Dislocation and twin substructure evolution during stra Mn–0.6wt.% C TWIP steel observed by electron chann

Acta Materialia 59, 6449-6462

DOI: 10.1016/j.actamat.2011.07.009

Citation Report

#	Article	IF	CITATIONS
1	Work hardening and uniform elongation of an ultrafine-grained Fe–33Mn binary alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2011, 530, 659-663.	2.6	16
2	New insights on quantitative microstructure characterization by electron channeling contrast imaging under controlled diffraction conditions in SEM. Microscopy and Microanalysis, 2012, 18, 686-687.	0.2	3
3	Multistage strain hardening through dislocation substructure and twinning in a high strength and ductile weight-reduced Fe–Mn–Al–C steel. Acta Materialia, 2012, 60, 5791-5802.	3.8	409
4	Elastic properties of face-centred cubic Fe–Mn–C studied by nanoindentation and ab initio calculations. Acta Materialia, 2012, 60, 6025-6032.	3.8	43
5	Effect of deformation temperature on tensile properties in a pre-cooled Fe–Mn–C austenitic steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2012, 556, 331-336.	2.6	12
6	TWIP Effect and Plastic Instability Condition in an Fe-Mn-C Austenitic Steel. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 2012, 98, 229-236.	0.1	10
7	SEM Investigation of Highâ€Alloyed Austenitic Stainless Cast Steels With Varying Austenite Stability at Room Temperature and 100°C. Steel Research International, 2012, 83, 512-520.	1.0	50
8	Characterization and Prediction of Flow Behavior in High-Manganese Twinning Induced Plasticity Steels: Part I. Mechanism Maps and Work-Hardening Behavior. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2012, 43, 1688-1704.	1.1	196
9	Characterization and Prediction of Flow Behavior in High-Manganese Twinning Induced Plasticity Steels: Part II. Jerky Flow and Instantaneous Strain Rate. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2012, 43, 1705-1723.	1.1	40
10	Adiabatic temperature increase associated with deformation twinning and dislocation plasticity. Acta Materialia, 2012, 60, 3994-4004.	3.8	39
11	Strengthening an austenitic Fe–Mn steel using nanotwinned austenitic grains. Acta Materialia, 2012, 60, 4027-4040.	3.8	141
12	Dislocation density measurement by electron channeling contrast imaging in a scanning electron microscope. Scripta Materialia, 2012, 66, 343-346.	2.6	81
13	Some aspects of the cyclic behavior of twinning-induced plasticity steels. Scripta Materialia, 2012, 66, 1034-1039.	2.6	33
14	Hydrogen-induced cracking at grain and twin boundaries in an Fe–Mn–C austenitic steel. Scripta Materialia, 2012, 66, 459-462.	2.6	168
15	Microstructural evolution during plastic deformation of twinning-induced plasticity steels. Scripta Materialia, 2012, 66, 1002-1006.	2.6	64
16	Low stacking fault energy steels in the context of manganese-rich iron-based alloys. Scripta Materialia, 2012, 66, 1024-1029.	2.6	45
17	Grain size effect on strain hardening in twinning-induced plasticity steels. Scripta Materialia, 2012, 66, 992-996.	2.6	232
18	Hydrogen-induced delayed fracture of a Fe–22Mn–0.6C steel pre-strained at different strain rates. Scripta Materialia, 2012, 66, 947-950.	2.6	50

#	Article	IF	CITATIONS
19	Estimating local dislocation content near a grain boundary in hot deformed AA 3104 aluminum alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2012, 531, 178-181.	2.6	8
20	On the relationship between work hardening and twinning rate in TWIP steels. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2012, 542, 8-14.	2.6	155
21	Coupling of Electron Channeling with EBSD: Toward the Quantitative Characterization of Deformation Structures in the SEM. Jom, 2013, 65, 1229-1236.	0.9	110
22	Deformation mechanisms of a 20Mn TWIP steel investigated by in situ neutron diffraction and TEM. Acta Materialia, 2013, 61, 6093-6106.	3.8	87
23	EBSD characterization of twinning in cold-rolled CP-Ti. Materials Characterization, 2013, 84, 41-47.	1.9	29
24	Application of a Dislocation Density-Based Constitutive Model to Al-Alloyed TWIP Steel. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2013, 44, 4168-4182.	1.1	71
25	Formability of Fe-Mn-C Twinning Induced Plasticity Steel. Journal of Iron and Steel Research International, 2013, 20, 111-117.	1.4	13
26	Effects of intergranular carbide precipitation on delayed fracture behavior in three TWinning Induced Plasticity (TWIP) steels. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 587, 85-99.	2.6	36
27	Bulk combinatorial design of ductile martensitic stainless steels through confined martensite-to-austenite reversion. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 582, 235-244.	2.6	46
28	Characterization of twin boundaries in an Fe–17.5Mn–0.56C twinning induced plasticity steel. Materials Characterization, 2013, 85, 100-110.	1.9	8
29	Nanomechanical characterization of the hydrogen effect on pulsed plasma nitrided super duplex stainless steel. International Journal of Hydrogen Energy, 2013, 38, 15520-15531.	3.8	23
30	Hydrogen-assisted quasi-cleavage fracture in a single crystalline type 316 austenitic stainless steel. Corrosion Science, 2013, 75, 345-353.	3.0	85
31	Investigation of early stage deformation mechanisms in a metastable β titanium alloy showing combined twinning-induced plasticity and transformation-induced plasticity effects. Acta Materialia, 2013, 61, 6406-6417.	3.8	368
32	Revealing the strain-hardening behavior of twinning-induced plasticity steels: Theory, simulations, experiments. Acta Materialia, 2013, 61, 494-510.	3.8	429
33	Influence of Al content and precipitation state on the mechanical behavior of austenitic high-Mn low-density steels. Scripta Materialia, 2013, 68, 343-347.	2.6	274
34	Three-dimensional investigation of grain boundary–twin interactions in a Mg AZ31 alloy by electron backscatter diffraction and continuum modeling. Acta Materialia, 2013, 61, 7679-7692.	3.8	101
35	Kinetics of deformation processes in high-alloyed cast transformation-induced plasticity/twinning-induced plasticity steels determined by acoustic emission and scanning electron microscopy: Influence of austenite stability on deformation mechanisms. Acta Materialia, 2013, 61, 2434-2449.	3.8	91
36	Grain refinement effect on cryogenic tensile ductility in a Fe–Mn–C twinning-induced plasticity steel. Materials & Design, 2013, 49, 234-241.	5.1	61

#	Article	IF	CITATIONS
37	Understanding the detection of carbon in austenitic high-Mn steel using atom probe tomography. Ultramicroscopy, 2013, 132, 239-247.	0.8	50
38	Microstructure and texture evolution in a twinning-induced-plasticity steel during uniaxial tension. Acta Materialia, 2013, 61, 2671-2691.	3.8	88
39	The effects of Si on the mechanical twinning and strain hardening of Fe–18Mn–0.6C twinning-induced plasticity steel. Acta Materialia, 2013, 61, 3399-3410.	3.8	218
40	Microbanding mechanism in an Fe–Mn–C high-Mn twinning-induced plasticity steel. Scripta Materialia, 2013, 69, 53-56.	2.6	74
41	The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy. Acta Materialia, 2013, 61, 5743-5755.	3.8	2,352
42	Hydrogen-assisted failure in a twinning-induced plasticity steel studied under in situ hydrogen charging by electron channeling contrast imaging. Acta Materialia, 2013, 61, 4607-4618.	3.8	218
43	Abnormal room temperature serrated flow and strain rate dependence of critical strain of a Fe–Mn–C twin-induced plasticity steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 561, 266-269.	2.6	39
44	Critique of mechanisms of formation of deformation, annealing and growth twins: Face-centered cubic metals and alloys. Scripta Materialia, 2013, 68, 95-99.	2.6	204
45	Influence of stress, temperature, and strain on calcite twins constrained by deformation experiments. Tectonophysics, 2013, 601, 20-36.	0.9	63
46	Microstructure and tensile behaviour of 15–24 wt-Mn TWIP steels. Materials Science and Technology, 2013, 29, 1048-1054.	0.8	12
47	Multi-Scale Correlative Microscopy Investigation of Both Structure and Chemistry of Deformation Twin Bundles in Fe–Mn–C Steel. Microscopy and Microanalysis, 2013, 19, 1581-1585.	0.2	14
48	Electron Channeling Contrast Imaging of Plastic Deformation Induced by Indentation in Polycrystalline Nickel. Microscopy and Microanalysis, 2013, 19, 1620-1631.	0.2	8
49	Microstructure Analysis of High-Manganese TWIP Steels Produced via Strip Casting. Key Engineering Materials, 0, 554-557, 553-561.	0.4	11
50	Performance and Characterization of TWIP Steels for Automotive Applications. Materials Performance and Characterization, 2013, 2, 20130009.	0.2	17
51	Deformation Microstructures of Austenitic Stainless Steels - Reduced Amount of Nickel and Molybdenum for Hydrogen Energy Systems. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2013, 77, 593-598.	0.2	4
52	TWIP Effect and Plastic Instability Condition in an Fe^ ^ndash;Mn^ ^ndash;C Austenitic Steel. ISIJ International, 2013, 53, 323-329.	0.6	67
53	Factors Affecting Static Strain Aging under Stress at Room Temperature in a Fe–Mn–C Twinning-induced Plasticity Steel. ISIJ International, 2013, 53, 1089-1096.	0.6	9
54	Effects of Static and Dynamic Strain Aging on Hydrogen Embrittlement in TWIP Steels Containing Al. ISIJ International, 2013, 53, 1268-1274.	0.6	24

#	Article	IF	CITATIONS
55	Factors Affecting Static Strain Aging Under Stress at Room Temperature in a Fe-Mn-C Twinning-Induced Plasticity Steel. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 2014, 100, 1123-1131.	0.1	2
56	Alloy Design, Combinatorial Synthesis, and Microstructure–Property Relations for Low-Density Fe-Mn-Al-C Austenitic Steels. Jom, 2014, 66, 1845-1856.	0.9	172
57	Enhanced Strength and Ductility in an Ultrafine-Grained Fe-22Mn-0.6C Austenitic Steel Having Fully Recrystallized Structure. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2014, 45, 5300-5304.	1.1	40
58	Annealing Temperature Dependence of the Tensile Behavior of 10Âpct Mn Multi-phase TWIP-TRIP Steel. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2014, 45, 6039-6052.	1.1	92
59	Revealing the Strain-Hardening Mechanisms of Advanced High-Mn Steels by Multi-Scale Microstructure Characterization. Materials Science Forum, 0, 783-786, 755-760.	0.3	1
60	Effect of Cold Rolling on Microstructure and Mechanical Properties of a Fe-23Mn-0.3C-1.5Al TWIP Steel. Advanced Materials Research, 0, 922, 394-399.	0.3	4
61	Study of Dislocation Substructures in High-Mn Steels by Electron Channeling Contrast Imaging. Materials Science Forum, 0, 783-786, 750-754.	0.3	0
62	Notch ductility of steels for automotive components. Engineering Fracture Mechanics, 2014, 127, 181-193.	2.0	18
63	Microstructure Refinement of Cold-Sprayed Copper Investigated By Electron Channeling Contrast Imaging. Microscopy and Microanalysis, 2014, 20, 1499-1506.	0.2	22
64	Enhanced low-cycle fatigue life by pre-straining in an Fe-17Mn-0.8C twinning induced plasticity steel. Metals and Materials International, 2014, 20, 1043-1051.	1.8	24
65	The influence of manganese content on the stacking fault and austenite/ε-martensite interfacial energies in Fe–Mn–(Al–Si) steels investigated by experiment and theory. Acta Materialia, 2014, 68, 238-253.	3.8	300
66	Severe plastic deformation of a TWIP steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 593, 163-169.	2.6	49
67	Concurrent microstructural evolution of ferrite and austenite in a duplex stainless steel processed by high-pressure torsion. Acta Materialia, 2014, 63, 16-29.	3.8	90
68	Effect of Nb and Mo on the hot ductility behavior of a high-manganese austenitic Fe–21Mn–1.3Al–1.5Si–0.5C TWIP steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 616, 229-239.	2.6	50
69	Grain boundary segregation induced strengthening of an ultrafine-grained austenitic stainless steel. Materials Letters, 2014, 136, 349-352.	1.3	118
70	Strain Hardening Associated with Dislocation, Deformation Twinning, and Dynamic Strain Aging in Fe–20Mn–1.3C–(3Cu) TWIP Steels. Acta Metallurgica Sinica (English Letters), 2014, 27, 601-608.	1.5	13
71	Impact of short-range ordering on yield strength of high manganese austenitic steels. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 614, 122-128.	2.6	48
72	Smaller is less stable: Size effects on twinning vs. transformation of reverted austenite in TRIP-maraging steels. Acta Materialia, 2014, 79, 268-281.	3.8	225

