Recent developments of molybdenum and tungsten sul catalysts

Energy and Environmental Science 4, 3878 DOI: 10.1039/c1ee01970h

Citation Report

#	Article	IF	CITATIONS
1	Sites for High Efficient Photocatalytic Hydrogen Evolution on a Limited-Layered MoS ₂ Cocatalyst Confined on Graphene Sheets―The Role of Graphene. Journal of Physical Chemistry C, 2012, 116, 25415-25424.	1.5	323
2	Photosystem II: The Water-Splitting Enzyme of Photosynthesis. Cold Spring Harbor Symposia on Quantitative Biology, 2012, 77, 295-307.	2.0	39
3	Implementing molecular catalysts for hydrogen production in proton exchange membrane water electrolysers. Coordination Chemistry Reviews, 2012, 256, 2435-2444.	9.5	51
4	Fe, Co, and Ni ions promote the catalytic activity of amorphous molybdenum sulfide films for hydrogen evolution. Chemical Science, 2012, 3, 2515.	3.7	861
6	Molybdenum Boride and Carbide Catalyze Hydrogen Evolution in both Acidic and Basic Solutions. Angewandte Chemie - International Edition, 2012, 51, 12703-12706.	7.2	1,094
7	Na _{1.515} EuGeS ₄ , A Three-Dimensional Crystalline Assembly of Empty Nanotubules Constructed with Europium(II/III) Mixed Valence Ions. Inorganic Chemistry, 2012, 51, 11779-11786.	1.9	17
8	Molybdenum sulfides—efficient and viable materials for electro - and photoelectrocatalytic hydrogen evolution. Energy and Environmental Science, 2012, 5, 5577.	15.6	1,225
9	A Janus cobalt-based catalytic material for electro-splitting of water. Nature Materials, 2012, 11, 802-807.	13.3	784
10	Molecular systems for light driven hydrogen production. Dalton Transactions, 2012, 41, 13004.	1.6	346
11	Amorphous Molybdenum Sulfide Catalysts for Electrochemical Hydrogen Production: Insights into the Origin of their Catalytic Activity. ACS Catalysis, 2012, 2, 1916-1923.	5.5	1,007
12	WS2 nanosheets as a highly efficient electrocatalyst for hydrogen evolution reaction. Applied Catalysis B: Environmental, 2012, 125, 59-66.	10.8	295
14	Hydrogen Production Using a Molybdenum Sulfide Catalyst on a Titaniumâ€Protected n ⁺ pâ€6ilicon Photocathode. Angewandte Chemie - International Edition, 2012, 51, 9128-9131.	7.2	289
15	Novel Assembly of an MoS ₂ Electrocatalyst onto a Silicon Nanowire Array Electrode to Construct a Photocathode Composed of Elements Abundant on the Earth for Hydrogen Generation. Chemistry - A European Journal, 2012, 18, 13994-13999.	1.7	109
16	Hybrid photocatalytic H2 evolution systems containing xanthene dyes and inorganic nickel based catalysts. International Journal of Hydrogen Energy, 2012, 37, 17899-17909.	3.8	47
17	Comparative study of IVB–VIB transition metal compound electrocatalysts for the hydrogen evolution reaction. Applied Catalysis B: Environmental, 2012, 126, 225-230.	10.8	138
18	Copper molybdenum sulfide: a new efficient electrocatalyst for hydrogen production from water. Energy and Environmental Science, 2012, 5, 8912.	15.6	314
19	Hydrogen evolution catalyzed by MoS3 and MoS2 particles. Energy and Environmental Science, 2012, 5, 6136.	15.6	675
20	Syntheses, characterizations and properties of [Mo2O2S2]-based oxothiomolybdenum wheels incorporating bisphosphonate ligands. Dalton Transactions, 2012, 41, 9955.	1.6	23

			0
#	ARTICLE	IF	CITATIONS
21	Electrodeposited Ni dendrites with high activity and durability for hydrogen evolution reaction in alkaline water electrolysis. Journal of Materials Chemistry, 2012, 22, 15153.	6.7	159
22	Recent advances in hybrid photocatalysts for solar fuel production. Energy and Environmental Science, 2012, 5, 5902.	15.6	563
23	Novel cobalt/nickel–tungsten-sulfide catalysts for electrocatalytic hydrogen generation from water. Energy and Environmental Science, 2013, 6, 2452.	15.6	182
24	Distorted MoS2 nanostructures: An efficient catalyst for the electrochemical hydrogen evolution reaction. Electrochemistry Communications, 2013, 34, 219-222.	2.3	109
25	Facile synthesis of low crystalline MoS2 nanosheet-coated CNTs for enhanced hydrogen evolution reaction. Nanoscale, 2013, 5, 7768.	2.8	426
26	Growth and Activation of an Amorphous Molybdenum Sulfide Hydrogen Evolving Catalyst. ACS Catalysis, 2013, 3, 2002-2011.	5.5	248
27	Efficient solar water oxidation using photovoltaic devices functionalized with earth-abundant oxygen evolving catalysts. Physical Chemistry Chemical Physics, 2013, 15, 13083.	1.3	30
28	Room Temperature Electrodeposition of Molybdenum Sulfide for Catalytic and Photoluminescence Applications. ACS Nano, 2013, 7, 8199-8205.	7.3	92
29	Revealing and accelerating slow electron transport in amorphous molybdenum sulphide particles for hydrogen evolution reaction. Chemical Communications, 2013, 49, 8985.	2.2	279
30	Recent developments in transition metal carbides and nitrides as hydrogen evolution electrocatalysts. Chemical Communications, 2013, 49, 8896.	2.2	1,035
31	A H2-evolving photocathode based on direct sensitization of MoS3 with an organic photovoltaic cell. Energy and Environmental Science, 2013, 6, 2706.	15.6	83
33	Salts of C ₆₀ (OH) ₈ Electrodeposited onto a Glassy Carbon Electrode: Surprising Catalytic Performance in the Hydrogen Evolution Reaction. Angewandte Chemie - International Edition, 2013, 52, 10867-10870.	7.2	98
34	High performance catalyst for electrochemical hydrogen evolution reaction based on SiO2/WO3â^' nanofacets. International Journal of Hydrogen Energy, 2013, 38, 9732-9740.	3.8	40
35	First-row transition metal dichalcogenide catalysts for hydrogen evolution reaction. Energy and Environmental Science, 2013, 6, 3553.	15.6	946
36	MoS ₂ Nanosheets: A Designed Structure with High Active Site Density for the Hydrogen Evolution Reaction. ACS Catalysis, 2013, 3, 2101-2107.	5.5	340
37	Graphene Analogues of Inorganic Layered Materials. Angewandte Chemie - International Edition, 2013, 52, 13162-13185.	7.2	441
38	Ammonium Tetrathiomolybdate: A Versatile Catalyst for Hydrogen Evolution Reaction from Water under Ambient and Hostile Conditions. Inorganic Chemistry, 2013, 52, 14168-14177.	1.9	26
39	Influence of the Ligand Alkyl Chain Length on the Solubility, Aqueous Speciation, and Kinetics of Substitution Reactions of Water-Soluble M3S4 (M = Mo, W) Clusters Bearing Hydroxyalkyl Diphosphines. Inorganic Chemistry, 2013, 52, 8713-8722.	1.9	18

#	Article	IF	CITATIONS
40	Conducting MoS ₂ Nanosheets as Catalysts for Hydrogen Evolution Reaction. Nano Letters, 2013, 13, 6222-6227.	4.5	1,948
41	Controllable Disorder Engineering in Oxygen-Incorporated MoS ₂ Ultrathin Nanosheets for Efficient Hydrogen Evolution. Journal of the American Chemical Society, 2013, 135, 17881-17888.	6.6	2,107
42	Selective Growth of MoS ₂ for Proton Exchange Membranes with Extremely High Selectivity. ACS Applied Materials & Interfaces, 2013, 5, 13042-13049.	4.0	65
43	Electrodeposited Cobalt-Sulfide Catalyst for Electrochemical and Photoelectrochemical Hydrogen Generation from Water. Journal of the American Chemical Society, 2013, 135, 17699-17702.	6.6	540
44	Electrochemical tuning of vertically aligned MoS ₂ nanofilms and its application in improving hydrogen evolution reaction. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 19701-19706.	3.3	894
45	Comparative study on MoS2 and WS2 for electrocatalytic water splitting. International Journal of Hydrogen Energy, 2013, 38, 12302-12309.	3.8	193
46	In situ fabrication of porous MoS2 thin-films as high-performance catalysts for electrochemical hydrogen evolution. Chemical Communications, 2013, 49, 7516.	2.2	120
47	Defectâ€Rich MoS ₂ Ultrathin Nanosheets with Additional Active Edge Sites for Enhanced Electrocatalytic Hydrogen Evolution. Advanced Materials, 2013, 25, 5807-5813.	11.1	2,705
48	Fabrication of Luminescent Monolayered Tungsten Dichalcogenides Quantum Dots with Giant Spin-Valley Coupling. ACS Nano, 2013, 7, 8214-8223.	7.3	181
49	Sizeâ€Dependent Enhancement of Electrocatalytic Oxygenâ€Reduction and Hydrogenâ€Evolution Performance of MoS ₂ Particles. Chemistry - A European Journal, 2013, 19, 11939-11948.	1.7	226
50	Photoinduced Charge Transfer in Porphyrin–Cobaloxime and Corrole–Cobaloxime Hybrids. Journal of Physical Chemistry C, 2013, 117, 1647-1655.	1.5	62
51	Graphene-Like Two-Dimensional Materials. Chemical Reviews, 2013, 113, 3766-3798.	23.0	3,761
52	Nanostructured metal chalcogenides: synthesis, modification, and applications in energy conversion and storage devices. Chemical Society Reviews, 2013, 42, 2986.	18.7	1,393
53	In situ intercalative polymerization of pyrrole in graphene analogue of MoS2 as advanced electrode material in supercapacitor. Journal of Power Sources, 2013, 229, 72-78.	4.0	404
54	Facile synthesis of MoS3/carbon nanotube nanocomposite with high catalytic activity toward hydrogen evolution reaction. Applied Catalysis B: Environmental, 2013, 134-135, 75-82.	10.8	124
55	Enhanced electrocatalytic activity for hydrogen evolution reaction from self-assembled monodispersed molybdenum sulfidenanoparticles on an Au electrode. Energy and Environmental Science, 2013, 6, 625-633.	15.6	364
56	Layered Nanojunctions for Hydrogenâ€Evolution Catalysis. Angewandte Chemie - International Edition, 2013, 52, 3621-3625.	7.2	793
57	Synthesis of MoS ₂ and MoSe ₂ Films with Vertically Aligned Layers. Nano Letters, 2013, 13, 1341-1347.	4.5	2,036

#	Article	IF	CITATIONS
58	The influence of carbon content on the structure and properties of MoS _x C _y photocatalysts for light-driven hydrogen generation. Dalton Transactions, 2013, 42, 1287-1292.	1.6	22
59	Enhanced Electrocatalytic Properties of Transition-Metal Dichalcogenides Sheets by Spontaneous Gold Nanoparticle Decoration. Journal of Physical Chemistry Letters, 2013, 4, 1227-1232.	2.1	315
60	Biomass-derived electrocatalytic composites for hydrogen evolution. Energy and Environmental Science, 2013, 6, 1818.	15.6	343
61	Nanostructured Nickel Phosphide as an Electrocatalyst for the Hydrogen Evolution Reaction. Journal of the American Chemical Society, 2013, 135, 9267-9270.	6.6	2,624
62	Highly active and durable nanostructured molybdenum carbide electrocatalysts for hydrogen production. Energy and Environmental Science, 2013, 6, 943.	15.6	874
63	MoS ₂ Formed on Mesoporous Graphene as a Highly Active Catalyst for Hydrogen Evolution. Advanced Functional Materials, 2013, 23, 5326-5333.	7.8	664
64	Nano-WS2 embedded PES membrane with improved fouling and permselectivity. Journal of Colloid and Interface Science, 2013, 396, 120-128.	5.0	52
65	MoSe ₂ and WSe ₂ Nanofilms with Vertically Aligned Molecular Layers on Curved and Rough Surfaces. Nano Letters, 2013, 13, 3426-3433.	4.5	653
66	High quantity and quality few-layers transition metal disulfide nanosheets from wet-milling exfoliation. RSC Advances, 2013, 3, 13193.	1.7	76
67	Synthesis of MoS ₂ and MoO ₂ for their applications in H ₂ generation and lithium ion batteries: a review. Science and Technology of Advanced Materials, 2013, 14, 043501.	2.8	112
68	Correlating Microstructure and Activity for Polysulfide Reduction and Oxidation at WS2Electrocatalysts. Journal of the Electrochemical Society, 2013, 160, A757-A768.	1.3	23
72	Photoelectrochemical properties of nanocomposites MoS <inf>2</inf> -TiO <inf>2</inf> prepared by high energy ball milling. , 2014, , .		0
74	Using solution- and solid-state S K-edge X-ray absorption spectroscopy with density functional theory to evaluate M–S bonding for MS ₄ ^{2â^} (M = Cr, Mo, W) dianions. Dalton Transactions, 2014, 43, 17283-17295.	1.6	15
75	Operando Characterization of an Amorphous Molybdenum Sulfide Nanoparticle Catalyst during the Hydrogen Evolution Reaction. Journal of Physical Chemistry C, 2014, 118, 29252-29259.	1.5	87
77	Nanoporous Metal Enhanced Catalytic Activities of Amorphous Molybdenum Sulfide for Highâ€Efficiency Hydrogen Production. Advanced Materials, 2014, 26, 3100-3104.	11.1	204
78	Design of Two-Dimensional, Ultrathin MoS ₂ Nanoplates Fabricated Within One-Dimensional Carbon Nanofibers With Thermosensitive Morphology: High-Performance Electrocatalysts For The Hydrogen Evolution Reaction. ACS Applied Materials & Interfaces, 2014, 6, 22126-22137.	4.0	102
79	Outsideâ€In Recrystallization of ZnS–Cu _{1.8} S Hollow Spheres with Interdispersed Lattices for Enhanced Visible Light Solar Hydrogen Generation. Chemistry - A European Journal, 2014, 20, 11505-11510.	1.7	25
80	Will Solar-Driven Water-Splitting Devices See the Light of Day?. Chemistry of Materials, 2014, 26, 407-414.	3.2	654

#	Article	IF	CITATIONS
81	MoS2 as non-noble-metal co-catalyst for photocatalytic hydrogen evolution over hexagonal ZnIn2S4 under visible light irradiations. Applied Catalysis B: Environmental, 2014, 144, 521-527.	10.8	263
82	Highly Active Electrocatalysis of the Hydrogen Evolution Reaction by Cobalt Phosphide Nanoparticles. Angewandte Chemie - International Edition, 2014, 53, 5427-5430.	7.2	1,033
83	Edge-exposed MoS ₂ nano-assembled structures as efficient electrocatalysts for hydrogen evolution reaction. Nanoscale, 2014, 6, 2131-2136.	2.8	260
84	Au Nanoparticleâ€Modified MoS ₂ Nanosheetâ€Based Photoelectrochemical Cells for Water Splitting. Small, 2014, 10, 3537-3543.	5.2	265
85	MoS2 nanoflower-decorated reduced graphene oxide paper for high-performance hydrogen evolution reaction. Nanoscale, 2014, 6, 5624.	2.8	320
87	Hydrogen evolution by a metal-free electrocatalyst. Nature Communications, 2014, 5, 3783.	5.8	1,851
88	Photosystem II: Its function, structure, and implications for artificial photosynthesis. Biochemistry (Moscow), 2014, 79, 185-196.	0.7	15
89	Enhancing the electrocatalytic water splitting efficiency for amorphous MoS. International Journal of Hydrogen Energy, 2014, 39, 4788-4793.	3.8	40
90	Ultrahigh Hydrogen Evolution Performance of Underâ€Water "Superaerophobic―MoS ₂ Nanostructured Electrodes. Advanced Materials, 2014, 26, 2683-2687.	11.1	775
93	Carbon Nanotubes Decorated with CoP Nanocrystals: A Highly Active Nonâ€Nobleâ€Metal Nanohybrid Electrocatalyst for Hydrogen Evolution. Angewandte Chemie - International Edition, 2014, 53, 6710-6714.	7.2	939
94	Synergistic Catalytic Effect of MoS ₂ Nanoparticles Supported on Gold Nanoparticle Films for a Highly Efficient Oxygen Reduction Reaction. ChemCatChem, 2014, 6, 1877-1881.	1.8	46
95	Ultrathin WS ₂ Nanoflakes as a Highâ€Performance Electrocatalyst for the Hydrogen Evolution Reaction. Angewandte Chemie - International Edition, 2014, 53, 7860-7863.	7.2	622
96	Investigation of molybdenum carbide nano-rod as an efficient and durable electrocatalyst for hydrogen evolution in acidic and alkaline media. Applied Catalysis B: Environmental, 2014, 154-155, 232-237.	10.8	183
97	Recent Development of Molybdenum Sulfides as Advanced Electrocatalysts for Hydrogen Evolution Reaction. ACS Catalysis, 2014, 4, 1693-1705.	5.5	769
98	Multiple Phases of Molybdenum Carbide as Electrocatalysts for the Hydrogen Evolution Reaction. Angewandte Chemie - International Edition, 2014, 53, 6407-6410.	7.2	685
99	Synthesis of MoS2-carbon composites with different morphologies and their application in hydrogen evolution reaction. International Journal of Hydrogen Energy, 2014, 39, 9638-9650.	3.8	53
100	Molybdenum Sulfide Supported on Crumpled Graphene Balls for Electrocatalytic Hydrogen Production. Advanced Energy Materials, 2014, 4, 1400398.	10.2	101
101	Efficient Photoelectrochemical Hydrogen Generation Using Heterostructures of Si and Chemically Exfoliated Metallic MoS ₂ . Journal of the American Chemical Society, 2014, 136, 8504-8507.	6.6	379

# 102	ARTICLE Hydrogen Evolution from Neutral Water under Aerobic Conditions Catalyzed by Cobalt Microperoxidase-11. Journal of the American Chemical Society, 2014, 136, 4-7.	IF 6.6	Citations 239
103	MoSe ₂ nanosheets and their graphene hybrids: synthesis, characterization and hydrogen evolution reaction studies. Journal of Materials Chemistry A, 2014, 2, 360-364.	5.2	564
104	Recent advances in layered transition metal dichalcogenides for hydrogen evolution reaction. Journal of Materials Chemistry A, 2014, 2, 5979-5985.	5.2	258
105	Earth-abundant hydrogen evolution electrocatalysts. Chemical Science, 2014, 5, 865-878.	3.7	636
106	Unconventional Pore and Defect Generation in Molybdenum Disulfide: Application in Highâ€Rate Lithiumâ€lon Batteries and the Hydrogen Evolution Reaction. ChemSusChem, 2014, 7, 2489-2495.	3.6	82
107	Selfâ€Supported Cu ₃ P Nanowire Arrays as an Integrated Highâ€Performance Threeâ€Dimensional Cathode for Generating Hydrogen from Water. Angewandte Chemie - International Edition, 2014, 53, 9577-9581.	7.2	784
108	Photoelectrochemical Hydrogen Production in Alkaline Solutions Using Cu ₂ O Coated with Earthâ€Abundant Hydrogen Evolution Catalysts. Angewandte Chemie - International Edition, 2015, 54, 664-667.	7.2	134
109	One-step synthesis of cubic pyrite-type CoSe ₂ at low temperature for efficient hydrogen evolution reaction. RSC Advances, 2014, 4, 54344-54348.	1.7	51
110	Closely Interconnected Network of Molybdenum Phosphide Nanoparticles: A Highly Efficient Electrocatalyst for Generating Hydrogen from Water. Advanced Materials, 2014, 26, 5702-5707.	11.1	783
111	Cobalt nanoparticles encapsulated in nitrogen-doped carbon as a bifunctional catalyst for water electrolysis. Journal of Materials Chemistry A, 2014, 2, 20067-20074.	5.2	231
112	NiP ₂ nanosheet arrays supported on carbon cloth: an efficient 3D hydrogen evolution cathode in both acidic and alkaline solutions. Nanoscale, 2014, 6, 13440-13445.	2.8	400
113	A graphene-like MoS ₂ /graphene nanocomposite as a highperformance anode for lithium ion batteries. Journal of Materials Chemistry A, 2014, 2, 13109-13115.	5.2	238
114	Amorphous Molybdenum Sulfides as Hydrogen Evolution Catalysts. Accounts of Chemical Research, 2014, 47, 2671-2681.	7.6	529
115	Catalyzing the Hydrogen Evolution Reaction (HER) with Molybdenum Sulfide Nanomaterials. ACS Catalysis, 2014, 4, 3957-3971.	5.5	1,355
116	CoP as an Acid-Stable Active Electrocatalyst for the Hydrogen-Evolution Reaction: Electrochemical Synthesis, Interfacial Characterization and Performance Evaluation. Journal of Physical Chemistry C, 2014, 118, 29294-29300.	1.5	216
117	Enhanced photocatalytic mechanism for the hybrid g-C ₃ N ₄ /MoS ₂ nanocomposite. Journal of Materials Chemistry A, 2014, 2, 7960-7966.	5.2	347
118	A one-step synthesis of Co–P–B/rGO at room temperature with synergistically enhanced electrocatalytic activity in neutral solution. Journal of Materials Chemistry A, 2014, 2, 18420-18427.	5.2	96
119	Electrodeposited nickel-sulfide films as competent hydrogen evolution catalysts in neutral water. Journal of Materials Chemistry A, 2014, 2, 19407-19414.	5.2	192

#	Article	IF	CITATIONS
120	A 3D hybrid of layered MoS ₂ /nitrogen-doped graphene nanosheet aerogels: an effective catalyst for hydrogen evolution in microbial electrolysis cells. Journal of Materials Chemistry A, 2014, 2, 13795-13800.	5.2	198
121	Three-dimensional amorphous tungsten-doped nickel phosphide microsphere as an efficient electrocatalyst for hydrogen evolution. Journal of Materials Chemistry A, 2014, 2, 18593-18599.	5.2	109
122	Cobalt Sulfide Nanosheet/Graphene/Carbon Nanotube Nanocomposites as Flexible Electrodes for Hydrogen Evolution. Angewandte Chemie - International Edition, 2014, 53, 12594-12599.	7.2	252
123	Tungsten Carbide–Nitride on Graphene Nanoplatelets as a Durable Hydrogen Evolution Electrocatalyst. ChemSusChem, 2014, 7, 2414-2418.	3.6	101
124	Component-Controllable WS _{2(1–<i>x</i>)} Se _{2<i>x</i>} Nanotubes for Efficient Hydrogen Evolution Reaction. ACS Nano, 2014, 8, 8468-8476.	7.3	317
125	CoP nanostructures with different morphologies: synthesis, characterization and a study of their electrocatalytic performance toward the hydrogen evolution reaction. Journal of Materials Chemistry A, 2014, 2, 14634.	5.2	227
126	High-performance hydrogen evolution electrocatalysis by layer-controlled MoS ₂ nanosheets. RSC Advances, 2014, 4, 34733-34738.	1.7	58
127	<i>Operando</i> Synthesis of Macroporous Molybdenum Diselenide Films for Electrocatalysis of the Hydrogen-Evolution Reaction. ACS Catalysis, 2014, 4, 2866-2873.	5.5	122
128	Porous inorganic nanostructures with colloidal dimensions: synthesis and applications in electrochemical energy devices. Chemical Communications, 2014, 50, 2077-2088.	2.2	24
129	Photo-electrocatalytic H 2 evolution on poly(2,2′-bithiophene) at neutral pH. International Journal of Hydrogen Energy, 2014, 39, 18230-18234.	3.8	14
130	Extraordinary attributes of 2-dimensional MoS2 nanosheets. Chemical Physics Letters, 2014, 609, 172-183.	1.2	141
131	Nanostructured hydrotreating catalysts for electrochemical hydrogen evolution. Chemical Society Reviews, 2014, 43, 6555.	18.7	2,037
132	Light-Driven Hydrogen Production from Aqueous Protons using Molybdenum Catalysts. Inorganic Chemistry, 2014, 53, 9860-9869.	1.9	65
133	FeP nanoparticles grown on graphene sheets as highly active non-precious-metal electrocatalysts for hydrogen evolution reaction. Chemical Communications, 2014, 50, 11554-11557.	2.2	187
134	Enabling Silicon for Solar-Fuel Production. Chemical Reviews, 2014, 114, 8662-8719.	23.0	329
135	Earth-abundant inorganic electrocatalysts and their nanostructures for energy conversion applications. Energy and Environmental Science, 2014, 7, 3519-3542.	15.6	1,151
136	Synthesis and Characterization of Molybdenum(0) and Tungsten(0) Complexes of Tetramethylthiourea: Single-Source Precursors for MoS ₂ and WS ₂ . Organometallics, 2014, 33, 5238-5245.	1.1	20
137	MoO2 nanobelts@nitrogen self-doped MoS2 nanosheets as effective electrocatalysts for hydrogen evolution reaction. Journal of Materials Chemistry A, 2014, 2, 11358.	5.2	262

