The Wenchuan Earthquake (May 12, 2008), Sichuan Prov geohazards

Natural Hazards 56, 19-36 DOI: 10.1007/s11069-009-9392-1

Citation Report

#	Article	IF	CITATIONS
1	Seismology: The sleeping dragon. Nature, 2009, 459, 153-157.	13.7	9
2	Risk Assessment and Treatment Countermeasures for the Barrier Lakes of Wenchuan Earthquake on May 12 th , 2008. Acta Geologica Sinica, 2009, 83, 826-833.	0.8	3
3	Characteristics of earthquake-triggered landslides and post-earthquake debris flows in Beichuan County. Journal of Mountain Science, 2010, 7, 246-254.	0.8	38
4	Continuum and discrete element coupling approach to analyzing seismic responses of a slope covered by deposits. Journal of Mountain Science, 2010, 7, 264-275.	0.8	7
5	Analysis of earthquake-triggered failure mechanisms of slopes and sliding surfaces. Journal of Mountain Science, 2010, 7, 282-290.	0.8	36
6	Monitoring and warning of landslides and debris flows using an optical fiber sensor technology. Journal of Mountain Science, 2011, 8, 728-738.	0.8	63
7	Prediction of debris-flow danger area by combining hydrological and inundation simulation methods. Journal of Mountain Science, 2011, 8, 1-9.	0.8	58
8	Two-dimensional numerical model for debris flows in the Jiangjia Gully, Yunnan Province. Journal of Mountain Science, 2011, 8, 757-766.	0.8	10
9	Forecast method of multimode system for debris flow risk assessment in Qingping Town, Sichuan Province, China. Journal of Mountain Science, 2011, 8, 592-602.	0.8	6
10	Empirical-statistical models based on remote sensing for estimating the volume of landslides induced by the Wenchuan earthquake. Journal of Mountain Science, 2011, 8, 711-717.	0.8	5
11	Research on One ZICM2410-Based Wireless Sensor Network for Landslide Monitoring. , 2011, , .		7
12	A Synthetic Analysis on the Effective Protection and Management of World Heritage Sites in the Geological Disaster Area: A Case Study of Sichuan, China. Advanced Materials Research, 2012, 524-527, 2702-2711.	0.3	0
13	Destruction of vegetation due to geo-hazards and its environmental impacts in the Wenchuan earthquake areas. Ecological Engineering, 2012, 44, 61-69.	1.6	103
14	CIS modelling of earthquake damage zones using satellite remote sensing and DEM data. Geomorphology, 2012, 139-140, 518-535.	1.1	21
15	Model testing on rainfall-induced landslide of loose soil in Wenchuan earthquake region. Natural Hazards and Earth System Sciences, 2012, 12, 527-533.	1.5	29
16	Secondary geological hazard analysis in Beichuan after the Wenchuan earthquake and recommendations for reconstruction. Environmental Earth Sciences, 2012, 66, 1001-1009.	1.3	29
17	Disaster chains initiated by the Wenchuan earthquake. Environmental Earth Sciences, 2012, 65, 975-985.	1.3	27
18	Post-earthquake changes and prediction of debris flow scales in Subao River Valley, Beichuan County, Sichuan Province, China. Environmental Earth Sciences, 2012, 65, 995-1003.	1.3	10

TATION RED

ARTICLE IF CITATIONS # Simulation of the sliding process of Donghekou landslide triggered by the Wenchuan earthquake 19 1.356 using a distinct element method. Environmental Earth Sciences, 2012, 65, 1049-1054. Susceptibility and risk assessment of earthquake-induced landslides based on Landslide Response Units 1.3 9 in the Subao River basin, China. Environmental Earth Sciences, 2012, 65, 1037-1047. Distribution characteristics of Geo-hazards in Ganxi Valley after the Wenchuan earthquake. 21 7 1.3 Environmental Earth Sciences, 2012, 65, 965-973. Debris flow formation conditions and optimal characteristics of drainage canal following Wenchuan earthquake. Environmental Earth Sciences, 2012, 65, 1005-1012. Regional indirect economic impact evaluation of the 2008 Wenchuan Earthquake. Environmental 23 1.3 81 Earth Sciences, 2012, 65, 161-172. Formation and characteristics of post-earthquake debris flow: a case study from Wenjia gully in Mianzhu, Sichuan, SW China. Natural Hazards, 2012, 61, 317-335. 1.6 Meta-synthesis pattern of post-disaster recovery and reconstruction: based on actual investigation 26 1.6 49 on 2008 Wenchuan earthquake. Natural Hazards, 2012, 60, 199-222. Using Bayesian networks in analyzing powerful earthquake disaster chains. Natural Hazards, 2013, 68, 509-527. 1.6 49 Initiation process of debris flows on different slopes due to surface flow and trigger-specific strategies for mitigating post-earthquake in old Beichuan County, China. Environmental Earth 28 1.3 34 Sciences, 2013, 68, 1391-1403. Characteristics, causes and mitigation of catastrophic debris flow hazard on 21 July 2011 at the Longda Watershed of Songpan County, China. Journal of Mountain Science, 2013, 10, 261-272. GIS-based landslide susceptibility mapping using analytical hierarchy process in Wenchuan., 2013,,. 30 1 Case study of a giant debris flow in the Wenjia Gully, Sichuan Province, China. Natural Hazards, 2013, 65.835-849. A scaling distribution for grain composition of debris flow. Geomorphology, 2013, 192, 30-42. 32 1.1 45 Debris flow warning threshold based on antecedent rainfall: A case study in Jiangjia Ravine, Yunnan, China. Journal of Mountain Science, 2013, 10, 305-314. 0.8 56 Hybrid simulation of the initiation and runout characteristics of a catastrophic debris flow. Journal 35 0.8 34 of Mountain Science, 2013, 10, 219-232. Risk assessment of simultaneous debris flows in mountain townships. Progress in Physical Geography, 1.4 2013, 37, 516-542. Characteristics and Prevention of the Debris Flows following Wenchuan Earthquake in Jushui River 37 0.4 1 Basin, An County, China. Journal of Earthquakes, 2014, 2014, 1-10. Characteristics of a drainage channel with staggered indented sills for controlling debris flows. 38 Journal of Mountain Science, 2014, 11, 1242-1252.