#	Article	IF	CITATIONS
73	Microstructural Characterization of Mg–0.3Al–0.2Ca Alloy Using Ion Milling Surface Preparation Technique. Metallography, Microstructure, and Analysis, 2014, 3, 257-262.	0.5	3
74	Deformation mechanisms in an austenitic single-phase duplex microstructured steel with nanotwinned grains. Acta Materialia, 2014, 81, 487-500.	3.8	92
75	Recovery and Recrystallization: Phenomena, Physics, Models, Simulation. , 2014, , 2291-2397.		81
76	Hydrogen embrittlement associated with strain localization in a precipitation-hardened Fe–Mn–Al–C light weight austenitic steel. International Journal of Hydrogen Energy, 2014, 39, 4634-4646.	3.8	170
77	Strain hardening behavior of phase reversion-induced nanograined/ultrafine-grained (NG/UFG) austenitic stainless steel and relationship with grain size and deformation mechanism. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 613, 60-70.	2.6	70
78	Control of Strain Hardening Behavior in High-Mn Austenitic Steels. Acta Metallurgica Sinica (English) Tj ETQq1 1	0.784314 1.5	rgBT /Overlo
79	Integrated experimental–simulation analysis of stress and strain partitioning in multiphase alloys. Acta Materialia, 2014, 81, 386-400.	3.8	285
80	High strength and ductile low density austenitic FeMnAlC steels: Simplex and alloys strengthened by nanoscale ordered carbides. Materials Science and Technology, 2014, 30, 1099-1104.	0.8	117
81	Temperature dependence of the mechanical properties of equiatomic solid solution alloys with face-centered cubic crystal structures. Acta Materialia, 2014, 81, 428-441.	3.8	1,387
82	Microstructure evolution and strengthening mechanisms of Fe–23Mn–0.3C–1.5Al TWIP steel during cold rolling. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 617, 52-60.	2.6	112
83	Effect of Carbon Content on Stacking Fault Energy of Fe-20Mn-3Cu TWIP Steel. Journal of Iron and Steel Research International, 2014, 21, 116-120.	1.4	13
84	Difference in transformation behavior between ferrite and austenite formations in medium manganese steel. Acta Materialia, 2014, 65, 251-258.	3.8	150
85	Effects of twin intersection on the tensile behavior in high nitrogen austenitic stainless steel. Materials Characterization, 2014, 91, 19-25.	1.9	45
86	Strain rate effects on tensile deformation behaviors for Fe–22Mn–0.6C–(1.5Al) twinning-induced plasticity steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 607, 551-558.	2.6	78
87	A novel, single phase, non-equiatomic FeMnNiCoCr high-entropy alloy with exceptional phase stability and tensile ductility. Scripta Materialia, 2014, 72-73, 5-8.	2.6	534
88	Strengthening of biomedical Ni-free Co–Cr–Mo alloy by multipass "low-strain-per-pass― thermomechanical processing. Acta Biomaterialia, 2015, 28, 215-224.	4.1	23
89	Importance of crack-propagation-induced ε-martensite in strain-controlled low-cycle fatigue of high-Mn austenitic steel. Philosophical Magazine Letters, 2015, 95, 303-311.	0.5	25
90	From Highâ€Entropy Alloys to Highâ€Entropy Steels. Steel Research International, 2015, 86, 1127-1138.	1.0	158

#	Article	IF	CITATIONS
91	Significant contribution of stacking faults to the strain hardening behavior of Cu-15%Al alloy with different grain sizes. Scientific Reports, 2015, 5, 16707.	1.6	127
92	Investigate earing of TWIP steel sheet during deep-drawing process by using crystal plasticity constitutive model. MATEC Web of Conferences, 2015, 21, 12002.	0.1	0
93	Preâ€Blast Strengthening of Fe–18Mn–0.6C–1.5Al TWIP Steel. Steel Research International, 2015, 86, 760-765.	1.0	1
94	Post-Deformation Microstructure and Texture Characterization of Fe-18Mn-0.6C-1.5Al TWIP Steel. Steel Research International, 2015, 86, 1461-1468.	1.0	3
95	Mechanical properties and deformation behaviour of Fe-(20/27)Mn-4Al-0.3C austenitic steels. MATEC Web of Conferences, 2015, 21, 07011.	0.1	1
96	Characterization of Evolution of Microscopic Stress and Strain in High-Manganese Twinning-Induced Plasticity Steel. ISIJ International, 2015, 55, 2158-2165.	0.6	7
97	Microstructures and mechanical properties of compositionally complex Co-free FeNiMnCr18 FCC solid solution alloy. Materials Science & amp; Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 640, 217-224.	2.6	108
98	Microstructure and Mechanical Properties of High Manganese TWIP Steel after Thermo-Forming Processes. Solid State Phenomena, 2015, 226, 99-102.	0.3	0
99	Critical Assessment 15: Science of deformation and failure mechanisms in twinning induced plasticity steels. Materials Science and Technology, 2015, 31, 1265-1270.	0.8	18
100	Twin-roll strip casting: A competitive alternative for the production of high-manganese steels with advanced mechanical properties. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 627, 72-81.	2.6	53
101	Grain boundary formation by remnant dislocations from the de-twinning of thin nano-twins. Scripta Materialia, 2015, 100, 98-101.	2.6	58
102	Suppression of dislocations at high strain rate deformation in a twinning-induced plasticity steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 628, 84-88.	2.6	26
103	Plastic deformation and damage induced by fatigue in TWIP steels. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 628, 410-418.	2.6	20
104	The effect of grain size on the twin initiation stress in a TWIP steel. Acta Materialia, 2015, 89, 247-257.	3.8	221
105	3D structural and atomic-scale analysis of lath martensite: Effect of the transformation sequence. Acta Materialia, 2015, 95, 366-377.	3.8	191
106	Microstructural evolution and deformation behavior of twinning-induced plasticity (TWIP) steel during wire drawing. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 644, 41-52.	2.6	58
107	Modeling the hot flow behavior of a Fe–22Mn–0.41C–1.6Al–1.4Si TWIP steel microalloyed with Ti, V and Nb. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 644, 374-385.	2.6	24
108	Analytical expressions of incompatibility stresses at Σ3âŸ 111⟩ twin boundaries and consequences on single-slip promotion parallel to twin plane. Philosophical Magazine, 2015, 95, 12-31.	0.7	11

#	Article	IF	CITATIONS
109	Case studies on the application of high-resolution electron channelling contrast imaging – investigation of defects and defect arrangements in metallic materials. Philosophical Magazine, 2015, 95, 759-793.	0.7	28
110	Low-Energy Dislocation Structure (LEDS) character of dislocation boundaries aligned with slip planes in rolled aluminium. Philosophical Magazine, 2015, 95, 1471-1489.	0.7	14
111	Investigating and understanding the effects of multiple femtosecond laser scans on the surface topography of stainless steel 304 and titanium. Applied Surface Science, 2015, 353, 512-521.	3.1	59
112	Suppression of twinning and phase transformation in an ultrafine grained 2 GPa strong metastable austenitic steel: Experiment and simulation. Acta Materialia, 2015, 97, 305-315.	3.8	79
113	Temperature effect on deformation mechanisms and mechanical properties of a high manganese C+N alloyed austenitic stainless steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 642, 71-83.	2.6	86
114	Nano-twin mediated plasticity in carbon-containing FeNiCoCrMn high entropy alloys. Journal of Alloys and Compounds, 2015, 647, 815-822.	2.8	281
115	Tensile yield behavior of Fe–30Mn–3Al–3Si twining-induced plasticity steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 638, 1-4.	2.6	4
116	On the micro-deformation mechanisms active in high-manganese austenitic steels under impact loading. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 632, 29-34.	2.6	28
117	Microstructural evolution of Cu–Al alloys subjected to multi-axial compression. Materials Characterization, 2015, 103, 107-119.	1.9	26
118	Effect of the heat-treatment temperature on the mechanical properties and microstructural evolution of cold-rolled twinning-induced plasticity steel. Journal Wuhan University of Technology, Materials Science Edition, 2015, 30, 386-391.	0.4	4
119	A nanotwinned surface layer generated by high strain-rate deformation in a TRIP steel. Materials & Design, 2015, 80, 144-151.	5.1	5
120	Design of a twinning-induced plasticity high entropy alloy. Acta Materialia, 2015, 94, 124-133.	3.8	618
121	Influence of the Thermo-Mechanical Treatment on the Properties and Microstructure of High Manganese Austenitic-Ferritic Steel. Solid State Phenomena, 2015, 226, 75-78.	0.3	1
122	Microstructure and Mechanical Properties of Ti Cold-Spray Splats Determined by Electron Channeling Contrast Imaging and Nanoindentation Mapping. Microscopy and Microanalysis, 2015, 21, 570-581.	0.2	38
123	On the Mechanisms of Different Work-Hardening Stages in Twinning-Induced Plasticity Steels. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2015, 46, 5080-5090.	1.1	23
124	Size and orientation effects in partial dislocation-mediated deformation of twinning-induced plasticity steel micro-pillars. Acta Materialia, 2015, 98, 391-404.	3.8	95
125	The influence of stacking fault energy on the microstructural and strain-hardening evolution of Fe–Mn–Al–Si steels during tensile deformation. Acta Materialia, 2015, 100, 178-190.	3.8	359
126	Non-equiatomic high entropy alloys: Approach towards rapid alloy screening and property-oriented design. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 648, 183-192.	2.6	166

#	Article	IF	CITATIONS
127	Spatially and Kinetically Resolved Mapping of Hydrogen in a Twinning-Induced Plasticity Steel by Use of Scanning Kelvin Probe Force Microscopy. Journal of the Electrochemical Society, 2015, 162, C638-C647.	1.3	64
128	Twinning activities in high-Mn austenitic steels under high-velocity compressive loading. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 648, 104-112.	2.6	28
129	Recrystallization behavior of a high-manganese steel: Experiments and simulations. Acta Materialia, 2015, 100, 155-168.	3.8	96
130	Comparison of strength–ductility combinations between nanotwinned austenite and martensite–austenite stainless steels. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 647, 152-156.	2.6	28
131	Comparison of twinning evolution with work hardening ability in twinning-induced plasticity steel under different strain rates. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 622, 184-188.	2.6	32
132	Grain boundary segregation in Fe–Mn–C twinning-induced plasticity steels studied by correlative electron backscatter diffraction and atom probe tomography. Acta Materialia, 2015, 83, 37-47.	3.8	85
133	Combined Multi-scale Analyses on Strain/Damage/Microstructure in Steel: Example of Damage Evolution Associated with lµ-martensitic Transformation. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 2016, 102, 227-236.	0.1	6
134	Effects of Aluminum on Hydrogen Solubility and Diffusion in Deformed Fe-Mn Alloys. Advances in Materials Science and Engineering, 2016, 2016, 1-9.	1.0	3
135	Combined Multi-scale Analyses on Strain/Damage/Microstructure in Steel: Example of Damage Evolution Associated with <i>ε</i> -martensitic Transformation. ISIJ International, 2016, 56, 2037-2046.	0.6	25
136	Influence of pre-existing martensite on the wear resistance of metastable austenitic stainless steels. Wear, 2016, 364-365, 40-47.	1.5	22
137	Micro-scale measurements of plastic strain field, and local contributions of slip and twinning in TWIP steels during in situ tensile tests. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 672, 7-14.	2.6	13
138	On the mechanism of {332} twinning in metastable \hat{I}^2 titanium alloys. Acta Materialia, 2016, 111, 173-186.	3.8	191
139	Experimental investigation on a novel medium Mn steel combining transformation-induced plasticity and twinning-induced plasticity effects. International Journal of Plasticity, 2016, 78, 173-186.	4.1	125
140	Microstructural evolution and mechanical properties of a novel FeCrNiBSi advanced high-strength steel: Slow, accelerated and fast casting cooling rates. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 668, 188-200.	2.6	13
141	<i>Ab initio</i> -guided design of twinning-induced plasticity steels. MRS Bulletin, 2016, 41, 320-325.	1.7	25
142	Revealing the deformation mechanisms of Cu–Al alloys with high strength and good ductility. Acta Materialia, 2016, 110, 61-72.	3.8	111
143	Microstructural evolution and phase transformation in twinning-induced plasticity steel induced by high-pressure torsion. Acta Materialia, 2016, 109, 300-313.	3.8	58
144	Mechanical properties and strain hardening behavior of phase reversion-induced nano/ultrafine Fe-17Cr-6Ni austenitic structure steel. Journal of Alloys and Compounds, 2016, 689, 718-725.	2.8	31

#	Article	IF	CITATIONS
145	Effect of Boron Addition on Microstructural Evolution and Room-Temperature Mechanical Properties of Novel Fe66â [^] x CrNiB x Si (xÂ=Â0, 0.25, 0.50 and 0.75 WtÂPct) Advanced High-Strength Steels. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2016, 47, 5423-5437.		9
146	Manganese: High Content in Steels. , 2016, , 2098-2113.		0
147	Strain hardening model of TWIP steels with manganese content. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 674, 178-185.	2.6	8
148	A remarkable improvement of low-cycle fatigue resistance of high-Mn austenitic TWIP alloys with similar tensile properties: Importance of slip mode. Acta Materialia, 2016, 118, 196-212.	3.8	78
149	Enhancing the crashworthiness of high-manganese steel by strain-hardening engineering, and tailored folding by local heat-treatment. Materials and Design, 2016, 110, 157-168.	3.3	37
150	Microstructure evolution and critical stress for twinning in the CrMnFeCoNi high-entropy alloy. Acta Materialia, 2016, 118, 152-163.	3.8	823
151	Effect of Al Content in Low Carbon High Manganese TWIP Steel. Key Engineering Materials, 0, 706, 16-22.	0.4	1
152	The effect of interstitial carbon on the mechanical properties and dislocation substructure evolution in Fe40.4Ni11.3Mn34.8Al7.5Cr6 high entropy alloys. Acta Materialia, 2016, 120, 228-239.	3.8	373
153	Effect of strain rate on hydrogen embrittlement susceptibility of twinning-induced plasticity steel pre-charged with high-pressure hydrogen gas. International Journal of Hydrogen Energy, 2016, 41, 15362-15372.	3.8	79
154	On the conjoint influence of broaching and heat treatment on bending fatigue behavior of Inconel 718. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 671, 158-169.	2.6	11
155	Strain hardening by dynamic slip band refinement in a high-Mn lightweight steel. Acta Materialia, 2016, 116, 188-199.	3.8	276
156	Influence of \hat{I}^{e} -carbide interface structure on the formability of lightweight steels. Materials and Design, 2016, 104, 211-216.	3.3	36
157	On the work-hardening behaviour of a high manganese TWIP steel at different deformation temperatures. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 669, 437-446.	2.6	53
158	Deformation Mechanisms in Austenitic TRIP/TWIP Steel as a Function of Temperature. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2016, 47, 49-58.	1.1	211
159	Effect of intercritical deformation on microstructure and mechanical properties of a low-silicon aluminum-added hot-rolled directly quenched and partitioned steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 656, 200-215.	2.6	29
160	Combined atom probe tomography and density functional theory investigation of the Al off-stoichiometry of κ-carbides in an austenitic Fe–Mn–Al–C low density steel. Acta Materialia, 2016, 106, 229-238.	3.8	97
161	Different strain rate sensitivities between Fe–22Mn–0.6C and Fe–30Mn–3Si–3Al twinning-induced plasticity steels. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 655, 251-255.	2.6	38
162	Softening behavior by excessive twinning and adiabatic heating at high strain rate in a Fe–20Mn–0.6C TWIP steel. Acta Materialia, 2016, 103, 229-242.	3.8	107

