Metal–Ligand Cooperation by Aromatization–Dear Activation and "Green†**C**atalysis

Accounts of Chemical Research 44, 588-602 DOI: 10.1021/ar2000265

Citation Report

#	Article	IF	CITATIONS
1	Asymmetric hydrogenation via architectural and functional molecular engineering. Pure and Applied Chemistry, 2001, 73, 227-232.	0.9	104
2	Electron-Rich PNP- and PNN-Type Ruthenium(II) Hydrido Borohydride Pincer Complexes. Synthesis, Structure, and Catalytic Dehydrogenation of Alcohols and Hydrogenation of Esters. Organometallics, 2011, 30, 5716-5724.	1.1	206
3	Computational Study on the Catalytic Role of Pincer Ruthenium(II)-PNN Complex in Directly Synthesizing Amide from Alcohol and Amine: The Origin of Selectivity of Amide over Ester and Imine. Organometallics, 2011, 30, 5233-5247.	1.1	149
4	The Catalytic Amination of Alcohols. ChemCatChem, 2011, 3, 1853-1864.	1.8	648
7	Synthesis of Peptides and Pyrazines from βâ€Amino Alcohols through Extrusion of H ₂ Catalyzed by Ruthenium Pincer Complexes: Ligandâ€Controlled Selectivity. Angewandte Chemie - International Edition, 2011, 50, 12240-12244.	7.2	138
8	Unprecedented Catalytic Hydrogenation of Urea Derivatives to Amines and Methanol. Angewandte Chemie - International Edition, 2011, 50, 11702-11705.	7.2	172
10	Acceptorless Dehydrogenative Coupling of Ethanol and Hydrogenation of Esters and Imines. Organometallics, 2012, 31, 5239-5242.	1.1	184
11	Nickel(II) Complexes Containing a Pyrrole–Diphosphine Pincer Ligand. Inorganic Chemistry, 2012, 51, 12789-12795.	1.9	46
12	Pyrrole-Based New Diphosphines: Pd and Ni Complexes Bearing the PNP Pincer Ligand. Inorganic Chemistry, 2012, 51, 12527-12539.	1.9	60
15	Sideâ€On Coordinated Distannene: An Unprecedented Nickel(0) Complex. Angewandte Chemie - International Edition, 2012, 51, 12869-12873.	7.2	34
16	Catalytic Hydrogenation of Cyclic Carbonates: A Practical Approach from CO ₂ and Epoxides to Methanol and Diols. Angewandte Chemie - International Edition, 2012, 51, 13041-13045.	7.2	317
17	Anionic 1,2,3â€Triazoleâ€4,5â€diylidene: A 1,2â€Dihapto Ligand for the Construction of Bimetallic Complexes. Chemistry - A European Journal, 2012, 18, 14627-14631.	1.7	30
18	Which Density Functional Is the Best in Computing C–H Activation Energies by Pincer Complexes of Late Platinum Group Metals?. Journal of Chemical Theory and Computation, 2012, 8, 2991-2996.	2.3	40
19	Change in Coordination of NCN Pincer Iron Complexes Containing Bis(oxazolinyl)phenyl Ligands. Organometallics, 2012, 31, 8283-8290.	1.1	11
20	Ruthenium Catalyzed Hydroboration of Terminal Alkynes to <i>Z</i> -Vinylboronates. Journal of the American Chemical Society, 2012, 134, 14349-14352.	6.6	214
21	Yttrium (amidate) complexes for catalytic C–N bond formation. Rapid, room temperature amidation of aldehydes. Dalton Transactions, 2012, 41, 7897.	1.6	32
22	Spin–Orbit Coupling and Outer-Core Correlation Effects in Ir- and Pt-Catalyzed C–H Activation. Journal of Chemical Theory and Computation, 2012, 8, 1641-1645.	2.3	21
23	Catalytic metal-free intramolecular hydroaminations of non-activated aminoalkenes: A computational exploration. Dalton Transactions, 2012, 41, 9091.	1.6	23

#	Article	IF	CITATIONS
24	Complexes of Iron(II) and Iron(III) Containing Aryl-Substituted N-Heterocyclic Carbene Ligands. Organometallics, 2012, 31, 3264-3271.	1.1	59
25	PNS-Type Ruthenium Pincer Complexes. Organometallics, 2012, 31, 6207-6214.	1.1	45
26	Enhanced Reactivities toward Amines by Introducing an Imine Arm to the Pincer Ligand: Direct Coupling of Two Amines To Form an Imine Without Oxidant. Organometallics, 2012, 31, 5208-5211.	1.1	123
27	A Highly Active Ruthenium(II) Pyrazolyl–Pyridyl–Pyrazole Complex Catalyst for Transfer Hydrogenation of Ketones. Organometallics, 2012, 31, 5664-5667.	1.1	61
28	Palladium-Catalyzed One-Pot Diarylamine Formation from Nitroarenes and Cyclohexanones. Organic Letters, 2012, 14, 1692-1695.	2.4	114
29	Ruthenium Pincer atalyzed Crossâ€Dehydrogenative Coupling of Primary Alcohols with Secondary Alcohols under Neutral Conditions. Advanced Synthesis and Catalysis, 2012, 354, 2403-2406.	2.1	109
31	Redoxâ€Active Ligands in Catalysis. Angewandte Chemie - International Edition, 2012, 51, 10228-10234.	7.2	307
32	Mechanistic Studies on the Gasâ€Phase Dehydrogenation of Alkanes at Cyclometalated Platinum Complexes. Chemistry - A European Journal, 2012, 18, 14055-14062.	1.7	11
33	A Versatile Ruthenium(II)–NNC Complex Catalyst for Transfer Hydrogenation of Ketones and Oppenauerâ€Type Oxidation of Alcohols. Chemistry - A European Journal, 2012, 18, 11550-11554.	1.7	65
34	Computational Insight into the Mechanism of Selective Imine Formation from Alcohol and Amine Catalyzed by the Ruthenium(II)â€PNP Pincer Complex. European Journal of Inorganic Chemistry, 2012, 2012, 5011-5020.	1.0	79
35	Catalytic coupling of nitriles with amines to selectively form imines under mild hydrogen pressure. Chemical Communications, 2012, 48, 11853.	2.2	115
36	Direct Arylation/Alkylation/Magnesiation of Benzyl Alcohols in the Presence of Grignard Reagents via Ni-, Fe-, or Co-Catalyzed sp ³ C–O Bond Activation. Journal of the American Chemical Society, 2012, 134, 14638-14641.	6.6	128
37	Hydrogen atom storage upon Z-class borane ligand functions: an alternative approach to ligand cooperation. Chemical Society Reviews, 2012, 41, 3535.	18.7	136
38	Catalytic Intramolecular Hydroamination with a Bifunctional Iridium Pyrazolato Complex: Substrate Scope and Mechanistic Elucidation. Organometallics, 2012, 31, 8444-8455.	1.1	56
39	Efficient hydrogenation of biomass-derived cyclic di-esters to 1,2-diols. Chemical Communications, 2012, 48, 1111-1113.	2.2	118
40	Cyclopentadienyl chromium diimine and pyridine-imine complexes: ligand-based radicals and metal-based redox chemistry. Dalton Transactions, 2012, 41, 7920.	1.6	13
41	Highly efficient hydrogenation of biomass-derived levulinic acid to Î ³ -valerolactone catalyzed by iridium pincer complexes. Green Chemistry, 2012, 14, 2388.	4.6	161
42	â€~Hemilabile' silyl pincer ligation: platinum group PSiN complexes and triple C–H activation to form a (PSiC)Ru carbene complex. Chemical Communications, 2012, 48, 1159-1161.	2.2	43

#	Article	IF	CITATIONS
43	Phenyl substituted indenylphosphine ruthenium complexes as catalysts for dehydrogenation of alcohols. Dalton Transactions, 2012, 41, 10309.	1.6	17
44	Coordination Versatility of sp ³ -Hybridized Pincer Ligands toward Ligand–Metal Cooperative Catalysis. ACS Catalysis, 2012, 2, 2456-2466.	5.5	122
45	Palladium-Assisted Room-Temperature Nucleophilic Substitution of an Unactivated Aryl Fluoride. Organometallics, 2012, 31, 1275-1277.	1.1	10
46	Symmetry Aspects of H ₂ Splitting by Five-Coordinate d ⁶ Ruthenium Amides, and Calculations on Acetophenone Hydrogenation, Ruthenium Alkoxide Formation, and Subsequent Hydrogenolysis in a Model <i>trans</i> -Ru(H) ₂ (diamine)(diphosphine) System. Inorganic Chemistry, 2012, 51, 10808-10818.	1.9	47
47	Aldehyde Binding through Reversible C–C Coupling with the Pincer Ligand upon Alcohol Dehydrogenation by a PNP–Ruthenium Catalyst. Journal of the American Chemical Society, 2012, 134, 10325-10328.	6.6	132
48	Peroxide-Mediated Transition-Metal-Free Direct Amidation of Alcohols with Nitroarenes. Organic Letters, 2012, 14, 984-987.	2.4	69
49	Direct coupling of alcohols to form esters and amides with evolution of H2 using in situ formed ruthenium catalysts. Catalysis Science and Technology, 2012, 2, 2039.	2.1	50
50	Synthesis and Characterization of <i>N</i> -[2-P(<i>i</i> -Pr) ₂ -4-methylphenyl] ₂ [–] (PNP) Pincer Tin(IV) and Tin(II) Complexes. Inorganic Chemistry, 2012, 51, 5787-5794.	1.9	22
51	N–H Activation by Rh(I) via Metal–Ligand Cooperation. Organometallics, 2012, 31, 4083-4101.	1.1	83
52	A N-aryloxy-β-diketiminate ligand in 4d, 4f and 5f-metals complexes. Dalton Transactions, 2012, 41, 11980.	1.6	28
53	Synthesis of polyamides from diols and diamines with liberation of H ₂ . Journal of Polymer Science Part A, 2012, 50, 1755-1765.	2.5	64
54	Computational Mechanistic Study of the Hydrogenation of Carbonate to Methanol Catalyzed by the Ru ^{II} PNN Complex. Inorganic Chemistry, 2012, 51, 5716-5727.	1.9	77
55	Catalytic Reductive Transformations of Carboxylic and Carbonic Acid Derivatives Using Molecular Hydrogen. ACS Catalysis, 2012, 2, 1718-1741.	5.5	315
56	Mononuclear, helical binuclear palladium and lithium complexes bearing a new pyrrole-based NNN-pincer ligand: fluxional property. Dalton Transactions, 2012, 41, 9503.	1.6	38
57	N–H bond activation by palladium(ii) and copper(i) complexes featuring a reactive bidentate PN-ligand. Dalton Transactions, 2012, 41, 11276.	1.6	53
58	Synthesis, Structure and Transmetalation Activity of Various C,Y-Chelated Organogold(I) Compounds. European Journal of Inorganic Chemistry, 2012, 2012, 2578-02587.	1.0	10
59	Molybdenum-catalyzed reduction of molecular dinitrogen under mild reaction conditions. Dalton Transactions, 2012, 41, 7447.	1.6	62
62	From Esters to Alcohols and Back with Ruthenium and Osmium Catalysts. Angewandte Chemie - International Edition, 2012, 51, 2772-2775.	7.2	264

#	Article	IF	CITATIONS
63	Synthesis and Unexpected Coordination of a Silicon(II)â€Based SiCSi Pincerlike Arene to Palladium. Angewandte Chemie - International Edition, 2012, 51, 3691-3694.	7.2	113
64	Synthesis, Structures, and Reactivities of Pincerâ€Type Ruthenium Complexes Bearing Two Protonâ€Responsive Pyrazole Arms. Chemistry - an Asian Journal, 2012, 7, 1417-1425.	1.7	64
65	Learning from the Neighbors: Improving Homogeneous Catalysts with Functional Ligands Motivated by Heterogeneous and Biocatalysis. ChemCatChem, 2012, 4, 307-320.	1.8	93
66	A New Mode of Activation of CO ₂ by Metal–Ligand Cooperation with Reversible Cĩ£¿C and Mĩ£¿O Bond Formation at Ambient Temperature. Chemistry - A European Journal, 2012, 18, 9194-9197.	1.7	125
67	Spectroscopic and DFT Study of Ferraaziridine Complexes Formed in the Transfer Hydrogenation of Acetophenone Catalyzed Using <i>trans</i> -[Fe(CO)(NCMe)(PPh ₂ C ₆ H ₄ CHâ+NCH ₂ â^') <sub Organometallics, 2012, 31, 3056-3064.</sub 	>2-	κ<46 P ⁴
68	Ruthenium(II) pincer complexes with oxazoline arms for efficient transfer hydrogenation reactions. Tetrahedron Letters, 2012, 53, 4409-4412.	0.7	44
69	Cooperative Catalysis with Firstâ€Row Late Transition Metals. European Journal of Inorganic Chemistry, 2012, 2012, 363-375.	1.0	418
70	Cooperative Aliphatic PNP Amido Pincer Ligands – Versatile Building Blocks for Coordination Chemistry and Catalysis. European Journal of Inorganic Chemistry, 2012, 2012, 412-429.	1.0	257
71	Synthesis of High Molecular Weight Polyesters via In Vacuo Dehydrogenation Polymerization of Diols. Macromolecular Rapid Communications, 2012, 33, 232-236.	2.0	41
72	Selective Acceptorless Conversion of Primary Alcohols to Acetals and Dihydrogen Catalyzed by the Ruthenium(II) Complex Ru(PPh3)2(NCCH3)2(SO4). Advanced Synthesis and Catalysis, 2012, 354, 497-504.	2.1	48
73	Preparation and reactivity of molybdenum–dinitrogen complexes bearing an arsenic-containing ANA-type pincer ligand. Chemical Communications, 2013, 49, 9290.	2.2	38
74	Copper atalyzed Dehydrogenative Coupling of Arenes with Alcohols. Angewandte Chemie - International Edition, 2013, 52, 9279-9283.	7.2	87
75	Multidentate actor ligands as versatile platforms for small molecule activation and catalysis. RSC Advances, 2013, 3, 11432.	1.7	125
76	Hydrogenation of imines catalysed by ruthenium(<scp>ii</scp>) complexes based on lutidine-derived CNC pincer ligands. Dalton Transactions, 2013, 42, 351-354.	1.6	66
77	Facile N–H Bond Cleavage of Ammonia by an Iridium Complex Bearing a Noninnocent PNP-Pincer Type Phosphaalkene Ligand. Journal of the American Chemical Society, 2013, 135, 11791-11794.	6.6	94
78	Synthesis, Characterization, and Catalytic Activity of Nickel(II) Alkyl Complexes Supported by Pyrrole–Diphosphine Ligands. Organometallics, 2013, 32, 4656-4663.	1.1	71
79	Reductive Elimination at an Ortho-Metalated Iridium(III) Hydride Bearing a Tripodal Tetraphosphorus Ligand. Organometallics, 2013, 32, 4284-4291.	1.1	20
80	Synthesis, Structures, and Dearomatization by Deprotonation of Iron Complexes Featuring Bipyridine-based PNN Pincer Ligands. Inorganic Chemistry, 2013, 52, 9636-9649.	1.9	53

#	Article	IF	CITATIONS
81	Synthesis and Small Molecule Reactivity of <i>trans</i> -Dihydride Isomers of Ru(NHC) ₂ (PPh ₃) ₂ H ₂ (NHC = N-Heterocyclic Carbene). Organometallics, 2013, 32, 4927-4937.	1.1	22
82	Synthesis, structural characterisation and catalytic application of dichloro(η) Tj ETQq1 1 0.784314 rgBT /Overlock ketones. Transition Metal Chemistry, 2013, 38, 641-648.	10 Tf 50 0.7	707 Td (6- 8
83	Activation of Water, Ammonia, and Other Small Molecules by PC _{carbene} P Nickel Pincer Complexes. Journal of the American Chemical Society, 2013, 135, 11776-11779.	6.6	216
84	Formation of Tertiary Amides and Dihydrogen by Dehydrogenative Coupling of Primary Alcohols with Secondary Amines Catalyzed by Ruthenium Bipyridineâ€Based Pincer Complexes. Advanced Synthesis and Catalysis, 2013, 355, 2525-2530.	2.1	81
85	Rhenium-Catalyzed Acceptorless Dehydrogenative Coupling via Dual Activation of Alcohols and Carbonyl Compounds. ACS Catalysis, 2013, 3, 2195-2198.	5.5	37
86	Theoretical Studies on the Reaction Mechanism of Metal-Assisted CH Activation. , 2013, , 695-726.		8
88	Heterolytic Cleavage of Dihydrogen by an Iron(II) PNP Pincer Complex via Metal–Ligand Cooperation. Organometallics, 2013, 32, 4114-4121.	1.1	75
89	N-Triisopropylphenyl-substituted N,Npy,O pincers as supports for mononuclear palladium(II) complexes and hydrogen-bonded dimeric assemblies. Polyhedron, 2013, 59, 124-132.	1.0	6
90	Iron Pincer Complex Catalyzed, Environmentally Benign, <i>E</i> â€Selective Semiâ€Hydrogenation of Alkynes. Angewandte Chemie - International Edition, 2013, 52, 14131-14134.	7.2	215
91	Bifunctional (Cyclopentadienone)Iron–Tricarbonyl Complexes: Synthesis, Computational Studies and Application in Reductive Amination. Chemistry - A European Journal, 2013, 19, 17881-17890.	1.7	115
92	Dehydrogenative Crossâ€Coupling of Primary and Secondary Alcohols. Advanced Synthesis and Catalysis, 2013, 355, 3077-3080.	2.1	90
93	Tuning the Reactivity of an Actor Ligand for Tandem CO ₂ and C–H Activations: From Spectator Metals to Metal-Free. Journal of the American Chemical Society, 2013, 135, 16175-16183.	6.6	30
94	Investigation of the Electronic Structure of Mono(1,1′-Diamidoferrocene) Uranium(IV) Complexes. Organometallics, 2013, 32, 6012-6021.	1.1	27
95	Activation of Nitriles by Metal Ligand Cooperation. Reversible Formation of Ketimido- and Enamido-Rhenium PNP Pincer Complexes and Relevance to Catalytic Design. Journal of the American Chemical Society, 2013, 135, 17004-17018.	6.6	110
96	Metal–Ligand Cooperation in the Cycloisomerization of Alkynoic Acids with Indenediide Palladium Pincer Complexes. ACS Catalysis, 2013, 3, 2930-2934.	5.5	64
97	The impact of Metal–Ligand Cooperation in Hydrogenation of Carbon Dioxide Catalyzed by Ruthenium PNP Pincer. ACS Catalysis, 2013, 3, 2522-2526.	5.5	136
98	Comparison of the Catalytic Activity of $[(\hat{I} < \sup > 5 < \sup > -C < \sup > 5 < sub > 5 < sub > 5 < sub > 1 < sub > 5 < sub > 1 < sub > 5 < sub > 1 < sub > 5 < sub > 1 < sub > 5 < sub > 1 < sub > 5 < sub > 1 < sub > 5 < sub > 1 < sub > 5 < sub > 1 < sub > 5 < sub > 1 < sub > 5 < sub > 1 < sub > 5 < sub > 1 < sub > 5 < sub > 1 < sub > 5 < sub > 1 < sub > 5 < sub > 1 < sub > 5 < sub > 1 < sub > 5 < sub > 1 < sub > 5 < sub > 1 < sub > 5 < sub > 1 < sub > 5 < sub > 1 < sub > 5 < sub > 1 < sub > 5 < sub > 1 < sub > 5 < sub > 1 < sub > 5 < sub > 1 < sub > 5 < sub > 1 < sub > 5 < sub > 1 < sub > 5 < sub > 1 < sub > 5 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 < sub > 1 <$	in.1	19
99	Mechanism under Acidic Conditions. Organometallics, 2013, 32, 6541-6554. Selective Hydrogen Production from Methanol with a Defined Iron Pincer Catalyst under Mild Conditions. Angewandte Chemie - International Edition, 2013, 52, 14162-14166.	7.2	308

#	Article	IF	CITATIONS
100	Protonâ€Assisted Hydrogen Activation on Polyhedral Cations. Chemistry - A European Journal, 2013, 19, 3905-3912.	1.7	10
101	Reactivity of iridium(I) PNP amido complexes towardÂprotonation and oxidation. Journal of Organometallic Chemistry, 2013, 744, 35-40.	0.8	17
102	Influence of the Ligand Backbone in Pincer Complexes: Indenediide-, Indolyl-, and Indenyl-Based SCS Palladium Complexes. Organometallics, 2013, 32, 4301-4305.	1.1	23
103	Base Metal Catalysts for Photochemical C–H Borylation That Utilize Metal–Metal Cooperativity. Journal of the American Chemical Society, 2013, 135, 17258-17261.	6.6	235
104	Synthesis of [RuX(CO)(dppp)(NN)]Cl (X = H, Cl; NN = en, ampy) Complexes and Their Use as Catalysts for Transfer Hydrogenation. Organometallics, 2013, 32, 5299-5304.	1.1	17
105	Acetonitrile Coupling at an Electronâ€Rich Iridium Center Supported by a PCP Pincer Ligand. European Journal of Inorganic Chemistry, 2013, 2013, 3826-3830.	1.0	36
106	Activation of X–H Bonds (X = N, P, O, S) with SCS Pincer Palladium Complexes: A Theoretical Study. European Journal of Inorganic Chemistry, 2013, 2013, 4068-4076.	1.0	16
107	Proposing late transition metal complexes as frustrated Lewis pairs – a computational investigation. Dalton Transactions, 2013, 42, 13866.	1.6	3
108	From discrete monomeric complexes to hydrogen-bonded dimeric assemblies based on sterically encumbered square planar palladium(ii) ONN-pincers. Dalton Transactions, 2013, 42, 7710.	1.6	12
109	Ligand–Metal Cooperating PC(sp ³)P Pincer Complexes as Catalysts in Olefin Hydroformylation. Chemistry - A European Journal, 2013, 19, 16906-16909.	1.7	41
110	(POP)Rh pincer hydride complexes: unusual reactivity and selectivity in oxidative addition and olefin insertion reactions. Chemical Science, 2013, 4, 3683.	3.7	52
111	Stepwise hydrogenation of an arylthiophosphinidene isocyanide complex to give tethered aldimine and aminocarbene functions. Dalton Transactions, 2013, 42, 11039.	1.6	7
112	Heterolytic H2 activation on a carbene-ligated rhodathiaborane promoted by isonido-nido cage opening. Chemical Communications, 2013, 49, 9863.	2.2	11
113	Regioselective Pd-catalyzed hydroamination of substituted dienes. Catalysis Science and Technology, 2013, 3, 1375.	2.1	10
114	The Chemistry of Pincer Complexes of 13–15 Main Group Elements. Topics in Organometallic Chemistry, 2013, , 175-202.	0.7	15
115	Evidence for Metal–Ligand Cooperation in a Pd–PNF Pincer-Catalyzed Cross-Coupling. Journal of the American Chemical Society, 2013, 135, 967-970.	6.6	42
116	Catalytic transformation of alcohols to carboxylic acid salts and H2 using water as the oxygen atom source. Nature Chemistry, 2013, 5, 122-125.	6.6	293
117	Platinum complexes bearing a boron-based PBP pincer ligand: synthesis, structure, and application as a catalyst for hydrosilylation of 1-decene. Dalton Transactions, 2013, 42, 625-629.	1.6	63