#	Article	IF	CITATIONS
39	Hazards on Dujiangyan-Wenchuan Highways Induced by Catastrophic Debris Flows on July 10 2013 and Prevention. Applied Mechanics and Materials, 0, 501-504, 2463-2472.	0.2	1
40	Displacement Parameter Inversion for a Novel Electromagnetic Underground Displacement Sensor. Sensors, 2014, 14, 9074-9092.	2.1	6
41	Dynamic and Static Combination Analysis Method of Slope Stability Analysis during Earthquake. Mathematical Problems in Engineering, 2014, 2014, 1-13.	0.6	4
42	Polarimetric Response of Landslides at X-Band Following the Wenchuan Earthquake. IEEE Geoscience and Remote Sensing Letters, 2014, 11, 1722-1726.	1.4	12
43	Types and causes of debris flow damage to drainage channels in the Wenchuan earthquake area. Journal of Mountain Science, 2014, 11, 1406-1419.	0.8	17
44	Impact of Wenchuan earthquake on the giant panda habitat in Wolong National Nature Reserve, China. Journal of Applied Remote Sensing, 2014, 8, 083507.	0.6	2
45	An Overview of Formation Mechanism and Disaster Characteristics of Postâ€seismic Debris Flows Triggered by Subsequent Rainstorms in Wenchuan Earthquake Extremely Stricken Areas. Acta Geologica Sinica, 2014, 88, 1310-1328.	0.8	20
46	Policy options to support climate-induced migration: insights from disaster relief in China. Mitigation and Adaptation Strategies for Global Change, 2014, 19, 375-389.	1.0	5
47	Local site effect microzonation of Lorca town (SE Spain). Bulletin of Earthquake Engineering, 2014, 12, 1933-1959.	2.3	39
48	Susceptibility mapping of landslides in Beichuan County using cluster and MLC methods. Natural Hazards, 2014, 70, 755-766.	1.6	22
49	Characteristics and hazard prediction of large-scale debris flow of Xiaojia Gully in Yingxiu Town, Sichuan Province, China. Engineering Geology, 2014, 180, 55-67.	2.9	48
50	Activity and distribution of geohazards induced by the Lushan earthquake, April 20, 2013. Natural Hazards, 2014, 73, 711-726.	1.6	17
51	Characteristics of Flow Failures Triggered by Recent Earthquakes in China. Indian Geotechnical Journal, 2014, 44, 218-224.	0.7	6
52	Natural hazard chain research in China: A review. Natural Hazards, 2014, 70, 1631-1659.	1.6	54
53	Long-traveling landslides in deep snow conditions induced by the 2011 Nagano Prefecture earthquake, Japan. Landslides, 2014, 11, 605-613.	2.7	10
54	Waterline Mapping and Change Detection of Tangjiashan Dammed Lake After Wenchuan Earthquake From Multitemporal High-Resolution Airborne SAR Imagery. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7, 3200-3209.	2.3	24
55	Introduction to Geohazards of Central China. Quarterly Journal of Engineering Geology and Hydrogeology, 2014, 47, 195-199.	0.8	31
56	Background and reflections on Dingxi earthquake of July 22, 2013. Natural Hazards, 2014, 70, 1661-1667.	1.6	3

#	Article	IF	CITATIONS
57	Rapid geometry analysis for earthquake-induced and rainfall-induced landslide dams in Taiwan. Journal of Mountain Science, 2014, 11, 360-370.	0.8	20
58	Long-term activity of earthquake-induced landslides: A case study from Qionghai Lake Basin, Southwest of China. Journal of Mountain Science, 2014, 11, 607-624.	0.8	21
59	Case history of the disastrous debris flows of Tianmo Watershed in Bomi County, Tibet, China: Some mitigation suggestions. Journal of Mountain Science, 2014, 11, 1253-1265.	0.8	37
60	The mechanisms behind shallow failures in slopes comprised of landslide deposits. Engineering Geology, 2014, 180, 34-44.	2.9	75
61	High-position debris flow: A long-term active geohazard after the Wenchuan earthquake. Engineering Geology, 2014, 180, 45-54.	2.9	53
62	Robust river boundaries extraction of dammed lakes in mountain areas after Wenchuan Earthquake from high resolution SAR images combining local connectivity and ACM. ISPRS Journal of Photogrammetry and Remote Sensing, 2014, 94, 91-101.	4.9	27
63	Risk assessment of disaster chain: Experience from Wenchuan earthquake-induced landslides in China. Journal of Mountain Science, 2015, 12, 1169-1180.	0.8	19
64	Spatial Analysis of Wenchuan Earthquake-Damaged Vegetation in the Mountainous Basins and Its Applications. Remote Sensing, 2015, 7, 5785-5804.	1.8	17
65	Monitoring Earthquake-Damaged Vegetation after the 2008 Wenchuan Earthquake in the Mountainous River Basins, Dujiangyan County. Remote Sensing, 2015, 7, 6808-6827.	1.8	9
66	Evaluating the Vegetation Recovery in the Damage Area of Wenchuan Earthquake Using MODIS Data. Remote Sensing, 2015, 7, 8757-8778.	1.8	22
67	SPH-based numerical simulation of catastrophic debris flows after the 2008 Wenchuan earthquake. Bulletin of Engineering Geology and the Environment, 2015, 74, 1137-1151.	1.6	48
68	Analysis of changes in post-seismic landslide distribution and its effect on building reconstruction. Natural Hazards and Earth System Sciences, 2015, 15, 817-825.	1.5	16
69	An experimental study of dilute debris flow characteristics in a drainage channel with an energy dissipation structure. Engineering Geology, 2015, 193, 224-230.	2.9	25
70	Susceptibility assessment of debris flows using the analytic hierarchy process method â^ A case study in Subao river valley, China. Journal of Rock Mechanics and Geotechnical Engineering, 2015, 7, 404-410.	3.7	30
71	Network performance assessment for collaborative disaster response. Disaster Prevention and Management, 2015, 24, 201-220.	0.6	33
72	Model test study on monitoring dynamic process of slope failure through spatial sensor network. Environmental Earth Sciences, 2015, 74, 3315-3332.	1.3	31
73	Catastrophic debris flows on July 10th 2013 along the Min River in areas seriously-hit by the Wenchuan earthquake. Journal of Mountain Science, 2015, 12, 186-206.	0.8	38
74	Effects of human activity on erosion, sedimentation and debris flow activity – A case study of the Qionghai Lake watershed, southeastern Tibetan Plateau, China. Holocene, 2015, 25, 973-988.	0.9	20

