Ultralight Metallic Microlattices

Science 334, 962-965

DOI: 10.1126/science.1211649

Citation Report

#	Article	IF	CITATIONS
1	This Week in Science, 1990, 249, 603-603.	12.6	1
3	Luffa Sponge as a Sustainable Engineering Material. Applied Mechanics and Materials, 0, 238, 3-8.	0.2	2
4	Opportunities for mesoscale science. MRS Bulletin, 2012, 37, 1079-1088.	3.5	54
5	A teaching model for truss structures. European Journal of Physics, 2012, 33, 1179-1186.	0.6	3
6	On Design of Metal-Matrix Composites Lighter than Air. Materials Science Forum, 0, 736, 55-71.	0.3	1
7	A Novel Modeling Platform for Characterization and Optimal Design of Micro-Architected Materials. , 2012, , .		3
8	Effective-medium theory of elastic waves in random networks of rods. Physical Review E, 2012, 85, 061923.	2.1	1
9	Fabrication by spacer method and evaluation of porous metals. Keikinzoku/Journal of Japan Institute of Light Metals, 2012, 62, 313-321.	0.4	14
10	Building ultralight lattices. Physics Today, 2012, 65, 13-13.	0.3	1
11	Ultralight Fractal Structures from Hollow Tubes. Physical Review Letters, 2012, 109, 204301.	7.8	75
12	Hierarchical space frames for high mechanical efficiency: Fabrication and mechanical testing. Mechanics Research Communications, 2012, 46, 41-46.	1.8	17
13	High-yield boron nitride nanosheets from †chemical blowing': towards practical applications in polymer composites. Journal of Physics Condensed Matter, 2012, 24, 314205.	1.8	40
14	Ultrahigh-Dynamic-Range Resonant MEMS Load Cells for Micromechanical Test Frames. Journal of Microelectromechanical Systems, 2012, 21, 1519-1529.	2.5	14
15	Biomimetic superelastic graphene-based cellular monoliths. Nature Communications, 2012, 3, 1241.	12.8	1,091
16	Macroporous nanowire nanoelectronic scaffolds for synthetic tissues. Nature Materials, 2012, 11, 986-994.	27. 5	561
18	A Versatile, Ultralight, Nitrogenâ€Doped Graphene Framework. Angewandte Chemie - International Edition, 2012, 51, 11371-11375.	13.8	731
19	Mechanical behavior of carbon fiber composite lattice core sandwich panels fabricated by laser cutting. Acta Materialia, 2012, 60, 5322-5334.	7.9	89
20	Microâ€/Nanostructured Mechanical Metamaterials. Advanced Materials, 2012, 24, 4782-4810.	21.0	435

#	Article	IF	Citations
21	Lightweight nanoporous metal hydroxide-rich zeotypes. Nature Communications, 2012, 3, 1114.	12.8	15
22	Mechanical properties of luffa sponge. Journal of the Mechanical Behavior of Biomedical Materials, 2012, 15, 141-152.	3.1	121
23	Elastic shape recovery of carbon nanotube sponges in liquid oil. Journal of Materials Chemistry, 2012, 22, 18300.	6.7	27
24	Elastic shells with high-contrast material properties as acoustic metamaterial components. Physical Review B, 2012, 85, .	3.2	47
25	Mechanical deformation of carbon-nanotube-based aerogels. Carbon, 2012, 50, 5340-5342.	10.3	26
26	Supertetrahedrane and its boron analogs. Russian Chemical Bulletin, 2012, 61, 1673-1680.	1.5	8
27	Exploring Deformation Mechanisms in Nanostructured Materials. Jom, 2012, 64, 1241-1252.	1.9	33
28	Cu–Nb Nanocomposite Wires Processed by Severe Plastic Deformation: Effects of the Multiâ€Scale Microstructure and Internal Stresses on Elasticâ€Plastic Properties. Advanced Engineering Materials, 2012, 14, 998-1003.	3.5	16
29	Aerographite: Ultra Lightweight, Flexible Nanowall, Carbon Microtube Material with Outstanding Mechanical Performance. Advanced Materials, 2012, 24, 3486-3490.	21.0	343
30	Tailored 3D Mechanical Metamaterials Made by Dipâ€in Directâ€Laserâ€Writing Optical Lithography. Advanced Materials, 2012, 24, 2710-2714.	21.0	560
31	Characterization of nickel-based microlattice materials with structural hierarchy from the nanometer to the millimeter scale. Acta Materialia, 2012, 60, 3511-3523.	7.9	182
32	Hierarchical composite honeycombs. Materials & Design, 2012, 40, 124-129.	5.1	60
33	Size effect on the compressive strength of hollow micropillars governed by wall thickness. Scripta Materialia, 2012, 67, 225-228.	5.2	13
34	Prediction of the mechanical properties of micro-lattice structures subjected to multi-axial loading. International Journal of Mechanical Sciences, 2013, 68, 47-55.	6.7	72
35	Versatile Fabrication of Ultralight Magnetic Foams and Application for Oil–Water Separation. ACS Nano, 2013, 7, 6875-6883.	14.6	321
36	Rapid one-step synthesis and electrochemical performance of NiO/Ni with tunable macroporous architectures. Nano Energy, 2013, 2, 1383-1390.	16.0	72
37	Fabrication and deformation of three-dimensional hollow ceramic nanostructures. Nature Materials, 2013, 12, 893-898.	27.5	423
38	Fractals in tissue engineering: toward biomimetic cell-culture matrices, microsystems and microstructured implants. Expert Review of Medical Devices, 2013, 10, 629-648.	2.8	29

#	ARTICLE	IF	Citations
39	Drop weight impact behaviour of sandwich panels with metallic micro lattice cores. International Journal of Impact Engineering, 2013, 60, 120-132.	5.0	174
40	Behaviour of luffa sponge material under dynamic loading. International Journal of Impact Engineering, 2013, 57, 17-26.	5.0	63
41	Ultralow-density copper nanowire aerogel monoliths with tunable mechanical and electrical properties. Journal of Materials Chemistry A, 2013, 1, 6723.	10.3	132
42	Metamaterials beyond electromagnetism. Reports on Progress in Physics, 2013, 76, 126501.	20.1	378
43	Metamaterials Beyond Optics. Science, 2013, 342, 939-940.	12.6	150
44	Reversibly Assembled Cellular Composite Materials. Science, 2013, 341, 1219-1221.	12.6	194
45	High-Density Three-Dimension Graphene Macroscopic Objects for High-Capacity Removal of Heavy Metal Ions. Scientific Reports, 2013, 3, 2125.	3.3	129
46	Stretch–bend-hybrid hierarchical composite pyramidal lattice cores. Composite Structures, 2013, 98, 153-159.	5.8	55
47	Fluorinated polymerizable phosphonium salts from PH ₃ : Surface properties of photopolymerized films. Journal of Polymer Science Part A, 2013, 51, 2782-2792.	2.3	21
48	Multifunctional, Ultraâ€Flyweight, Synergistically Assembled Carbon Aerogels. Advanced Materials, 2013, 25, 2554-2560.	21.0	1,701
49	Selfâ€crosslinking borate anions for the production of tough UVâ€cured polyelectrolyte surfaces. Journal of Polymer Science Part A, 2013, 51, 499-508.	2.3	9
50	Interlocked hierarchical lattice materials reinforced by woven textile sandwich composites. Composites Science and Technology, 2013, 87, 142-148.	7.8	34
51	Morphology and crystal-chemical characteristics of cobalt and nickel nanopowders prepared by thermochemical and electrolytic methods. Inorganic Materials, 2013, 49, 153-158.	0.8	3
52	Ultralight and Highly Compressible Graphene Aerogels. Advanced Materials, 2013, 25, 2219-2223.	21.0	1,249
53	Modifying Native Nanocellulose Aerogels with Carbon Nanotubes for Mechanoresponsive Conductivity and Pressure Sensing. Advanced Materials, 2013, 25, 2428-2432.	21.0	246
54	When two is better than one. Nature, 2013, 497, 448-449.	27.8	34
55	A Special Material or a New State of Matter: A Review and Reconsideration of the Aerogel. Materials, 2013, 6, 941-968.	2.9	366
56	Ultralight Three-Dimensional Boron Nitride Foam with Ultralow Permittivity and Superelasticity. Nano Letters, 2013, 13, 3232-3236.	9.1	190

#	ARTICLE	IF	Citations
57	Fatigue design of lattice materials via computational mechanics: Application to lattices with smooth transitions in cell geometry. International Journal of Fatigue, 2013, 47, 126-136.	5.7	39
58	Emergence of film-thickness- and grain-size-dependent elastic properties in nanocrystalline thin films. Scripta Materialia, 2013, 68, 261-264.	5.2	14
59	Atomic Layer Deposition-Derived Ultra-Low-Density Composite Bulk Materials with Deterministic Density and Composition. ACS Applied Materials & Samp; Interfaces, 2013, 5, 13129-13134.	8.0	10
60	Local resonance bandgaps in periodic media: Theory and experiment. Journal of the Acoustical Society of America, 2013, 134, 1950-1959.	1.1	82
61	Variable stiffness material based on rigid low-melting-point-alloy microstructures embedded in soft poly(dimethylsiloxane) (PDMS). RSC Advances, 2013, 3, 24671.	3.6	185
62	Ceramic nanolattices hold up under pressure. Physics Today, 2013, 66, 14-15.	0.3	1
63	Pyramidal Lattice Structures for High Strength and Energy Absorption. Journal of Applied Mechanics, Transactions ASME, 2013, 80, .	2.2	66
64	Evaluation of Torsional Rigidity for Micro-Lattice Plates. Key Engineering Materials, 0, 577-578, 425-428.	0.4	1
65	Compressive strength of hollow microlattices: Experimental characterization, modeling, and optimal design. Journal of Materials Research, 2013, 28, 2461-2473.	2.6	96
66	Toward Lighter, Stiffer Materials. Science, 2013, 341, 1181-1182.	12.6	66
67	Microlattices as architected thin films: Analysis of mechanical properties and high strain elastic recovery. APL Materials, $2013,1,.$	5.1	68
68	Optimal mechanical design of tetrahedral truss cores for sandwich constructions. Journal of Sandwich Structures and Materials, 2013, 15, 464-484.	3.5	42
69	Entropic effects in the self-assembly of open lattices from patchy particles. Physical Review E, 2013, 87, 062319.	2.1	26
70	Optimization of fractal space frames under gentle compressive load. Physical Review E, 2013, 87, 063204.	2.1	15
71	Estimation of Bending Behaviour for Beams Composed of Three-Dimensional Micro-Lattice Cells (Part 1) Tj ETQq of Mechanical Engineers, Part A, 2013, 79, 620-632.	0 0 0 rgBT 0 . 2	Overlock 10
72	Analysis of Damped Bloch Waves by the Rayleigh Perturbation Method. Journal of Vibration and Acoustics, Transactions of the ASME, 2013, 135, .	1.6	28
73	Highâ€Throughput Printing via Microvascular Multinozzle Arrays. Advanced Materials, 2013, 25, 96-102.	21.0	132
74	Lightweight micro lattices with nanoscale features fabricated from Projection Microstereolithography. , 2014, , .		1

#	ARTICLE	IF	CITATIONS
75	Compressive Response of Pyramidal Lattices Embedded in Foams. Journal of Applied Mechanics, Transactions ASME, 2014, 81 , .	2.2	13
76	Non-dissipative energy capture of confined liquid in nanopores. Applied Physics Letters, 2014, 104, 203107.	3.3	21
77	Ultralight nanofibre-assembled cellular aerogels with superelasticity and multifunctionality. Nature Communications, 2014, 5, 5802.	12.8	860
78	Design and Fabrication of Hollow Rigid Nanolattices via Twoâ€∢scp>Photon Lithography. Advanced Engineering Materials, 2014, 16, 184-189.	3.5	68
79	Pentamode Metamaterials with Independently Tailored Bulk Modulus and Mass Density. Physical Review Applied, 2014, 2, .	3.8	108
80	Harnessing Multiple Folding Mechanisms in Soft Periodic Structures for Tunable Control of Elastic Waves. Advanced Functional Materials, 2014, 24, 4935-4942.	14.9	167
81	On the evolution of cured voxel in bulk photopolymerization upon focused Gaussian laser exposure. Journal of Applied Physics, 2014, 116, .	2.5	23
82	Nickel-nitride-coated nickel foam as a counter electrode for dye-sensitized solar cells. Surface and Coatings Technology, 2014, 259, 560-569.	4.8	40
83	Towards ultra-stiff materials: Surface effects on nanoporous materials. Applied Physics Letters, 2014, 105, .	3.3	10
84	Periodic co-continuous acoustic metamaterials with overlapping locally resonant and Bragg band gaps. Applied Physics Letters, 2014, 105, .	3.3	88
85	Energy dissipation mechanisms in hollow metallic microlattices. Journal of Materials Research, 2014, 29, 1755-1770.	2.6	73
86	Preliminary Research of Truss-Wall Corrugated Cellular Solids. Applied Mechanics and Materials, 2014, 510, 139-149.	0.2	0
87	Microstructure development during pack aluminization of nickel and nickel–chromium wires. Intermetallics, 2014, 50, 43-53.	3.9	24
88	Compressive efficiency of stretch–stretch-hybrid hierarchical composite lattice cores. Materials & Design, 2014, 56, 731-739.	5.1	31
89	Blast Mitigation. , 2014, , .		5
90	Mechanical characterization of hollow ceramic nanolattices. Journal of Materials Science, 2014, 49, 2496-2508.	3.7	99
91	Quasi-static crush behavior of hollow microtruss filled with NMF liquid. Composite Structures, 2014, 115, 29-40.	5.8	29
92	Mitigating impact/blast energy via a novel nanofluidic energy capture mechanism. Journal of the Mechanics and Physics of Solids, 2014, 62, 194-208.	4.8	43