#	Article	lF	CITATIONS
118	Anionic Nickel(II) Complexes with Doubly Deprotonated PNP Pincer-Type Ligands and Their Reactivity toward CO ₂ . Organometallics, 2013, 32, 300-308.	1.1	79
119	Achiral and Chiral PNP-Pincer Ligands with a Carbazole Backbone: Coordination Chemistry with d ⁸ Transition Metals. Inorganic Chemistry, 2013, 52, 2050-2059.	1.9	36
120	Replacing Phosphorus with Sulfur for the Efficient Hydrogenation of Esters. Angewandte Chemie - International Edition, 2013, 52, 2538-2542.	7.2	197
121	A closer look at the formation of bicyclometalated and cyclometalated ruthenium carbonyl complexes. Inorganica Chimica Acta, 2013, 397, 10-20.	1.2	13
122	Simple and Efficient Catalytic Reaction for the Selective Deuteration of Alcohols. ACS Catalysis, 2013, 3, 448-452.	5.5	57
123	Stepwise Metal–Ligand Cooperation by a Reversible Aromatization/Deconjugation Sequence in Ruthenium Complexes with a Tetradentate Phenanthrolineâ€Based Ligand. Chemistry - A European Journal, 2013, 19, 3407-3414.	1.7	49
124	Synthesis of <i>N</i> -Aryloxy-β-diketiminate Ligands and Coordination to Zirconium, Ytterbium, Thorium, and Uranium. Organometallics, 2013, 32, 1328-1340.	1.1	24
125	N-Formylation of Amines by Methanol Activation. Organic Letters, 2013, 15, 1776-1779.	2.4	162
126	6,6′-Dihydroxy terpyridine: a proton-responsive bifunctional ligand and its application in catalytic transfer hydrogenation of ketones. Chemical Communications, 2013, 49, 400-402.	2.2	114
127	Direct Synthesis of Pyrroles by Dehydrogenative Coupling of βâ€Aminoalcohols with Secondary Alcohols Catalyzed by Ruthenium Pincer Complexes. Angewandte Chemie - International Edition, 2013, 52, 4012-4015.	7.2	268
128	Low-temperature aqueous-phase methanol dehydrogenation to hydrogen and carbon dioxide. Nature, 2013, 495, 85-89.	13.7	680
129	Developing more sustainable processes for ammonia synthesis. Coordination Chemistry Reviews, 2013, 257, 2551-2564.	9.5	343
130	A Bis(phosphaethenyl)pyridine Complex of Iridium(I): Synthesis and Catalytic Application to <i>N</i> -Alkylation of Amines with Alcohols. Organometallics, 2013, 32, 2210-2215.	1.1	65
131	General and Highly Efficient Iron atalyzed Hydrogenation of Aldehydes, Ketones, and α,βâ€Unsaturated Aldehydes. Angewandte Chemie - International Edition, 2013, 52, 5120-5124.	7.2	151
132	Metal or Nonmetal Cooperation with a Phenyl Group: Route to Catalysis? A Computational Investigation. ACS Catalysis, 2013, 3, 920-927.	5.5	21
133	Enantioselective Ketone Hydroacylation Using Noyori's Transfer Hydrogenation Catalyst. Journal of the American Chemical Society, 2013, 135, 5553-5556.	6.6	79
134	Coexistence of Lewis Acid and Base Functions: A Generalized View of the Frustrated Lewis Pair Concept with Novel Implications for Reactivity. Topics in Current Chemistry, 2013, 334, 27-57.	4.0	16
135	PC(sp 3)P Transition Metal Pincer Complexes: Properties and Catalytic Applications. Topics in Organometallic Chemistry, 2013, , 289-317.	0.7	54

#	Article	IF	CITATIONS
136	Direct Amidation of Aldehydes with Primary Amines under Mild Conditions Catalyzed by Diolefinâ€Amine–Rh ^I Complexes. ChemCatChem, 2013, 5, 1079-1083.	1.8	19
137	Direct H/OR and OR/OR′ Metathesis Pathways in Ester Hydrogenation and Transesterification by Milstein's Catalyst. Organometallics, 2013, 32, 2493-2496.	1.1	41
138	Synthesis of a Bis(indenyl) Co(I) Anion: A Reactive Source of a 14 Electron Indenyl Co(I) Equivalent. Inorganic Chemistry, 2013, 52, 2446-2457.	1.9	14
139	Seleniumâ€Promoted Intramolecular Oxidative Amidation of 2â€(Arylamino)acetophenones for the Synthesis of <i>N</i> â€Arylisatins. European Journal of Organic Chemistry, 2013, 2013, 4229-4232.	1.2	28
140	A sustainable catalytic pyrrole synthesis. Nature Chemistry, 2013, 5, 140-144.	6.6	428
141	The coordination chemistry of organo-hydride donors: new prospects for efficient multi-electron reduction. Chemical Society Reviews, 2013, 42, 5439.	18.7	131
142	Synthesis and reactivity of ruthenium tridentate bis-phosphinite ligand complexes. Dalton Transactions, 2013, 42, 10460.	1.6	18
143	Practical Selective Hydrogenation of α-Fluorinated Esters with Bifunctional Pincer-Type Ruthenium(II) Catalysts Leading to Fluorinated Alcohols or Fluoral Hemiacetals. Journal of the American Chemical Society, 2013, 135, 9600-9603.	6.6	103
144	New bisphosphomide ligands, 1,3-phenylenebis((diphenylphosphino)methanone) and (2-bromo-1,3-phenylene)bis((diphenylphosphino)methanone): synthesis, coordination behavior, DFT calculations and catalytic studies. Dalton Transactions, 2013, 42, 11385.	1.6	21
145	Synthesis, Structures, and Reactivity of Ruthenium Complexes with PNP-pincer Type Phosphaalkene Ligands. Organometallics, 2013, 32, 2918-2925.	1.1	36
146	PNN Ruthenium Pincer Complexes Based on Phosphinated 2,2′-Dipyridinemethane and 2,2′-Oxobispyridine. Metal–Ligand Cooperation in Cyclometalation and Catalysis. Organometallics, 2013, 32, 2973-2982.	1.1	40
147	Bifunctional Ruthenium(II) PCP Pincer Complexes and Their Catalytic Activity in Acceptorless Dehydrogenative Reactions. Organometallics, 2013, 32, 3069-3073.	1.1	76
148	Cascade Oxidative Dearomatization/Semipinacol Rearrangement: An Approach to 2â€Spirocycloâ€3â€oxindole Derivatives. Chemistry - an Asian Journal, 2013, 8, 883-887.	1.7	39
149	Hydrogenation of Dimethyl Carbonate to Methanol by <i>trans</i> -[Ru(H) ₂ (PNN)(CO)] Catalysts: DFT Evidence for Ion-Pair-Mediated Metathesis Paths for C–OMe Bond Cleavage. Organometallics, 2013, 32, 6969-6985.	1.1	49
150	Reversible Insertion of Carbenes into Ruthenium–Silicon Bonds. Journal of the American Chemical Society, 2013, 135, 19008-19015.	6.6	47
151	Autotandem Aromatization–Dearomatization Pathways for PNP-Ru ^{II} -Catalyzed Formation of Imine and Hydrogen from Alcohol and Amine. Organometallics, 2013, 32, 2926-2933.	1.1	28
152	Elusive Free Bisimino-N-heterocyclic Carbene and Its Rearrangement by C–C Coupling. Characterization of Relevant Iridium(I) and Chromium(II) Complexes. Organometallics, 2013, 32, 6286-6297.	1.1	17
153	Acceptorless Dehydrogenation of C–C Single Bonds Adjacent to Functional Groups by Metal–Ligand Cooperation. Journal of the American Chemical Society, 2013, 135, 18726-18729.	6.6	84

#	Article	IF	Citations
154	Electron Transfer Behavior of Pincer-Type {RhNO} ⁸ Complexes: Spectroscopic Characterization and Reactivity of Paramagnetic {RhNO} ⁹ Complexes. Organometallics, 2013, 32, 6555-6564.	1.1	9
155	Unsaturated Iridium(III) Complexes Supported by a Quinolato–Carboxylato ONO Pincer-Type Ligand: Synthesis, Reactivity, and Catalytic C–H Functionalization. Organometallics, 2013, 32, 6918-6930.	1.1	19
156	RuCp* Complexes of Ambidentate 4,5-Diazafluorene Derivatives: From Linkage Isomers to Coordination-Driven Self-Assembly. Organometallics, 2013, 32, 6511-6521.	1.1	13
157	Applications of Acceptorless Dehydrogenation and Related Transformations in Chemical Synthesis. Science, 2013, 341, 1229712.	6.0	1,219
158	Reactivity of a Mononuclear Iridium(I) Species Bearing a Terminal Phosphido Fragment Embedded in a Triphosphorus Ligand. Inorganic Chemistry, 2013, 52, 1682-1684.	1.9	45
159	Phosphinodi(benzylsilane) PhP{(<i>o</i> -C ₆ H ₄ CH ₂)SiMe ₂ H} ₂ : A Versatile "PSi ₂ H _{<i>x</i>} ―Pincer-Type Ligand at Ruthenium. Inorganic Chemistry. 2013, 52, 9798-9806.	1.9	24
160	A Diolefin Diamide Rhodium(I) Complex and Its Oneâ€Electron Oxidation Resulting in a Two enter, Threeâ€Electron Rh–N Bond. European Journal of Inorganic Chemistry, 2013, 2013, 5831-5835.	1.0	11
161	Efficient, Low Temperature Production of Hydrogen from Methanol. ChemCatChem, 2013, 5, 2795-2797.	1.8	13
168	Ruthenium-Catalyzed Amide-Bond Formation. Topics in Organometallic Chemistry, 2014, , 81-118.	0.7	22
169	Hydrogenation of carboxylic acid derivatives with bifunctional ruthenium catalysts. Pure and Applied Chemistry, 2014, 86, 933-943.	0.9	19
170	System with Potential Dual Modes of Metal–Ligand Cooperation: Highly Catalytically Active Pyridineâ€Based PNNH–Ru Pincer Complexes. Chemistry - A European Journal, 2014, 20, 15727-15731.	1.7	114
171	The synthesis of pyrroles via acceptorless dehydrogenative condensation of secondary alcohols and 1,2-amino alcohols mediated by a robust and reusable catalyst based on nanometer-sized iridium particles. Catalysis Science and Technology, 2014, 4, 4188-4192.	2.1	88
175	Methandiide as a Nonâ€Innocent Ligand in Carbene Complexes: From the Electronic Structure to Bond Activation Reactions and Cooperative Catalysis. Chemistry - A European Journal, 2014, 20, 11295-11299.	1.7	44
176	Unusual NH Activation of 2â€Aminopyrimidine: Supramolecular Assembly into an Ag ^I Metal–Organic Framework. Chemistry - an Asian Journal, 2014, 9, 452-456.	1.7	3
178	Synthesis and Ligand Modification Chemistry of a Molybdenum Dinitrogen Complex: Redox and Chemical Activity of a Bis(imino)pyridine Ligand. Angewandte Chemie - International Edition, 2014, 53, 14211-14215.	7.2	57
179	Alkene Isomerisation Catalysed by a Ruthenium PNN Pincer Complex. Chemistry - A European Journal, 2014, 20, 15434-15442.	1.7	39
180	Synthesis and Redox Properties of PNP Pincer Complexes Based on <i>N</i> â€Methylâ€4,4′â€bipyridinium. European Journal of Inorganic Chemistry, 2014, 2014, 4273-4280.	1.0	11
182	Chiral Palladacycle Catalysts Generated on a Singleâ€Handed Helical Polymer Skeleton for Asymmetric Arylative Ring Opening of 1,4â€Epoxyâ€1,4â€dihydronaphthalene. Angewandte Chemie - International Edition, 2014, 53, 12785-12788.	7.2	78

#	Article	IF	CITATIONS
184	Ag(I) and Tl(I) Precursors as Transfer Agents of a Pyrrole-Based Pincer Ligand to Late Transition Metals. Inorganic Chemistry, 2014, 53, 12360-12371.	1.9	30
186	Synthesis, Structure, and Bonding Properties of Ruthenium Complexes Possessing a Boron-Based PBP Pincer Ligand and Their Application for Catalytic Hydrogenation. Organometallics, 2014, 33, 6760-6770.	1.1	46
187	Hydrogenation of Polar Bonds Catalysed by Ruthenium-Pincer Complexes. Topics in Organometallic Chemistry, 2014, , 19-43.	0.7	25
188	Unprecedented Iron atalyzed Ester Hydrogenation. Mild, Selective, and Efficient Hydrogenation of Trifluoroacetic Esters to Alcohols Catalyzed by an Iron Pincer Complex. Angewandte Chemie - International Edition, 2014, 53, 4685-4689.	7.2	175
189	Catalytic Transfer Hydrogenation by a Trivalent Phosphorus Compound: Phosphorusâ€Ligand Cooperation Pathway or P ^{III} /P ^V Redox Pathway?. Angewandte Chemie - International Edition, 2014, 53, 4633-4637.	7.2	57
190	Metal–Ligand Cooperation on a Diruthenium Platform: Selective Imine Formation through Acceptorless Dehydrogenative Coupling of Alcohols with Amines. Chemistry - A European Journal, 2014, 20, 6542-6551.	1.7	97
191	The Synthesis of Benzimidazoles and Quinoxalines from Aromatic Diamines and Alcohols by Iridium atalyzed Acceptorless Dehydrogenative Alkylation. Chemistry - A European Journal, 2014, 20, 5569-5572.	1.7	154
196	Efficient Catalyst for Acceptorless Alcohol Dehydrogenation: Interplay of Theoretical and Experimental Studies. ACS Catalysis, 2014, 4, 1010-1020.	5.5	151
197	Reaction of Dinuclear Rhodium 4,5-Diazafluorenyl-9-Carboxylate Complexes with H ₂ and CO ₂ . Organometallics, 2014, 33, 2776-2783.	1.1	12
198	Rhodiumâ€Catalyzed Ketone Methylation Using Methanol Under Mild Conditions: Formation of αâ€Branched Products. Angewandte Chemie - International Edition, 2014, 53, 761-765.	7.2	207
199	Synthesis, Coordination Chemistry, and Cooperative Activation of H2with Ruthenium Complexes of Proton-Responsive METAMORPhos Ligands. European Journal of Inorganic Chemistry, 2014, 2014, 1826-1835.	1.0	14
200	Synthesis and Characterization of Anionic, Neutral, and Cationic PNP Pincer Pd ^{II} and Pt ^{II} Hydrides. Organometallics, 2014, 33, 2503-2509.	1.1	16
201	On the Innocence of Bipyridine Ligands: How Well Do DFT Functionals Fare for These Challenging Spin Systems?. Journal of Chemical Theory and Computation, 2014, 10, 220-235.	2.3	34
202	Catalytic Hydrogenation of Carboxylic Acid Esters, Amides, and Nitriles with Homogeneous Catalysts. Organic Process Research and Development, 2014, 18, 289-302.	1.3	336
203	Structural Diversity of Copper(I) Complexes Formed by Pyrrole- and Dipyrrolylmethane-Based Diphosphine Ligands with Cu–X··ĤN Hydrogen Bonds. Inorganic Chemistry, 2014, 53, 700-709.	1.9	27
204	Iron(II) Complexes Containing Unsymmetrical P–N–Pâ€2 Pincer Ligands for the Catalytic Asymmetric Hydrogenation of Ketones and Imines. Journal of the American Chemical Society, 2014, 136, 1367-1380.	6.6	278
205	Unexpectedly High Barriers to M–P Rotation in Tertiary Phobane Complexes: PhobPR Behavior That Is Commensurate with tBu2PR. Organometallics, 2014, 33, 702-714.	1.1	3
206	Air-Stable Gold Nanoparticles Ligated by Secondary Phosphine Oxides for the Chemoselective Hydrogenation of Aldehydes: Crucial Role of the Ligand. Journal of the American Chemical Society, 2014, 136, 2520-2528.	6.6	133

#	Article	IF	CITATIONS
207	Interconversion of CO2/H2 and Formic Acid Under Mild Conditions in Water. Advances in Inorganic Chemistry, 2014, 66, 189-222.	0.4	24
208	Deprotonation-Induced Structural Changes in SNS-Pincer Ruthenium Complexes with Secondary Thioamide Groups. Organometallics, 2014, 33, 885-891.	1.1	23
209	Mechanism of the Formation of Carboxylate from Alcohols and Water Catalyzed by a Bipyridine-Based Ruthenium Complex: A Computational Study. Journal of the American Chemical Society, 2014, 136, 383-395.	6.6	85
210	Reduction of CO ₂ to Methanol Catalyzed by a Biomimetic Organo-Hydride Produced from Pyridine. Journal of the American Chemical Society, 2014, 136, 16081-16095.	6.6	131
211	A Twoâ€inâ€one Pincer Ligand and its Diiron(II) Complex Showing Spin State Switching in Solution through Reversible Ligand Exchange. Angewandte Chemie - International Edition, 2015, 54, 583-587.	7.2	18
212	Donor-Induced Decomposition of the Grubbs Catalysts: AnÂIntercepted Intermediate. Organometallics, 2014, 33, 6738-6741.	1.1	49
213	New Iridium Catalysts for the Selective Alkylation of Amines by Alcohols under Mild Conditions and for the Synthesis of Quinolines by Acceptorâ€less Dehydrogenative Condensation. Chemistry - A European Journal, 2014, 20, 13279-13285.	1.7	150
214	BH, CH, and BC Bond Activation: The Role of Two Adjacent Agostic Interactions. Angewandte Chemie - International Edition, 2014, 53, 7569-7573.	7.2	46
215	Efficient Hydrogenation of Ketones and Aldehydes Catalyzed by Well-Defined Iron(II) PNP Pincer Complexes: Evidence for an Insertion Mechanism. Organometallics, 2014, 33, 6905-6914.	1.1	119
216	Metal–ligand bifunctional reactivity and catalysis of protic N-heterocyclic carbene and pyrazole complexes featuring β-NH units. Chemical Communications, 2014, 50, 14290-14300.	2.2	145
217	Reduction of an Fe(i) mesityl complex induced by π-acid ligands. Dalton Transactions, 2014, 43, 9032.	1.6	11
218	Novel palladium-catalyzed cascade carboxylative annulation to construct functionalized Î ³ -lactones in ionic liquids. Chemical Communications, 2014, 50, 1381-1383.	2.2	41
219	Controlled hydrogenative depolymerization of polyesters and polycarbonates catalyzed by ruthenium(ii) PNN pincer complexes. Chemical Communications, 2014, 50, 4884.	2.2	133
220	Recent Advances in α <i>-</i> Alkylation Reactions using Alcohols with Hydrogen Borrowing Methodologies. ACS Catalysis, 2014, 4, 3972-3981.	5.5	390
221	Flexible Coordination of Diphosphine Ligands Leading to cis and trans Pd(0), Pd(II), and Rh(I) Complexes. Inorganic Chemistry, 2014, 53, 8517-8528.	1.9	28
222	Versatile coordination chemistry of a bis(methyliminophosphoranyl)pyridine ligand on copper centres. Dalton Transactions, 2014, 43, 13399.	1.6	30
223	Bond Activation and Catalysis by Ruthenium Pincer Complexes. Chemical Reviews, 2014, 114, 12024-12087.	23.0	811
224	Formal hydration of non-activated terminal olefins using tandem catalysts. Chemical Communications, 2014, 50, 2608.	2.2	3

# 225	ARTICLE [CNN]-pincer nickel(<scp>ii</scp>) complexes of N-heterocyclic carbene (NHC): synthesis and catalysis	IF 1.6	CITATIONS
226	of the Kumada reaction of unactivated C–Cl bonds. Dalton Transactions, 2014, 43, 9410-9413. Trace amount Pd(ppm)-catalyzed Sonogashira, Heck and Suzuki cross-coupling reactions based on synergistic interaction with an asymmetric conjugated pyridinespirofluorene. Nanoscale, 2014, 6, 6473.	2.8	12
227	Formation of bis(2-pyridylcarbonyl)aminate by oxidation of ethylbis(2-pyridylmethyl)amine on the trichloridoruthenium(<scp>iii</scp>) complex. Dalton Transactions, 2014, 43, 15391-15397.	1.6	4
228	[IrCl{N(CHCHPtBu ₂) ₂ }] ^{â^`} : a versatile source of the Ir ^I (PNP) pincer platform. Dalton Transactions, 2014, 43, 4506-4513.	1.6	22
229	Distinguishing homogeneous from nanoparticle asymmetric iron catalysis. Catalysis Science and Technology, 2014, 4, 3426-3438.	2.1	65
230	Ironâ€Catalyzed Hydrogenation of Esters to Alcohols. Angewandte Chemie - International Edition, 2014, 53, 13004-13006.	7.2	29
231	Ruthenium complexes of tetradentate bipyridine ligands: highly efficient catalysts for the hydrogenation of carboxylic esters and lactones. Green Chemistry, 2014, 16, 4081.	4.6	76
232	8.04 Reduction of CO to CHOH by Metal-Catalyzed Hydrogenation and Transfer Hydrogenation. , 2014, , 198-273.		7
233	Boryl–Metal Bonds Facilitate Cobalt/Nickel-Catalyzed Olefin Hydrogenation. Journal of the American Chemical Society, 2014, 136, 13672-13683.	6.6	209
234	DFT Mechanistic Study of Rull-Catalyzed Amide Synthesis from Alcohol and Nitrile Unveils a Different Mechanism for Borrowing Hydrogen. ACS Catalysis, 2014, 4, 2854-2865.	5.5	27
235	CNH ₂ Bond Formation Mediated by Iridium Complexes. Angewandte Chemie - International Edition, 2014, 53, 9627-9631.	7.2	12
236	Benzo annulated cycloheptatriene PCP pincer iridium complexes. Dalton Transactions, 2014, 43, 12187-12199.	1.6	7
237	Direct Catalytic Olefination of Alcohols with Sulfones. Angewandte Chemie - International Edition, 2014, 53, 11092-11095.	7.2	58
238	Synthesis and Reactivity of Ruthenium Hydride Complexes Containing a Tripodal Aminophosphine Ligand. Organometallics, 2014, 33, 578-586.	1.1	6
240	Selective hydrogenation of nitriles to imines over a multifunctional heterogeneous Pt catalyst. AICHE Journal, 2014, 60, 3565-3576.	1.8	29
241	Formation of Chlorosilyl Pincer-Type Rhodium Complexes by Multiple Si–H Activations of Bis(phosphine)/Dihydrosilyl Ligands. Organometallics, 2014, 33, 5070-5073.	1.1	63
242	Synthesis and Reactivity of Ruthenium Complexes Bearing Arsenic-Containing Arsenic-Nitrogen-Arsenic-Type Pincer Ligand. Organometallics, 2014, 33, 5295-5300.	1.1	23
243	Pd(<scp>ii</scp>) coordinated deprotonated diphenyl phosphino amino pyridine: reactivity towards solvent, base, and acid. Dalton Transactions, 2014, 43, 17136-17144.	1.6	8