#	Article	IF	CITATIONS
163	Structural/textural changes and strengthening of an advanced high-Mn steel subjected to cold rolling. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 651, 763-773.	2.6	46
164	The effects of grain size on yielding, strain hardening, and mechanical twinning in Fe–18Mn–0.6C–1.5Al twinning-induced plasticity steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 652, 212-220.	2.6	96
165	Effects of Al content on non-metallic inclusion evolution in Fe–16Mn– <i>x</i> Al–0.6C high Mn TWIP steel. Ironmaking and Steelmaking, 2016, 43, 234-242.	1.1	34
166	Grain size dependence of hardness and fracture toughness in pure near fully-dense boron carbide ceramics. Journal of the European Ceramic Society, 2016, 36, 1829-1834.	2.8	102
167	Stress–strain response and microstructural evolution of a FeMnCAl TWIP steel during tension–compression tests. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 655, 310-320.	2.6	10
168	A constitutive model for the tensile behaviour of TWIP steels: Composition and temperature dependencies. Materials and Design, 2016, 90, 340-349.	3.3	53
169	Experimental characterization and damage modeling of a particle reinforced TWIP-steel matrix composite. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 662, 342-355.	2.6	9
170	Effects of high pressure torsion on microstructures and properties of an Al0.1CoCrFeNi high-entropy alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 655, 283-291.	2.6	101
171	Effect of crystalline grain structures on the mechanical properties of twinning-induced plasticity steel. Acta Mechanica Sinica/Lixue Xuebao, 2016, 32, 181-187.	1.5	18
172	Work hardening behavior of nanotwinned austenitic grains in a metastable austenitic stainless steel. Scripta Materialia, 2016, 114, 133-136.	2.6	39
173	Influence of Al on the temperature dependence of strain hardening behavior and glide planarity in Fe–Cr–Ni–Mn–C austenitic stainless steels. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 649, 301-312.	2.6	31
174	Nanoindentation characterization of nano-twinned grains in an austenitic stainless steel. Scripta Materialia, 2016, 112, 19-22.	2.6	23
175	Strain hardening behavior of nanograined/ultrafine-grained (NG/UFG) austenitic 16Cr–10Ni stainless steel and its relationship to austenite stability and deformation behavior. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 649, 153-157.	2.6	31
176	The effect of carbon on the microstructures, mechanical properties, and deformation mechanisms of thermo-mechanically treated Fe40.4Ni11.3Mn34.8Al7.5Cr6 high entropy alloys. Acta Materialia, 2017, 126, 346-360.	3.8	200
177	Influence of α/β interface phase on the tensile properties of laser cladding deposited Ti–6Al–4V titanium alloy. Journal of Materials Science and Technology, 2017, 33, 675-681.	5.6	75
178	Improved stretch formability of AZ31 sheet via grain size control. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 688, 56-61.	2.6	18
179	Deformation mechanisms of Mo alloyed FeCoCrNi high entropy alloy: In situ neutron diffraction. Acta Materialia, 2017, 127, 471-480.	3.8	153
180	Understanding martensite and twin formation in austenitic steels: A model describing TRIP and TWIP effects. Acta Materialia, 2017, 128, 120-134.	3.8	186

#	Article	IF	CITATIONS
181	Negative to positive transition of strain rate sensitivity in Fe-22Mn-0.6C-x(Al) twinning-induced plasticity steels. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 690, 146-157.	2.6	50
182	Equal channel angular pressing of a TWIP steel: microstructure and mechanical response. Journal of Materials Science, 2017, 52, 6291-6309.	1.7	26
183	Twin-Induced Plasticity of an ECAP-Processed TWIP Steel. Journal of Materials Engineering and Performance, 2017, 26, 554-562.	1.2	17
184	A novel ultrafine-grained Fe 22Mn 0.6C TWIP steel with superior strength and ductility. Materials Characterization, 2017, 126, 74-80.	1.9	83
185	Tensile deformation behavior and deformation twinning of an equimolar CoCrFeMnNi high-entropy alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 689, 122-133.	2.6	166
186	{332}<113> detwinning in a multilayered bcc-Ti–10Mo–Fe alloy. Journal of Materials Science, 2017, 52, 7858-7867.	1.7	9
187	Residual Stress Effect on the Delayed Fracture of Twinning-Induced Plasticity Steels. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2017, 48, 2692-2696.	1.1	16
188	Dislocation interaction and twinning-induced plasticity in face-centered cubic Fe-Mn-C micro-pillars. Acta Materialia, 2017, 132, 162-173.	3.8	41
189	Dual mechanisms of grain refinement in a FeCoCrNi high-entropy alloy processed by high-pressure torsion. Scientific Reports, 2017, 7, 46720.	1.6	63
190	Transformation and twinning induced plasticity in an advanced high Mn austenitic steel processed by martensite reversion treatment. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 696, 511-519.	2.6	21
191	Slip versus twinning in low and very low stacking-fault energy Cu-Al alloy single crystals. Acta Materialia, 2017, 133, 109-119.	3.8	20
192	Novel 1.5 GPa-strength with 50%-ductility by transformation-induced plasticity of non-recrystallized austenite in duplex steels. Scientific Reports, 2017, 7, 1255.	1.6	48
193	Effects of martensitic transformability and dynamic strain age hardenability on plasticity in metastable austenitic steels containing carbon. Journal of Materials Science, 2017, 52, 7868-7882.	1.7	38
194	The effect of carbon on hydrogen embrittlement in stable Cr-Ni-Mn-N austenitic stainless steels. Corrosion Science, 2017, 124, 63-70.	3.0	33
195	In-situ neutron diffraction study on the tension-compression fatigue behavior of a twinning induced plasticity steel. Scripta Materialia, 2017, 137, 83-87.	2.6	27
196	Twinning-mediated work hardening and texture evolution in CrCoFeMnNi high entropy alloys at cryogenic temperature. Materials and Design, 2017, 131, 419-427.	3.3	54
197	Mechanical and microstructural characterization of powder metallurgy CoCrNi medium entropy alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 701, 370-380.	2.6	95
198	Twinning and dynamic strain aging behavior during tensile deformation of Fe-Mn-C TWIP steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 700, 250-258.	2.6	26

C	CITATION REPORT	
Article	IF	CITATIONS
Deformation mechanisms during large strain deformation of high Mn TWIP steel. Materials Science & amp; Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 700, 209-219.	2.6	15
Analysis of tensile deformation behavior of AM2B® advanced high-strength steel using electron back-scattered diffraction technique. Materials Characterization, 2017, 130, 64-73.	1.9	6
Current state of Fe-Mn-Al-C low density steels. Progress in Materials Science, 2017, 89, 345-391.	16.0	427
A TRIP-assisted dual-phase high-entropy alloy: Grain size and phase fraction effects on deformation behavior. Acta Materialia, 2017, 131, 323-335.	3.8	474
Substructure hardening in duplex low density steel. Materials and Design, 2017, 116, 472-480.	3.3	35
Forecasting Low-Cycle Fatigue Performance of Twinning-Induced Plasticity Steels: Difficulty and Attempt. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 201 48, 5833-5848.	7, 1.1	10
Effect of Mn and Al contents on hot ductility of high alloy Fe-xMn-C-yAl austenite TWIP steels. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 708, 360-374.	2.6	41
Effects of torsional deformation on the microstructures and mechanical properties of a CoCrFeNiMo _{0.15} high-entropy alloy. Philosophical Magazine, 2017, 97, 3229-3245.	0.7	33
Strong and Ductile Non-equiatomic High-Entropy Alloys: Design, Processing, Microstructure, and Mechanical Properties. Jom, 2017, 69, 2099-2106.	0.9	222
Investigation of Work Hardening Behavior of Inconel X-750 Alloy. Acta Metallurgica Sinica (English)	Tj ETQq1 1 0.784314 r _i	gBT /Overloc
Phase stability, physical properties and strengthening mechanisms of concentrated solid solution alloys. Current Opinion in Solid State and Materials Science, 2017, 21, 267-284.	5.6	66
Effect of Cr on mechanical properties and corrosion behaviors of Fe-Mn-C-Al-Cr-N TWIP steels. Journal of Materials Science and Technology, 2017, 33, 1555-1560.	5.6	46
Tensile Fracture Modes in Fe-22Mn-0.6C and Fe-30Mn-3Si-3Al Twinning-Induced Plasticity (TWIP) Sto Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2017, 48, 4458-4462.	eels. 1.1	14
Remarkable strength of CoCrFeNi high-entropy alloy wires at cryogenic and elevated temperatures. Scripta Materialia, 2017, 141, 125-128.	2.6	74
Cooling rate effect on microstructure and mechanical properties of Al x CoCrFeNi high entropy alloys. Materials and Design, 2017, 132, 392-399.	3.3	74
The premature necking of twinning-induced plasticity steels. Acta Materialia, 2017, 136, 1-10.	3.8	41

215	Partial recrystallization of gum metal to achieve enhanced strength and ductility. Acta Materialia, 2017, 135, 400-410.	3.8	38
216	Dramatic improvement of strain hardening and ductility to 95% in highly-deformable high-strength duplex lightweight steels. Scientific Reports, 2017, 7, 1927.	1.6	37

#

#	Article	IF	CITATIONS
217	Prediction of earing in TWIP steel sheets based on coupled twinning crystal plasticity model. International Journal of Advanced Manufacturing Technology, 2017, 89, 3037-3047.	1.5	11
218	Substructure induced twinning in low density steel. Scripta Materialia, 2017, 128, 69-73.	2.6	36
219	Compatible strain evolution in two phases due to epsilon martensite transformation in duplex TRIP-assisted stainless steels with high hydrogen embrittlement resistance. International Journal of Plasticity, 2017, 88, 53-69.	4.1	68
220	Comparative study on small fatigue crack propagation between Fe-30Mn-3Si-3Al and Fe-23Mn-0.5C twinning-induced plasticity steels: Aspects of non-propagation of small fatigue cracks. International Journal of Fatigue, 2017, 94, 1-5.	2.8	27
221	Strong grain-size effect on deformation twinning of an Al _{0.1} CoCrFeNi high-entropy alloy. Materials Research Letters, 2017, 5, 276-283.	4.1	131
222	Stacking fault energy and compression deformation behavior of ultra-high manganese steel. Procedia Engineering, 2017, 207, 1809-1814.	1.2	4
223	Wear behavior and subsurface layer work hardening mechanism of Fe-24.1Mn-1.21C-0.48Si steel. Procedia Engineering, 2017, 207, 2251-2256.	1.2	11
224	Investigation of the Microstructure Evolution in a Fe-17Mn-1.5Al-0.3C Steel via In Situ Synchrotron X-ray Diffraction during a Tensile Test. Materials, 2017, 10, 1129.	1.3	32
225	Mechanical Properties and Microstructures of a Novel Low-carbon High-silicon Martensitic Steel. ISIJ International, 2017, 57, 558-563.	0.6	6
226	Overcoming the strength–ductility trade-off via the formation of a thermally stable and plastically unstable austenitic phase in cold-worked steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 721, 74-80.	2.6	8
227	Microstructures and mechanical properties of a welded CoCrFeMnNi high-entropy alloy. Science and Technology of Welding and Joining, 2018, 23, 585-595.	1.5	70
228	Effect of Microâ€Alloy Elements on Dynamic Recrystallization Behavior of a Highâ€Manganese Steel. Steel Research International, 2018, 89, 1700559.	1.0	16
229	Understanding the deformation mechanism and mechanical characteristics of cementitious mineral analogues from first principles and reactive force field molecular dynamics. Physical Chemistry Chemical Physics, 2018, 20, 13920-13933.	1.3	6
230	Crystallographic examination of the interaction between texture evolution, mechanically induced martensitic transformation and twinning in nanostructured bainite. Journal of Alloys and Compounds, 2018, 752, 505-519.	2.8	19
231	The Role of Transformationâ€Induced Plasticity in the Development of Advanced High Strength Steels. Advanced Engineering Materials, 2018, 20, 1701083.	1.6	77
232	In-situ neutron diffraction investigation on twinning/detwinning activities during tension-compression load reversal in a twinning induced plasticity steel. Scripta Materialia, 2018, 150, 168-172.	2.6	30
233	Combined strengthening from nanotwins and nanoprecipitates in an iron-based superalloy. Acta Materialia, 2018, 151, 310-320.	3.8	85
234	High Strength and Ductility of Additively Manufactured 316L Stainless Steel Explained. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2018, 49, 3011-3027.	1.1	197