#	Article	IF	CITATIONS
93	Ultra-lightweight paper foams: processing and properties. Cellulose, 2014, 21, 2023-2031.	4.9	56
94	Ultralight Mesoporous Magnetic Frameworks by Interfacial Assembly of Prussian Blue Nanocubes. Angewandte Chemie - International Edition, 2014, 53, 2888-2892.	13.8	78
95	25th Anniversary Article: Ordered Polymer Structures for the Engineering of Photons and Phonons. Advanced Materials, 2014, 26, 532-569.	21.0	205
96	Threeâ€Dimensional Printing of Elastomeric, Cellular Architectures with Negative Stiffness. Advanced Functional Materials, 2014, 24, 4905-4913.	14.9	245
97	Highly Compressible Macroporous Graphene Monoliths via an Improved Hydrothermal Process. Advanced Materials, 2014, 26, 4789-4793.	21.0	354
98	Ultra-light, compressible and fire-resistant graphene aerogel as a highly efficient and recyclable absorbent for organic liquids. Journal of Materials Chemistry A, 2014, 2, 2934.	10.3	380
99	High-strength cellular ceramic composites with 3D microarchitecture. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 2453-2458.	7.1	470
100	Microfluidic Thermally Activated Materials for Rapid Control of Macroscopic Compliance. Advanced Functional Materials, 2014, 24, 4860-4866.	14.9	31
101	Integrated random-aligned carbon nanotube layers: deformation mechanism under compression. Nanoscale, 2014, 6, 1748-1755.	5.6	24
102	Initiator-Integrated 3D Printing Enables the Formation of Complex Metallic Architectures. ACS Applied Materials & Samp; Interfaces, 2014, 6, 2583-2587.	8.0	95
103	Quasi-static energy absorption of hollow microlattice structures. Composites Part B: Engineering, 2014, 67, 39-49.	12.0	52
104	Dynamic energy absorption characteristics of hollow microlattice structures. Mechanics of Materials, 2014, 77, 1-13.	3.2	43
105	Ultraâ€strong and Lowâ€Density Nanotubular Bulk Materials with Tunable Feature Sizes. Advanced Materials, 2014, 26, 4808-4813.	21.0	36
106	Metallic Cellular Materials Produced by 3D Weaving. , 2014, 4, 15-20.		11
107	Mesoscale assembly of chemically modified graphene into complex cellular networks. Nature Communications, 2014, 5, 4328.	12.8	250
108	Strong, lightweight, and recoverable three-dimensional ceramic nanolattices. Science, 2014, 345, 1322-1326.	12.6	1,080
109	Bioinspired Materials: from Low to High Dimensional Structure. Advanced Materials, 2014, 26, 6994-7017.	21.0	198
110	Soft Colloidal Scaffolds Capable of Elastic Recovery after Large Compressive Strains. Chemistry of Materials, 2014, 26, 5161-5168.	6.7	45

#	ARTICLE	IF	CITATIONS
111	Decoupled catalytic hydrogen evolution from a molecular metal oxide redox mediator in water splitting. Science, 2014, 345, 1326-1330.	12.6	559
112	Accurate Stiffness Measurement of Ultralight Hollow Metallic Microlattices by Laser Vibrometry. Experimental Mechanics, 2014, 54, 1491-1495.	2.0	11
113	Transient viscoelasticity study of tobacco mosaic virus/Ba2+ superlattice. Nanoscale Research Letters, 2014, 9, 300.	5.7	5
114	Compressible Carbon Nanotube–Graphene Hybrid Aerogels with Superhydrophobicity and Superoleophilicity for Oil Sorption. Environmental Science and Technology Letters, 2014, 1, 214-220.	8.7	212
115	3 <scp>D</scp> Auxetic Microlattices with Independently Controllable Acoustic Band Gaps and Quasiâ€ <scp>S</scp> tatic Elastic Moduli. Advanced Engineering Materials, 2014, 16, 357-363.	3.5	77
116	Scaling the Stiffness, Strength, and Toughness of Ceramicâ€Coated Nanotube Foams into the Structural Regime. Advanced Functional Materials, 2014, 24, 5728-5735.	14.9	49
117	Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids, 2014, 64, 44-60.	4.8	96
118	Hydrophobic sponge for spilled oil absorption. Journal of Applied Polymer Science, 2014, 131, .	2.6	31
119	Development of ideal solution and validation of stiffness and strength by finite element method for truss-wall corrugated cellular solids. Journal of Mechanical Science and Technology, 2014, 28, 1765-1778.	1.5	5
120	A Facile Methodology for the Production of In Situ Inorganic Nanowire Hydrogels/Aerogels. Nano Letters, 2014, 14, 1810-1817.	9.1	98
121	Threeâ€Dimensional Carbon Nanotube Spongeâ€Array Architectures with High Energy Dissipation. Advanced Materials, 2014, 26, 1248-1253.	21.0	88
122	Effect of grain size on the optimal architecture of electrodeposited metal/polymer microtrusses. Journal of Sandwich Structures and Materials, 2014, 16, 251-271.	3.5	5
123	Porous Metals. , 2014, , 2399-2595.		23
124	A superhydrophobic 3D porous material for oil spill cleanup. RSC Advances, 2014, 4, 46470-46475.	3.6	22
125	Fabrication and Deformation of Metallic Glass Micro‣attices. Advanced Engineering Materials, 2014, 16, 889-896.	3.5	50
126	Mechanisms of Failure in Nanoscale Metallic Glass. Nano Letters, 2014, 14, 5858-5864.	9.1	78
127	Fabricating Ni–Mn–Ga microtubes by diffusion of Mn and Ga into Ni tubes. Intermetallics, 2014, 49, 70-80.	3.9	12
128	A facile green chemistry route to porous silica foams. Materials Letters, 2014, 119, 60-63.	2.6	9

#	Article	IF	CITATIONS
129	Water-responsive rapid recovery of natural cellular material. Journal of the Mechanical Behavior of Biomedical Materials, 2014, 34, 283-293.	3.1	28
130	Polymer/Graphene Hybrid Aerogel with High Compressibility, Conductivity, and "Sticky― Superhydrophobicity. ACS Applied Materials & Interfaces, 2014, 6, 3242-3249.	8.0	140
131	Emerging Science and Research Opportunities for Metals and Metallic Nanostructures. Jom, 2014, 66, 1321-1341.	1.9	9
132	Ultralight, ultrastiff mechanical metamaterials. Science, 2014, 344, 1373-1377.	12.6	1,592
133	Designing Metallic Microlattices for Energy Absorber Applications. Advanced Engineering Materials, 2014, 16, 276-283.	3.5	165
134	Nanocarbon aerogel complexes inspired by the leaf structure. Carbon, 2014, 77, 637-644.	10.3	21
135	Resilient aligned carbon nanotube/graphene sandwiches for robust mechanical energy storage. Nano Energy, 2014, 7, 161-169.	16.0	66
137	Printing mesoscale architectures. MRS Bulletin, 2015, 40, 943-950.	3.5	99
138	Materials by design: Using architecture in material design to reach new property spaces. MRS Bulletin, 2015, 40, 1122-1129.	3.5	45
139	Synchrotron-Based X-ray Computed Tomography During Compression Loading of Cellular Materials. Microscopy Today, 2015, 23, 12-19.	0.3	9
140	Longitudinal Multifoci Metalens for Circularly Polarized Light. Advanced Optical Materials, 2015, 3, 1201-1206.	7.3	203
141	Vibrant times for mechanical metamaterials. MRS Communications, 2015, 5, 453-462.	1.8	234
142	Ultralight metal foams. Scientific Reports, 2015, 5, 13825.	3.3	25
143	Hierarchical ferroelectric and ferrotoroidic polarizations coexistent in nano-metamaterials. Scientific Reports, 2015, 5, 14653.	3.3	33
144	Understanding Mechanical Response of Elastomeric Graphene Networks. Scientific Reports, 2015, 5, 13712.	3.3	64
145	Wave dispersion in highly deformable, fluid-filled structures: Numerical and experimental study of the role of solid deformation and inertia. Proceedings of Meetings on Acoustics, 2015, , .	0.3	1
146	Laser jetting of femto-liter metal droplets for high resolution 3D printed structures. Scientific Reports, 2015, 5, 17265.	3.3	92
147	Mathematical modeling of deformation of a porous medium, considering its strengthening due to pore collapse. AIP Conference Proceedings, 2015, , .	0.4	2

#	Article	IF	CITATIONS
148	A New Type of Low Density Material: Shellular. Advanced Materials, 2015, 27, 5506-5511.	21.0	226
149	Laser Transfer of Metals and Metal Alloys for Digital Microfabrication of 3D Objects. Small, 2015, 11, 4082-4089.	10.0	71
150	Ordered 3D Thinâ€6hell Nanolattice Materials with Nearâ€Unity Refractive Indices. Advanced Functional Materials, 2015, 25, 6644-6649.	14.9	40
151	Threeâ€Dimensional SnO ₂ Nanowire Networks for Multifunctional Applications: From Highâ€Temperature Stretchable Ceramics to Ultraresponsive Sensors. Advanced Electronic Materials, 2015, 1, 1500081.	5.1	116
152	Highly Elastic and Conductive Nâ€Doped Monolithic Graphene Aerogels for Multifunctional Applications. Advanced Functional Materials, 2015, 25, 6976-6984.	14.9	106
153	A New Tubular Graphene Form of a Tetrahedrally Connected Cellular Structure. Advanced Materials, 2015, 27, 5943-5949.	21.0	193
154	Compression Responses of Bio-Cellular Luffa Sponges. BioResources, 2015, 10, .	1.0	4
155	Bio-Inspired Design of Lightweight Metal Structure Based on Microstructure of Fully Ripe Loofah. Recent Patents on Materials Science, 2015, 8, 69-73.	0.5	2
156	Three-dimensional micro/nanoscale architectures: fabrication and applications. Nanoscale, 2015, 7, 10883-10895.	5.6	68
157	The low velocity impact response of sandwich panels with lattice core reinforcement. International Journal of Impact Engineering, 2015, 84, 64-77.	5.0	34
158	Bioinspired adhesive polymer coatings for efficient and versatile corrosion resistance. RSC Advances, 2015, 5, 15977-15984.	3.6	31
159	Enhanced stiffness, strength and energy absorption for co-continuous composites with liquid filler. Composite Structures, 2015, 128, 274-283.	5.8	35
160	On the Mechanics of Ultralight Hollow Microlattices. Proceedings in Applied Mathematics and Mechanics, 2015, 15, 191-192.	0.2	0
161	MEMS Lithography. , 2015, , 427-443.		1
162	Ultralight shape-recovering plate mechanical metamaterials. Nature Communications, 2015, 6, 10019.	12.8	66
163	Fabrication and mechanical characterization of 3D woven Cu lattice materials. Materials and Design, 2015, 85, 743-751.	7.0	26
164	Mechanical Response of Hollow Metallic Nanolattices: Combining Structural and Material Size Effects. Journal of Applied Mechanics, Transactions ASME, 2015, 82, .	2.2	70
165	Assembly of micro/nanomaterials into complex, three-dimensional architectures by compressive buckling. Science, 2015, 347, 154-159.	12.6	745

#	Article	IF	CITATIONS
166	Electronic dura mater for long-term multimodal neural interfaces. Science, 2015, 347, 159-163.	12.6	845
167	Effective stiffness and effective compressive yield strength for unit-cell model of complex truss. International Journal of Mechanics and Materials in Design, 2015, 11, 91-110.	3.0	13
168	Failure mechanisms in thin-walled nanocrystalline cylinders under uniaxial compression. Acta Materialia, 2015, 86, 157-168.	7.9	0
169	Influence of processing conditions on strut structure and compressive properties of cellular lattice structures fabricated by selective laser melting. Materials Science & Department of the Structural Materials: Properties, Microstructure and Processing, 2015, 628, 188-197.	5.6	289
170	Ultra-strong architected Cu meso-lattices. Extreme Mechanics Letters, 2015, 2, 7-14.	4.1	144
171	Topology optimization of lightweight periodic lattices under simultaneous compressive and shear stiffness constraints. International Journal of Solids and Structures, 2015, 60-61, 1-16.	2.7	33
172	Ductility and work hardening in nano-sized metallic glasses. Applied Physics Letters, 2015, 106, .	3.3	22
173	Advanced Microâ€Lattice Materials. Advanced Engineering Materials, 2015, 17, 1253-1264.	3.5	137
174	Nanoarchitectured materials composed of fullerene-like spheroids and disordered graphene layers with tunable mechanical properties. Nature Communications, 2015, 6, 6212.	12.8	57
175	Scalable Template Synthesis of Resorcinol–Formaldehyde/Graphene Oxide Composite Aerogels with Tunable Densities and Mechanical Properties. Angewandte Chemie - International Edition, 2015, 54, 2397-2401.	13.8	168
176	Three-dimensionally bonded spongy graphene material with super compressive elasticity and near-zero Poisson's ratio. Nature Communications, 2015, 6, 6141.	12.8	458
177	Scalable Template Synthesis of Resorcinol–Formaldehyde/Graphene Oxide Composite Aerogels with Tunable Densities and Mechanical Properties. Angewandte Chemie, 2015, 127, 2427-2431.	2.0	27
178	Topology optimization of coated structures and material interface problems. Computer Methods in Applied Mechanics and Engineering, 2015, 290, 524-541.	6.6	142
179	Ultralight and hydrophobic nanofibrillated cellulose aerogels from coconut shell with ultrastrong adsorption properties. Journal of Applied Polymer Science, 2015, 132, .	2.6	43
180	Pack Aluminization Synthesis of Superalloy 3D Woven and 3D Braided Structures. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2015, 46, 426-438.	2.2	19
181	Continuous liquid interface production of 3D objects. Science, 2015, 347, 1349-1352.	12.6	1,617
182	Wave propagation in equivalent continuums representing truss lattice materials. International Journal of Solids and Structures, 2015, 73-74, 55-66.	2.7	38
183	Surface effects in nanoscale structures investigated by a fully-nonlocal energy-based quasicontinuum method. Mechanics of Materials, 2015, 90, 166-184.	3.2	13

#	Article	IF	CITATIONS
184	Transient liquid-phase bonded 3D woven Ni-based superalloys. Scripta Materialia, 2015, 108, 60-63.	5.2	16
185	Identification of the Prints Elastic Parameters Using Vibrational Methods. Solid State Phenomena, 2015, 220-221, 91-96.	0.3	1
186	In-Situ Welding Carbon Nanotubes into a Porous Solid with Super-High Compressive Strength and Fatigue Resistance. Scientific Reports, 2015, 5, 11336.	3.3	37
187	Thermo-Electro-Mechanical Properties of Interpenetrating Phase Composites with Periodic Architectured Reinforcements. Advanced Structured Materials, 2015, , 1-18.	0.5	14
188	Micromechanical finite element predictions of a reduced coefficient of thermal expansion for 3D periodic architectured interpenetrating phase composites. Composite Structures, 2015, 133, 85-97.	5.8	79
189	Superelasticity and reversible energy absorption of polyurethane cellular structures with sand filler. Composite Structures, 2015, 131, 966-974.	5.8	28
190	Damping behavior of 3D woven metallic lattice materials. Scripta Materialia, 2015, 106, 1-4.	5.2	19
191	Structured Niâ€CeO ₂ â€Al ₂ O ₃ /Niâ€Foam Catalyst with Enhanced Heat Transfer for Substitute Natural Gas Production by Syngas Methanation. ChemCatChem, 2015, 7, 1427-1431.	3.7	50
192	Low cost carbon fiber aerogel derived from bamboo for the adsorption of oils and organic solvents with excellent performances. RSC Advances, 2015, 5, 38470-38478.	3.6	91
193	Topology-induced, strongly diamagnetic response of hollow structured metals at broadband microwave frequencies. Applied Physics A: Materials Science and Processing, 2015, 121, 1061-1066.	2.3	2
194	Optimizing the Compressive Strength of Strain-Hardenable Stretch-Formed Microtruss Architectures. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2015, 46, 1985-1994.	2.2	4
195	Microstructure Evolution During Al, Ti, and Mo Surface Deposition and Volume Diffusion in Ni-20Cr Wires and Woven Structures. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2015, 46, 2249-2254.	2.2	5
196	Conductive resilient graphene aerogel via magnesiothermic reduction of graphene oxide assemblies. Nano Research, 2015, 8, 1710-1717.	10.4	22
197	Highly compressible 3D periodic graphene aerogel microlattices. Nature Communications, 2015, 6, 6962.	12.8	928
198	Self-Sensing, Ultralight, and Conductive 3D Graphene/Iron Oxide Aerogel Elastomer Deformable in a Magnetic Field. ACS Nano, 2015, 9, 3969-3977.	14.6	266
199	Three-Dimensional Au Microlattices as Positive Electrodes for Li–O ₂ Batteries. ACS Nano, 2015, 9, 5876-5883.	14.6	80
200	Effect of directional solidification and porosity upon the superelasticity of Cu–Al–Ni shape-memory alloys. Materials & Design, 2015, 80, 28-35.	5.1	30
201	Optimization on microlattice materials for sound absorption by an integrated transfer matrix method. Journal of the Acoustical Society of America, 2015, 137, EL334-EL339.	1.1	13