#	Article	IF	CITATIONS
244	Alcohol Amination with Ammonia Catalyzed by an Acridine-Based Ruthenium Pincer Complex: A Mechanistic Study. Journal of the American Chemical Society, 2014, 136, 5923-5929.	6.6	111
245	Conformational Flexibility of Dibenzobarrelene-Based PC(sp ³)P Pincer Iridium Hydride Complexes: The Role of Hemilabile Functional Groups and External Coordinating Solvents. Organometallics, 2014, 33, 5964-5973.	1.1	35
246	Intramolecular CH/OH Bond Cleavage with Water and Alcohol Using a Phosphineâ€Free Ruthenium Carbene NCN Pincer Complex. Chemistry - A European Journal, 2014, 20, 16960-16968.	1.7	21
247	Lutidine-Derived Ru-CNC Hydrogenation Pincer Catalysts with Versatile Coordination Properties. ACS Catalysis, 2014, 4, 2667-2671.	5.5	104
248	Transfer Hydrogenation of Organic Formates and Cyclic Carbonates: An Alternative Route to Methanol from Carbon Dioxide. ACS Catalysis, 2014, 4, 3630-3636.	5.5	78
249	[Ge(H)(2 ₆ H ₄ PPh ₂) ₃] as Ligand Precursor at Ruthenium: Formation and Reactivity of [Ru(Cl){Ge(2â€C ₆ H ₄ PPh ₂) ₃ }]. European Journal of Inorganic Chemistry, 2014, 2014, 4826-4835.	1.0	29
250	Palladium complexes of a new phosphine-amido-siloxide pincer ligand with variable degrees of protonation. Inorganica Chimica Acta, 2014, 422, 70-77.	1.2	4
251	Ruthenium-Catalyzed Hydrogen Generation from Alcohols and Formic Acid, Including Ru-Pincer-Type Complexes. Topics in Organometallic Chemistry, 2014, , 45-79.	0.7	14
252	Unsymmetrical Pincerâ€Type Ruthenium Complex Containing βâ€Protic Pyrazole and Nâ€Heterocyclic Carbene Arms: Comparison of BrAnsted Acidity of NH Groups in Second Coordination Sphere. Chemistry - A European Journal, 2014, 20, 9539-9542.	1.7	44
253	Mechanism of CO ₂ hydrogenation to formates by homogeneous Ru-PNP pincer catalyst: from a theoretical description to performance optimization. Catalysis Science and Technology, 2014, 4, 3474-3485.	2.1	112
254	Ruthenium-Catalyzed Synthesis of Benzoxazoles Using Acceptorless Dehydrogenative Coupling Reaction of Primary Alcohols with 2-Aminophenol under Heterogeneous Conditions. ACS Catalysis, 2014, 4, 1686-1692.	5.5	85
255	Iron and Chromium Complexes Containing Tridentate Chelates Based on Nacnac and Imino- and Methyl-Pyridine Components: Triggering C—X Bond Formation. Inorganic Chemistry, 2014, 53, 7467-7484.	1.9	39
256	B–H Bond Cleavage via Metal–Ligand Cooperation by Dearomatized Ruthenium Pincer Complexes. Organometallics, 2014, 33, 3716-3726.	1.1	48
257	Reversible CO ₂ binding triggered by metal–ligand cooperation in a rhenium(<scp>i</scp>) PNP pincer-type complex and the reaction with dihydrogen. Chemical Science, 2014, 5, 2043-2051.	3.7	120
258	Alkyl(quinolin-8-yl)phosphine Oxides as Hemilabile Preligands for Palladium-Catalyzed Reactions. Organometallics, 2014, 33, 3523-3534.	1.1	13
259	Ruthenium pincer complexes: Ligand design and complex synthesis. Coordination Chemistry Reviews, 2014, 276, 112-152.	9.5	129
260	Four-Coordinate Cobalt Pincer Complexes: Electronic Structure Studies and Ligand Modification by Homolytic and Heterolytic Pathways. Journal of the American Chemical Society, 2014, 136, 9211-9224.	6.6	152
261	A Metathesis Model for the Dehydrogenative Coupling of Amines with Alcohols and Esters into Carboxamides by Milstein's [Ru(PNN)(CO)(H)] Catalysts. Inorganic Chemistry, 2014, 53, 8334-8349.	1.9	25

#	Article	IF	CITATIONS
262	Mechanism of N–H Bond Cleavage of Aniline by a Dearomatized PNP-Pincer Type Phosphaalkene Complex of Iridium(I). Organometallics, 2014, 33, 715-721.	1.1	26
263	Reusable Homogeneous Catalytic System for Hydrogen Production from Methanol and Water. ACS Catalysis, 2014, 4, 2649-2652.	5.5	176
264	Osmium-Acyl Decarbonylation Promoted by Tp-Mediated Allenylidene Abstraction: A New Role of the Tp Ligand. Organometallics, 2014, 33, 4057-4066.	1.1	28
266	Amide synthesis from alcohols and amines catalyzed by a Rull–N-heterocyclic carbene (NHC)–carbonyl complex. Journal of Organometallic Chemistry, 2014, 771, 124-130.	0.8	52
267	Synthesis of Fe–H/Si–H and Fe–H/Ge–H Bifunctional Complexes and Their Catalytic Hydrogenation Reactions toward Nonpolar Unsaturated Organic Molecules. Organometallics, 2014, 33, 1532-1535.	1.1	35
268	Coordination of a Hemilabile Pincer Ligand with an Olefinic Backbone to Mid-to-Late Transition Metals. Inorganic Chemistry, 2014, 53, 7248-7259.	1.9	34
269	Intramolecular Redox-Active Ligand-to-Substrate Single-Electron Transfer: Radical Reactivity with a Palladium(II) Complex. Journal of the American Chemical Society, 2014, 136, 11574-11577.	6.6	152
272	Catalytic Mechanisms of Direct Pyrrole Synthesis via Dehydrogenative Coupling Mediated by PNP-Ir or PNN-Ru Pincer Complexes: Crucial Role of Proton-Transfer Shuttles in the PNP-Ir System. Journal of the American Chemical Society, 2014, 136, 4974-4991.	6.6	171
273	Synthesis of pincer-type N-heterocyclic carbene palladium complexes with a hemilabile ligand and their application in cross-coupling catalysis. Journal of Organometallic Chemistry, 2014, 771, 33-39.	0.8	25
277	Chiral Palladacycle Catalysts Generated on a Singleâ€Handed Helical Polymer Skeleton for Asymmetric Arylative Ring Opening of 1,4â€Epoxyâ€1,4â€dihydronaphthalene. Angewandte Chemie, 2014, 126, 12999-130	02 <mark>1.6</mark>	18
278	Isolation and Structural Characterization of a Metallacyclic Compound by Selective Protection of a Single CO Ligand in a Ruthenium Complex. Bulletin of the Chemical Society of Japan, 2015, 88, 1572-1574.	2.0	3
279	Reactivity and Catalysis at Sites Trans to the [Ru–Ru] Bond. Topics in Organometallic Chemistry, 2015, , 59-101.	0.7	3
280	Synthesis and Characterization of Chloro- and Alkyliron Complexes with N-Donor Ligands and Their Reactivity towards CO2. European Journal of Inorganic Chemistry, 2015, 2015, 5066-5073.	1.0	4
281	Arene and Hydride Complexes of Ruthenium withfacPSiP Pincer Ligands. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2015, 641, 2122-2128.	0.6	7
282	Metall‣igandâ€Kooperation. Angewandte Chemie, 2015, 127, 12406-12445.	1.6	186
284	Experimental and Theoretical Investigations of the Existence of Cu ^{II} , Cu ^{III} , and Cu ^{IV} in Copper Corrolato Complexes. Angewandte Chemie - International Edition, 2015, 54, 13769-13774.	7.2	66
285	Pincerâ€īype Complexes for Catalytic (De)Hydrogenation and Transfer (De)Hydrogenation Reactions: Recent Progress. Chemistry - A European Journal, 2015, 21, 12226-12250.	1.7	312
286	Catalytic Transfer Hydrogenation with a Methandiideâ€Based Carbene Complex: An Experimental and Computational Study. Chemistry - A European Journal, 2015, 21, 16103-16112.	1.7	19

#	Article	IF	CITATIONS
287	Aryl–F Bond Cleavage vs. C–E Reductive Elimination: Competitive Pathways of Metal–Ligandâ€Cooperationâ€Based E–H Bond Activation (E = N, S). European Journal of Inorganic Chemistry, 2015, 2015, 4761-4768.	1.0	3
289	Hydrogenâ€Bonding Pincer Complexes with Two Protic Nâ€Heterocyclic Carbenes from Direct Metalation of a 1,8â€Bis(imidazolâ€1â€yl)carbazole by Platinum, Palladium, and Nickel. Chemistry - A European Journal, 2015, 21, 10988-10992.	1.7	46
290	Oxidation and βâ€Alkylation of Alcohols Catalysed by Iridium(I) Complexes with Functionalised Nâ€Heterocyclic Carbene Ligands. Chemistry - A European Journal, 2015, 21, 17877-17889.	1.7	103
291	Substrateâ€Mediated Deactivation of a Ru(P <i>^t</i> ^{Bu} ₂ N ^{Bn} ₂) Cooperative Complex. European Journal of Inorganic Chemistry, 2015, 2015, 4162-4166.	1.0	10
292	Synthesis and Structures of Ruthenium and Iron Complexes Bearing an Unsymmetrical Pincerâ€ŧype Ligand with Protic Pyrazole and Tertiary Aminoalkyl Arms. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2015, 641, 2135-2139.	0.6	15
294	Ruthenium(II) Complexes Containing Lutidineâ€Derived Pincer CNC Ligands: Synthesis, Structure, and Catalytic Hydrogenation of CN bonds. Chemistry - A European Journal, 2015, 21, 7540-7555.	1.7	49
296	Remote Multiproton Storage within a Pyrrolideâ€Pincerâ€Type Ligand. Angewandte Chemie - International Edition, 2015, 54, 15138-15142.	7.2	28
297	Facile Synthesis and Versatile Reactivity of an Unusual Cyclometalated Rhodium(I) Pincer Complex. Chemistry - A European Journal, 2015, 21, 7297-7305.	1.7	28
298	Dynamic Ligand Reactivity in a Rhodium Pincer Complex. Chemistry - A European Journal, 2015, 21, 12683-12693.	1.7	35
299	From <i>para</i> â€Benziporphyrin to Rhodium(III) 21â€Carbaporphyrins: Imprinting Rhâ‹â‹î· ^{2Rhâ‹â‹î·²â€CO, and Rhâ‹â‹î·²â€CH Coordination Motifs. Chemistry - A B 21, 12481-12487.}	o>â€CC, Eur op ean J	ou ss al, 2015,
299 300	– Rhâ‹â‹Î· ² â€CO, and Rhâ‹â‹Î· ² â€CH Coordination Motifs. Chemistry - A l	o>â€CC, European J 1.7	oußsal, 2015, 56
	Rhâ‹â‹î· ² â€CO, and Rhâ‹â‹î· ² â€CH Coordination Motifs. Chemistry - A î 21, 12481-12487. New Routes to a Series of Ïfâ€Borane/Borate Complexes of Molybdenum and Ruthenium. Chemistry - A	Euro.pean J	
300	 Rhâ<â<Î²â€CO, and Rhâ<â<Î²â€CH Coordination Motifs. Chemistry - A f 21, 12481-12487. New Routes to a Series of Ïfâ€Borane/Borate Complexes of Molybdenum and Ruthenium. Chemistry - A European Journal, 2015, 21, 17191-17195. Câ€"H Bond Activation of Benzene, Toluene, 3,3â€Dimethylâ€1â€butene and Methane by Silicaâ€Supported Ta^V Imido Amido Surface Complex. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 	European J 1.7	56
300 302	 Rhââî.²â€CO, and Rhââî.²â€CH Coordination Motifs. Chemistry - A fi 21, 12481-12487. New Routes to a Series of Ïfâ€Borane/Borate Complexes of Molybdenum and Ruthenium. Chemistry - A feuropean Journal, 2015, 21, 17191-17195. C–H Bond Activation of Benzene, Toluene, 3,3â€Dimethylâ€lâ€butene and Methane by Silicaâ€Supported Ta^V Imido Amido Surface Complex. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2015, 641, 56-60. Ligand assisted carbon dioxide activation and hydrogenation using molybdenum and tungsten amides. 	Еитореан J 1.7 0.6	56 1
300 302 303	 Rhââî.²â€CO, and Rhââî.²â€CH Coordination Motifs. Chemistry - A fi 21, 12481-12487. New Routes to a Series of Ïfâ€Borane/Borate Complexes of Molybdenum and Ruthenium. Chemistry - A European Journal, 2015, 21, 17191-17195. C–H Bond Activation of Benzene, Toluene, 3,3â€Dimethylâ€1â€butene and Methane by Silicaâ€Supported Ta^V Imido Amido Surface Complex. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2015, 641, 56-60. Ligand assisted carbon dioxide activation and hydrogenation using molybdenum and tungsten amides. Dalton Transactions, 2015, 44, 6560-6570. Mechanistic Studies on the Alkylation of Amines with Alcohols Catalyzed by a Bifunctional Iridium 	Еигореан J 1.7 0.6 1.6	56 1 51
300 302 303 304	 Rhâ<â<â<â<â<â<â<â<.	European J 1.7 0.6 1.6 5.5	56 1 51 72
300 302 303 304 305	 Rhâcâcâcîc.sup>2â€CO, and Rhâcâcâcîc.sup>2â€CH Coordination Motifs. Chemistry - A li 21, 12481-12487. New Routes to a Series of Ïfâ€Borane/Borate Complexes of Molybdenum and Ruthenium. Chemistry - A European Journal, 2015, 21, 17191-17195. C–H Bond Activation of Benzene, Toluene, 3,3â€Dimethylâ€1â€butene and Methane by Silicaâ€6upported Tacsup>V Imido Amido Surface Complex. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2015, 641, 56-60. Ligand assisted carbon dioxide activation and hydrogenation using molybdenum and tungsten amides. Dalton Transactions, 2015, 44, 6560-6570. Mechanistic Studies on the Alkylation of Amines with Alcohols Catalyzed by a Bifunctional Iridium Complex. ACS Catalysis, 2015, 5, 3704-3716. Recent advances in the application of group-10 transition metal based catalysts in C–H activation and functionalization. Journal of Organometallic Chemistry, 2015, 793, 114-133. Copper-catalyzed efficient direct amidation of 2-methylquinolines with amines. Organic and 	European J 1.7 0.6 1.6 5.5 0.8	 56 1 51 72 48

#	Article	IF	CITATIONS
309	Single step, high yield synthesis of para-hydroxy functionalized POCOP ligands and their Ni(<scp>ii</scp>) pincer derivatives. New Journal of Chemistry, 2015, 39, 3361-3365.	1.4	32
310	The Mechanism of E–H (E = N, O) Bond Activation by a Germanium Corrole Complex: A Combined Experimental and Computational Study. Journal of the American Chemical Society, 2015, 137, 7122-7127.	6.6	27
311	Recent Advances in the Chemistry of Acridines. Advances in Heterocyclic Chemistry, 2015, , 287-353.	0.9	46
312	Iron catalyzed CO ₂ hydrogenation to formate enhanced by Lewis acid co-catalysts. Chemical Science, 2015, 6, 4291-4299.	3.7	285
313	Preparation and structure of zinc complexes containing pincer ligands and their application for Knoevenagel condensation in water. Journal of Coordination Chemistry, 2015, 68, 220-228.	0.8	7
314	P-stereogenic PNP pincer-Pd catalyzed intramolecular hydroamination of amino-1,3-dienes. Organic and Biomolecular Chemistry, 2015, 13, 2694-2702.	1.5	26
315	An Efficient <i>N</i> -Heterocyclic Carbene-Ruthenium Complex: Application Towards the Synthesis of Polyesters and Polyamides. Macromolecular Rapid Communications, 2015, 36, 547-552.	2.0	20
317	Formation of Different Isomers of Phosphine–Imidazolyl and –Pyridyl Ruthenium(II) Complexes Affecting the Catalyst Activity in the Acceptorless Dehydrogenation of Alcohols. European Journal of Inorganic Chemistry, 2015, 2015, 696-705.	1.0	12
318	Metal–ligand cooperation by aromatization–dearomatization as a tool in single bond activation. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2015, 373, 20140189.	1.6	98
319	Trace amount Cull (ppm) and mixture design of Cull/Pdll catalyzed Suzuki cross-coupling reactions based on the cooperative interaction of metal with a conjugated pyridylspirobifluorene. Journal of Materials Chemistry A, 2015, 3, 6265-6270.	5.2	4
320	Towards a methanol economy based on homogeneous catalysis: methanol to H ₂ and CO ₂ to methanol. Chemical Communications, 2015, 51, 6714-6725.	2.2	175
321	Ligand Cooperation in the Formal Hydrogenation of N ₂ O Using a PC _{sp2} P Iridium Pincer Complex. Journal of the American Chemical Society, 2015, 137, 2187-2190.	6.6	95
322	Computational Mechanistic Studies on Reactions of Transition Metal Complexes with Noninnocent Pincer Ligands: Aromatization–Dearomatization or Not. ACS Catalysis, 2015, 5, 1895-1913.	5.5	75
323	A Mild and Efficient Synthesis of Substituted Quinolines <i>via</i> a Crossâ€Dehydrogenative Coupling of (Bio)available Alcohols and Aminoarenes. Advanced Synthesis and Catalysis, 2015, 357, 576-582.	2.1	16
324	Ruthenium Pincer Complexes: Synthesis and Catalytic Applications. Advanced Synthesis and Catalysis, 2015, 357, 283-330.	2.1	133
325	When iron met phosphines: a happy marriage for reduction catalysis. Green Chemistry, 2015, 17, 2283-2303.	4.6	85
326	A Metal–Ligand Cooperative Pathway for Intermolecular Oxaâ€Michael Additions to Unsaturated Nitriles. Angewandte Chemie - International Edition, 2015, 54, 4236-4240.	7.2	48
327	Exploring the decomposition pathways of iron asymmetric transfer hydrogenation catalysts. Dalton Transactions, 2015, 44, 12119-12127.	1.6	18

#	Article	IF	CITATIONS
328	Combination of Redox-Active Ligand and Lewis Acid for Dioxygen Reduction with π-Bound Molybdenumâ^'Quinonoid Complexes. Journal of the American Chemical Society, 2015, 137, 1458-1464.	6.6	60
329	Iron-catalyzed reduction of carboxylic and carbonic acid derivatives. Coordination Chemistry Reviews, 2015, 288, 50-68.	9.5	100
330	Highly Efficient Tetradentate Ruthenium Catalyst for Ester Reduction: Especially for Hydrogenation of Fatty Acid Esters. Organic Letters, 2015, 17, 454-457.	2.4	64
331	Homolytic H ₂ cleavage by a mercury-bridged Ni(<scp>i</scp>) pincer complex [{(PNP)Ni} ₂ {μ-Hg}]. Chemical Communications, 2015, 51, 2946-2949.	2.2	43
332	Catalytic Hydrogenation of CO ₂ to Formates by a Lutidine-Derived Ru–CNC Pincer Complex: Theoretical Insight into the Unrealized Potential. ACS Catalysis, 2015, 5, 1145-1154.	5.5	109
333	The Nature of Hydrogen Production from Aqueousâ€Phase Methanol Dehydrogenation with Ruthenium Pincer Complexes Under Mild Conditions. European Journal of Inorganic Chemistry, 2015, 2015, 794-803.	1.0	56
334	Highly efficient hydrogenation of carbon dioxide to formate catalyzed by iridium(<scp>iii</scp>) complexes of imine–diphosphine ligands. Chemical Science, 2015, 6, 2928-2931.	3.7	75
335	Synthesis of 2â€Acylphenol and Flavene Derivatives from the Rutheniumâ€Catalyzed Oxidative C–H Acylation of Phenols with Aldehydes. European Journal of Organic Chemistry, 2015, 2015, 1899-1904.	1.2	24
336	Cooperative Bond Activation and Catalytic Reduction of Carbon Dioxide at a Group 13 Metal Center. Angewandte Chemie - International Edition, 2015, 54, 5098-5102.	7.2	135
337	Hydrogenation and Dehydrogenation Iron Pincer Catalysts Capable of Metal–Ligand Cooperation by Aromatization/Dearomatization. Accounts of Chemical Research, 2015, 48, 1979-1994.	7.6	521
338	An Acyl-NHC Osmium Cooperative System: Coordination of Small Molecules and Heterolytic B–H and O–H Bond Activation. Organometallics, 2015, 34, 3902-3908.	1.1	50
339	Scope and Mechanistic Analysis for Chemoselective Hydrogenolysis of Carbonyl Compounds Catalyzed by a Cationic Ruthenium Hydride Complex with a Tunable Phenol Ligand. Journal of the American Chemical Society, 2015, 137, 11105-11114.	6.6	56
340	Reversible 1,2-Alkyl Migration to Carbene and Ammonia Activation in an N-Heterocyclic Carbene–Zirconium Complex. Journal of the American Chemical Society, 2015, 137, 10500-10503.	6.6	25
341	Formation and Site-Selective Reactivity of a Nonsymmetric Dinuclear Iridium BisMETAMORPhos Complex. Organometallics, 2015, 34, 3209-3215.	1.1	13
342	New avenues for ligand-mediated processes – expanding metal reactivity by the use of redox-active catechol, o-aminophenol and o-phenylenediamine ligands. Chemical Society Reviews, 2015, 44, 6886-6915.	18.7	367
343	Iridium PC _{sp3} P-type Complexes with a Hemilabile Anisole Tether. Organometallics, 2015, 34, 3141-3151.	1.1	29
344	Nickel and Iron Pincer Complexes as Catalysts for the Reduction of Carbonyl Compounds. Accounts of Chemical Research, 2015, 48, 1995-2003.	7.6	344
345	Advances in Ruthenium Catalysed Hydrogen Release from C1 Storage Materials. Recyclable Catalysis, 2015, 2, .	0.1	1