#	Article	IF	CITATIONS
235	Recovery of tensile properties of twinning-induced plasticity steel via electropulsing induced void healing. Scripta Materialia, 2018, 147, 88-92.	2.6	57
236	Strengthening and toughening austenitic steel by introducing gradient martensite via cyclic forward/reverse torsion. Materials and Design, 2018, 143, 150-159.	3.3	36
237	Thermomechanical processing of advanced high strength steels. Progress in Materials Science, 2018, 94, 174-242.	16.0	295
238	Effect of Post-deformation Annealing Treatment on the Microstructural Evolution of a Cold-Worked Corrosion-Resistant Superalloy (CRSA) Steel. Journal of Materials Engineering and Performance, 2018, 27, 1168-1176.	1.2	2
239	Temperature dependent strain hardening and fracture behavior of TWIP steel. International Journal of Plasticity, 2018, 104, 80-103.	4.1	98
240	Mechanical Properties and Applications of a New Stainless TWIP Steel. Lecture Notes in Mechanical Engineering, 2018, , 39-47.	0.3	0
241	Evolution of Texture in Some Mn Steel. Lecture Notes in Mechanical Engineering, 2018, , 49-58.	0.3	2
242	Reviews on factors affecting fatigue behavior of high-Mn steels. Metals and Materials International, 2018, 24, 1-14.	1.8	42
243	Advanced High Strength Steel. Lecture Notes in Mechanical Engineering, 2018, , .	0.3	10
244	Development of high-strength Co-free high-entropy alloys hardened by nanosized precipitates. Scripta Materialia, 2018, 148, 51-55.	2.6	154
245	The influence of silicon additions on the deformation behavior of austenite-ferrite duplex medium manganese steels. Acta Materialia, 2018, 148, 249-262.	3.8	103
246	On the Utility of Crystal Plasticity Modeling to Uncover the Individual Roles of Microdeformation Mechanisms on the Work Hardening Response of Fe-23Mn-0.5C TWIP Steel in the Presence of Hydrogen. Journal of Engineering Materials and Technology, Transactions of the ASME, 2018, 140, .	0.8	4
247	Second-phase hardening and rule of mixture, microbands and dislocation hardening in Fe 67.4â^'x Cr 15.5 Ni 14.1 Si 3.0 B x (x = 0, 2) alloy systems. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 715, 214-225.	2.6	8
248	Characterization of cold-rolled heterogeneous microstructure formed by multimodal deformation in an Fe-Ni-Al-C alloy with lattice softening. Materials and Design, 2018, 153, 166-176.	3.3	6
249	Tailoring Microstructure and Properties of Fine Grained Magnesium Alloys by Severe Plastic Deformation. Advanced Engineering Materials, 2018, 20, 1700785.	1.6	28
250	Influence of the Strain History on TWIP Steel Deformation Mechanisms in the Deep-Drawing Process. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2018, 49, 2069-2083.	1.1	4
251	Ϊ‰ phase acts as a switch between dislocation channeling and joint twinning- and transformation-induced plasticity in a metastable β titanium alloy. Acta Materialia, 2018, 151, 67-77.	3.8	187
252	Mechanical properties of an Fe-30Mn-4Si-2Al alloy after rolling at different temperatures ranging from 298 to 1073â∈ K. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 725, 127-137.	2.6	19

#	Article	IF	CITATIONS
253	Temperature-Dependence of the Mechanical Responses for Two Types of Twinning-Induced Plasticity Steels. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2018, 49, 1475-1480.	1.1	4
254	Ultrafine-grained CoCrFeMnNi high-entropy alloy produced by cryogenic multi-pass caliber rolling. Journal of Alloys and Compounds, 2018, 742, 290-295.	2.8	52
255	The sequential twinning-transformation induced plasticity effects in a thermomechanically processed high Mn austenitic steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 725, 242-249.	2.6	18
256	Influence of deformation and annealing twinning on the microstructure and texture evolution of face-centered cubic high-entropy alloys. Acta Materialia, 2018, 150, 88-103.	3.8	151
257	Microstructural evolution of a nanotwinned steel under extremely high-strain-rate deformation. Acta Materialia, 2018, 149, 407-415.	3.8	19
258	The effect of deformation twins on the quasi-cleavage crack propagation in twinning-induced plasticity steels. Acta Materialia, 2018, 150, 59-68.	3.8	33
259	Twinning-induced plasticity (TWIP) steels. Acta Materialia, 2018, 142, 283-362.	3.8	963
260	Effect of strain rate on tensile and serration behaviors of an austenitic Fe-22Mn-0.7C twinning-induced plasticity steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 711, 22-28.	2.6	46
261	Deformation twinning and dislocation processes in nanotwinned copper by molecular dynamics simulations. Computational Materials Science, 2018, 142, 59-71.	1.4	21
262	Influence of rolling asymmetry on the microstructure, texture and mechanical behavior of high-manganese twinning-induced plasticity steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 709, 172-180.	2.6	15
263	Deformation mechanism transition in Fe–17Mn–0.4C–0.06V TWIP steel with different strain rates. Materials Science and Technology, 2018, 34, 242-251.	0.8	14
264	Unexpected cyclic stress-strain response of dual-phase high-entropy alloys induced by partial reversibility of deformation. Scripta Materialia, 2018, 143, 63-67.	2.6	66
265	Criteria for predicting twin-induced plasticity in solid solution copper alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 711, 492-497.	2.6	25
266	Serrated Flow and Dynamic Strain Aging in Fe-Mn-C TWIP Steel. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2018, 49, 147-161.	1.1	20
267	Texture-directed twin formation propensity in Al with high stacking fault energy. Acta Materialia, 2018, 144, 226-234.	3.8	36
268	Effect of short-range order on microstructure, texture and strain hardening of cold drawn Cu-10 at.%Mn alloy. Materials Characterization, 2018, 135, 32-39.	1.9	8
269	Effects of strain rate on mechanical properties and deformation behavior of an austenitic Fe-25Mn-3Al-3Si TWIP-TRIP steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 711, 78-92.	2.6	78
270	Anisotropic strengthening of nanotwinned austenitic grains in a nanotwinned stainless steel. Scripta Materialia, 2018, 142, 15-19.	2.6	21

#	Article	IF	CITATIONS
271	Effect of C content on microstructure and tensile properties of as-cast CoCrFeMnNi high entropy alloy. Materials Chemistry and Physics, 2018, 210, 136-145.	2.0	139
272	Dislocation and twinning behaviors in high manganese steels in respect to hydrogen and aluminum alloying. Procedia Structural Integrity, 2018, 13, 1453-1459.	0.3	3
273	Design of high-manganese steels for additive manufacturing applications with energy-absorption functionality. Materials and Design, 2018, 160, 1250-1264.	3.3	53
274	New developments of advanced high-strength steels for automotive applications. Comptes Rendus Physique, 2018, 19, 641-656.	0.3	125
275	Deformation Properties of Austenitic Stainless Steels with Different Stacking Fault Energies. Materials Science Forum, 0, 941, 190-197.	0.3	4
276	Ultrahigh cryogenic strength and exceptional ductility in ultrafine-grained CoCrFeMnNi high-entropy alloy with fully recrystallized structure. Materials Today Nano, 2018, 4, 46-53.	2.3	136
277	Dislocation plasticity reigns in a traditional twinning-induced plasticity steel by in situ observation. Materials Today Nano, 2018, 3, 48-53.	2.3	43
278	Effect of copper and aluminum contents on wire drawing behavior in twinning-induced plasticity steels. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 737, 188-197.	2.6	21
279	Improving the strength and retaining the ductility of microstructural graded coarse-grained materials with low stacking fault energy. Materials and Design, 2018, 160, 21-33.	3.3	26
280	Microstructure and mechanical properties of stainless steel 316L vertical struts manufactured by laser powder bed fusion process. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 736, 27-40.	2.6	134
281	Strain hardening and nanocrystallization behaviors in Hadfield steel subjected to surface severe plastic deformation. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 729, 178-184.	2.6	34
282	Effects of alloying addition on deformation mechanisms, microstructure, texture and mechanical properties in Fe-12Mn-0.5C austenitic steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 729, 385-397.	2.6	18
283	Simultaneous enhancement of strength and plasticity by nano B2 clusters and nano-Î ³ phase in a low carbon low alloy steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 730, 119-136.	2.6	23
284	Study on the mechanical behavior of twinning-induced plasticity steel processed by warm forging and annealing. Journal of Materials Science, 2018, 53, 14645-14656.	1.7	4
285	Dynamically reinforced heterogeneous grain structure prolongs ductility in a medium-entropy alloy with gigapascal yield strength. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 7224-7229.	3.3	338
286	Quantitative analysis of {332}ã€^113〉 twinning in a Ti-15Mo alloy by <i>in situ</i> scanning electron microscopy. Science and Technology of Advanced Materials, 2018, 19, 474-483.	2.8	7
287	Ultra-high strength and ductility from rolling and annealing of a Ni-Cr-Co superalloy. Scripta Materialia, 2018, 155, 94-98.	2.6	19
288	Ab Initio Guided Low Temperature Synthesis Strategy for Smooth Face–Centred Cubic FeMn Thin Films. Metals, 2018, 8, 384.	1.0	8

#	Article	IF	CITATIONS
289	Deformation mechanisms of Al0.1CoCrFeNi high entropy alloy at ambient and cryogenic temperatures. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 733, 408-413.	2.6	40
290	Strain Rate Sensitivity of a TRIP-Assisted Dual-Phase High-Entropy Alloy. Frontiers in Materials, 2018, 5, .	1.2	43
291	Influence of deformation induced nanoscale twinning and FCC-HCP transformation on hardening and texture development in medium-entropy CrCoNi alloy. Acta Materialia, 2018, 158, 38-52.	3.8	135
292	On the intercritical annealing parameters and ensuing mechanical properties of low-carbon medium-Mn steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 733, 246-256.	2.6	36
293	Deformation and annealing behaviour of dual phase TWIP steel from the perspective of residual stress, faults, microstructures and mechanical properties. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 733, 43-58.	2.6	16
294	On the nature of twin boundary-associated strengthening in Fe-Mn-C steel. Scripta Materialia, 2018, 156, 27-31.	2.6	30
295	Modeling the Effect of Primary and Secondary Twinning on Texture Evolution during Severe Plastic Deformation of a Twinning-Induced Plasticity Steel. Materials, 2018, 11, 863.	1.3	9
296	Substructure Development and Deformation Twinning Stimulation through Regulating the Processing Path during Multiâ€Axial Forging of Twinning Induced Plasticity Steel. Advanced Engineering Materials, 2018, 20, 1800453.	1.6	11
297	Grain Boundary Engineering of Medium Mn TWIP Steels: A Novel Method to Enhance the Mechanical Properties. ISIJ International, 2018, 58, 1324-1331.	0.6	4
298	On the diffusive phase transformation mechanism assisted by extended dislocations during creep of a single crystal CoNi-based superalloy. Acta Materialia, 2018, 155, 362-371.	3.8	89
299	A novel way to enhance the strength of twinning induced plasticity (TWIP) steels. Scripta Materialia, 2018, 154, 207-211.	2.6	48
300	Quantitative analysis of electron channeling contrast of dislocations. Ultramicroscopy, 2019, 206, 112826.	0.8	11
301	Stacking Fault Energy of Austenite Phase in Medium Manganese Steel. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2019, 50, 4851-4866.	1.1	17
302	Beta-type Ti-Nb-Zr-Cr alloys with large plasticity and significant strain hardening. Materials and Design, 2019, 181, 108064.	3.3	44
303	Impact of Short-Range Clustering on the Multistage Work-Hardening Behavior in Cu–Ni Alloys. Metals, 2019, 9, 151.	1.0	22
304	Microstructure design and in-situ investigation of TRIP/TWIP effects in a forged dual-phase Ti–10V–2Fe–3Al alloy. Materialia, 2019, 8, 100507.	1.3	29
305	Bioceramic enhances the degradation and bioactivity of iron bone implant. Materials Research Express, 2019, 6, 115401.	0.8	13
306	Effect of Deformation Path on the Microstructure and Mechanical Behavior of TWIP980 Steel. Journal of Manufacturing and Materials Processing, 2019, 3, 12.	1.0	2

#	Article	IF	CITATIONS
307	Evolution of Substructure of a Non-equiatomic FeMnCrCo High Entropy Alloy Deformed at Ambient Temperature. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2019, 50, 5079-5090.	1.1	15
308	Microstructure and Mechanical Properties of Austenitic Steel EK-164 After Thermomechanical Treatments. Russian Physics Journal, 2019, 62, 698-704.	0.2	11
309	Effect of Stress States on Twinning Behavior in Twinning-Induced Plasticity Steel. Journal of Materials Engineering and Performance, 2019, 28, 4811-4825.	1.2	10
310	Microstructural aspects of energy absorption of high manganese steels. Procedia Manufacturing, 2019, 27, 91-97.	1.9	20
311	Anomalous work hardening behavior of Fe40Mn40Cr10Co10 high entropy alloy single crystals deformed by twinning and slip. Acta Materialia, 2019, 181, 555-569.	3.8	72
312	Crystallographic-orientation-dependent tensile behaviours of stainless steel 316L fabricated by laser powder bed fusion. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 766, 138395.	2.6	118
313	Microstructure characteristics, strengthening and toughening mechanism of rolled and aged multilayer TWIP/maraging steels. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 767, 138426.	2.6	26
314	Nanoparticles-strengthened high-entropy alloys for cryogenic applications showing an exceptional strength-ductility synergy. Scripta Materialia, 2019, 164, 30-35.	2.6	170
315	Effects of Stacking Fault Energy on Deformation Mechanisms in Al-Added Medium Mn TWIP Steel. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2019, 50, 3683-3696.	1.1	15
316	Hexagonal Closed-Packed Precipitation Enhancement in a NbTiHfZr Refractory High-Entropy Alloy. Metals, 2019, 9, 485.	1.0	22
317	Effect of temperature on the stacking fault energy and deformation behaviour in 316L austenitic stainless steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 759, 490-497.	2.6	112
318	Deformation behaviour of a low carbon high Mn TWIP/TRIP steel. Materials Science and Technology, 2019, 35, 1483-1496.	0.8	6
319	Effects of Strain Rate on the TRIP–TWIP Transition of an Austenitic Fe-18Mn-2Si-2Al Steel. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2019, 50, 4058-4066.	1.1	11
320	Developing high-strength, ductile Ni-free Fe–Cr–Mn–C–N stainless steels by interstitial-alloying and thermomechanical processing. Journal of Materials Research and Technology, 2019, 8, 2846-2853.	2.6	13
321	Experimental in-situ verification of the unloading mechanics of dual phase steels. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 760, 134-140.	2.6	6
322	Revealing the Hall-Petch relationship of Al0.1CoCrFeNi high-entropy alloy and its deformation mechanisms. Journal of Alloys and Compounds, 2019, 795, 269-274.	2.8	51
323	Microstructure and mechanical properties of cold drawing CoCrFeMnNi high entropy alloy. Journal of Alloys and Compounds, 2019, 795, 45-53.	2.8	42
324	Effect of volume fraction and mechanical stability of austenite on ductility of medium Mn steel. Journal of Iron and Steel Research International, 2019, 26, 1209-1218.	1.4	16