#	Article	IF	CITATIONS
202	Ultralight, Soft Polymer Sponges by Selfâ€Assembly of Short Electrospun Fibers in Colloidal Dispersions. Advanced Functional Materials, 2015, 25, 2850-2856.	14.9	164
203	Cotton-derived bulk and fiber aerogels grafted with nitrogen-doped graphene. Nanoscale, 2015, 7, 7550-7558.	5.6	65
204	Mechanical cloak design by direct lattice transformation. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 4930-4934.	7.1	120
205	Integration of Si in a metal foam current collector for stable electrochemical cycling in Li-ion batteries. Journal of Materials Chemistry A, 2015, 3, 10114-10118.	10.3	21
206	Superelastic Few-Layer Carbon Foam Made from Natural Cotton for All-Solid-State Electrochemical Capacitors. ACS Applied Materials & Samp; Interfaces, 2015, 7, 25306-25312.	8.0	18
207	Three-dimensional adaptive soft phononic crystals. Journal of Applied Physics, 2015, 117, .	2.5	49
208	Size Effect Suppresses Brittle Failure in Hollow Cu ₆₀ Zr ₄₀ Metallic Glass Nanolattices Deformed at Cryogenic Temperatures. Nano Letters, 2015, 15, 5673-5681.	9.1	77
209	Push-to-pull tensile testing of ultra-strong nanoscale ceramic–polymer composites made by additive manufacturing. Extreme Mechanics Letters, 2015, 3, 105-112.	4.1	69
211	Ambient pressure dried graphene aerogels with superelasticity and multifunctionality. Journal of Materials Chemistry A, 2015, 3, 19268-19272.	10.3	125
212	Self-healing composites: A review. Cogent Engineering, 2015, 2, 1075686.	2.2	116
213	Mechanical design of negative stiffness honeycomb materials. Integrating Materials and Manufacturing Innovation, 2015, 4, 165-175.	2.6	72
214	Facile Preparation of Superelastic and Ultralow Dielectric Boron Nitride Nanosheet Aerogels via Freeze-Casting Process. Chemistry of Materials, 2015, 27, 5849-5855.	6.7	133
215	Research Update: Enabling ultra-thin lightweight structures: Microsandwich structures with microlattice cores. APL Materials, 2015, 3, .	5.1	12
216	A mechanically driven form of Kirigami as a route to 3D mesostructures in micro/nanomembranes. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 11757-11764.	7.1	429
217	Resilient 3D hierarchical architected metamaterials. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 11502-11507.	7.1	496
218	Mechanical equivalent diameter of single struts for the stiffness prediction of lattice structures produced by Electron Beam Melting. Additive Manufacturing, 2015, 8, 124-131.	3.0	111
219	Multi-scale robust design and optimization considering load uncertainties. Computer Methods in Applied Mechanics and Engineering, 2015, 283, 994-1009.	6.6	99
220	Bioinspired structural materials. Nature Materials, 2015, 14, 23-36.	27.5	3,284

#	Article	IF	CITATIONS
221	Carbon Nanotube Sponges, Aerogels, and Hierarchical Composites: Synthesis, Properties, and Energy Applications. Advanced Energy Materials, 2016, 6, 1600554.	19.5	183
222	Three-dimensional porous graphene-based ultra-lightweight aerofoam exhibiting good thermal insulation. Advanced Composite Materials, 2016, 25, 105-113.	1.9	13
223	Boron Nitride Nanostructures: Fabrication, Functionalization and Applications. Small, 2016, 12, 2942-2968.	10.0	187
224	Ultralight Interconnected Metal Oxide Nanotube Networks. Small, 2016, 12, 2432-2438.	10.0	10
225	Porous Cu Nanowire Aerosponges from One‧tep Assembly and their Applications in Heat Dissipation. Advanced Materials, 2016, 28, 1413-1419.	21.0	109
226	Hyperbolically Patterned 3D Graphene Metamaterial with Negative Poisson's Ratio and Superelasticity. Advanced Materials, 2016, 28, 2229-2237.	21.0	178
227	Topology Optimization for Architected Materials Design. Annual Review of Materials Research, 2016, 46, 211-233.	9.3	163
228	Three Decades of Auxetics Research â^' Materials with Negative Poisson's Ratio: A Review. Advanced Engineering Materials, 2016, 18, 1847-1870.	3.5	397
229	Mechanical Properties of Diamondâ€Structured Polymer Microlattices Coated with the Silicon Nitride Film. Advanced Engineering Materials, 2016, 18, 236-240.	3.5	14
230	Controlling Material Reactivity Using Architecture. Advanced Materials, 2016, 28, 1934-1939.	21.0	91
231	Graphene Oxideâ€Based Electrode Inks for 3Dâ€Printed Lithiumâ€Ion Batteries. Advanced Materials, 2016, 28, 2587-2594.	21.0	590
232	Systematic Generation, Analysis, and Characterization of 3D Micro-architected Metamaterials. ACS Applied Materials & Description (1988)	8.0	13
233	Identical band gaps in structurally re-entrant honeycombs. Journal of the Acoustical Society of America, 2016, 140, 898-907.	1.1	9
234	Cross-Split of Dislocations: An Athermal and Rapid Plasticity Mechanism. Scientific Reports, 2016, 6, 25966.	3.3	19
235	Heat conduction in multifunctional nanotrusses studied using Boltzmann transport equation. Applied Physics Letters, 2016, 108, .	3.3	12
236	Microlattice Metamaterials for Tailoring Ultrasonic Transmission with Elastoacoustic Hybridization. Physical Review Applied, 2016, 6, .	3.8	21
237	Acoustic metamaterials. Physics Today, 2016, 69, 42-48.	0.3	98
238	Polydopamine decorated 3D nickel foam for extraction of sixteen polycyclic aromatic hydrocarbons. Journal of Chromatography A, 2016, 1478, 2-9.	3.7	24

#	Article	IF	Citations
239	Printing soft matter in three dimensions. Nature, 2016, 540, 371-378.	27.8	1,134
240	Analyzing the deformation of a porous medium with account for the collapse of pores. Journal of Applied Mechanics and Technical Physics, 2016, 57, 808-818.	0.5	7
241	Macroscopic shock plasticity of brittle material through designed void patterns. Journal of Applied Physics, 2016, 119, .	2.5	12
242	Tissue Engineering Scaffolds for 3D Cell Culture. Studies in Mechanobiology, Tissue Engineering and Biomaterials, 2016, , 249-268.	1.0	7
243	3D printed bionic nanodevices. Nano Today, 2016, 11, 330-350.	11.9	116
244	Fatigue behavior of IN718 microtrusses produced via additive manufacturing. Materials and Design, 2016, 105, 278-289.	7.0	86
245	A hybrid elastomeric foam-core/solid-shell spherical structure for enhanced energy absorption performance. International Journal of Solids and Structures, 2016, 92-93, 17-28.	2.7	17
246	Optimizing the mechanical properties of polymer resists for strong and light-weight micro-truss structures. Extreme Mechanics Letters, 2016, 8, 283-291.	4.1	14
247	On compressive deformation behavior of hollow-strut cellular materials. Materials and Design, 2016, 105, 1-8.	7.0	13
248	Ultralight Co/Ag composite foams: Synthesis, morphology and compressive property. Scripta Materialia, 2016, 117, 68-72.	5.2	6
249	Two new magnetic nanocomposites of graphene and 12-tungestophosphoric acid: characterization and comparison of the catalytic properties in the green synthesis of 1,8-dioxo-octahydroxanthenes. RSC Advances, 2016, 6, 36433-36440.	3.6	8
250	Supermolecular design: From molecules to solid states. International Journal of Quantum Chemistry, 2016, 116, 259-264.	2.0	5
251	Microsystems for Enhanced Control of Cell Behavior. Studies in Mechanobiology, Tissue Engineering and Biomaterials, 2016, , .	1.0	5
252	Uniform tensile elongation in Au–Si core–shell nanowires. Extreme Mechanics Letters, 2016, 8, 151-159.	4.1	13
253	3D manufacturing of micro and nano-architected materials. , 2016, , .		2
254	Architected Cellular Materials. Annual Review of Materials Research, 2016, 46, 187-210.	9.3	480
255	Polar and toroidal electromechanical properties designed by ferroelectric nano-metamaterials. Acta Materialia, 2016, 113, 81-89.	7.9	27
256	Ultrahigh Tensile Strength Nanowires with a Ni/Ni–Au Multilayer Nanocrystalline Structure. Nano Letters, 2016, 16, 3500-3506.	9.1	21

#	Article	IF	Citations
257	Naturally Dried Graphene Aerogels with Superelasticity and Tunable Poisson's Ratio. Advanced Materials, 2016, 28, 9223-9230.	21.0	254
258	Visualization of the Formation and 3D Porous Structure of Ag Doped MnO ₂ Aerogel Monoliths with High Photocatalytic Activity. ACS Sustainable Chemistry and Engineering, 2016, 4, 6277-6287.	6.7	38
259	Application of micro-robots for building carbon fiber trusses. , 2016, , .		14
260	Bending dominated response of layered mechanical metamaterials alternating pentamode lattices and confinement plates. Composite Structures, 2016, 157, 71-77.	5.8	67
261	Optimal lattice-structured materials. Journal of the Mechanics and Physics of Solids, 2016, 96, 162-183.	4.8	118
262	Synthesis of Nanoporous Gold Tubes. Advanced Engineering Materials, 2016, 18, 65-69.	3.5	5
263	Interlayer expanded MoS 2 enabled by edge effect of graphene nanoribbons for high performance lithium and sodium ion batteries. Carbon, 2016, 109, 461-471.	10.3	114
264	Nanomechanical properties and fracture toughness of Bi 3 Se 2 Te thin films grown using pulsed laser deposition. Materials Chemistry and Physics, 2016, 182, 72-76.	4.0	5
265	Compressible, amphiphilic graphene-based aerogel using a molecular glue to link graphene sheets and coated-polymer layers. Materials and Design, 2016, 110 , $839-848$.	7.0	17
266	Large-Scale Spinning of Silver Nanofibers as Flexible and Reliable Conductors. Nano Letters, 2016, 16, 5846-5851.	9.1	81
267	Combinatorial design of textured mechanical metamaterials. Nature, 2016, 535, 529-532.	27.8	289
268	Multiscale metallic metamaterials. Nature Materials, 2016, 15, 1100-1106.	27.5	584
269	Faraday wave lattice as an elastic metamaterial. Physical Review E, 2016, 93, 050202.	2.1	9
270	Light and Strong SiC Networks. Advanced Functional Materials, 2016, 26, 1636-1645.	14.9	109
271	The Impact of Size and Loading Direction on the Strength of Architected Lattice Materials. Advanced Engineering Materials, 2016, 18, 1537-1543.	3.5	30
272	Durable and mass producible polymer surface structures with different combinations of micro–micro hierarchy. Journal of Micromechanics and Microengineering, 2016, 26, 015009.	2.6	9
273	A hyperaccumulation pathway to three-dimensional hierarchical porous nanocomposites for highly robust high-power electrodes. Nature Communications, 2016, 7, 13432.	12.8	68
275	Diamond-structured hollow-tube lattice Ni materials via 3D printing. Science China Chemistry, 2016, 59, 1632-1637.	8.2	12

#	Article	IF	CITATIONS
276	Highly-stretchable 3D-architected Mechanical Metamaterials. Scientific Reports, 2016, 6, 34147.	3.3	116
277	Super-elastic and fatigue resistant carbon material with lamellar multi-arch microstructure. Nature Communications, 2016, 7, 12920.	12.8	344
278	Lightweight Mechanical Metamaterials with Tunable Negative Thermal Expansion. Physical Review Letters, 2016, 117, 175901.	7.8	337
279	Three-dimensional Sponges with Super Mechanical Stability: Harnessing True Elasticity of Individual Carbon Nanotubes in Macroscopic Architectures. Scientific Reports, 2016, 6, 18930.	3.3	56
280	Mechanical assembly of complex, 3D mesostructures from releasable multilayers of advanced materials. Science Advances, 2016, 2, e1601014.	10.3	200
281	Indirect Fabrication of Lattice Metals with Thin Sections Using Centrifugal Casting. Journal of Visualized Experiments, 2016, , .	0.3	3
282	Fabrication of Micron-Scale Cylindrical Tubes by Two-Photon Polymerization. Fusion Science and Technology, 2016, 70, 310-315.	1.1	9
283	Corrosionâ€Induced Strengthening: Development of Highâ€Strength Nanoporous Metals. Advanced Engineering Materials, 2016, 18, 1050-1058.	3.5	22
284	Bestow metal foams with nanostructured surfaces via a convenient electrochemical method for improved device performance. Nano Research, 2016, 9, 2364-2371.	10.4	12
285	Geometric and Chemical Composition Effects on Healing Kinetics of Voids in Mg-bearing Al Alloys. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2016, 47, 2410-2420.	2.2	6
286	Additively-manufactured metallic micro-lattice materials for high specific energy absorption under static and dynamic loading. Acta Materialia, 2016, 116, 14-28.	7.9	507
287	Mechanical performance of hollow tetrahedral truss cores. International Journal of Solids and Structures, 2016, 91, 115-126.	2.7	38
288	Silane bonded graphene aerogels with tunable functionality and reversible compressibility. Carbon, 2016, 107, 573-582.	10.3	83
289	Solution-Processed Ultraelastic and Strong Air-Bubbled Graphene Foams. Small, 2016, 12, 3229-3234.	10.0	83
290	Tailored Buckling Microlattices as Reusable Lightâ€Weight Shock Absorbers. Advanced Materials, 2016, 28, 5865-5870.	21.0	289
291	High-Sensitivity Measurement of Density by Magnetic Levitation. Analytical Chemistry, 2016, 88, 2666-2674.	6.5	60
292	Mesoscale design of multifunctional 3D graphene networks. Materials Today, 2016, 19, 428-436.	14.2	60
293	Mechanical analyses of "Shellularâ€; an ultralow-density material. Acta Materialia, 2016, 103, 595-607.	7.9	68