#	Article	IF	CITATIONS
346	A new designed hydrazine group-containing ruthenium complex used for catalytic hydrogenation of esters. Chemical Communications, 2015, 51, 12193-12196.	2.2	18
347	Ruthenium complexes with an N-heterocyclic carbene NNC-pincer ligand: preparation and catalytic properties. Organic Chemistry Frontiers, 2015, 2, 936-941.	2.3	17
348	O2 Activation by Metal–Ligand Cooperation with Irl PNP Pincer Complexes. Journal of the American Chemical Society, 2015, 137, 4634-4637.	6.6	42
349	Iron-Catalyzed Reduction and Hydroelementation Reactions. Topics in Organometallic Chemistry, 2015, , 173-216.	0.7	25
350	Synthesis and Reactivity of Iron Complexes with a New Pyrazine-Based Pincer Ligand, and Application in Catalytic Low-Pressure Hydrogenation of Carbon Dioxide. Inorganic Chemistry, 2015, 54, 4526-4538.	1.9	119
351	A novel liquid organic hydrogen carrier system based on catalytic peptide formation and hydrogenation. Nature Communications, 2015, 6, 6859.	5.8	115
352	N-Heterocyclic carbene–phosphino-picolines as precursors of anionic â€~pincer' ligands with dearomatised pyridine backbones; transmetallation from potassium to chromium. Chemical Communications, 2015, 51, 10699-10702.	2.2	38
353	Phosphine-Iminopyridines as Platforms for Catalytic Hydrofunctionalization of Alkenes. Inorganic Chemistry, 2015, 54, 5596-5603.	1.9	40
354	Three bonding modes of bis(2-picolyl)phenylphosphine at iron: isolation of a dinuclear iron complex featuring dearomatized pyridine moieties. Dalton Transactions, 2015, 44, 7500-7505.	1.6	7
355	Phosphinite-Ni(0) Mediated Formation of a Phosphide-Ni(II)-OCOOMe Species via Uncommon Metal–Ligand Cooperation. Journal of the American Chemical Society, 2015, 137, 4280-4283.	6.6	58
356	Catalytic, oxidant-free, direct olefination of alcohols using Wittig reagents. Chemical Communications, 2015, 51, 9002-9005.	2.2	29
357	Synthesis of a <i>P</i> tereogenic PNP ^{<i>t</i>Bu,Ph} Ruthenium Pincer Complex and Its Application in Asymmetric Reduction of Ketones. European Journal of Organic Chemistry, 2015, 2015, 3666-3669.	1.2	22
358	The emergence of sulfoxides as efficient ligands in transition metal catalysis. Chemical Society Reviews, 2015, 44, 3834-3860.	18.7	207
359	Catalytic Oxidation of Alcohols. Advances in Organometallic Chemistry, 2015, , 91-174.	0.5	142
360	Heterogeneous and homogeneous catalysis for the hydrogenation of carboxylic acid derivatives: history, advances and future directions. Chemical Society Reviews, 2015, 44, 3808-3833.	18.7	395
362	Palladium-Catalyzed Tandem Annulation: A Strategy To Construct 2,3-Difunctionalized Benzofuran Derivatives in Ionic Liquids. Journal of Organic Chemistry, 2015, 80, 3870-3879.	1.7	46
363	Chemoselective Hydrogenation and Transfer Hydrogenation of Aldehydes Catalyzed by Iron(II) PONOP Pincer Complexes. Organometallics, 2015, 34, 1538-1545.	1.1	75
364	C–H and H–H bond activation via ligand dearomatization/rearomatization of a PN ³ P-rhodium(<scp>i</scp>) complex. Dalton Transactions, 2015, 44, 15111-15115.	1.6	33

#	Article	IF	CITATIONS
365	Oxidation and Oxygenation of Carbonyl Ruthenium(II) Azuliporphyrin. Inorganic Chemistry, 2015, 54, 6184-6194.	1.9	19
366	Mechanistic insights into small molecule activation induced by ligand cooperativity in PCcarbeneP nickel pincer complexes: a quantum chemistry study. Journal of Molecular Modeling, 2015, 21, 242.	0.8	12
367	Mechanism of the cooperative Si–H bond activation at Ru–S bonds. Chemical Science, 2015, 6, 4324-4334.	3.7	76
368	N–H Activation of Ammonia by [{M(μ-OMe)(cod)} ₂] (M = Ir, Rh) Complexes: A DFT Study. Organometallics, 2015, 34, 3959-3966.	1.1	20
369	Metal–Ligand Cooperation. Angewandte Chemie - International Edition, 2015, 54, 12236-12273.	7.2	947
370	Toward New Organometallic Architectures: Synthesis of Carbene-Centered Rhodium and Palladium Bisphosphine Complexes. Stability and Reactivity of [PC ^{Blm} PRh(L)][PF ₆] Pincers. Inorganic Chemistry, 2015, 54, 9517-9528.	1.9	37
371	Redox-Noninnocent Behavior of Tris(2-pyridylmethyl)amine Bound to a Lewis Acidic Rh(III) Ion Induced by C–H Deprotonation. Journal of the American Chemical Society, 2015, 137, 11222-11225.	6.6	16
372	Intermolecular C–H activation with an Ir-METAMORPhos piano-stool complex – multiple reaction steps at a reactive ligand. Chemical Communications, 2015, 51, 15200-15203.	2.2	14
373	Iridium Pincer Complexes with an Olefin Backbone. Organometallics, 2015, 34, 4262-4271.	1.1	20
374	Mechanism of <i>N</i> , <i>N</i> , <i>N</i> -Amide Ruthenium(II) Hydride Mediated Acceptorless Alcohol Dehydrogenation: Inner-Sphere β-H Elimination versus Outer-Sphere Bifunctional Metal–Ligand Cooperativity. ACS Catalysis, 2015, 5, 5468-5485.	5.5	77
375	Si–H activation by means of metal ligand cooperation in a methandiide derived carbene complex. Chemical Communications, 2015, 51, 14909-14912.	2.2	25
376	Non-symmetric pincer ligands: complexes and applications in catalysis. Dalton Transactions, 2015, 44, 17432-17447.	1.6	250
377	CO ₂ Hydrogenation to Formate and Methanol as an Alternative to Photo- and Electrochemical CO ₂ Reduction. Chemical Reviews, 2015, 115, 12936-12973.	23.0	1,244
378	Tuning of Metal Complex Electronics and Reactivity by Remote Lewis Acid Binding to π-Coordinated Pyridine Diphosphine Ligands. Organometallics, 2015, 34, 4753-4765.	1.1	28
379	Ruthenium Catalyzed Selective α- and α,β-Deuteration of Alcohols Using D ₂ 0. Organic Letters, 2015, 17, 4794-4797.	2.4	77
380	Pincer Ligand Modifications To Tune the Activation Barrier for H ₂ Elimination in Water Splitting Milstein Catalyst. Inorganic Chemistry, 2015, 54, 11150-11156.	1.9	23
381	Transition metal complexes with N-heterocyclic carbene ligands: From organometallic hydrogenation reactions toward water splitting. Coordination Chemistry Reviews, 2015, 304-305, 73-87.	9.5	104
382	Mechanism of Redoxâ€Active Ligandâ€Assisted Nitreneâ€Group Transfer in a Zr ^{IV} Complex: Direct Ligandâ€ŧo‣igand Charge Transfer Preferred. Chemistry - A European Journal, 2015, 21, 1780-1789.	1.7	9

#	Article	IF	CITATIONS
383	Transfer Hydrogenation of Ketones, Nitriles, and Esters Catalyzed by a Half‣andwich Complex of Ruthenium. ChemCatChem, 2015, 7, 107-113.	1.8	48
384	Synthesis and Reactivity of NHC-Based Rhodium Macrocycles. Inorganic Chemistry, 2015, 54, 312-322.	1.9	53
385	Regulation of Iron-Catalyzed Olefin Hydroboration by Ligand Modifications at a Remote Site. ACS Catalysis, 2015, 5, 411-415.	5.5	97
386	Cooperation between Transition Metals and Lewis Acids: A Way To Activate H ₂ and HE bonds. Angewandte Chemie - International Edition, 2015, 54, 730-732.	7.2	82
387	Highly efficient, general hydrogenation of aldehydes catalyzed by PNP iron pincer complexes. Catalysis Science and Technology, 2015, 5, 822-826.	2.1	83
388	A new class of PN3-pincer ligands for metal–ligand cooperative catalysis. Coordination Chemistry Reviews, 2015, 293-294, 116-138.	9.5	172
389	Benzimidazolin-2-ylidene N-heterocyclic carbene complexes of ruthenium as a simple catalyst for the N-alkylation of amines using alcohols and diols. RSC Advances, 2015, 5, 4434-4442.	1.7	73
390	Substitutional Lability of Diphosphine Ligands in Tetrahedral Iron(II) Chloro Complexes. European Journal of Inorganic Chemistry, 2015, 2015, 141-148.	1.0	14
391	Catalysis by Aluminum(III) Complexes of Nonâ€Innocent Ligands. Chemistry - A European Journal, 2015, 21, 2734-2742.	1.7	96
392	Direct Synthesis of Secondary Amines From Alcohols and Ammonia Catalyzed by a Ruthenium Pincer Complex. Catalysis Letters, 2015, 145, 139-144.	1.4	58
393	Bis-N-heterocyclic carbene â€~pincer' ligands and iridium complexes with CF3 – Substituted phenylene backbone. Journal of Organometallic Chemistry, 2015, 775, 169-172.	0.8	13
394	Squareâ€Planar Ruthenium(II) Complexes: Control of Spin State by Pincer Ligand Functionalization. Chemistry - A European Journal, 2015, 21, 579-589.	1.7	26
395	Main group catalysed reduction of unsaturated bonds. Dalton Transactions, 2015, 44, 840-866.	1.6	189
396	Ruthenium-catalyzed hydrogen generation from glycerol and selective synthesis of lactic acid. Green Chemistry, 2015, 17, 193-198.	4.6	110
397	Heterogeneous catalysis for the direct synthesis of chemicals by borrowing hydrogen methodology. Catalysis Science and Technology, 2015, 5, 1412-1427.	2.1	220
398	Synthesis and Reactivity of Molybdenumâ€Dinitrogen Complexes Bearing PNNâ€Type Pincer Ligand. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2015, 641, 100-104.	0.6	23
399	Bottom-Up Construction of a CO2-Based Cycle for the Photocarbonylation of Benzene, Promoted by a Rhodium(I) Pincer Complex. Journal of the American Chemical Society, 2016, 138, 9941-9950.	6.6	49
400	<i>Z</i> ‣elective (Crossâ€)Dimerization of Terminal Alkynes Catalyzed by an Iron Complex. Angewandte Chemie - International Edition, 2016, 55, 6942-6945.	7.2	98

	CITATION REPORT		
Article		IF	Citations
Catalytic Dinitrogen Fixation to Form Ammonia at Ambient Reaction Conditions Using Metal-Dinitrogen Complexes. Chemical Record, 2016, 16, 1549-1577.	Transition	2.9	82
Rechargeable Hydrogen Storage System Based on the Dehydrogenative Coupling of E with Ethanol. Angewandte Chemie - International Edition, 2016, 55, 1061-1064.	thylenediamine	7.2	94
Synthesis, Coordination Properties, and Catalytic Application of Triarylmethane-Mono Organometallics, 2016, 35, 3959-3969.	phosphines.	1.1	19
Alkoxide Migration at a Nickel(II) Center Induced by a π-Acidic Ligand: Migratory Inser Metal–Ligand Cooperation. Inorganic Chemistry, 2016, 55, 12863-12871.	tion versus	1.9	28
Differential Manyâ€Body Cooperativity in Electronic Spectra of Oligonuclear Transition Complexes. ChemPhysChem, 2016, 17, 37-45.	nâ€Metal	1.0	19
Ester Hydrogenation Catalyzed by CNN-Pincer Complexes of Ruthenium. Organometa 982-989.	llics, 2016, 35,	1.1	49
Long-Chain Aliphatic Polymers To Bridge the Gap between Semicrystalline Polyolefins Polycondensates. Chemical Reviews, 2016, 116, 4597-4641.	and Traditional	23.0	244
Theoretical Study of Hydrogenation Catalysis of Phosphorus Compound and Predictio with High Activity and Wide Application Scope. ACS Catalysis, 2016, 6, 4859-4870.	n of Catalyst	5.5	26
Modulation of Proton-Coupled Electron Transfer through Molybdenum–Quinonoid I Inorganic Chemistry, 2016, 55, 5337-5342.	nteractions.	1.9	18
Mechanistic Details of Ru–Bis(pyridyl)borate Complex Catalyzed Dehydrogenation of Ammonia–Borane: Pole of the Pendant Boron Ligand in Catalysis ACS Catalysis 20		5.5	20

410	Mechanistic Details of Ru–Bis(pyridyl)borate Complex Catalyzed Dehydrogenation of Ammonia–Borane: Role of the Pendant Boron Ligand in Catalysis. ACS Catalysis, 2016, 6, 4068-4080.	5.5	20
411	Selective Hydrogenation of Amides to Amines and Alcohols Catalyzed by Improved Iron Pincer Complexes. Organometallics, 2016, 35, 1931-1943.	1.1	114
412	Metalâ€Ligand Cooperativity in a Methandiideâ€Derived Iridium Carbene Complex. Chemistry - A European Journal, 2016, 22, 3846-3855.	1.7	22
413	Oxidative Addition of the N–H Bond of Ammonia to Iridium Bis(phosphane) Complexes: A Combined Experimental and Theoretical Study. Organometallics, 2016, 35, 720-731.	1.1	16
414	Agostic versus Terminal Ethyl Rhodium Complexes: A Combined Experimental and Theoretical Study. Organometallics, 2016, 35, 799-808.	1.1	5
415	The ruthenium-catalysed selective synthesis of mono-deuterated terminal alkynes. Chemical Communications, 2016, 52, 4509-4512.	2.2	37
416	ESI-MS Insights into Acceptorless Dehydrogenative Coupling of Alcohols. ACS Catalysis, 2016, 6, 3301-3309.	5.5	43
417	General Synthesis of Amino Acid Salts from Amino Alcohols and Basic Water Liberating H ₂ . Journal of the American Chemical Society, 2016, 138, 6143-6146.	6.6	60

ogeneous catalysts hydrogen release. Chemical Society Reviews, 2016, 45, 3954-3988. 18.7 418

#

401

403

404

405

407

409

#	Article	IF	CITATIONS
419	Template Catalysis by Metal–Ligand Cooperation. C–C Bond Formation via Conjugate Addition of Non-activated Nitriles under Mild, Base-free Conditions Catalyzed by a Manganese Pincer Complex. Journal of the American Chemical Society, 2016, 138, 6985-6997.	6.6	134
420	Synthesis and catalytic performance of ruthenium complexes ligated with rigid o-(diphenylphosphino)aniline for chemoselective hydrogenation of dimethyl oxalate. RSC Advances, 2016, 6, 45512-45518.	1.7	11
421	Ligand Attachment Chemistry in the Preparation of PC _{sp³} P and PC _{sp²} P Complexes of Rhodium. Organometallics, 2016, 35, 1279-1286.	1.1	42
422	Dehydrogenative Coupling of Ethanol and Ester Hydrogenation Catalyzed by Pincer-Type YNP Complexes. ACS Catalysis, 2016, 6, 6967-6981.	5.5	75
423	Cooperative Iron–Oxygen–Copper Catalysis in the Reduction of Benzaldehyde under Water-Gas Shift Reaction Conditions. ACS Catalysis, 2016, 6, 7855-7864.	5.5	14
424	Acceptorless Alcohol Dehydrogenation: A Mechanistic Perspective. Proceedings of the National Academy of Sciences India Section A - Physical Sciences, 2016, 86, 561-579.	0.8	30
425	Hydrogen Transfer Reactions. Topics in Current Chemistry Collections, 2016, , .	0.2	5
426	A comparative study on the CO2 hydrogenation catalyzed by Ru dihydride complexes: (PMe3)4RuH2 and (Me2PCH2CH2PMe2)2RuH2. Dalton Transactions, 2016, 45, 17329-17342.	1.6	6
427	Arene C(sp ²)-H Metalation at Ni ^{II} Modeled with a Reactive PONC _{Ph} Ligand. Inorganic Chemistry, 2016, 55, 8041-8047.	1.9	32
428	Activation of H ₂ over the Ruâ^'Zn Bond in the Transition Metalâ^'Lewis Acid Heterobimetallic Species [Ru(IPr) ₂ (CO)ZnEt] ⁺ . Journal of the American Chemical Society, 2016, 138, 11081-11084.	6.6	59
429	Iron complexes of a bidentate picolyl-NHC ligand: synthesis, structure and reactivity. Dalton Transactions, 2016, 45, 13872-13880.	1.6	20
430	Reactivity and Properties of Metal Complexes Enabled by Flexible and Redox-Active Ligands with a Ferrocene Backbone. Inorganic Chemistry, 2016, 55, 10013-10023.	1.9	41
431	Novel pyrazolylphosphite– and pyrazolylphosphinite–ruthenium(<scp>ii</scp>) complexes as catalysts for hydrogenation of acetophenone. Dalton Transactions, 2016, 45, 13514-13524.	1.6	16
432	Efficient hydrogen peroxide decomposition to oxygen and water catalysed by a ruthenium pincer complex. Environmental Chemistry Letters, 2016, 14, 359-365.	8.3	1
433	Palladium-Catalyzed Oxidative Sulfenylation of Indoles and Related Electron-Rich Heteroarenes with Aryl Boronic Acids and Elemental Sulfur. Journal of Organic Chemistry, 2016, 81, 7771-7783.	1.7	92
434	Mechanism of Alcohol–Water Dehydrogenative Coupling into Carboxylic Acid Using Milstein's Catalyst: A Detailed Investigation of the Outer-Sphere PES in the Reaction of Aldehydes with an Octahedral Ruthenium Hydroxide. Inorganic Chemistry, 2016, 55, 7886-7902.	1.9	15
435	Modular Attachment of Appended Boron Lewis Acids to a Ruthenium Pincer Catalyst: Metal–Ligand Cooperativity Enables Selective Alkyne Hydrogenation. Journal of the American Chemical Society, 2016, 138, 10378-10381.	6.6	70
436	Metal–ligand cooperative activation of nitriles by a ruthenium complex with a de-aromatized PNN pincer ligand. Dalton Transactions, 2016, 45, 16033-16039.	1.6	27

#	Article	IF	CITATIONS
437	Postsynthetic modifications of [2,2,2-(H)(PPh3)2-closo-2,1-RhSB8H8] with Lewis bases: cluster modular tuning. Dalton Transactions, 2016, 45, 8622-8636.	1.6	3
438	Coupling MOF-based photocatalysis with Pd catalysis over Pd@MIL-100(Fe) for efficient N-alkylation of amines with alcohols under visible light. Journal of Catalysis, 2016, 342, 151-157.	3.1	126
439	Synthesis of a sterically bulky diphosphine synthon and Ru(<scp>ii</scp>) complexes of a cooperative tridentate enamide-diphosphine ligand platform. Dalton Transactions, 2016, 45, 16011-16025.	1.6	6
440	(BB)-Carboryne Complex of Ruthenium: Synthesis by Double B–H Activation at a Single Metal Center. Journal of the American Chemical Society, 2016, 138, 10531-10538.	6.6	102
441	Reversible Aromaticity Transfer in a Bora-Cycle: Boron–Ligand Cooperation. Journal of the American Chemical Society, 2016, 138, 13307-13313.	6.6	30
442	Efficient Solvent-Free Hydrogenation of Levulinic Acid to <i>γ-</i> Valerolactone by Pyrazolylphosphite and Pyrazolylphosphinite Ruthenium(II) Complexes. ACS Sustainable Chemistry and Engineering, 2016, 4, 6010-6018.	3.2	54
443	Functional group migrations between boron and metal centres within transition metal–borane and –boryl complexes and cleavage of H–H, E–H and E–E′ bonds. Chemical Communications, 2016, 52, 10712-10726.	2.2	91
444	Metal–ligand cooperation at tethered π-ligands. Dalton Transactions, 2016, 45, 15762-15778.	1.6	49
445	Cationic mono and dicarbonyl pincer complexes of rhodium and iridium to assess the donor properties of PC _{carbene} P ligands. Dalton Transactions, 2016, 45, 12669-12679.	1.6	35
446	Copper-Catalyzed Aerobic Oxidative Amidation of Benzyl Alcohols. Journal of Organic Chemistry, 2016, 81, 10688-10697.	1.7	25
447	Catalytic cyclization and competitive deactivation with Ru(P ^R ₂ N ^{R′} ₂) complexes. Dalton Transactions, 2016, 45, 17100-17103.	1.6	11
448	Platinum Complexes Bearing a Tripodal Germyl Ligand. European Journal of Inorganic Chemistry, 2016, 2016, 4898-4905.	1.0	10
449	Scalable synthesis of secondary and tertiary amines by heterogeneous Pt-Sn/γ-Al2O3 catalyzed N-alkylation of amines with alcohols. Tetrahedron, 2016, 72, 8516-8521.	1.0	24
450	Direct Synthesis of Symmetrical Azines from Alcohols and Hydrazine Catalyzed by a Ruthenium Pincer Complex: Effect of Hydrogen Bonding. ACS Catalysis, 2016, 6, 8415-8419.	5.5	42
451	Chromium(II) Pincer Complexes with Dearomatized PNP and PNC Ligands: A Comparative Study of Their Catalytic Ethylene Oligomerization Activity. Organometallics, 2016, 35, 4044-4049.	1.1	30
452	Manganese atalyzed Hydrogenâ€Autotransfer Câ~C Bond Formation: αâ€Alkylation of Ketones with Primary Alcohols. Angewandte Chemie - International Edition, 2016, 55, 14967-14971.	7.2	270
453	Unravelling the Mechanism of Basic Aqueous Methanol Dehydrogenation Catalyzed by Ru–PNP Pincer Complexes. Journal of the American Chemical Society, 2016, 138, 14890-14904.	6.6	155
454	Manganese atalyzed Hydrogenâ€Autotransfer Câ °C Bond Formation: αâ€Alkylation of Ketones with Primary Alcohols. Angewandte Chemie, 2016, 128, 15191-15195.	1.6	80