#	Article	IF	CITATIONS
75	Stability analysis of slopes with ground water during earthquakes. Engineering Geology, 2015, 193, 288-296.	2.9	28
76	From the source area to the deposit: Collapse, fragmentation, and propagation of the Frank Slide. Bulletin of the Geological Society of America, 0, , B31243.1.	1.6	21
77	Engineering measures for debris flow hazard mitigation in the Wenchuan earthquake area. Engineering Geology, 2015, 194, 73-85.	2.9	111
78	Hybrid-SAR Technique: Joint Analysis Using Phase-Based and Amplitude-Based Methods for the Xishancun Giant Landslide Monitoring. Remote Sensing, 2016, 8, 874.	1.8	25
79	Characteristics, causes and control measures of disasters for the soft-rock tunnels in the Wenchuan seismic regions. Journal of Geophysics and Engineering, 2016, 13, 470-480.	0.7	12
80	Understanding differences in emergency escape and experimental pedestrian crowd egress through quantitative comparison. International Journal of Disaster Risk Reduction, 2016, 20, 129-137.	1.8	28
81	Dynamic process-based risk assessment of debris flow on a local scale. Physical Geography, 2016, 37, 132-152.	0.6	18
82	Outlining a stepwise, multi-parameter debris flow monitoring and warning system: an example of application in Aizi Valley, China. Journal of Mountain Science, 2016, 13, 1527-1543.	0.8	8
83	Variation in initiation condition of debris flows in the mountain regions surrounding Beijing. Geomorphology, 2016, 273, 323-334.	1.1	17
84	New road for telecoupling global prosperity and ecological sustainability. Ecosystem Health and Sustainability, 2016, 2, .	1.5	32
85	Impact of earthquake-induced landslide on the habitat suitability of giant panda in Wolong, China. Journal of Mountain Science, 2016, 13, 1789-1805.	0.8	9
86	Amplification Mechanism and Hazard Analysis for Zhouqu Giant Debris Flow. International Journal of Erosion Control Engineering, 2016, 9, 71-79.	0.5	1
87	Seismotectonic Properties and Zonation of the Far-Eastern Eurasian Plate Around the Korean Peninsula. Pure and Applied Geophysics, 2016, 173, 1175-1195.	0.8	28
88	Characteristics of viscous debris flow in a drainage channel with an energy dissipation structure. Journal of Mountain Science, 2016, 13, 223-233.	0.8	13
89	Geo-engineered buffer capacity of two-layered absorbing system under the impact of rock avalanches based on Discrete Element Method. Journal of Mountain Science, 2016, 13, 917-929.	0.8	18
90	Experimental analysis for the dynamic initiation mechanism of debris flows. Journal of Mountain Science, 2016, 13, 581-592.	0.8	2
91	The formation and development of debris flows in large watersheds after the 2008 Wenchuan Earthquake. Landslides, 2016, 13, 25-37.	2.7	34
92	Intensity–duration threshold of rainfall-triggered debris flows in the Wenchuan Earthquake affected area, China. Geomorphology, 2016, 253, 208-216.	1.1	92

#	Article	IF	CITATIONS
93	Temporal differentiation of rainfall thresholds for debris flows in Wenchuan earthquake-affected areas. Environmental Earth Sciences, 2016, 75, 1.	1.3	18
94	Mitigation planning based on the prediction of river blocking by a typical large-scale debris flow in the Wenchuan earthquake area. Landslides, 2016, 13, 1231-1242.	2.7	17
95	Spatial features of debris flows and their rainfall thresholds in the Wenchuan earthquake-affected area. Landslides, 2016, 13, 1215-1229.	2.7	32
96	Experimental study on the characteristics of a debris-flow drainage channel with an energy dissipation structure. Bulletin of Engineering Geology and the Environment, 2017, 76, 341-351.	1.6	12
97	Simulation of a long-runout rock avalanche triggered by the Lushan earthquake in the Tangjia Valley, Tianquan, Sichuan, China. Engineering Geology, 2017, 218, 107-116.	2.9	24
98	Experimental study on a debris-flow drainage channel with different types of energy dissipation baffles. Engineering Geology, 2017, 220, 43-51.	2.9	43
99	Response mechanism of post-earthquake slopes under heavy rainfall. Journal of Seismology, 2017, 21, 869-884.	0.6	8
100	A catastrophic debris flow in the Wenchuan Earthquake area, July 2013: characteristics, formation, and risk reduction. Journal of Mountain Science, 2017, 14, 15-30.	0.8	24
101	Comparison of the entrainment rate of debris flows in distinctive triggering conditions. Journal of Mountain Science, 2017, 14, 237-248.	0.8	3
102	Combined effects of climate, restoration measures and slope position in change in soil chemical properties and nutrient loss across lands affected by the Wenchuan Earthquake in China. Science of the Total Environment, 2017, 596-597, 274-283.	3.9	22
103	Dynamic simulation of landslide dam behavior considering kinematic characteristics using a coupled DDA-SPH method. Engineering Analysis With Boundary Elements, 2017, 80, 172-183.	2.0	60
104	Spatial Relations of Earthquake Induced Landslides Triggered by 2015 Gorkha Earthquake MwÂ=Â7.8. , 2017, , 85-93.		21
105	Characteristics and triggering mechanism of Xinmo landslide on 24 June 2017 in Sichuan, China. Journal of Mountain Science, 2017, 14, 1689-1700.	0.8	79
106	Experimental study on the energy dissipation characteristics of debris flow deceleration baffles. Journal of Mountain Science, 2017, 14, 1951-1960.	0.8	10
107	Characteristics of rainfall responsible for debris flows in Wenchuan Earthquake area. Environmental Earth Sciences, 2017, 76, 1.	1.3	18
108	Gravelâ€bed river evolution in earthquakeâ€prone regions subject to cycled hydrographs and repeated sediment pulses. Earth Surface Processes and Landforms, 2017, 42, 2426-2438.	1.2	27
109	Spatial and temporal analyses of post-seismic landslide changes near the epicentre of the Wenchuan earthquake. Geomorphology, 2017, 276, 8-15.	1.1	65
110	Geometrical feature analysis and disaster assessment of the Xinmo landslide based on remote sensing data. Journal of Mountain Science, 2017, 14, 1677-1688.	0.8	39