#	Article	IF	CITATIONS
138	Highly active hydrogen evolution catalysis from metallic WS ₂ nanosheets. Energy and Environmental Science, 2014, 7, 2608-2613.	15.6	660
140	Oxygen evolution catalysts on supports with a 3-D ordered array structure and intrinsic proton conductivity for proton exchange membrane steam electrolysis. Energy and Environmental Science, 2014, 7, 820.	15.6	79
141	Highly active and durable non-precious-metal catalysts encapsulated in carbon nanotubes for hydrogen evolution reaction. Energy and Environmental Science, 2014, 7, 1919-1923.	15.6	845
142	Electrocatalysis of the hydrogen-evolution reaction by electrodeposited amorphous cobalt selenide films. Journal of Materials Chemistry A, 2014, 2, 13835-13839.	5.2	133
143	Space-Confined Growth of MoS ₂ Nanosheets within Graphite: The Layered Hybrid of MoS ₂ and Graphene as an Active Catalyst for Hydrogen Evolution Reaction. Chemistry of Materials, 2014, 26, 2344-2353.	3.2	634
144	Molybdenum phosphide as an efficient electrocatalyst for the hydrogen evolution reaction. Energy and Environmental Science, 2014, 7, 2624-2629.	15.6	1,164
145	Three-dimensional interconnected network of nanoporous CoP nanowires as an efficient hydrogen evolution cathode. Physical Chemistry Chemical Physics, 2014, 16, 16909.	1.3	90
146	Low pH Electrolytic Water Splitting Using Earth-Abundant Metastable Catalysts That Self-Assemble in Situ. Journal of the American Chemical Society, 2014, 136, 3304-3311.	6.6	147
148	Molybdenum disulfide/pyrolytic carbon hybrid electrodes for scalable hydrogen evolution. Nanoscale, 2014, 6, 8185.	2.8	48
149	Catalytic Hydrogen Evolution by Tungsten Disulfide at Liquid–Liquid Interfaces. ChemCatChem, 2014, 6, 2832-2835.	1.8	28
150	Ni ₂ P nanoparticle films supported on a Ti plate as an efficient hydrogen evolution cathode. Nanoscale, 2014, 6, 11031-11034.	2.8	277
151	Easily-prepared dinickel phosphide (Ni2P) nanoparticles as an efficient and robust electrocatalyst for hydrogen evolution. Physical Chemistry Chemical Physics, 2014, 16, 5917.	1.3	397
152	Heterostructural bilayers of graphene and molybdenum disulfide: Configuration types, band opening and enhanced light response. Superlattices and Microstructures, 2014, 68, 56-65.	1.4	7
153	Hydrothermal synthesis of MoS2 nanoflowers as highly efficient hydrogen evolution reaction catalysts. Journal of Power Sources, 2014, 264, 229-234.	4.0	271
154	Equiatomic ternary chalcogenide: PdPS and its reduced graphene oxide composite for efficient electrocatalytic hydrogen evolution. Chemical Communications, 2014, 50, 7359-7362.	2.2	74
155	Electrochemically Fabricated Polypyrrole and MoS _{<i>x</i>} Copolymer Films as a Highly Active Hydrogen Evolution Electrocatalyst. Advanced Materials, 2014, 26, 3761-3766.	11.1	186
156	Molybdenum Sulfide/N-Doped CNT Forest Hybrid Catalysts for High-Performance Hydrogen Evolution Reaction. Nano Letters, 2014, 14, 1228-1233.	4.5	634
157	Incorporation of tantalum ions enhances the electrocatalytic activity of hexagonal WO3 nanowires for hydrogen evolution reaction. Electrochimica Acta, 2014, 134, 201-208.	2.6	36

#	Article	IF	CITATIONS
158	Charge-Transfer Induced High Efficient Hydrogen Evolution of MoS2/graphene Cocatalyst. Scientific Reports, 2015, 5, 18730.	1.6	105
161	Synthesis and Enhanced Electrochemical Catalytic Performance of Monolayer WS _{2(1–<i>x</i>)} Se _{2<i>x</i>} with a Tunable Band Gap. Advanced Materials, 2015, 27, 4732-4738.	11.1	214
162	Hierarchical Transitionâ€Metal Dichalcogenide Nanosheets for Enhanced Electrocatalytic Hydrogen Evolution. Advanced Materials, 2015, 27, 7426-7431.	11.1	123
163	Defectâ€Rich CoP/Nitrogenâ€Doped Carbon Composites Derived from a Metal–Organic Framework: Highâ€Performance Electrocatalysts for the Hydrogen Evolution Reaction. ChemCatChem, 2015, 7, 1920-1925.	1.8	88
164	A Review of Phosphideâ€Based Materials for Electrocatalytic Hydrogen Evolution. Advanced Energy Materials, 2015, 5, 1500985.	10.2	707
165	Hydrophilic Nitrogen and Sulfur Coâ€doped Molybdenum Carbide Nanosheets for Electrochemical Hydrogen Evolution. Small, 2015, 11, 6278-6284.	5.2	168
166	Nobleâ€Metalâ€Free Molybdenum Disulfide Cocatalyst for Photocatalytic Hydrogen Production. ChemSusChem, 2015, 8, 4113-4127.	3.6	148
167	One‣tep Synthesis of Self‣upported Nickel Phosphide Nanosheet Array Cathodes for Efficient Electrocatalytic Hydrogen Generation. Angewandte Chemie - International Edition, 2015, 54, 8188-8192.	7.2	494
168	Structural Engineering of Electrocatalysts for the Hydrogen Evolution Reaction: Order or Disorder?. ChemCatChem, 2015, 7, 2568-2580.	1.8	144
169	One‣tep Synthesis of Self‣upported Nickel Phosphide Nanosheet Array Cathodes for Efficient Electrocatalytic Hydrogen Generation. Angewandte Chemie, 2015, 127, 8306-8310.	1.6	86
170	Dimeric [Mo ₂ S ₁₂] ^{2â^'} Cluster: A Molecular Analogue of MoS ₂ Edges for Superior Hydrogenâ€Evolution Electrocatalysis. Angewandte Chemie - International Edition, 2015, 54, 15181-15185.	7.2	160
171	Effect of Polymer Addition on the Structure and Hydrogen Evolution Reaction Property of Nanoflower-Like Molybdenum Disulfide. Metals, 2015, 5, 1829-1844.	1.0	39
172	Tungsten-based porous thin-films for electrocatalytic hydrogen generation. Journal of Materials Chemistry A, 2015, 3, 5798-5804.	5.2	43
173	In Situ Transformation of Hydrogen-Evolving CoP Nanoparticles: Toward Efficient Oxygen Evolution Catalysts Bearing Dispersed Morphologies with Co-oxo/hydroxo Molecular Units. ACS Catalysis, 2015, 5, 4066-4074.	5.5	420
174	Triggering the electrocatalytic hydrogen evolution activity of the inert two-dimensional MoS ₂ surface via single-atom metal doping. Energy and Environmental Science, 2015, 8, 1594-1601.	15.6	1,109
175	Exploration and optimisation of poly(2,2′-bithiophene) as a stable photo-electrocatalyst for hydrogen production. Journal of Materials Chemistry A, 2015, 3, 11358-11366.	5.2	25
176	Metallic WO ₂ –Carbon Mesoporous Nanowires as Highly Efficient Electrocatalysts for Hydrogen Evolution Reaction. Journal of the American Chemical Society, 2015, 137, 6983-6986.	6.6	470
177	Rugae-like FeP nanocrystal assembly on a carbon cloth: an exceptionally efficient and stable cathode for hydrogen evolution. Nanoscale, 2015, 7, 10974-10981.	2.8	133

#	Article	IF	CITATIONS
178	Oxygen-incorporated MoS2 ultrathin nanosheets grown on graphene for efficient electrochemical hydrogen evolution. Journal of Power Sources, 2015, 291, 195-200.	4.0	133
179	Multidisciplinary approaches to solar hydrogen. Interface Focus, 2015, 5, 20140091.	1.5	24
180	Oxygen-tolerant proton reduction catalysis: much O ₂ about nothing?. Energy and Environmental Science, 2015, 8, 2283-2295.	15.6	72
181	Recent advances in heterogeneous electrocatalysts for the hydrogen evolution reaction. Journal of Materials Chemistry A, 2015, 3, 14942-14962.	5.2	1,061
182	Onsite Substitution Synthesis of Ultrathin Ni Nanofilms Loading Ultrafine Pt Nanoparticles for Hydrogen Evolution. ACS Applied Materials & Interfaces, 2015, 7, 26101-26107.	4.0	32
183	Monolayer MoS ₂ quantum dots as catalysts for efficient hydrogen evolution. RSC Advances, 2015, 5, 97696-97701.	1.7	71
184	Ultrafine CoP Nanoparticles Supported on Carbon Nanotubes as Highly Active Electrocatalyst for Both Oxygen and Hydrogen Evolution in Basic Media. ACS Applied Materials & Interfaces, 2015, 7, 28412-28419.	4.0	187
185	Amorphous MoS _x Cl _y electrocatalyst supported by vertical graphene for efficient electrochemical and photoelectrochemical hydrogen generation. Energy and Environmental Science, 2015, 8, 862-868.	15.6	183
186	Porous C ₃ N ₄ Nanolayers@N-Graphene Films as Catalyst Electrodes for Highly Efficient Hydrogen Evolution. ACS Nano, 2015, 9, 931-940.	7.3	655
187	Tungsten diphosphide nanorods as an efficient catalyst for electrochemical hydrogen evolution. Journal of Power Sources, 2015, 278, 540-545.	4.0	82
188	Integration of organometallic complexes with semiconductors and other nanomaterials for photocatalytic H2 production. Coordination Chemistry Reviews, 2015, 287, 1-14.	9.5	140
189	Evidence from <i>in Situ</i> X-ray Absorption Spectroscopy for the Involvement of Terminal Disulfide in the Reduction of Protons by an Amorphous Molybdenum Sulfide Electrocatalyst. Journal of the American Chemical Society, 2015, 137, 314-321.	6.6	228
190	One-pot synthesis of diiron phosphide/nitrogen-doped graphene nanocomposite for effective hydrogen generation. Nano Energy, 2015, 12, 666-674.	8.2	93
191	Twoâ€Dimensional Architecture at Nanojunctions for Photocatalytic Hydrogen Generation. ChemCatChem, 2015, 7, 904-906.	1.8	12
192	CoSe ₂ Nanowires Array as a 3D Electrode for Highly Efficient Electrochemical Hydrogen Evolution. ACS Applied Materials & Interfaces, 2015, 7, 3877-3881.	4.0	174
193	Nanoarray based "superaerophobic―surfaces for gas evolution reaction electrodes. Materials Horizons, 2015, 2, 294-298.	6.4	146
194	Novel Molybdenum Carbide–Tungsten Carbide Composite Nanowires and Their Electrochemical Activation for Efficient and Stable Hydrogen Evolution. Advanced Functional Materials, 2015, 25, 1520-1526.	7.8	325
195	Structure dependent active sites of Ni _x S _y as electrocatalysts for hydrogen evolution reaction. Nanoscale, 2015, 7, 5157-5163.	2.8	121

#	Article	IF	CITATIONS
196	Metal–organic framework-derived nickel phosphides as efficient electrocatalysts toward sustainable hydrogen generation from water splitting. RSC Advances, 2015, 5, 10290-10295.	1.7	117
197	Oneâ€Pot, Facile, and Versatile Synthesis of Monolayer MoS ₂ /WS ₂ Quantum Dots as Bioimaging Probes and Efficient Electrocatalysts for Hydrogen Evolution Reaction. Advanced Functional Materials, 2015, 25, 1127-1136.	7.8	738
198	Polymorphic CoSe ₂ with Mixed Orthorhombic and Cubic Phases for Highly Efficient Hydrogen Evolution Reaction. ACS Applied Materials & Interfaces, 2015, 7, 1772-1779.	4.0	249
199	Tuning the charge transfer route by p–n junction catalysts embedded with CdS nanorods for simultaneous efficient hydrogen and oxygen evolution. Journal of Materials Chemistry A, 2015, 3, 4803-4810.	5.2	87
200	An efficient molybdenum disulfide/cobalt diselenide hybrid catalyst for electrochemical hydrogen generation. Nature Communications, 2015, 6, 5982.	5.8	897
201	Enhanced electrocatalytic activity of MoP microparticles for hydrogen evolution by grinding and electrochemical activation. Journal of Materials Chemistry A, 2015, 3, 4368-4373.	5.2	100
202	MoS2-wrapped silicon nanowires for photoelectrochemical water reduction. Nano Research, 2015, 8, 281-287.	5.8	87
203	A strategy to synergistically increase the number of active edge sites and the conductivity of MoS2 nanosheets for hydrogen evolution. Nanoscale, 2015, 7, 8731-8738.	2.8	116
204	Electroless Ni–W–Cr–P alloy coating with improved electrocatalytic hydrogen evolution performance. Surface Engineering, 2015, 31, 226-231.	1.1	3
205	Efficient hydrogen/oxygen evolution and photocatalytic dye degradation and reduction of aqueous Cr(<scp>vi</scp>) by surfactant free hydrophilic Cu ₂ ZnSnS ₄ nanoparticles. Journal of Materials Chemistry A, 2015, 3, 8098-8106.	5.2	134
206	Synthesizing Nanoparticles of Co-P-Se compounds as Electrocatalysts for the Hydrogen Evolution Reaction. Electrochimica Acta, 2015, 165, 206-210.	2.6	54
207	Room temperature synthesis of an amorphous MoS ₂ based composite stabilized by N-donor ligands and its light-driven photocatalytic hydrogen production. RSC Advances, 2015, 5, 67742-67751.	1.7	14
208	Water-exfoliated MoS2 catalyst with enhanced photoelectrochemical activities. Catalysis Communications, 2015, 70, 53-57.	1.6	14
209	A vertical-oriented WS ₂ nanosheet sensitized by graphene: an advanced electrocatalyst for hydrogen evolution reaction. Nanoscale, 2015, 7, 14760-14765.	2.8	88
210	Nickel phosphide nanoparticles-nitrogen-doped graphene hybrid as an efficient catalyst for enhanced hydrogen evolution activity. Journal of Power Sources, 2015, 297, 45-52.	4.0	155
211	Origin of hydrogen evolution activity on MS ₂ (M = Mo or Nb) monolayers. Journal of Materials Chemistry A, 2015, 3, 18898-18905.	5.2	30
212	Growth of molybdenum carbide micro-islands on carbon cloth toward binder-free cathodes for efficient hydrogen evolution reaction. Journal of Materials Chemistry A, 2015, 3, 16320-16326.	5.2	100
213	Guaiacol hydrodeoxygenation reaction catalyzed by highly dispersed, single layered MoS ₂ /C. Catalysis Science and Technology, 2015, 5, 4422-4432.	2.1	67

ARTICLE IF CITATIONS One-step preparation of nickel sulfide/nickel hydroxide films for electrocatalytic hydrogen 214 1.7 16 generation from water. RSC Advances, 2015, 5, 60674-60680. One-step hydrothermal synthesis of few-layered and edge-abundant MoS2/C nanocomposites with enhanced electrocatalytic performance for hydrogen evolution reaction. Advanced Powder Technology, 2015, 26, 1273-1280. Electrocatalytic Hydrogen Evolution from Molybdenum Sulfide–Polymer Composite Films on Carbon 216 4.0 22 Electrodes. ACS Applied Materials & amp; Interfaces, 2015, 7, 15866-15875. Highly Active Hydrogen Evolution Electrodes via Co-Deposition of Platinum and Polyoxometalates. 4.0 AČS Ápplied Máterials & amp; Interfaces, 2015, 7, 11648-11653. Extraordinarily efficient photocatalytic hydrogen evolution in water using semiconductor nanorods integrated with crystalline Ni₂P cocatalysts. Energy and Environmental Science, 2015, 8, 218 15.6 519 2668-2676. Highly efficient hydrogen evolution catalysis by MoS2–MoN/carbonitride composites derived from tetrathiomolybdate/polymer hybrids. Chemical Engineering Science, 2015, 134, 572-580. Enhanced hydrogen evolution reaction on few–layer MoS 2 nanosheets–coated functionalized 220 3.8 118 carbon nanotubes. International Journal of Hydrogen Energy, 2015, 40, 8877-8888. Solar Hydrogen Production by Amorphous Silicon Photocathodes Coated with a Magnetron Sputter 221 6.6 80 Deposited Mo₂C Catalyst. Journal of the American Chemical Society, 2015, 137, 7035-7038. A molecular material based on electropolymerized cobalt macrocycles for electrocatalytic hydrogen 222 1.3 6 evolution. Physical Chemistry Chemical Physics, 2015, 17, 13374-13379. Edge-terminated molybdenum disulfide with a 9.4-Ã... interlayer spacing for electrochemical hydrogen 5.8 production. Nature Communications, 2015, 6, 7493. Layered titanium diboride: towards exfoliation and electrochemical applications. Nanoscale, 2015, 7, 224 2.8 36 12527-12534. Facile preparation of 3D MoS₂/MoSe₂ nanosheetâ€"graphene networks as efficient electrocatalysts for the hydrogen evolution reaction. Journal of Materials Chemistry A, 5.2 146 2015, 3, 16337-16347 Amorphous oxygen-rich molybdenum oxysulfide Decorated p-type silicon microwire Arrays for 226 8.2 85 efficient photoelectrochemical water reduction. Nano Energy, 2015, 16, 130-142. Ultrathin MoSe₂ Nanosheets Decorated on Carbon Fiber Cloth as Binder-Free and High-Performance Electrocatalyst for Hydrogen Evolution. ACS Applied Materials & amp; Interfaces, 2015, 7, 14170-14175. 227 165 Ultrastable Polymolybdate-Based Metal–Organic Frameworks as Highly Active Electrocatalysts for 228 584 6.6 Hydrogen Generation from Water. Journal of the American Chemical Society, 2015, 137, 7169-7177. Carbon nanotubes decorated with nickel phosphide nanoparticles as efficient nanohybrid electrocatalysts for the hydrogen evolution reaction. Journal of Materials Chemistry A, 2015, 3, 218 13087-13094. SDBS-assisted hydrothermal preparation and electrocatalytic properties of few-layer and edge-rich 230 1.4 7 MoS2 nanospheres. Superlattices and Microstructures, 2015, 83, 112-120. Mechanistic Studies of Hydrogen Evolution in Aqueous Solution Catalyzed by a Tertpyridine–Amine 64 Cobalt Complex. Inorganic Chemistry, 2015, 54, 4310-4321.

#	Article	IF	CITATIONS
232	Nanostructured nickel phosphide supported on carbon nanospheres: Synthesis and application as an efficient electrocatalyst for hydrogen evolution. Journal of Power Sources, 2015, 285, 169-177.	4.0	131
233	Molybdenum sulfide nanosheet arrays supported on Ti plate: an efficient hydrogen-evolving cathode over the whole pH range. Electrochimica Acta, 2015, 168, 256-260.	2.6	25
234	The nature of active sites of Ni2P electrocatalyst for hydrogen evolution reaction. Journal of Catalysis, 2015, 326, 92-99.	3.1	107
235	Highly active and inexpensive iron phosphide nanorods electrocatalyst towards hydrogen evolution reaction. International Journal of Hydrogen Energy, 2015, 40, 14272-14278.	3.8	63
236	Metal–organic frameworks and their derived nanostructures for electrochemical energy storage and conversion. Energy and Environmental Science, 2015, 8, 1837-1866.	15.6	1,483
237	Facile synthesis of various highly dispersive CoP nanocrystal embedded carbon matrices as efficient electrocatalysts for the hydrogen evolution reaction. Journal of Materials Chemistry A, 2015, 3, 4255-4265.	5.2	153
238	Facile synthesis of CoX (X = S, P) as an efficient electrocatalyst for hydrogen evolution reaction. Journal of Materials Chemistry A, 2015, 3, 13066-13071.	5.2	66
239	Iron-Doped Molybdenum Carbide Catalyst with High Activity and Stability for the Hydrogen Evolution Reaction. Chemistry of Materials, 2015, 27, 4281-4288.	3.2	237
240	Hierarchical carbon nanopapers coupled with ultrathin MoS2 nanosheets: Highly efficient large-area electrodes for hydrogen evolution. Nano Energy, 2015, 15, 335-342.	8.2	81
241	Synthesis of Cu–MoS2/rGO hybrid as non-noble metal electrocatalysts for the hydrogen evolution reaction. Journal of Power Sources, 2015, 292, 15-22.	4.0	214
242	Hydrogen evolution at nanoporous gold/tungsten sulfide composite film and its optimization. Electrochimica Acta, 2015, 173, 393-398.	2.6	32
243	Monolayer-Precision Synthesis of Molybdenum Sulfide Nanoparticles and Their Nanoscale Size Effects in the Hydrogen Evolution Reaction. ACS Nano, 2015, 9, 3728-3739.	7.3	201
244	Enhanced Electrocatalytic Performance for Oxygen Reduction via Active Interfaces of Layer-By-Layered Titanium Nitride/Titanium Carbonitride Structures. Scientific Reports, 2014, 4, 6712.	1.6	59
245	The synergistic effect of metallic molybdenum dioxide nanoparticle decorated graphene as an active electrocatalyst for an enhanced hydrogen evolution reaction. Journal of Materials Chemistry A, 2015, 3, 8055-8061.	5.2	85
246	Insight into the electrochemical activation of carbon-based cathodes for hydrogen evolution reaction. Journal of Materials Chemistry A, 2015, 3, 13080-13086.	5.2	198
247	Layered transition metal oxyhydroxides as tri-functional electrocatalysts. Journal of Materials Chemistry A, 2015, 3, 11920-11929.	5.2	80
248	The Reaction Mechanism with Free Energy Barriers for Electrochemical Dihydrogen Evolution on MoS ₂ . Journal of the American Chemical Society, 2015, 137, 6692-6698.	6.6	173
249	Ni@Pd/PEI–rGO stack structures with controllable Pd shell thickness as advanced electrodes for efficient hydrogen evolution. Journal of Materials Chemistry A, 2015, 3, 11261-11268.	5.2	64

#	Article	IF	CITATIONS
250	Co-promoted MoS2 for hydrodesulfurization: New preparation method of MoS2 at room temperature and observation of massive differences of the selectivity depending on the activation atmosphere. Applied Catalysis A: General, 2015, 497, 72-84.	2.2	26
251	Waterâ€Soluble MoS ₃ Nanoparticles for Photocatalytic H ₂ Evolution. ChemSusChem, 2015, 8, 1464-1471.	3.6	39
252	Layered MoS2 nanoparticles on TiO2 nanotubes by a photocatalytic strategy for use as high-performance electrocatalysts in hydrogen evolution reactions. Green Chemistry, 2015, 17, 2764-2768.	4.6	64
253	Comparative Study of Potential Applications of Graphene, MoS ₂ , and Other Two-Dimensional Materials in Energy Devices, Sensors, and Related Areas. ACS Applied Materials & Interfaces, 2015, 7, 7809-7832.	4.0	362
254	Bioinspired Tungsten Dithiolene Catalysts for Hydrogen Evolution: A Combined Electrochemical, Photochemical, and Computational Study. Journal of Physical Chemistry B, 2015, 119, 13524-13533.	1.2	37
255	Impact of a conductive oxide core in tungsten sulfide-based nanostructures on the hydrogen evolution reaction. Chemical Communications, 2015, 51, 8334-8337.	2.2	50
256	Alternative synthesis of cobalt monophosphide@C core–shell nanocables for electrochemical hydrogen production. Journal of Power Sources, 2015, 286, 464-469.	4.0	54
257	Ultralow Density, Monolithic WS ₂ , MoS ₂ , and MoS ₂ /Graphene Aerogels. ACS Nano, 2015, 9, 4698-4705.	7.3	159
258	Light driven growth of silver nanoplatelets on 2D MoS ₂ nanosheet templates. Journal of Materials Chemistry C, 2015, 3, 4771-4778.	2.7	32
259	Co ₃ O ₄ nanocrystal ink printed on carbon fiber paper as a large-area electrode for electrochemical water splitting. Chemical Communications, 2015, 51, 8066-8069.	2.2	163
260	Designed synthesis of multi-walled carbon nanotubes@Cu@MoS2 hybrid as advanced electrocatalyst for highly efficient hydrogen evolution reaction. Journal of Power Sources, 2015, 300, 301-308.	4.0	78
261	Mo doped porous Ni–Cu alloy as cathode for hydrogen evolution reaction in alkaline solution. RSC Advances, 2015, 5, 82078-82086.	1.7	31
262	Hierarchical composite structure of few-layers MoS 2 nanosheets supported by vertical graphene on carbon cloth for high-performance hydrogen evolution reaction. Nano Energy, 2015, 18, 196-204.	8.2	191
263	WS 2 nanosheets based on liquid exfoliation as effective electrocatalysts for hydrogen evolution reaction. Materials Chemistry and Physics, 2015, 167, 271-277.	2.0	78
264	MOF-derived nanostructured cobalt phosphide assemblies for efficient hydrogen evolution reaction. RSC Advances, 2015, 5, 90265-90271.	1.7	61
265	A novel Pt@Te-reduced graphene oxide/polyimide composite catalyst for hydrogen evolution. International Journal of Hydrogen Energy, 2015, 40, 16238-16247.	3.8	26
266	Atomic cobalt on nitrogen-doped graphene for hydrogen generation. Nature Communications, 2015, 6, 8668.	5.8	1,356
267	Hydrothermal synthesis of 2D MoS ₂ nanosheets for electrocatalytic hydrogen evolution reaction. RSC Advances, 2015, 5, 89389-89396.	1.7	110

#	Article	IF	CITATIONS
268	Rising Again: Opportunities and Challenges for Platinum-Free Electrocatalysts. Chemistry of Materials, 2015, 27, 7218-7235.	3.2	131
269	Recent advances in transition-metal dichalcogenide based nanomaterials for water splitting. Nanoscale, 2015, 7, 19764-19788.	2.8	327
270	Photovoltaic and Photoelectrochemical Solar Energy Conversion with Cu ₂ O. Journal of Physical Chemistry C, 2015, 119, 26243-26257.	1.5	160
271	Development of a Dinitrosyl Iron Complex Molecular Catalyst into a Hydrogen Evolution Cathode. Angewandte Chemie - International Edition, 2015, 54, 14824-14829.	7.2	32
272	Physical vapor deposition of amorphous MoS ₂ nanosheet arrays on carbon cloth for highly reproducible large-area electrocatalysts for the hydrogen evolution reaction. Journal of Materials Chemistry A, 2015, 3, 19277-19281.	5.2	97
273	Beneficial effect of Re doping on the electrochemical HER activity of MoS ₂ fullerenes. Dalton Transactions, 2015, 44, 16399-16404.	1.6	66
274	A first-principles study on the hydrogen evolution reaction of VS ₂ nanoribbons. Physical Chemistry Chemical Physics, 2015, 17, 24820-24825.	1.3	88
275	Molecular metal–Nx centres in porous carbon for electrocatalytic hydrogen evolution. Nature Communications, 2015, 6, 7992.	5.8	575
276	Oxygen Evolution Catalyzed by Nickel–Iron Oxide Nanocrystals with a Nonequilibrium Phase. ACS Applied Materials & Interfaces, 2015, 7, 19755-19763.	4.0	49
277	A porous proton-relaying metal-organic framework material that accelerates electrochemical hydrogen evolution. Nature Communications, 2015, 6, 8304.	5.8	239
278	Colloidally synthesized MoSe ₂ /graphene hybrid nanostructures as efficient electrocatalysts for hydrogen evolution. Journal of Materials Chemistry A, 2015, 3, 19706-19710.	5.2	92
279	An oxygen evolution catalyst on an antimony doped tin oxide nanowire structured support for proton exchange membrane liquid water electrolysis. Journal of Materials Chemistry A, 2015, 3, 20791-20800.	5.2	79
280	Nanostructured nickel sulfides: phase evolution, characterization and electrocatalytic properties for the hydrogen evolution reaction. RSC Advances, 2015, 5, 104740-104749.	1.7	61
281	Novel peapod-like Ni ₂ P nanoparticles with improved electrochemical properties for hydrogen evolution and lithium storage. Nanoscale, 2015, 7, 1446-1453.	2.8	136
283	Inorganic Graphene Analogs. Annual Review of Materials Research, 2015, 45, 29-62.	4.3	40
284	A robust hydrogen evolution catalyst based on crystalline nickel phosphide nanoflakes on three-dimensional graphene/nickel foam: high performance for electrocatalytic hydrogen production from pH 0–14. Journal of Materials Chemistry A, 2015, 3, 1941-1946.	5.2	138
285	Engineering the Composition and Crystallinity of Molybdenum Sulfide for High-Performance Electrocatalytic Hydrogen Evolution. ACS Catalysis, 2015, 5, 448-455.	5.5	141
286	Synthesis of FeP ₂ /C nanohybrids and their performance for hydrogen evolution reaction. Journal of Materials Chemistry A, 2015, 3, 499-503.	5.2	91