#	Article	IF	Citations
294	Scale-dependent failure of stereolithographic polymer microtrusses in three-point bending. Journal of Composite Materials, 2016, 50, 1739-1749.	2.4	1
295	Ultrafast Synthesis of Multifunctional N-Doped Graphene Foam in an Ethanol Flame. ACS Nano, 2016, 10, 453-462.	14.6	119
296	Tailoring of interiorly resonant band gaps in structurally square re-entrant honeycombs. Journal of Sound and Vibration, 2016, 372, 181-191.	3.9	5
297	Size Effects in the Mechanical Properties of Bulk Bicontinuous Ta/Cu Nanocomposites Made by Liquid Metal Dealloying. Advanced Engineering Materials, 2016, 18, 46-50.	3.5	75
298	Ultrafast Dynamic Piezoresistive Response of Grapheneâ€Based Cellular Elastomers. Advanced Materials, 2016, 28, 194-200.	21.0	171
299	Smaller and stronger. Nature Materials, 2016, 15, 373-374.	27.5	106
300	Echoes from diffusion. Nature Materials, 2016, 15, 374-376.	27.5	1
301	Finite element prediction of effective elastic properties of interpenetrating phase composites with architectured 3D sheet reinforcements. International Journal of Solids and Structures, 2016, 83, 169-182.	2.7	94
302	Approaching theoretical strength in glassy carbonÂnanolattices. Nature Materials, 2016, 15, 438-443.	27.5	488
303	Metallic microlattice materials: A current state of the art on manufacturing, mechanical properties and applications. Materials and Design, 2016, 95, 518-533.	7.0	282
304	Design of lattice structures with controlled anisotropy. Materials and Design, 2016, 93, 443-447.	7.0	212
305	Optimal design of "Shellularâ€, a micro-architectured material with ultralow density. Materials and Design, 2016, 95, 490-500.	7.0	33
306	Three-dimensional flexible ceramics based on interconnected network of highly porous pure and metal alloyed ZnO tetrapods. Ceramics International, 2016, 42, 8664-8676.	4.8	66
307	Experimental response of additively manufactured metallic pentamode materials confined between stiffening plates. Composite Structures, 2016, 142, 254-262.	5.8	96
308	Additive manufacturing of polymer-derived ceramics. Science, 2016, 351, 58-62.	12.6	811
309	Super-elastic graphene/carbon nanotube aerogel: A novel thermal interface material with highly thermal transport properties. Carbon, 2016, 99, 222-228.	10.3	163
310	3D metallic glass cellular structures. Acta Materialia, 2016, 105, 35-43.	7.9	69
311	Multifunctional nitrogen-doped graphene nanoribbon aerogels for superior lithium storage and cell culture. Nanoscale, 2016, 8, 2159-2167.	5.6	50

#	Article	IF	CITATIONS
312	Super-elastic graphene/carbon nanotube aerogels and their application as a strain-gauge sensor. RSC Advances, 2016, 6, 11256-11261.	3.6	44
313	Self-assembly of 2D MnO ₂ nanosheets into high-purity aerogels with ultralow density. Chemical Science, 2016, 7, 1926-1932.	7.4	40
314	Structural engineering of three-dimensional phononic crystals. Journal of Sound and Vibration, 2016, 363, 156-165.	3.9	63
315	Ultralight, Strong, Three-Dimensional SiC Structures. ACS Nano, 2016, 10, 1871-1876.	14.6	93
317	Strong cellular lattices with nitro-carburized stainless steel hollow trusses. International Journal of Materials Research, 2016, 107, 57-77.	0.3	6
318	Topochemical molten salt synthesis for functional perovskite compounds. Chemical Science, 2016, 7, 855-865.	7.4	65
319	Fabrication of 3D Micro-Architected/Nano-Architected Materials., 2016,, 345-373.		8
320	Macroporous mesh of nanoporous gold in electrochemical monitoring of superoxide release from skeletal muscle cells. Biosensors and Bioelectronics, 2017, 88, 41-47.	10.1	27
321	Compensation strategy to reduce geometry and mechanics mismatches in porous biomaterials built with Selective Laser Melting. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 70, 17-27.	3.1	126
322	Performance evaluation of multi-layered porous-medium micro heat exchangers with effects of slip condition and thermal non-equilibrium. Applied Thermal Engineering, 2017, 116, 516-527.	6.0	30
323	Topology optimization of energy absorbing structures with maximum damage constraint. International Journal for Numerical Methods in Engineering, 2017, 112, 737-775.	2.8	55
324	Moldable clay-like unit for synthesis of highly elastic polydimethylsiloxane sponge with nanofiller modification. RSC Advances, 2017, 7, 10479-10486.	3.6	16
325	Programmable Bidirectional Folding of Metallic Thin Films for 3D Chiral Optical Antennas. Advanced Materials, 2017, 29, 1606482.	21.0	40
326	Long-fiber reinforced thermoplastic composite lattice structures: Fabrication and compressive properties. Composites Part A: Applied Science and Manufacturing, 2017, 97, 41-50.	7.6	32
327	Nanocomposites for Extrinsic Self-healing Polymer Materials. Springer Series on Polymer and Composite Materials, 2017, , 243-279.	0.7	2
328	Mechanical properties of 3D printed polymeric cellular materials with triply periodic minimal surface architectures. Materials and Design, 2017, 122, 255-267.	7.0	268
329	Characteristics of mechanical metamaterials based on buckling elements. Journal of the Mechanics and Physics of Solids, 2017, 102, 151-164.	4.8	114
330	Thin-walled high temperature alloy structures fabricated from additively manufactured polymer templates. Materials and Design, 2017, 120, 291-297.	7.0	15

#	Article	IF	Citations
331	Highly Flexible Hybrid Polymer Aerogels and Xerogels Based on Resorcinol-Formaldehyde with Enhanced Elastic Stiffness and Recoverability: Insights into the Origin of Their Mechanical Properties. Chemistry of Materials, 2017, 29, 2122-2134.	6.7	76
332	3D printing strong and conductive geo-polymer nanocomposite structures modified by graphene oxide. Carbon, 2017, 117, 421-426.	10.3	154
333	Biocompatible, Ultralight, Strong Hydroxyapatite Networks Based on Hydroxyapatite Microtubes with Excellent Permeability and Ultralow Thermal Conductivity. ACS Applied Materials & Samp; Interfaces, 2017, 9, 7918-7928.	8.0	41
334	Stereo metamaterial with three dimensional meta-atoms fabricated by programmable stress induced deformation for optical modulation. , 2017, , .		3
335	Impact response of additively manufactured metallic hybrid lattice materials. International Journal of Impact Engineering, 2017, 104, 177-191.	5.0	134
336	Three-dimensionally-architectured GaN light emitting crystals. CrystEngComm, 2017, 19, 2007-2012.	2.6	9
337	Mechanics of Crystalline Nanowires: An Experimental Perspective. Applied Mechanics Reviews, 2017, 69,	10.1	43
338	Mechanical properties of copper octet-truss nanolattices. Journal of the Mechanics and Physics of Solids, 2017, 101, 133-149.	4.8	52
339	Architected cellular ceramics with tailored stiffness via direct foam writing. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 1832-1837.	7.1	187
340	On the role of micro-inertia in enriched continuum mechanics. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2017, 473, 20160722.	2.1	22
341	Open-Cell Metallic Porous Materials Obtained Through Space Holdersâ€"Part I: Production Methods. A Review. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 2017, 139, .	2.2	22
342	Smart Polymer Nanocomposites. Springer Series on Polymer and Composite Materials, 2017, , .	0.7	17
343	Lightweight Open-Cell Scaffolds from Sea Urchin Spines with Superior Material Properties for Bone Defect Repair. ACS Applied Materials & Samp; Interfaces, 2017, 9, 9862-9870.	8.0	15
344	Static non-reciprocity in mechanical metamaterials. Nature, 2017, 542, 461-464.	27.8	237
345	Thermal wave: from nonlocal continuum to molecular dynamics. RSC Advances, 2017, 7, 13623-13636.	3.6	29
346	Rapid Fabrication of Low-Density Porous Tin Monolith via Hydrogen Bulb Dynamics Templates. International Journal of Nanoscience, 2017, 16, 1750016.	0.7	0
347	Ultrahighâ€Waterâ€Content, Superelastic, and Shapeâ€Memory Nanofiberâ€Assembled Hydrogels Exhibiting Pressureâ€Responsive Conductivity. Advanced Materials, 2017, 29, 1700339.	21.0	206
348	Intrinsic Notch Effect Leads to Breakdown of Griffith Criterion in Graphene. Small, 2017, 13, 1700028.	10.0	7

#	Article	IF	Citations
349	Re-entrant inclusions in cellular solids: From defects to reinforcements. Composite Structures, 2017, 176, 195-204.	5.8	20
350	Sound transmission loss characteristics of sandwich panels with a truss lattice core. Journal of the Acoustical Society of America, 2017, 141, 2921-2932.	1.1	26
351	Ultralight-micropore amorphous foams: Synthesis, morphology and compressive property. Materials Letters, 2017, 201, 125-128.	2.6	1
352	Mechanicallyâ€Guided Deterministic Assembly of 3D Mesostructures Assisted by Residual Stresses. Small, 2017, 13, 1700151.	10.0	32
353	Prominent adsorption performance of amino-functionalized ultra-light graphene aerogel for methyl orange and amaranth. Chemical Engineering Journal, 2017, 324, 1-9.	12.7	88
354	Toward Modular Active-Cell Robots (MACROs): SMA Cell Design and Modeling of Compliant, Articulated Meshes. IEEE Transactions on Robotics, 2017, 33, 796-806.	10.3	8
355	Improved Li ⁺ Storage through Homogeneous Nâ€Doping within Highly Branched Tubular Graphitic Foam. Advanced Materials, 2017, 29, 1603692.	21.0	113
356	Offenzellige SchwÄ r nme mit niedrigen Dichten als Funktionsmaterialien. Angewandte Chemie, 2017, 129, 15726-15745.	2.0	7
357	Biomimetic Architectured Graphene Aerogel with Exceptional Strength and Resilience. ACS Nano, 2017, 11, 6817-6824.	14.6	297
358	Shape Control of Compliant, Articulated Meshes: Towards Modular Active-Cell Robots (MACROs). IEEE Robotics and Automation Letters, 2017, 2, 1878-1884.	5.1	10
359	Ultralight, scalable, and high-temperature–resilient ceramic nanofiber sponges. Science Advances, 2017, 3, e1603170.	10.3	207
360	Topology optimization of 3D shell structures with porous infill. Acta Mechanica Sinica/Lixue Xuebao, 2017, 33, 778-791.	3.4	57
361	Deposition-based synthesis of nickel-based superalloy microlattices. Scripta Materialia, 2017, 138, 28-31.	5.2	12
362	An ultralight and highly compressible anode for Li-ion batteries constructed from nitrogen-doped carbon enwrapped Fe3O4 nanoparticles confined in a porous 3D nitrogen-doped graphene network. Chemical Engineering Journal, 2017, 326, 151-161.	12.7	35
363	Strong and resilient alumina nanotube and CNT/alumina hybrid foams with tuneable elastic properties. RSC Advances, 2017, 7, 27923-27931.	3.6	10
364	Flyweight, Superelastic, Electrically Conductive, and Flameâ€Retardant 3D Multiâ€Nanolayer Graphene/Ceramic Metamaterial. Advanced Materials, 2017, 29, 1605506.	21.0	89
365	Stress relaxation in polymeric microlattice materials. Materials and Design, 2017, 130, 433-441.	7.0	19
366	Lowâ€Density Open Cellular Sponges as Functional Materials. Angewandte Chemie - International Edition, 2017, 56, 15520-15538.	13.8	168

#	Article	IF	CITATIONS
367	Kirigami pattern design of mechanically driven formation of complex 3D structures through topology optimization. Extreme Mechanics Letters, 2017, 15, 139-144.	4.1	39
368	Large deformation response of additively-manufactured FCC metamaterials: From octet truss lattices towards continuous shell mesostructures. International Journal of Plasticity, 2017, 92, 122-147.	8.8	166
369	Controlling shockwave dynamics using architecture in periodic porous materials. Journal of Applied Physics, 2017, 121, .	2.5	36
370	Printing, folding and assembly methods for forming 3D mesostructures in advanced materials. Nature Reviews Materials, 2017, 2, .	48.7	463
371	Direct metal writing: Controlling the rheology through microstructure. Applied Physics Letters, 2017, 110, .	3.3	40
372	Graphene/cellulose nanocrystals hybrid aerogel with tunable mechanical strength and hydrophilicity fabricated by ambient pressure drying technique. RSC Advances, 2017, 7, 16467-16473.	3.6	35
373	Facile synthesis of ultra-light graphene aerogels with super absorption capability for organic solvents and strain-sensitive electrical conductivity. Chemical Engineering Journal, 2017, 320, 539-548.	12.7	58
374	Harnessing Instabilities to Design Tunable Architected Cellular Materials. Annual Review of Materials Research, 2017, 47, 51-61.	9.3	110
375	Effects of pore design on mechanical properties of nanoporous silicon. Acta Materialia, 2017, 124, 127-136.	7.9	29
376	Three-dimensionally printed cellular architecture materials: perspectives on fabrication, material advances, and applications. MRS Communications, 2017, 7, 8-19.	1.8	16
377	Honeytubes: Hollow lattice truss reinforced honeycombs for crushing protection. Composite Structures, 2017, 160, 1147-1154.	5.8	58
378	Micropolar dissipative models for the analysis of 2D dispersive waves in periodic lattices. Journal of Sound and Vibration, 2017, 392, 325-345.	3.9	27
379	Free-Standing Networks of Core–Shell Metal and Metal Oxide Nanotubes for Glucose Sensing. ACS Applied Materials & Date:	8.0	41
380	Designing graphene based nanofoams with nonlinear auxetic and anisotropic mechanical properties under tension or compression. Carbon, 2017, 111, 796-806.	10.3	39
381	MnO ₂ Framework for Instantaneous Mineralization of Carcinogenic Airborne Formaldehyde at Room Temperature. ACS Catalysis, 2017, 7, 1057-1067.	11.2	197
382	Micromechanics of Amorphous Metal/Polymer Hybrid Structures with 3D Cellular Architectures: Size Effects, Buckling Behavior, and Energy Absorption Capability. Small, 2017, 13, 1602514.	10.0	76
383	Multifunctional Superelastic Foam-Like Boron Nitride Nanotubular Cellular-Network Architectures. ACS Nano, 2017, 11, 558-568.	14.6	110
384	Constructing Three-Dimensional Mesoporous Bouquet-Posy-like TiO ₂ Superstructures with Radially Oriented Mesochannels and Single-Crystal Walls. Journal of the American Chemical Society, 2017, 139, 517-526.	13.7	76