#	Article	IF	CITATIONS
455	One‣tep Synthesis of Substituted Benzofurans from <i>ortho</i> ―Alkenylphenols <i>via</i> Palladium atalyzed CH Functionalization. Advanced Synthesis and Catalysis, 2016, 358, 1731-1735.	2.1	38
456	Rechargeable Hydrogen Storage System Based on the Dehydrogenative Coupling of Ethylenediamine with Ethanol. Angewandte Chemie, 2016, 128, 1073-1076.	1.6	24
457	Compounds with Lowâ€Valent pâ€Block Elements for Small Molecule Activation and Catalysis. ChemCatChem, 2016, 8, 486-501.	1.8	177
458	NNPâ€Type Pincer Imidazolylphosphine Ruthenium Complexes: Efficient Baseâ€Free Hydrogenation of Aromatic and Aliphatic Nitriles under Mild Conditions. Chemistry - A European Journal, 2016, 22, 4991-5002.	1.7	53
459	DFT Study of Acceptorless Alcohol Dehydrogenation Mediated by Ruthenium Pincer Complexes: Ligand Tautomerization Governing Metal Ligand Cooperation. Inorganic Chemistry, 2016, 55, 6539-6551.	1.9	62
460	Synthesis of a Tris(phosphaalkene)phosphine Ligand and Fundamental Organometallic Reactions on Its Sterically Shielded Metal Complexes. Organometallics, 2016, 35, 2224-2231.	1.1	14
461	Acceptorless dehydrogenative coupling of alcohols catalysed by ruthenium PNP complexes: Influence of catalyst structure and of hydrogen mass transfer. Journal of Catalysis, 2016, 340, 331-343.	3.1	46
462	The Mechanism of Acceptorless Amine Double Dehydrogenation by <i>N,N,N</i> -Amide Ruthenium(II) Hydrides: A Combined Experimental and Computational Study. ACS Catalysis, 2016, 6, 4799-4813.	5.5	56
463	Redox-Divergent Hydrogen-Retentive or Hydrogen-Releasing Synthesis of 3,4-Dihydroisoquinolines or Isoquinolines. Organic Letters, 2016, 18, 2840-2843.	2.4	47
464	Versatile coordination of a reactive P,N-ligand toward boron, aluminum and gallium and interconversion reactivity. Dalton Transactions, 2016, 45, 10989-10998.	1.6	20
465	Hydrogen and Dihydrogen Bonds in the Reactions of Metal Hydrides. Chemical Reviews, 2016, 116, 8545-8587.	23.0	181
466	Carboxylate-Functionalized Mesoionic Carbene Precursors: Decarboxylation, Ruthenium Bonding, and Catalytic Activity in Hydrogen Transfer Reactions. Organometallics, 2016, 35, 2256-2266.	1.1	36
467	On the non-innocence of "Nacnacs― ligand-based reactivity in β-diketiminate supported coordination compounds. Dalton Transactions, 2016, 45, 14462-14498.	1.6	154
468	<i>Z</i> â€5elective (Crossâ€)Dimerization of Terminal Alkynes Catalyzed by an Iron Complex. Angewandte Chemie, 2016, 128, 7056-7059.	1.6	28
469	Improved Catalytic Activity and Stability of a Palladium Pincer Complex by Incorporation into a Metal–Organic Framework. Journal of the American Chemical Society, 2016, 138, 1780-1783.	6.6	141
470	Examining the role of Rh/Si cooperation in alkene hydrogenation by a pincer-type [P ₂ Si]Rh complex. Dalton Transactions, 2016, 45, 9758-9761.	1.6	32
471	Synthesis of Pincer Hydrido Ruthenium Olefin Complexes for Catalytic Alkane Dehydrogenation. Organometallics, 2016, 35, 181-188.	1.1	53
472	A Ruthenium Catalyst with Unprecedented Effectiveness for the Coupling Cyclization of Î ³ -Amino Alcohols and Secondary Alcohols. ACS Catalysis, 2016, 6, 1247-1253.	5.5	111

#	Article	IF	CITATIONS
473	Efficient Base-Free Hydrogenation of Amides to Alcohols and Amines Catalyzed by Well-Defined Pincer Imidazolyl–Ruthenium Complexes. ACS Catalysis, 2016, 6, 47-54.	5.5	79
474	Preparation, crystal structures and properties of half-sandwich ruthenium complexes containing salicylbenzoxazole ligands. Journal of Coordination Chemistry, 2016, 69, 48-56.	0.8	7
475	A Significant but Constrained Geometry Pt→Al Interaction: Fixation of CO ₂ and CS ₂ , Activation of H ₂ and PhCONH ₂ . Journal of the American Chemical Society, 2016, 138, 4917-4926.	6.6	142
476	C–H activation of ethers by pyridine tethered PCsp3P-type iridium complexes. Dalton Transactions, 2016, 45, 10007-10016.	1.6	9
477	Synthesis, characterization and reactivity of iron- and cobalt-pincer complexes. Polyhedron, 2016, 114, 286-291.	1.0	31
478	Simple Ligand Modifications with Pendent OH Groups Dramatically Impact the Activity and Selectivity of Ruthenium Catalysts for Transfer Hydrogenation: The Importance of Alkali Metals. ACS Catalysis, 2016, 6, 1981-1990.	5.5	80
479	Nickel(II), copper(I) and zinc(II) complexes supported by a (4-diphenylphosphino)phenanthridine ligand. Polyhedron, 2016, 108, 156-162.	1.0	28
480	Ketone hydrogenation catalyzed by a new iron(<scp>ii</scp>)–PNN complex. Catalysis Science and Technology, 2016, 6, 4428-4437.	2.1	34
481	Ruthenium complexes bearing an unsymmetrical pincer ligand with a 2-hydroxypyridylmethylene fragment: active catalysts for transfer hydrogenation of ketones. Dalton Transactions, 2016, 45, 4828-4834.	1.6	26
482	C-Alkylation by Hydrogen Autotransfer Reactions. Topics in Current Chemistry, 2016, 374, 11.	3.0	50
483	Manganese-Catalyzed Environmentally Benign Dehydrogenative Coupling of Alcohols and Amines to Form Aldimines and H ₂ : A Catalytic and Mechanistic Study. Journal of the American Chemical Society, 2016, 138, 4298-4301.	6.6	410
484	Dioxygen Reduction by a Pd(0)–Hydroquinone Diphosphine Complex. Journal of the American Chemical Society, 2016, 138, 3443-3452.	6.6	35
485	Palladium catalyzed direct benzylation/allylation of malonates with alcohols – in situ C–O bond activation. Green Chemistry, 2016, 18, 2638-2641.	4.6	12
486	Acceptorless Dehydrogenation of Alcohols on a Diruthenium(II,II) Platform. Organometallics, 2016, 35, 1505-1513.	1.1	83
487	Potassium and Lithium Complexes with Monodeprotonated, Dearomatized PNP and PNC ^{NHC} Pincer-Type Ligands. Organometallics, 2016, 35, 903-912.	1.1	32
488	Strain Control: Reversible H ₂ Activation and H ₂ /D ₂ Exchange in Pt Complexes. Inorganic Chemistry, 2016, 55, 3023-3029.	1.9	18
489	Unprecedented iron-catalyzed selective hydrogenation of activated amides to amines and alcohols. Chemical Communications, 2016, 52, 5285-5288.	2.2	99
490	Trifunctional pNHC, Imine, Pyridine Pincer-Type Iridium(III) Complexes: Synthetic, Structural, and Reactivity Studies. Organometallics, 2016, 35, 198-206.	1.1	22

#	Article	IF	CITATIONS
491	Pyridine and related ligands in transition metal homogeneous catalysis. Russian Journal of Coordination Chemistry/Koordinatsionnaya Khimiya, 2016, 42, 1-18.	0.3	47
492	Coordination chemistry and applications of versatile 4,5-diazafluorene derivatives. Dalton Transactions, 2016, 45, 32-49.	1.6	36
493	Reversible cyclometalation at Rh ^I as a motif for metal–ligand bifunctional bond activation and base-free formic acid dehydrogenation. Catalysis Science and Technology, 2016, 6, 1320-1327.	2.1	40
494	High catalytic active palladium nanoparticles gradually discharged from multilayer films to promote Suzuki, Heck and Sonogashira cross coupling reactions. Journal of Colloid and Interface Science, 2016, 463, 13-21.	5.0	16
495	Palladium(<scp>ii</scp>) complexes featuring a mixed phosphine–pyridine–iminophosphorane pincer ligand: synthesis and reactivity. Dalton Transactions, 2016, 45, 2069-2078.	1.6	28
496	Anionic phosph(in)ito ("phosphorylâ€) ligands: Non-classical "actor―phosphane-type ligands in coordination chemistry. Coordination Chemistry Reviews, 2016, 308, 97-116.	9.5	43
497	Ruthenium(II) complexes encompassing 2-oxo-1,2-dihydroquinoline-3-carbaldehyde thiosemicarbazone hybrid ligand: A new versatile potential catalyst for dehydrogenative amide synthesis. Inorganica Chimica Acta, 2017, 454, 46-53.	1.2	24
498	Nickel pincer model of the active site of lactate racemase involves ligand participation in hydride transfer. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 1242-1245.	3.3	39
499	Catalytic NH ₃ Synthesis using N ₂ /H ₂ at Molecular Transition Metal Complexes: Concepts for Lead Structure Determination using Computational Chemistry. Chemistry - A European Journal, 2017, 23, 11992-12003.	1.7	35
500	Efficient Reversible Hydrogen Carrier System Based on Amine Reforming of Methanol. Journal of the American Chemical Society, 2017, 139, 2549-2552.	6.6	102
501	The Ferraquinone–Ferrahydroquinone Couple: Combining Quinonic and Metal-Based Reactivity. Journal of the American Chemical Society, 2017, 139, 2799-2807.	6.6	28
502	Rutheniumâ€Catalyzed Aminomethylation and Methylation of Phenol Derivatives Utilizing Methanol as the C ₁ Source. Advanced Synthesis and Catalysis, 2017, 359, 798-810.	2.1	44
503	Efficient and selective hydrogenation of amides to alcohols and amines using a well-defined manganese–PNN pincer complex. Chemical Science, 2017, 8, 3576-3585.	3.7	181
504	Ruthenium-catalysed multicomponent synthesis of borasiloxanes. Chemical Communications, 2017, 53, 2515-2518.	2.2	21
505	P–N Cooperative Borane Activation and Catalytic Hydroboration by a Distorted Phosphorous Triamide Platform. Journal of the American Chemical Society, 2017, 139, 6008-6016.	6.6	94
506	An Ionâ€Responsive Pincerâ€Crown Ether Catalyst System for Rapid and Switchable Olefin Isomerization. Angewandte Chemie, 2017, 129, 5590-5594.	1.6	9
507	An lonâ€Responsive Pincerâ€Crown Ether Catalyst System for Rapid and Switchable Olefin Isomerization. Angewandte Chemie - International Edition, 2017, 56, 5498-5502.	7.2	60
508	Catalytic Acceptorless Dehydrogenation of Amines with Ru(P ^R ₂ N ^{R′} ₂) and Ru(dppp) Complexes. Organometallics, 2017, 36, 1692-1698.	1.1	45

#	Article	IF	CITATIONS
509	Boryl/Borane Interconversion and Diversity of Binding Modes of Oxygenous Ligands in PBP Pincer Complexes of Rhodium. Organometallics, 2017, 36, 1718-1726.	1.1	45
510	Selective conversion of coconut oil to fatty alcohols in methanol over a hydrothermally prepared Cu/SiO ₂ catalyst without extraneous hydrogen. Chemical Communications, 2017, 53, 6152-6155.	2.2	44
511	Supported C corpionate Vanadium(IV) Complexes as Reusable Catalysts for Xylene Oxidation. Chemistry - an Asian Journal, 2017, 12, 1915-1919.	1.7	23
512	Reversible Heterolytic Cleavage of the H–H Bond by Molybdenum Complexes: Controlling the Dynamics of Exchange Between Proton and Hydride. Journal of the American Chemical Society, 2017, 139, 7376-7387.	6.6	48
513	Synthesis, hemilability, and catalytic transfer hydrogenation activity ofÂiridium(III) and ruthenium(II) complexes containing oxygen-functionalised triazolylidene ligands. Journal of Organometallic Chemistry, 2017, 845, 196-205.	0.8	24
514	Palladium Complexes Bearing Z-type PAIP Pincer Ligands. Chemistry Letters, 2017, 46, 1247-1249.	0.7	20
515	Control of Product Distribution and Mechanism by Ligation and Electric Field in the Thermal Activation of Methane. Angewandte Chemie - International Edition, 2017, 56, 10219-10223.	7.2	68
516	Nâ€Heterocyclic Phosphenium Complex of Manganese: Synthesis and Catalytic Activity in Ammonia Borane Dehydrogenation. Chemistry - A European Journal, 2017, 23, 11560-11569.	1.7	42
517	Manganese-Catalyzed Direct Deoxygenation of Primary Alcohols. ACS Catalysis, 2017, 7, 4462-4466.	5.5	84
518	Organic-inorganic nano-hybrid decorated by copper (II) incarceration: A versatile catalytic assembly for the swift reduction of aromatic nitro and dye compounds. Molecular Catalysis, 2017, 431, 15-26.	1.0	21
519	Cationic PCP iridaepoxide and carbene complexes for facile water elimination and activation processes. Dalton Transactions, 2017, 46, 4346-4354.	1.6	21
520	Hydrogenation and Hydrosilylation of Nitrous Oxide Homogeneously Catalyzed by a Metal Complex. Journal of the American Chemical Society, 2017, 139, 5720-5723.	6.6	57
521	Efficient acceptorless dehydrogenation of secondary alcohols to ketones mediated by a PNN-Ru(<scp>ii</scp>) catalyst. Catalysis Science and Technology, 2017, 7, 1654-1661.	2.1	42
522	Phosphine–imine and –enamido ligands for acceptorless dehydrogenation catalysis. Dalton Transactions, 2017, 46, 647-650.	1.6	7
523	When Bifunctional Catalyst Encounters Dual MLC Modes: DFT Study on the Mechanistic Preference in Ru-PNNH Pincer Complex Catalyzed Dehydrogenative Coupling Reaction. ACS Catalysis, 2017, 7, 786-795.	5.5	41
524	"On the Dotâ€â€"The Timing of Selfâ€Assembled Growth to the Quantum Scale. Chemistry - A European Journal, 2017, 23, 8104-8117.	1.7	6
525	A Base and Solvent-Free Ruthenium-Catalyzed Alkylation of Amines. ACS Catalysis, 2017, 7, 1136-1142.	5.5	60
526	Lowâ€Pressure Hydrogenation of Nitriles to Primary Amines Catalyzed by Ruthenium Pincer Complexes. Scope and mechanism. ChemCatChem, 2017, 9, 559-563.	1.8	36

#	Article	IF	CITATIONS
527	A site-holding effect of TiO ₂ surface hydroxyl in the photocatalytic direct synthesis of 1,1-diethoxyethane from ethanol. Chemical Communications, 2017, 53, 1518-1521.	2.2	38
528	Copper-catalyzed aromatic C–H alkoxylation with alcohols under aerobic conditions. Organic and Biomolecular Chemistry, 2017, 15, 1261-1267.	1.5	21
529	<i>mer</i> , <i>fac</i> , and Bidentate Coordination of an Alkyl-POP Ligand in the Chemistry of Nonclassical Osmium Hydrides. Inorganic Chemistry, 2017, 56, 676-683.	1.9	29
530	The Distinctive Electronic Structures of Rhenium Tris(thiolate) Complexes, an Unexpected Contrast to the Valence Isoelectronic Ruthenium Tris(thiolate) Complexes. Inorganic Chemistry, 2017, 56, 583-593.	1.9	12
531	Synthesis and Characterization of PBP Pincer Iridium Complexes and Their Application in Alkane Transfer Dehydrogenation. Organometallics, 2017, 36, 228-233.	1.1	60
532	Ruthenium complexes with a pyrazole-phosphine ligand. Journal of Organometallic Chemistry, 2017, 853, 68-73.	0.8	7
533	Oxidant-free synthesis of benzimidazoles from alcohols and aromatic diamines catalysed by new Ru(<scp>ii</scp>)-PNS(O) pincer complexes. Dalton Transactions, 2017, 46, 15012-15022.	1.6	28
534	Concerted Functions of Surface Acid–Base Pairs and Supported Copper Catalysts for Dehydrogenative Synthesis of Esters from Primary Alcohols. ACS Omega, 2017, 2, 6167-6173.	1.6	21
535	Iron pyrrole-based PNP pincer ligand complexes as catalyst precursors. Acta Crystallographica Section C, Structural Chemistry, 2017, 73, 569-574.	0.2	8
536	NNpyC- and ONpyC-Pincers as functional ligands for palladium(II) complexes and assemblies. Journal of Organometallic Chemistry, 2017, 851, 254-264.	0.8	4
537	Activation of Epoxides by a Cooperative Iron–Thiolate Catalyst: Intermediacy of Ferrous Alkoxides in Catalytic Hydroboration. ACS Catalysis, 2017, 7, 7709-7717.	5.5	53
538	Ruthenium-Catalyzed Urea Synthesis by N–H Activation of Amines. Inorganic Chemistry, 2017, 56, 7278-7284.	1.9	49
539	A DFT study unveils the secret of how H ₂ is activated in the N-formylation of amines with CO ₂ and H ₂ catalyzed by Ru(<scp>ii</scp>) pincer complexes in the absence of exogenous additives. Chemical Communications, 2017, 53, 12148-12151.	2.2	18
540	Chemical reduction of CO ₂ facilitated by C-nucleophiles. Chemical Communications, 2017, 53, 11390-11398.	2.2	38
541	Dehydrogenation of Alkanes and Aliphatic Groups by Pincer-Ligated Metal Complexes. Chemical Reviews, 2017, 117, 12357-12384.	23.0	257
542	Nickel and Platinum PCP Pincer Complexes Incorporating an Acyclic Diaminoalkyl Central Moiety Connecting Imidazole or Pyrazole Rings. Organometallics, 2017, 36, 3250-3256.	1.1	10
543	Metal–Ligand Cooperative Reactivity in the (Pseudo)-Dearomatized PN ^{<i>x</i>} (P) Systems: The Influence of the Zwitterionic Form in Dearomatized Pincer Complexes. Journal of the American Chemical Society, 2017, 139, 13442-13449.	6.6	63
544	Synthesis, structure and catalysis of organometallic porphyrin–pincer hybrids: a review. Dalton Transactions, 2017, 46, 14062-14082.	1.6	19

#	Article	IF	CITATIONS
545	Ruthenium-Catalyzed Site-Selective Intramolecular Silylation of Primary C–H Bonds for Synthesis of Sila-Heterocycles. Journal of the American Chemical Society, 2017, 139, 11601-11609.	6.6	62
546	Formation of Palladium η ² â€Bound Chalcogenoketones across a Pd ⁺ â^'C ^{â^'} Bond. Chemistry - A European Journal, 2017, 23, 16948-16952.	1.7	22
547	Diiron Dithiolate Hydrides Complemented with Protonâ€Responsive Phosphine–Amine Ligands. European Journal of Inorganic Chemistry, 2017, 2017, 3169-3173.	1.0	7
548	An Efficient Homogenized Ruthenium(II) Pincer Complex for <i>N</i> â€Monoalkylation of Amines with Alcohols. European Journal of Organic Chemistry, 2017, 2017, 3481-3486.	1.2	35
549	Frustration across the periodic table: heterolytic cleavage of dihydrogen by metal complexes. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2017, 375, 20170002.	1.6	33
550	Reversible Smallâ€Molecule Interactions with Coordinatively Unsaturated Metal Centers Held in Metallathiaborane Clusters. European Journal of Inorganic Chemistry, 2017, 2017, 4599-4617.	1.0	8
551	Câ°'C and Câ°'N Couplings Following Hydride Addition on Isocyanide Cyclopolyenyl Dimolybdenum Complexes to Give Tethered Aldimine and Aminocarbene Derivatives. Chemistry - A European Journal, 2017, 23, 14027-14038.	1.7	3
552	Steuerung der Produktverteilung und der Mechanismen der thermischen Aktivierung von Methan durch Ligandeneffekte und elektrische Felder. Angewandte Chemie, 2017, 129, 10353-10357.	1.6	13
553	Cooperative Strategies for Catalytic Hydrogenation of Unsaturated Hydrocarbons. ACS Catalysis, 2017, 7, 6110-6119.	5.5	64
554	Synthesis of 2-Pyridinemethyl Ester Derivatives from Aldehydes and 2-Alkylheterocycle <i>N</i> -Oxides via Copper-Catalyzed Tandem Oxidative Coupling–Rearrangement. Organic Letters, 2017, 19, 6720-6723.	2.4	30
554 555		2.4	30 37
	vía Copper-Catalyzed Tandem Oxidative Coupling–Rearrangement. Organic Letters, 2017, 19, 6720-6723. A Versatile Ru(II)-NNP Complex Catalyst for the Synthesis of Multisubstituted Pyrroles and Pyridines.		
555	vía Copper-Catalyzed Tandem Oxidative Coupling–Rearrangement. Organic Letters, 2017, 19, 6720-6723. A Versatile Ru(II)-NNP Complex Catalyst for the Synthesis of Multisubstituted Pyrroles and Pyridines. Organometallics, 2017, 36, 4936-4942. Homogeneous Catalysis by Manganeseâ€Based Pincer Complexes. European Journal of Organic Chemistry,	1.1	37
555 556	 vía Copper-Catalyzed Tandem Oxidative Coupling–Rearrangement. Organic Letters, 2017, 19, 6720-6723. A Versatile Ru(II)-NNP Complex Catalyst for the Synthesis of Multisubstituted Pyrroles and Pyridines. Organometallics, 2017, 36, 4936-4942. Homogeneous Catalysis by Manganeseâ€Based Pincer Complexes. European Journal of Organic Chemistry, 2017, 2017, 4344-4362. Synthesis and Electronic Ground-State Properties of Pyrrolyl-Based Iron Pincer Complexes: Revisited. 	1.1	37 289
555 556 557	 via Copper-Catalyzed Tandem Oxidative Coupling–Rearrangement. Organic Letters, 2017, 19, 6720-6723. A Versatile Ru(II)-NNP Complex Catalyst for the Synthesis of Multisubstituted Pyrroles and Pyridines. Organometallics, 2017, 36, 4936-4942. Homogeneous Catalysis by Manganeseâ€Based Pincer Complexes. European Journal of Organic Chemistry, 2017, 2017, 4344-4362. Synthesis and Electronic Ground-State Properties of Pyrrolyl-Based Iron Pincer Complexes: Revisited. Inorganic Chemistry, 2017, 56, 8415-8422. Reversible Hydride Transfer to <i>N</i>,<i>N</i>, i>N, i>Reversible Hydride Transfer to <i>N</i>, i>N, i>Reversible Hydride Transfer to <i>N</i>, i>N	1.1 1.2 1.9	37 289 34
555 556 557 558	 via Copper-Catalyzed Tandem Oxidative Coupling–Rearrangement. Organic Letters, 2017, 19, 6720-6723. A Versatile Ru(II)-NNP Complex Catalyst for the Synthesis of Multisubstituted Pyrroles and Pyridines. Organometallics, 2017, 36, 4936-4942. Homogeneous Catalysis by Manganeseâ€Based Pincer Complexes. European Journal of Organic Chemistry, 2017, 2017, 4344-4362. Synthesis and Electronic Ground-State Properties of Pyrrolyl-Based Iron Pincer Complexes: Revisited. Inorganic Chemistry, 2017, 56, 8415-8422. Reversible Hydride Transfer to <i>N</i>,<i>N</i>,<i>N</i>, â€2-Diarylimidazolinium Cations from Hydrogen Catalyzed by Transition Metal Complexes Mimicking the Reaction of [Fe]-Hydrogenase. Inorganic Chemistry, 2017, 56, 8087-8099. Metal-ligand cooperation between palladium and a diphosphine ligand with an olefinic backbone. 	1.1 1.2 1.9 1.9	37 289 34 4
555 556 557 558	 vía Copper-Catalyzed Tandem Oxidative Coupling–Rearrangement. Organic Letters, 2017, 19, 6720-6723. A Versatile Ru(II)-NNP Complex Catalyst for the Synthesis of Multisubstituted Pyrroles and Pyridines. Organometallics, 2017, 36, 4936-4942. Homogeneous Catalysis by Manganeseâ€Based Pincer Complexes. European Journal of Organic Chemistry, 2017, 2017, 4344-4362. Synthesis and Electronic Ground-State Properties of Pyrrolyl-Based Iron Pincer Complexes: Revisited. Inorganic Chemistry, 2017, 56, 8415-8422. Reversible Hydride Transfer to <i>N</i>>, <i>N</i>>, <i>N</i>> â€2-Diarylimidazolinium Cations from Hydrogen Catalyzed by Transition Metal Complexes Mimicking the Reaction of [Fe]-Hydrogenase. Inorganic Chemistry, 2017, 56, 8087-8099. Metal-ligand cooperation between palladium and a diphosphine ligand with an olefinic backbone. Inorganica Chimica Acta, 2017, 460, 35-42. Liquid phase oxidation of xylenes catalyzed by the tripodal C-scorpionate iron(II) complex 	1.1 1.2 1.9 1.9 1.2	37 289 34 4 15