#	Article	IF	CITATIONS
287	Hydrogen Photogeneration Promoted by Efficient Electron Transfer from Iridium Sensitizers to Colloidal MoS2 Catalysts. Scientific Reports, 2014, 4, 4045.	1.6	45
288	Pt-free solar driven photoelectrochemical hydrogen fuel generation using 1T MoS ₂ co-catalyst assembled CdS QDs/TiO ₂ photoelectrode. Chemical Communications, 2015, 51, 522-525.	2.2	60
289	Monodispersed nickel phosphide nanocrystals with different phases: synthesis, characterization and electrocatalytic properties for hydrogen evolution. Journal of Materials Chemistry A, 2015, 3, 1656-1665.	5.2	549
290	Photogeneration of Hydrogen from Water by Hybrid Molybdenum Sulfide Clusters Immobilized on Titania. ChemSusChem, 2015, 8, 148-157.	3.6	44
291	MoP nanosheets supported on biomass-derived carbon flake: One-step facile preparation and application as a novel high-active electrocatalyst toward hydrogen evolution reaction. Applied Catalysis B: Environmental, 2015, 164, 144-150.	10.8	240
292	Electronic Coupling and Catalytic Effect on H2 Evolution of MoS2/Graphene Nanocatalyst. Scientific Reports, 2014, 4, 6256.	1.6	64
293	Co2P/rGO Nanoybrids as Advanced Electrocatalysts for Hydrogen Evolution Reaction. International Journal of Electrochemical Science, 2016, , 8810-8816.	0.5	1
294	Inâ€Situ Generation of Active Molybdenum Octahedral Clusters for Photocatalytic Hydrogen Production from Water. ChemSusChem, 2016, 9, 1963-1971.	3.6	38
295	Monodisperse Ternary NiCoP Nanostructures as a Bifunctional Electrocatalyst for Both Hydrogen and Oxygen Evolution Reactions with Excellent Performance. Advanced Materials Interfaces, 2016, 3, 1500454.	1.9	132
296	Nonâ€noble metal graphene oxideâ€copper (II) ions hybrid electrodes for electrocatalytic hydrogen evolution reaction. Environmental Progress and Sustainable Energy, 2016, 35, 565-573.	1.3	16
297	Microwave Synthesized Three-dimensional Hierarchical Nanostructure CoS2/MoS2 Growth on Carbon Fiber Cloth: A Bifunctional Electrode for Hydrogen Evolution Reaction and Supercapacitor. Electrochimica Acta, 2016, 212, 941-949.	2.6	93
298	First-Principle and Experiment Framework for Charge Distribution at the Interface of the Molybdenum Dichalcogenide Hybrid for Enhanced Electrochemical Hydrogen Generation. Journal of Physical Chemistry C, 2016, 120, 15096-15104.	1.5	21
299	Graphene Porous Foam Loaded with Molybdenum Carbide Nanoparticulate Electrocatalyst for Effective Hydrogen Generation. ChemSusChem, 2016, 9, 855-862.	3.6	49
300	Platinum single-atom and cluster catalysis of the hydrogen evolution reaction. Nature Communications, 2016, 7, 13638.	5.8	1,521
301	All The Catalytic Active Sites of MoS ₂ for Hydrogen Evolution. Journal of the American Chemical Society, 2016, 138, 16632-16638.	6.6	664
302	Enhanced hydrogen evolution performance of ultra thin nanoslice/nanopetal structured XS2 (X = W,) Ţ	j ETQq1 1	0.784314 rg
303	Self-supported nanoporous NiCo ₂ O ₄ nanowires with cobalt–nickel layered oxide nanosheets for overall water splitting. Nanoscale, 2016, 8, 1390-1400.	2.8	180
304	Dual role of monolayer MoS2 in enhanced photocatalytic performance of hybrid MoS2/SnO2 nanocomposite. Journal of Applied Physics, 2016, 119, .	1.1	57

#	Article	IF	CITATIONS
305	Surface Roughening of Nickel Cobalt Phosphide Nanowire Arrays/Ni Foam for Enhanced Hydrogen Evolution Activity. ACS Applied Materials & Interfaces, 2016, 8, 34270-34279.	4.0	116
306	MoS2 with tunable surface structure directed by thiophene adsorption toward HDS and HER. Science China Materials, 2016, 59, 1051-1061.	3.5	24
307	Biomolecule-assisted synthesis of defect-mediated Cd _{1â^'x} Zn _x S/MoS ₂ /graphene hollow spheres for highly efficient hydrogen evolution. Physical Chemistry Chemical Physics, 2016, 18, 16208-16215.	1.3	26
308	Metal Doping Effect of the M–Co ₂ P/Nitrogen-Doped Carbon Nanotubes (M = Fe, Ni, Cu) Hydrogen Evolution Hybrid Catalysts. ACS Applied Materials & Interfaces, 2016, 8, 13890-13901.	4.0	172
309	Nanowires assembled from MnCo2O4@C nanoparticles for water splitting and all-solid-state supercapacitor. Nano Research, 2016, 9, 1300-1309.	5.8	87
310	Bifunctionality and Mechanism of Electrodeposited Nickel–Phosphorous Films for Efficient Overall Water Splitting. ChemCatChem, 2016, 8, 106-112.	1.8	147
311	Bimetallic AuPd nanoclusters supported on graphitic carbon nitride: One-pot synthesis and enhanced electrocatalysis for oxygen reduction and hydrogen evolution. International Journal of Hydrogen Energy, 2016, 41, 8839-8846.	3.8	45
312	Photo-Promoted Platinum Nanoparticles Decorated MoS ₂ @Graphene Woven Fabric Catalyst for Efficient Hydrogen Generation. ACS Applied Materials & Interfaces, 2016, 8, 10866-10873.	4.0	72
313	Sulfide pendants in cobalt clathrochelate complexes as a proton pump for the electrochemical H2 generation. International Journal of Hydrogen Energy, 2016, 41, 9312-9319.	3.8	15
314	Operando X-Ray Photoelectron Spectroscopy Studies of Aqueous Electrocatalytic Systems. Topics in Catalysis, 2016, 59, 439-447.	1.3	23
315	Three-dimensional hierarchical MoS2 nanosheet arrays/carbon cloth as flexible electrodes for high-performance hydrogen evolution reaction. Materials Letters, 2016, 177, 139-142.	1.3	26
316	MoSSe@reduced graphene oxide nanocomposite heterostructures as efficient and stable electrocatalysts for the hydrogen evolution reaction. Nano Energy, 2016, 29, 46-53.	8.2	94
317	Self-assembled ultrathin NiCo2S4 nanoflakes grown on Ni foam as high-performance flexible electrodes for hydrogen evolution reaction in alkaline solution. Nano Energy, 2016, 24, 139-147.	8.2	282
318	Co-, N-, and S-Tridoped Carbon Derived from Nitrogen- and Sulfur-Enriched Polymer and Cobalt Salt for Hydrogen Evolution Reaction. ACS Applied Materials & amp; Interfaces, 2016, 8, 13341-13347.	4.0	44
319	Unsaturated-sulfur-rich MoS2 nanosheets decorated on free-standing SWNT film: Synthesis, characterization and electrocatalytic application. Nano Research, 2016, 9, 2079-2087.	5.8	69
320	Growth of MoSe ₂ nanosheets with small size and expanded spaces of (002) plane on the surfaces of porous N-doped carbon nanotubes for hydrogen production. Nanoscale, 2016, 8, 16886-16893.	2.8	72
321	Highly active and stable layered ternary transition metal chalcogenide for hydrogen evolution reaction. Nano Energy, 2016, 28, 366-372.	8.2	107
322	MoS ₂ as a coâ€catalyst for photocatalytic hydrogen production from water. Energy Science and Engineering, 2016, 4, 285-304.	1.9	205

#	Article	IF	CITATIONS
323	Aligned MoO _{<i>x</i>} /MoS ₂ Core–Shell Nanotubular Structures with a High Density of Reactive Sites Based on Selfâ€Ordered Anodic Molybdenum Oxide Nanotubes. Angewandte Chemie - International Edition, 2016, 55, 12252-12256.	7.2	100
324	Relation between Hydrogen Evolution and Hydrodesulfurization Catalysis. ChemCatChem, 2016, 8, 3334-3337.	1.8	20
325	Hydrogen Evolution Catalyzed by Cu ₂ WS ₄ at Liquid–Liquid Interfaces. ACS Applied Materials & Interfaces, 2016, 8, 25881-25887.	4.0	78
326	Aligned MoO _{<i>x</i>} /MoS ₂ Core–Shell Nanotubular Structures with a High Density of Reactive Sites Based on Selfâ€Ordered Anodic Molybdenum Oxide Nanotubes. Angewandte Chemie, 2016, 128, 12440-12444.	1.6	14
327	Graphene sheets wrapped carbon nanofibers as a highly conductive three-dimensional framework for perpendicularly anchoring of MoS 2 : Advanced electrocatalysts for hydrogen evolution reaction. Electrochimica Acta, 2016, 219, 604-613.	2.6	39
328	Carbide decorated carbon nanotube electrocatalyst for high-efficiency hydrogen evolution from seawater. RSC Advances, 2016, 6, 93267-93274.	1.7	33
329	A Highly Efficient and Selfâ€Stabilizing Metallicâ€Class Catalyst for Electrochemical Hydrogen Generation. Advanced Materials, 2016, 28, 10293-10297.	11.1	195
330	Synergetic effect of CoNPs and graphene as cocatalysts for enhanced electrocatalytic hydrogen evolution activity of MoS2. RSC Advances, 2016, 6, 95979-95986.	1.7	23
331	Molybdenum carbide microcrystals: Efficient and stable catalyst for photocatalytic H2 evolution from water in the presence of dye sensitizer. Journal of Materiomics, 2016, 2, 344-349.	2.8	8
332	MoS ₂ Nanosheet Loaded with TiO ₂ Nanoparticles: An Efficient Electrocatalyst for Hydrogen Evolution Reaction. Journal of the Electrochemical Society, 2016, 163, H1087-H1090.	1.3	23
333	Hydrogen evolution reaction performance of the molybdenum disulfide/nickel–phosphorus composites in alkaline solution. International Journal of Hydrogen Energy, 2016, 41, 18942-18952.	3.8	30
334	Phase-controlled synthesis and comparative study of α- and β-WP 2 submicron particles as efficient electrocatalysts for hydrogen evolution. Electrochimica Acta, 2016, 216, 304-311.	2.6	17
335	Amorphous molybdenum sulfide quantum dots: an efficient hydrogen evolution electrocatalyst in neutral medium. Journal of Materials Chemistry A, 2016, 4, 15486-15493.	5.2	105
336	Metal–organic framework derived CoSe2 nanoparticles anchored on carbon fibers as bifunctional electrocatalysts for efficient overall water splitting. Nano Research, 2016, 9, 2234-2243.	5.8	215
337	â€~Photosystem II: the water splitting enzyme of photosynthesis and the origin of oxygen in our atmosphere'. Quarterly Reviews of Biophysics, 2016, 49, e14.	2.4	56
338	Two-dimensional inorganic analogues of graphene: transition metal dichalcogenides. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2016, 374, 20150318.	1.6	62
339	One‣tep Synthesis of CoSâ€Doped βâ€Co(OH) ₂ @Amorphous MoS ₂₊ <i>_x</i> Hybrid Catalyst Grown on Nickel Foam for Highâ€Performance Electrochemical Overall Water Splitting. Advanced Functional Materials, 2016, 26, 7386-7393.	7.8	217
340	Recent developments of carbon-based electrocatalysts for hydrogen evolution reaction. Nano Energy, 2016, 28, 29-43.	8.2	603

#	Article	IF	Citations
341	Low-cost and highly efficient CoMoS4/NiMoS4-based electrocatalysts for hydrogen evolution reactions over a wide pH range. Electrochimica Acta, 2016, 213, 236-243.	2.6	82
342	Controllable synthesis of molybdenum carbide nanoparticles embedded in porous graphitized carbon matrixes as efficient electrocatalyst for hydrogen evolution reaction. Electrochimica Acta, 2016, 215, 357-365.	2.6	48
343	Highâ€Sulfurâ€Vacancy Amorphous Molybdenum Sulfide as a High Current Electrocatalyst in Hydrogen Evolution. Small, 2016, 12, 5530-5537.	5.2	177
344	Dual-defective strategy directing in situ assembly for effective interfacial contacts in MoS ₂ cocatalyst/In ₂ S ₃ light harvester layered photocatalysts. Journal of Materials Chemistry A, 2016, 4, 13980-13988.	5.2	55
345	3D structured porous CoP ₃ nanoneedle arrays as an efficient bifunctional electrocatalyst for the evolution reaction of hydrogen and oxygen. Journal of Materials Chemistry A, 2016, 4, 14539-14544.	5.2	131
346	Three-dimensional porous structural MoP2 nanoparticles as a novel and superior catalyst for electrochemical hydrogen evolution. Journal of Power Sources, 2016, 328, 551-557.	4.0	88
347	Valorization of coffee bean waste: a coffee bean waste derived multifunctional catalyst for photocatalytic hydrogen production and electrocatalytic oxygen reduction reactions. RSC Advances, 2016, 6, 82103-82111.	1.7	19
348	Lanthanides-based graphene catalysts for high performance hydrogen evolution and oxygen reduction. Electrochimica Acta, 2016, 214, 173-181.	2.6	19
349	Amorphous Co–Mo–S ultrathin films with low-temperature sulfurization as high-performance electrocatalysts for the hydrogen evolution reaction. Journal of Materials Chemistry A, 2016, 4, 13731-13735.	5.2	48
350	Aluminum Titania Nanoparticle Composites as Nonprecious Catalysts for Efficient Electrochemical Generation of H ₂ . ACS Applied Materials & Interfaces, 2016, 8, 23655-23667.	4.0	25
351	Vertically aligned oxygen-doped molybdenum disulfide nanosheets grown on carbon cloth realizing robust hydrogen evolution reaction. Inorganic Chemistry Frontiers, 2016, 3, 1160-1166.	3.0	55
352	Regeneration of Metal Sulfides in the Delithiation Process: The Key to Cyclic Stability. Advanced Energy Materials, 2016, 6, 1601056.	10.2	93
353	Graphene oxide co-doped with nitrogen and sulfur and decorated with cobalt phosphide nanorods: An efficient hybrid catalyst for electrochemical hydrogen evolution. Electrochimica Acta, 2016, 222, 246-256.	2.6	57
354	Efficient Photoelectrochemical Hydrogen Evolution on Silicon Photocathodes Interfaced with Nanostructured NiP ₂ Cocatalyst Films. ACS Applied Materials & Interfaces, 2016, 8, 31025-31031.	4.0	46
355	Porous Co–P foam as an efficient bifunctional electrocatalyst for hydrogen and oxygen evolution reactions. Journal of Materials Chemistry A, 2016, 4, 18272-18277.	5.2	130
356	A highly active molybdenum multisulfide electrocatalyst for the hydrogen evolution reaction. RSC Advances, 2016, 6, 107158-107162.	1.7	14
357	Self-supported three-dimensional mesoporous semimetallic WP ₂ nanowire arrays on carbon cloth as a flexible cathode for efficient hydrogen evolution. Nanoscale, 2016, 8, 19779-19786.	2.8	84
358	Operando Raman Spectroscopy of Amorphous Molybdenum Sulfide (MoS _{<i>x</i>}) during the Electrochemical Hydrogen Evolution Reaction: Identification of Sulfur Atoms as Catalytically Active Sites for H ⁺ Reduction. ACS Catalysis, 2016, 6, 7790-7798.	5.5	210

#	Article	IF	CITATIONS
359	Coupled molybdenum carbide and reduced graphene oxide electrocatalysts for efficient hydrogen evolution. Nature Communications, 2016, 7, 11204.	5.8	803
360	Experimental and First-Principles Investigation of MoWS ₂ with High Hydrogen Evolution Performance. ACS Applied Materials & Interfaces, 2016, 8, 29442-29451.	4.0	49
361	Efficient hydrogen evolution in transition metal dichalcogenides via a simple one-step hydrazine reaction. Nature Communications, 2016, 7, 11857.	5.8	179
362	Pentlandite rocks as sustainable and stable efficient electrocatalysts for hydrogen generation. Nature Communications, 2016, 7, 12269.	5.8	150
363	Ammonia intercalated flower-like MoS2 nanosheet film as electrocatalyst for high efficient and stable hydrogen evolution. Scientific Reports, 2016, 6, 31092.	1.6	76
364	Oxidation-Sulfidation Approach for Vertically Growing MoS ₂ Nanofilms Catalysts on Molybdenum Foils as Efficient HER Catalysts. Journal of Physical Chemistry C, 2016, 120, 25843-25850.	1.5	56
365	3D Binder-free MoSe2 Nanosheets/Carbon Cloth Electrodes for Efficient and Stable Hydrogen Evolution Prepared by Simple Electrophoresis Deposition Strategy. Scientific Reports, 2016, 6, 22516.	1.6	75
366	Computational Insights into the Mechanisms of H ₂ Activation and H ₂ /D ₂ Isotope Exchange by Dimolybdenum Tetrasulfide Complexes. European Journal of Inorganic Chemistry, 2016, 2016, 1886-1894.	1.0	6
367	MoS ₂ Nanosheetâ€Modified CuInS ₂ Photocatalyst for Visible‣ightâ€Driven Hydrogen Production from Water. ChemSusChem, 2016, 9, 1003-1009.	3.6	133
368	Triethylenetetramine-assisted hydrothermal synthesis of sulfur-doped few-layer MoSe 2 /nitrogenated graphene hybrids and their catalytic activity for hydrogen evolution reaction. Advanced Powder Technology, 2016, 27, 1560-1567.	2.0	9
369	Differently structured MoS2 for the hydrogen production application and a mechanism investigation. Journal of Alloys and Compounds, 2016, 685, 65-69.	2.8	17
370	Boosting oxygen reduction and hydrogen evolution at the edge sites of a web-like carbon nanotube-graphene hybrid. Carbon, 2016, 107, 739-746.	5.4	25
371	Hydrothermal assisted morphology designed MoS 2 material as alternative cathode catalyst for PEM electrolyser application. International Journal of Hydrogen Energy, 2016, 41, 13331-13340.	3.8	45
372	Mechanism of Hydrogen Evolution Reaction on 1T-MoS ₂ from First Principles. ACS Catalysis, 2016, 6, 4953-4961.	5.5	678
373	The role of electronic coupling between substrate and 2D MoS2 nanosheets in electrocatalytic production of hydrogen. Nature Materials, 2016, 15, 1003-1009.	13.3	687
374	Facile synthesis of molybdenum disulfide/nitrogen-doped graphene composites for enhanced electrocatalytic hydrogen evolution and electrochemical lithium storage. Carbon, 2016, 107, 711-722.	5.4	56
375	2D Transitionâ€Metalâ€Dichalcogenideâ€Nanosheetâ€Based Composites for Photocatalytic and Electrocatalytic Hydrogen Evolution Reactions. Advanced Materials, 2016, 28, 1917-1933.	11.1	1,214
376	Quasi-one-dimensional graphene nanoribbon-supported MoS ₂ nanosheets for enhanced hydrogen evolution reaction. RSC Advances, 2016, 6, 13757-13765.	1.7	20

#	Article	IF	CITATIONS
377	Catalytic Activity of MS ₂ Monolayer for Electrochemical Hydrogen Evolution. Journal of Physical Chemistry C, 2016, 120, 1623-1632.	1.5	75
378	Decoration of the inert basal plane of defect-rich MoS ₂ with Pd atoms for achieving Pt-similar HER activity. Journal of Materials Chemistry A, 2016, 4, 4025-4031.	5.2	122
379	MoSx supported graphene oxides with different degree of oxidation as efficient electrocatalysts for hydrogen evolution. Carbon, 2016, 100, 236-242.	5.4	103
380	Shape-controlled synthesis of Pd polyhedron supported on polyethyleneimine-reduced graphene oxide for enhancing the efficiency of hydrogen evolution reaction. Journal of Power Sources, 2016, 302, 343-351.	4.0	59
381	MoS3 loaded TiO2 nanoplates for photocatalytic water and carbon dioxide reduction. Journal of Energy Chemistry, 2016, 25, 500-506.	7.1	18
382	Tungsten disulphide nanorattle: A new type of high performance electrocatalyst for hydrogen evolution reaction. Journal of Power Sources, 2016, 307, 593-598.	4.0	28
383	Highly efficient and durable PtCo alloy nanoparticles encapsulated in carbon nanofibers for electrochemical hydrogen generation. Chemical Communications, 2016, 52, 990-993.	2.2	95
384	Carbon doped molybdenum disulfide nanosheets stabilized on graphene for the hydrogen evolution reaction with high electrocatalytic ability. Nanoscale, 2016, 8, 1676-1683.	2.8	88
385	One-pot synthesis of nanosheet-assembled hierarchical MoSe ₂ /CoSe ₂ microcages for the enhanced performance of electrocatalytic hydrogen evolution. RSC Advances, 2016, 6, 23-30.	1.7	62
386	Thickness Dependence and Percolation Scaling of Hydrogen Production Rate in MoS ₂ Nanosheet and Nanosheet–Carbon Nanotube Composite Catalytic Electrodes. ACS Nano, 2016, 10, 672-683.	7.3	116
387	Chemical and Phase Evolution of Amorphous Molybdenum Sulfide Catalysts for Electrochemical Hydrogen Production. ACS Nano, 2016, 10, 624-632.	7.3	109
388	Mechanistic studies of the photo-electrochemical hydrogen evolution reaction on poly(2,2′-bithiophene). Catalysis Science and Technology, 2016, 6, 3253-3262.	2.1	13
389	Kinetic Study of Hydrogen Evolution Reaction over Strained MoS ₂ with Sulfur Vacancies Using Scanning Electrochemical Microscopy. Journal of the American Chemical Society, 2016, 138, 5123-5129.	6.6	244
390	Influence of Mo/P Ratio on CoMoP nanoparticles as highly efficient HER catalysts. Applied Catalysis A: General, 2016, 511, 11-15.	2.2	66
391	Heterogeneous Spin States in Ultrathin Nanosheets Induce Subtle Lattice Distortion To Trigger Efficient Hydrogen Evolution. Journal of the American Chemical Society, 2016, 138, 5087-5092.	6.6	351
392	Liquid exfoliation of layered metal sulphide for enhanced photocatalytic activity of TiO ₂ nanoclusters and DFT study. RSC Advances, 2016, 6, 33705-33712.	1.7	24
393	Molybdenum disulfide nanomaterials: Structures, properties, synthesis and recent progress on hydrogen evolution reaction. Applied Materials Today, 2016, 3, 23-56.	2.3	335
394	Electrochemical Applications of Two-Dimensional Nanosheets: The Effect of Nanosheet Length and Thickness. Chemistry of Materials, 2016, 28, 2641-2651.	3.2	95

ARTICLE IF CITATIONS Two-dimensional layered MoS₂: rational design, properties and electrochemical 395 15.6 532 applications. Energy and Environmental Science, 2016, 9, 1190-1209. Ni-doped MoS₂ nanoparticles as highly active hydrogen evolution electrocatalysts. RSC 1.7 124 Advances, 2016, 6, 16656-16661. Comparison of liquid exfoliated transition metal dichalcogenides reveals MoSe₂to be the 397 2.8 127 most effective hydrogen evolution catalyst. Nanoscale, 2016, 8, 5737-5749. Galvanic replacement of electrodeposited nickel by palladium and investigation of the electrocatalytic activity of synthesized Pd/(Ni) for hydrogen evolution and formic acid oxidation. RSC Advances, 2016, 6, 22500-22510. Facile surfactant-assisted synthesis of CTAB-incorporated MoS₂ ultrathin nanosheets for 399 1.7 39 efficient hydrogen evolution. RSC Advances, 2016, 6, 16730-16735. Hollow Structured Micro/Nano MoS₂ Spheres for High Electrocatalytic Activity Hydrogen Evolution Reaction. ACS Applied Materials & amp; Interfaces, 2016, 8, 5517-5525. 4.0 190 Synthesis of Cu₃P nanocubes and their excellent electrocatalytic efficiency for the 401 1.7 49 hydrogen evolution reaction in acidic solution. RSC Advances, 2016, 6, 9672-9677. "Non-hydrolytic―sol–gel synthesis of molybdenum sulfides. Journal of Solid State Chemistry, 2016, 1.4 242, 175-181. Beaded stream-like CoSe₂ nanoneedle array for efficient hydrogen evolution 403 5.2 89 electrocatalysis. Journal of Materials Chemistry A, 2016, 4, 4553-4561. Solar Hydrogen Production from Zinc Telluride Photocathode Modified with Carbon and 404 Molybdenum Sulfide. ACS Applied Materials & amp; Interfaces, 2016, 8, 7748-7755. 3D Tungsten-Doped MoS₂Nanostructure: A Low-Cost, Facile Prepared Catalyst for 405 1.3 28 Hydrogen Evolution Reaction. Journal of the Electrochemical Society, 2016, 163, H299-H304. Controlled electrodeposition of CoMoSx on carbon cloth: A 3D cathode for highly-efficient 3.8 electrocatalytic hydrogen evolution. International Journal of Hydrogen Energy, 2016, 41, 3811-3819. Carbon quantum dots modified MoS2 with visible-light-induced high hydrogen evolution catalytic 407 5.4 108 ability. Carbon, 2016, 99, 599-606. Carbon-coated MoS₂nanosheets as highly efficient electrocatalysts for the hydrogen 408 1.3 evolution reaction. Nanotechnology, 2016, 27, 045402. Cobalt Phosphide Hollow Polyhedron as Efficient Bifunctional Electrocatalysts for the Evolution 409 4.0 486 Reaction of Hydrogen and Oxygen. ACS Applied Materials & amp; Interfaces, 2016, 8, 2158-2165. Molybdenum carbide nanoparticles as a catalyst for the hydrogen evolution reaction and the effect 3.1 53 of pH. Journal of Catalysis, 2016, 334, 102-109. One-step synthesis of self-supported porous NiSe 2 /Ni hybrid foam: An efficient 3D electrode for 411 8.2 279 hydrogen evolution reaction. Nano Energy, 2016, 20, 29-36. Metallic Co₂P ultrathin nanowires distinguished from CoP as robust electrocatalysts 254 for overall water-splitting. Green Chemistry, 2016, 18, 1459-1464.