#	Article	IF	Citations
385	Progress in 3D Printing of Carbon Materials for Energyâ€Related Applications. Advanced Materials, 2017, 29, 1603486.	21.0	364
386	Harnessing mechanical instabilities at the nanoscale to achieve ultra-low stiffness metals. Nature Communications, 2017, 8, 1137.	12.8	11
387	Simple and efficient analyses of micro-architected cellular elastic-plastic materials with tubular members. International Journal of Plasticity, 2017, 99, 186-220.	8.8	6
388	Broadband and multiband vibration mitigation in lattice metamaterials with sinusoidally-shaped ligaments. Extreme Mechanics Letters, 2017, 17, 24-32.	4.1	77
389	Pyrophoric Nanomaterials. Challenges and Advances in Computational Chemistry and Physics, 2017, , 135-170.	0.6	0
390	Stretchable 3D lattice conductors. Soft Matter, 2017, 13, 7731-7739.	2.7	13
391	Direct Laser Writing of Lowâ€Density Interdigitated Foams for Plasma Drive Shaping. Advanced Functional Materials, 2017, 27, 1702425.	14.9	44
392	Elastic architected materials with extreme damping capacity. Extreme Mechanics Letters, 2017, 17, 56-61.	4.1	57
393	Drastically Enhancing Moduli of Graphene-Coated Carbon Nanotube Aerogels via Densification while Retaining Temperature-Invariant Superelasticity and Ultrahigh Efficiency. ACS Applied Materials & Samp; Interfaces, 2017, 9, 37954-37961.	8.0	4
394	A fast, efficient direct slicing method for slender member structures. Additive Manufacturing, 2017, 18, 213-220.	3.0	6
395	A Microscopic Shell Structure with Schwarz's D-Surface. Scientific Reports, 2017, 7, 13405.	3.3	32
396	3D printing technologies for electrochemical energy storage. Nano Energy, 2017, 40, 418-431.	16.0	351
397	Ultralight, Thermally Insulating, Compressible Polyimide Fiber Assembled Sponges. ACS Applied Materials & Samp; Interfaces, 2017, 9, 32308-32315.	8.0	184
398	Reexamining the mechanical property space of three-dimensional lattice architectures. Acta Materialia, 2017, 140, 424-432.	7.9	179
399	Template-Free Electroless Plating of Gold Nanowires: Direct Surface Functionalization with Shape-Selective Nanostructures for Electrochemical Applications. ACS Applied Materials & Samp; Interfaces, 2017, 9, 31142-31152.	8.0	29
400	Nanocrystalline Aluminum Truss Cores for Lightweight Sandwich Structures. Jom, 2017, 69, 2626-2634.	1.9	5
401	Ultra-light hierarchical meta-materials on a body-centred cubic lattice. Europhysics Letters, 2017, 119, 14001.	2.0	6
402	Slower icosahedral cluster rejuvenation drives the brittle-to-ductile transition in nanoscale metallic glasses. Computational Materials Science, 2017, 140, 235-243.	3.0	19

#	Article	IF	CITATIONS
403	Harnessing out-of-plane deformation to design 3D architected lattice metamaterials with tunable Poisson's ratio. Scientific Reports, 2017, 7, 8949.	3.3	50
404	3D printed stretching-dominated micro-trusses. Materials and Design, 2017, 134, 272-280.	7.0	94
405	Continuous lattice fabrication of ultra-lightweight composite structures. Additive Manufacturing, 2017, 18, 48-57.	3.0	52
406	Large-Area Nanolattice Film with Enhanced Modulus, Hardness, and Energy Dissipation. Scientific Reports, 2017, 7, 9145.	3.3	14
407	Nanolattices: An Emerging Class of Mechanical Metamaterials. Advanced Materials, 2017, 29, 1701850.	21.0	356
408	Ultralight Conductive Silver Nanowire Aerogels. Nano Letters, 2017, 17, 7171-7176.	9.1	163
409	Development of ultralight, super-elastic, hierarchical metallic meta-structures with i3DP technology. Nanotechnology, 2017, 28, 455708.	2.6	7
410	Extremely Low Density and Superâ€Compressible Graphene Cellular Materials. Advanced Materials, 2017, 29, 1701553.	21.0	126
411	Cellular carbon microstructures developed by using stereolithography. Carbon, 2017, 123, 34-44.	10.3	31
412	Topology optimization of multiphase architected materials for energy dissipation. Computer Methods in Applied Mechanics and Engineering, 2017, 325, 314-329.	6.6	37
413	Microstructure Design of Lightweight, Flexible, and High Electromagnetic Shielding Porous Multiwalled Carbon Nanotube/Polymer Composites. Small, 2017, 13, 1701388.	10.0	163
414	Electrodeposited high strength, thermally stable spectrally selective rhenium nickel inverse opals. Nanoscale, 2017, 9, 11187-11194.	5.6	14
415	A Survey of Modeling of Lattice Structures Fabricated by Additive Manufacturing. Journal of Mechanical Design, Transactions of the ASME, 2017, 139, .	2.9	195
416	Nanoporous Metals with Structural Hierarchy: A Review. Advanced Engineering Materials, 2017, 19, 1700389.	3.5	103
417	Ultra-lightweight and highly porous carbon aerogels from bamboo pulp fibers as an effective sorbent for water treatment. Results in Physics, 2017, 7, 2919-2924.	4.1	46
418	Design of the P-surfaced shellular, an ultra-low density material with micro-architecture. Computational Materials Science, 2017, 139, 162-178.	3.0	34
419	3D Printing Hierarchical Silver Nanowire Aerogel with Highly Compressive Resilience and Tensile Elongation through Tunable Poisson's Ratio. Small, 2017, 13, 1701756.	10.0	68
420	Mussel-Inspired Self-Healing of Ultralight Magnetic Frameworks. ACS Sustainable Chemistry and Engineering, 2017, 5, 7905-7911.	6.7	11

#	Article	IF	CITATIONS
424	In Situ Mechanical Characterization of Structural Bamboo Materials under Flexural Bending. Experimental Techniques, 2017, 41, 565-575.	1.5	24
425	Three-dimensional mechanical metamaterials with a twist. Science, 2017, 358, 1072-1074.	12.6	658
426	Fabrication of regular polystyrene foam structures with selective laser sintering. Materials Today Communications, 2017, 13, 346-353.	1.9	9
427	Enabling Simultaneous Extreme Ultra Low- <i>k</i> in Stiff, Resilient, and Thermally Stable Nano-Architected Materials. Nano Letters, 2017, 17, 7737-7743.	9.1	30
428	Electroless Deposition of Palladium on Macroscopic 3D-Printed Polymers with Dense Microlattice Architectures for Development of Multifunctional Composite Materials. Journal of the Electrochemical Society, 2017, 164, D867-D874.	2.9	15
429	Selective electroless plating of 3D-printed plastic structures for three-dimensional microwave metamaterials. Applied Physics Letters, 2017, 111, .	3.3	17
430	Microtruss structures with enhanced elasticity fabricated through visible light photocuring. Results in Physics, 2017, 7, 2194-2196.	4.1	5
431	Elastic and failure response of imperfect three-dimensional metallic lattices: the role of geometric defects induced by Selective Laser Melting. Journal of the Mechanics and Physics of Solids, 2017, 107, 160-184.	4.8	352
432	Super-carbon spring: a biomimetic design. Science China Materials, 2017, 60, 186-187.	6.3	2
433	Ultralight and Flexible MWNTs/Polyimide Hybrid Aerogels for Elastic Conductors. Macromolecular Materials and Engineering, 2017, 302, 1700082.	3.6	14
434	Role of dislocation pile-ups in nucleation-controlled size-dependent strength of Fe nanowires. Acta Materialia, 2017, 136, 190-201.	7.9	22
435	Wall-thickness-dependent strength of nanotubular ZnO. Scientific Reports, 2017, 7, 4327.	3.3	6
436	Multifunctional Bionanocomposite Foams with a Chitosan Matrix Reinforced by Nanofibrillated Cellulose. ChemNanoMat, 2017, 3, 98-108.	2.8	37
437	The indentation response of Nickel nano double gyroid lattices. Extreme Mechanics Letters, 2017, 10, 15-23.	4.1	28
438	Fire protection design for composite lattice sandwich structure. Science and Engineering of Composite Materials, 2017, 24, 919-927.	1.4	7
439	Local and nonlocal continuum modeling of inelastic periodic networks applied to stretching-dominated trusses. Computer Methods in Applied Mechanics and Engineering, 2017, 313, 85-105.	6.6	14
441	Tailoring Graphene Oxideâ∈Based Aerogels for Efficient Solar Steam Generation under One Sun. Advanced Materials, 2017, 29, 1604031.	21.0	711
442	Iron and Nickel Cellular Structures by Sintering of 3Dâ€Printed Oxide or Metallic Particle Inks. Advanced Engineering Materials, 2017, 19, 1600365.	3.5	68

#	ARTICLE	IF	CITATIONS
443	Towards three-dimensional optical metamaterials. Nano Convergence, 2017, 4, 34.	12.1	25
444	Silica film deposited on diamond-structured polymer microlattices by dip coating. RSC Advances, 2017, 7, 54668-54673.	3.6	3
445	Nearly exact and highly efficient elastic-plastic homogenization and/or direct numerical simulation of low-mass metallic systems with architected cellular microstructures. Journal of Mechanics of Materials and Structures, 2017, 12, 633-665.	0.6	6
446	Evaluation of regular planar meshes for Modular Active Cell Robots (MACROs)., 2017,,.		1
447	The Emerging Frontiers and Applications of High-Resolution 3D Printing. Micromachines, 2017, 8, 113.	2.9	151
448	Hierarchical Materials., 2017,, 545-574.		6
449	Impact behavior of negative stiffness honeycomb materials. Journal of Materials Research, 2018, 33, 290-299.	2.6	58
450	Irradiation Enhances Strength and Deformability of Nanoâ€Architected Metallic Glass. Advanced Engineering Materials, 2018, 20, 1701055.	3.5	13
451	Ultralight, Recoverable, and High-Temperature-Resistant SiC Nanowire Aerogel. ACS Nano, 2018, 12, 3103-3111.	14.6	298
453	Fabrication of macroporous reduced graphene oxide composite aerogels reinforced with chitosan for high bilirubin adsorption. RSC Advances, 2018, 8, 8338-8348.	3.6	44
454	Composite bending-dominated hollow nanolattices: A stiff, cyclable mechanical metamaterial. Materials Today, 2018, 21, 467-474.	14.2	26
455	A Bubbleâ€Derived Strategy to Prepare Multiple Grapheneâ€Based Porous Materials. Advanced Functional Materials, 2018, 28, 1705879.	14.9	85
456	Minimal surface designs for porous materials: from microstructures to mechanical properties. Journal of Materials Science, 2018, 53, 10194-10208.	3.7	79
457	Mechanical Enhancement of Core-Shell Microlattices through High-Entropy Alloy Coating. Scientific Reports, 2018, 8, 5442.	3.3	30
458	Tunable rotating-mode density measurement using magnetic levitation. Applied Physics Letters, 2018, 112, .	3.3	18
459	A flyweight and superelastic graphene aerogel as a high-capacity adsorbent and highly sensitive pressure sensor. Journal of Materials Chemistry A, 2018, 6, 9074-9080.	10.3	114
460	Metallized compliant 3D microstructures for dry contact thermal conductance enhancement. Journal of Micromechanics and Microengineering, 2018, 28, 055005.	2.6	2
461	Determination of Strain Rate Sensitivity of Micro-struts Manufactured Using the Selective Laser Melting Method. Journal of Materials Engineering and Performance, 2018, 27, 1016-1032.	2.5	28

#	Article	IF	CITATIONS
462	Strain hardening reduces energy absorption efficiency of austenitic stainless steel foams while porosity does not. Materials and Design, 2018, 143, 297-308.	7.0	35
463	Enhancing the tensile properties of EBM as-built thin parts: Effect of HIP and chemical etching. Materials Characterization, 2018, 143, 82-93.	4.4	55
464	Lattice materials composed by curved struts exhibit adjustable macroscopic stress-strain curves. Materials Today Communications, 2018, 14, 273-281.	1.9	23
465	Design and mechanical properties of elastically isotropic trusses. Journal of Materials Research, 2018, 33, 249-263.	2.6	46
466	The effect of architecture on the mechanical properties of cellular structures based on the IWP minimal surface. Journal of Materials Research, 2018, 33, 343-359.	2.6	94
467	Deformation behavior and energy absorption capability of polymer and ceramic-polymer composite microlattices under cyclic loading. Journal of Materials Research, 2018, 33, 274-289.	2.6	32
468	Improved neuron culture using scaffolds made of three-dimensional PDMS micro-lattices. Biomedical Materials (Bristol), 2018, 13, 034105.	3.3	14
469	Mechanical Behavior of Three-Dimensional Braided Nickel-Based Superalloys Synthesized via Pack Cementation. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2018, 49, 817-821.	2.2	0
470	Acoustic Tamm states of three-dimensional solid-fluid phononic crystals. Journal of the Acoustical Society of America, 2018, 143, 756-764.	1.1	12
471	Additive manufacturing of 3D nano-architected metals. Nature Communications, 2018, 9, 593.	12.8	372
472	Highly compressible ultra-light anisotropic cellulose/graphene aerogel fabricated by bidirectional freeze drying for selective oil absorption. Carbon, 2018, 132, 199-209.	10.3	278
473	Architected Lattices with High Stiffness and Toughness via Multicore–Shell 3D Printing. Advanced Materials, 2018, 30, e1705001.	21.0	127
474	Flaw-Containing Alumina Hollow Nanostructures Have Ultrahigh Fracture Strength To Be Incorporated into High-Efficiency GaN Light-Emitting Diodes. Nano Letters, 2018, 18, 1323-1330.	9.1	9
475	Structural and thermal analysis of integrated thermal protection systems with C/SiC composite cellular core sandwich panels. Applied Thermal Engineering, 2018, 131, 209-220.	6.0	47
476	Experimental investigation of composite pyramidal truss core sandwich panels with lightweight inserts. Composite Structures, 2018, 187, 336-343.	5.8	41
477	Elastically-isotropic truss lattice materials of reduced plastic anisotropy. International Journal of Solids and Structures, 2018, 138, 24-39.	2.7	128
478	Nanoscale 3D ordered polymer networks. Science China Chemistry, 2018, 61, 25-32.	8.2	16
479	Superelastic and Arbitraryâ€Shaped Graphene Aerogels with Sacrificial Skeleton of Melamine Foam for Varied Applications. Advanced Functional Materials, 2018, 28, 1704674.	14.9	155