#	Article	IF	CITATIONS
563	Iron catalyzed hydrogenation and electrochemical reduction of CO 2 : The role of functional ligands. Journal of Organometallic Chemistry, 2018, 861, 159-173.	0.8	22
564	Manganese Catalyzed Hydrogenation of Enantiomerically Pure Esters. Organic Letters, 2018, 20, 2654-2658.	2.4	54
565	The Green ChemisTREE: 20 years after taking root with the 12 principles. Green Chemistry, 2018, 20, 1929-1961.	4.6	499
566	Rhenium and Manganese Complexes Bearing Amino-Bis(phosphinite) Ligands: Synthesis, Characterization, and Catalytic Activity in Hydrogenation of Ketones. Organometallics, 2018, 37, 1271-1279.	1.1	33
567	Recent Advances in Catalysis with Transitionâ€Metal Pincer Compounds. ChemCatChem, 2018, 10, 3136-3172.	1.8	193
568	Mechanistic investigation of imine formation in rutheniumâ€catalyzed Nâ€alkylation of amines with alcohols. Applied Organometallic Chemistry, 2018, 32, e4277.	1.7	8
569	Cooperative catalytic methoxycarbonylation of alkenes: uncovering the role of palladium complexes with hemilabile ligands. Chemical Science, 2018, 9, 2510-2516.	3.7	94
570	Extending the Secondâ€Generation Phosphorus–Nitrogen PN ³ â€Pincer Ligand Family through Ligand Postâ€Modification. Journal of the Chinese Chemical Society, 2018, 65, 60-64.	0.8	11
571	Inexpensive Ruthenium NNS omplexes as Efficient Ester Hydrogenation Catalysts with High C=O vs. C=C Selectivities. Advanced Synthesis and Catalysis, 2018, 360, 1151-1158.	2.1	25
573	Catalytic (de)hydrogenation promoted by non-precious metals – Co, Fe and Mn: recent advances in an emerging field. Chemical Society Reviews, 2018, 47, 1459-1483.	18.7	511
574	Diverse bimetallic mechanisms emerging from transition metal Lewis acid/base pairs: development of co-catalysis with metal carbenes and metal carbonyl anions. Chemical Communications, 2018, 54, 1291-1302.	2.2	58
575	Airâ€stable Ruthenium(II)â€NNN Pincer Complexes for the Efficient Coupling of Aromatic Diamines and Alcohols to 1 <i>H</i> â€benzo[<i>d</i>]imidazoles with the Liberation of H ₂ . ChemCatChem, 2018, 10, 1607-1613.	1.8	45
576	Advances in One-Pot Synthesis through Borrowing Hydrogen Catalysis. Chemical Reviews, 2018, 118, 1410-1459.	23.0	734
577	A nickel catalyzed acceptorless dehydrogenative approach to quinolines. Organic and Biomolecular Chemistry, 2018, 16, 274-284.	1.5	93
578	Visibleâ€Lightâ€Induced Câ^'H Functionalization and Câ^'C/Câ^'X Bondâ€Forming Oxidative Crossâ€Coupling Reactions. Asian Journal of Organic Chemistry, 2018, 7, 1164-1177.	1.3	41
579	Utilisation of new NiSNS pincer complexes in paraffin oxidation. Inorganica Chimica Acta, 2018, 479, 97-105.	1.2	5
580	Hydrogen Transfer Catalysis beyond the Primary Coordination Sphere. ACS Catalysis, 2018, 8, 6446-6461.	5.5	74
581	Cooperative bond activation reactions with carbene complexes. Chemical Communications, 2018, 54, 6540-6553.	2.2	71

#	Article	IF	CITATIONS
582	Formal oxidative addition of a C–H bond by a 16e iridium(<scp>i</scp>) complex involves metal–ligand cooperation. Chemical Communications, 2018, 54, 5365-5368.	2.2	7
583	Tridentate pyridine–pyrrolide chelate ligands: An under-appreciated ligand set with an immensely promising coordination chemistry. Coordination Chemistry Reviews, 2018, 375, 285-332.	9.5	46
584	Hydrogenation of an iridium-coordinated imidazol-2-ylidene ligand fragment. Chemical Communications, 2018, 54, 3843-3846.	2.2	10
585	Smart N-Heterocyclic Carbene Ligands in Catalysis. Chemical Reviews, 2018, 118, 9988-10031.	23.0	759
586	Cooperative Bond Activation Reactions with Ruthenium Carbene Complex PhSO ₂ (Ph ₂ PNSiMe ₃)Câ•Ru(<i>p</i> -cymene): Ruâ•C and N–Si Bond Reactivity. Organometallics, 2018, 37, 645-654.	1.1	15
587	Transformation of CO2 to Formic Acid or Formate with Homogeneous Catalysts. Springer Briefs in Molecular Science, 2018, , 7-42.	0.1	7
588	Ruthenium NNN complexes with a 2â€hydroxypyridylmethylene fragment for transfer hydrogenation of ketones. Applied Organometallic Chemistry, 2018, 32, e4100.	1.7	7
589	1-D and 2-D phosphine coordination materials based on a palladium(II) PCP pincer metalloligand. Polyhedron, 2018, 143, 149-156.	1.0	16
590	Water-soluble NNN-pincer complexes of cobalt, nickel and palladium: Solid-state structures and catalytic activity. Polyhedron, 2018, 143, 138-143.	1.0	10
591	E H (E = N, O) bond activation by a nucleophilic palladium carbene. Polyhedron, 2018, 143, 176-183.	1.0	24
592	Homogeneous Catalysis for Sustainable Hydrogen Storage in Formic Acid and Alcohols. Chemical Reviews, 2018, 118, 372-433.	23.0	805
593	Ambireactive (R ₃ P) ₂ BH ₂ Groups Facilitating Temperature‣witchable Bond Activation by an Iron Complex. Chemistry - A European Journal, 2018, 24, 1358-1364.	1.7	6
594	POP-type ligands: Variable coordination and hemilabile behaviour. Coordination Chemistry Reviews, 2018, 355, 150-172.	9.5	112
595	Experimental and Theoretical Mechanistic Investigation on the Catalytic CO ₂ Hydrogenation to Formate by a Carboxylate-Functionalized Bis(<i>N</i> -heterocyclic carbene) Zwitterionic Iridium(I) Compound. Organometallics, 2018, 37, 684-696.	1.1	25
596	Pyrrolyl-based pincer complexes of iron – Synthesis and electronic structure. Polyhedron, 2018, 143, 83-93.	1.0	12
597	Synthesis, characterization and reactivity of iridium pincer complexes. Polyhedron, 2018, 143, 126-131.	1.0	7
598	Cobalt-catalyzed acceptorless dehydrogenative coupling of aminoalcohols with alcohols: direct access to pyrrole, pyridine and pyrazine derivatives. Chemical Communications, 2018, 54, 90-93.	2.2	105
599	Redox active ligand and metal cooperation for C(sp ²)–H oxidation: extension of the galactose oxidase mechanism in water-mediated amide formation. Dalton Transactions, 2018, 47, 15293-15297.	1.6	6

#	Article	IF	CITATIONS
600	Redox-state dependent activation of silanes and ammonia with reverse polarity (PC _{carbene} P)Ni complexes: electrophilic <i>vs.</i> nucleophilic carbenes. Dalton Transactions, 2018, 47, 16789-16797.	1.6	27
602	3. CO2-based hydrogen storage – formic acid dehydrogenation. , 2018, , 57-94.		1
603	Phosphoramidate-Assisted Alkyne Activation: Probing the Mechanism of Proton Shuttling in a N,O-Chelated Cp*Ir(III) Complex. Organometallics, 2018, 37, 4630-4638.	1.1	8
604	Facile Synthesis of 1,5-Diaryl-4-pyridyl-1,2,3-triaozle Derivatives. Chemical Research in Chinese Universities, 2018, 34, 923-928.	1.3	1
605	Comparative Study of Novel Phosphordiamidite and Phosphite Ligands Used in Alkene Hydroformylation; Synthesis, Characterization, Metalation, and Catalytic Evaluation. European Journal of Inorganic Chemistry, 2018, 2018, 4158-4174.	1.0	5
606	Stabilized Ru[(H ₂ 0) ₆] ³⁺ in Confined Spaces (MOFs and Zeolites) Catalyzes the Imination of Primary Alcohols under Atmospheric Conditions with Wide Scope. ACS Catalysis, 2018, 8, 10401-10406.	5.5	31
607	Cobalt-Catalyzed Selective Hydrogenation of Nitriles to Secondary Imines. Organic Letters, 2018, 20, 6430-6435.	2.4	46
608	CO2-based hydrogen storage $\hat{a} \in $ formic acid dehydrogenation. Physical Sciences Reviews, 2018, 3, .	0.8	6
609	A Pseudodearomatized PN ³ P*Ni–H Complex as a Ligand and σ-Nucleophilic Catalyst. Journal of Organic Chemistry, 2018, 83, 14969-14977.	1.7	21
610	Conversion of Alcohols to Carboxylates Using Water and Base with H2 Liberation. Topics in Organometallic Chemistry, 2018, , 175-192.	0.7	3
611	Glycerol to lactic acid conversion by NHC-stabilized iridium nanoparticles. Journal of Catalysis, 2018, 368, 298-305.	3.1	15
612	Synthesis and Characterization of Palladium(II) CNC Pincer Complexes with Novel Bis(1,2,3â€triazolylidene)amine Ligands. ChemistrySelect, 2018, 3, 10706-10710.	0.7	7
613	Modular Pincer-type Pyridylidene Amide Ruthenium(II) Complexes for Efficient Transfer Hydrogenation Catalysis. Inorganic Chemistry, 2018, 57, 11761-11774.	1.9	31
614	Tuning iridium (I) PCcarbeneP frameworks for facile cooperative N2O reduction. Polyhedron, 2018, 155, 281-290.	1.0	18
615	Synthesis of Ruthenium Complexes Bearing PCP-Type Pincer Ligands and Their Application to Direct Synthesis of Imines from Amines and Benzyl Alcohol. Organometallics, 2018, 37, 3086-3092.	1.1	33
616	CO Oxidation by N ₂ O Homogeneously Catalyzed by Ruthenium Hydride Pincer Complexes Indicating a New Mechanism. Journal of the American Chemical Society, 2018, 140, 7061-7064.	6.6	52
617	Redox Activity, Ligand Protonation, and Variable Coordination Modes of Diimino-Pyrrole Complexes of Palladium. Inorganic Chemistry, 2018, 57, 7044-7050.	1.9	15
618	CO ₂ activation by metal â^' ligand-cooperation mediated by iridium pincer complexes. Journal of Coordination Chemistry, 2018, 71, 1679-1689.	0.8	12

#	Article	IF	CITATIONS
619	β-Hydrogen Elimination and Reductive Elimination from a κ ³ -PPC Nickel Complex. Organometallics, 2018, 37, 2305-2318.	1.1	8
620	Metal Pincer Catalysts in Aqueous Media. , 2018, , 273-294.		0
621	Influence of the Leaving Group on C–H Activation Pathways in Palladium Pincer Complexes. Organometallics, 2018, 37, 2086-2094.	1.1	12
622	Double Dehydrogenation of Primary Amines to Nitriles by a Ruthenium Complex Featuring Pyrazole Functionality. Journal of the American Chemical Society, 2018, 140, 8662-8666.	6.6	80
623	Hydrogen-Atom Noninnocence of a Tridentate [SNS] Pincer Ligand. Inorganic Chemistry, 2018, 57, 9728-9737.	1.9	28
624	Selective Deuteration of Organic Compounds Catalyzed by Ruthenium Pincer Complexes. , 2018, , 519-538.		1
625	Highly Selective, Efficient Deoxygenative Hydrogenation of Amides Catalyzed by a Manganese Pincer Complex via Metal–Ligand Cooperation. ACS Catalysis, 2018, 8, 8014-8019.	5.5	100
626	Amido Complexes of Iridium with a PNP Pincer Ligand: Reactivity toward Alkynes and Hydroamination Catalysis. Organometallics, 2018, 37, 2618-2629.	1.1	13
627	Backbone Dehydrogenation in Pyrrole-Based Pincer Ligands. Inorganic Chemistry, 2018, 57, 9544-9553.	1.9	16
628	Fe and Co Complexes of Rigidly Planar Phosphino-Quinoline-Pyridine Ligands for Catalytic Hydrosilylation and Dehydrogenative Silylation. Organometallics, 2018, 37, 2760-2768.	1.1	34
629	Homogeneously catalyzed hydrogenation and dehydrogenation reactions – From a mechanistic point of view. Physical Sciences Reviews, 2018, 3, .	0.8	4
630	Metal–Substrate Cooperation Mechanism for Dehydrogenative Amidation Catalyzed by a PNN-Ru Catalyst. Inorganic Chemistry, 2018, 57, 8778-8787.	1.9	24
631	Ruthenium-catalyzed selective α-deuteration of aliphatic nitriles using D ₂ O. Chemical Communications, 2018, 54, 8705-8708.	2.2	25
632	Reactivity of a dearomatised pincer Co ^{II} Br complex with PNC ^{NHC} donors: alkylation and Si–H bond activation <i>via</i> metal–ligand cooperation. Dalton Transactions, 2018, 47, 7888-7895.	1.6	15
633	Metal–Ligand Cooperation as Key in Formation of Dearomatized Ni ^{II} –H Pincer Complexes and in Their Reactivity toward CO and CO ₂ . Organometallics, 2018, 37, 2217-2221.	1.1	39
634	Phosphine free Mn-complex catalysed dehydrogenative C–C and C–heteroatom bond formation: a sustainable approach to synthesize quinoxaline, pyrazine, benzothiazole and quinoline derivatives. Chemical Communications, 2018, 54, 10582-10585.	2.2	144
635	Synthesis and Reactivity of Metal–Ligand Cooperative Bifunctional Ruthenium Hydride Complexes: Active Catalysts for β-Alkylation of Secondary Alcohols with Primary Alcohols. Organometallics, 2018, 37, 2795-2806.	1.1	42
636	Terminal Thiolate-Dominated H/D Exchanges and H ₂ Release: Diiron Thiol–Hydride. Journal of the American Chemical Society, 2018, 140, 11454-11463.	6.6	41

#	Article	IF	CITATIONS
637	Accessing Polysubstituted Quinazolines via Nickel Catalyzed Acceptorless Dehydrogenative Coupling. Journal of Organic Chemistry, 2018, 83, 11154-11166.	1.7	87
638	An Azoaromatic Ligand as Four Electron Four Proton Reservoir: Catalytic Dehydrogenation of Alcohols by Its Zinc(II) Complex. Inorganic Chemistry, 2018, 57, 6816-6824.	1.9	45
639	Selective Hydrogenation of Nitriles to Secondary Imines over Rh-PVP Catalyst under Mild Conditions. Chemistry Letters, 2018, 47, 938-940.	0.7	18
640	The Electric Field as a "Smart―Ligand in Controlling the Thermal Activation of Methane and Molecular Hydrogen. Angewandte Chemie - International Edition, 2018, 57, 14635-14639.	7.2	25
641	H2 Addition to Pincer Iridium Complexes Yielding trans-Dihydride Products: Unexpected Correlations of Bond Strength with Bond Length and Vibrational Frequencies. Inorganic Chemistry, 2018, 57, 7516-7523.	1.9	5
642	Advances in the Design and Application of Redox-Active and Reactive Pincer Ligands for Substrate Activation and Homogeneous Catalysis. , 2018, , 599-621.		8
643	Cyclometalated Dicarbonyl Ruthenium Catalysts for Transfer Hydrogenation and Hydrogenation of Carbonyl Compounds. Organometallics, 2018, 37, 2136-2146.	1.1	23
644	Study of Precatalyst Degradation Leading to the Discovery of a New Ru ⁰ Precatalyst for Hydrogenation and Dehydrogenation. Organometallics, 2018, 37, 2193-2201.	1.1	31
645	Cooperative Bond Activation Reactions with Nickel and Palladium Carbene Complexes with a PC _{carbene} S Pincer Ligand. Organometallics, 2019, 38, 4093-4104.	1.1	9
646	A Silyl-Nickel Moiety as a Metal–Ligand Cooperative Site. Inorganic Chemistry, 2019, 58, 11534-11545.	1.9	17
647	Unusual C–O bond cleavage of aromatic ethers in ruthenium complexes bearing a 2-alkoxypyridyl fragment. Dalton Transactions, 2019, 48, 13614-13621.	1.6	1
648	Cooperative H ₂ Activation on Dicopper(I) Facilitated by Reversible Dearomatization of an "Expanded PNNP Pincer―Ligand. Chemistry - A European Journal, 2019, 25, 13280-13284.	1.7	35
649	<i>E</i> -Selective Synthesis and Coordination Chemistry of Pyridine-Phosphaalkenes: Five Ligands Produce Four Distinct Types of Ru(II) Complexes. Organometallics, 2019, 38, 3338-3348.	1.1	6
650	Synthesis, characterization and catalytic activity of novel ruthenium complexes bearing NNN click based ligands. Dalton Transactions, 2019, 48, 13580-13588.	1.6	15
651	A Germylene Supported by Two 2â€Pyrrolylphosphane Groups as Precursor to PGeP Pincer Squareâ€Planar Groupâ€10 Metal(II) and Tâ€Shaped Gold(I) Complexes. Chemistry - A European Journal, 2019, 25, 12423-12430	0. ^{1.7}	26
652	Realization of Lewis Basic Sodium Anion in the NaBH ₃ ^{â^'} Cluster. Angewandte Chemie - International Edition, 2019, 58, 13789-13793.	7.2	46
653	Sequential Double Dearomatization of the Pyrazolateâ€Based "Twoâ€inâ€One―Pincer Ligand in a Dinuclear Rhodium(I) Complex. European Journal of Inorganic Chemistry, 2019, 2019, 3329-3334.	1.0	6
654	Fiveâ€Membered Ruthenacycles: Ligandâ€Assisted Alkyne Insertion into 1,3â€N,Sâ€Chelated Ruthenium Borate Species. Chemistry - A European Journal, 2019, 25, 13537-13546.	1.7	18

#	Article	IF	CITATIONS
655	Realization of Lewis Basic Sodium Anion in the NaBH 3 â^' Cluster. Angewandte Chemie, 2019, 131, 13927-13931.	1.6	17
656	The Role of Proton Shuttles in the Reversible Activation of Hydrogen via Metal–Ligand Cooperation. Journal of the American Chemical Society, 2019, 141, 17350-17360.	6.6	39
657	PN ³ (P)-Pincer Complexes: Cooperative Catalysis and Beyond. ACS Catalysis, 2019, 9, 1619-1629.	5.5	88
659	A Diaminopropane Diolefin Ru(0) Complex Catalyzes Hydrogenation and Dehydrogenation Reactions. ChemCatChem, 2019, 11, 5241-5251.	1.8	12
660	N–Alkylation of Amines Catalyzed by a Ruthenium–Pincer Complex in the Presence of in situ Generated Sodium Alkoxide. European Journal of Organic Chemistry, 2019, 2019, 6855-6866.	1.2	39
662	Mechanism of Coupling of Alcohols and Amines To Generate Aldimines and H ₂ by a Pincer Manganese Catalyst. ACS Catalysis, 2019, 9, 1662-1669.	5.5	62
663	Mechanism of the Manganese-Pincer-Catalyzed Acceptorless Dehydrogenative Coupling of Nitriles and Alcohols. Journal of the American Chemical Society, 2019, 141, 2398-2403.	6.6	69
664	Hydrogen elimination reactivity of ruthenium pincer hydride complexes: a DFT study. New Journal of Chemistry, 2019, 43, 14634-14642.	1.4	6
665	CO ₂ activation by manganese pincer complexes through different modes of metal–ligand cooperation. Dalton Transactions, 2019, 48, 14580-14584.	1.6	53
666	Synthesis and Reactivity of Zr MOFs Assembled from P ^N N ^N P-Ru Pincer Complexes. Organometallics, 2019, 38, 3419-3428.	1.1	14
667	Rhodapentalenes: Pincer Complexes with Internal Aromaticity. IScience, 2019, 19, 1214-1224.	1.9	13
668	Nonbifunctional Outer-Sphere Strategy Achieved Highly Active α-Alkylation of Ketones with Alcohols by <i>N</i> -Heterocyclic Carbene Manganese (NHC-Mn). Organic Letters, 2019, 21, 8065-8070.	2.4	86
669	Formamides as Isocyanate Surrogates: A Mechanistically Driven Approach to the Development of Atom-Efficient, Selective Catalytic Syntheses of Ureas, Carbamates, and Heterocycles. Journal of the American Chemical Society, 2019, 141, 16486-16493.	6.6	47
670	Difunctionalization of Alkenylpyridine <i>N</i> -Oxides by the Tandem Addition/Boekelheide Rearrangement. Organic Letters, 2019, 21, 8266-8269.	2.4	10
671	The Renaissance of Base Metal Catalysis Enabled by Functional Ligands. Structure and Bonding, 2019, , 1-36.	1.0	6
672	Half-sandwich ruthenium-carbene catalysts: Synthesis, characterization, and catalytic application in the N-alkylation of amines with alcohols. Inorganica Chimica Acta, 2019, 498, 119163.	1.2	5
673	Ruthenium complexes with <i>N</i> -functionalized secondary amino ligands: a new class of catalysts toward efficient hydrogenation of esters. Dalton Transactions, 2019, 48, 2290-2294.	1.6	6
674	Selective carbonylation of benzene to benzaldehyde using a phosphorus–nitrogen PN ³ P–rhodium(<scp>i</scp>) complex. Organic Chemistry Frontiers, 2019, 6, 721-724.	2.3	11