#	Article	IF	CITATIONS
413	The hierarchical nanowires array of iron phosphide integrated on a carbon fiber paper as an effective electrocatalyst for hydrogen generation. Journal of Materials Chemistry A, 2016, 4, 1454-1460.	5.2	120
414	Activating and optimizing MoS2 basal planes for hydrogen evolution through the formation of strained sulphur vacancies. Nature Materials, 2016, 15, 48-53.	13.3	2,021
415	Ultra-thin and porous MoSe ₂ nanosheets: facile preparation and enhanced electrocatalytic activity towards the hydrogen evolution reaction. Physical Chemistry Chemical Physics, 2016, 18, 70-74.	1.3	111
416	Nickel sulfides for electrocatalytic hydrogen evolution under alkaline conditions: a case study of crystalline NiS, NiS ₂ , and Ni ₃ S ₂ nanoparticles. Catalysis Science and Technology, 2016, 6, 1077-1084.	2.1	408
417	MoS2 nanosheets array on carbon cloth as a 3D electrode for highly efficient electrochemical hydrogen evolution. Carbon, 2016, 98, 84-89.	5.4	89
418	Biomolecule-assisted self-assembly of CdS/MoS 2 /graphene hollow spheres as high-efficiency photocatalysts for hydrogen evolution without noble metals. Applied Catalysis B: Environmental, 2016, 182, 504-512.	10.8	175
419	Electrodeposited MoSx films assisted by liquid crystal template with ultrahigh electrocatalytic activity for hydrogen evolution reaction. International Journal of Hydrogen Energy, 2017, 42, 5132-5138.	3.8	78
420	A facile lyophilization synthesis of MoS2 QDs@graphene as a highly active electrocatalyst for hydrogen evolution reaction. Applied Surface Science, 2017, 401, 190-197.	3.1	25
421	Coral-Shaped MoS ₂ Decorated with Graphene Quantum Dots Performing as a Highly Active Electrocatalyst for Hydrogen Evolution Reaction. ACS Applied Materials & Interfaces, 2017, 9, 3653-3660.	4.0	98
422	Controlled Electrochemical Deposition of Largeâ€Area MoS ₂ on Graphene for Highâ€Responsivity Photodetectors. Advanced Functional Materials, 2017, 27, 1603998.	7.8	45
423	Specific synthesis of CoS ₂ nanoparticles embedded in porous Al ₂ O ₃ nanosheets for efficient hydrogen evolution and enhanced lithium storage. Journal of Materials Chemistry A, 2017, 5, 2861-2869.	5.2	50
424	One-pot solvothermal synthesis of PdCu nanocrystals with enhanced electrocatalytic activity toward glycerol oxidation and hydrogen evolution. International Journal of Hydrogen Energy, 2017, 42, 6695-6704.	3.8	30
425	Recent Progress in Energyâ€Ðriven Water Splitting. Advanced Science, 2017, 4, 1600337.	5.6	643
426	Stacking sequence dependent photo-electrocatalytic performance of CVD grown MoS ₂ /graphene van der Waals solids. Nanotechnology, 2017, 28, 085101.	1.3	36
427	High performance electrocatalysis for hydrogen evolution reaction using nickel-doped CoS2 nanostructures: experimental and DFT insights. Electrochimica Acta, 2017, 228, 428-435.	2.6	111
428	Efficient and Stable Silicon Photocathodes Coated with Vertically Standing Nano-MoS ₂ Films for Solar Hydrogen Production. ACS Applied Materials & Interfaces, 2017, 9, 6123-6129.	4.0	96
429	Pulse electrodeposited Ni-CeO2Gd doped nanocomposite on copper foam as an electrocatalysts for hydrogen evolution reaction. International Journal of Hydrogen Energy, 2017, 42, 4741-4750.	3.8	13
430	Porous hollow MoS ₂ microspheres derived from core–shell sulfonated polystyrene microspheres@MoS ₂ nanosheets for efficient electrocatalytic hydrogen evolution. Inorganic Chemistry Frontiers, 2017, 4, 741-747.	3.0	18

#	Article	IF	CITATIONS
431	Spectroelectrochemical analysis of the mechanism of (photo)electrochemical hydrogen evolution at a catalytic interface. Nature Communications, 2017, 8, 14280.	5.8	83
432	One-Step Hydrothermal Fabrication of Three-dimensional MoS2 Nanoflower using Polypyrrole as Template for Efficient Hydrogen Evolution Reaction. Scientific Reports, 2017, 7, 42309.	1.6	87
433	Bond Activation and Hydrogen Evolution from Water through Reactions with M3S4 (M = Mo, W) and W3S3 Anionic Clusters. Journal of Physical Chemistry A, 2017, 121, 1760-1767.	1.1	6
434	Graphene and Their Hybrid Electrocatalysts for Water Splitting. ChemCatChem, 2017, 9, 1554-1568.	1.8	88
435	Discovery-Synthesis, Design, and Prediction of Chalcogenide Phases. Inorganic Chemistry, 2017, 56, 3158-3173.	1.9	156
436	Atomic Defects in Twoâ€Dimensional Materials: From Singleâ€Atom Spectroscopy to Functionalities in Optoâ€∤Electronics, Nanomagnetism, and Catalysis. Advanced Materials, 2017, 29, 1606434.	11.1	211
437	Two-Dimensional (2D) Nanomaterials towards Electrochemical Nanoarchitectonics in Energy-Related Applications. Bulletin of the Chemical Society of Japan, 2017, 90, 627-648.	2.0	369
438	Nanostructured Materials for Heterogeneous Electrocatalytic CO ₂ Reduction and their Related Reaction Mechanisms. Angewandte Chemie - International Edition, 2017, 56, 11326-11353.	7.2	811
439	Nanostrukturierte Materialien für die elektrokatalytische CO ₂ â€Reduktion und ihre Reaktionsmechanismen. Angewandte Chemie, 2017, 129, 11482-11511.	1.6	102
440	Magnetically Induced Electrodeposition of Ni-Mo Alloy for Hydrogen Evolution Reaction. Electrocatalysis, 2017, 8, 179-188.	1.5	20
441	Three-dimensional structure of WS 2 /graphene/Ni as a binder-free electrocatalytic electrode for highly effective and stable hydrogen evolution reaction. International Journal of Hydrogen Energy, 2017, 42, 7811-7819.	3.8	76
442	lonic Liquid-Assisted Synthesis of Nanoscale (MoS ₂) _{<i>x</i>} (SnO ₂) _{1–<i>x</i>} on Reduced Graphene Oxide for the Electrocatalytic Hydrogen Evolution Reaction. ACS Applied Materials & Interfaces, 2017, 9, 8065-8074.	4.0	55
443	Defect-rich MoS2 nanowall catalyst for efficient hydrogen evolution reaction. Nano Research, 2017, 10, 1178-1188.	5.8	177
444	Facile synthesis of stable structured MoS2-Mo-CNFs heteroarchitecture with enhanced hydrogen evolution. Materials Chemistry and Physics, 2017, 193, 298-301.	2.0	8
445	Enabling Colloidal Synthesis of Edge-Oriented MoS ₂ with Expanded Interlayer Spacing for Enhanced HER Catalysis. Nano Letters, 2017, 17, 1963-1969.	4.5	225
446	Colloidal synthesis of MoSe 2 nanonetworks and nanoflowers with efficient electrocatalytic hydrogen-evolution activity. Electrochimica Acta, 2017, 231, 69-76.	2.6	49
447	Mapping the electrocatalytic activity of MoS ₂ across its amorphous to crystalline transition. Journal of Materials Chemistry A, 2017, 5, 5129-5141.	5.2	41
448	Boronâ€Đependency of Molybdenum Boride Electrocatalysts for the Hydrogen Evolution Reaction. Angewandte Chemie, 2017, 129, 5667-5670.	1.6	50

#	Article	IF	CITATIONS
449	Boronâ€Dependency of Molybdenum Boride Electrocatalysts for the Hydrogen Evolution Reaction. Angewandte Chemie - International Edition, 2017, 56, 5575-5578.	7.2	259
450	Amorphous Molybdenum Sulfide/Carbon Nanotubes Hybrid Nanospheres Prepared by Ultrasonic Spray Pyrolysis for Electrocatalytic Hydrogen Evolution. Small, 2017, 13, 1700111.	5.2	70
451	Photoanodes based on TiO ₂ and α-Fe ₂ O ₃ for solar water splitting – superior role of 1D nanoarchitectures and of combined heterostructures. Chemical Society Reviews, 2017, 46, 3716-3769.	18.7	535
452	In-situ photochemical fabrication of transition metal-promoted amorphous molybdenum sulfide catalysts for enhanced photosensitized hydrogen evolution. International Journal of Hydrogen Energy, 2017, 42, 11118-11129.	3.8	40
453	CoNi ₂ Se ₄ as an efficient bifunctional electrocatalyst for overall water splitting. Chemical Communications, 2017, 53, 5412-5415.	2.2	92
454	Constructing three-dimensional porous Ni/Ni ₃ S ₂ nano-interfaces for hydrogen evolution electrocatalysis under alkaline conditions. Dalton Transactions, 2017, 46, 10700-10706.	1.6	41
455	Mo incorporated W 18 O 49 nanofibers as robust electrocatalysts for high-efficiency hydrogen evolution. International Journal of Hydrogen Energy, 2017, 42, 14534-14546.	3.8	15
456	Electron-Doped 1T-MoS ₂ via Interface Engineering for Enhanced Electrocatalytic Hydrogen Evolution. Chemistry of Materials, 2017, 29, 4738-4744.	3.2	270
457	Anodically Grown Binder-Free Nickel Hexacyanoferrate Film: Toward Efficient Water Reduction and Hexacyanoferrate Film Based Full Device for Overall Water Splitting. ACS Applied Materials & Interfaces, 2017, 9, 18015-18021.	4.0	56
458	Nanocrystalline Ni 0.85 Se as Efficient Non-noble-metal Electrocatalyst for Hydrogen Evolution Reaction. Electrochimica Acta, 2017, 242, 25-30.	2.6	101
459	The effect of reduced graphene oxide on MoS 2 for the hydrogen evolution reaction in acidic solution. Chemical Physics Letters, 2017, 678, 212-215.	1.2	22
460	Facile solvothermal synthesis of Pt ₇₆ Co ₂₄ nanomyriapods for efficient electrocatalysis. Journal of Materials Chemistry A, 2017, 5, 10554-10560.	5.2	61
461	Molybdenum Sulfide for Hydrogen Evolution Reaction: The Importance of Solution Dynamic Wetting Behavior in The Drying Process. Langmuir, 2017, 33, 4638-4646.	1.6	9
462	Flower-like CoS 2 /MoS 2 nanocomposite with enhanced electrocatalytic activity for hydrogen evolution reaction. International Journal of Hydrogen Energy, 2017, 42, 12246-12253.	3.8	81
463	Single-Step Electrodeposited Molybdenum Incorporated Nickel Sulfide Thin Films from Low-Cost Precursors as Highly Efficient Hydrogen Evolution Electrocatalysts in Acid Medium. Journal of Physical Chemistry C, 2017, 121, 11108-11116.	1.5	42
464	Synergistic Phase and Disorder Engineering in 1Tâ€MoSe ₂ Nanosheets for Enhanced Hydrogenâ€Evolution Reaction. Advanced Materials, 2017, 29, 1700311.	11.1	411
465	In situ/Operando studies of electrocatalysts using hard X-ray spectroscopy. Journal of Electron Spectroscopy and Related Phenomena, 2017, 221, 18-27.	0.8	53
466	Hierarchical NiCoP nanocone arrays supported on Ni foam as an efficient and stable bifunctional electrocatalyst for overall water splitting. Journal of Materials Chemistry A, 2017, 5, 14828-14837.	5.2	255

#	Article	IF	CITATIONS
467	Ternary Ni _{<i>x</i>} Co _{3â^'<i>x</i>} S ₄ with a Fine Hollow Nanostructure as a Robust Electrocatalyst for Hydrogen Evolution. ChemCatChem, 2017, 9, 4169-4174.	1.8	18
468	Composite of Few-Layered MoS ₂ Grown on Carbon Black: Tuning the Ratio of Terminal to Total Sulfur in MoS ₂ for Hydrogen Evolution Reaction. Journal of Physical Chemistry C, 2017, 121, 14413-14425.	1.5	58
469	Hydrogen adsorption on MoS ₂ -surfaces: a DFT study on preferential sites and the effect of sulfur and hydrogen coverage. Physical Chemistry Chemical Physics, 2017, 19, 16231-16241.	1.3	64
470	Plasmon-exciton coupling of monolayer MoS2-Ag nanoparticles hybrids for surface catalytic reaction. Materials Today Energy, 2017, 5, 72-78.	2.5	169
471	A facile one-step fabrication of a novel Cu/MoS2 nano-assembled structure for enhanced hydrogen evolution reaction performance. RSC Advances, 2017, 7, 25867-25871.	1.7	14
472	Activation of Ternary Transition Metal Chalcogenide Basal Planes through Chemical Strain for the Hydrogen Evolution Reaction. ChemPlusChem, 2017, 82, 785-791.	1.3	25
473	Rapid fabrication of support-free trimetallic Pt53Ru39Ni8 nanosponges with enhanced electrocatalytic activity for hydrogen evolution and hydrazine oxidation reactions. Journal of Colloid and Interface Science, 2017, 505, 14-22.	5.0	36
474	Boosting the catalytic performance of MoS x cocatalysts over CdS nanoparticles for photocatalytic H 2 evolution by Co doping via a facile photochemical route. Applied Surface Science, 2017, 420, 456-464.	3.1	78
475	Textured NiSe2 Film: Bifunctional Electrocatalyst for Full Water Splitting at Remarkably Low Overpotential with High Energy Efficiency. Scientific Reports, 2017, 7, 2401.	1.6	104
476	Facile Synthesis of Nickel Manganese Composite Oxide Nanomesh for Efficient Oxygen Evolution Reaction and Supercapacitors. Electrochimica Acta, 2017, 245, 32-40.	2.6	35
477	Carbon nanofiber-supported PdNi alloy nanoparticles as highly efficient bifunctional catalysts for hydrogen and oxygen evolution reactions. Electrochimica Acta, 2017, 246, 17-26.	2.6	63
478	Interlayer Nanoarchitectonics of Twoâ€Dimensional Transitionâ€Metal Dichalcogenides Nanosheets for Energy Storage and Conversion Applications. Advanced Energy Materials, 2017, 7, 1700571.	10.2	303
479	One-step liquid phase chemical method to prepare carbon-based amorphous molybdenum sulfides: As the effective hydrogen evolution reaction catalysts. Electrochimica Acta, 2017, 236, 280-287.	2.6	10
480	Photocatalytic H 2 evolution with a Cu 2 WS 4 catalyst on a metal free D-Ï€-A organic dye-sensitized TiO 2. Applied Catalysis B: Environmental, 2017, 210, 320-327.	10.8	54
481	Ternary CoS 2 /MoS 2 /RGO electrocatalyst with CoMoS phase for efficient hydrogen evolution. Applied Surface Science, 2017, 412, 138-145.	3.1	84
482	Facile wet-chemical synthesis and efficient photocatalytic hydrogen production of amorphous MoS3 sensitized by Erythrosin B. Materials Characterization, 2017, 128, 148-155.	1.9	17
483	Perspectives on metal–organic frameworks with intrinsic electrocatalytic activity. CrystEngComm, 2017, 19, 4049-4065.	1.3	72
484	A straight forward approach to electrodeposit tungsten disulfide/poly(3,4-ethylenedioxythiophene) composites onto nanoporous gold for the hydrogen evolution reaction. Applied Surface Science, 2017, 410, 308-314	3.1	23

#	Article	IF	CITATIONS
485	Phase-controlled synthesis of polymorphic tungsten diphosphide with hybridization of monoclinic and orthorhombic phases as a novel electrocatalyst for efficient hydrogen evolution. Journal of Power Sources, 2017, 349, 138-143.	4.0	27
486	Photocatalysis with TiO ₂ Nanotubes: "Colorful―Reactivity and Designing Site-Specific Photocatalytic Centers into TiO ₂ Nanotubes. ACS Catalysis, 2017, 7, 3210-3235.	5.5	236
487	Effective Construction of High-quality Iron Oxy-hydroxides and Co-doped Iron Oxy-hydroxides Nanostructures: Towards the Promising Oxygen Evolution Reaction Application. Scientific Reports, 2017, 7, 43590.	1.6	51
488	Bulk layered heterojunction as an efficient electrocatalyst for hydrogen evolution. Science Advances, 2017, 3, e1602215.	4.7	85
489	In-situ anion exchange synthesis of copper selenide electrode as electrocatalyst for hydrogen evolution reaction. International Journal of Hydrogen Energy, 2017, 42, 10925-10930.	3.8	17
490	Simple anodization of home-made screen-printed carbon electrodes makes significant activity enhancement for hydrogen evolution: the synergistic effect of surface functional groups, defect sites, and hydrophilicity. Electrochimica Acta, 2017, 235, 64-71.	2.6	17
491	Nano-structured hybrid molybdenum carbides/nitrides generated in situ for HER applications. Journal of Materials Chemistry A, 2017, 5, 7764-7768.	5.2	64
492	Highly active MoS ₂ /carbon electrocatalysts for the hydrogen evolution reaction – insight into the effect of the internal resistance and roughness factor on the Tafel slope. Physical Chemistry Chemical Physics, 2017, 19, 1988-1998.	1.3	108
493	The Origin of MoS ₂ Significantly Influences Its Performance for the Hydrogen Evolution Reaction due to Differences in Phase Purity. Chemistry - A European Journal, 2017, 23, 3169-3177.	1.7	20
494	Facile solvothermal synthesis of monodisperse Pt 2.6 Co 1 nanoflowers with enhanced electrocatalytic activity towards oxygen reduction and hydrogen evolution reactions. Electrochimica Acta, 2017, 225, 525-532.	2.6	56
495	Dualâ€Functional N Dopants in Edges and Basal Plane of MoS ₂ Nanosheets Toward Efficient and Durable Hydrogen Evolution. Advanced Energy Materials, 2017, 7, 1602086.	10.2	286
496	3D MoS2-graphene hybrid aerogels as catalyst for enhanced efficient hydrogen evolution. Applied Surface Science, 2017, 396, 1520-1527.	3.1	57
497	Silicon microwire arrays decorated with amorphous heterometal-doped molybdenum sulfide for water photoelectrolysis. Nano Energy, 2017, 32, 422-432.	8.2	58
498	The Role of Intrinsic Defects in Electrocatalytic Activity of Monolayer VS ₂ Basal Planes for the Hydrogen Evolution Reaction. Journal of Physical Chemistry C, 2017, 121, 1530-1536.	1.5	93
499	Improving the activity of Co _x P nanoparticles for the electrochemical hydrogen evolution by hydrogenation. Sustainable Energy and Fuels, 2017, 1, 62-68.	2.5	41
500	In Situ Growth of Snâ€Đoped Ni ₃ S ₂ Nanosheets on Ni Foam as Highâ€Performance Electrocatalyst for Hydrogen Evolution Reaction. ChemElectroChem, 2017, 4, 594-600.	1.7	64
501	Three-dimensional metal–organic framework derived porous CoP ₃ concave polyhedrons as superior bifunctional electrocatalysts for the evolution of hydrogen and oxygen. Physical Chemistry Chemical Physics, 2017, 19, 2104-2110.	1.3	117
502	Bioinspired Metal Selenolate Polymers with Tunable Mechanistic Pathways for Efficient H ₂ Evolution. ACS Catalysis, 2017, 7, 848-854.	5.5	42

#	Article	IF	CITATIONS
503	Modeling the active sites of Co-promoted MoS ₂ particles by DFT. Physical Chemistry Chemical Physics, 2017, 19, 2017-2024.	1.3	25
504	Pine needle-derived microporous nitrogen-doped carbon frameworks exhibit high performances in electrocatalytic hydrogen evolution reaction and supercapacitors. Nanoscale, 2017, 9, 1237-1243.	2.8	154
505	Room-temperature ferromagnetism in the two-dimensional layered Cu ₂ MoS ₄ nanosheets. Physical Chemistry Chemical Physics, 2017, 19, 1735-1739.	1.3	12
506	Activating MoS ₂ for pH-Universal Hydrogen Evolution Catalysis. Journal of the American Chemical Society, 2017, 139, 16194-16200.	6.6	164
507	Strain and pH facilitated artificial photosynthesis in monolayer MoS ₂ nanosheets. Journal of Materials Chemistry A, 2017, 5, 22265-22276.	5.2	40
508	Engineering Co ₉ S ₈ /WS ₂ array films as bifunctional electrocatalysts for efficient water splitting. Journal of Materials Chemistry A, 2017, 5, 23361-23368.	5.2	117
509	Graphene decorated MoS ₂ for eosin Y-sensitized hydrogen evolution from water under visible light. RSC Advances, 2017, 7, 46738-46744.	1.7	18
510	Integrated Quasiplane Heteronanostructures of MoSe ₂ /Bi ₂ Se ₃ Hexagonal Nanosheets: Synergetic Electrocatalytic Water Splitting and Enhanced Supercapacitor Performance. Advanced Functional Materials, 2017, 27, 1703864.	7.8	170
511	Electrochemical and SECM Investigation of MoS ₂ /GO and MoS ₂ /rGO Nanocomposite Materials for HER Electrocatalysis. ACS Omega, 2017, 2, 7532-7545.	1.6	43
512	Three electron channels toward two types of active sites in MoS ₂ @Pt nanosheets for hydrogen evolution. Journal of Materials Chemistry A, 2017, 5, 22654-22661.	5.2	42
513	Arrays of ZnSe/MoSe ₂ Nanotubes with Electronic Modulation as Efficient Electrocatalysts for Hydrogen Evolution Reaction. Advanced Materials Interfaces, 2017, 4, 1700948.	1.9	39
514	Identification of catalytic sites in cobalt-nitrogen-carbon materials for the oxygen reduction reaction. Nature Communications, 2017, 8, 957.	5.8	443
515	Self-Supported Ferric Phosphide Spherical Clusters as Efficient Electrocatalysts for Hydrogen Evolution Reaction. ChemistrySelect, 2017, 2, 9472-9478.	0.7	6
516	Tunable active edge sites in PtSe2 films towards hydrogen evolution reaction. Nano Energy, 2017, 42, 26-33.	8.2	109
517	Precious metal-free approach to hydrogen electrocatalysis for energy conversion: From mechanism understanding to catalyst design. Nano Energy, 2017, 42, 69-89.	8.2	157
518	One-pot synthesis of MoS ₂ /WS ₂ ultrathin nanoflakes with vertically aligned structure on indium tin oxide as a photocathode for enhanced photo-assistant electrochemical hydrogen evolution reaction. RSC Advances, 2017, 7, 49309-49319.	1.7	29
519	Gold nanoparticles physicochemically bonded onto tungsten disulfide nanosheet edges exhibit augmented plasmon damping. AIP Advances, 2017, 7, .	0.6	15
520	Amorphous WS x as an efficient cocatalyst grown on CdS nanoparticles via photochemical deposition for enhanced visible-light-driven hydrogen evolution. Molecular Catalysis, 2017, 440, 190-198.	1.0	26

ARTICLE IF CITATIONS # Symmetric synergy of hybrid CoS₂â€"WS₂ electrocatalysts for the hydrogen 521 5.2 81 evolution reaction. Journal of Materials Chemistry A, 2017, 5, 15552-15558. Pyrite-Type Nanomaterials for Advanced Electrocatalysis. Accounts of Chemical Research, 2017, 50, 2194-2204. Nanocrystalline Co_{0.85}Se Anchored on Graphene Nanosheets as a Highly Efficient and Stable Électrocatalyst for Hydrogen Evolution Reaction. ACS Applied Materials & amp; Interfaces, 2017, 523 4.0 118 9, 30703-30710. High Electrocatalytic Response of a Mechanically Enhanced NbC Nanocomposite Electrode Toward 524 Hydrogen Evolution Reaction. ACS Applied Matérials & amp; Interfaces, 2017, 9, 30872-30879. Hydrogen generation by water splitting using MoS2 and other transition metal dichalcogenides. Nano 525 8.2 248 Energy, 2017, 41, 49-65. NiSe2 nanoparticles embedded in carbon nanowires as highly efficient and stable electrocatalyst for hydrogen evolution reaction. Electrochimica Acta, 2017, 254, 230-237. 2.6 64 Magnetic Co-Doped MoS₂ Nanosheets for Efficient Catalysis of Nitroarene Reduction. ACS 527 1.6 66 Omega, 2017, 2, 5891-5897. Cubic Mo6S8-Efficient Electrocatalyst Towards Hydrogen Evolution Over Wide pH Range. 2.6 24 Electrochimica Acta, 2017, 252, 408-415. Ternary PtCoNi flower-like networks: One-step additive-free synthesis and highly boosted 529 electrocatalytic performance for hydrogen evolution and oxygen reduction. International Journal of 3.8 28 Hydrogen Energy, 2017, 42, 25277-25284. Defective MoS2 electrocatalyst for highly efficient hydrogen evolution through a simple ball-milling 3.5 method. Science China Materials, 2017, 60, 849-856. Hydrothermal synthesis of the composited WS2–W5O14—MWCNTs for high performance dye-sensitized sólar cell countér electrodes. Journal of Materials Science: Materials in Electronics, 2017, 28, 531 1.1 6 18765-18772. Recombination dynamics of optically excited charge carriers in bulk MoS₂. Journal of Physics B: Atomić, Molecular and Optical Physics, 2017, 50, 194003. Morphological and electronic modulation of NiSe nanosheet assemblies by Mo, S-codoping for an 533 5.2 29 efficient hydrogen evolution reaction. Journal of Materials Chemistry A, 2017, 5, 20588-20593. Homologous Catalysts Based on Feâ€Doped CoP Nanoarrays for Highâ€Performance Full Water Splitting under Benign Conditions. ChemSusChem, 2017, 10, 3188-3192. 534 3.6 58 Electrocatalytic hydrogen gas generation by cobalt molybdenum disulfide (CoMoS2) synthesized 535 using alkyl-containing thiomolybdate precursors. International Journal of Hydrogen Energy, 2017, 42, 19 3.8 20669-20676. Nanostructured materials on 3D nickel foam as electrocatalysts for water splitting. Nanoscale, 2017, 536 403 9, 12231-12247. A self-supported NiMoS₄ nanoarray as an efficient 3D cathode for the alkaline hydrogen 537 5.2114 evolution reaction. Journal of Materials Chemistry A, 2017, 5, 16585-16589. Nanostructured Metal Chalcogenides for Energy Storage and Electrocatalysis. Advanced Functional 538 339 Materials, 2017, 27, 1702317.