#	Article	IF	CITATIONS
480	Mechanical metamaterials associated with stiffness, rigidity and compressibility: A brief review. Progress in Materials Science, 2018, 94, 114-173.	32.8	629
481	Confined Chemical Fluid Deposition of Ferromagnetic Metalattices. Nano Letters, 2018, 18, 546-552.	9.1	21
482	Effects of titanium dioxide and tartrazine lake on Z-axis resolution and physical properties of resins printed by visible-light 3D printers. Rapid Prototyping Journal, 2018, 24, 160-165.	3.2	6
483	Auxetic metamaterials and structures: a review. Smart Materials and Structures, 2018, 27, 023001.	3.5	657
484	Dealloyed nanoporous materials with interface-controlled behavior. MRS Bulletin, 2018, 43, 14-19.	3.5	92
485	Pathway towards Programmable Wave Anisotropy in Cellular Metamaterials. Physical Review Applied, 2018, 9, .	3.8	10
486	Carbon nanotube aerogel–CoS ₂ hybrid catalytic counter electrodes for enhanced photovoltaic performance dye-sensitized solar cells. Nanoscale, 2018, 10, 4194-4201.	5.6	69
487	Three-Dimensional Macroporous Nanoelectronics Scaffold Innervated Synthetic Tissue. Springer Theses, 2018, , 39-63.	0.1	1
488	Size of graphene sheets determines the structural and mechanical properties of 3D graphene foams. Nanotechnology, 2018, 29, 104001.	2.6	29
489	The effect of manufacturing defects on compressive strength of ultralight hollow microlattices: A data-driven study. Additive Manufacturing, 2018, 19, 51-61.	3.0	17
490	Design, analysis and manufacturing of lattice structures: an overview. International Journal of Computer Integrated Manufacturing, 2018, 31, 243-261.	4.6	198
491	Solid State Porous Metal Production: A Review of the Capabilities, Characteristics, and Challenges. Advanced Engineering Materials, 2018, 20, 1700766.	3.5	68
492	A mechanism for energy absorption: Sequential micro-kinking in ceramic reinforced aluminum alloy lattices during out-of-plane compression. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 716, 11-22.	5.6	7
493	Ultralight cellular composite materials with architected geometrical structure. Composite Structures, 2018, 196, 181-198.	5.8	8
494	Multi-stable mechanical metamaterials with shape-reconfiguration and zero Poisson's ratio. Materials and Design, 2018, 152, 181-190.	7.0	93
495	Ultralight and fire-resistant ceramic nanofibrous aerogels with temperature-invariant superelasticity. Science Advances, 2018, 4, eaas8925.	10.3	414
496	Robust Nanofibrillated Cellulose Hydro/Aerogels from Benign Solution/Solvent Exchange Treatment. ACS Sustainable Chemistry and Engineering, 2018, 6, 6624-6634.	6.7	41
497	Highâ€Speed 3D Printing of Millimeterâ€Size Customized Aspheric Imaging Lenses with Sub 7 nm Surface Roughness. Advanced Materials, 2018, 30, e1705683.	21.0	98

#	Article	IF	CITATIONS
498	Ultrahigh Damping Capacities in Lightweight Structural Materials. Nano Letters, 2018, 18, 2519-2524.	9.1	27
499	An effective length model for octet lattice. International Journal of Mechanical Sciences, 2018, 140, 279-287.	6.7	39
500	Superior microwave absorption properties of ultralight reduced graphene oxide/black phosphorus aerogel. Nanotechnology, 2018, 29, 235604.	2.6	41
501	Mechanical properties and deformation behavior of additively manufactured lattice structures of stainless steel. Materials and Design, 2018, 145, 205-217.	7.0	150
502	Carbon origami: A method to fabricate lightweight carbon cellular materials. Carbon, 2018, 133, 140-149.	10.3	25
503	Arch-inspired super-elastic carbon materials. National Science Review, 2018, 5, 3-4.	9.5	0
504	Response of a nanofluid system based on a porous medium to an impact loading. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 537, 540-548.	4.7	9
505	A double perturbation method of postbuckling analysis in 2D curved beams for assembly of 3D ribbon-shaped structures. Journal of the Mechanics and Physics of Solids, 2018, 111, 215-238.	4.8	48
506	Ultralight and resilient Al ₂ O ₃ nanotube aerogels with low thermal conductivity. Journal of the American Ceramic Society, 2018, 101, 1677-1683.	3.8	61
507	Mechanical properties and failure mechanisms of sandwich panels with ultra-lightweight three-dimensional hierarchical lattice cores. International Journal of Solids and Structures, 2018, 132-133, 171-187.	2.7	59
508	Preparation and structural evolution of SiOC preceramic aerogel during high-temperature treatment. Ceramics International, 2018, 44, 563-570.	4.8	48
509	Ni-Mn-Ga micro-trusses via sintering of 3D-printed inks containing elemental powders. Acta Materialia, 2018, 143, 20-29.	7.9	66
510	3D printed hierarchical honeycombs with shape integrity under large compressive deformations. Materials and Design, 2018, 137, 226-234.	7.0	189
511	On hierarchical honeycombs under out-of-plane crushing. International Journal of Solids and Structures, 2018, 135, 1-13.	2.7	168
512	Highâ€Entropy Alloy (HEA)â€Coated Nanolattice Structures and Their Mechanical Properties. Advanced Engineering Materials, 2018, 20, 1700625.	3.5	56
513	Analytical models of the geometric properties of solid and hollow architected lattice cellular materials. Journal of Materials Research, 2018, 33, 264-273.	2.6	5
514	Hybrid Hollow Microlattices With Unique Combination of Stiffness and Damping. Journal of Engineering Materials and Technology, Transactions of the ASME, 2018, 140, .	1.4	20
515	A monolithic sandwich panel with microlattice core. Acta Materialia, 2018, 144, 822-834.	7.9	11

#	Article	IF	CITATIONS
516	Fabrication of diamond-structured composite materials with Ni-P-diamond particles by electroless plating. Materials Letters, 2018, 215, 242-245.	2.6	34
517	Vibration of mechanically-assembled 3D microstructures formed by compressive buckling. Journal of the Mechanics and Physics of Solids, 2018, 112, 187-208.	4.8	44
518	Evaluating sputter deposited metal coatings on 3D printed polymer micro-truss structures. Materials and Design, 2018, 140, 442-450.	7.0	34
519	Hybrid electrolytes with 3D bicontinuous ordered ceramic and polymer microchannels for all-solid-state batteries. Energy and Environmental Science, 2018, 11, 185-201.	30.8	252
520	Biomimetics Through Nanoelectronics. Springer Theses, 2018, , .	0.1	3
521	Sintering of micro-trusses created by extrusion-3D-printing of lunar regolith inks. Acta Astronautica, 2018, 143, 1-8.	3.2	64
522	Additively-manufactured lightweight Metamaterials for energy absorption. Materials and Design, 2018, 139, 521-530.	7.0	209
523	Three-Dimensional Nanoprinting via Direct Delivery. Journal of Physical Chemistry B, 2018, 122, 956-962.	2.6	36
524	A level set method for shape and topology optimization of coated structures. Computer Methods in Applied Mechanics and Engineering, 2018, 329, 553-574.	6.6	64
525	Effect of phosphorus content on mechanical properties of polymeric nickel composite materials with a diamond-structure microlattice. RSC Advances, 2018, 8, 33025-33029.	3.6	6
526	Multifunctional structural polymer electrolytes via interpenetrating truss structures. Multifunctional Materials, 2018, 1, 015005.	3.7	8
527	Mechanical properties of sandwich composites with 3d-printed auxetic and non-auxetic lattice cores under low velocity impact. Materials and Design, 2018, 160, 1305-1321.	7.0	145
528	Impact of the Lattice Angle on the Effective Properties of the Octet-Truss Lattice Structure. Journal of Engineering Materials and Technology, Transactions of the ASME, 2018, 140, .	1.4	16
529	Field responsive mechanical metamaterials. Science Advances, 2018, 4, eaau6419.	10.3	154
530	Mechanical behavior of Microlattice with or without in-plane elements added on the outer faces. International Journal of Mechanical Sciences, 2018, 149, 311-325.	6.7	3
531	Towards in-situ high precision local material velocity measurements in lattice materials under dynamic compression. AIP Conference Proceedings, 2018, , .	0.4	4
532	Lightweight Microlattice With Tunable Mechanical Properties Using 3D Printed Shape Memory Polymer. , 2018, , .		0
533	Emergence of New Density–Strength Scaling Law in 3D Hollow Ceramic Nanoarchitectures. Small, 2018, 14, e1802239.	10.0	21

#	Article	IF	CITATIONS
534	A nanolattice-plate hybrid structure to achieve a nearly linear relation between stiffness/strength and density. Materials and Design, 2018, 160, 496-502.	7.0	7
535	Fully Controllable Design and Fabrication of Three-Dimensional Lattice Supercapacitors. ACS Applied Materials & Control Representation (1988) and Fabrication of Three-Dimensional Lattice Supercapacitors. ACS Applied Materials & Control Representation (1988) and Fabrication of Three-Dimensional Lattice Supercapacitors. ACS Applied (1988) and Fabrication of Three-Dimensional Lattice Supercapacitors. ACS Applied (1988) and Fabrication of Three-Dimensional Lattice Supercapacitors. ACS Applied (1988) and Fabrication of Three-Dimensional Lattice Supercapacitors. ACS Applied (1988) and Fabrication of Three-Dimensional Lattice Supercapacitors. ACS Applied (1988) and Fabrication (1988) and	8.0	50
536	Bioinspired Hierarchical Designs for Stiff, Strong Interfaces between Materials of Differing Stiffness. Physical Review Applied, 2018, 10, .	3.8	6
537	Scalable Fabrication of Thermally Insulating Mechanically Resilient Hierarchically Porous Polymer Foams. ACS Applied Materials & Samp; Interfaces, 2018, 10, 38410-38417.	8.0	74
538	Super-compressible, fatigue resistant and anisotropic carbon aerogels for piezoresistive sensors. Cellulose, 2018, 25, 7329-7340.	4.9	46
539	Stiffnessâ€Independent Toughening of Beams through Coaxial Interfaces. Advanced Science, 2018, 5, 1800728.	11.2	13
540	Robotic Building. Springer Series in Adaptive Environments, 2018, , .	0.3	9
541	Additive Manufacturing through Galvanoforming of 3D Nickel Microarchitectures: Simulationâ€Assisted Synthesis. Advanced Materials Technologies, 2018, 3, 1800274.	5.8	13
542	Rapid room-temperature self-healing conductive nanocomposites based on naturally dried graphene aerogels. Journal of Materials Chemistry C, 2018, 6, 10184-10191.	5 . 5	11
543	Ultra-low-density silver aerogels via freeze-substitution. APL Materials, 2018, 6, .	5.1	16
544	Metallic Glass Structures for Mechanical-Energy-Dissipation Purpose: A Review. Metals, 2018, 8, 689.	2.3	26
545	Hierarchical metal/polymer metamaterials of tunable negative Poisson's ratio fabricated by initiator-integrated 3D printing (i3DP). Nanotechnology, 2018, 29, 505704.	2.6	15
546	A Plesiohedral Cellular Network of Graphene Bubbles for Ultralight, Strong, and Superelastic Materials. Advanced Materials, 2018, 30, e1802997.	21.0	27
547	Multifunctional Polymer Nanocomposites Reinforced by 3D Continuous Ceramic Nanofillers. ACS Nano, 2018, 12, 9126-9133.	14.6	44
548	A simple, highly efficient route to electroless gold plating on complex 3D printed polyacrylate plastics. Chemical Communications, 2018, 54, 10463-10466.	4.1	18
549	Graphene aerogels that withstand extreme compressive stress and strain. Nanoscale, 2018, 10, 18291-18299.	5.6	43
550	Projection based light-directed electrophoretic deposition for additive manufacturing. Additive Manufacturing, 2018, 22, 330-333.	3.0	8
551	Stepwise synthesis of CoS ₂ –C@CoS ₂ yolk–shell nanocages with much enhanced electrocatalytic performances both in solar cells and hydrogen evolution reactions. Journal of Materials Chemistry A, 2018, 6, 12056-12065.	10.3	49

#	Article	IF	CITATIONS
552	Monolithic nanofoam based on conjugated microporous polymer nanotubes with ultrahigh mechanical strength and flexibility for energy storage. Journal of Materials Chemistry A, 2018, 6, 11676-11681.	10.3	46
553	In-situ mechanics of 3D graphene foam based ultra-stiff and flexible metallic metamaterial. Carbon, 2018, 137, 502-510.	10.3	25
554	Ultra‣ight and Scalable Composite Lattice Materials. Advanced Engineering Materials, 2018, 20, 1800213.	3.5	34
555	Controlled mechanical assembly of complex 3D mesostructures and strain sensors by tensile buckling. Npj Flexible Electronics, 2018, 2, .	10.7	31
556	Vibration Tests of 3D Printed Satellite Structure Made of Lattice Sandwich Panels. AIAA Journal, 2018, 56, 4213-4217.	2.6	45
557	Tunable ultra low and broad acoustic absorption by controllable pyrolysis of fiber materials. Materials Today Communications, 2018, 16, 226-231.	1.9	3
558	Impact of node geometry on the effective stiffness of non-slender three-dimensional truss lattice architectures. Extreme Mechanics Letters, 2018, 22, 138-148.	4.1	69
559	Thermal Conductivity of Graphite Microlattices. , 2018, , .		0
560	Novel Ion-Imprinted Carbon Material Induced by Hyperaccumulation Pathway for the Selective Capture of Uranium. ACS Applied Materials & Samp; Interfaces, 2018, 10, 28877-28886.	8.0	45
561	"Zylon―Aerogels. Macromolecular Materials and Engineering, 2018, 303, 1800229.	3.6	11
562	3D printed hierarchically-porous microlattice electrode materials for exceptionally high specific capacity and areal capacity lithium ion batteries. Additive Manufacturing, 2018, 23, 70-78.	3.0	98
563	Crushing behavior of multi-layer metal lattice panel fabricated by selective laser melting. International Journal of Mechanical Sciences, 2018, 145, 389-399.	6.7	129
564	Unconventional Janus Properties of Enokitake-like Gold Nanowire Films. ACS Nano, 2018, 12, 8717-8722.	14.6	65
565	A predictive micropolar continuum model for a novel three-dimensional chiral lattice with size effect and tension-twist coupling behavior. Journal of the Mechanics and Physics of Solids, 2018, 121, 23-46.	4.8	95
566	Structure-Dependent Analysis of Nanoporous Metals: Clues from Mechanical, Conduction, and Flow Properties. Journal of Physical Chemistry C, 2018, 122, 16803-16809.	3.1	11
567	Novel Negative Poisson's Ratio Lattice Structures with Enhanced Stiffness and Energy Absorption Capacity. Materials, 2018, 11, 1095.	2.9	54
568	Theoretical search for heterogeneously architected 2D structures. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E7245-E7254.	7.1	34
569	Quasi-static and dynamic behavior of additively manufactured metallic lattice cylinders. AIP Conference Proceedings, 2018, , .	0.4	9