#	Article	IF	CITATIONS
325	Hydrogen Embrittlement and Improved Resistance of Al Addition in Twinning-Induced Plasticity Steel: First-Principles Study. Materials, 2019, 12, 1341.	1.3	1
326	Experimental study of the \hat{I}^3 -surface of austenitic stainless steels. Acta Materialia, 2019, 173, 34-43.	3.8	6
327	Twin boundary bending during tensile deformation and its temperature dependence. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 759, 47-54.	2.6	7
328	Effect of Tempering on the Microstructure and Tensile Properties of a Martensitic Medium-Mn Lightweight Steel. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2019, 50, 2655-2664.	1.1	18
329	Dramatic Increase of Strength and Ductility in Fe–22Mn–1.0C Twinningâ€Induced Plasticity Steel at Elevated Temperature. Advanced Engineering Materials, 2019, 21, 1800670.	1.6	1
330	On the influence of grain size on the TWIP/TRIP-effect and texture development in high-manganese steels. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 754, 152-160.	2.6	16
331	The microstructure dependence of drawability in ferritic, pearlitic, and TWIP steels during wire drawing. Journal of Materials Science, 2019, 54, 8743-8759.	1.7	29
332	Drawing Direction Effect on Microstructure and Mechanical Properties of Twinning-Induced Plasticity Steel During Wire Drawing. Journal of Materials Engineering and Performance, 2019, 28, 2834-2844.	1.2	11
333	Metastability alloy design. MRS Bulletin, 2019, 44, 266-272.	1.7	36
334	Strain hardening mechanisms during cold rolling of a high-Mn steel: Interplay between submicron defects and microtexture. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 754, 636-649.	2.6	18
335	Structure-Property Relationships under Extreme Dynamic Environments: Shock Recovery Experiments. Synthesis SEM Lectures on Experimental Mechanics, 2019, 2, 1-155.	0.3	11
336	Modeling the Work Hardening Behavior of High-Manganese Steels. Journal of Materials Engineering and Performance, 2019, 28, 1591-1600.	1.2	2
337	Formation abilities of nano-twin and ε-martensite in laser surface modification of a mid-carbon steel. Applied Surface Science, 2019, 479, 634-638.	3.1	10
338	Deformation mechanisms of mechanically induced phase transformations in iron. Computational Materials Science, 2019, 162, 12-20.	1.4	14
339	Dynamic Strain Aging and Serration Behavior of Three High-Manganese Austenitic Steels. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2019, 50, 1693-1700.	1.1	7
340	Effect of hydrogen-induced surface steps on the nanomechanical behavior of a CoCrFeMnNi high-entropy alloy revealed by in-situ electrochemical nanoindentation. Intermetallics, 2019, 114, 106605.	1.8	30
341	Cu addition effects on TRIP to TWIP transition and tensile property improvement of ultra-high-strength austenitic high-Mn steels. Acta Materialia, 2019, 166, 246-260.	3.8	50
342	Improved resistance to hydrogen environment embrittlement of warm-deformed 304 austenitic stainless steel in high-pressure hydrogen atmosphere. Corrosion Science, 2019, 148, 159-170.	3.0	43

#	Article	IF	CITATIONS
343	Mechanical properties of high-entropy alloys with emphasis on face-centered cubic alloys. Progress in Materials Science, 2019, 102, 296-345.	16.0	634
344	Enhancing strength and strain hardenability via deformation twinning in fcc-based high entropy alloys reinforced with intermetallic compounds. Acta Materialia, 2019, 165, 420-430.	3.8	155
345	Achieving ultra-high strength and ductility in equiatomic CrCoNi with partially recrystallized microstructures. Acta Materialia, 2019, 165, 496-507.	3.8	221
346	Effect of hydrogen on nanomechanical properties in Fe-22Mn-0.6C TWIP steel revealed by in-situ electrochemical nanoindentation. Acta Materialia, 2019, 166, 618-629.	3.8	57
347	Significance of stacking fault energy in bulk nanostructured materials: Insights from Cu and its binary alloys as model systems. Progress in Materials Science, 2019, 101, 1-45.	16.0	208
348	A review on shape memory metallic alloys and their critical stress for twinning. Intermetallics, 2019, 105, 61-78.	1.8	35
349	Outstanding tensile properties of a precipitation-strengthened FeCoNiCrTi0.2 high-entropy alloy at room and cryogenic temperatures. Acta Materialia, 2019, 165, 228-240.	3.8	373
350	The influence of stacking fault energy on mechanical properties of Cu-Al-Zn alloys processed by surface mechanical attrition treatment. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 744, 235-240.	2.6	10
351	Temperature dependence of strengthening mechanisms in a twinning-induced plasticity steel. International Journal of Plasticity, 2019, 116, 192-202.	4.1	27
352	Combined deformation twinning and short-range ordering causes serrated flow in high-manganese steels. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 746, 434-442.	2.6	26
353	Characterization of single crystalline austenitic stainless steel thin struts processed by laser powder bed fusion. Scripta Materialia, 2019, 163, 51-56.	2.6	49
354	Experimental investigation and phase diagram of CoCrMnNi–Fe system bridging high-entropy alloys and high-alloyed steels. Journal of Alloys and Compounds, 2019, 785, 320-327.	2.8	32
355	Strength and ductility of CrFeCoNiMo alloy with hierarchical microstructures. International Journal of Plasticity, 2019, 113, 255-268.	4.1	121
356	Hierarchical microstructure design to tune the mechanical behavior of an interstitial TRIP-TWIP high-entropy alloy. Acta Materialia, 2019, 163, 40-54.	3.8	296
357	Microstructure and enhanced strength of laser aided additive manufactured CoCrFeNiMn high entropy alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 744, 137-144.	2.6	166
358	Effects of B2O3 on Crystallization, Structure, and Heat Transfer of CaO-Al2O3-Based Mold Fluxes. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2019, 50, 291-303.	1.0	27
359	Deformation banding in a precipitation hardened aluminum alloy during simple shear deformation. Scripta Materialia, 2019, 162, 300-305.	2.6	19
360	Magnetic properties of a 17.6 Mn-TRIP steel: Study of strain-induced martensite formation, austenite reversion, and athermal α′-formation. Journal of Magnetism and Magnetic Materials, 2019, 473, 109-118.	1.0	15

#	Article	IF	CITATIONS
361	The valuation of microstructural evolution in a thermo-mechanically processed transformation-twinning induced plasticity steel during strain hardening. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 754, 799-810.	2.6	1
362	Deformation behaviour of low carbon high Mn twinning-induced plasticity steel. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2019, 233, 763-771.	1.1	3
363	Effect of reduction in area per pass on strain distribution and microstructure during caliber rolling in twinning-induced plasticity steel. Journal of Iron and Steel Research International, 2020, 27, 62-74.	1.4	11
364	Simultaneous enhancement of strength and ductility in a NiCoCrFe high-entropy alloy upon dynamic tension: Micromechanism and constitutive modeling. International Journal of Plasticity, 2020, 124, 226-246.	4.1	163
365	Mechanical properties and deformation behavior of dual-phase Al0.6CoCrFeNi high-entropy alloys with heterogeneous structure at room and cryogenic temperatures. Journal of Alloys and Compounds, 2020, 816, 152663.	2.8	42
366	The mechanism of mechanical twinning near grain boundaries in twinning-induced plasticity steel. Scripta Materialia, 2020, 174, 62-67.	2.6	17
367	Study of hydrogen-induced delayed fracture in high-Mn TWIP/TRIP steels during in situ electrochemical hydrogen-charging: Role of microstructure and strain rate in crack initiation and propagation. Corrosion Science, 2020, 162, 108191.	3.0	32
368	Effects of transformation-induced plasticity on the small-scale deformation behavior of single crystalline complex concentrated alloys. Scripta Materialia, 2020, 176, 122-125.	2.6	5
369	TWIP and TRIP-associated mechanical behaviors of Fe (CoCrMnNi) medium-entropy ferrous alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 782, 138896.	2.6	26
370	A review of thermal, microstructural and constitutive modelling of 9Cr steel for power plant applications: Towards a through-process model for structural integrity of welded connections. International Journal of Pressure Vessels and Piping, 2020, 180, 104037.	1.2	2
371	Plastic flow behavior of twinning induced plasticity steel from low to warm temperatures. Journal of Materials Research and Technology, 2020, 9, 1708-1719.	2.6	10
372	Combined Al and C alloying enables mechanism-oriented design of multi-principal element alloys: Ab initio calculations and experiments. Scripta Materialia, 2020, 178, 366-371.	2.6	18
373	An investigation of geometrically necessary dislocations and back stress in large grained tantalum via EBSD and CPFEM. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 772, 138704.	2.6	30
374	Anisotropic polycrystal plasticity due to microstructural heterogeneity: A multi-scale experimental and numerical study on additively manufactured metallic materials. Acta Materialia, 2020, 185, 340-369.	3.8	64
375	Microstructural evolution and strengthening of selective laser melted 316L stainless steel processed by high-pressure torsion. Materials Characterization, 2020, 159, 110012.	1.9	37
376	In-situ real time observation of martensite transformation in duplex fcc+hcp cobalt based entropic alloys. Materialia, 2020, 14, 100928.	1.3	10
377	Synergistic deformation pathways in a TWIP steel at cryogenic temperatures: In situ neutron diffraction. Acta Materialia, 2020, 200, 943-958.	3.8	72
378	Hydrogen, as an alloying element, enables a greater strength-ductility balance in an Fe-Cr-Ni-based, stable austenitic stainless steel. Acta Materialia, 2020, 199, 181-192.	3.8	44

#	Article	IF	CITATIONS
379	Metal Temperature Estimation and Microstructure Evaluation of Long-Term Service-Exposed Super304H Steel Boiler Tubes. Metals and Materials International, 2021, 27, 5121-5132.	1.8	2
380	The impact of grain-scale strain localization on strain hardening of a high-Mn steel: Real-time tracking of the transition from the γÂ→ÂεÂ→Âα' transformation to twinning. Acta Materialia, 2020, 197, 123-136.	3.8	37
381	Crystal–Glass Highâ€Entropy Nanocomposites with Near Theoretical Compressive Strength and Large Deformability. Advanced Materials, 2020, 32, e2002619.	11.1	66
382	Zn-induced liquid metal embrittlement of galvanized high-Mn steel: Strain-rate dependency. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 793, 139996.	2.6	16
383	Effect of hydrogen on fracture locus of Fe–16Mn–0.6C–2.15Al TWIP steel. International Journal of Hydrogen Energy, 2020, 45, 34227-34240.	3.8	10
384	Study of the alternative mechanism behind the constant strain hardening rate in high‑nitrogen steels. Materials Characterization, 2020, 170, 110726.	1.9	6
385	Coexistence of multi-deformation modes in beta Ti alloys with improved yielding strength and ductility. MATEC Web of Conferences, 2020, 321, 11069.	0.1	0
386	Microstructural and Hardness Evolution in a Duplex Stainless Steel Processed by High-Pressure Torsion. Crystals, 2020, 10, 1138.	1.0	6
387	From single phase to dual-phase TRIP-TWIP titanium alloys: Design approach and properties. Materialia, 2020, 12, 100700.	1.3	28
388	Cyclic plasticity of an interstitial high-entropy alloy: experiments, crystal plasticity modeling, and simulations. Journal of the Mechanics and Physics of Solids, 2020, 142, 103971.	2.3	50
389	The role of Mn on twinning behavior and tensile properties of coarse- and fine-grained Fe–Mn–C twinning-induced plasticity steels. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 789, 139586.	2.6	21
390	Effects of Silicon on the Microstructure and Mechanical Properties of 15–15Ti Stainless Steel. Acta Metallurgica Sinica (English Letters), 2020, 33, 1583-1590.	1.5	4
391	Strengthening the FeCoCrNiMo0.15 high entropy alloy by a gradient structure. Journal of Alloys and Compounds, 2020, 841, 155688.	2.8	24
392	Investigations of dislocation-type evolution and strain hardening during mechanical twinning in Fe-22Mn-0.6C twinning-induced plasticity steel. Acta Materialia, 2020, 195, 371-382.	3.8	105
393	Direct observations of collinear dislocation interaction in a Fe-17.4 Mn-1.50 Al-0.29 C (wt.%) austenitic steel under cyclic loading by in-situ electron channelling contrast imaging and cross-correlation electron backscatter diffraction. Scripta Materialia, 2020, 186, 341-345.	2.6	13
394	A Stress Orientation Analysis Framework for Dislocation Glide in Face-Centred Cubic Metals. Crystals, 2020, 10, 445.	1.0	8
395	Excellent combination of plasticity and ultra-high strength in a low-alloy automotive steel treated by conventional continuous annealing. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 791, 139694.	2.6	12
396	Nano-precipitates strengthened non-equiatomic medium-entropy alloy with outstanding tensile properties. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 780, 139218.	2.6	38