#	Article	IF	CITATIONS
539	Facile Solvothermal Synthesis of Pt ₄ Co Multiâ€dendrites: An Effective Electrocatalyst for Oxygen Reduction and Glycerol Oxidation. ChemElectroChem, 2017, 4, 2909-2914.	1.7	14
540	Enhancement of hydrogen evolution activities of low-cost transition metal electrocatalysts in near-neutral strongly buffered aerobic media. Electrochemistry Communications, 2017, 83, 6-10.	2.3	20
541	Enhanced Hydrogen Evolution Catalysis at the Liquid/Liquid Interface by Ni <i>_x</i> S <i>_y</i> and Ni <i>_x</i> S <i>_y</i> /Carbon Nanotube Catalysts. European Journal of Inorganic Chemistry, 2017, 2017, 3961-3966.	1.0	20
542	A highly efficient electrocatalyst based on amorphous Pd–Cu–S material for hydrogen evolution reaction. Journal of Materials Chemistry A, 2017, 5, 18793-18800.	5.2	70
543	<i>In Situ</i> Atomic-Scale Studies of the Formation of Epitaxial Pt Nanocrystals on Monolayer Molybdenum Disulfide. ACS Nano, 2017, 11, 9057-9067.	7.3	27
544	Ti@MoSx core-shell nanowire arrays as self-supported electrodes for hydrogen evolution reaction. International Journal of Hydrogen Energy, 2017, 42, 30646-30652.	3.8	10
545	A novel two-dimensional hierarchical Mo2C/C-N hybrid fabricated via ionothermal route as a robust electrocatalyst for hydrogen evolution reaction. Electrochimica Acta, 2017, 258, 970-978.	2.6	16
546	Molybdenum Diselenide Nanolayers Prepared on Carbon Black as an Efficient and Stable Electrocatalyst for Hydrogen Evolution Reaction. Journal of Physical Chemistry C, 2017, 121, 26686-26697.	1.5	28
547	Assembly of protonated mesoporous carbon nitrides with co-catalytic [Mo ₃ S ₁₃] ^{2â^'} clusters for photocatalytic hydrogen production. Chemical Communications, 2017, 53, 13221-13224.	2.2	40
548	Rational Bottom-Up Engineering of Electrocatalysts by Atomic Layer Deposition: A Case Study of Fe _{<i>x</i>} Co _{1–<i>x</i>} S _{<i>y</i>} Based Catalysts for Electrochemical Hydrogen Evolution. ACS Energy Letters, 2017, 2, 2778-2785.	8.8	61
549	Photosynthetic water splitting by the Mn ₄ Ca ²⁺ O _{<i>X</i>} catalyst of photosystem II: its structure, robustness and mechanism. Quarterly Reviews of Biophysics, 2017, 50, e13.	2.4	19
550	Striking hierarchical urchin-like peapoded NiCo2O4@C as advanced bifunctional electrocatalyst for overall water splitting. Journal of Power Sources, 2017, 372, 46-53.	4.0	54
551	Mn doped MoS 2 /reduced graphene oxide hybrid for enhanced hydrogen evolution. Applied Surface Science, 2017, 425, 470-477.	3.1	103
552	Highly dispersed few-layer MoS2 nanosheets on S, N co-doped carbon for electrocatalytic H2 production. Chinese Journal of Catalysis, 2017, 38, 1028-1037.	6.9	19
553	High performance asymmetric supercapacitor based on molybdenum disulphide/graphene foam and activated carbon from expanded graphite. Journal of Colloid and Interface Science, 2017, 488, 155-165.	5.0	97
554	Activating MoS2/CNs by tuning (001) plane as efficient electrocatalysts for hydrogen evolution reaction. International Journal of Hydrogen Energy, 2017, 42, 2088-2095.	3.8	75
555	2D WS2 nanosheet supported Pt nanoparticles for enhanced hydrogen evolution reaction. International Journal of Hydrogen Energy, 2017, 42, 5472-5477.	3.8	45
556	Strongly Coupled 3D Nanohybrids with Ni ₂ P/Carbon Nanosheets as pHâ€Universal Hydrogen Evolution Reaction Electrocatalysts. ChemElectroChem, 2017, 4, 340-344.	1.7	43

#	Article	IF	CITATIONS
557	An efficient electrocatalysts for the hydrogen evolution reaction based on molybdenum dioxide nanoparticles embedded porous graphene nanocomposite. International Journal of Hydrogen Energy, 2017, 42, 5569-5576.	3.8	10
558	Co–Fe–Se ultrathin nanosheet-fabricated microspheres for efficient electrocatalysis of hydrogen evolution. Journal of Applied Electrochemistry, 2017, 47, 361-367.	1.5	14
559	Template-assisted synthesis of highly dispersed MoS2 nanosheets with enhanced activity for hydrogen evolution reaction. International Journal of Hydrogen Energy, 2017, 42, 2054-2060.	3.8	40
560	Bimetallic AuPt alloy nanodendrites/reduced graphene oxide: One-pot ionic liquid-assisted synthesis and excellent electrocatalysis towards hydrogen evolution and methanol oxidation reactions. International Journal of Hydrogen Energy, 2017, 42, 1120-1129.	3.8	51
561	Two-Dimensional Material Molybdenum Disulfides as Electrocatalysts for Hydrogen Evolution. Catalysts, 2017, 7, 285.	1.6	72
562	Recent advances in unveiling active sites in molybdenum sulfide-based electrocatalysts for the hydrogen evolution reaction. Nano Convergence, 2017, 4, 19.	6.3	49
563	Facile Construction of MoS2/CNFs Hybrid Structure for a Hydrogen Evolution Reaction. International Journal of Electrochemical Science, 2017, , 4563-4573.	0.5	5
564	Recent development on carbon based heterostructures for their applications in energy and environment: A review. Journal of Industrial and Engineering Chemistry, 2018, 64, 16-59.	2.9	146
565	Porous superstructures constructed from ultrafine FeP nanoparticles for highly active and exceptionally stable hydrogen evolution reaction. Journal of Materials Chemistry A, 2018, 6, 6387-6392.	5.2	79
566	Improved HER Catalysis through Facile, Aqueous Electrochemical Activation of Nanoscale WSe ₂ . Nano Letters, 2018, 18, 2329-2335.	4.5	66
567	Controllable Edge Exposure of MoS ₂ for Efficient Hydrogen Evolution with High Current Density. ACS Applied Energy Materials, 2018, 1, 1268-1275.	2.5	44
568	Understanding homogeneous hydrogen evolution reactivity and deactivation pathways of molecular molybdenum sulfide catalysts. Sustainable Energy and Fuels, 2018, 2, 1020-1026.	2.5	49
569	Effect of microstructure on HER catalytic properties of MoS2 vertically standing nanosheets. Journal of Alloys and Compounds, 2018, 747, 100-108.	2.8	30
570	Effect of zinc precursors on the hydrogen evolution reaction and electrochemical corrosion studies of ZnWO 4 nanoparticles synthesized by hot injection method. Journal of Physics and Chemistry of Solids, 2018, 119, 210-219.	1.9	14
571	Electrochemical Hydrogen Permeation Properties of MoS ₂ and Ni ₈₀ Cr ₂₀ Films Prepared by Magnetron Sputtering on Pure Iron. Journal of the Electrochemical Society, 2018, 165, E256-E261.	1.3	9
572	Facile solvothermal fabrication of Pt47Ni53 nanopolyhedrons for greatly boosting electrocatalytic performances for oxygen reduction and hydrogen evolution. Journal of Colloid and Interface Science, 2018, 525, 260-268.	5.0	20
573	Revealing the Doubleâ€Edged Sword Role of Graphene on Boosted Charge Transfer versus Active Site Control in TiO ₂ Nanotube Arrays@RGO/MoS ₂ Heterostructure. Small, 2018, 14, e1704531.	5.2	49
574	Deposition and separation of W and Mo from aqueous solutions with simultaneous hydrogen production in stacked bioelectrochemical systems (BESs): Impact of heavy metals W(VI)/Mo(VI) molar ratio, initial pH and electrode material. Journal of Hazardous Materials, 2018, 353, 348-359.	6.5	9

#	Article	IF	CITATIONS
575	Low-temperature plasma-enhanced atomic layer deposition of 2-D MoS ₂ : large area, thickness control and tuneable morphology. Nanoscale, 2018, 10, 8615-8627.	2.8	90
576	Mapping Catalytically Relevant Edge Electronic States of MoS ₂ . ACS Central Science, 2018, 4, 493-503.	5.3	39
577	Approaching the self-consistency challenge of electrocatalysis with theory and computation. Current Opinion in Electrochemistry, 2018, 9, 189-197.	2.5	28
578	Hydrogen Evolution Reaction at Anion Vacancy of Two-Dimensional Transition-Metal Dichalcogenides: Ab Initio Computational Screening. Journal of Physical Chemistry Letters, 2018, 9, 2049-2055.	2.1	98
579	Die lokale OberflÜhenstruktur und â€æusammensetzung bestimmt die Wasserstoffentwicklung an Eisenâ€Nickelsulfiden. Angewandte Chemie, 2018, 130, 4157-4161.	1.6	10
580	Role of Hyper-Reduced States in Hydrogen Evolution Reaction at Sulfur Vacancy in MoS ₂ . ACS Catalysis, 2018, 8, 4508-4515.	5.5	45
581	3D structured Mo-doped Ni3S2 nanosheets as efficient dual-electrocatalyst for overall water splitting. Applied Surface Science, 2018, 441, 1024-1033.	3.1	127
582	Electrochemical growth of MoSx on Cu foam: AÂhighly active and robust three-dimensional cathode for hydrogen evolution. International Journal of Hydrogen Energy, 2018, 43, 4978-4986.	3.8	20
583	Dicationic ionic liquid mediated fabrication of Au@Pt nanoparticles supported on reduced graphene oxide with highly catalytic activity for oxygen reduction and hydrogen evolution. Applied Surface Science, 2018, 441, 438-447.	3.1	31
584	Urchin-Like Nanorods of Binary NiCoS Supported on Nickel Foam for Electrocatalytic Overall Water Splitting. Journal of the Electrochemical Society, 2018, 165, H102-H108.	1.3	41
585	Tuning Electronic Structure of Single Layer MoS ₂ through Defect and Interface Engineering. ACS Nano, 2018, 12, 2569-2579.	7.3	203
586	Dual-Functional Starfish-like P-Doped Co–Ni–S Nanosheets Supported on Nickel Foams with Enhanced Electrochemical Performance and Excellent Stability for Overall Water Splitting. ACS Applied Materials & Interfaces, 2018, 10, 7087-7095.	4.0	103
587	Porous core-shell N-doped Mo2C@C nanospheres derived from inorganic-organic hybrid precursors for highly efficient hydrogen evolution. Journal of Catalysis, 2018, 360, 9-19.	3.1	124
588	Polymer-Brush-Templated Three-Dimensional Molybdenum Sulfide Catalyst for Hydrogen Evolution. ACS Applied Materials & Interfaces, 2018, 10, 6253-6261.	4.0	28
589	Local Surface Structure and Composition Control the Hydrogen Evolution Reaction on Iron Nickel Sulfides. Angewandte Chemie - International Edition, 2018, 57, 4093-4097.	7.2	104
590	Nanocatalysts for hydrogen evolution reactions. Physical Chemistry Chemical Physics, 2018, 20, 6777-6799.	1.3	100
591	Durable oxygen evolution reaction of one dimensional spinel CoFe ₂ O ₄ nanofibers fabricated by electrospinning. RSC Advances, 2018, 8, 5338-5343.	1.7	54
592	Synergistic effect of Co–Ni co-bridging with MoS ₂ nanosheets for enhanced electrocatalytic hydrogen evolution reactions. RSC Advances, 2018, 8, 3374-3380.	1.7	26

#	Article	IF	CITATIONS
593	Cobalt Sulfide Nanotubes (Co ₉ S ₈) Decorated with Amorphous MoS _{<i>x</i>} as Highly Efficient Hydrogen Evolution Electrocatalyst. ACS Applied Nano Materials, 2018, 1, 1083-1093.	2.4	31
594	Engineered MoSe ₂ â€Based Heterostructures for Efficient Electrochemical Hydrogen Evolution Reaction. Advanced Energy Materials, 2018, 8, 1703212.	10.2	152
595	Preferential horizontal growth of tungsten sulfide on carbon and insight into active sulfur sites for the hydrogen evolution reaction. Nanoscale, 2018, 10, 3838-3848.	2.8	31
596	Nanocomposite of MoO ₂ and MoC loaded on porous carbon as an efficient electrocatalyst for hydrogen evolution reaction. Inorganic Chemistry Frontiers, 2018, 5, 446-453.	3.0	31
597	Hybrid of Fe4[Fe(CN)6]3 nanocubes and MoS2 nanosheets on nitrogen-doped graphene realizing improved electrochemical hydrogen production. Electrochimica Acta, 2018, 263, 140-146.	2.6	38
598	Functionalized Carbon Nanotubes for Highly Active and Metal-Free Electrocatalysts in Hydrogen Evolution Reaction. Electrocatalysis, 2018, 9, 573-581.	1.5	22
599	Tuning the oxygen reduction reactivity of interconnected porous carbon by incorporation of phosphorus and activity enhancement through blending with 2D metal dichalcogenides materials. International Journal of Hydrogen Energy, 2018, 43, 4738-4745.	3.8	5
600	Ordered mesoporous WO _{2.83} : selective reduction synthesis, exceptional localized surface plasmon resonance and enhanced hydrogen evolution reaction activity. Journal of Materials Chemistry A, 2018, 6, 2249-2256.	5.2	76
601	CoP particles embedded in N-doped two-dimensional carbon sheets as efficient electrocatalyst for water splitting. Electrochimica Acta, 2018, 276, 362-369.	2.6	37
602	An electrochemical anodization strategy towards high-activity porous MoS ₂ electrodes for the hydrogen evolution reaction. RSC Advances, 2018, 8, 15030-15035.	1.7	5
603	Preparation of amorphous NiP-based catalysts for hydrogen evolution reactions. Journal of Fuel Chemistry and Technology, 2018, 46, 473-478.	0.9	20
604	Controllable etching of MoS2 basal planes for enhanced hydrogen evolution through the formation of active edge sites. Nano Energy, 2018, 49, 634-643.	8.2	220
605	Enhanced photoelectrochemical and photocatalytic activities of CdS nanowires by surface modification with MoS2 nanosheets. Science China Materials, 2018, 61, 839-850.	3.5	44
606	Activity Origins in Nanocarbons for the Electrocatalytic Hydrogen Evolution Reaction. Small, 2018, 14, e1800235.	5.2	68
607	Bimetallic Alloyed PtCu Nanocubic Frames with Threeâ€Dimensional Molecular Accessible Surfaces for Boosting Oxygen Reduction and Glycerol Oxidation Reactions. ChemCatChem, 2018, 10, 3319-3326.	1.8	24
608	Hydrogen gas generation using a metal-free fluorinated porphyrin. Chemical Science, 2018, 9, 4689-4695.	3.7	38
609	Highly Water Dispersible Polymer Acid-Doped Polyanilines as Low-Cost, Nafion-Free Ionomers for Hydrogen Evolution Reaction. ACS Applied Energy Materials, 2018, 1, 1512-1521.	2.5	18
610	Hydrogen derived from water as a sustainable solar fuel: learning from biology. Sustainable Energy and Fuels, 2018, 2, 927-935.	2.5	28

#	Article	IF	CITATIONS
611	rGO/CNTs Supported Pyrolysis Derivatives of [Mo ₃ S ₁₃] ^{2–} Clusters as Promising Electrocatalysts for Enhancing Hydrogen Evolution Performances. ACS Sustainable Chemistry and Engineering, 2018, 6, 6920-6931.	3.2	17
612	Chemical strain formation through anion substitution in Cu ₂ WS ₄ for efficient electrocatalysis of water dissociation. Journal of Materials Chemistry A, 2018, 6, 7786-7793.	5.2	51
613	Ultrathin MXene nanosheets with rich fluorine termination groups realizing efficient electrocatalytic hydrogen evolution. Nano Energy, 2018, 47, 512-518.	8.2	243
614	Ternary nickel iron phosphide supported on nickel foam as a high-efficiency electrocatalyst for overall water splitting. International Journal of Hydrogen Energy, 2018, 43, 7299-7306.	3.8	76
615	A functional design and synthesization for electrocatalytic hydrogen evolution material on MoS2/Co3S4 hybrid hollow nanostructure. Electrochimica Acta, 2018, 269, 262-273.	2.6	42
616	Highâ€Performance Electrocatalysts for Hydrogen Evolution Reaction Using Flexible Electrodes Made up of Chemically Modified Polyester Films. ChemistrySelect, 2018, 3, 2738-2746.	0.7	2
617	Cobalt encapsulated N-doped defect-rich carbon nanotube as pH universal hydrogen evolution electrocatalyst. Applied Surface Science, 2018, 446, 10-17.	3.1	47
618	Highly efficient hydrogen evolution based on Ni3S4@MoS2 hybrids supported on N-doped reduced graphene oxide. Applied Surface Science, 2018, 428, 1046-1055.	3.1	18
619	MoS ₂ @HKUSTâ€1 Flowerâ€Like Nanohybrids for Efficient Hydrogen Evolution Reactions. Chemistry - A European Journal, 2018, 24, 1080-1087.	1.7	29
620	High-metallic-phase-concentration Mo1–xWxS2 nanosheets with expanded interlayers as efficient electrocatalysts. Nano Research, 2018, 11, 1687-1698.	5.8	37
621	Molten salt-mediated formation of g-C 3 N 4 -MoS 2 for visible-light-driven photocatalytic hydrogen evolution. Applied Surface Science, 2018, 430, 218-224.	3.1	89
622	Electric field and photoelectrical effect bi-enhanced hydrogen evolution reaction. Nano Research, 2018, 11, 3205-3212.	5.8	17
623	A novel WO3/MoS2 photocatalyst applied to the decolorization of the textile dye Reactive Blue 198. Journal of Solid State Electrochemistry, 2018, 22, 1449-1458.	1.2	6
624	Quasiâ€Emulsion Confined Synthesis of Edgeâ€Rich Ultrathin MoS ₂ Nanosheets/Graphene Hybrid for Enhanced Hydrogen Evolution. Chemistry - A European Journal, 2018, 24, 556-560.	1.7	55
625	MoS ₂ –MoP heterostructured nanosheets on polymer-derived carbon as an electrocatalyst for hydrogen evolution reaction. Journal of Materials Chemistry A, 2018, 6, 616-622.	5.2	104
626	Functional adlayers on Au electrodes: some recent applications in hydrogen evolution and oxygen reduction. Journal of Materials Chemistry A, 2018, 6, 1323-1339.	5.2	14
627	Phase controllable fabrication of zinc cobalt sulfide hollow polyhedra as high-performance electrocatalysts for the hydrogen evolution reaction. Nanoscale, 2018, 10, 1774-1778.	2.8	36
628	Nonmetal doping induced electronic and magnetic properties in MoSe2 monolayer. Chemical Physics Letters, 2018, 692, 69-74.	1.2	12

#	Article	IF	CITATIONS
629	One-step synthesis of the 3D flower-like heterostructure MoS2/CuS nanohybrid for electrocatalytic hydrogen evolution. International Journal of Hydrogen Energy, 2018, 43, 1251-1260.	3.8	54
630	Au Ni alloy nanoparticles supported on reduced graphene oxide as highly efficient electrocatalysts for hydrogen evolution and oxygen reduction reactions. International Journal of Hydrogen Energy, 2018, 43, 1424-1438.	3.8	42
631	Effect of Intercalated Metals on the Electrocatalytic Activity of 1T-MoS ₂ for the Hydrogen Evolution Reaction. ACS Energy Letters, 2018, 3, 7-13.	8.8	211
632	Molecular catalysts of Co, Ni, Fe, and Mo for hydrogen generation in artificial photosynthetic systems. Coordination Chemistry Reviews, 2018, 373, 295-316.	9.5	107
633	Contrastive study on porphyrinic iron metal-organic framework supported on various carbon matrices as efficient electrocatalysts. Journal of Colloid and Interface Science, 2018, 513, 438-447.	5.0	18
634	Electrodeposition of Electroactive Co–B and Co–B–C Alloys for Water Splitting Process in 8 M NaOH Solutions. Electrocatalysis, 2018, 9, 189-203.	1.5	4
635	Hydrogen Production Using Electrodeposited Ni and Ni/Co on Carbon Paper as Cathode Catalyst in Microbial Electrolysis Cells. International Journal of Electrochemical Science, 2018, 13, 10848-10858.	0.5	8
636	Simultaneous edge and electronic control of MoS ₂ nanosheets through Fe doping for an efficient oxygen evolution reaction. Nanoscale, 2018, 10, 20113-20119.	2.8	63
637	Catalytic activity for the hydrogen evolution reaction of edges in Janus monolayer MoXY (X/Y = S, Se,) Tj ETQq0 0	0.rgBT /O	verlock 10 T

638	Highly active single-layer MoS ₂ catalysts synthesized by swift heavy ion irradiation. Nanoscale, 2018, 10, 22908-22916.	2.8	39
639	Ultrafine Rh nanoparticle decorated MoSe ₂ nanoflowers for efficient alkaline hydrogen evolution reaction. Inorganic Chemistry Frontiers, 2018, 5, 2978-2984.	3.0	18
640	Vertically Aligned Ultrathin 1T-WS2 Nanosheets Enhanced the Electrocatalytic Hydrogen Evolution. Nanoscale Research Letters, 2018, 13, 167.	3.1	57
641	Effect of Linking Pattern of Dibenzothiophene- <i>S</i> , <i>S</i> -dioxide-Containing Conjugated Microporous Polymers on the Photocatalytic Performance. Macromolecules, 2018, 51, 9502-9508.	2.2	113
642	Boosting Alkaline Hydrogen Evolution Activity with Niâ€Doped MoS ₂ /Reduced Graphene Oxide Hybrid Aerogel. ChemSusChem, 2019, 12, 457-466.	3.6	56
643	Carbon Nanotube with Vertical 2D Molybdenum Sulphoselenide Nanosheet Arrays for Boosting Electrocatalytic Hydrogen Evolution. ACS Applied Energy Materials, 2018, 1, 7035-7045.	2.5	32
644	One-pot wet-chemical synthesis of uniform AuPtPd nanodendrites as efficient electrocatalyst for boosting hydrogen evolution and oxygen reduction reactions. International Journal of Hydrogen Energy, 2018, 43, 22187-22194.	3.8	35
645	Recent developments in earth-abundant and non-noble electrocatalysts for water electrolysis. Materials Today Physics, 2018, 7, 121-138.	2.9	203
646	Towards activation of amorphous MoS via Cobalt doping for enhanced electrocatalytic hydrogen evolution reaction. International Journal of Hydrogen Energy, 2018, 43, 23109-23117.	3.8	29