		CITATION REPC	ORT	
#	Article	II	F	CITATIONS
111	An Approach to Predict Debris Flow Average Velocity. Water (Switzerland), 2017, 9, 205.	1	L.2	11
112	Structural Risk Assessment and Mitigation for Low- to Mid-Rise Residential Buildings in Cl Frontiers in Built Environment, 2017, 3, .	iina. 1	1.2	1
113	Distinct Element Modelling of a Landslide Triggered by the 5.12 Wenchuan Earthquake: A Geotechnical and Geological Engineering, 2018, 36, 2533-2551.	Case Study. C	0.8	11
114	Landslides and dam damage resulting from the Jiuzhaigou earthquake (8 August 2017), S Royal Society Open Science, 2018, 5, 171418.	ichuan, China. 1	l.1	44
115	Distribution and characteristics of loess landslides triggered by the 1920 Haiyuan Earthqu Northwest of China. Geomorphology, 2018, 314, 1-12.	iake, 1	l.1	67
116	Topographic changes and their driving factors after 2008 Wenchuan earthquake. Geomo 2018, 311, 27-36.	rphology, 1	l.1	19
117	The earthquake in Jiuzhaigou County of Northern Sichuan, China on August 8, 2017. Natu 2018, 90, 1021-1030.	ıral Hazards, 1	L.6	23
118	Experimental study of viscous debris flow characteristics in drainage channel with oblique symmetrical sills. Engineering Geology, 2018, 233, 55-62.	2	2.9	16
119	Regional assessment of geohazard recovery eight years after the Mw7.9 Wenchuan earth remote-sensing investigation of the Beichuan region. International Journal of Remote Sen 39, 1671-1695.		L.3	14
120	Assessment of prospective hazards resulting from the 2017 earthquake at the world herit Jiuzhaigou Valley, Sichuan, China. Journal of Mountain Science, 2018, 15, 779-792.	age site o	0.8	45
121	Monitoring Instantaneous Dynamic Displacements of Masonry Walls in Seismic Oscillatio by Monocular Digital Photography. Mathematical Problems in Engineering, 2018, 2018, 1	n Outdoors c -15.).6	5
122	Earthquake-Triggered Landslide Modeling and Deformation Analysis Related to 2005 Kash Earthquake Using Satellite Imagery. , 2018, , 433-450.	ımir		1
123	Livelihood Benefits from Post-Earthquake Nature-Based Tourism Development: A Survey c Residents in Rural China. Sustainability, 2018, 10, 699.	f Local 1	L.6	13
124	Gravitational Seismodislocations in Mountainous regions of Southeastern Kazakhstan. Ge and Natural Resources, 2018, 39, 79-87.	ography o).1	0
125	Influence of strong motion duration on the seismic performance of high CFRDs based on elastoplastic analysis. Soil Dynamics and Earthquake Engineering, 2018, 114, 438-447.	1	L . 9	23
126	Seismic damage assessment and mechanism analysis of underground powerhouse of the Hydropower Station under the Wenchuan earthquake. Soil Dynamics and Earthquake Eng 2018, 113, 112-123.		L.9	30
127	The effect of check dams on the dynamic and bed entrainment processes of debris flows. 2019, 16, 2201-2217.	Landslides, 2	2.7	27
128	Decreasing Trend of Geohazards Induced by the 2008 Wenchuan Earthquake Inferred fro NDVI Data. Remote Sensing, 2019, 11, 2192.	m Time Series1	L.8	17