ARTICLE IF CITATIONS High-temperature Tensile Behavior in Coarse-grained and Fine-grained Nb-containing 25Cr–20Ni 397 1.5 4 Austenitic Stainless Steel. Acta Metallurgica Sinica (English Letters), 2020, 33, 1455-1465. Mechanical Properties Improvement of CoCrFeMnNiB_{0.1} High Entropy Alloy through 398 0.4 Annealing Design. Transactions of the Indian Ceramic Society, 2020, 79, 100-105. Thermodynamic analysis of high entropy alloys and their mechanical behavior in high and 399 low-temperature conditions with a microstructural approach - A review. Intermetallics, 2020, 124, 1.8 36 106850. Crystal plasticity finite element analysis of gradient nanostructured TWIP steel. International Journal 400 of Plasticity, 2020, 130, 102703. In-Situ Electron Channeling Contrast Imaging under Tensile Loading: Residual Stress, Dislocation 401 1.6 10 Motion, and Slip Line Formation. Scientific Reports, 2020, 10, 2622. Effects of Cu addition on formability and surface delamination phenomenon in high-strength high-Mn steels. Journal of Materials Science and Technology, 2020, 43, 44-51. 5.6 Excellent Combination of Tensile ductility and strength due to nanotwinning and a biamodal 403 1.6 9 structure in cryorolled austenitic stainless steel. Scientific Reports, 2020, 10, 354. A novel cobalt-free FeMnCrNi medium-entropy alloy with exceptional yield strength and ductility at 404 2.8 87 cryogenic temperature. Journal of Alloys and Compounds, 2020, 827, 153981. Tunable mechanical property and strain hardening behavior of a single-phase CoFeNi2V0.5Mo0.2 high 405 entropy alloy. Materials Science & amp; Engineering A: Structural Materials: Properties, 2.6 16 Microstructure and Processing, 2020, 776, 139027. Dissociated dislocation-mediated carbon transport and diffusion in austenitic iron. Acta Materialia, 3.8 2020, 191, 43-50. Effect of Temperature on the Mechanical Properties and Deformation Mechanism of a High Mn Steel 407 3 1.2 With Composite Structure. Frontiers in Materials, 2020, 7, . Grade-4 commercially pure titanium with ultrahigh strength achieved by twinning-induced grain refinement through cryogenic deformation. Journal of Materials Science and Technology, 2021, 66, 408 5.6 193-201 Step-by-step texture modification through strain path change toward improvement of the hardening capacity in a twinning-induced-plasticity steel. Materials Science & amp; Engineering A: Structural 409 2.6 1 Materials: Properties, Microstructure and Processing, 2021, 799, 140269. Gradient recrystallization to improve strength and ductility of medium-entropy alloy. Journal of 2.8 Alloys and Compounds, 2021, 853, 157388. Evaluation of depth of dislocation visibility in SEM electron channeling contrast imaging in Ti-6Al-4V 411 0.7 0 alloy using serial sectioning method. Microscopy (Oxford, England), 2021, 70, 265-277. Revisiting the role of prestrain history in the mechanical properties of ultrafine-grained CoCrFeMnNi high-entropy alloy. Materials Science & amp; Engineering A: Structural Materials: Properties, 23 Microstructure and properties of a21mmlimath2mbis:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.svg"><</td> mathvariant="normal">o</mml:mi></mml:mrow></mml:math>-free <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si2.svg"><mml:mrow><mml:mi 413 2.8 35 mathvariant="normal">F</mml:mi><mml:msub><mml:mi mathvariant="normal">e</mml:mi><mml:mn>50</mml:m "normal">e</mml:mi><mml:mn>50</mml:mn></mml:msub><mml:mi mathyariant="normal" Heterogeneous precipitates facilitate excellent mechanical properties in non-equiatomic 414 1.8 medium-entropy alloy. Intermetallics, 2021, 129, 107036.

#	Article	IF	CITATIONS
415	Effects of deformation and annealing on the microstructures and properties of a nonequiatomic Co29Cr29Fe29Ni12.5W0.5 high-entropy alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 805, 140548.	2.6	9
416	Effect of gradient microstructure on the strength and ductility of medium-entropy alloy processed by severe torsion deformation. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 801, 140429.	2.6	21
417	A TWIP-TRIP quinary high-entropy alloy: Tuning phase stability and microstructure for enhanced mechanical properties. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 801, 140441.	2.6	37
418	Effect of stable stacking fault energy and crystal orientation on fracture behaviour of thin metallic single crystals. Philosophical Magazine, 2021, 101, 929-963.	0.7	1
419	Microstructure and mechanical properties of bimetallic copper/brass laminates fabricated via accumulative press bonding. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 803, 140710.	2.6	8
420	A phenomenological model of deformation twinning kinetics. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 803, 140700.	2.6	6
421	Multilayer Maraging/CoCrNi Composites With Synergistic Strengthening-Toughening Behavior. Frontiers in Materials, 2021, 7, .	1.2	3
422	Revealing the relationship between microstructures, textures, and mechanical behaviors of cold-rolled Al0.1CoCrFeNi high-entropy alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 804, 140752.	2.6	24
423	Investigation of solidification modes of high Manganese steels. Materials Science and Technology, 2021, 37, 446-457.	0.8	2
424	Adaptive domain misorientation approach for the EBSD measurement of deformation induced dislocation sub-structures. Ultramicroscopy, 2021, 222, 113203.	0.8	35
425	Deformation Mechanism in Fe61Mn18Si11Cr10 Medium Entropy Alloy Under Different Strain Rates. Acta Metallurgica Sinica (English Letters), 2021, 34, 1109-1119.	1.5	0
426	Multi-heterostructure and mechanical properties of N-doped FeMnCoCr high entropy alloy. International Journal of Plasticity, 2021, 139, 102965.	4.1	88
427	Corrosion fatigue behavior of Fe-16Mn-0.6C-1.68Al twinning-induced plasticity steel in simulated seawater. Corrosion Science, 2021, 182, 109282.	3.0	19
428	Hydrogen effect on the mechanical behaviour and microstructural features of a Fe-Mn-C twinning induced plasticity steel. International Journal of Minerals, Metallurgy and Materials, 2021, 28, 835-846.	2.4	6
429	A non-equiatomic FeNiCoCr high-entropy alloy with excellent anti-corrosion performance and strength-ductility synergy. Corrosion Science, 2021, 183, 109341.	3.0	109
430	The microstructural effects on the mechanical response of polycrystals: A comparative experimental-numerical study on conventionally and additively manufactured metallic materials. International Journal of Plasticity, 2021, 140, 102941.	4.1	18
431	Influence of sample preparation on nanoindentation results of twinning-induced plasticity steel. International Journal of Minerals, Metallurgy and Materials, 2021, 28, 877-887.	2.4	1
432	Mechanism of twinning induced plasticity in austenitic lightweight steel driven by compositional complexity. Acta Materialia, 2021, 210, 116814.	3.8	41

#	Article	IF	CITATIONS
433	Mechanical behavior of high-entropy alloys. Progress in Materials Science, 2021, 118, 100777.	16.0	492
434	Enhanced Mechanical Properties of Fe-Mn-Al-C Low Density Steel via Aging Treatment. Frontiers in Materials, 2021, 8, .	1.2	4
435	Remarkable strength of a non-equiatomic Co29Cr29Fe29Ni12.5W0.5 high-entropy alloy at cryogenic temperatures. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 818, 141446.	2.6	15
436	Design of ultrastrong but ductile medium-entropy alloy with controlled precipitations and heterogeneous grain structures. Applied Materials Today, 2021, 23, 101037.	2.3	11
437	Effects of Dynamic Loading under Extreme Conditions on Wear Resistance of T105Mn120 Castings for Railway Safety Systems. Journal of Materials Engineering and Performance, 2021, 30, 7128-7137.	1.2	4
438	Assessing the magnetic order dependent Î ³ -surface of Cr-Co-Ni alloys. Journal of Materials Science and Technology, 2021, 80, 66-74.	5.6	15
439	Strain hardening mediated by coherent nanoprecipitates in ultrahigh-strength steels. Acta Materialia, 2021, 213, 116984.	3.8	34
440	Mechanical properties and deformation mechanisms of a Ni2Co1Fe1V0.5Mo0.2 medium-entropy alloy at elevated temperatures. Acta Materialia, 2021, 213, 116982.	3.8	36
441	Effects of a Novel Severe Plastic Deformation Approach on Microstructural and Mechanical Characteristics of a Medium Manganese Advanced High Strength Steel. Metals and Materials International, 2022, 28, 1232-1245.	1.8	6
442	Direct evidence of the stacking fault-mediated strain hardening phenomenon. Applied Physics Letters, 2021, 119, .	1.5	18
443	Unique transition of yielding mechanism and unexpected activation of deformation twinning in ultrafine grained Fe-31Mn-3Al-3Si alloy. Scientific Reports, 2021, 11, 15870.	1.6	21
444	Cold deformation for ameliorating the corrosion resistance of 654SMO in a high-temperature simulated seawater environment: the combined effect of texture and twinning boundaries. Journal of Materials Science, 2021, 56, 17505-17526.	1.7	0
445	Influence of carbides on the strain hardening behavior of 60Si2CrVAT spring steel treated by a Q&T process. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 823, 141695.	2.6	5
446	Effects of Crystal Orientation on Deformation Twinning and Dislocation Slip in Single Crystal Micro-pillars of a Twinning-Induced Plasticity Steel. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2021, 52, 5235-5242.	1.1	6
447	Martensitic Transformation in <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mrow><mml:mrow><mml:msub><mml:mrow><mml:mi>Fe</mml:mi></mml:mrow><mm Physical Review Letters, 2021, 127, 115704.</mm </mml:msub></mml:mrow></mml:mrow></mml:math>	l:m rø w> <r< td=""><td>nmutzmi>x</td></r<>	nmutzmi>x
448	Localized deformation inside the Lüders front of a medium manganese steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 824, 141816.	2.6	25
449	Static recrystallized annealing treatment-induced strength-ductility trade-off in cold-rolled Co36Fe36Cr18Ni10 multi-principal alloy. Materials Characterization, 2021, 179, 111254.	1.9	5
450	High-temperature ultra-strength of dual-phase Re0.5MoNbW(TaC)0.5 high-entropy alloy matrix composite. Journal of Materials Science and Technology, 2021, 84, 1-9.	5.6	30

#	Article	IF	CITATIONS
451	Grain size altering yielding mechanisms in ultrafine grained high-Mn austenitic steel: Advanced TEM investigations. Journal of Materials Science and Technology, 2021, 86, 192-203.	5.6	29
452	A precipitate-free AlCoFeNi eutectic high-entropy alloy with strong strain hardening. Journal of Materials Science and Technology, 2021, 89, 88-96.	5.6	35
453	Dynamic deformation behavior and microstructure evolution of CoCrNiMox medium entropy alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 827, 142048.	2.6	20
454	Unusual relationship between impact toughness and grain size in a high-manganese steel. Journal of Materials Science and Technology, 2021, 89, 122-132.	5.6	25
455	Hierarchical grain size and nanotwin gradient microstructure for improved mechanical properties of a non-equiatomic CoCrFeMnNi high-entropy alloy. Journal of Materials Science and Technology, 2021, 92, 195-207.	5.6	68
456	Surface, microstructure, and tensile deformation characterization of LPBF SS316L microstruts micromachined with femtosecond laser. Materials and Design, 2021, 210, 110045.	3.3	13
457	Statistical study on the effects of heterogeneous deformation and grain boundary character on hydrogen-induced crack initiation and propagation in twining-induced plasticity steels. Corrosion Science, 2021, 192, 109796.	3.0	15
458	Retained austenite-aided cyclic plasticity of the quenched 9Ni steel. International Journal of Fatigue, 2021, 152, 106445.	2.8	6
459	Composition-dependent slip planarity in mechanically-stable face centered cubic complex concentrated alloys and its mechanical effects. Acta Materialia, 2021, 220, 117314.	3.8	24
460	Ultrasonic nanocrystal surface modification for strength improvement and suppression of hydrogen permeation in multi-layered steel. Journal of Alloys and Compounds, 2021, 885, 160975.	2.8	7
461	C and N doping in high-entropy alloys: A pathway to achieve desired strength-ductility synergy. Applied Materials Today, 2021, 25, 101162.	2.3	19
462	Twinning-Induced Plasticity (TWIP) Steel. , 2022, , 95-105.		1
463	Nanostructural metallic materials: Structures and mechanical properties. Materials Today, 2020, 38, 114-135.	8.3	150
464	Stress corrosion cracking and precipitation strengthening mechanism in TWIP steels: progress and prospects. Corrosion Reviews, 2020, 38, 473-488.	1.0	12
465	WpÅ,yw parametrów próby Å›ciskania na goräco na wÅ,aÅ›ciwoÅ›ci i strukturÄ™ stali wysokomanganowej d motoryzacji. Hutnik - WiadomoÅšci Hutnicze, 2015, 1, 10-14.	^{la} o.o	1
466	Regularities of Formation of Structure, Texture and Properties under the Combined Plastic Deformation of the Low-Carbon and Ultralow-Carbon Steels for Cold Press Forming. Progress in Physics of Metals, 2019, 20, 213-284.	0.5	7
467	Effects of Static and Dynamic Strain Aging on Hydrogen Embrittlement in TWIP Steels Containing Al. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 2014, 100, 1132-1139.	0.1	5
470	Hydrogen and deuterium charging of site-specific specimen for atom probe tomography. Open Research Europe, 0, 1, 122.	2.0	3