#	Article	IF	Citations
675	Dehydrogenative Synthesis of Quinolines, 2-Aminoquinolines, and Quinazolines Using Singlet Diradical Ni(II)-Catalysts. Journal of Organic Chemistry, 2019, 84, 2626-2641.	1.7	98
676	Deprotonation of a PNNP-Iron Complex: Expanding the Concept of Metal-ligand Cooperation to the PNNP-Iron System. Chemistry Letters, 2019, 48, 364-366.	0.7	10
677	(Ar-tpy)Ru ^{II} (ACN) ₃ : A Water-Soluble Catalyst for Aldehyde Amidation, Olefin Oxo-Scissoring, and Alkyne Oxygenation. Journal of Organic Chemistry, 2019, 84, 8468-8480.	1.7	20
678	Enabling Two-Electron Pathways with Iron and Cobalt: From Ligand Design to Catalytic Applications. Journal of the American Chemical Society, 2019, 141, 9106-9123.	6.6	109
679	Pyridine-Based PCP-Ruthenium Complexes: Unusual Structures and Metal–Ligand Cooperation. Journal of the American Chemical Society, 2019, 141, 7554-7561.	6.6	32
680	Parallels between Metalâ€Ligand Cooperativity and Frustrated Lewis Pairs. European Journal of Inorganic Chemistry, 2019, 2019, 2436-2442.	1.0	22
681	Palladium pincer complexes featuring an unsymmetrical SCN indene-based ligand with a hemilabile pyridine sidearm. Dalton Transactions, 2019, 48, 9801-9806.	1.6	8
682	Cross-coupling reactions catalysed by palladium pincer complexes. A review of recent advances. Journal of Organometallic Chemistry, 2019, 893, 39-51.	0.8	120
683	Ruthenium(II)â€(Arene)â€Nâ€Heterocyclic Carbene Complexes: Efficient and Selective Catalysts for the <i>N</i> â€Alkylation of Aromatic Amines with Alcohols. European Journal of Inorganic Chemistry, 2019, 2019, 2598-2606.	1.0	18
684	Synthesis, Characterization, and Theoretical Investigation of a Transition State Analogue for Proton Transfer during C–H Activation by a Rhodium-Pincer Complex. Organometallics, 2019, 38, 1407-1412.	1.1	11
685	Phosphineâ€NHC Manganese Hydrogenation Catalyst Exhibiting a Nonâ€Classical Metalâ€Ligand Cooperative H ₂ Activation Mode. Angewandte Chemie - International Edition, 2019, 58, 6727-6731.	7.2	73
686	Rh(I) Complex with a Tridentate Pyridine–Amino–Olefin Actor Ligand–Metal–Ligand Cooperative Activation of CO2 and Phenylisocyanate under C–C and Rh–E (E = O, N) Bond Formation. Organometallics, 2019, 38, 1787-1799.	1.1	8
687	Catalytic Câ^'H Borylation Using Iron Complexes Bearing 4,5,6,7â€Tetrahydroisoindolâ€2â€ideâ€Based PNPâ€Typ Pincer Ligand. Chemistry - an Asian Journal, 2019, 14, 2097-2101.	^e 1.7	24
688	Remote â€~Imidazole' Based Ruthenium(II) <i>p</i> â€Cymene Precatalyst for Selective Oxidative Cleavage of Câ^'C Multiple Bonds. ChemCatChem, 2019, 11, 2683-2694.	1.8	9
689	Phosphineâ€NHC Manganese Hydrogenation Catalyst Exhibiting a Nonâ€Classical Metalâ€Ligand Cooperative H ₂ Activation Mode. Angewandte Chemie, 2019, 131, 6799-6803.	1.6	15
690	Alkane dehydrogenation reactions catalyzed by pincer-metal complexes. Advances in Organometallic Chemistry, 2019, 72, 1-57.	0.5	18
691	Beyond the PN 3 (P) system: Synthesis of nonâ€symmetrical PONNPâ€pincer ligands and a unique Ni–Ag bimetallic complex containing a short Ag–Ag distance. Journal of the Chinese Chemical Society, 2019, 66, 455-458.	0.8	1
692	Dihydrogen and dinitrogen rhodium complexes bearing metallocene-based pincer ligands. Inorganica Chimica Acta, 2019, 496, 118844.	1.2	6

#	Article	IF	CITATIONS
693	Synthesis of Unsymmetrical <i>N</i> -Heterocyclic Carbene–Nitrogen–Phosphine Chelated Ruthenium(II) Complexes and Their Reactivity in Acceptorless Dehydrogenative Coupling of Alcohols to Esters. Organometallics, 2019, 38, 1750-1760.	1.1	29
694	Acceptorless dehydrogenative construction of Cĩ€N and Cĩ€€ bonds through catalytic aza-Wittig and Wittig reactions in the presence of an air-stable ruthenium pincer complex. Dalton Transactions, 2019, 48, 6501-6512.	1.6	25
695	Characterization of Rh–Al Bond in Rh(PAIP) (PAIP = Pincer-type Diphosphino-Aluminyl Ligand) in Comparison with Rh(L)(PMe ₃) ₂ (L = AlMe ₂ ,) Tj ETQq0 0 0 rgBT /Overlock	2 10 Tf 50 1.9	662 Td (Al(NI 27
696	Nanobiomimicry at Quantum Scales: Synthetic Imperfections to Imitating Low-Dimensional Biomimetic Polymer Confinement of TiO2 at Self-Assembled Heterogeneous Interfaces. , 2019, , 231-270.		1
697	Facile and reversible double dearomatization of pyridines in non-phosphine Mn ^I complexes with N,S-donor pyridinophane ligand. Chemical Communications, 2019, 55, 3282-3285.	2.2	14
698	Mechanisms of Ketone/Imine Hydrogenation Catalyzed by Transitionâ€Metal Complexes. Energy and Environmental Materials, 2019, 2, 292-312.	7.3	34
699	Optimal functionalization of a molecular electrocatalyst for hydride transfer. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 22953-22958.	3.3	4
700	Phosphine-free ruthenium NCN-ligand complexes and their use in catalytic CO ₂ hydrogenation. Dalton Transactions, 2019, 48, 16569-16577.	1.6	7
701	Catalytic dearomative hydroboration of heteroaromatic compounds. Journal of Chemical Sciences, 2019, 131, 1.	0.7	17
702	Cobalt–Pincer Complexes in Catalysis. Chemistry - A European Journal, 2019, 25, 122-143.	1.7	140
703	Selective Carbanion–Pyridine Coordination of a Reactive P,N Ligand to Rh I. Chemistry - A European Journal, 2019, 25, 3875-3883.	1.7	8
704	Hydrogenation of CO2, carbonyl and imine substrates catalyzed by [IrH3(PhPNHP)] complex. Journal of Organometallic Chemistry, 2019, 883, 25-34.	0.8	7
705	First-Row Transition Metal (De)Hydrogenation Catalysis Based On Functional Pincer Ligands. Chemical Reviews, 2019, 119, 2681-2751.	23.0	608
706	A Unified Mechanism to Account for Manganese―or Rutheniumâ€Catalyzed Nitrile αâ€Olefinations by Primary or Secondary Alcohols: A DFT Mechanistic Study. Chemistry - A European Journal, 2019, 25, 3939-3949.	1.7	14
707	Iron Catalysis in Reduction and Hydrometalation Reactions. Chemical Reviews, 2019, 119, 2550-2610.	23.0	338
708	Ruâ€Catalyzed Selective C(sp ³)â^'H Monoborylation of Amides and Esters. ChemSusChem, 2020, 13, 121-125.	3.6	12
709	Baseâ€Initiated Formation of Fe I –PNP Pincer Complexes. European Journal of Inorganic Chemistry, 2020, 2020, 1101-1105.	1.0	4
710	Redox Noninnocent Nature of Acridine-Based Pincer Complexes of 3d Metals and C–C Bond Formation. Organometallics, 2020, 39, 279-285.	1.1	22

#	Article	IF	CITATIONS
711	A Highly Selective Manganese-Catalyzed Synthesis of Imines under Phosphine-Free Conditions. Organometallics, 2020, 39, 217-226.	1.1	23
712	Oxidative Addition of C–X Bonds and H–H Activation Using PNNPâ€Iron Complexes. ChemistrySelect, 2020, 5, 15-17.	0.7	8
713	Metalâ€Metal Cooperation in Dinucleating Complexes Involving Late Transition Metals Directed towards Organic Catalysis. Chinese Journal of Chemistry, 2020, 38, 185-201.	2.6	46
714	Halfâ€sandwich ruthenium complexes with <scp>S</scp> chiff base ligands bearing a hydroxyl group: Preparation, characterization and catalytic activities. Applied Organometallic Chemistry, 2020, 34, e5289.	1.7	9
715	Revised Mechanisms of the Catalytic Alcohol Dehydrogenation and Ester Reduction with the Milstein PNN Complex of Ruthenium. Organometallics, 2020, 39, 258-270.	1.1	39
716	The Importance of Metal–Ligand Cooperativity in the Phosphorus–Nitrogen PN ³ P Platform: A Computational Study on Mn-Catalyzed Pyrrole Synthesis. Organometallics, 2020, 39, 18-24.	1.1	9
717	Assembled Multinuclear Ruthenium(II)–NNNN Complexes: Synthesis, Catalytic Properties, and DFT Calculations. Organometallics, 2020, 39, 93-104.	1.1	9
718	A robust NNPâ€ŧype ruthenium (II) complex for alcohols dehydrogenation to esters and pyrroles. Applied Organometallic Chemistry, 2020, 34, e5367.	1.7	5
719	Dioxygen Activation by Internally Aromatic Metallacycle: Crystallographic Structure and Mechanistic Investigations. IScience, 2020, 23, 101379.	1.9	6
720	Coordination Flexibility of the Rh(PXP) Complex to NH ₃ , CO, and C ₂ H ₄ (PXP = Diphosphine-Based Pincer Ligand; X = B, Al, and Ga): Theoretical Insight. Inorganic Chemistry, 2020, 59, 15862-15876.	1.9	9
721	Planar-Locked Ru-PNN Catalysts in 1-Phenylethanol Dehydrogenation. Organometallics, 2020, 39, 3628-3644.	1.1	9
722	A Reversible Liquidâ€ŧoâ€Liquid Organic Hydrogen Carrier System Based on Ethylene Glycol and Ethanol. Chemistry - A European Journal, 2020, 26, 15487-15490.	1.7	16
723	Recent Progress with Pincer Transition Metal Catalysts for Sustainability. Catalysts, 2020, 10, 773.	1.6	71
724	<i>>n</i> -Alkanes to <i>>n</i> -alcohols: Formal primary C─H bond hydroxymethylation via quadruple relay catalysis. Science Advances, 2020, 6, .	4.7	28
725	A Pincer Motif Etched into a meta-Benziporphyrin Frame. Topics in Organometallic Chemistry, 2020, , 181.	0.7	1
726	Metal-Ligand Cooperation at Phosphine-Based Acceptor Pincer Ligands. Topics in Organometallic Chemistry, 2020, , 25.	0.7	1
727	Implementation of Cooperative Designs in Polarized Transition Metal Systems—Significance for Bond Activation and Catalysis. ACS Catalysis, 2020, 10, 14024-14055.	5.5	57
728	The Pincer Platform Beyond Classical Coordination Patterns. European Journal of Inorganic Chemistry, 2020, 2020, 3885-3898.	1.0	26

ARTICLE IF CITATIONS Metal–Ligand Cooperation Facilitates Bond Activation and Catalytic Hydrogenation with Zinc Pincer 729 6.6 41 Complexes. Journal of the American Chemical Society, 2020, 142, 14513-14521. Scaffold-Based Functional Models of [Fe]-Hydrogenase (Hmd): Building the Bridge between Biological Structure and Molecular Function. Accounts of Chemical Research, 2020, 53, 1637-1647. Reaction of H ₂ with mitochondria-relevant metabolites using a multifunctional 731 4.7 11 molecular catalyst. Science Advances, 2020, 6, . Bimetallics in a Nutshell: Complexes Supported by Chelating Naphthyridine-Based Ligands. Accounts of Chemical Research, 2020, 53, 1944-1956. Synthesis of Tetrahydroquinolines via Borrowing Hydrogen Methodology Using a Manganese 733 2.4 20 PN³ Pincer Catalyst. Organic Letters, 2020, 22, 7964-7970. Metalated Ir–CNP Complexes Containing Imidazolinâ€2â€ylidene and Imidazolidinâ€2â€ylidene Donors – 734 Synthesis, Structure, Luminescence, and Metal–Ligand Cooperative Reactivity. European Journal of 1.0 Inorganic Chemistry, 2020, 2020, 3944-3953. Reversible cooperative dihydrogen binding and transfer with a bis-phosphenium complex of chromium. 735 3.7 9 Chemical Science, 2020, 11, 9571-9576. Selective hydrogenation of primary amides and cyclic di-peptides under Ru-catalysis. Chemical Communications, 2020, 56, 12411-12414. "Pincer―Pyridine–Dicarbene–Iridium and â€Ruthenium Complexes and Derivatives Thereof. European 737 1.0 5 Journal of Inorganic Chemistry, 2020, 2020, 3359-3369. Recent developments in the chemistry of non-trigonal pnictogen pincer compounds: from bonding to catalysis. Chemical Science, 2020, 11, 9728-9740. Mechanistic insight into the azo radical-promoted dehydrogenation of heteroarene towards 739 2.1 35 N-heterocycles. Čatalysis Science and Technology, 2020, 10, 6309-6318. Reversible OH-bond activation and amphoterism by metal–ligand cooperativity of calix[4]pyrrolato 740 aluminate. Chemical Science, 2020, 11, 9611-9616. Catalytic Conversion of Nitriles by Metal Pincer Complexes. Topics in Organometallic Chemistry, 2020, 741 0.7 0 , 321. The Milstein Bipyridyl PNN Pincer Complex of Ruthenium Becomes a Noyori-Type Catalyst under 742 6.6 Reducing Conditions. Journal of the American Chemical Society, 2020, 142, 19510-19522. Strategies and mechanisms of metal–ligand cooperativity in first-row transition metal complex 743 18.7 181 catalysts. Chemical Society Reviews, 2020, 49, 8933-8987. Sustainable synthesis of quinolines (pyridines) catalyzed by a cheap metal Mn(I) $\hat{a} \in NN$ complex catalyst. 744 Applied Organometallic Chemistry, 2020, 34, e5685. Cobalt-catalysed selective synthesis of aldehydes and alcohols from esters. Chemical 745 2.26 Communications, 2020, 56, 7345-7348. Recent advances in the chemistry of group 9â€"Pincer organometallics. Advances in Organometallic 746 Chemistry, 2020, 73, 79-193.

#	Article	IF	CITATIONS
747	Conformation controlled stepwise hydride shuffling from the metal to the ligand backbone. Dalton Transactions, 2020, 49, 7218-7227.	1.6	2
748	Metal–Ligand Cooperativity of the Calix[4]pyrrolato Aluminate: Triggerable Câ^'C Bond Formation and Rate Control in Catalysis. Angewandte Chemie - International Edition, 2020, 59, 17118-17124.	7.2	30
749	Mechanism of the Facile Nitrous Oxide Fixation by Homogeneous Ruthenium Hydride Pincer Catalysts. Inorganic Chemistry, 2020, 59, 9374-9383.	1.9	14
750	Cooperative N–H bond activation by amido-Ge(<scp>ii</scp>) cations. Dalton Transactions, 2020, 49, 9495-9504.	1.6	9
751	A hemilabile diphosphine pyridine pincer ligand: I_{f} - and $I \in$ -binding in molybdenum coordination complexes. Polyhedron, 2020, 187, 114631.	1.0	7
752	Ru ⁰ or Ru ^{II} : A Study on Stabilizing the "Activated―Form of Ru-PNP Complexes with Additional Phosphine Ligands in Alcohol Dehydrogenation and Ester Hydrogenation. Inorganic Chemistry, 2020, 59, 5099-5115.	1.9	25
753	From Pd(OAc) ₂ to Chiral Catalysts: The Discovery and Development of Bifunctional Mono-N-Protected Amino Acid Ligands for Diverse C–H Functionalization Reactions. Accounts of Chemical Research, 2020, 53, 833-851.	7.6	283
754	Electron acceptors promote proton–hydride tautomerism in low valent rhenium β-diketiminates. Chemical Communications, 2020, 56, 3761-3764.	2.2	10
755	An Air-Stable N-Heterocyclic [PSiP] Pincer Iron Hydride and an Analogous Nitrogen Iron Hydride: Synthesis and Catalytic Dehydration of Primary Amides to Nitriles. Organometallics, 2020, 39, 824-833.	1.1	17
756	Recent Advances in Homogeneous Catalysis via Metal–Ligand Cooperation Involving Aromatization and Dearomatization. Catalysts, 2020, 10, 635.	1.6	43
757	Ru-Catalyzed <i>ortho</i> -Selective Diborylation of 2-Arylpyridines toward the Construction of ï€-Conjugated Functions. Journal of Organic Chemistry, 2020, 85, 10245-10252.	1.7	6
758	Transition metal center effect on the mechanism of homogenous hydrogenation and dehydrogenation. Inorganica Chimica Acta, 2020, 511, 119808.	1.2	12
759	Metal–Ligand Cooperativity of the Calix[4]pyrrolato Aluminate: Triggerable Câ^'C Bond Formation and Rate Control in Catalysis. Angewandte Chemie, 2020, 132, 17266-17272.	1.6	11
760	Elementâ€Ligand Cooperativity with pâ€Block Elements. European Journal of Inorganic Chemistry, 2020, 2020, 3030-3047.	1.0	73
761	Toward Amines, Imines, and Imidazoles: A Viewpoint on the 3d Transition-Metal-Catalyzed Homogeneous Hydrogenation of Nitriles. ACS Catalysis, 2020, 10, 8012-8022.	5.5	46
762	The Transition Metal Chemistry of PGeP and PSnP Pincer Heavier Tetrylenes. European Journal of Inorganic Chemistry, 2020, 2020, 784-795.	1.0	37
763	Iridium Complex Immobilized on Custom-Designed Periodic Mesoporous Organosilica as Reusable Catalyst for the Dehydrogenative Oxidation of Alcohols. ACS Applied Nano Materials, 2020, 3, 2527-2535.	2.4	14
764	Tridentate NNN Ligand Associating Amidoquinoline and Iminophosphorane: Synthesis and Coordination to Pd and Ni Centers. Organometallics, 2020, 39, 719-728.	1.1	10

#	Article	IF	CITATIONS
765	Cooperative Heterobimetallic Substrate Activation Enhances Catalytic Activity and Amplifies Regioselectivity in 1,4-Hydroboration of Pyridines. ACS Catalysis, 2020, 10, 3670-3675.	5.5	47
766	Cobalt-Catalyzed Acceptorless Dehydrogenation of Alcohols to Carboxylate Salts and Hydrogen. Organic Letters, 2020, 22, 1852-1857.	2.4	44
767	A bis(arylphosphinito)amide pincer ligand that binds nickel forming six-membered metallacycles. Polyhedron, 2020, 179, 114380.	1.0	1
768	Electrocatalytic Proton Reduction by a Cobalt Complex Containing a Protonâ€Responsive Bis(alkylimdazole)methane Ligand: Involvement of a Câ~'H Bond in H ₂ Formation. Chemistry - A European Journal, 2020, 26, 12560-12569.	1.7	8
769	Group-Transfer Reactions of a Cationic Iridium Alkoxycarbene Generated by Ether Dehydrogenation. Inorganic Chemistry, 2020, 59, 7143-7149.	1.9	5
770	Synthesis of Symmetrically Substituted β-Diketimine (Vinamidine) Derivatives from Vinamidinium Salts Using Amine Exchange. Organic Preparations and Procedures International, 2020, 52, 242-247.	0.6	0
771	Phosphines and <i>N</i> â€Heterocycles Joining Forces: an Emerging Structural Motif in PNPâ€Pincer Chemistry. European Journal of Inorganic Chemistry, 2020, 2020, 2023-2042.	1.0	24
772	Redox activity of a dissymmetric ligand bridging divalent ytter-bium and reactive nickel fragments. Inorganic Chemistry Frontiers, 2021, 8, 647-657.	3.0	4
773	Boron–Ligand Cooperation: The Concept and Applications. Chemistry - A European Journal, 2021, 27, 5615-5626.	1.7	12
774	Insight into the Scope and Mechanism for Transmetalation of Hydrocarbyl Ligands on Complexes Relevant to C–H Activation. Organometallics, 2021, 40, 6-10.	1.1	7
775	Recent advances in nickel-catalyzed C–C and C–N bond formation <i>via</i> HA and ADC reactions. Organic and Biomolecular Chemistry, 2021, 19, 4213-4227.	1.5	40
776	Designed Bifunctional Ligands in Cooperative Homogeneous Gold Catalysis. CCS Chemistry, 2021, 3, 1989-2002.	4.6	26
777	Homogeneous and heterogeneous catalysts for hydrogenation of CO ₂ to methanol under mild conditions. Chemical Society Reviews, 2021, 50, 4259-4298.	18.7	167
778	Carbocyclic pincer carbene complexes of ruthenium: syntheses and reversible hydrogenation. Dalton Transactions, 2021, 50, 11814-11820.	1.6	0
779	The cooperative role of innocent ligand in <i>N</i> -heterocyclic carbene manganese catalyzed carbon dioxide hydrogenation. Catalysis Science and Technology, 2021, 11, 7189-7199.	2.1	5
780	Phosphorus-Based Pincer Ligands. , 2021, , 505-606.		0
781	Cooperative B–H and Si–H Bond Activations by κ ² - <i>N</i> , <i>S</i> -Chelated Ruthenium Borate Complexes. Inorganic Chemistry, 2021, 60, 1183-1194.	1.9	17
782	Scaffold-based [Fe]-hydrogenase model: H ₂ activation initiates Fe(0)-hydride extrusion and non-biomimetic hydride transfer. Chemical Science, 2021, 12, 12838-12846.	3.7	3

