfolding of plant growth formâ€defence syndromes along elevation gradients. Ecology Letters, 2018, 21, 609-618.	3.0	67
34	Oviposition preference of three lepidopteran species is not affected by previous aphid infestation in wild cabbage. Entomologia Experimentalis Et Applicata, 2018, 166, 402-411.	0.7	4
35	Effects of plant-mediated differences in host quality on the development of two related endoparasitoids with different host-utilization strategies. Journal of Insect Physiology, 2018, 107, 110-115.	0.9	11
36	Impact of the secondary plant metabolite Cucurbitacin B on the demographical traits of the melon aphid, Aphis gossypii. Scientific Reports, 2018, 8, 16473.	1.6	29
37	Seasonal and herbivore-induced dynamics of foliar glucosinolates in wild cabbage (Brassica) Tj ETQq1 1 0.78431	4 rgBT /Ov	erlock 10 Tf

CITATION REPORT

#	Article	IF	CITATIONS
38	Induced Plant Defenses Against Herbivory in Cultivated and Wild Tomato. Journal of Chemical Ecology, 2019, 45, 693-707.	0.9	47
39	Does chemistry make a difference? Milkweed butterfly sequestered cardenolides as a defense against parasitoid wasps. Arthropod-Plant Interactions, 2019, 13, 835-852.	0.5	7
40	Overexpression of the MYB29 transcription factor affects aliphatic glucosinolate synthesis in Brassica oleracea. Plant Molecular Biology, 2019, 101, 65-79.	2.0	28
41	Divergence in Glucosinolate Profiles between High- and Low-Elevation Populations of Arabidopsis halleri Correspond to Variation in Field Herbivory and Herbivore Behavioral Preferences. International Journal of Molecular Sciences, 2019, 20, 174.	1.8	11
42	Temporal distribution in a tri-trophic system associated with Piper amalago L. in a tropical seasonal forest. Arthropod-Plant Interactions, 2019, 13, 647-652.	0.5	7
43	Plant phenolics mediated bottomâ€up effects of elevated CO ₂ on <i>Acyrthosiphon pisum</i> and its parasitoid <i>Aphidius avenae</i> . Insect Science, 2020, 27, 170-184.	1.5	18
44	The ecological role of bacterial seed endophytes associated with wild cabbage in the United Kingdom. MicrobiologyOpen, 2020, 9, e00954.	1.2	26
45	Detoxification of plant defensive glucosinolates by an herbivorous caterpillar is beneficial to its endoparasitic wasp. Molecular Ecology, 2020, 29, 4014-4031.	2.0	19
46	Interactions of Bunias orientalis plant chemotypes and fungal pathogens with different host specificity in vivo and in vitro. Scientific Reports, 2020, 10, 10750.	1.6	8
47	Fineâ€scale plant defence variability increases topâ€down control of an herbivore. Functional Ecology, 2021, 35, 1437-1447.	1.7	5
48	Bottom-Up and Top-Down Effects Influence Bruchid Beetle Individual Performance but Not Population Densities in the Field. PLoS ONE, 2013, 8, e55317.	1.1	23
49	Metaâ€analysis of induced antiâ€herbivore defence traits in plants from 647 manipulative experiments with natural and simulated herbivory. Journal of Ecology, 2022, 110, 799-816.	1.9	7
50	The effect of squash domestication on a belowground tritrophic interaction. Plant-Environment Interactions, 2022, 3, 28-39.	0.7	5
53	Intraspecific chemodiversity provides plant individual- and neighbourhood-mediated associational resistance towards aphids. Frontiers in Plant Science, 0, 14, .	1.7	8