#	Article	IF	CITATIONS
129	Differential quantitative proteomics reveals the functional difference of two <i>yigP</i> locus products, UbiJ and EsrE. Journal of Basic Microbiology, 2019, 59, 1125-1133.	1.8	5
130	Assessing Susceptibility of Debris Flow in Southwest China Using Gradient Boosting Machine. Scientific Reports, 2019, 9, 12532.	1.6	39
131	Temporal and spatial distributions of landslides in the Qinba Mountains, Shaanxi Province, China. Geomatics, Natural Hazards and Risk, 2019, 10, 599-621.	2.0	18
132	Dynamic response and optimization of an inclined steel rock shed by the graded energy dissipating method. Journal of Mountain Science, 2019, 16, 138-152.	0.8	7
133	Building new houses or long-term recovery? A combination of quantitative and qualitative evidence from earthquake-displaced households in Sichuan, China. Habitat International, 2019, 83, 135-145.	2.3	10
134	Investments against flash floods and their effectiveness in China in 2000–2015. International Journal of Disaster Risk Reduction, 2019, 38, 101193.	1.8	8
135	Seismic Characterization of Debris Flows: Insights into Energy Radiation and Implications for Warning. Journal of Geophysical Research F: Earth Surface, 2019, 124, 1440-1463.	1.0	59
136	Assessment of debris-flow potential dangers in the Jiuzhaigou Valley following the August 8, 2017, Jiuzhaigou earthquake, western China. Engineering Geology, 2019, 256, 57-66.	2.9	61
137	Network Reconfiguration for Increasing Transportation System Resilience Under Extreme Events. Risk Analysis, 2019, 39, 2054-2075.	1.5	25
138	Spatial-temporal analysis of community resilience to multi-hazards in the Anning River basin, Southwest China. International Journal of Disaster Risk Reduction, 2019, 39, 101144.	1.8	21
139	The role of active faults and sliding mechanism analysis of the 2017 Maoxian postseismic landslide in Sichuan, China. Bulletin of Engineering Geology and the Environment, 2019, 78, 5635-5651.	1.6	30
140	Evaluation of a traditional method for peak flow discharge estimation for floods in the Wenchuan Earthquake area, Sichuan Province, China. Journal of Mountain Science, 2019, 16, 641-656.	0.8	4
141	Landslides and dammed lakes triggered by the 2017 Ms6.9 Milin earthquake in the Tsangpo gorge. Landslides, 2019, 16, 993-1001.	2.7	57
142	Scenario-Based Risk Assessment of Earthquake Disaster Using Slope Displacement, PGA, and Population Density in the Guyuan Region, China. ISPRS International Journal of Geo-Information, 2019, 8, 85.	1.4	13
143	Spatial Autocorrelation Analysis of Multi-Scale Damaged Vegetation in the Wenchuan Earthquake-Affected Area, Southwest China. Forests, 2019, 10, 195.	0.9	8
144	A three-stage and multi-objective stochastic programming model to improve the sustainable rescue ability by considering secondary disasters in emergency logistics. Computers and Industrial Engineering, 2019, 135, 1145-1154.	3.4	74
145	Dynamic behavior of soil anchorage landslide at different frequencies. Geomatics, Natural Hazards and Risk, 2019, 10, 271-286.	2.0	3
146	Landslides triggered by the Ms 6.9 Nyingchi earthquake, China (18 November 2017): analysis of the spatial distribution and occurrence factors. Landslides, 2019, 16, 765-776.	2.7	55

#	Article	IF	CITATIONS
147	A bibliometric analysis of health-related literature on natural disasters from 1900 to 2017. Health Research Policy and Systems, 2019, 17, 18.	1.1	45
148	Emerging Trends and New Developments in Disaster Research after the 2008 Wenchuan Earthquake. International Journal of Environmental Research and Public Health, 2019, 16, 29.	1.2	23
149	Can magic sand cause massive degradation of a gravel-bed river at the decadal scale? Shi‑ting River, China. Geomorphology, 2019, 327, 147-158.	1.1	12
150	Addressing cascading effects of earthquakes in urban areas from network perspective to improve disaster mitigation. International Journal of Disaster Risk Reduction, 2019, 35, 101065.	1.8	34
151	Multi-sensor observation fusion scheme based on 3D variational assimilation for landslide monitoring. Geomatics, Natural Hazards and Risk, 2019, 10, 151-167.	2.0	6
152	How earthquake-induced direct economic losses change with earthquake magnitude, asset value, residential building structural type and physical environment: An elasticity perspective. Journal of Environmental Management, 2019, 231, 321-328.	3.8	23
153	Failure mechanisms and deformation processes of a high-locality landslide at Tonghua Town, Li County, China, 2017. Landslides, 2020, 17, 165-177.	2.7	18
154	Broad learning for nonparametric spatial modeling with application to seismic attenuation. Computer-Aided Civil and Infrastructure Engineering, 2020, 35, 203-218.	6.3	25
155	Susceptibility Assessments and Validations of Debris-Flow Events in Meizoseismal Areas: Case Study in China's Longxi River Watershed. Natural Hazards Review, 2020, 21, .	0.8	17
156	A Late Pleistocene river-damming landslide, Minjiang River, China. Landslides, 2020, 17, 433-444.	2.7	21
157	A New Deep-Learning-Based Approach for Earthquake-Triggered Landslide Detection From Single-Temporal RapidEye Satellite Imagery. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13, 6166-6176.	2.3	66
158	Improving emergency preparedness to cascading disasters: A caseâ€driven risk ontology modelling. Journal of Contingencies and Crisis Management, 2020, 28, 194-214.	1.6	15
159	Post-earthquake medical evacuation system design based on hierarchical multi-objective optimization model: An earthquake case study. International Journal of Disaster Risk Reduction, 2020, 51, 101785.	1.8	12
160	Effects of raster resolution on real probability of landslides. Remote Sensing Applications: Society and Environment, 2020, 19, 100364.	0.8	4
161	Dynamic response analysis of blocks-combined dam under impact load. Journal of Mountain Science, 2020, 17, 2827-2839.	0.8	4
162	Experimental study on dynamic characteristics and dynamic responses of accumulation slopes under frequent microseisms. Arabian Journal of Geosciences, 2020, 13, 1.	0.6	9
163	Abrasion Behavior and Anti-Wear Measures of Debris Flow Drainage Channel with Large Gradient. Water (Switzerland), 2020, 12, 1868.	1.2	4
164	Causes, characterization, damage models, and constitutive modes for rock damage analysis: a review. Arabian Journal of Geosciences, 2020, 13, 1.	0.6	27