#	Article	IF	CITATIONS
570	Effect of pre-load on wave propagation characteristics of hexagonal lattices. Composite Structures, 2018, 203, 361-372.	5.8	17
571	Compressive properties of hollow lattice truss reinforced honeycombs (Honeytubes) by additive manufacturing: Patterning and tube alignment effects. Materials and Design, 2018, 156, 446-457.	7.0	75
572	Ultralow Thermal Conductivity and Mechanical Resilience of Architected Nanolattices. Nano Letters, 2018, 18, 4755-4761.	9.1	55
573	Superelastic active graphene aerogels dried in natural environment for sensitive supercapacitor-type stress sensor. Electrochimica Acta, 2018, 283, 1390-1400.	5.2	24
574	Metal-coated hybrid meso-lattice composites and their mechanical characterizations. Composite Structures, 2018, 203, 750-763.	5.8	40
575	A general synthesis strategy for the multifunctional 3D polypyrrole foam of thin 2D nanosheets. Frontiers of Materials Science, 2018, 12, 105-117.	2.2	4
576	Buckling strength topology optimization of 2D periodic materials based on linearized bifurcation analysis. Computer Methods in Applied Mechanics and Engineering, 2018, 339, 115-136.	6.6	88
577	Robust and Stable Cu Nanowire@Graphene Core–Shell Aerogels for Ultraeffective Electromagnetic Interference Shielding. Small, 2018, 14, e1800634.	10.0	125
578	Buckling, build orientation, and scaling effects in 3D printed lattices. Materials Today Communications, 2018, 17, 69-75.	1.9	34
579	Enhancement of the Mechanical Performance of Stainless Steel Micro Lattice Structures Using Electroless Plated Nickel Coatings. Proceedings (mdpi), 2018, 2, 494.	0.2	1
580	From Architectured Materials toÂLarge-Scale Additive Manufacturing. Springer Series in Adaptive Environments, 2018, , 79-96.	0.3	2
581	Stiff auxetics: Hierarchy as a route to stiff, strong lattice based auxetic meta-materials. Scientific Reports, 2018, 8, 12437.	3.3	47
582	Reprogrammable 3D Mesostructures Through Compressive Buckling of Thin Films with Prestrained Shape Memory Polymer. Acta Mechanica Solida Sinica, 2018, 31, 589-598.	1.9	17
583	Approaching perfect energy absorption through structural hierarchy. International Journal of Engineering Science, 2018, 130, 12-32.	5.0	92
584	Three-Dimensional High-Entropy Alloy–Polymer Composite Nanolattices That Overcome the Strength–Recoverability Trade-off. Nano Letters, 2018, 18, 4247-4256.	9.1	108
585	Multi-material Additive Manufacturing of Metamaterials with Giant, Tailorable Negative Poisson's Ratios. Scientific Reports, 2018, 8, 9139.	3.3	100
586	Laser-driven shock compression of gold foam in the terapascal pressure range. Physics of Plasmas, 2018, 25, .	1.9	5
587	Isotropic Ti–6Al–4V lattice via topology optimization and electron-beam melting. Additive Manufacturing, 2018, 22, 634-642.	3.0	27

#	Article	IF	CITATIONS
588	Holographic Fabrication of 3D Nanostructures. Advanced Materials Interfaces, 2018, 5, 1800330.	3.7	17
589	Microarchitected Stretchingâ€Dominated Mechanical Metamaterials with Minimal Surface Topologies. Advanced Engineering Materials, 2018, 20, 1800029.	3.5	138
590	Laser-etch patterning of metal oxide coated carbon nanotube 3D architectures. Nanotechnology, 2018, 29, 335302.	2.6	3
591	Experimental and modeling study of compressive creep in 3D-woven Ni-based superalloys. Acta Materialia, 2018, 155, 236-244.	7.9	3
592	Nonfreeze-Drying Approach for Anisotropic Compression-Resilient Inorganic Aerogels by Guided Self-Assembly and Controlled Mineralization of Bacterial Cellulose. ACS Sustainable Chemistry and Engineering, 2019, 7, 14591-14600.	6.7	10
593	Thermal Conductivity Measurement of Mesoscale Lattices Using Steady-State Infrared Thermography. , 2019, , .		0
594	High-performance functional nanocomposites using 3D ordered and continuous nanostructures generated from proximity-field nanopatterning. Functional Composites and Structures, 2019, 1, 032002.	3.4	27
595	Advanced Compressible and Elastic 3D Monoliths beyond Hydrogels. Advanced Functional Materials, 2019, 29, 1904472.	14.9	69
596	Metal–Organic Frameworks in Modern Physics: Highlights and Perspectives. Advanced Science, 2019, 6, 1900506.	11.2	71
597	Compressive Response of Non-slender Octet Carbon Microlattices. Frontiers in Materials, 2019, 6, .	2.4	14
598	Multifunctional Mechanical Metamaterials Based on Triply Periodic Minimal Surface Lattices. Advanced Engineering Materials, 2019, 21, 1900524.	3.5	353
599	Cnoidal wave propagation in an elastic metamaterial. Physical Review E, 2019, 100, 013001.	2.1	23
600	A state-of-the-art review on types, design, optimization, and additive manufacturing of cellular structures. International Journal of Advanced Manufacturing Technology, 2019, 104, 3489-3510.	3.0	292
601	Self-Assembly of Ultrathin Nanocrystals to Multidimensional Superstructures. Langmuir, 2019, 35, 10246-10266.	3.5	17
602	Harnessing the interface mechanics of hard films and soft substrates for 3D assembly by controlled buckling. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 15368-15377.	7.1	54
603	Improving mechanical performance of fused deposition modeling lattice structures by a snap-fitting method. Materials and Design, 2019, 181, 108065.	7.0	37
604	3D Printing of Ultralight Biomimetic Hierarchical Graphene Materials with Exceptional Stiffness and Resilience. Advanced Materials, 2019, 31, e1902930.	21.0	130
605	Perspective of additive manufacturing for metamaterials development. Smart Materials and Structures, 2019, 28, 093001.	3.5	65

#	Article	IF	CITATIONS
606	The extreme mechanics of micro- and nanoarchitected materials. MRS Bulletin, 2019, 44, 758-765.	3.5	48
607	Architected Polymer Foams via Direct Bubble Writing. Advanced Materials, 2019, 31, e1904668.	21.0	82
608	Additive Manufacturing of Ductile, Ultrastrong Polymer-Derived Nanoceramics. Matter, 2019, 1, 1547-1556.	10.0	58
609	Thermal transport in hollow metallic microlattices. APL Materials, 2019, 7, .	5.1	16
610	Multiscale modeling and optimization of the mechanics of hierarchical metamaterials. MRS Bulletin, 2019, 44, 773-781.	3.5	40
611	Fabrication and anti-crushing performance of hollow honeytubes. Composites Part B: Engineering, 2019, 179, 107522.	12.0	16
612	Three-dimensional architected materials and structures: Design, fabrication, and mechanical behavior. MRS Bulletin, 2019, 44, 750-757.	3.5	65
613	Role of the Crystal Lattice Structure in Predicting Fracture Toughness. Physical Review Letters, 2019, 123, 205503.	7.8	5
614	Bayesian Machine Learning in Metamaterial Design: Fragile Becomes Supercompressible. Advanced Materials, 2019, 31, e1904845.	21.0	154
615	Ultrahigh Energy Absorption Multifunctional Spinodal Nanoarchitectures. Small, 2019, 15, e1903834.	10.0	38
616	Fusing the Seth–Hill strain tensors to fit compressible elastic material responses in the nonlinear regime. International Journal of Mechanical Sciences, 2019, 163, 105072.	6.7	8
617	Additive manufacturing and processing of architected materials. MRS Bulletin, 2019, 44, 782-788.	3. 5	17
618	Review on design and structural optimisation in additive manufacturing: Towards next-generation lightweight structures. Materials and Design, 2019, 183, 108164.	7.0	397
619	Highly elastic conductive sponges by joule heat-driven selective polymer reinforcement at reduced graphene oxide junctions. Carbon, 2019, 155, 138-146.	10.3	7
620	Post-buckling and dynamic response of angled struts in elastic lattices. Journal of the Mechanics and Physics of Solids, 2019, 133, 103693.	4.8	9
621	Bio-inspired multistable metamaterials with reusable large deformation and ultra-high mechanical performance. Extreme Mechanics Letters, 2019, 32, 100548.	4.1	50
622	Topology optimization design of multi-scale structures with alterable microstructural length-width ratios. Composite Structures, 2019, 230, 111454.	5.8	26
623	Novel multi-stable mechanical metamaterials for trapping energy through shear deformation. International Journal of Mechanical Sciences, 2019, 164, 105168.	6.7	52

#	Article	IF	CITATIONS
624	Stiff isotropic lattices beyond the Maxwell criterion. Science Advances, 2019, 5, eaaw1937.	10.3	49
625	New insights into nickel-free superelastic titanium alloys for biomedical applications. Current Opinion in Solid State and Materials Science, 2019, 23, 100783.	11.5	36
626	A nonlinear mechanics model of soft network metamaterials with unusual swelling behavior and tunable phononic band gaps. Composites Science and Technology, 2019, 183, 107822.	7.8	28
627	Deep 3D X-ray Lithography Based on High-Contrast Resist Layers. Technical Physics Letters, 2019, 45, 906-908.	0.7	0
628	Tunable Energy Absorption Characteristics of Architected Honeycombs Enabled via Additive Manufacturing. ACS Applied Materials & Samp; Interfaces, 2019, 11, 42549-42560.	8.0	60
629	Realisation of a locally resonant metamaterial on the automobile panel structure to reduce noise radiation. Mechanical Systems and Signal Processing, 2019, 122, 206-231.	8.0	80
630	High strength metallic wood from nanostructured nickel inverse opal materials. Scientific Reports, 2019, 9, 719.	3.3	36
631	3D metamaterials. Nature Reviews Physics, 2019, 1, 198-210.	26.6	598
632	Metallization of 3D Printed Polymers and Their Application as a Fully Functional Waterâ€Splitting System. Advanced Science, 2019, 6, 1801670.	11.2	55
633	Additive manufacturing of self-healing elastomers. NPG Asia Materials, 2019, 11, .	7.9	111
634	A new coating filter of coated structure for topology optimization. Structural and Multidisciplinary Optimization, 2019, 60, 1527-1544.	3.5	22
635	Another stretching-dominated micro-architectured material, shellular. Materials Today, 2019, 31, 31-38.	14.2	23
636	Random 3D-printed isotropic composites with high volume fraction of pore-like polydisperse inclusions and near-optimal elastic stiffness. Acta Materialia, 2019, 175, 331-340.	7.9	36
637	Mechanics of Chiral Honeycomb Architectures With Phase Transformations. Journal of Applied Mechanics, Transactions ASME, 2019, 86, .	2.2	10
638	Fabrication of ultralight 3D porous composite for Ag nanowire/cellulose nanofiber with tunable mechanical and electrical properties via directional freeze casting. Extreme Mechanics Letters, 2019, 30, 100512.	4.1	9
639	Cubic negative stiffness lattice structure for energy absorption: Numerical and experimental studies. International Journal of Solids and Structures, 2019, 178-179, 127-135.	2.7	61
640	Effect of structural parameters on mechanical properties of Pyramidal Kagome lattice material under impact loading. International Journal of Impact Engineering, 2019, 132, 103313.	5.0	28
641	On the high-temperature crushing of metal foams. International Journal of Solids and Structures, 2019, 174-175, 18-27.	2.7	12

#	Article	IF	CITATIONS
642	Postbuckling analyses of frame mesostructures consisting of straight ribbons for mechanically guided three-dimensional assembly. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2019, 475, 20190012.	2.1	5
643	Highly Porous, Hydrophobic, and Compressible Cellulose Nanocrystals/Poly(vinyl alcohol) Aerogels as Recyclable Absorbents for Oil–Water Separation. ACS Sustainable Chemistry and Engineering, 2019, 7, 11118-11128.	6.7	136
644	Design concepts for generating optimised lattice structures aligned with strain trajectories. Computer Methods in Applied Mechanics and Engineering, 2019, 354, 689-705.	6.6	29
645	Hierarchical cellular scaffolds fabricated via direct foam writing using gelled colloidal particleâ€stabilized foams as the ink. Journal of the American Ceramic Society, 2019, 102, 6498-6506.	3.8	16
646	Design oriented constitutive modeling of amorphous shape memory polymers and Its application to multiple length scale lattice structures. Smart Materials and Structures, 2019, 28, 095030.	3.5	12
647	A phenomenological constitutive modelling of polyethylene foam under multiple impact conditions. Packaging Technology and Science, 2019, 32, 367-379.	2.8	11
648	Thermal conductivity of architected cellular metamaterials. Acta Materialia, 2019, 174, 61-80.	7.9	66
649	Lightweight architected hollow sphere foams for simultaneous noise and vibration control. Journal Physics D: Applied Physics, 2019, 52, 325303.	2.8	13
650	Recent progress in near-field nanolithography using light interactions with colloidal particles: from nanospheres to three-dimensional nanostructures. Nanotechnology, 2019, 30, 352002.	2.6	50
651	Programmable Granular Metamaterials for Reusable Energy Absorption. Advanced Functional Materials, 2019, 29, 1901258.	14.9	44
652	Quasi-static and dynamic compressive properties and deformation mechanisms of 3D printed polymeric cellular structures with Kelvin cells. International Journal of Impact Engineering, 2019, 132, 103303.	5.0	72
653	Development and implementation of an effective constitutive model for architected cellular iron-based shape memory alloys: Pressure dependency and transformation-plasticity interaction. Journal of Intelligent Material Systems and Structures, 2019, 30, 1789-1822.	2.5	4
654	Exact Representations and Geometric Queries for Lattice Structures with Quador Beams. CAD Computer Aided Design, 2019, 115, 64-77.	2.7	7
655	Programmed-Lattice Editor and accelerated processing of parametric program-representations of steady lattices. CAD Computer Aided Design, 2019, 113, 35-47.	2.7	16
656	Programmable, active lattice structures: Unifying stretch-dominated and bending-dominated topologies. Extreme Mechanics Letters, 2019, 29, 100461.	4.1	50
657	Large-area superelastic graphene aerogels based on a room-temperature reduction self-assembly strategy for sensing and particulate matter (PM _{2.5} and PM ₁₀) capture. Nanoscale, 2019, 11, 10372-10380.	5.6	22
658	Continuum models for stretching- and bending-dominated periodic trusses undergoing finite deformations. International Journal of Solids and Structures, 2019, 171, 117-134.	2.7	27
659	Multi-metal electrohydrodynamic redox 3D printing at the submicron scale. Nature Communications, 2019, 10, 1853.	12.8	125

#	Article	IF	CITATIONS
660	Nanomechanics of low-dimensional materials for functional applications. Nanoscale Horizons, 2019, 4, 781-788.	8.0	29
661	Design 3D metamaterials with compression-induced-twisting characteristics using shear–compression coupling effects. Extreme Mechanics Letters, 2019, 29, 100471.	4.1	39
662	Metallic Microlattice Structures. SpringerBriefs in Applied Sciences and Technology, 2019, , .	0.4	9
663	Lightweight, flaw-tolerant, and ultrastrong nanoarchitected carbon. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 6665-6672.	7.1	158
664	Effective property evaluation and analysis of three-dimensional periodic lattices and composites through Bloch-wave homogenization. Journal of the Acoustical Society of America, 2019, 145, 1259-1269.	1.1	20
665	Topology optimization for concurrent design of layer-wise graded lattice materials and structures. International Journal of Engineering Science, 2019, 138, 26-49.	5.0	55
666	Preparation and stereolithography 3D printing of ultralight and ultrastrong ZrOC porous ceramics. Journal of Alloys and Compounds, 2019, 789, 867-873.	5.5	63
667	Evaluation of compressive properties of SLM-fabricated multi-layer lattice structures by experimental test and \hat{l} 4-CT-based finite element analysis. Materials and Design, 2019, 169, 107685.	7.0	203
668	Light but tough bio-inherited materials: Luffa sponge based nickel-plated composites. Journal of the Mechanical Behavior of Biomedical Materials, 2019, 94, 10-18.	3.1	23
669	Photopolymer Wave Guides, Mechanical Metamaterials and Woven Wire Realisation Methods for Metallic Microlattice Structures. SpringerBriefs in Applied Sciences and Technology, 2019, , 67-74.	0.4	1
670	Tunable wave propagation in octa-chiral lattices with local resonators. Composite Structures, 2019, 220, 114-126.	5.8	30
671	Scalable and robust bilayer polymer foams for highly efficient and stable solar desalination. Nano Energy, 2019, 60, 841-849.	16.0	262
672	Bimodal hybrid lightweight sound-absorbing material with high stiffness. Applied Physics Express, 2019, 12, 035002.	2.4	6
673	Computational Homogenization ofÂArchitectured Materials. Springer Series in Materials Science, 2019, , 89-139.	0.6	5
674	Study of Strategies for Forming Stainless Steel Objects with Cellular Structures by Selective Laser Melting. Metallurgist, 2019, 62, 1158-1166.	0.6	2
675	New frontiers for the materials genome initiative. Npj Computational Materials, 2019, 5, .	8.7	312
676	Super-elasticity of three-dimensionally cross-linked graphene materials all the way to deep cryogenic temperatures. Science Advances, 2019, 5, eaav2589.	10.3	84
677	Superelastic Hard Carbon Nanofiber Aerogels. Advanced Materials, 2019, 31, e1900651.	21.0	147