#	Article	IF	CITATIONS
647	Hierarchical MoS2/Ni3S2 core-shell nanofibers for highly efficient and stable overall-water-splitting in alkaline media. Materials Today Energy, 2018, 10, 214-221.	2.5	16
648	Multi-compositional hierarchical nanostructured Ni ₃ S ₂ @MoS _x /NiO electrodes for enhanced electrocatalytic hydrogen generation and energy storage. Journal of Materials Chemistry A, 2018, 6, 20491-20499.	5.2	25
649	2D layered transition metal dichalcogenides (MoS2): Synthesis, applications and theoretical aspects. Applied Materials Today, 2018, 13, 242-270.	2.3	139
650	Enhancing Catalytic Activity of MoS ₂ Basal Plane S-Vacancy by Co Cluster Addition. ACS Energy Letters, 2018, 3, 2685-2693.	8.8	121
651	Molybdenumâ€Based Carbon Hybrid Materials to Enhance the Hydrogen Evolution Reaction. Chemistry - A European Journal, 2018, 24, 18158-18179.	1.7	46
652	Molybdenum Sulfide Electrocatalysis is Dramatically Influenced by Solvents Used for Its Dispersions. ACS Omega, 2018, 3, 14371-14379.	1.6	4
653	Insights into the Electrocatalytic Hydrogen Evolution Reaction Mechanism on Twoâ€Dimensional Transitionâ€Metal Carbonitrides (MXene). Chemistry - A European Journal, 2018, 24, 18479-18486.	1.7	87
654	Electrocatalytic hydrogen evolution using metal-free porphyrins. International Journal of Hydrogen Energy, 2018, 43, 18843-18849.	3.8	22
655	Neural Network Inspired Design of Highly Active and Durable N-Doped Carbon Interconnected Molybdenum Phosphide for Hydrogen Evolution Reaction. ACS Applied Energy Materials, 0, , .	2.5	7
656	Synergistic modulation in MX ₂ (whereÂM = Mo or W or V, and X = S or Se) for an enhanced hydrogen evolution reaction. Journal of Materials Chemistry A, 2018, 6, 21847-21858.	5.2	39
657	Highly Crystalline Pd ₁₃ Cu ₃ S ₇ Nanoplates Prepared via Partial Cation Exchange of Cu _{1.81} S Templates as an Efficient Electrocatalyst for the Hydrogen Evolution Reaction. Chemistry of Materials, 2018, 30, 6884-6892.	3.2	36
658	Dynamics of Photocatalytic Hydrogen Production in Aqueous Dispersions of Monolayer-Rich Tungsten Disulfide. ACS Energy Letters, 2018, 3, 2223-2229.	8.8	26
659	Grain Boundaries Trigger Basal Plane Catalytic Activity for the Hydrogen Evolution Reaction in Monolayer MoS2. Electrocatalysis, 2018, 9, 744-751.	1.5	22
660	Modulation of Hydrogen Evolution Catalytic Activity of Basal Plane in Monolayer Platinum and Palladium Dichalcogenides. ACS Omega, 2018, 3, 10058-10065.	1.6	46
661	Polyoxomolybdate-derived carbon-encapsulated multicomponent electrocatalysts for synergistically boosting hydrogen evolution. Journal of Materials Chemistry A, 2018, 6, 17874-17881.	5.2	30
662	Tri- and tetranuclear molybdenum and tungsten chalcogenide clusters: on the way to new materials and catalysts *. Russian Chemical Reviews, 2018, 87, 670-706.	2.5	33
663	Strong Coupling of MoS ₂ Nanosheets and Nitrogenâ€Doped Graphene for Highâ€Performance Pseudocapacitance Lithium Storage. Small, 2018, 14, e1704410.	5.2	89
664	Liquidâ€Phase Exfoliated Indium–Selenide Flakes and Their Application in Hydrogen Evolution Reaction. Small, 2018, 14, e1800749.	5.2	90

#	Article	IF	CITATIONS
665	Phosphorus Dualâ€Doped MoO ₂ Nanosheet/Multiwalled Carbon Nanotube Hybrid as Efficient Electrocatalyst for Hydrogen Evolution. ChemElectroChem, 2018, 5, 2660-2665.	1.7	26
666	Mesoporous Silica Loaded with Molybdenum Phosphide Nanoparticles for Hydrogen Evolution. Advances in Materials Science and Engineering, 2018, 2018, 1-5.	1.0	Ο
667	Skutterudite-Type Ternary Co _{1–<i>x</i>} Ni _{<i>x</i>} P ₃ Nanoneedle Array Electrocatalysts for Enhanced Hydrogen and Oxygen Evolution. ACS Energy Letters, 2018, 3, 1744-1752.	8.8	160
668	An ultrathin nickel-based film electrodeposited from a Ni-Tris molecular precursor for highly efficient electrocatalytic water oxidation. Electrochimica Acta, 2018, 283, 104-110.	2.6	12
669	Synthesis of sulfur-rich MoS2 nanoflowers for enhanced hydrogen evolution reaction performance. Electrochimica Acta, 2018, 283, 306-312.	2.6	62
670	Application of Nanomaterials Prepared by Thermolysis of Metal Chelates. Springer Series on Polymer and Composite Materials, 2018, , 459-541.	0.5	1
671	Transition-metal-doped NiSe2 nanosheets towards efficient hydrogen evolution reactions. Nano Research, 2018, 11, 6051-6061.	5.8	72
672	Layer-Number-Dependent Exciton Recombination Behaviors of MoS ₂ Determined by Fluorescence-Lifetime Imaging Microscopy. Journal of Physical Chemistry C, 2018, 122, 18651-18658.	1.5	21
673	Rational inert-basal-plane activating design of ultrathin 1T′ phase MoS ₂ with a MoO ₃ heterostructure for enhancing hydrogen evolution performances. Nanoscale, 2018, 10, 16531-16538.	2.8	75
674	Boosting electrocatalytic activity of ultrathin MoSe2/C composites for hydrogen evolution via a surfactant assisted hydrothermal method. International Journal of Hydrogen Energy, 2018, 43, 15749-15761.	3.8	19
675	Prickly Pear-Like Three-Dimensional Porous MoS2: Synthesis, Characterization and Advanced Hydrogen Evolution Reaction. Catalysts, 2018, 8, 235.	1.6	3
677	Reaction Mechanism with Thermodynamic Structural Screening for Electrochemical Hydrogen Evolution on Monolayer 1T′ Phase MoS ₂ . Chemistry of Materials, 2018, 30, 5404-5411.	3.2	33
678	Exploration of Mechanical and Thermal Properties of CTAB-Modified MoS2/LLDPE Composites Prepared by Melt Mixing. Journal of Composites Science, 2018, 2, 37.	1.4	5
679	Recent advances in hydrogen evolution reaction catalysts on carbon/carbon-based supports in acid media. Journal of Power Sources, 2018, 398, 9-26.	4.0	163
680	Hydrogen Evolution Reaction Property of Molybdenum Disulfide/Nickel Phosphide Hybrids in Alkaline Solution. Metals, 2018, 8, 359.	1.0	21
681	Synthesis, properties, and optoelectronic applications of two-dimensional MoS ₂ and MoS ₂ -based heterostructures. Chemical Society Reviews, 2018, 47, 6101-6127.	18.7	293
682	PbTe quantum dots as electron transfer intermediates for the enhanced hydrogen evolution reaction of amorphous MoS _x /TiO ₂ nanotube arrays. Nanoscale, 2018, 10, 10288-10295.	2.8	44
683	Electrodeposited molybdenum sulfide as a cathode for proton exchange membrane water electrolyzer. Journal of Power Sources, 2018, 392, 69-78.	4.0	37

#	Article	IF	CITATIONS
684	Surface engineering-modulated porous N-doped rod-like molybdenum phosphide catalysts: towards high activity and stability for hydrogen evolution reaction over a wide pH range. RSC Advances, 2018, 8, 26871-26879.	1.7	20
685	One-step synthesis of ultrafine MoNiS and MoCoS monolayers as high-performance catalysts for hydrodesulfurization and hydrodenitrogenation. Applied Catalysis B: Environmental, 2018, 239, 433-440.	10.8	37
686	Ni(OH) ₂ â€WP Hybrid Nanorod Arrays for Highly Efficient and Durable Hydrogen Evolution Reactions in Alkaline Media. ChemSusChem, 2018, 11, 3618-3624.	3.6	35
687	Mesoporous Mo ₂ C/Carbon Hybrid Nanotubes Synthesized by a Dual-Template Self-Assembly Approach for an Efficient Hydrogen Production Electrocatalyst. Langmuir, 2018, 34, 10924-10931.	1.6	27
688	Photochemical and electrochemical hydrogen evolution reactivity of lanthanide-functionalized polyoxotungstates. Chemical Communications, 2018, 54, 10427-10430.	2.2	75
689	Dopedâ€MoSe ₂ Nanoflakes/3d Metal Oxide–Hydr(Oxy)Oxides Hybrid Catalysts for pHâ€Universal Electrochemical Hydrogen Evolution Reaction. Advanced Energy Materials, 2018, 8, 1801764.	10.2	67
690	Structural and Electronic Investigation of Tetrachalcogenidomolybdate Dianions. ChemistrySelect, 2018, 3, 5808-5813.	0.7	0
691	The synergistic effect of Ni promoter on Mo-S/CNT catalyst towards hydrodesulfurization and hydrogen evolution reactions. Fuel, 2018, 232, 36-44.	3.4	30
692	Improved Hydrogen Evolution Reaction Performance using MoS ₂ –WS ₂ Heterostructures by Physicochemical Process. ACS Sustainable Chemistry and Engineering, 2018, 6, 8400-8409.	3.2	111
693	Recent Development of Metallic (1T) Phase of Molybdenum Disulfide for Energy Conversion and Storage. Advanced Energy Materials, 2018, 8, 1703482.	10.2	317
694	Metal Organic Framework Derived Fe-Doped CoSe ₂ Incorporated in Nitrogen-Doped Carbon Hybrid for Efficient Hydrogen Evolution. ACS Sustainable Chemistry and Engineering, 2018, 6, 8672-8678.	3.2	74
695	Single Tungsten Atoms Supported on MOFâ€Derived Nâ€Doped Carbon for Robust Electrochemical Hydrogen Evolution. Advanced Materials, 2018, 30, e1800396.	11.1	427
696	CoSe2 nanosheets decorated on carbon fibers as efficient and stable catalysts for hydrogen evolution reaction. Journal of Materials Science: Materials in Electronics, 2018, 29, 12300-12305.	1.1	10
697	Hydrogen evolution catalysis by molybdenum sulfides (MoS _x): are thiomolybdate clusters like [Mo ₃ S ₁₃] ^{2â^'} suitable active site models?. Sustainable Energy and Fuels, 2018, 2, 1893-1904.	2.5	51
698	Enhanced discharge capacity of Mg-air battery with addition of water dispersible nano MoS2 sheet in MgCl2 electrolyte. Ionics, 2019, 25, 583-592.	1.2	8
699	Boosting Electrocatalytic Hydrogen Evolution Activity with a NiPt ₃ @NiS Heteronanostructure Evolved from a Molecular Nickel–Platinum Precursor. Journal of the American Chemical Society, 2019, 141, 13306-13310.	6.6	119
700	Electrodeposition of MoS _{<i>x</i>} Hydrogen Evolution Catalysts from Sulfur-Rich Precursors. ACS Applied Materials & Interfaces, 2019, 11, 32879-32886.	4.0	45
701	Chemical Doped Ternary and Quaternary Transitionâ€Metalâ€Based Electrocatalysts for Hydrogen Evolution Reaction. ChemCatChem, 2019, 11, 4998-5012.	1.8	7

#	Article	IF	CITATIONS
702	Catalytic Hydrogen Evolution by Molybdenum-Based Ternary Metal Sulfide Nanoparticles. ACS Applied Nano Materials, 2019, 2, 7204-7213.	2.4	26
703	Revealing the Flexible 1D Primary and Globular Secondary Structures of Sulfurâ€Rich Amorphous Transition Metal Polysulfides. ChemNanoMat, 2019, 5, 1488-1497.	1.5	6
704	Mechanism of H2 generation on the unsaturated Mo and S of Mo-Edge in 2H-MoS2 from density functional theory. Computational and Theoretical Chemistry, 2019, 1168, 112623.	1.1	4
705	Fullerene-like WS2 supported Pd catalyst for hydrogen evolution reaction. Journal of Catalysis, 2019, 380, 215-223.	3.1	32
706	1D Amorphous Tungstenâ€Based Ternary Refractory Metal Sulfides for Catalytic Hydrogen Evolution at Soft Interfaces. ChemNanoMat, 2019, 5, 1461-1466.	1.5	12
707	Significant improvement of photocatalytic hydrogen evolution of diketopyrrolopyrrole-based donor–acceptor conjugated polymers through side-chain engineering. Polymer Chemistry, 2019, 10, 6473-6480.	1.9	20
708	Synthesis and electrocatalytic activity of Ni0.85Se/MoS2 for hydrogen evolution reaction. International Journal of Hydrogen Energy, 2019, 44, 26109-26117.	3.8	18
709	Hierarchical MoP Hollow Nanospheres Anchored on a N,P,Sâ€Doped Porous Carbon Matrix as Efficient Electrocatalysts for the Hydrogen Evolution Reaction. ChemSusChem, 2019, 12, 4662-4670.	3.6	38
710	Cobalt/titanium nitride@N-doped carbon hybrids for enhanced electrocatalytic hydrogen evolution and supercapacitance. New Journal of Chemistry, 2019, 43, 14518-14526.	1.4	17
711	Synergistic effect of MoS2 and Ni9S8 nanosheets as an efficient electrocatalyst for hydrogen evolution reaction. Journal of Colloid and Interface Science, 2019, 556, 24-32.	5.0	16
712	Ultrahigh-current-density niobium disulfide catalysts for hydrogen evolution. Nature Materials, 2019, 18, 1309-1314.	13.3	280
713	2D WS ₂ liquid crystals: tunable functionality enabling diverse applications. Nanoscale, 2019, 11, 16886-16895.	2.8	6
714	Effect of Stacking Interactions on the Translation of Structurally Related Bis(thiosemicarbazonato)nickel(II) HER Catalysts to Modified Electrode Surfaces. Inorganic Chemistry, 2019, 58, 12025-12039.	1.9	6
715	A new 3D 8-fold interpenetrating 66-dia topological Co-MOF: Syntheses, crystal structure, magnetic properties and electrocatalytic hydrogen evolution reaction. Journal of Solid State Chemistry, 2019, 279, 120929.	1.4	24
716	Effect of Cobalt on the Catalytic Properties of Platinum during the Oxidation of CO: Experimental Data and Quantum-Chemical Simulation. Russian Journal of Physical Chemistry A, 2019, 93, 1957-1964.	0.1	0
717	Facile fabrication of nanostructured NiMo cathode for high-performance proton exchange membrane water electrolyzer. Journal of Industrial and Engineering Chemistry, 2019, 79, 255-260.	2.9	23
718	Electrochemically assisted synthesis of three-dimensional FeP nanosheets to achieve high electrocatalytic activity for hydrogen evolution reaction. International Journal of Hydrogen Energy, 2019, 44, 24197-24208.	3.8	15
719	The Critical Role of Electrolyte Gating on the Hydrogen Evolution Performance of Monolayer MoS ₂ . Nano Letters, 2019, 19, 8118-8124.	4.5	33

#	Article	IF	CITATIONS
720	Self-supported Al-doped cobalt phosphide nanosheets grown on three-dimensional Ni foam for highly efficient water reduction and oxidation. Inorganic Chemistry Frontiers, 2019, 6, 74-81.	3.0	66
721	An amorphous nanoporous PdCuNi-S hybrid electrocatalyst for highly efficient hydrogen production. Applied Catalysis B: Environmental, 2019, 246, 156-165.	10.8	75
722	3D porous Ni-Co-P nanosheets on carbon fiber cloth for efficient hydrogen evolution reaction. Electrochimica Acta, 2019, 300, 217-224.	2.6	48
723	Contacting MoS ₂ to MXene: Vanishing p-Type Schottky Barrier and Enhanced Hydrogen Evolution Catalysis. Journal of Physical Chemistry C, 2019, 123, 3719-3726.	1.5	47
724	Facile <i>in situ</i> synthesis of a carbon quantum dot/graphene heterostructure as an efficient metal-free electrocatalyst for overall water splitting. Chemical Communications, 2019, 55, 1635-1638.	2.2	70
725	Metal–organic frameworks based on tetraphenylpyrazine-derived tetracarboxylic acid for electrocatalytic hydrogen evolution reaction and NAC sensing. CrystEngComm, 2019, 21, 494-501.	1.3	25
726	Textile-based high-performance hydrogen evolution of low-temperature atomic layer deposition of cobalt sulfide. Nanoscale, 2019, 11, 844-850.	2.8	17
727	Tailoring Electrocatalytic Properties of Pt Nanoparticles Grown on Ti ₃ C ₂ T _X MXene Surface. Journal of the Electrochemical Society, 2019, 166, H54-H62.	1.3	48
728	Structural Transformation Identification of Sputtered Amorphous MoS _{<i>x</i>} as an Efficient Hydrogen-Evolving Catalyst during Electrochemical Activation. ACS Catalysis, 2019, 9, 2368-2380.	5.5	78
729	Vertical nanosheet array of 1T phase MoS2 for efficient and stable hydrogen evolution. Applied Catalysis B: Environmental, 2019, 246, 296-302.	10.8	122
730	Hollow core–shell NiCo ₂ S ₄ @MoS ₂ dodecahedrons with enhanced performance for supercapacitors and hydrogen evolution reaction. New Journal of Chemistry, 2019, 43, 3601-3608.	1.4	70
731	Synthesis of hexagonal WO3 nanocrystals with various morphologies and their enhanced electrocatalytic activities toward hydrogen evolution. International Journal of Hydrogen Energy, 2019, 44, 4724-4736.	3.8	42
732	Ultrathin Graphitic Carbon Coated Molybdenum Phosphide as Nobleâ€Metalâ€Free Electrocatalyst for Hydrogen Evolution. ChemistrySelect, 2019, 4, 846-852.	0.7	5
733	Transition-metal single atoms in nitrogen-doped graphenes as efficient active centers for water splitting: a theoretical study. Physical Chemistry Chemical Physics, 2019, 21, 3024-3032.	1.3	122
734	Homogeneous visible light-driven hydrogen evolution by the molecular molybdenum sulfide model [Mo ₂ S ₁₂] ^{2â^'} . Sustainable Energy and Fuels, 2019, 3, 92-95.	2.5	29
735	Electrocatalytic hydrogen evolution on iron-cobalt nanoparticles encapsulated in nitrogenated carbon nanotube. International Journal of Hydrogen Energy, 2019, 44, 16478-16486.	3.8	32
736	Recent advances in metal sulfides: from controlled fabrication to electrocatalytic, photocatalytic and photoelectrochemical water splitting and beyond. Chemical Society Reviews, 2019, 48, 4178-4280.	18.7	810
737	Protection of GalnP ₂ Photocathodes by Direct Photoelectrodeposition of MoS <i>_x</i> Thin Films. ACS Applied Materials & Interfaces, 2019, 11, 25115-25122.	4.0	18

#	Article	IF	CITATIONS
738	Hydrogen evolution reaction efficiency of carbon nanohorn incorporating molybdenum sulfide and polydopamine/palladium nanoparticles. Journal of the Taiwan Institute of Chemical Engineers, 2019, 102, 378-386.	2.7	16
739	Edge-Site Nanoengineering of WS ₂ by Low-Temperature Plasma-Enhanced Atomic Layer Deposition for Electrocatalytic Hydrogen Evolution. Chemistry of Materials, 2019, 31, 5104-5115.	3.2	57
740	Ultrafast turbulence-induced disintegration of BN and WS2 quantum dots for potential multifunctional nanotheranostics. Materials and Design, 2019, 181, 107925.	3.3	9
741	Toward heterostructured transition metal hybrids with highly promoted electrochemical hydrogen evolution. RSC Advances, 2019, 9, 19924-19929.	1.7	4
742	Highâ€Currentâ€Density HER Electrocatalysts: Grapheneâ€like Boron Layer and Tungsten as Key Ingredients in Metal Diborides. ChemSusChem, 2019, 12, 3726-3731.	3.6	41
743	Hierarchical CoP3/NiMoO4 heterostructures on Ni foam as an efficient bifunctional electrocatalyst for overall water splitting. Ceramics International, 2019, 45, 17128-17136.	2.3	40
744	Fabrication of Cu/rGO/MoS2 nanohybrid with energetic visible-light response for degradation of rhodamine B. Chinese Chemical Letters, 2019, 30, 2245-2248.	4.8	41
745	A Critical Review on Enhancement of Photocatalytic Hydrogen Production by Molybdenum Disulfide: From Growth to Interfacial Activities. Small, 2019, 15, e1900578.	5.2	69
746	Synthesis of RGO-Supported Molybdenum Carbide (Mo2C-RGO) for Hydrogen Evolution Reaction under the Function of Poly(Ionic Liquid). Industrial & Engineering Chemistry Research, 2019, 58, 8996-9005.	1.8	9
747	All-in-one surface engineering strategy on nickel phosphide arrays towards a robust electrocatalyst for hydrogen evolution reaction. Journal of Power Sources, 2019, 429, 46-54.	4.0	33
748	Low-cost high-performance hydrogen evolution electrocatalysts based on Pt-CoP polyhedra with low Pt loading in both alkaline and neutral media. Dalton Transactions, 2019, 48, 8920-8930.	1.6	29
749	N-Doped amorphous MoS _x for the hydrogen evolution reaction. Nanoscale, 2019, 11, 11217-11226.	2.8	43
750	Awakening Solar Hydrogen Evolution of MoS ₂ in Alkalescent Electrolyte through Doping with Co. ChemSusChem, 2019, 12, 3336-3342.	3.6	27
751	Defect engineering of molybdenum disulfide through ion irradiation to boost hydrogen evolution reaction performance. Nano Research, 2019, 12, 1613-1618.	5.8	62
752	Nanoporous molybdenum dioxide on pencil graphite electrode as high effective electrocatalyst for the hydrogen evolution reaction. Journal of the Iranian Chemical Society, 2019, 16, 2065-2070.	1.2	3
753	Quasi-one-dimensional Mo chains for efficient hydrogen evolution reaction. Nano Energy, 2019, 61, 194-200.	8.2	55
754	Atomic-Layer-Deposited MoN _{<i>x</i>} Thin Films on Three-Dimensional Ni Foam as Efficient Catalysts for the Electrochemical Hydrogen Evolution Reaction. ACS Applied Materials & Interfaces, 2019, 11, 17321-17332.	4.0	48
755	Manganese and zinc ferrite based graphene nanocomposites for electrochemical hydrogen evolution reaction. Journal of Alloys and Compounds, 2019, 796, 185-195.	2.8	34

ARTICLE IF CITATIONS Engineering of molybdenum sulfide nanostructures towards efficient electrocatalytic hydrogen 756 3.8 21 evolution. International Journal of Hydrogen Energy, 2019, 44, 15009-15016. Hydrothermal synthesis of two-dimensional MoS2 and its applications. Tungsten, 2019, 1, 59-79. MoS₂ nanosheet/MoS₂ flake homostructures for efficient electrocatalytic 758 0.8 8 hydrogen evolution. Materials Research Express, 2019, 6, 085005. Chemical vapor deposition of monolayer-thin WS2 crystals from the WF6 and H2S precursors at low 1.2 deposition temperature. Journal of Chemical Physics, 2019, 150, 104703. Bi2Te3–MoS2 Layered Nanoscale Heterostructures for Electron Transfer Catalysis. ACS Applied Nano 760 2.4 19 Materials, 2019, 2, 2005-2012. Carbon Nanotube-Supported MoSe₂ Holey Flake:Mo₂C Ball Hybrids for Bifunctional pH-Universal Water Splitting. ACS Nano, 2019, 13, 3162-3176. 7.3 Light-induced confined growth of amorphous Co doped MoSx nanodots on TiO2 nanoparticles for 762 efficient and stable in situ photocatalytic H2 evolution. International Journal of Hydrogen Energy, 3.8 24 2019, 44, 8133-8143. Hierarchical Heterostructured Mo₂C/Mo₃Co₃C Bouquet-like Nanowire Arrays: An Efficient Electrocatalyst for Hydrogen Evolution Reaction. ACS Sustainable Chemistry and Engineering, 2019, 7, 7294-7303. 3.2 Immobilizing Pd nanoclusters into electronically conductive metal-organic frameworks as 764 bi-functional electrocatalysts for hydrogen evolution and oxygen reduction reactions. 2.6 63 Electrochimica Acta, 2019, 306, 627-634. Microscopic insights into the catalytic mechanisms of monolayer MoS2 and its heterostructures in 5.8 hydrogen evolution reaction. Nano Research, 2019, 12, 2140-2149. Vertically Grown MoS₂ Nanoplates on VN with an Enlarged Surface Area as an Efficient 766 2.5 37 and Stable Electrocatalyst for HER. ACS Applied Energy Materials, 2019, 2, 2854-2861. Heteroepitaxy of GaP on silicon for efficient and cost-effective photoelectrochemical water splitting. 5.2 Journal of Materials Chemistry A, 2019, 7, 8550-8558. Comparative Study on Hydrogen Evolution Reaction Activity of Electrospun Nanofibers with Diverse 768 Metallic Ir and IrO₂ Composition Ratios. ACS Sustainable Chemistry and Engineering, 2019, 3.2 43 7,8613-8620. Functional Applications of Metallic Glasses in Electrocatalysis. ChemCatChem, 2019, 11, 2401-2414. 769 1.8 Ternary metal sulfides for electrocatalytic energy conversion. Journal of Materials Chemistry A, 2019, 770 5.2225 7,9386-9405. Recent Progress on Irradiation-Induced Defect Engineering of Two-Dimensional 2H-MoS2 Few Layers. Applied Sciences (Switzerland), 2019, 9, 678. Enhancing Electrocatalytic Water Splitting by Strain Engineering. Advanced Materials, 2019, 31, 772 470 11.1 e1807001. Enhancing hydrogen evolution on the basal plane of transition metal dichacolgenide van der Waals heterostructures. Npj Computational Materials, 2019, 5, .