#	Article	IF	CITATIONS
165	Case study on debris-flow hazard mitigation at a world natural heritage site, Jiuzhaigou Valley, Western China. Geomatics, Natural Hazards and Risk, 2020, 11, 1782-1804.	2.0	20
166	Automatic Mapping of Landslides by the ResU-Net. Remote Sensing, 2020, 12, 2487.	1.8	65
167	Landslide susceptibility mapping using multiscale sampling strategy and convolutional neural network: A case study in Jiuzhaigou region. Catena, 2020, 195, 104851.	2.2	123
168	Construction of Earthquake Rescue Model Based on Hierarchical Voronoi Diagram. Mathematical Problems in Engineering, 2020, 2020, 1-13.	0.6	0
169	Fracture of rocks in the mountains of Southeast Tibet under hydrothermal conditions at different elevations. Bulletin of Engineering Geology and the Environment, 2020, 79, 4291-4308.	1.6	4
170	Implication of Radon Monitoring for Earthquake Surveillance Using Statistical Techniques: A Case Study of Wenchuan Earthquake. Geofluids, 2020, 2020, 1-14.	0.3	20
171	Landscape evolution of the Wenchuan earthquake-stricken area in response to future climate change. Journal of Hydrology, 2020, 590, 125244.	2.3	10
172	Analysis of landslide stability under seismic action and subsequent rainfall: a case study on the Ganjiazhai giant landslide along the Zhaotong-Qiaojia road during the 2014 Ludian earthquake, Yunnan, China. Bulletin of Engineering Geology and the Environment, 2020, 79, 5229-5248.	1.6	33
173	Numerical assessment of the impeding effect of check dams in the Hongchun debris flow gully, Sichuan Province, China. Bulletin of Engineering Geology and the Environment, 2020, 79, 2833-2845.	1.6	11
174	Seismic behavior of a single-form lattice anchoring structure and a combined retaining structure supporting soil slope: a comparison. Environmental Earth Sciences, 2020, 79, 1.	1.3	12
175	Post-failure landslide change detection and analysis using optical satellite Sentinel-2 images. Landslides, 2021, 18, 447-455.	2.7	24
176	Recurrent rock avalanches progressively dismantle a mountain ridge in Beichuan County, Sichuan, most recently in the 2008 Wenchuan earthquake. Geomorphology, 2021, 374, 107492.	1.1	12
177	Parametric and non-parametric estimation of extreme earthquake event: the joint tail inference for mainshocks and aftershocks. Extremes, 2021, 24, 199-214.	0.5	1
178	Changes in hydrological behaviours triggered by earthquake disturbance in a mountainous watershed. Science of the Total Environment, 2021, 760, 143349.	3.9	19
179	An Earthquake Monitoring System of LoRa Dynamic Networking Based on AODV. Lecture Notes in Electrical Engineering, 2021, , 628-633.	0.3	0
180	Research Review for Broad Learning System: Algorithms, Theory, and Applications. IEEE Transactions on Cybernetics, 2022, 52, 8922-8950.	6.2	87
181	Debris flows in the Lushan earthquake area: formation characteristics, rainfall conditions, and evolutionary tendency. Natural Hazards, 2021, 106, 2663-2687.	1.6	12
182	Variation of debris flow/flood formation conditions at the watershed scale in the Wenchuan Earthquake area. Landslides, 2021, 18, 2427-2443.	2.7	6

#	Article	IF	CITATIONS
183	Geomorphology-oriented digital terrain analysis: Progress and perspectives. Journal of Chinese Geography, 2021, 31, 456-476.	1.5	65
184	Formation-Evolutionary Mechanism Analysis and Impacts of Human Activities on the 20 August 2019 Clustered Debris Flows Event in Wenchuan County, Southwestern China. Frontiers in Earth Science, 2021, 9, .	0.8	4
185	Assessment and Analysis of a Rainfall–Time-Lagging Water-Related Disaster in Mountainous Areas. Frontiers in Earth Science, 2021, 9, .	0.8	1
186	Quantitative Analysis of the Effects of an Earthquake on Rainfall Thresholds for Triggering Debris-Flow Events. Frontiers in Earth Science, 2021, 9, .	0.8	2
187	Development of the coseismic landslide susceptibility map of the island of Lefkada, Greece. Environmental Earth Sciences, 2021, 80, 1.	1.3	1
188	Changes in ecosystem services in a montane landscape impacted by major earthquakes: A case study in Wenchuan earthquake-affected area, China. Ecological Indicators, 2021, 126, 107683.	2.6	12
189	Coupling and coordination of socioeconomic and ecological environment in Wenchuan earthquake disaster areas: Case study of severely affected counties in southwestern China. Sustainable Cities and Society, 2021, 71, 102958.	5.1	32
190	Geomorphic effect of debris-flow sediments on the Min River, Wenchuan Earthquake region, western China. Journal of Mountain Science, 2021, 18, 2427-2440.	0.8	6
191	Study on the downcutting rate of a debris flow dam based on grain-size distribution. Geomorphology, 2021, 391, 107891.	1.1	11
192	Landslides triggered by the 2018 Lombok earthquake sequence, Indonesia. Catena, 2021, 207, 105676.	2.2	15
193	Formation and Treatment of Landslide Dams Emplaced During the 2008 Wenchuan Earthquake, Sichuan, China. Lecture Notes in Earth Sciences, 2011, , 295-321.	0.5	10
195	The Characteristics of Landslides Induced by the Wenchuan Earthquake Based on High Spatial Resolution Remote Sensing Images. , 2013, , 331-339.		1
197	Risk Complexity and Governance in Mountain Environments. , 2015, , 349-371.		5
198	Characteristics, Impacts and Risks of Dammed Lakes Induced by Debris Flows at the Wenchuan Earthquake Areas. Journal of Water Resource and Protection, 2014, 06, 1574-1588.	0.3	1
199	Characteristics of Seismic Hazard in a V-Shaped Valley and Hazard Mitigation Methods. Open Journal of Safety Science and Technology, 2015, 05, 27-36.	0.1	1
200	Two multi-temporal datasets that track the enhanced landsliding after the 2008 Wenchuan earthquake. Earth System Science Data, 2019, 11, 35-55.	3.7	87
201	Timing, drivers and impacts of the historic Masiere diÂVedana rock avalanche (Belluno Dolomites,) Tj ETQq0 0 0 r	gBT_/Over 1.5	lo <u>c</u> k 10 Tf 50