#	Article	IF	CITATIONS
471	The determining role of carbon addition on mechanical performance of a non-equiatomic high-entropy alloy. Journal of Materials Science and Technology, 2022, 110, 167-177.	5.6	17
472	Achieving superior strength-ductility balance in a novel heterostructured strong metastable β-Ti alloy. International Journal of Plasticity, 2021, 147, 103126.	4.1	30
474	Ocena struktury stali wysokomanganowych po procesach odkszta�cenia. Hutnik - WiadomoŚci Hutnicze, 2015, 1, 32-36.	0.0	0
475	Plastyczność i mikrostruktura wysokomanganowej stali X55MnAl25-5 z efektem TWIP po próbach skręcania. Hutnik - WiadomoŚci Hutnicze, 2015, 1, 20-23.	0.0	0
476	Ocena wpÅ,ywu dynamicznego odksztaÅ,cania z wykorzystaniem mÅ,ota spadowego na podatność do odksztaÅ,ceÅ,, plastycznych wybranych stali wysokomanganowych. Hutnik - WiadomoÅšci Hutnicze, 2016, 1, 20-22.	0.0	1
477	Investigation of Deformation Mechanisms in an Austenitic Mn-Steel by means of Scanning Electron Microscopy and Electron Backscatter Diffraction. Praktische Metallographie/Practical Metallography, 2019, 56, 393-403.	0.1	0
478	Effect of solid-solution strengthening on deformation mechanisms and strain hardening in medium-entropy V1-Cr CoNi alloys. Journal of Materials Science and Technology, 2022, 108, 270-280.	5.6	30
479	Manganese effect on the microstructural transformation and mechanical properties of oxide dispersion strengthened steels fabricated with pre-alloyed powders. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 830, 142282.	2.6	4
480	Low-Density Steels. , 2021, , 211-289.		0
481	Synergetic strengthening and deformation mechanisms in gradient Al0.1CoCrFeNi high-entropy alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 829, 142165.	2.6	7
482	Advanced High-Strength Steels. Springer Series in Materials Science, 2020, , 71-98.	0.4	2
483	Effects of constrained groove pressing on mechanical properties of a TWIP steel. Materials Science and Technology, 2021, 37, 1291-1301.	0.8	5
484	Influences of carbon concentration on microstructure and tensile properties of Fe–18Mn–9Cr–2Al–xC steels. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 830, 142289.	2.6	2
485	Fine structure characterization of an explosively-welded GH3535/316H bimetallic plate interface. International Journal of Minerals, Metallurgy and Materials, 2021, 28, 1811-1820.	2.4	2
486	Temperature-dependent universal dislocation structures and transition of plasticity enhancing mechanisms of the Fe40Mn40Co10Cr10 high entropy alloy. International Journal of Plasticity, 2022, 148, 103148.	4.1	30
487	Al2O3 nanoparticle reinforced heterogeneous CrCoNi-matrix composites with improved strength-ductility synergy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 832, 142398.	2.6	4
488	Effects of cerium addition on the microstructure, mechanical properties and strain hardening behavior of TWIP steel Fe-18Mn-0.6C. Materials Characterization, 2022, 183, 111626.	1.9	10
489	Dynamic tensile mechanisms and constitutive relationship in CrFeNi medium entropy alloys at room and cryogenic temperatures. Physical Review Materials, 2021, 5, .	0.9	10

#	Article	IF	CITATIONS
490	Recent Progress in Understanding the Nano/Micro-Mechanical Behavior of Austenite in Advanced High Strength Steels. Metals, 2021, 11, 1927.	1.0	0
491	Influence of carbon addition on mechanical properties of Fe–Mn–C twinning-induced plasticity steels. Journal of Iron and Steel Research International, 2022, 29, 1446-1454.	1.4	4
492	Mechanical Behavior of High-Entropy Alloys: A Review. , 2021, , 435-522.		9
493	Deformation behaviour of TWIP steels: Constitutive modelling informed by local and integral experimental methods used in concert. Materials Characterization, 2022, 184, 111667.	1.9	9
494	Strengthening contributions of dislocations and twins in warm-rolled TWIP steels. International Journal of Plasticity, 2022, 150, 103198.	4.1	35
495	Characterization of the microstructure and mechanical properties of highly textured and single crystal Hastelloy X thin struts fabricated by laser powder bed fusion. Journal of Alloys and Compounds, 2022, 901, 163465.	2.8	9
496	Low-Carbon Steels. , 2015, , 233-275.		0
497	Molecular Dynamics Study on the Strengthening Mechanisms of Cr-Fe-Co-Ni High-Entropy Alloys Based on the Generalized Stacking Fault Energy. SSRN Electronic Journal, 0, , .	0.4	0
498	Newer insights into the discrimination of pole mechanisms of twinning in a face-centered cubic high-Mn steel. Materialia, 2022, 21, 101349.	1.3	3
499	Microstructure evolution of additively manufactured CoCrFeNiAl0.4 high-entropy alloy under thermo-mechanical processing. Journal of Materials Research and Technology, 2022, 16, 442-450.	2.6	9
500	Mechanical Properties and Deformation Mechanisms of Heterostructured High-Entropy and Medium-Entropy Alloys: A Review. Frontiers in Materials, 2022, 8, .	1.2	25
501	Strain rate effects on mechanical behavior and microstructure evolution with the sequential strains of TWIP steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 835, 142673.	2.6	19
502	In-situ tensile and fatigue behavior of electrical grade Cu alloy for subsea cables. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 835, 142654.	2.6	4
503	Chemical composition dependence of the strength and ductility enhancement by solute hydrogen in Fe–Cr–Ni-based austenitic alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 836, 142681.	2.6	6
504	Enhanced strength-ductility synergy via novel bifunctional nano-precipitates in a high-entropy alloy. International Journal of Plasticity, 2022, 153, 103235.	4.1	56
505	Laser-equipped gas reaction chamber for probing environmentally sensitive materials at near atomic scale. PLoS ONE, 2022, 17, e0262543.	1.1	7
506	Molecular dynamics study on the strengthening mechanisms of Cr–Fe–Co–Ni high-entropy alloys based on the generalized stacking fault energy. Journal of Alloys and Compounds, 2022, 905, 164137.	2.8	37
507	Strain hardening engineering via grain size control in laser powder-bed fusion. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 838, 142773.	2.6	1

#	Article	IF	CITATIONS
508	Robust mechanical properties and corrosion resistance of new low-cost hot-forged and aged <mml:math altimg="si0019.svg" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi aged<mml:math="" altimg="si0019.svg" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi aged<mml:math="" altimg="si0019.svg" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi aged<mml:math="" altimg="si0019.svg" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi aged<mml:math="" altimg="si0019.svg" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi altimg="si0019.svg" math="" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi aged<mml:math="" altimg="si0019.svg" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi age:="" si0019.svg"=""><mml:mi age:="" si0019.svg"=""><mml:mi age:="" si0019.svg"=""><mml:mi age:="" si0019.svg"=""><mml:mi age:="" ml="" si0019.svg<=""></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:math>	2.8	7
509	New Comprehension on the Microstructure, Texture and Deformation Behaviors of Uns S32101 Fabricated by Direct Cold Rolling Process. SSRN Electronic Journal, 0, , .	0.4	0
510	Microstructural Features and Mechanical Behaviors of Al0.5Cr0.8CoFeNi2.5V0.2 High-Entropy Alloys Fabricated by Selective Laser Melting Technique. Acta Metallurgica Sinica (English Letters), 2022, 35, 1591-1606.	1.5	6
511	Dynamic and Static Strain Aging in a Highâ€Manganese Steel. Steel Research International, 2022, 93, .	1.0	3
512	Hydrogen and deuterium charging of lifted-out specimens for atom probe tomography. Open Research Europe, 0, 1, 122.	2.0	6
513	Effect of Caliber Rolling Temperatures on Microstructure Evolution and Mechanical Properties of Highâ€Mn Steels. Steel Research International, 2022, 93, .	1.0	0
514	High-entropy alloys: a review of mechanical properties and deformation mechanisms at cryogenic temperatures. Journal of Materials Science, 2022, 57, 6573-6606.	1.7	40
515	Multiple minor elements improve strength-ductility synergy of a high-entropy alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 840, 142901.	2.6	11
516	Effect of Rolling Temperature on Microstructural Characteristics and Deformation Mechanisms of a Metastable Austenitic Stainless Steel. Steel Research International, 0, , .	1.0	1
517	Mechanical behavior of thin CoCrFeNi high-entropy alloy sheet under laser shock peening. Intermetallics, 2022, 144, 107529.	1.8	11
518	Achieving maximum strength-ductility combination in fine-grained Cu-Zn alloy via detwinning and twinning deformation mechanisms. Journal of Alloys and Compounds, 2022, 906, 164401.	2.8	14
519	Non-monotonous effect of pre-strain on the precipitates and strengthening mechanisms of high-entropy alloys. Journal of Alloys and Compounds, 2022, 906, 164338.	2.8	5
520	Unveiling the precipitation behavior and mechanical properties of Co-free Ni47-Fe30Cr12Mn8Al Ti3 high-entropy alloys. Journal of Materials Science and Technology, 2022, 118, 25-34.	5.6	27
521	Dynamically reversible shear transformations in a CrMnFeCoNi high-entropy alloy at cryogenic temperature. Acta Materialia, 2022, 232, 117937.	3.8	24
522	Assessment of meta-atom scheme for nucleation of dislocation loops in TWIP steel. Computational Materials Science, 2022, 209, 111430.	1.4	1
523	Twin mechanical metamaterials inspired by nano-twin metals: Experimental investigations. Composite Structures, 2022, 291, 115580.	3.1	5
524	Microstructure and Mechanical Properties of a Gas-Tungsten-Arc Welded High-Manganese Steel Pipe Using a Welding Wire. SSRN Electronic Journal, 0, , .	0.4	0
525	Stacking Faults or Twins Mediated Deformation Behavior in a Precipitation-Hardening Ni Base Alloy with Heterogeneous Structures. SSRN Electronic Journal, 0, , .	0.4	0

#	Article	IF	CITATIONS
526	Effect of Ti Addition on the Damping and Mechanical Properties of Solid-Solution Fecrconi Alloys. SSRN Electronic Journal, 0, , .	0.4	0
527	Reverse Transformation in [110]-Oriented Face-Centered-Cubic Single Crystals Studied by Atomic Simulations. Acta Metallurgica Sinica (English Letters), 2022, 35, 1631-1640.	1.5	2
528	Roles of Mn content and nanovoid defects in the plastic deformation mechanism of Fe–Mn twin crystals from molecular dynamics simulations. Journal of Materials Research, O, , .	1.2	1
529	Influence of cold deformation on microstructure, crystallographic orientation and tensile properties of an experimental austenitic Fe–26Mn-0.4C steel. Journal of Materials Research and Technology, 2022, 19, 7-19.	2.6	10
530	Fe55Co17.5Ni10Cr12.5Mo5 High-Entropy Alloy with Outstanding Cryogenic Mechanical Properties Driven by Deformation-Induced Phase Transformation Behavior. Metals and Materials International, 2023, 29, 95-107.	1.8	12
531	The effects of post weld heat treatment for welded high-Mn austenitic steels using the submerged arc welding method. Journal of Materials Research and Technology, 2022, 18, 4497-4512.	2.6	15
532	New comprehension on the microstructure, texture and deformation behaviors of UNS S32101 duplex stainless steel fabricated by direct cold rolling process. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 845, 143150.	2.6	9
533	Superb strengthening behavior in a precipitation strengthened Co-rich CoCrNiAlTi medium entropy alloy with acceptable ductility. Intermetallics, 2022, 146, 107582.	1.8	7
534	Hydrogen-assisted failure in partially recrystallized carbon alloyed equiatomic CoCrFeMnNi high-entropy alloy. Corrosion Science, 2022, 203, 110357.	3.0	8
535	Enhanced dynamic deformability and strengthening effect via twinning and microbanding in high density NiCoFeCrMoW high-entropy alloys. Journal of Materials Science and Technology, 2022, 127, 164-176.	5.6	27
536	Orientation Dependent Twinning Behavior in a Twinning-induced Plasticity Steel Investigated by Nanoindentation. Metals and Materials International, 0, , .	1.8	1
537	Microstructure evolution, mechanical properties, and corrosion behavior of novel (50Zr–50Ti)-xNi ternary alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 846, 143308.	2.6	4
538	Dynamically compressive behaviors and plastic mechanisms of a CrCoNi medium entropy alloy at various temperatures. Acta Mechanica Sinica/Lixue Xuebao, 2022, 38, .	1.5	4
539	Temperature-dependent microstructural evolutions and deformation mechanisms of (Ni2Co2FeCr)92Al4Nb4 high-entropy alloys. Journal of Alloys and Compounds, 2022, 918, 165597.	2.8	10
540	Effect of Tempering on the Stability of Retained Austenite in Carbide-Free Bainitic Steel. SSRN Electronic Journal, 0, , .	0.4	0
541	Effect of Aluminum Content on the Dynamic Recrystallization of Fe18MnxAl0.74C Steels During Hot-Forging Treatments. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2022, 53, 2961-2976.	1.1	7
542	Impact of interstitial elements on the stacking fault energy of an equiatomic CoCrNi medium entropy alloy: theory and experiments. Science and Technology of Advanced Materials, 2022, 23, 376-392.	2.8	7
543	Influence of microstructural deformation mechanisms and shear strain localisations on small fatigue crack growth in ferritic stainless steel. International Journal of Fatigue, 2022, 163, 107024.	2.8	8

