Measuring CMOTâ€[™]Intellectual structure and its deve

Computational and Mathematical Organization Theory 17, 1-34 DOI: 10.1007/s10588-010-9076-0

Citation Report

#	Article	IF	CITATIONS
1	CO ITATION CONTEXT ANALYSIS AND THE STRUCTURE OF PARADIGMS. Journal of Documentation, 1980, 36, 183-196.	1.6	184
3	Effectively combining experimental economics and multi-agent simulation: suggestions for a procedural integration with an example from prediction markets research. Computational and Mathematical Organization Theory, 2012, 18, 63-90.	2.0	15
4	Organisational adaptation in an activist network: Social networks, leadership, and change in al-Muhajiroun. Applied Ergonomics, 2013, 44, 739-747.	3.1	36
6	Symposium Issue on Social Simulation. Social Science Computer Review, 2014, 32, 275-278.	4.2	0
7	Clean technologies in German economic literature: a bibliometric analysis. Review of Managerial Science, 2014, 8, 63-88.	7.1	12
8	Key potential-oriented criticality analysis for complex military organization based on FINC-E model. Computational and Mathematical Organization Theory, 2014, 20, 278-301.	2.0	15
10	A case for agent-based models in organizational behavior and team research. Team Performance Management, 2015, 21, 37-50.	1.3	29
11	A study on construction and analysis of discipline knowledge structure of Chinese LIS based on CSSCI. Scientometrics, 2016, 109, 1725-1759.	3.0	7
12	Social Media Processing. Communications in Computer and Information Science, 2016, , .	0.5	0
13	Individual and organizational conditions for the emergence and evolution of bandwagons. Computational and Mathematical Organization Theory, 2016, 22, 88-133.	2.0	18
14	Controlling for false negatives in agent-based models: a review of power analysisÂin organizational research. Computational and Mathematical Organization Theory, 2017, 23, 94-121.	2.0	25
15	An efficient link prediction index for complex military organization. Physica A: Statistical Mechanics and Its Applications, 2017, 469, 572-587.	2.6	28
16	Self-organization and social science. Computational and Mathematical Organization Theory, 2017, 23, 221-257.	2.0	39
17	An Optimization Model to Evaluate Dynamic Assignment Capability of Agile Organization. , 2018, , .		2
18	Forward-looking External Search as a Driver for Innovation. , 2019, , .		0
19	Benchmarking framework for command and control mission planning under uncertain environment. Soft Computing, 2020, 24, 2463-2478.	3.6	17
20	Reviewing the Field of External Knowledge Search for Innovation: Theoretical Underpinnings and Future (Reâ€)search Directions. Journal of Product Innovation Management, 2020, 37, 405-430.	9.5	45
21	CURRENT TRENDS AND DEVELOPMENTS OF PRODUCT MODULARISATION – A BIBLIOMETRIC ANALYSIS. Proceedings of the Design Society, 2021, 1, 801-810.	0.8	1

ATION RE

#	Article	IF	CITATIONS
23	A Novel Nested Assignment Algorithm for Agile Command and Control Organization. DEStech Transactions on Engineering and Technology Research, 2017, , .	0.0	3
24	Typical Pitfalls of Simulation Modeling - Lessons Learned from Armed Forces and Business. Jasss, 2012, 15, .	1.8	23
25	Missing and Spurious Interactions in Heterogeneous Military Networks. Communications in Computer and Information Science, 2016, , 14-28.	0.5	0
26	Researchers' transfer network reveals the evolution of national science and technology capabilities. Chaos, 2022, 32, 061101.	2.5	0
27	Reviewing the intellectual structure of product modularization: Toward a common view and future research agenda. Journal of Product Innovation Management, 2023, 40, 86-119.	9.5	9