	Сітат	ION REPORT	
#	Article	IF	CITATIONS
774	Electrocatalytic Water Splitting and CO ₂ Reduction: Sustainable Solutions via Singleâ€Atom Catalysts Supported on 2D Materials. Small Methods, 2019, 3, 1800492.	4.6	63
775	Accelerating photosensitized H2 evolution over in situ grown amorphous MoSx catalyst employing TiO2 as an efficient catalyst loading matrix and electron transfer relay. Renewable Energy, 2019, 138, 562-572.	4.3	19
776	One-step preparation of molybdenum disulfide/graphene nano-catalysts through a simple co-exfoliation method for high-performance electrocatalytic hydrogen evolution reaction. Journal of Colloid and Interface Science, 2019, 542, 355-362.	5.0	17
777	Noble-Metal-Free Nanoelectrocatalysts for Hydrogen Evolution Reaction. Environmental Chemistry for A Sustainable World, 2019, , 73-120.	0.3	2
778	Facial Synthesis of 1T Phase MoS ₂ Nanoflowers via Anion Exchange Method for Efficient Hydrogen Evolution. ChemistrySelect, 2019, 4, 2070-2074.	0.7	7
779	Development of a novel method of NiCoP alloy coating for electrocatalytic hydrogen evolution reaction in alkaline media. Electrochimica Acta, 2019, 303, 67-77.	2.6	43
780	Enhanced catalytic activity of edge-exposed 1T phase WS ₂ grown directly on a WO ₃ nanohelical array for water splitting. Journal of Materials Chemistry A, 2019, 7, 26378-26384.	5.2	23
781	Overall electrochemical splitting of water at the heterogeneous interface of nickel and iron oxide. Nature Communications, 2019, 10, 5599.	5.8	475
782	Polarized Raman spectroscopy to elucidate the texture of synthesized MoS ₂ . Nanoscale, 2019, 11, 22860-22870.	2.8	13
783	NO reduction over an Al-embedded MoS ₂ monolayer: a first-principles study. RSC Advances, 2019, 9, 38973-38981.	1.7	11
784	Niobium disulphide (NbS ₂)-based (heterogeneous) electrocatalysts for an efficient hydrogen evolution reaction. Journal of Materials Chemistry A, 2019, 7, 25593-25608.	5.2	50
785	Carbonâ€Based Photocathode Materials for Solar Hydrogen Production. Advanced Materials, 2019, 31, e1801446.	11.1	83
786	MoS <i>_x</i> @NiO Composite Nanostructures: An Advanced Nonprecious Catalyst for Hydrogen Evolution Reaction in Alkaline Media. Advanced Functional Materials, 2019, 29, 1807562.	7.8	83
787	Tuning the electronic properties and interfacial interactions of WS2/ZrO2(001) heterostructures by an external electric field, interlayer coupling and monolayer to few–layer of WS2 sheets. Materials Chemistry and Physics, 2019, 224, 107-116.	2.0	9
788	Abundant Vanadium Diboride with Graphene-like Boron layers for Hydrogen Evolution. ACS Applied Energy Materials, 2019, 2, 176-181.	2.5	35
789	Electrochemical Hydrogen Evolution at the Interface of Monolayer VS ₂ and Water from First-Principles Calculations. ACS Applied Materials & Interfaces, 2019, 11, 2944-2949.	4.0	20
790	Electro-synthesis of sulfur doped nickel cobalt layered double hydroxide for electrocatalytic hydrogen evolution reaction and supercapacitor applications. Journal of Electroanalytical Chemistry, 2019, 833, 105-112.	1.9	47
791	Zn-doped MoSe2 nanosheets as high-performance electrocatalysts for hydrogen evolution reaction in acid media. Electrochimica Acta, 2019, 296, 701-708.	2.6	70

#	Article	IF	CITATIONS
792	Facile construction of a molybdenum disulphide/zinc oxide nanosheet hybrid for an advanced photocatalyst. Journal of Alloys and Compounds, 2019, 778, 761-767.	2.8	16
793	Engineering an Earthâ€Abundant Elementâ€Based Bifunctional Electrocatalyst for Highly Efficient and Durable Overall Water Splitting. Advanced Functional Materials, 2019, 29, 1807031.	7.8	146
794	AgPd Alloy Nanoparticles Decorated MoS ₂ 2D Nanosheets: Efficient Hydrogen Evolution Catalyst in Wide pH Condition. ChemistrySelect, 2019, 4, 378-386.	0.7	8
795	Facile solvothermal synthesis of Pt71Co29 lamellar nanoflowers as an efficient catalyst for oxygen reduction and methanol oxidation reactions. Journal of Colloid and Interface Science, 2019, 536, 556-562.	5.0	114
796	The role of conductivity and phase structure in enhancing catalytic activity of CoSe for hydrogen evolution reaction. Electrochimica Acta, 2019, 294, 142-147.	2.6	57
797	Practical use of polymer brushes in sustainable energy applications: interfacial nanoarchitectonics for high-efficiency devices. Chemical Society Reviews, 2019, 48, 814-849.	18.7	122
798	Design of Basal Plane Edges in Metal-Doped Nanostripes-Structured MoSe ₂ Atomic Layers To Enhance Hydrogen Evolution Reaction Activity. ACS Sustainable Chemistry and Engineering, 2019, 7, 458-469.	3.2	58
799	Polymerization pyrolysis derived self-supported Mo-Ni-O electrocatalyst for oxygen evolution. Catalysis Today, 2019, 330, 246-251.	2.2	13
800	Low-loading of oxidized platinum nanoparticles into mesoporous titanium dioxide for effective and durable hydrogen evolution in acidic media. Arabian Journal of Chemistry, 2020, 13, 2257-2270.	2.3	16
801	3D flower-like defected MoS2 magnetron-sputtered on candle soot for enhanced hydrogen evolution reaction. Applied Catalysis B: Environmental, 2020, 263, 117750.	10.8	82
802	Towards atomic-scale electron microscopy characterization of single molecular catalysts. Catalysis Today, 2020, 350, 192-196.	2.2	2
803	In situ growth of NiO·85Se on graphene as a robust electrocatalyst for hydrogen evolution reaction. International Journal of Hydrogen Energy, 2020, 45, 10486-10493.	3.8	41
804	Exfoliated colloidal MoS2 nanosheet with predominantly 1T phase for electrocatalytic hydrogen production. International Journal of Hydrogen Energy, 2020, 45, 18645-18656.	3.8	13
805	Doping reduced graphene oxide and graphitic carbon nitride hybrid for dual functionality: High performance supercapacitance and hydrogen evolution reaction. Journal of Electroanalytical Chemistry, 2020, 856, 113503.	1.9	21
806	Highly dispersive bimetallic sulfides afforded by crystalline polyoxometalate-based coordination polymer precursors for efficient hydrogen evolution reaction. Journal of Power Sources, 2020, 446, 227319.	4.0	64
807	Synthesis of Niâ^'MoS _x /gâ€C ₃ N ₄ for Photocatalytic Hydrogen Evolution under Visible Light. ChemCatChem, 2020, 12, 911-916.	1.8	18
808	High catalytic performance of tungsten disulphide rodes in oxygen evolution reactions in alkaline solutions. Applied Catalysis B: Environmental, 2020, 266, 118575.	10.8	40
809	Recent advances in cobalt-based electrocatalysts for hydrogen and oxygen evolution reactions. Journal of Alloys and Compounds, 2020, 821, 153542.	2.8	191

#	Article	IF	CITATIONS
810	Confining Mo-activated CoSx active sites within MCM-41 for highly efficient dye-sensitized photocatalytic H2 evolution. Journal of Colloid and Interface Science, 2020, 563, 112-121.	5.0	12
811	Interface Nanoengineering of PdNi-S/C Nanowires by Sulfite-Induced for Enhancing Electrocatalytic Hydrogen Evolution. ACS Applied Materials & Interfaces, 2020, 12, 2243-2251.	4.0	23
812	Robust Hydrogen-Evolving Electrocatalyst from Heterogeneous Molybdenum Disulfide-Based Catalyst. ACS Catalysis, 2020, 10, 1511-1519.	5.5	88
813	MoSx-CdS/Cu2ZnSnS4-based thin film photocathode for solar hydrogen evolution from water. Applied Catalysis B: Environmental, 2020, 268, 118438.	10.8	41
814	Metal hydroxide hybridized tungsten carbide nanorod arrays for enhancing hydrogen evolution in alkaline media. Applied Surface Science, 2020, 509, 144912.	3.1	10
815	Nanoscale Variations in the Electrocatalytic Activity of Layered Transition-Metal Dichalcogenides. Journal of Physical Chemistry C, 2020, 124, 789-798.	1.5	46
816	Advanced catalysts for hydrogen evolution reaction based on MoS2/NiCo2S4 heterostructures in Alkaline Media. International Journal of Hydrogen Energy, 2020, 45, 1759-1768.	3.8	20
817	Reversing Interfacial Catalysis of Ambipolar WSe ₂ Single Crystal. Advanced Science, 2020, 7, 1901382.	5.6	100
818	Facile preparation of amorphous NiWSex and CoWSex nanoparticles for the electrocatalytic hydrogen evolution reaction in alkaline condition. Journal of Electroanalytical Chemistry, 2020, 856, 113674.	1.9	9
819	Monomeric MoS ₄ ^{2–} -Derived Polymeric Chains with Active Molecular Units for Efficient Hydrogen Evolution Reaction. ACS Catalysis, 2020, 10, 652-662.	5.5	37
820	Room-temperature sputtered electrocatalyst WSe2 nanomaterials for hydrogen evolution reaction. Journal of Energy Chemistry, 2020, 47, 107-111.	7.1	41
821	Zinc oxide functionalized molybdenum disulfide heterostructures as efficient electrocatalysts for hydrogen evolution reaction. International Journal of Hydrogen Energy, 2020, 45, 619-628.	3.8	47
822	Facile electrochemical preparation of nonprecious Co u alloy catalysts for hydrogen production in proton exchange membrane water electrolysis. International Journal of Energy Research, 2020, 44, 2833-2844.	2.2	22
823	Insight into the catalytic performance of HER catalysis of noble metal/3D-G nanocomposites. Electrochimica Acta, 2020, 333, 135467.	2.6	10
824	Transition metal–incorporated tungsten-based ternary refractory metal selenides (MWSex; MÂ= Fe, Co,) Tj ETC 100510.	2q0 0 0 rg 2.5	BT /Overlock 13
825	MnS-Nanoparticles-Decorated Three-Dimensional Graphene Hybrid as Highly Efficient Bifunctional Electrocatalyst for Hydrogen Evolution Reaction and Oxygen Reduction Reaction. Catalysts, 2020, 10, 1141.	1.6	9
826	Recent advances on the preparation and electrochemical analysis of MoS2-based materials for supercapacitor applications: A mini-review. Materials Today Communications, 2020, 25, 101664.	0.9	50
827	Thermocatalytic Hydrodeoxygenation and Depolymerization of Waste Lignin to Oxygenates and Biofuels in a Continuous Flow Reactor at Atmospheric Pressure. ACS Sustainable Chemistry and Engineering, 2020, 8, 13195-13205.	3.2	12

#	Article	IF	CITATIONS
828	TaS ₂ , TaSe ₂ , and Their Heterogeneous Films as Catalysts for the Hydrogen Evolution Reaction. ACS Catalysis, 2020, 10, 3313-3325.	5.5	60
829	Self-assembled hybrid organic–MoS ₃ -nanoparticle catalyst for light energy conversion. Nanoscale, 2020, 12, 22952-22957.	2.8	6
830	Development strategies in transition metal carbide for hydrogen evolution reaction: A review. Korean Journal of Chemical Engineering, 2020, 37, 1317-1330.	1.2	22
831	Electrocatalytic hydrogen evolution under neutral pH conditions: current understandings, recent advances, and future prospects. Energy and Environmental Science, 2020, 13, 3185-3206.	15.6	225
832	Highly Efficient Synthesis of Carbon-Based Molybdenum Phosphide Nanoparticles for Electrocatalytic Hydrogen Evolution. Nanoscale Research Letters, 2020, 15, 6.	3.1	12
833	Large-scale comparison of 3d and 4d transition metal complexes illuminates the reduced effect of exchange on second-row spin-state energetics. Physical Chemistry Chemical Physics, 2020, 22, 19326-19341.	1.3	20
834	Few-layer MoS2 and Pt nanoparticles Co-anchored on MWCNTs for efficient hydrogen evolution over a wide pH range. Electrochimica Acta, 2020, 358, 136927.	2.6	16
835	The Characterisation of Electrodeposited MoS2 Thin Films on a Foam-Based Electrode for Hydrogen Evolution. Catalysts, 2020, 10, 1182.	1.6	7
836	A dendritic Sb ₂ Se ₃ /In ₂ S ₃ heterojunction nanorod array photocathode decorated with a MoS _x catalyst for efficient solar hydrogen evolution. Journal of Materials Chemistry A, 2020, 8, 23385-23394.	5.2	21
837	Benchmark Electrocatalysis Activity of 3D-Ni-Co-TiO2 Nanocomposites for Hydrogen Fuel Production Via Alkaline Electrolytes. Journal of Materials Engineering and Performance, 2020, 29, 6940-6951.	1.2	8
838	Synthesis of edge-enriched WS2 on high surface area WS2 framework by atomic layer deposition for electrocatalytic hydrogen evolution reaction. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2020, 38, .	0.9	4
839	Metal–Molybdenum Sulfide Nanosheet Arrays Prepared by Anion Exchange as Catalysts for Hydrogen Evolution. Energy Technology, 2020, 8, 2000595.	1.8	2
840	Surface decoration accelerates the hydrogen evolution kinetics of a perovskite oxide in alkaline solution. Energy and Environmental Science, 2020, 13, 4249-4257.	15.6	33
841	Nitrogenâ€Doped Hierarchical Heterostructured Aerophobic MoS _x /Ni ₃ S ₂ Nanowires by Oneâ€pot Synthesis: System Engineering and Synergistic Effect in Electrocatalysis of Hydrogen Evolution Reaction. Energy and Environmental Materials, 2021, 4, 658-663.	7.3	24
842	Synthesis of Porous Mo ₂ C/Nitrogenâ€Doped Carbon Nanocomposites for Efficient Hydrogen Evolution Reaction. ChemistrySelect, 2020, 5, 14307-14311.	0.7	6
843	Surface engineering of carbon supported CoMoS– an effective nanocatalyst for selective deoxygenation of lignin derived phenolics to arenes. Applied Catalysis A: General, 2020, 606, 117811.	2.2	17
844	Carbon dot-based composites for catalytic applications. Green Chemistry, 2020, 22, 4034-4054.	4.6	74
845	Advancement of Platinum (Pt)-Free (Non-Pt Precious Metals) and/or Metal-Free (Non-Precious-Metals) Electrocatalysts in Energy Applications: A Review and Perspectives. Energy & Fuels, 2020, 34, 6634-6695	2.5	100

#	Article	IF	CITATIONS
846	Fabrication of Hybrid Catalyst ZnO Nanorod/α-Fe2O3 Composites for Hydrogen Evolution Reaction. Crystals, 2020, 10, 356.	1.0	12
847	Branched heterostructures of nickel–copper phosphides as an efficient electrocatalyst for the hydrogen evolution reaction. Journal of Materials Science: Materials in Electronics, 2020, 31, 11425-11433.	1.1	8
848	Designing Champion Nanostructures of Tungsten Dichalcogenides for Electrocatalytic Hydrogen Evolution. Advanced Materials, 2020, 32, e2002584.	11.1	82
849	Nano-patterning of a monolayer molybdenum disulfide with sub-nanometer helium ion beam: considering its shape, size and damage. Nanotechnology, 2020, 31, 345302.	1.3	7
850	A Novel 3D Petalâ€Like SnS ₂ Hierarchical Structure with Superior Photocatalytic Hydrogen Production Ability. Crystal Research and Technology, 2020, 55, 2000004.	0.6	4
851	Efficient and scalable preparation of MoS2 nanosheet/carbon nanotube composites for hydrogen evolution reaction. International Journal of Hydrogen Energy, 2020, 45, 16489-16499.	3.8	24
852	Bridging metal-ion induced vertical growth of MoS2 and overall fast electron transfer in (C,P)3N4-M (Ni2+, Co2+)-MoS2 electrocatalyst for efficient hydrogen evolution reaction. Sustainable Materials and Technologies, 2020, 25, e00172.	1.7	7
853	Wettability transition of Ni3B4-doped MoS2 for hydrogen evolution reaction by magnetron sputtering. Applied Surface Science, 2020, 510, 145368.	3.1	15
854	Nanoscale nickel–iron nitride-derived efficient electrochemical oxygen evolution catalysts. Catalysis Science and Technology, 2020, 10, 4458-4466.	2.1	22
855	Enhanced alkaline hydrogen evolution performance of ruthenium by synergetic doping of cobalt and phosphorus. Sustainable Energy and Fuels, 2020, 4, 4637-4643.	2.5	2
856	Solvothermal synthesis of oxygen-incorporated MoS2-x nanosheets with abundant undercoordinated Mo for efficient hydrogen evolution. International Journal of Hydrogen Energy, 2020, 45, 19133-19143.	3.8	24
857	Mechanism of hydrogen generation on stable Mo-edge of 2H-MoS2 in water from density functional theory. Theoretical Chemistry Accounts, 2020, 139, 1.	0.5	6
858	MoS2/NiS heterostructure grown on Nickel Foam as highly efficient bifunctional electrocatalyst for overall water splitting. International Journal of Hydrogen Energy, 2020, 45, 17329-17338.	3.8	26
860	Ni―and Coâ€6ubstituted Metallic MoS ₂ for the Alkaline Hydrogen Evolution Reaction. ChemElectroChem, 2020, 7, 3606-3615.	1.7	24
861	Dualâ€Enhanced Doping in ReSe ₂ for Efficiently Photoenhanced Hydrogen Evolution Reaction. Advanced Science, 2020, 7, 2000216.	5.6	26
862	Gas Adsorption of Mixed-Valence Trinuclear Oxothiomolybdenum Glycolates. Inorganic Chemistry, 2020, 59, 4874-4881.	1.9	9
863	Electron Transfer Mediated by Iron Carbonyl Clusters Enhance Lightâ€Driven Hydrogen Evolution in Water by Quantum Dots. ChemSusChem, 2020, 13, 3252-3260.	3.6	7
864	Recent advances of two–dimensional molybdenum disulfide based materials: Synthesis, modification and applications in energy conversion and storage. Sustainable Materials and Technologies, 2020, 24, e00161.	1.7	12

#	Article	IF	CITATIONS
865	Hydrogen Evolution Reaction by Atomic Layerâ€Deposited MoN _{<i>x</i>} on Porous Carbon Substrates: The Effects of Porosity and Annealing on Catalyst Activity and Stability. ChemSusChem, 2020, 13, 4159-4168.	3.6	14
866	A Scalable Interfacial Engineering Strategy for a Finely Tunable, Homogeneous MoS 2 /rGOâ€Based HER Catalytic Structure. Advanced Materials Interfaces, 2020, 7, 1902022.	1.9	18
867	Neutral heteroleptic nickel complexes incorporating maleonitriledithiolate and bis(diphenylphosphanyl)amine as robust molecular electrocatalysts for hydrogen evolution. Inorganica Chimica Acta, 2020, 507, 119587.	1.2	6
868	Double-layer hybrid chainmail catalyst for high-performance hydrogen evolution. Nano Energy, 2020, 72, 104700.	8.2	35
869	Design Strategies for Development of TMD-Based Heterostructures in Electrochemical Energy Systems. Matter, 2020, 2, 526-553.	5.0	312
870	Highly Robust Nonâ€Noble Alkaline Hydrogenâ€Evolving Electrocatalyst from Seâ€Doped Molybdenum Disulfide Particles on Interwoven CoSe ₂ Nanowire Arrays. Small, 2020, 16, e1906629.	5.2	70
871	In Situ Study of Graphene Oxide Quantum Dot-MoSx Nanohybrids as Hydrogen Evolution Catalysts. Surfaces, 2020, 3, 225-236.	1.0	3
872	MoS ₂ Quantum Dots as Efficient Electrocatalyst for Hydrogen Evolution Reaction over a Wide pH Range. Energy & Fuels, 2020, 34, 10268-10275.	2.5	54
873	Designed synthesis of WC-based nanocomposites as low-cost, efficient and stable electrocatalysts for the hydrogen evolution reaction. CrystEngComm, 2020, 22, 4580-4590.	1.3	25
874	Electrospun fibrous active bimetallic electrocatalyst for hydrogen evolution. International Journal of Hydrogen Energy, 2020, 45, 21502-21511.	3.8	20
875	Nickel–cobalt bimetallic sulfide NiCo ₂ S ₄ nanostructures for a robust hydrogen evolution reaction in acidic media. RSC Advances, 2020, 10, 22196-22203.	1.7	14
876	Nickel Phosphide Electrocatalysts for Hydrogen Evolution Reaction. Catalysts, 2020, 10, 188.	1.6	53
877	Graphene and molybdenum disulphide hybrids for energy applications: an update. Materials Today Advances, 2020, 6, 100053.	2.5	24
878	Cable-like carbon nanotubes decorated metal-organic framework derived ultrathin CoSe2/CNTs nanosheets for electrocatalytic overall water splitting. Chinese Chemical Letters, 2020, 31, 2641-2644.	4.8	29
879	Metal free triad from red phosphorous, reduced graphene oxide and graphitic carbon nitride (red) Tj ETQq0 0 0 r 2020, 338, 135851.	gBT /Overl 2.6	ock 10 Tf 50 33
880	Hierarchical Tubular Architecture Constructed by Vertically Aligned CoS ₂ â€MoS ₂ Nanosheets for Hydrogen Evolution Electrocatalysis. Chemistry - A European Journal, 2020, 26, 6195-6204.	1.7	18
881	Engineering MoS ₂ nanostructures from various MoO ₃ precursors towards hydrogen evolution reaction. CrystEngComm, 2020, 22, 2258-2267.	1.3	15
882	<i>In situ</i> surface-derivation of AgPdMo/MoS ₂ nanowires for synergistic hydrogen evolution catalysis in alkaline solution. Nanoscale, 2020, 12, 6472-6479.	2.8	9

#	Article	IF	CITATIONS
883	The ultrafine monolayer 1 T/2H-MoS2: Preparation, characterization and amazing photocatalytic characteristics. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 589, 124431.	2.3	26
884	Engineering Substrate Interaction To Improve Hydrogen Evolution Catalysis of Monolayer MoS ₂ Films beyond Pt. ACS Nano, 2020, 14, 1707-1714.	7.3	97
885	Efficient photoelectrochemical hydrogen production over CuInS ₂ photocathodes modified with amorphous Ni-MoS _x operating in a neutral electrolyte. Sustainable Energy and Fuels, 2020, 4, 1607-1611.	2.5	10
886	Fundamental aspects and recent advances in transition metal nitrides as electrocatalysts for hydrogen evolution reaction: A review. Current Opinion in Solid State and Materials Science, 2020, 24, 100805.	5.6	262
887	Enhanced visible-light-driven photocatalytic H ₂ production and Cr(<scp>vi</scp>) reduction of a Znln ₂ S ₄ /MoS ₂ heterojunction synthesized by the biomolecule-assisted microwave heating method. Catalysis Science and Technology, 2020, 10, 2838-2854.	2.1	46
888	An Atomically Dispersed Pt Catalyst Anchored on an Fe/N/C Support for Enhanced Hydrogen Evolution Reaction. Journal of Physical Chemistry C, 2020, 124, 11760-11766.	1.5	18
889	The Role of Phosphate Group in Doped Cobalt Molybdate: Improved Electrocatalytic Hydrogen Evolution Performance. Advanced Science, 2020, 7, 1903674.	5.6	73
890	Effect of Mo content on hydrogen evolution reaction activity of Mo2C/C electrocatalysts. International Journal of Hydrogen Energy, 2020, 45, 12691-12701.	3.8	30
891	Highly efficient electrocatalytic hydrogen evolution reaction on carbonized porous conducting polymers. Journal of Solid State Electrochemistry, 2020, 24, 2763-2771.	1.2	13
892	Interplay between transition-metal dopants and sulfur vacancies in MoS2 electrocatalyst. Surface Science, 2021, 704, 121759.	0.8	20
893	Anion-mediated transition metal electrocatalysts for efficient water electrolysis: Recent advances and future perspectives. Coordination Chemistry Reviews, 2021, 427, 213552.	9.5	66
894	Hierarchical molybdenum disulfide nanosheet arrays stemmed from nickel-cobalt layered double hydroxide/carbon cloth for highly-efficient hydrogen evolution reaction. Journal of Energy Chemistry, 2021, 57, 587-592.	7.1	31
895	Chemical vapor deposition of amorphous molybdenum sulphide on black phosphorus for photoelectrochemical water splitting. Journal of Materials Science and Technology, 2021, 68, 1-7.	5.6	16
896	Recent advances in structural engineering of molybdenum disulfide for electrocatalytic hydrogen evolution reaction. Chemical Engineering Journal, 2021, 405, 127013.	6.6	91
897	Local probe investigation of electrocatalytic activity. Chemical Science, 2021, 12, 71-98.	3.7	13
898	Two-dimensional MOS2 for hydrogen evolution reaction catalysis: The electronic structure regulation. Nano Research, 2021, 14, 1985-2002.	5.8	98
899	Enhanced hydrogen evolution for MoS2/CNTs induced by ethylene-glycol via charge transfer and proton concentration in acid solution. International Journal of Hydrogen Energy, 2021, 46, 6419-6426.	3.8	17
900	Highly efficient and robust catalysts for the hydrogen evolution reaction by surface nano engineering of metallic glass. Journal of Materials Chemistry A, 2021, 9, 5415-5424.	5.2	32

#	Article	IF	CITATIONS
901	Exfoliation of large-flake, few-layer MoS ₂ nanosheets mediated by carbon nanotubes. Chemical Communications, 2021, 57, 4400-4403.	2.2	10
902	Nanomaterials for Photocatalytic Energy Conversion. Materials Horizons, 2021, , 43-84.	0.3	0
903	Graphitic Carbon Nitride Nanostructures as Potent Catalysts for Water Splitting: Theoretical Insights. RSC Nanoscience and Nanotechnology, 2021, , 127-173.	0.2	2
904	PMO ₁₂ @ZIF-8/ZnO-derived hierarchical porous molybdenum carbide as efficient electrocatalysts for hydrogen evolution. New Journal of Chemistry, 2021, 45, 9456-9461.	1.4	13
905	Tuning of structural and optical properties with enhanced catalytic activity in chemically synthesized Co-doped MoS ₂ nanosheets. RSC Advances, 2021, 11, 1303-1319.	1.7	29
906	Fluence-dependent dynamics of localized excited species in monolayer versus bulk <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>Mo</mml:mi><mml:msub><mml:m mathvariant="normal">S<mml:mn>2</mml:mn></mml:m </mml:msub></mml:mrow>. Physical Review B. 2021. 103</mml:math 	¹ⁱ 1.1	8
907	Designing Zn-doped nickel sulfide catalysts with an optimized electronic structure for enhanced hydrogen evolution reaction. Nanoscale, 2021, 13, 10127-10132.	2.8	26
908	Chalcogenides as well as chalcogenides-based nanomaterials and its importance in photocatalysis. , 2021, , 33-76.		3
909	Improving hydrogen evolution activity of two-dimensional nanosheets MoNi4/MoO2.5-NF self-supporting electrocatalyst by electrochemical-cycling activation. Journal of Materials Science, 2021, 56, 6945-6954.	1.7	6
910	Hierarchically Ordinated Two-Dimensional MoS2 Nanosheets on Three-Dimensional Reduced Graphene Oxide Aerogels as Highly Active and Stable Catalysts for Hydrogen Evolution Reaction. Catalysts, 2021, 11, 182.	1.6	14
911	Hierarchical fibrous bimetallic electrocatalyst based on ZnO-MoS2 composite nanostructures as high performance for hydrogen evolution reaction. Journal of Electroanalytical Chemistry, 2021, 883, 115061.	1.9	19
912	Theoretical investigation of quantum capacitance in the functionalized MoS ₂ -monolayer. Electronic Structure, 2021, 3, 025003.	1.0	4
913	Perpendicularly anchored ReSe2 nanoflakes on reduced graphene oxide support for highly efficient hydrogen evolution reactions. Chemical Engineering Journal, 2021, 405, 126728.	6.6	29
914	Electrocatalytic hydrogen evolution on the noble metal-free MoS2/carbon nanotube heterostructure: a theoretical study. Scientific Reports, 2021, 11, 3958.	1.6	23
915	Nanostructural Co–MoS2/NiCoS supported on reduced Graphene oxide as a high activity electrocatalyst for hydrogen evolution in alkaline media. International Journal of Hydrogen Energy, 2021, 46, 8567-8577.	3.8	11
916	Exploring the N ₂ Adsorption and Activation Mechanisms over the 2H/1T Mixed-Phase Ultrathin Mo _{1–<i>x</i>} W _{<i>x</i>} S ₂ Nanosheets for Boosting N ₂ Photosynthesis. ACS Applied Materials & Interfaces, 2021, 13, 7127-7134.	4.0	24
917	Three-Dimensional Needle Branch-like PANI/CoNiP Hybrid Electrocatalysts for Hydrogen Evolution Reaction in Acid Media. ACS Applied Energy Materials, 2021, 4, 2471-2480.	2.5	18
918	Impact of Surface Hydrophilicity on Electrochemical Water Splitting. ACS Applied Materials & Interfaces, 2021, 13, 11940-11947.	4.0	65

