Postconditioning reduces infarct size and cardiac myoc receptor and JAK-STAT signaling pathway

Molecular Biology Reports 38, 437-443 DOI: 10.1007/s11033-010-0126-y

Citation Report

#	Article	IF	CITATIONS
1	Endogenous κ-Opioid Peptide Mediates the Cardioprotection Induced by Ischemic Postconditioning. Journal of Cardiovascular Pharmacology, 2011, 58, 207-215.	0.8	18
2	Critical role of the STAT3 pathway in the cardioprotective efficacy of zoniporide in a model of myocardial preservation – the rat isolated working heart. British Journal of Pharmacology, 2011, 162, 633-647.	2.7	22
3	Myocardial Opioid Receptors in Conditioning and Cytoprotection. Pharmaceuticals, 2011, 4, 470-484.	1.7	6
4	Diabetic Inhibition of Preconditioning- and Postconditioning-Mediated Myocardial Protection against Ischemia/Reperfusion Injury. Experimental Diabetes Research, 2012, 2012, 1-9.	3.8	54
5	Non-Analgesic Effects of Opioids: Cardiovascular Effects of Opioids and their Receptor Systems. Current Pharmaceutical Design, 2012, 18, 6090-6100.	0.9	36
6	Sufentanil postconditioning protects the myocardium from ischemia-reperfusion via PI3K/Akt-GSK-3β pathway. Journal of Surgical Research, 2012, 178, 563-570.	0.8	36
7	Endogenous opiates and behavior: 2011. Peptides, 2012, 38, 463-522.	1.2	29
8	Sevoflurane postconditioning attenuates reperfusion-induced ventricular arrhythmias in isolated rat hearts exposed to ischemia/reperfusion injury. Molecular Biology Reports, 2012, 39, 6417-6425.	1.0	27
9	Adipose stromal cells primed with hypoxia and inflammation enhance cardiomyocyte proliferation rate in vitro through STAT3 and Erk1/2. Journal of Translational Medicine, 2013, 11, 39.	1.8	57
10	Neuroprotection by the Kappa-Opioid Receptor Agonist, BRL52537, is Mediated via Up-Regulating Phosphorylated Signal Transducer and Activator of Transcription-3 in Cerebral Ischemia/Reperfusion Injury in Rats. Neurochemical Research, 2013, 38, 2305-2312.	1.6	28
11	[<scp>d</scp> -Ala2, <scp>d</scp> -Leu5]-enkephalin (DADLE) and morphine-induced postconditioning by inhibition of mitochondrial permeability transition pore, in human myocardium. Experimental Biology and Medicine, 2013, 238, 426-432.	1.1	11
12	Notch signaling activation contributes to cardioprotection provided by ischemic preconditioning and postconditioning. Journal of Translational Medicine, 2013, 11, 251.	1.8	55
13	Inhibition of apoptosis by the intrinsic but not the extrinsic apoptotic pathway in myocardial ischemia-reperfusion. Cardiovascular Pathology, 2013, 22, 280-286.	0.7	22
14	Activation of Autophagy in Ischemic Postconditioning Contributes to Cardioprotective Effects Against Ischemia/Reperfusion Injury in Rat Hearts. Journal of Cardiovascular Pharmacology, 2013, 61, 416-422.	0.8	45
15	Atorvastatin-induced Cardioprotection of Human Myocardium Is Mediated by the Inhibition of Mitochondrial Permeability Transition Pore Opening <i>via</i> Tumor Necrosis Factor-α and Janus Kinase/Signal Transducers and Activators of Transcription Pathway. Anesthesiology, 2013, 118, 1373-1384.	1.3	15
16	Hes1 is upregulated by ischemic postconditioning and contributes to cardioprotection. Cell Biochemistry and Function, 2014, 32, 730-736.	1.4	12
17	Transcriptional Profiling Reveals Differential Gene Expression of Amur Ide (Leuciscus waleckii) during Spawning Migration. International Journal of Molecular Sciences, 2015, 16, 13959-13972.	1.8	13
18	The Question of the End Effector of Ischemic Postconditioning of the Heart. Neuroscience and Behavioral Physiology, 2015, 45, 283-294.	0.2	0

CITATION REPORT

#	Article	IF	CITATIONS
19	Reactive oxygen species-mediated cardiac-reperfusion injury: Mechanisms and therapies. Life Sciences, 2016, 165, 43-55.	2.0	91
20	Remifentanil preconditioning protects the small intestine against ischemia/reperfusion injury via intestinal δ- and μ-opioid receptors. Surgery, 2016, 159, 548-559.	1.0	25
21	Delta Opioid Receptors and Cardioprotection. Handbook of Experimental Pharmacology, 2017, 247, 301-334.	0.9	12
22	Knockdown of KLF11 attenuates hypoxia/reoxygenation injury via JAK2/STAT3 signaling in H9c2. Apoptosis: an International Journal on Programmed Cell Death, 2017, 22, 510-518.	2.2	17
23	Intracellular Ca2+ homeostasis and JAK1/STAT3 pathway are involved in the protective effect of propofol on BV2 microglia against hypoxia-induced inflammation and apoptosis. PLoS ONE, 2017, 12, e0178098.	1.1	33
24	An Update on the Multifaceted Roles of STAT3 in the Heart. Frontiers in Cardiovascular Medicine, 2019, 6, 150.	1.1	81
25	Lycopene restores the effect of ischemic postconditioning on myocardial ischemia‑reperfusion injury in hypercholesterolemic rats. International Journal of Molecular Medicine, 2019, 43, 2451-2461.	1.8	11
26	Molecular mechanisms of protein-bound uremic toxin-mediated cardiac, renal and vascular effects: underpinning intracellular targets for cardiorenal syndrome therapy. Toxicology Letters, 2019, 308, 34-49.	0.4	12
27	Effects of Ischemic Post-Conditioning on the Expressions of LC3-II and Beclin-1 in the Hippocampus of Rats after Cerebral Ischemia and Reperfusion. Open Life Sciences, 2019, 14, 179-190.	0.6	4
28	Yâ€box protein 1 promotes hypoxia/reoxygenation―or ischemia/reperfusionâ€induced cardiomyocyte apoptosis via SHPâ€1â€dependent STAT3 inactivation. Journal of Cellular Physiology, 2020, 235, 8187-8198.	2.0	11
29	Cardiomyocyte Response to Ischemic Injury. , 2021, , 227-244.		0
30	Ozone protects cardiomyocytes against ischemia/reperfusion injury: Regulating the heat shock protein 70 (HSP70) expression through activating the JAK2/STAT3 Pathway. Bioengineered, 2021, 12, 6606-6616.	1.4	9
31	Cellular Pathways of Death and Survival in Acute Myocardial Infarction. Journal of Clinical & Experimental Cardiology, 0, , .	0.0	4
32	Ischemic post-conditioning to counteract intestinal ischemia/reperfusion injury. World Journal of Gastrointestinal Pathophysiology, 2010, 1, 137.	0.5	12
33	lschemic postconditioning decreases matrix metalloproteinase-2 expression during ischemia-reperfusion of myocardium in a rabbit model: A preliminary report. Experimental and Clinical Cardiology, 2013, 18, e99-e101.	1.3	2
34	Signaling pathways and targeted therapy for myocardial infarction. Signal Transduction and Targeted Therapy, 2022, 7, 78.	7.1	175
35	Effects of Lycopene Attenuating Injuries in Ischemia and Reperfusion. Oxidative Medicine and Cellular Longevity, 2022, 2022, 1-21.	1.9	2