#	Article	IF	Citations
783	Dual utility of a single diphosphine–ruthenium complex: a precursor for new complexes and, a pre-catalyst for transfer-hydrogenation and Oppenauer oxidation. RSC Advances, 2021, 11, 15617-15631.	1.7	8
784	Aromaticity in catalysis: metal ligand cooperation <i>via</i> ligand dearomatization and rearomatization. Chemical Communications, 2021, 57, 3070-3082.	2.2	46
785	Homogeneous Reforming of Aqueous Ethylene Glycol to Glycolic Acid and Pure Hydrogen Catalyzed by Pincerâ€Ruthenium Complexes Capable of Metal–Ligand Cooperation. Chemistry - A European Journal, 2021, 27, 4715-4722.	1.7	22
786	Calculations on the non-classical β-hydride elimination observed in trans-(H)(OMe)-Ir(Ph)(PMe3)3: possible production and reaction of methyl formate. Canadian Journal of Chemistry, 2021, 99, 236-244.	0.6	0
787	Mechanistic Investigations of Ruthenium Catalyzed Dehydrogenative Thioester Synthesis and Thioester Hydrogenation. ACS Catalysis, 2021, 11, 2795-2807.	5.5	17
788	Sustainable Four-Component Annulation for the Synthesis of 2,3,4,6-Tetraarylpyridines. Journal of Organic Chemistry, 2021, 86, 3897-3906.	1.7	12
790	Redox Instability of Copper(II) Complexes of a Triazineâ€Based PNP Pincer. European Journal of Inorganic Chemistry, 2021, 2021, 1140-1151.	1.0	10
791	Synthesis of Bio-Based Aliphatic Polyesters from Plant Oils by Efficient Molecular Catalysis: A Selected Survey from Recent Reports. ACS Sustainable Chemistry and Engineering, 2021, 9, 5486-5505.	3.2	43
792	An Ironâ€Hydrogen Bond Resistant to Protonation and Oxidation. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2021, 647, 1449-1454.	0.6	3
793	Merging Pincer Motifs and Potential Metal–Metal Cooperativity in Cobalt Dinitrogen Chemistry: Efficient Catalytic Silylation of N ₂ to N(SiMe ₃) ₃ . Angewandte Chemie - International Edition, 2021, 60, 14480-14487.	7.2	22
794	Diversifying Metal–Ligand Cooperative Catalysis in Semiâ€ S ynthetic [Mn]â€Hydrogenases. Angewandte Chemie, 2021, 133, 13462-13469.	1.6	0
795	Diversifying Metal–Ligand Cooperative Catalysis in Semi‣ynthetic [Mn]â€Hydrogenases. Angewandte Chemie - International Edition, 2021, 60, 13350-13357.	7.2	11
796	Double-Carrousel Mechanism for Mn-Catalyzed Dehydrogenative Amide Synthesis from Alcohols and Amines. ACS Catalysis, 2021, 11, 6155-6161.	5.5	19
797	Merging Pincer Motifs and Potential Metal–Metal Cooperativity in Cobalt Dinitrogen Chemistry: Efficient Catalytic Silylation of N 2 to N(SiMe 3) 3. Angewandte Chemie, 2021, 133, 14601-14608.	1.6	4
798	Unsymmetrical Naphthyridine-Based Dicopper(I) Complexes: Synthesis, Stability, and Carbon–Hydrogen Bond Activations. Organometallics, 2021, 40, 1866-1873.	1.1	3
799	Ruthenium (VIII) Catalysed Dearomative Pyridyl Câ^'X Activation: Direct Synthesis of N ―Alkylâ€⊋â€pyridones. Asian Journal of Organic Chemistry, 2021, 10, 1786-1794.	1.3	2
800	Pathways to Metal–Ligand Cooperation in Quinoline-Based Titanium(IV) Pincers: Nonelectrophilic N-methylation, Deprotonation, and Dihydropyridine Formation. Organometallics, 2021, 40, 1838-1847.	1.1	2
801	Flow reactor approach for the facile and continuous synthesis of efficient Pd@Pt core-shell nanoparticles for acceptorless dehydrogenative synthesis of pyrimidines from alcohols and amidines. Applied Catalysis A: General, 2021, 619, 118158.	2.2	9

#	Article	IF	CITATIONS
802	Synthesis and Characterization of Heteromultinuclear Ni/M Clusters (M = Fe, Ru, W) Including a Paramagnetic (NHC)Ni–WCp*(CO)3 Heterobinuclear Complex. Organometallics, 2021, 40, 2123-2132.	1.1	4
803	Chiral Bifunctional Phosphine Ligand-Enabled Cooperative Cu Catalysis: Formation of Chiral α,β-Butenolides via Highly Enantioselective γ-Protonation. Journal of the American Chemical Society, 2021, 143, 10876-10881.	6.6	9
805	Metal Effect Meets Volcano Plots: A DFT Study on Tris(phosphino)boraneâ€Transition Metal Complexes Catalyzed H 2 Activation. Chemistry - an Asian Journal, 2021, 16, 3427-3436.	1.7	2
806	A comprehensive survey upon diverse and prolific applications of chitosan-based catalytic systems in one-pot multi-component synthesis of heterocyclic rings. International Journal of Biological Macromolecules, 2021, 186, 1003-1166.	3.6	30
807	Rh Complex with Unique Rh–Al Direct Bond: Theoretical Insight into its Characteristic Features and Application to Catalytic Reaction via σ-Bond Activation. Topics in Catalysis, 2022, 65, 392-417.	1.3	7
808	Structure and Reactivity of NO/NO ⁺ /NO ^{â^'} Pincer and Porphyrin Complexes. European Journal of Inorganic Chemistry, 2021, 2021, 4712-4730.	1.0	6
809	An efficient BrÃ,nsted acid ionic liquid catalyzed synthesis of novel spiro1,2,4-triazolidine-5-thiones and their photoluminescence study. Journal of Molecular Structure, 2022, 1249, 131528.	1.8	7
810	Allylic alcohol synthesis by Ni-catalyzed direct and selective coupling of alkynes and methanol. Chemical Science, 2021, 12, 9372-9378.	3.7	8
811	A ruthenium <i>cis</i> -dihydride with 2-phosphinophosphinine ligands catalyses the acceptorless dehydrogenation of benzyl alcohol. Dalton Transactions, 2021, 50, 13407-13411.	1.6	4
812	Mechanism of iron complexes catalyzed in the <i>N</i> -formylation of amines with CO ₂ and H ₂ : the superior performance of N–H ligand methylated complexes. Physical Chemistry Chemical Physics, 2021, 23, 16675-16689.	1.3	3
813	Group 7 and 8 Pincer Complexes. , 2021, , 527-571.		0
814	Molecularly Controlled Catalysis – Targeting Synergies Between Local and Nonâ€local Environments. ChemCatChem, 2021, 13, 1659-1682.	1.8	20
815	Highly Efficient Transfer Hydrogenation Catalysis with Tailored Pyridylidene Amide Pincer Ruthenium Complexes. Chemistry - A European Journal, 2020, 26, 13226-13234.	1.7	15
816	Hydrogen Production by Homogeneous Catalysis: Alcohol Acceptorless Dehydrogenation. Environmental Chemistry for A Sustainable World, 2015, , 1-60.	0.3	4
817	Bifunctional aliphatic PNP pincer catalysts for hydrogenation: Mechanisms and scope. Advances in Inorganic Chemistry, 2019, 73, 323-384.	0.4	13
818	Solvent-Free N-Alkylation and Dehydrogenative Coupling Catalyzed by a Highly Active Pincer-Nickel Complex. Organometallics, 2020, 39, 2162-2176.	1.1	40
819	Crystal structures of a novel NNN pincer ligand and its dinuclear titanium(IV) alkoxide pincer complex. Acta Crystallographica Section E: Crystallographic Communications, 2017, 73, 122-126.	0.2	2
820	Calix[4]pyrroles as ligands: recent progress with a focus on the emerging p-block element chemistry.	2.2	16

#	Article	IF	CITATIONS
821	Alternative Conceptual Approach to the Design of Bifunctional Catalysts: An Osmium Germylene System for the Dehydrogenation of Formic Acid. Inorganic Chemistry, 2021, 60, 16860-16870.	1.9	17
822	Explaining the Advantageous Impact of Tertiary versus Secondary Nitrogen Centre on the Activity of PNPâ€Pincer Co(I)â€Complexes for Catalytic Hydrogenation of CO2. Chemistry - A European Journal, 2021, 27, 16407-16414.	1.7	3
823	Elektrisches Feld als "smarter―Ligandenersatz zur kontrollierten thermischen Aktivierung von Methan und molekularem Wasserstoff. Angewandte Chemie, 2018, 130, 14845-14849.	1.6	1
824	Tuning Ruthenium Carbene Complexes for Selective Pâ^'H Activation through Metalâ€Ligand Cooperation. Chemistry - A European Journal, 2021, 27, 17351-17360.	1.7	4
825	Asymmetric bis-PNP pincer complexes of zirconium and hafnium – a measure of hemilability. Dalton Transactions, 2020, 49, 16653-16656.	1.6	4
826	Recent Advances in Iridium-Catalysed Transfer Hydrogenation Reactions. Topics in Organometallic Chemistry, 2020, , 67-152.	0.7	0
827	Recent Advances in the Applications of Metal-Ligand Cooperation via Dearomatization and Aromatization of Pincer Complexes. Topics in Organometallic Chemistry, 2020, , 1.	0.7	0
828	Rh Complexes with Pincer Carbene CNC Lutidine-Based Ligands: Reactivity Studies toward H2 Addition. Organometallics, 0, , .	1.1	7
829	Rhodium(<scp>i</scp>) complexes derived from tris(isopropyl)-azaphosphatrane—controlling the metal–ligand interplay. RSC Advances, 2021, 11, 37383-37391.	1.7	5
830	Syntheses and Reactivity of Piano-Stool Iron Complexes of Picolyl-Functionalized N-Heterocyclic Carbene Ligands. Organometallics, 2021, 40, 3943-3951.	1.1	8
831	Manganese(I) Catalyzed Alkenylation of Phosphine Oxides Using Alcohols with Liberation of Hydrogen and Water. Journal of Organic Chemistry, 2021, 86, 17848-17855.	1.7	6
832	Proton Responsive and Hydrogen Bonding Ligands in Organometallic Chemistry. , 2021, , .		3
833	Catalytic applications of zwitterionic transition metal compounds. Dalton Transactions, 2021, , .	1.6	9
834	Metal complexes containing <scp>siliconâ€based</scp> pincer ligands: Reactivity and application in small molecule activation. Bulletin of the Korean Chemical Society, 2022, 43, 538-548.	1.0	4
835	Ruthenium and Osmium Complexes Containing NHC and π-Acid Ligands. , 2022, , 444-527.		1
836	Organometallic Pincer Complexes of Cobalt, Rhodium, and Iridium. , 2022, , .		0
837	Reversible Ligand Protonation in Noninnocent Constrained-Geometry-Like Group 4 Complexes. Organometallics, 2022, 41, 141-154.	1.1	0
838	Combining metal–metal cooperativity, metal–ligand cooperativity and chemical non-innocence in diiron carbonyl complexes. Chemical Science, 2022, 13, 2094-2104.	3.7	16

#	Article	IF	CITATIONS
839	Radical Hydrodehalogenation of Aryl Halides with H ₂ Catalyzed by a Phenanthroline-Based PNNP Cobalt(I) Complex. ACS Catalysis, 2022, 12, 2320-2329.	5.5	8
840	Nickel-Carbon Ïf-Bonded Complexes. , 2022, , 271-356.		1
841	Sustainable catalysis with fluxional acridine-based PNP pincer complexes. Chemical Communications, 2022, 58, 3731-3746.	2.2	24
842	Cooperative approaches in catalytic hydrogenation and dehydrogenation. Chemical Society Reviews, 2022, 51, 1881-1898.	18.7	36
843	Nonclassical carbenes as noninnocent ligands. , 2022, , .		0
844	TMSOTf-mediated Kr¶hnke pyridine synthesis using HMDS as the nitrogen source under microwave irradiation. RSC Advances, 2022, 12, 8263-8273.	1.7	7
845	SNS ligand-assisted catalyst activation in Zn-catalysed carbonyl hydroboration. Chemical Communications, 2022, 58, 3795-3798.	2.2	13
846	Synthesis and Bond Activation Chemistry of Palladium(II) Pincer Complexes with a Weakly Coordinating Side Arm. Organometallics, 2022, 41, 634-641.	1.1	2
847	Cooperative Activation of CO ₂ and Epoxide by a Heterobinuclear Al–Fe Complex via Radical Pair Mechanisms. Journal of the American Chemical Society, 2022, 144, 3210-3221.	6.6	36
848	Progress in Organocatalytic Dearomatization Reactions Catalyzed by <i>N</i> â€Heterocyclic Carbenes. ChemCatChem, 2022, 14, .	1.8	10
849	Direct Triple Annulations: A Way to Design Large Triazastarphenes with Intertwined Hexagonal Packing. Organic Letters, 2022, 24, 344-348.	2.4	0
850	Reversible Photoisomerization in a Ru <i>cis</i> -Dihydride Catalyst Accessed through Atypical Metal–Ligand Cooperative H ₂ Activation: Photoenhanced Acceptorless Alcohol Dehydrogenation. Organometallics, 2022, 41, 93-98.	1.1	7
852	Facile synthesis of amides <i>via</i> acceptorless dehydrogenative coupling of aryl epoxides and amines. Chemical Science, 2022, 13, 5913-5919.	3.7	7
853	Fundamental chemistry and applications of boron complexes having aggregation-induced emission properties. , 2022, , 23-44.		0
854	Nucleophilic Reactivity at a â•€H Arm of a Lutidine-Based CNC/Rh System: Unusual Alkyne and CO ₂ Activation. Inorganic Chemistry, 2022, 61, 7120-7129.	1.9	4
855	Catalytic Hydrogenation of Epoxides to Alcohols. Chemistry - an Asian Journal, 2022, 17, .	1.7	6
856	Manganese-catalyzed hydrogenation, dehydrogenation, and hydroelementation reactions. Chemical Society Reviews, 2022, 51, 4386-4464.	18.7	90
858	Sandwich-Structured Hybrid of NiCo Nanoparticles-Embedded Carbon Nanotubes Grafted on C ₃ N ₄ Nanosheets for Efficient Photodehydrogenative Coupling Reactions. ACS Applied Materials & Interfaces, 2022, 14, 24425-24434.	4.0	14

#	Article	IF	CITATIONS
859	Shvo-Type Metal–Ligand Cooperative Catalysts: Tethered Î∙ ⁵ -Oxocyclohexadienyl Ruthenium Complexes. Organometallics, 2022, 41, 1391-1402.	1.1	3
860	Persistence of a Ru3(µ O)3(CO)5 cluster bound to a PNNP â€~expanded pincer' ligand in different protonation states. European Journal of Inorganic Chemistry, 0, , .	1.0	0
862	The underappreciated influence of ancillary halide on metal–ligand proton tautomerism. Chemical Science, 2022, 13, 7837-7845.	3.7	4
863	Cooperative B–H bond activation: dual site borane activation by redox active κ ² - <i>N</i> , <i>S</i> -chelated complexes. Chemical Science, 2022, 13, 8567-8575.	3.7	10
864	Dehydrogenative Intramolecular Macrolactonization of Dihydroxy Compounds Using Ru-MACHO Catalyst. Organic Letters, 2022, 24, 4394-4398.	2.4	5
865	Oneâ€Pot Sequential [3+2] Cycloaddition and Ringâ€Expansion Reaction for Selective Synthesis of Polycyclic Spirooxindole. ChemistrySelect, 2022, 7, .	0.7	0
866	Recent Development in Coordination Compounds as a Sensor for Cyanide Ions in Biological and Environmental Segments. Critical Reviews in Analytical Chemistry, 0, , 1-21.	1.8	12
867	An Adaptive Rhodium Catalyst to Control the Hydrogenation Network of Nitroarenes. Angewandte Chemie, 0, , .	1.6	0
868	An Adaptive Rhodium Catalyst to Control the Hydrogenation Network of Nitroarenes. Angewandte Chemie - International Edition, 2022, 61, .	7.2	14
869	C(sp ²)–H Activation with Bis(silylene)pyridine Cobalt(III) Complexes: Catalytic Hydrogen Isotope Exchange of Sterically Hindered C–H Bonds. ACS Catalysis, 2022, 12, 8877-8885.	5.5	8
870	Photocatalystâ€free Lightâ€driven Dehydrogenation of Alcohols into Carbonyl Compounds under Mild Conditions. Chemistry - an Asian Journal, 2022, 17, .	1.7	2
871	Leveraging Metal and Ligand Reactive Sites for One Pot Reactions: Ligandâ€Centered Borenium Ions for Tandem Catalysis with Palladium. Chemistry - A European Journal, 2022, 28, .	1.7	3
872	<i>E</i> â€selective Semiâ€hydrogenation of Alkynes under Mild Conditions by a Diruthenium Hydride Complex. Chemistry - A European Journal, 2022, 28, .	1.7	3
873	Synthesis of ruthenium complexes and their catalytic applications: A review. Arabian Journal of Chemistry, 2022, 15, 104165.	2.3	21
874	Redox-active ligands for chemical, electrochemical, and photochemical molecular conversions. Coordination Chemistry Reviews, 2022, 473, 214804.	9.5	16
875	Calix[4]pyrrolato gallate: square planar-coordinated gallium(<scp>iii</scp>) and its metal–ligand cooperative reactivity with CO ₂ and alcohols. Chemical Science, 2022, 13, 11215-11220.	3.7	7
876	Mechanistic insight into borrowing-hydrogen <i>N</i> -alkylation catalyzed by an MLC catalyst with dual proton-responsive sites. Dalton Transactions, 2022, 51, 16215-16223.	1.6	1
877	Single and double deprotonation/dearomatization of the N,S-donor pyridinophane ligand in ruthenium complexes. Dalton Transactions, 2022, 51, 14734-14746.	1.6	2

#	Article	IF	CITATIONS
878	Metal free activation of water and ammonia by neutral tricoordinate pyramidal boron: a computational study. Structural Chemistry, 0, , .	1.0	0
879	Exploring the potential role of heavy pnictogen elements in ligand design for new metal-ligand cooperative chemistry. Journal of Coordination Chemistry, 2022, 75, 1436-1466.	0.8	3
880	Well-Defined ENENES Re and Mn Complexes and Their Application in Catalysis: The Role of Potassium <i>tert</i> -Butoxide. Organometallics, 2022, 41, 2678-2687.	1.1	2
881	Magnesium Pincer Complexes and Their Applications in Catalytic Semihydrogenation of Alkynes and Hydrogenation of Alkenes: Evidence for Metal–Ligand Cooperation. Journal of the American Chemical Society, 2022, 144, 19115-19126.	6.6	20
882	Efficient Hydrogenation of Nâ€Heterocycles Catalyzed by NNP–Manganese(I) Pincer Complexes at Ambient Temperature. Chemistry - A European Journal, 2023, 29, .	1.7	13
883	Pressurized formic acid dehydrogenation: an entropic spring replaces hydrogen compression cost. Catalysis Science and Technology, 2022, 12, 7182-7189.	2.1	4
884	Catalytic Baseâ€Free Transfer Hydrogenation of Biomass Derived Furanic Aldehydes with Bioalcohols and PNP Pincer Complexes. ChemCatChem, 2023, 15, .	1.8	3
885	Formic Acid Dehydrogenation via an Active Ruthenium Pincer Catalyst Immobilized on Tetra-Coordinated Aluminum Hydride Species Supported on Fibrous Silica Nanospheres. ACS Catalysis, 2022, 12, 14408-14417.	5.5	15
886	Heavy metalla vinyl-cations show metal–Lewis acid cooperativity in reaction with small molecules (NH ₃ , N ₂ H ₄ , H ₂ O, H ₂). Chemical Science, 2023, 14, 514-524.	3.7	9
887	Selective oxidation of silanes into silanols with water using [MnBr(CO) ₅] as a precatalyst. Chemical Science, 2022, 14, 54-60.	3.7	5
888	The reactivity of antimony and bismuth <i>N</i> , <i>C</i> , <i>N</i> -pincer compounds toward K[BEt ₃ H] – the formation of heterocyclic compounds <i>vs</i> . element–element bonds <i>vs.</i> stable terminal Sb–H bonds. Dalton Transactions, 2022, 52, 218-227.	1.6	1
889	Nickel-Catalyzed $\hat{I}\pm$ -Alkylation of Arylacetonitriles with Challenging Secondary Alcohols. Journal of Organic Chemistry, 0, , .	1.7	2
890	Syntheses and Structures of Facial and Meridional Stereoisomers of κ ² â€ <i>N,S</i> â€Chelated Ruthenium Borate Complexes. European Journal of Organic Chemistry, 2023, 26, .	1.2	1
891	Unique Properties and Emerging Applications of Carbolong Metallaaromatics. Accounts of Chemical Research, 2023, 56, 924-937.	7.6	14
892	N-coordinated Ru(<scp>ii</scp>) catalyzed solvent free <i>N</i> -alkylation of primary amines with alcohols through borrowing hydrogen strategy. New Journal of Chemistry, 0, , .	1.4	4
893	When is a pyridine not a pyridine? Benzannulated <i>N</i> -heterocyclic ligands in molecular materials chemistry. Canadian Journal of Chemistry, 2023, 101, 892-902.	0.6	4
894	Sustainable amidation through acceptorless dehydrogenative coupling by pincer-type catalysts: recent advances. Pure and Applied Chemistry, 2023, 95, 109-124.	0.9	3
895	Interâ€Alkaliâ€Metal Dative Bond in the MMN ₃ ^{â^'} (M=Alkali Metal) Cluster. ChemPhysChem, 2023, 24, .	1.0	0

#	Article	IF	CITATIONS
896	Zn(II)-Catalyzed Multicomponent Sustainable Synthesis of Pyridines in Air. Journal of Organic Chemistry, 2023, 88, 3650-3665.	1.7	10
897	Ein Kooperatives Rhodium/SekundÃæs Phosphinoxid [Rh/P(O) <i>n</i> Bu ₂]â€Template zur Katalytischen Hydrodefluorierung von Perfluoroarenen. Angewandte Chemie, 0, , .	1.6	Ο
898	A Cooperative Rhodium/Secondary Phosphine Oxide [Rh/P(O) <i>n</i> Bu ₂] Template for Catalytic Hydrodefluorination of Perfluoroarenes. Angewandte Chemie - International Edition, 0, , .	7.2	0
899	Nickel-catalyzed cooperative B-H bond activation for hydroboration of N‑heteroarenes, ketones and imines. Chinese Chemical Letters, 2023, 34, 108293.	4.8	2
900	Through the Looking Glass: Using the Lens of [SNS]-Pincer Ligands to Examine First-Row Metal Bifunctional Catalysts. Accounts of Chemical Research, 2023, 56, 798-809.	7.6	2
901	Chemodivergent coupling of azoarenes with benzyl alcohols <i>via</i> a borrowing hydrogen strategy using a well-defined nickel catalyst. Catalysis Science and Technology, 2023, 13, 2705-2713.	2.1	2
902	Designing New Magnesium Pincer Complexes for Catalytic Hydrogenation of Imines and <i>N</i> -Heteroarenes: H ₂ and N–H Activation by Metal–Ligand Cooperation as Key Steps. Journal of the American Chemical Society, 2023, 145, 9164-9175.	6.6	9
903	Reactivity of a Piano-Stool Iron Complex toward Boranes. Organometallics, 2023, 42, 816-824.	1.1	4
906	An ambient pressure, direct hydrogenation of ketones. Chemical Communications, 2023, 59, 8107-8110.	2.2	2
915	Metallated dihydropyridinates: prospects in hydride transfer and (electro)catalysis. Chemical Science, 2023, 14, 8234-8248.	3.7	1
930	Dehydrogenation of Alcohols Using Transition Metal Catalysts: History and Applications. Topics in Organometallic Chemistry, 2023, , .	0.7	0