#	Article	IF	CITATIONS
919	From Monolayers to Nanotubes: Toward Catalytic Transition-Metal Dichalcogenides for Hydrogen Evolution Reaction. Energy & amp; Fuels, 2021, 35, 6282-6288.	2.5	10
920	Glucose-Assisted One-Pot Hydrothermal Synthesis of Hierarchical-Structured MoS2/C Quasi-Hollow Microspheres for High-Performance Lithium Ion Battery. Polymers, 2021, 13, 837.	2.0	6
921	Hydrogen evolution by ternary metal selenide at biomembrane-like soft interfaces. Cumhuriyet Science Journal, 2021, 42, 13-21.	0.1	0
922	Electrochemical Evaluation of MoS2-Cu-RGO as a Catalyst for Hydrogen Evolution in Microbial Electrolysis Cell. International Journal of Electrochemical Science, 2021, 16, 210458.	0.5	7
923	Hydrogen evolution reaction on in-plane platinum and palladium dichalcogenides via single-atom doping. International Journal of Hydrogen Energy, 2021, 46, 18294-18304.	3.8	23
924	Scalable Synthesis of Hollow MoS2 Nanoparticles Modified on Porous Ni for Improved Hydrogen Evolution Reaction. Journal of the Electrochemical Society, 2021, 168, 056519.	1.3	2
925	Fe13+-ion irradiated WS2 with multi-vacancies and Fe dopants for hydrogen evolution reaction. FlatChem, 2021, 27, 100247.	2.8	3
926	N-Doped NiO Nanosheet Arrays as Efficient Electrocatalysts for Hydrogen Evolution Reaction. Journal of Electronic Materials, 2021, 50, 5072.	1.0	15
927	One-pot solvothermal synthesis of Co2P nanoparticles: An efficient HER and OER electrocatalysts. International Journal of Hydrogen Energy, 2021, 46, 21924-21938.	3.8	60
928	Versatile noble-metal-free electrocatalyst synergistically accelerating for the highly comprehensive understanding evidence for Electrochemical Water Splitting: Future Achievements & amp; Perspectives. Surfaces and Interfaces, 2021, 24, 101104.	1.5	10
929	Regulating the electronic structure of ReS2 by Mo doping for electrocatalysis and lithium storage. Chemical Engineering Journal, 2021, 414, 128811.	6.6	21
930	Novel WS ₂ /Fe _{0.95} S _{1.05} Hierarchical Nanosphere as a Highly Efficient Electrocatalyst for Hydrogen Evolution Reaction. Chemistry - A European Journal, 2021, 27, 10998-11004.	1.7	19
931	Boosting the activity of FeOOH via integration of ZIF-12 and graphene to efficiently catalyze the oxygen evolution reaction. International Journal of Hydrogen Energy, 2021, 46, 25050-25059.	3.8	7
932	Fabrication of heterogeneous interface and phosphorus doping in MoS2 for efficient hydrogen evolution in both acid and alkaline electrolytes. Electrochimica Acta, 2021, 385, 138429.	2.6	6
933	The Effect of Mo Addition on Electrocatalytic Activity and Stability of Fe-Co-P-C Metallic Glasses for Hydrogen Evolution. Journal of the Electrochemical Society, 2021, 168, 076510.	1.3	3
934	High surface area NiCoP nanostructure as efficient water splitting electrocatalyst for the oxygen evolution reaction. Materials Research Bulletin, 2021, 140, 111312.	2.7	16
935	Nano-pom-pom multiphasic MoS2 grown on carbonized wood as electrode for efficient hydrogen evolution in acidic and alkaline media. International Journal of Hydrogen Energy, 2021, 46, 28087-28097.	3.8	22
936	New Methods for the Functionalization of Polymer Matrices with Thiomolybdate Clusters Applied for Hydrogen Evolution Reaction Catalysis. Advanced Energy and Sustainability Research, 0, , 2100085.	2.8	2

#	Article	IF	CITATIONS
937	Catalysis of hydrogen evolution reaction by in situ electrodeposited amorphous molybdenum sulfide at soft interfaces. Materials Today Energy, 2021, 21, 100742.	2.5	9
938	Minireview on the Evolution of Tetrathiometallate Salts as Protean Building Blocks of Catalysts and Materials for the Energy Transition: Recent Advances and Future Perspectives. Energy & Fuels, 0, , .	2.5	0
939	Recent advances in the electrochemistry of layered post-transition metal chalcogenide nanomaterials for hydrogen evolution reaction. Journal of Energy Chemistry, 2021, 60, 451-479.	7.1	57
940	Effective active sites of triangular Mo-S Nano-catalysts from first-principle calculations. Surfaces and Interfaces, 2021, 26, 101373.	1.5	1
941	Facile preparation of sugarcane bagasse-derived carbon supported MoS2 nanosheets for hydrogen evolution reaction. Industrial Crops and Products, 2021, 172, 114064.	2.5	6
942	Molybdenum sulfide cocatalyst activation upon photodeposition of cobalt for improved photocatalytic hydrogen production activity of ZnCdS. Chemical Engineering Journal, 2021, 425, 131478.	6.6	72
943	Enhanced Hydrogen Evolution Reaction in Surface Functionalized MoS2 Monolayers. Catalysts, 2021, 11, 70.	1.6	17
944	HERs in an acidic medium over MoS ₂ nanosheets: from fundamentals to synthesis and the recent progress. Sustainable Energy and Fuels, 2021, 5, 1952-1987.	2.5	30
945	Atomic Layer Deposition of 2D Metal Dichalcogenides for Electronics, Catalysis, Energy Storage, and Beyond. Advanced Materials Interfaces, 2021, 8, 2001677.	1.9	39
946	Active Basal Plane Catalytic Activity via Interfacial Engineering for a Finely Tunable Conducting Polymer/MoS ₂ Hydrogen Evolution Reaction Multilayer Structure. ACS Applied Materials & Interfaces, 2021, 13, 734-744.	4.0	17
947	Covalent organic frameworks (COFs) for electrochemical applications. Chemical Society Reviews, 2021, 50, 6871-6913.	18.7	461
949	WS ₂ /MoS ₂ Heterostructures through Thermal Treatment of MoS ₂ Layers Electrostatically Functionalized with W ₃ S ₄ Molecular Clusters. Chemistry - A European Journal, 2020, 26, 6670-6678.	1.7	6
950	Ni2P/MoS2 interfacial structures loading on N-doped carbon matrix for highly efficient hydrogen evolution. Green Energy and Environment, 2022, 7, 829-839.	4.7	44
951	Dye-sensitized photocatalytic hydrogen evolution by using copper-based ternary refractory metal chalcogenides. International Journal of Hydrogen Energy, 2020, 45, 15915-15923.	3.8	14
952	The Co3O4 nanosheet array as support for MoS2 as highly efficient electrocatalysts for hydrogen evolution reaction. Journal of Energy Chemistry, 2017, 26, 1136-1139.	7.1	56
953	Role of Transition Metals on TM/Mo2C Composites: Hydrogen Evolution Activity in Mildly Acidic and Alkaline Media. ACS Applied Materials & Interfaces, 2020, 12, 27150-27165.	4.0	20
954	Platinum single-atom and cluster catalysis of the hydrogen evolution reaction. , 0, .		1
955	Synergy between active sites and electric conductivity of molybdenum sulfide for efficient electrochemical hydrogen production. Catalysis Science and Technology, 2018, 8, 367-375.	2.1	15

ARTICLE IF CITATIONS MoSe2-Ni3Se4 Hybrid Nanoelectrocatalysts and Their Enhanced Electrocatalytic Activity for Hydrogen 956 3.1 19 Evolution Reaction. Nanoscale Research Letters, 2020, 15, 132. Molybdenum Phosphide Flakes Catalyze Hydrogen Generation in Acidic and Basic Solutions. American 0.3 19 Journal of Analytical Chemistry, 2014, 05, 1200-1213. Hydrogen adsorption mechanism on single-layer MoSe2 for hydrogen evolution reaction: 958 0.2 2 First-principles study. Wuli Xuebao/Acta Physica Sinica, 2018, 67, 217102. Tailoring the d-band center by borophene subunits in chromic diboride toward the hydrogen 3.0 evolution reaction. Inorganic Chemistry Frontiers, 2021, 8, 5130-5138. <i>In Situ</i> Generated Amorphous Molybdenum Sulfide on Reduced Graphene Oxide Nanocomposite 960 1.8 6 Catalyst for Hydrogen Evolution in a Biphasic Liquid System. ChemCatChem, 2021, 13, 5203-5209. Chapter 4. Surface Science, X-ray and Electron Spectroscopy Studies of Electrocatalysis. RSC Energy and Environment Series, 2018, , 117-153. 0.2 Designing Highly Active High Current Density HER Electrocatalysts: Synergistic Effects of Mo and W in 964 α-Mo <sub>x</sub>W <sub>1-X</sub>B <sub>2</sub> with Graphene-Like 0.4 0 Boron Layers. SSRN Electronic Journal, 0, , . Chapter 9. High Electrocatalytic Performance of Two-dimensional Layered MoS2-based Materials for 965 0.1 the Hydrogen Evolution Reaction. RSC Smart Materials, 2019, , 283-310. 966 Design of Metal-free Nanocatalysts. RSC Catalysis Series, 2019, , 163-183. 0.1 0 Bifunctional nanocatalysts for water splitting and its challenges., 2020, , 59-95. Study of photogenerated exciton dissociation in transition metal dichalcogenide van der Waals heterojunction A2-MWS₄: a first-principles study. Physical Chemistry Chemical Physics, 968 2 1.3 2021, 23, 26768-26779. The Synergetic Effect of MoSO₂/Graphite Nanosheets as Highly Efficient for 0.1 Electrochemical Water Splitting in Acidic Media. Science of Advanced Materials, 2021, 13, 1574-1583. Defect induced electrocatalytic hydrogen properties of pentagonal PdX₂ (X = S, Se). RSC 970 1.7 8 Advances, 2021, 11, 38478-38485. Fabrication of amorphous molybdenum sulfide/nitrogen-doped reduced graphene oxide nanocomposites with a tailored composition and hydrogen evolution activity via plasma treatment. 971 5.4 Carbon, 2022, 187, 386-395. Agaric-like cobalt diselenide supported by carbon nanofiber as an efficient catalyst for hydrogen 972 5.015 evolution reaction. Journal of Colloid and Interface Science, 2022, 610, 854-862. Interface Catalysis of Nickel Molybdenum (NiMo) Alloys on Two-Dimensional (2D) MXene for Enhanced Hydrogen Electrochemistry. Journal of Physical Chemistry Letters, 2021, 12, 11361-11370. Non-precious hydrogen evolution reaction catalysts: Stepping forward to practical polymer electrolyte membrane-based zero-gap water electrolyzers. Chemical Engineering Journal, 2022, 433, 974 6.6 28 133681. Metal Organic Framework Derived Cu–Doped Ni₂P Nanoparticles Incorporated with Porous Carbon as High Performance Electrocatalyst for Hydrogen Evolution Reaction in a Wide pH 0.7 Range. ChemistrySelect, 2021, 6, 12926-12933.

#	Article	IF	CITATIONS
977	Polymers and polyoxometalate induced Co/WC@NC for electrocatalytic hydrogen production. Journal of Solid State Chemistry, 2022, 308, 122879.	1.4	6
978	Amorphous MoS electro-synthesized in alkaline electrolyte for superior hydrogen evolution. Journal of Alloys and Compounds, 2022, 900, 163509.	2.8	8
979	Edge terminated and interlayer expanded pristine MoS2 nanostructures with 1T on 2H phase, for enhanced hydrogen evolution reaction. International Journal of Hydrogen Energy, 2022, 47, 9579-9592.	3.8	21
980	Modulating the Electronic Structure of Nickel Sulfide Electrocatalysts by Chlorine Doping toward Highly Efficient Alkaline Hydrogen Evolution. ACS Applied Materials & Interfaces, 2022, 14, 6869-6875.	4.0	25
981	Cobalt metal organic framework (Co-MOF) derived CoSe ₂ /C hybrid nanostructures for the electrochemical hydrogen evolution reaction supported by DFT studies. New Journal of Chemistry, 2022, 46, 2730-2738.	1.4	15
982	Construction of stable Mo _{<i>x</i>} S _{<i>y</i>} /CeO ₂ heterostructures for the electrocatalytic hydrogen evolution reaction. Physical Chemistry Chemical Physics, 2022, 24, 4891-4898.	1.3	3
983	Ultrafine Mo ₂ C nanoparticles embedded in an MOF derived N and P co-doped carbon matrix for an efficient electrocatalytic oxygen reduction reaction in zinc–air batteries. Nanoscale, 2022, 14, 2065-2073.	2.8	16
984	Synthesis, Characterization, and Supercapacitor Performance of a Mixed-Phase Mn-Doped MoS2 Nanoflower. Nanomaterials, 2022, 12, 490.	1.9	22
985	Band structure engineering of W replacement in ReSe ₂ nanosheets for enhancing hydrogen evolution. Chemical Communications, 2022, 58, 2682-2685.	2.2	9
986	Assembly of flower-like VS2/N-doped porous carbon with expanded (001) plane on rGO for superior Na-ion and K-ion storage. Nano Research, 2022, 15, 4108-4116.	5.8	23
987	FeV ₃ O ₈ /MoS ₂ nanostructure heterojunctions as a highly effective electrocatalyst for hydrogen evolution. Journal of Materials Chemistry C, 2022, 10, 3489-3499.	2.7	13
988	Amorphous Molybdenum Sulfide and its Mo-S Motifs: Structural Characteristics, Synthetic Strategies, and Comprehensive Applications. SSRN Electronic Journal, 0, , .	0.4	0
989	Highly efficient catalysts of ruthenium clusters on Fe ₃ O ₄ /MWCNTs for the hydrogen evolution reaction. New Journal of Chemistry, 0, , .	1.4	5
990	N-doped graphitized carbon supported Co@Ru core–shell bimetallic catalyst for hydrogen storage of <i>N</i> -ethylcarbazole. Catalysis Science and Technology, 2022, 12, 2829-2836.	2.1	5
991	Synthesis, redox properties, and catalytic hydrogen gas generation of porphycene cobalt complexes. Journal of Porphyrins and Phthalocyanines, 2022, 26, 263-272.	0.4	1
992	Intrinsic defects of nonprecious metal electrocatalysts for energy conversion: Synthesis, advanced characterization, and fundamentals. ChemPhysMater, 2022, 1, 155-182.	1.4	6
993	Control of the morphologies of molybdenum disulfide for hydrogen evolution reaction. International Journal of Energy Research, 2022, 46, 11479-11491.	2.2	8
994	Shape-Controlled Photochemical Synthesis of Noble Metal Nanocrystals Based on Reduced Graphene Oxide. ACS Applied Materials & Interfaces, 2022, 14, 16527-16537.	4.0	12

#	Article	IF	CITATIONS
995	Rhodium-decorated nanoconical nickel electrode synthesis and characterization as an electrochemical active cathodic material for hydrogen production. Applied Surface Science, 2022, 592, 153326.	3.1	12
996	Atomically thin transition metal dichalcogenides for the hydrogen evolution reaction. ChemPhysMater, 2022, 1, 102-111.	1.4	11
997	Electrocatalytic Properties of Pulse-Reverse Electrodeposited Nickel Phosphide for Hydrogen Evolution Reaction. Frontiers in Chemistry, 2021, 9, 781838.	1.8	4
998	Machine-Learning Assisted Exploration: Toward the Next-Generation Catalyst for Hydrogen Evolution Reaction. Journal of the Electrochemical Society, 2021, 168, 126523.	1.3	4
999	Rational Design of Better Hydrogen Evolution Electrocatalysts for Water Splitting: A Review. Advanced Science, 2022, 9, e2200307.	5.6	121
1000	A Review of the Application of Heterostructure Catalysts in Hydrogen Evolution Reaction. ChemistrySelect, 2022, 7, .	0.7	13
1001	Nanostructured Metallic Glass in a Highly Upgraded Energy State Contributing to Efficient Catalytic Performance. Advanced Materials, 2022, 34, e2200850.	11.1	34
1002	Incorporating Au ₁₁ nanoclusters on MoS ₂ nanosheet edges for promoting the hydrogen evolution reaction at the interface. Nanoscale, 2022, 14, 7919-7926.	2.8	9
1003	The effects of the fluence of electron irradiation on the structure and hydrogen evolution reaction performance of molybdenum disulfide. Journal of Materials Chemistry C, 2022, 10, 7839-7848.	2.7	3
1004	Catalyst activation: Surface doping effects of group VI transition metal dichalcogenides towards hydrogen evolution reaction in acidic media. Journal of Energy Chemistry, 2022, 72, 217-240.	7.1	34
1005	Urchin-like PdOs nanostructure for hydrogen evolution electrocatalysis. Nanotechnology, 2022, 33, 325401.	1.3	2
1006	Fabrication of three-dimensional nanocomposite with open cage fullerene polymer and MoS2 for enhanced electrochemical hydrogen evolution activity. International Journal of Hydrogen Energy, 2022, 47, 18261-18271.	3.8	11
1007	Carbon-based material-supported single-atom catalysts for energy conversion. IScience, 2022, 25, 104367.	1.9	20
1008	Water electrolysis: from textbook knowledge to the latest scientific strategies and industrial developments. Chemical Society Reviews, 2022, 51, 4583-4762.	18.7	453
1009	Development of a Binder-Free Tetra-Metallic Oxide Electrocatalyst for Efficient Oxygen Evolution Reaction. Sustainable Chemistry, 2022, 3, 286-299.	2.2	0
1010	Theoretical Advances in Understanding and Designing the Active Sites for Hydrogen Evolution Reaction. ACS Catalysis, 2022, 12, 8404-8433.	5.5	72
1011	Boosting Highly Active Exposed Mo Atoms by Fine-Tuning S-Vacancies of MoS ₂ -Based Materials for Efficient Hydrogen Evolution. ACS Applied Materials & Interfaces, 2022, 14, 30746-30759.	4.0	14
1012	Amorphous molybdenum sulfide and its Mo-S motifs: Structural characteristics, synthetic strategies, and comprehensive applications. Nano Research, 2022, 15, 8613-8635.	5.8	28

CITATION	Report

#	Article	IF	CITATIONS
1013	Chemical strategies in molybdenum based chalcogenides nanostructures for photocatalysis. International Journal of Hydrogen Energy, 2022, 47, 29255-29283.	3.8	68
1014	Nanomaterials for enhancing photosynthesis: interaction with plant photosystems and scope of nanobionics in agriculture. Environmental Science: Nano, 2022, 9, 3659-3683.	2.2	7
1015	CHAPTER 3. Synthesis of Two-dimensional Hybrid Materials, Unique Properties, and Challenges. , 2022, , 64-125.		0
1016	Novel Pt/MoS2 nanosheet catalyst for hydrogen production via aqueous-phase reforming of methanol. Reaction Kinetics, Mechanisms and Catalysis, 2022, 135, 2579-2589.	0.8	3
1017	Efficient organic contaminant and Cr (VI) synchronous removing by one-step modified molybdenite cathode microbial fuel cells. Environmental Science and Pollution Research, 2023, 30, 4423-4434.	2.7	9
1018	Electrodeposition of Molybdenum Disulfide (MoS2) Nanoparticles on Monocrystalline Silicon. Molecules, 2022, 27, 5416.	1.7	5
1019	A review of heteroatomic doped two-dimensional materials as electrocatalysts for hydrogen evolution reaction. International Journal of Hydrogen Energy, 2022, 47, 29698-29729.	3.8	14
1020	Further Use of Spent Co-Based Macroporous Adsorbent for Low-Temperature Hydrodesulfurization. Journal of Inorganic and Organometallic Polymers and Materials, 2022, 32, 4549-4558.	1.9	1
1021	Catalytic applications of carbon dots. , 2023, , 337-344.		1
1022	Adjusting oxygen vacancies in perovskite LaCoO3 by electrochemical activation to enhance the hydrogen evolution reaction activity in alkaline condition. Journal of Energy Chemistry, 2023, 76, 226-232.	7.1	13
1023	P-doped MoS2/CoxSy heterojunction for high-efficiency electrocatalytic hydrogen evolution performance in both acidic and alkaline electrolytes. Electrochimica Acta, 2022, 433, 141269.	2.6	6
1024	Energy level modulation of MoS ₂ monolayers by halide doping for an enhanced hydrogen evolution reaction. Journal of Materials Chemistry A, 2022, 10, 23274-23281.	5.2	7
1025	Improving the HER Activity and Stability of Pt Nanoparticles by Titanium Oxynitride Support. ACS Catalysis, 2022, 12, 13021-13033.	5.5	35
1026	Computational screening of nonmetal dopants to active MoS2 basal-plane for hydrogen evolution reaction via structural descriptor. Journal of Catalysis, 2022, 416, 47-57.	3.1	7
1027	Reduced nickel on cobalt sulphide with carbon supported (Ni-CoS/C) composite material as a low-cost and efficient electrocatalyst for hydrogen evolution reaction. Electrochimica Acta, 2022, 435, 141437.	2.6	12
1028	Recent advances in understanding and design of efficient hydrogen evolution electrocatalysts for water splitting: A comprehensive review. Advances in Colloid and Interface Science, 2023, 311, 102811.	7.0	17
1029	Ni ₃ S ₂ @MoS ₂ @Ni ₃ Si ₂ Seaweedâ€like Hybrid Structures <i>lnâ€situ</i> Grown on Ni Foam as Efficient Bifunctional Electrocatalysts. ChemCatChem, 2023, 15, .	1.8	3
1030	Flat-optics hybrid MoS ₂ /polymer films for photochemical conversion. Nanoscale, 2023, 15, 1953-1961.	2.8	3

#	Article	IF	Citations
1031	Two-dimensional ruthenium boride: a Dirac nodal loop quantum electrocatalyst for efficient hydrogen evolution reaction. Journal of Materials Chemistry A, 2023, 11, 3717-3724.	5.2	4
1032	Facile synthesis of ordered mesoporous molybdenum carbide electrocatalysts for highâ€performance hydrogen evolution reaction. Electroanalysis, 2023, 35, .	1.5	1
1033	A structural study of size selected WSe2 nanoflakes prepared via liquid phase exfoliation: X-ray absorption to electrochemical application. Radiation Physics and Chemistry, 2023, 206, 110788.	1.4	3
1034	Recent advances in metal/covalent organic frameworks based materials: Their synthesis, structure design and potential applications for hydrogen production. Coordination Chemistry Reviews, 2023, 483, 215066.	9.5	29
1035	Engineering Selenium Vacancies on CoSe ₂ Nanoarrays for Alkaline Hydrogen Evolution. ACS Applied Nano Materials, 2023, 6, 1724-1731.	2.4	10
1036	Mononuclear nickel and copper complexes as electrocatalyst for generation of hydrogen from acetic acid. Inorganic Chemistry Communication, 2023, 150, 110521.	1.8	2
1037	Engineering of Molybdenum Sulfide Nanobunches on MWCNTs: Modulation of Active Sites and Electronic Conductivity via Controllable Solvothermal Deposition. ACS Applied Nano Materials, 2023, 6, 3627-3636.	2.4	3
1038	Facile green synthesis of Ag/carbon nanotubes composite for efficient water splitting applications. Synthetic Metals, 2023, 294, 117310.	2.1	13
1039	Investigation of the Synergistic Effect in Polypyrrole/Ni-Doped NASICON Composites for an Enhanced Hydrogen Evolution Reaction. Energy & Fuels, 2023, 37, 4552-4565.	2.5	5
1040	Effects of ⁶⁰ Co \hat{l}^3 -ray irradiation of thin-layer molybdenum disulfide for the hydrogen evolution reaction. New Journal of Chemistry, 0, , .	1.4	1
1041	Enhanced hydrogen generation via overall water splitting using novel MoS2-BN nanoflowers assembled TiO2 ternary heterostructures. International Journal of Hydrogen Energy, 2023, 48, 22044-22059.	3.8	31
1042	A post synthetically modified metal–organic framework as an efficient hydrogen evolution reaction catalyst in all pH conditions. New Journal of Chemistry, 0, , .	1.4	0
1043	Hydrogen bond-mediated pH-universal electrocatalytic hydrogen production by conjugated porous poly-indigo. Journal of Materials Chemistry A, 2023, 11, 10699-10709.	5.2	3
1044	Construction of Cu2O-g-C3N4/MoS2 composite material through the decoration of Cu2O nanoparticles onto the surface of two-dimensional g-C3N4/MoS2 heterostructure for their application in electrochemical hydrogen evolution. Fuel, 2023, 347, 128416.	3.4	4
1053	Versatility of group VI layered metal chalcogenide thin films synthesized by solution-based deposition methods. Journal of Materials Chemistry C, 2023, 11, 9768-9786.	2.7	0
1067	Functionalization of Carbon Dots and Their Catalytic Applications. , 2023, , 107-149.		0
1074	Diverse atomic structure configurations of metal-doped transition metal dichalcogenides for enhancing hydrogen evolution. Nano Research, 0, , .	5.8	3