204Stormflow generation in a humid forest watershed controlled by antecedent wetness and rainfall
amounts. Journal of Hydrology, 2021, 603, 127107.2.318

#	Article	IF	CITATIONS
205	Supply-chain impacts of Sichuan earthquake: a case study using disaster input–output analysis. Natural Hazards, 2022, 110, 2227-2248.	1.6	9
206	Spatial and Temporal Distribution of Geologic Hazards in Shaanxi Province. Remote Sensing, 2021, 13, 4259.	1.8	6
207	Spatio-temporal evolution of post-seismic landslides and debris flows: 2017 Ms 7.0 Jiuzhaigou earthquake. Environmental Science and Pollution Research, 2022, 29, 15681-15702.	2.7	16
208	Detection of Slope Failures using ALOS/AVNIR-2 Images for the 2008 Iwate-Miyagi Inland Earthquake. Journal of Japan Association for Earthquake Engineering, 2010, 10, 12-24.	0.0	3
209	One Dynamic Hierarchical Data Acquisition Model for Pre-geohazards Information Acquisition. Communications in Computer and Information Science, 2011, , 15-22.	0.4	0
210	A Long-Traveling Landslide in Deep Snow Conditions: A Case Study of the Tatsunokuchi Landslide Induced by the 2011 North Nagano Prefecture Earthquake. , 2013, , 203-211.		0
212	Earthquake Damage Zone GIS Modelling: A Modulation Between Co-Seismic Deformation and Landslide Susceptibility. , 2013, , 269-277.		0
213	Environmental Impact of the Landslides Caused by the 12 May 2008, Wenchuan, China Earthquake. , 2013, , 179-184.		0
218	Characteristics and Causes of Disastrous Debris Flows on July 4, 2013, in Shimian County, Sichuan, China. International Journal of Geosciences, 2016, 07, 518-528.	0.2	1
219	Disaster Recovery and Community Renewal: Housing Approaches. , 2016, , 43-60.		4
220	Landslides Triggered by the Ms6.5 Ludian, China Earthquake of August 3, 2014. , 2017, , 119-129.		1
222	STABILITY ANALYSIS OF UNFAVOURABLE GEOLOGICAL BODIES IN A POST-EARTHQUAKE AREA: A CASE STUDY IN GENGDA TOWNSHIP CHINA. Applied Ecology and Environmental Research, 2019, 17, .	0.2	0
223	Spatiotemporal analysis land surface temperature in relation to earthquake occurrence around the cimandiri fault. IOP Conference Series: Earth and Environmental Science, 0, 540, 012069.	0.2	0
224	Depositional process and dispersal pattern of a faulted margin hyperpycnal system: The eocene dongying depression, Bohai bay basin, China. Marine and Petroleum Geology, 2021, , 105405.	1.5	4
225	Debris-Flow Peak Discharge Calculation Model Based on Erosion Zoning. ICL Contribution To Landslide Disaster Risk Reduction, 2021, , 345-352.	0.3	0
226	Slow surface subsidence and its impact on shallow loess landslides in a coal mining area. Catena, 2022, 209, 105830.	2.2	38
227	Copula-Based Probabilistic Approaches for Predicting Debris-Flow Runout Distances in the Wenchuan Earthquake Zone. ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering, 2022, 8, .	1.1	8
228	Applying Dynamic Performance Management to Public Emergency Management: An Analysis of the Wenchuan Earthquake. System Dynamics for Performance Management, 2020, , 263-276.	0.2	0

#	Article	IF	CITATIONS
229	Analyzing Healthcare Facility Resilience: Scientometric Review and Knowledge Map. Frontiers in Public Health, 2021, 9, 764069.	1.3	10
230	Modeling the Spatial Distribution of Debris Flows and Analysis of the Controlling Factors: A Machine Learning Approach. Remote Sensing, 2021, 13, 4813.	1.8	11
231	Changes in debris-flow susceptibility after the Wenchuan earthquake revealed by meteorological and hydro-meteorological thresholds. Catena, 2022, 210, 105929.	2.2	9
232	Identifying Potential Earthquake Sources in Continental Environments. Surveys in Geophysics, 0, , 1.	2.1	3
233	A Simple Method of Mapping Landslides Runout Zones Considering Kinematic Uncertainties. Remote Sensing, 2022, 14, 668.	1.8	11
234	Multi-Hazard Chain Reaction Initiated by the 2020 Meilong Debris Flow in the Dadu River, Southwest China. Frontiers in Earth Science, 2022, 10, .	0.8	4
235	The Impact of Geohazards on Sustainable Development of Rural Mountain Areas in the Upper Reaches of the Min River. Frontiers in Earth Science, 0, 10, .	0.8	2
236	Susceptibility Analysis of Geohazards in the Longmen Mountain Region after the Wenchuan Earthquake. International Journal of Environmental Research and Public Health, 2022, 19, 3229.	1.2	10
237	GIS-based MCDM framework combined with coupled multi-hazard assessment for site selection of post-earthquake emergency medical service facilities in Wenchuan, China. International Journal of Disaster Risk Reduction, 2022, 73, 102873.	1.8	13
238	Research on application of ecohydrology to disaster prevention and mitigation in China: a review. Water Science and Technology: Water Supply, 2022, 22, 2946-2958.	1.0	3
239	Quantitative multi-hazard risk assessment to buildings in the Jiuzhaigou valley, a world natural heritage site in Western China. Geomatics, Natural Hazards and Risk, 2022, 13, 193-221.	2.0	6
240	Numerical simulation of overtopping breach processes caused by failure of landslide dams. Environmental Fluid Mechanics, 2022, 22, 839-863.	0.7	3
241	A data-driven method for predicting debris-flow runout zones by integrating multivariate adaptive regression splines and Akaike information criterion. Bulletin of Engineering Geology and the Environment, 2022, 81, 1.	1.6	5
242	Laboratory flume experiments on the characteristics of large wood accumulations from debris flow and the backwater rise at slit-check dams. Landslides, 2022, 19, 2135-2148.	2.7	3
243	Review of Investigations on Hazard Chains Triggered by River-Blocking Debris Flows and Dam-Break Floods. Frontiers in Earth Science, 2022, 10, .	0.8	5
244	A Short Note on the Aftershock Duration of Strong to Major Himalayan Earthquakes. Journal of the Geological Society of India, 2022, 98, 611-614.	0.5	4
245	Large-scale landslide dam breach experiments: Overtopping and "overtopping and seepage―failures. Engineering Geology, 2022, 304, 106680.	2.9	17
246	Effects Bone Regeneration Using Nanotechnology – Calcium Silicate Nano-Composites , 2019, 1, 1-4.		3