#	Article	IF	Citations
544	Microstructures and Deformation Mechanisms of FCC-Phase High-Entropy Alloys. , 0, , .		0
545	Microstructures and deformation mechanisms of the medium-entropy alloy (NiCoCr)76(Ni6AlTi)3. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 849, 143449.	2.6	8
546	Grain size and temperature mediated twinning ability and strength-ductility correlation in pure titanium. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 849, 143461.	2.6	10
547	Dependence of tensile deformation of twinning-induced plasticity steel on temperature. Materials Letters, 2022, 324, 132712.	1.3	1
548	Assisting Excellent Strength-Ductility BalanceÂBy Engineering Stacking Faults in V0.5cr0.5coni Medium-Entropy Alloy. SSRN Electronic Journal, 0, , .	0.4	0
549	Significantly Enhanced Strength of a Drawn Twinning-Induced Plasticity Steel Wire and its Deformation Twinning Dependency. Journal of Materials Engineering and Performance, 2023, 32, 117-134.	1.2	1
550	Martensite transformation behavior and mechanical properties of two kinds of lowâ€nickel austenite stainless steel. Materialwissenschaft Und Werkstofftechnik, 2022, 53, 808-818.	0.5	0
551	Dynamic recrystallization, Laves phase evolution and mechanical performance of nuclear-grade Nb containing FeCrAl alloy joints fabricated by friction stir welding. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 857, 143575.	2.6	10
552	Effect of laser shock peening on tensile properties and microstructure of selective laser melted 316L stainless steel with different build directions. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 850, 143567.	2.6	17
553	Heterostructured stainless steel: Properties, current trends, and future perspectives. Materials Science and Engineering Reports, 2022, 150, 100691.	14.8	65
554	Effect of tempering on the stability of retained austenite in carbide-free bainitic steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 850, 143525.	2.6	12
555	Modelling of the intergranular fracture of TWIP steels working at high temperature by using CZM–CPFE method. International Journal of Plasticity, 2022, 156, 103366.	4.1	13
556	Ultra-high strength assisted by nano-precipitates in a heterostructural high-entropy alloy. Journal of Alloys and Compounds, 2022, 921, 166106.	2.8	11
557	Effect of Ti addition on the damping and mechanical properties of solid-solution FeCrCoNi alloys. Journal of Alloys and Compounds, 2022, 921, 166060.	2.8	3
558	Strengthening and deformation mechanism of high-strength CrMnFeCoNi high entropy alloy prepared by powder metallurgy. Journal of Materials Science and Technology, 2023, 132, 119-131.	5.6	25
559	Microstructure evolution and fracture behaviour of TWIP steel under dynamic loading. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 851, 143657.	2.6	16
560	Revealing effect of aluminum alloying on work hardening and impact behaviors of low-density Fe-18Mn-1.3C-2Cr-(4, 11)Al casting steel. China Foundry, 2022, 19, 359-368.	0.5	1
561	Tensile deformation-induced twinning in an austenitic low density steel over a wide range of temperature. IOP Conference Series: Materials Science and Engineering, 2022, 1249, 012011.	0.3	Ο

#	Article	IF	CITATIONS
562	Factors Affecting the Mechanical Performance of High Manganese Austenitic Steel. Metals, 2022, 12, 1405.	1.0	1
563	Influence of Hatch Strategy on Crystallographic Texture Evolution, Mechanical Anisotropy of Laser Beam Powder Bed Fused S316L Steel. Advanced Engineering Materials, 0, , 2200524.	1.6	0
564	Microstructural Evolution, Mechanical Properties, and Corrosion Behavior of an Al _{7.5} Co _{20.5} Fe ₂₄ Ni ₂₄ Cr ₂₄ Highâ€Entropy Alloy. Advanced Engineering Materials, 0, , 2200780.	1.6	2
565	The Competition Between Deformation Twinning and Dislocation Slip in Deformed Face-Centered Cubic Metals. Jom, 2022, 74, 3799-3810.	0.9	3
566	Synergistic effect of precipitation strengthening and multi-heterostructure on the improvement of strength and ductility in NbC-reinforced FeMnCoCr high entropy alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 853, 143679.	2.6	7
567	Low-cycle fatigue behavior and surface treatment of a twinning-induced plasticity high-entropy alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 853, 143724.	2.6	8
568	The effect of Si addition on the heterogeneous grain structure and mechanical properties of CrCoNi medium entropy alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 852, 143655.	2.6	10
569	Designing nanoparticles-strengthened high-entropy alloys with simultaneously enhanced strength-ductility synergy at both room and elevated temperatures. Acta Materialia, 2022, 238, 118216.	3.8	37
570	Correlation between microstructural heterogeneity and anisotropy of mechanical properties of laser powder bed fused CoCrFeMnNi high entropy alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 855, 143920.	2.6	7
571	Microstructure evolution and constitutive modeling for mesoscaled tension of pure titanium thin sheet. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 855, 143905.	2.6	1
572	Analysis of strain hardening behavior of a high-Mn TWIP steel using electron microscopy and cyclic stress relaxation. Acta Materialia, 2022, 240, 118309.	3.8	8
573	Role of Strain Rate in Phase Stability and Deformation Mechanism of Non-Equiatomic Fe38-Xmn30co15cr15ni2gdx High-Entropy Alloy. SSRN Electronic Journal, 0, , .	0.4	0
574	Influence of the loading rate of force on the formation of deformation twins in martensitic stainless steel under repetitive loading–unloading process. International Journal of Fatigue, 2023, 166, 107293.	2.8	0
575	Revealing ductile-to-brittle transition mechanism and enhancing the cryogenic ductility of tin (Sn) for cryogenic electronics. , 2022, , .		0
576	Influence of deformation degree at cold drawing on structure-properties relationship of a Fe-Ni-Cr superalloy. Journal of Alloys and Compounds, 2023, 930, 167407.	2.8	4
577	Design metastability in high-entropy alloys by tailoring unstable fault energies. Science Advances, 2022, 8, .	4.7	14
578	Controlling Mechanical Behavior of TWIP Steels by Tuning Texture and Stacking Faults. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2022, 53, 3986-4003.	1.1	4
579	In-situ study of tensile deformation behaviour of medium Mn TWIP/TRIP steel using synchrotron radiation. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 857, 144013.	2.6	7

ARTICLE IF CITATIONS Role of strain rate in phase stability and deformation mechanism of non-equiatomic 580 1.9 3 Fe38-xMn30Co15Cr15Ni2Gdx high-entropy alloy. Materials Characterization, 2022, 194, 112356. Excellent tensile properties and deformation mechanisms in a FeCoNi-based medium entropy alloy with dual-heterogeneous structures. Journal of Applied Physics, 2022, 132, . 581 1.1 Interstitial-driven local chemical order enables ultrastrong face-centered cubic multicomponent 582 3.8 17 alloys. Acta Materialia, 2023, 243, 118495. Work hardening behavior and substructure evolution of a low-density steel during compressive deformation. Journal of Materials Research and Technology, 2022, 21, 4200-4211. Microstructure and mechanical properties of a gas-tungsten-arc-welded Fe-24Mn-3.5Cr-0.4C high manganese steel pipe using a Fe-22Mn-2.34Ni-0.38C welding wire. Materials Characterization, 2022, 194, 584 1.9 6 112469. Insight into microstructure, microhardness and corrosion performance of 2205 duplex stainless steel: Effect of plastic pre-strain. Corrosion Science, 2023, 210, 110847. 3.0 Another reason for plasticity enhancement of cold-deformed aluminium alloy induced by electric 586 0.9 1 pulse treatment. Materials Today Communications, 2023, 34, 104969. Experimental investigation of dislocation-grain boundary interaction in coarse-grained high†manganese steels using quasi in situ electron channelling contrast imaging. Materials Characterization, 2023, 195, 112545. 1.9 10 γ′′ Phase transformation, precipitation hardening, hetero-deformation induced hardening and 588 3.3 5 deformation mechanisms in a Nb-alloyed medium-entropy alloy. Materials and Design, 2023, 225, 111477. Hot deformation behavior of a cryogenic high manganese steel based on the microstructure and 589 1.9 texture evolution. Materials Characterization, 2023, 195, 112554. Effects of chemical segregation on ductility-anisotropy in high strength Fe-Mn-Al-C lightweight 590 3.8 5 austenitic steels. Acta Materialia, 2023, 245, 118589. In-situ TEM investigation of deformation mechanisms of twinning-induced plasticity steel. Materials Characterization, 2023, 196, 112583. Lamellar-structured low-cost FeMn0.7Ni0.6Cr0.4Al0.3 high entropy alloy with excellent tensile 592 1.6 4 properties. Vacuum, 2023, 209, 111767. Kinematical barriers enhanced dislocation strengthening mechanisms in cold-worked austenitic 2.6 steels. Scripta Materialia, 2023, 226, 115237. Effect of aging temperature on microstructure and mechanical properties of laser melted and hot 594 2.8 5 isostatically pressed (CoCrFeMnNi)96(TiAl)4 alloy. Journal of Alloys and Compounds, 2023, 936, 168317. Ballistic impact response of Fe40Mn20Cr20Ni20 high-entropy alloys. Journal of Applied Physics, 2022, Hydrogen-prompted heterogeneous development of dislocation structure in Ni. Acta Materialia, 2023, 596 3.8 4 246, 118660. Effect of Grain Size on the Plastic Deformation Behaviors of a Fe-18Mn-1.3Al-0.6C Austenitic Steel. 597 1.3 Materials, 2022, 15, 8717.

#	Article	IF	CITATIONS
598	The effect of niobium element on the tensile behavior in GH3535 alloy at room temperature and 750°C. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 861, 144401.	2.6	9
599	Effects of strain rate on tensile ductility in Cu-added stable Fe–Cr–Ni-based austenitic stainless steels. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 861, 144415.	2.6	3
600	Enhanced mechanical performance of gradient-structured CoCrFeMnNi high-entropy alloys induced by industrial shot-blasting. Rare Metals, 2023, 42, 982-993.	3.6	2
601	Phase Stability and Deformation Modes in Functionally Graded Metastable Austenitic Stainless Steel; A Novel Approach to Evaluate the Role of Nitrogen. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2023, 54, 590-604.	1.1	2
602	Physical metallurgy of medium-Mn advanced high-strength steels. International Materials Reviews, 2023, 68, 786-824.	9.4	10
603	Revealing the grain size-dependent twinning variants and the associated strengthening mechanisms in a carbon-free austenitic steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2023, 864, 144577.	2.6	2
604	Hydrogen induced microstructure, mechanical properties and cracking evolution in a novel CoCrNiMo medium-entropy alloy. Journal of Alloys and Compounds, 2023, 939, 168790.	2.8	4
605	Dislocation behavior in initial stage of plastic deformation for CoCrNi medium entropy alloy. Journal of Alloys and Compounds, 2023, 943, 169057.	2.8	3
606	Dependence of Charpy Impact Properties of Fe-30Mn-0.05C Steel on Microstructure. Crystals, 2023, 13, 353.	1.0	2
607	The excellent strength and ductility matching of directly warm-rolled V-alloyed medium manganese steel by stacking fault networks. Materials and Design, 2023, 227, 111719.	3.3	8
608	Unusual grain-size effects on tensile deformation behavior of twinning-induced plasticity steel with low Mn content. Journal of Materials Research and Technology, 2023, 24, 586-594.	2.6	1
609	Procedures for microstructurally conditioning an Fe-22Mn-0.6C-1.5Al TWIP steel for optimal mechanical behaviour. Materials Characterization, 2023, 199, 112790.	1.9	3
610	Effects of laser powder bed fusion process parameters on microstructure and hydrogen embrittlement of high-entropy alloy. Journal of Materials Science and Technology, 2023, 155, 211-226.	5.6	3
611	Excellent mechanical properties of CoNiCr-based MP159 multicomponent alloys at ambient and cryogenic temperatures. Intermetallics, 2023, 155, 107836.	1.8	2
612	Effect of ECAP processing temperature on an austenitic TWIP steel's microstructure, texture and mechanical properties. Journal of Materials Research and Technology, 2023, 24, 1757-1775.	2.6	6
613	Micromechanical origin for the wide range of strength-ductility trade-off in metastable high entropy alloysâ€. Scripta Materialia, 2023, 231, 115439.	2.6	5
614	Tensile deformation of NiTi shape memory alloy thermally loaded under applied stress. Materials and Design, 2023, 226, 111638.	3.3	9
615	Limitations of meta-atom potential for analyzing dislocation core structure in TWIP steel. Mechanics of Materials, 2023, 178, 104563.	1.7	1

#	Article	IF	CITATIONS
616	Enhanced strengthening effect via nano-twinning in cryo-rolled FeCoCrNiMo0.2 high-entropy alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2023, 866, 144676.	2.6	8
617	Achievement of grain boundary engineering by transforming residual stress in selective laser-melted Inconel 718 superalloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2023, 866, 144683.	2.6	2
618	Enhanced mechanical properties of a Ni–W–Al alloy in the as-cast state. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2023, 866, 144686.	2.6	1
619	The effect of Si addition on the structure and mechanical properties of equiatomic CoCrFeMnNi high entropy alloy by experiment and simulation. Materialia, 2023, 27, 101707.	1.3	5
620	Microstructure and Mechanical Properties of Biomedical Ti-Zr-Nb-Ta-Sn High-Entropy Alloys. Metals, 2023, 13, 353.	1.0	4
621	Ductilizing Al-Mn strips via gradient texture. Materials Research Letters, 2023, 11, 430-438.	4.1	6
622	Gradient Microstructure and Texture Formation in a Metastable Austenitic Stainless Steel during Cold Rotary Swaging. Materials, 2023, 16, 1706.	1.3	8
623	Effect of the Dislocation Substructure Parameters of Hadfield Steel on Its Strain Hardening. Materials, 2023, 16, 1717.	1.3	0
624	Effect of Surface Impacting Parameters on Wear Resistance of High Manganese Steel. Coatings, 2023, 13, 539.	1.2	1
625	Outstanding strength-ductility synergy in Inconel 718 superalloy via laser powder bed fusion and thermomechanical treatment. Additive Manufacturing, 2023, 67, 103491.	1.7	3
626	Enhanced Mechanical and Corrosion Properties via Annealing Treatment on the Hot-Rolled Ti-Zr-Mo Alloy. Materials, 2023, 16, 2597.	1.3	1
627	On the faulting and twinning mediated strengthening and plasticity in a γʹ strengthened CoNi-based superalloy at room temperature. Acta Materialia, 2023, 252, 118928.	3.8	6
628	Microstructural evolution and tensile property of gradient microstructure CoCrFeMnNi high-entropy alloy induced by pre-torsion. Journal of Alloys and Compounds, 2023, 955, 170053.	2.8	2
629	Hydrogen-induced hardening of a high-manganese twinning induced plasticity steel. Materialia, 2023, 28, 101776.	1.3	4
680	High Strength Steels. Topics in Mining, Metallurgy and Materials Engineering, 2024, , 31-60.	1.4	0