#	Article	IF	CITATIONS
247	GIS Modeling of Earthquake Damage Zones Using ETM Data and Remote Sensing- Bojnoord, Khorasan Province , 2019, 1, 9-13.		1
248	Development of a Model Material for Dynamic Geotechnical Model Tests. Applied Sciences (Switzerland), 2022, 12, 5344.	1.3	2
250	Propagation of Nonplanar SH Waves Emanating from a Fault Source around a Lined Tunnel. Sustainability, 2022, 14, 10127.	1.6	0
251	Refined Zoning of Landslide Susceptibility: A Case Study in Enshi County, Hubei, China. International Journal of Environmental Research and Public Health, 2022, 19, 9412.	1.2	1
252	Preservation and transportation of large landslide deposits under decadal and millennial timescales in the Taiwan orogenic belt. Geomorphology, 2022, 415, 108402.	1.1	2
253	Two multi-temporal datasets to track debris flow after the 2008 Wenchuan earthquake. Scientific Data, 2022, 9, .	2.4	8
254	A Case Study on the Energy Capacity of a Flexible Rockfall Barrier in Resisting Landslide Debris. Forests, 2022, 13, 1384.	0.9	1
255	The amplification effect of unreasonable human behaviours on natural disasters. Humanities and Social Sciences Communications, 2022, 9, .	1.3	3
256	Morphodynamics of Bedrockâ€Alluvial Rivers Subsequent to Landslide Dam Outburst Floods. Journal of Geophysical Research F: Earth Surface, 2022, 127, .	1.0	6
257	Analysis of the formation mechanism of debris flows after earthquakes – A case study of the Legugou debris flow. Frontiers in Ecology and Evolution, 0, 10, .	1.1	5
258	Evaluating the post-earthquake landslides sediment supply capacity for debris flows. Catena, 2023, 220, 106649.	2.2	8
259	Estimating the debris-flow magnitude using landslide sediment connectivity, Qipan catchment, Wenchuan County, China. Catena, 2023, 220, 106689.	2.2	1
260	Earthquake-Induced Landslides and Related Problems. Springer Natural Hazards, 2022, , 303-482.	0.1	0
261	Robustness evaluation of the probability-based HTCA model for simulating debris-flow run-out extent: Case study of the 2010 Hongchun event, China. Engineering Geology, 2023, 312, 106918.	2.9	0
262	Vegetation recovery trends under dual dominance of climate change and anthropogenic factors in the severely damaged areas of the Wenchuan earthquake. Journal of Mountain Science, 2022, 19, 3131-3147.	0.8	0
263	Resilience-oriented network reconfiguration strategies for community emergency medical services. Reliability Engineering and System Safety, 2023, 231, 109029.	5.1	2
264	Numerical Simulation of Boulder Fluid–Solid Coupling in Debris Flow: A Case Study in Zhouqu County, Gansu Province, China. Water (Switzerland), 2022, 14, 3884.	1.2	5
265	Channel Evolution Triggered by Large Flash Flood at an Earthquake-Affected Catchment. Remote Sensing, 2022, 14, 6060.	1.8	0

#	Article	IF	CITATIONS
266	Preliminary Analysis of Coseismic Landslides Induced by the 1 June 2022 Ms 6.1 Lushan Earthquake, China. Sustainability, 2022, 14, 16554.	1.6	10
267	The development characteristics and mechanisms of the Xigou debris flow in the Three Gorges Reservoir Region. Frontiers in Earth Science, 0, 11, .	0.8	1
268	Characteristics, Dynamic Analyses and Hazard Assessment of Debris Flows in Niumiangou Valley of Wenchuan County. Applied Sciences (Switzerland), 2023, 13, 1161.	1.3	19
269	Dynamic Characteristics of Vegetation Change Based on Reconstructed Heterogenous NDVI in Seismic Regions. Remote Sensing, 2023, 15, 299.	1.8	0
270	Estimating the daily rainfall thresholds of regional debris flows in the Bailong River Basin, China. Bulletin of Engineering Geology and the Environment, 2023, 82, .	1.6	2
271	Research Hotspots and Frontiers of Mountain Flood Disaster: Bibliometric and Visual Analysis. Water (Switzerland), 2023, 15, 673.	1.2	14
272	Effect of Weak Intercalated Layers on the Seismic Response of Rock Slopes Based on Numerical Analysis. Journal of Earthquake Engineering, 0, , 1-18.	1.4	0
273	Report on the second academic forum on earthquake hazard chain, 12 November 2022, Beijing, China. Natural Hazards Research, 2023, 3, 125-138.	2.0	3
276	Long-Term Remote Sensing Monitoring of Post-earthquake Habitat and Assessment Model of Ecological Environment Restoration. , 2023, , 233-303.		0
284	Innovative Method for Earthquake Prediction System using Hybrid Convolutional Neural Network and SVM. , 2023, , .		1
295	Deep Learning for Long-Term Landslide Change Detection from Optical Remote Sensing Data. , 2023, , 65-103.		0