#	Article	lF	CITATIONS
678	Enhancing the electrical and thermal conductivities of polymer composites via curvilinear fibers: An analytical study. Mathematics and Mechanics of Solids, 2019, 24, 3231-3253.	2.4	3
679	Resilient Si ₃ N ₄ Nanobelt Aerogel as Fire-Resistant and Electromagnetic Wave-Transparent Thermal Insulator. ACS Applied Materials & Interfaces, 2019, 11, 15795-15803.	8.0	138
680	Analysis of wave band gaps in mechanical metamaterial based on Nelder–Mead method. Engineering Analysis With Boundary Elements, 2019, 103, 109-115.	3.7	20
681	Mechanical Metamaterials and Their Engineering Applications. Advanced Engineering Materials, 2019, 21, 1800864.	3.5	493
682	Piezoresistive and Mechanical Characteristics of Graphene Foam Nanocomposites. ACS Applied Nano Materials, 2019, 2, 1402-1411.	5.0	30
683	Failure and energy absorption characteristics of four lattice structures under dynamic loading. Materials and Design, 2019, 169, 107655.	7.0	117
684	Extraordinary tensile strength and ductility of scalable nanoporous graphene. Science Advances, 2019, 5, eaat6951.	10.3	78
685	Failure of P-surfaced Shellular subjected to internal pressure. AIP Advances, 2019, 9, .	1.3	2
686	Self-stresses control stiffness and stability in overconstrained disordered networks. Physical Review E, 2019, 99, 023001.	2.1	2
687	Topology Optimization of Three-Dimensional Woven Materials Using a Ground Structure Design Variable Representation. Journal of Mechanical Design, Transactions of the ASME, 2019, 141, .	2.9	15
688	Double-negative-index ceramic aerogels for thermal superinsulation. Science, 2019, 363, 723-727.	12.6	429
689	Preparation of Three-Dimensional Graphene and Myoglobin Modified Electrode for Electrocatalysis of Trichloroacetic Acid. International Journal of Electrochemical Science, 2019, 14, 7663-7672.	1.3	5
690	Bone-inspired microarchitectures achieve enhanced fatigue life. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 24457-24462.	7.1	51
691	Metamaterials with engineered failure load and stiffness. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 23960-23965.	7.1	18
692	Terahertz resonant transmission through metallic mesh truss structures. AIP Advances, 2019, 9, 125320.	1.3	0
693	Artificial spider silk from ion-doped and twisted core-sheath hydrogel fibres. Nature Communications, 2019, 10, 5293.	12.8	123
694	Metasurface-generated complex 3-dimensional optical fields for interference lithography. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 21379-21384.	7.1	22
695	Scalable synthesis of gyroid-inspired freestanding three-dimensional graphene architectures. Nanoscale Advances, 2019, 1, 3870-3882.	4.6	17

#	Article	IF	CITATIONS
696	Directed nanoscale metal deposition by the local perturbation of charge screening at the solid–liquid interface. Nanoscale, 2019, 11, 18619-18627.	5.6	2
697	Effect of build orientation on the fatigue properties of as-built Electron Beam Melted Ti-6Al-4V alloy. International Journal of Fatigue, 2019, 118, 65-76.	5.7	94
698	Synthesis of carboxymethyl cellulose-reduced graphene oxide aerogel for efficient removal of organic liquids and dyes. Journal of Materials Science, 2019, 54, 1872-1883.	3.7	45
699	Ordered deformation localization in cellular mechanical metamaterials. Journal of the Mechanics and Physics of Solids, 2019, 123, 28-40.	4.8	25
700	Concurrent two-scale topological design of multiple unit cells and structure using combined velocity field level set and density model. Computer Methods in Applied Mechanics and Engineering, 2019, 347, 340-364.	6.6	48
701	Biomimetic architected materials with improved dynamic performance. Journal of the Mechanics and Physics of Solids, 2019, 125, 178-197.	4.8	108
702	Block Copolymer Self-Assembly Directed Hierarchically Structured Materials from Nonequilibrium Transient Laser Heating. Macromolecules, 2019, 52, 395-409.	4.8	45
703	Blowing Route towards Advanced Inorganic Foams. Bulletin of the Chemical Society of Japan, 2019, 92, 245-263.	3.2	38
704	High porous cellular materials by spray solution combustion synthesis and spark plasma sintering. Journal of Alloys and Compounds, 2019, 779, 557-565.	5.5	17
705	Parallel Process 3D Metal Microprinting. Advanced Materials Technologies, 2019, 4, 1800393.	5.8	41
706	Additive Manufacturing: Applications and Directions in Photonics and Optoelectronics. Advanced Optical Materials, 2019, 7, 1800419.	7.3	132
707	Correlation between topology and elastic properties of imperfect truss-lattice materials. Journal of the Mechanics and Physics of Solids, 2019, 124, 577-598.	4.8	65
708	Structurally Controlled Cellular Architectures for Highâ€Performance Ultra‣ightweight Materials. Advanced Materials, 2019, 31, e1803670.	21.0	79
709	The mechanical response of cellular materials with spinodal topologies. Journal of the Mechanics and Physics of Solids, 2019, 125, 401-419.	4.8	86
710	Reprogrammable recovery and actuation behaviour of shape-memory polymers. Nature Reviews Materials, 2019, 4, 116-133.	48.7	450
711	3D Hydrogels Containing Interconnected Microchannels of Subcellular Size for Capturing Human Pathogenic <i>Acanthamoeba Castellanii</i> ACS Biomaterials Science and Engineering, 2019, 5, 1784-1792.	5. 2	19
712	Damage-tolerant architected materials inspired by crystal microstructure. Nature, 2019, 565, 305-311.	27.8	397
713	Storage of Mechanical Energy Based on Carbon Nanotubes with High Energy Density and Power Density. Advanced Materials, 2019, 31, e1800680.	21.0	46

#	Article	IF	CITATIONS
714	Multi-stable mechanical metamaterials by elastic buckling instability. Journal of Materials Science, 2019, 54, 3509-3526.	3.7	85
715	Freestanding 3D Mesostructures, Functional Devices, and Shapeâ€Programmable Systems Based on Mechanically Induced Assembly with Shape Memory Polymers. Advanced Materials, 2019, 31, e1805615.	21.0	105
716	Mechanical behaviour of additively-manufactured polymeric octet-truss lattice structures under quasi-static and dynamic compressive loading. Materials and Design, 2019, 162, 106-118.	7.0	174
717	Elasticity-Enhanced and Aligned Structure Nanocellulose Foam-like Aerogel Assembled with Cooperation of Chemical Art and Gradient Freezing. ACS Sustainable Chemistry and Engineering, 2019, 7, 1381-1388.	6.7	50
718	Discreteâ€Continuum Duality of Architected Materials: Failure, Flaws, and Fracture. Advanced Functional Materials, 2019, 29, 1806772.	14.9	26
719	Photoinduced Regulation of the Heat Resistance in Polymer Networks with Diarylethene-Conjugated Reversible Covalent Cross-Links. ACS Macro Letters, 2019, 8, 1-6.	4.8	8
720	Photopolymerization of Ionic Liquids – A Mutually Beneficial Approach for Materials Fabrication. Israel Journal of Chemistry, 2019, 59, 803-812.	2.3	1
721	Vacancies for controlling the behavior of microstructured three-dimensional mechanical metamaterials. Mathematics and Mechanics of Solids, 2019, 24, 511-524.	2.4	35
722	Modeling the non-linear elastic response of periodic lattice materials. Mechanics of Materials, 2019, 129, 159-168.	3.2	13
723	Multiaxial crushing of open-cell foams. International Journal of Solids and Structures, 2019, 159, 239-256.	2.7	19
724	Homogenized modeling and micromechanics analysis of thin-walled lattice plate structures for brake discs. Journal of Sandwich Structures and Materials, 2020, 22, 423-460.	3.5	24
725	Controlled Microstructural Architectures Based on Smart Fabrication Strategies. Advanced Functional Materials, 2020, 30, 1901760.	14.9	36
726	Manufacturing, Applications and Mechanical Properties of Lightweight Wood-Based Sandwich Panels. , 2020, , 411-416.		2
727	Spatial pseudo-rigid body model for the analysis of a tubular mechanical metamaterial. Mathematics and Mechanics of Solids, 2020, 25, 305-316.	2.4	7
728	Combination of water-soluble chemical grafting and gradient freezing to fabricate elasticity-enhanced and anisotropic nanocellulose aerogels. Applied Nanoscience (Switzerland), 2020, 10, 411-419.	3.1	6
729	Stretchable and fatigue-resistant materials. Materials Today, 2020, 34, 7-16.	14.2	146
730	Light-weight shell-lattice metamaterials for mechanical shock absorption. International Journal of Mechanical Sciences, 2020, 169, 105288.	6.7	109
731	Tailoring Aerogels and Related 3D Macroporous Monoliths for Interfacial Solar Vapor Generation. Advanced Functional Materials, 2020, 30, 1907234.	14.9	109

#	Article	IF	CITATIONS
732	Silk Lattice Structures from Unidirectional Silk Fiberâ€"Reinforced Composites for Breaking Energy Absorption. Advanced Engineering Materials, 2020, 22, 1900921.	3.5	6
733	Anisotropic elastic-plastic behavior of architected pyramidal lattice materials. Acta Materialia, 2020, 183, 118-136.	7.9	21
734	Tuning the mechanics of 3D-printed scaffolds by crystal lattice-like structural design for breast tissue engineering. Biofabrication, 2020, 12, 015023.	7.1	22
735	Design, Fabrication, and Mechanics of 3D Microâ€/Nanolattices. Small, 2020, 16, e1902842.	10.0	62
736	Multiscale Topology Optimization of Thermoelastic Structures Using the Level Set Method., 2020,,.		3
737	Review of defects in lattice structures manufactured by powder bed fusion. International Journal of Advanced Manufacturing Technology, 2020, 106, 2649-2668.	3.0	117
738	Hierarchical micro/nanoporous ion-exchangeable sponge. Lab on A Chip, 2020, 20, 505-513.	6.0	9
739	Laser additive manufacturing of bio-inspired lattice structure: Forming quality, microstructure and energy absorption behavior. Materials Science & Diple Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 773, 138857.	5.6	58
740	1D to 3D multi-stable architected materials with zero Poisson's ratio and controllable thermal expansion. Materials and Design, 2020, 188, 108430.	7.0	77
741	Fabrication of 3D micro-/nanoarchitected materials. , 2020, , 541-576.		2
742	Controllable synthesize core-shelled Zn0.76Co0.24S nanospheres as the counter-electrode in dye-sensitized solar cells and its enhanced electrocatalytic performance. Journal of Materials Science: Materials in Electronics, 2020, 31, 1797-1807.	2.2	2
743	Mechanical performances of four lattice materials guided by topology optimisation. Scripta Materialia, 2020, 178, 339-345.	5. 2	16
744	Compressible Metalized Soft Magnetic Sponges with Tailorable Electrical and Magnetic Properties. ChemNanoMat, 2020, 6, 316-325.	2.8	7
745	Multiscale topology optimization for coated structures with multifarious-microstructural infill. Structural and Multidisciplinary Optimization, 2020, 61, 1473-1494.	3.5	23
746	Mechanical and failure behaviors of lattice-plate hybrid structures. MRS Communications, 2020, 10, 42-54.	1.8	2
747	Crush performance of additively manufactured maraging steel microlattice reinforced plates. Engineering Failure Analysis, 2020, 108, 104231.	4.0	18
748	Multiscale eigenfrequency optimization of multimaterial lattice structures based on the asymptotic homogenization method. Structural and Multidisciplinary Optimization, 2020, 61, 983-998.	3.5	21
749	Density-Based Measurement and Manipulation via Magnetic Levitation Enhanced by the Dual-Halbach Array. IEEE Sensors Journal, 2020, 20, 1730-1737.	4.7	9

#	ARTICLE	IF	CITATIONS
750	A Selective Reduction Approach to Construct Robust Cu1.81S Truss Structures for High-Performance Sodium Storage. Matter, 2020, 2, 428-439.	10.0	35
751	Designing with Light: Advanced 2D, 3D, and 4D Materials. Advanced Materials, 2020, 32, e1903850.	21.0	125
752	Future perspectives on materials for two-photon polymerization., 2020,, 671-681.		2
753	A monolithic sandwich panel for insect-mimicking micro drones. Materials and Design, 2020, 187, 108376.	7.0	5
754	Temperatureâ€Invariant Superelastic and Fatigue Resistant Carbon Nanofiber Aerogels. Advanced Materials, 2020, 32, e1904331.	21.0	92
755	Analysis of Multi-scale Mechanical Properties of Ceramic Trusses Prepared from Preceramic Polymers. Additive Manufacturing, 2020, 31, 100957.	3.0	11
756	An ultralight, supercompressible, superhydrophobic and multifunctional carbon aerogel with a specially designed structure. Carbon, 2020, 158, 137-145.	10.3	67
757	Dynamic response of additively manufactured graded foams. Composites Part B: Engineering, 2020, 183, 107630.	12.0	45
758	A Multi-Cell Hybrid Approach to Elevate the Energy Absorption of Micro-Lattice Materials. Materials, 2020, 13, 4083.	2.9	27
759	Self-reinforcement of Light, Temperature-Resistant Silica Nanofibrous Aerogels with Tunable Mechanical Properties. Advanced Fiber Materials, 2020, 2, 338-347.	16.1	58
760	Biomimetic gelatin/HA biocomposites with effective elastic properties and 3D-structural flexibility using a 3D-printing process. Additive Manufacturing, 2020, 36, 101616.	3.0	22
761	Towards high-performance Li-ion batteries via optimized three-dimensional micro-lattice electrode architectures. Journal of Power Sources, 2020, 476, 228593.	7.8	15
762	Mechanical behavior of polymeric selective laser sintered ligament and sheet based lattices of triply periodic minimal surface architectures. Materials and Design, 2020, 196, 109100.	7.0	61
763	A multifunctional honeycomb metastructure for vibration suppression. International Journal of Mechanical Sciences, 2020, 188, 105964.	6.7	38
764	Non-cuttable material created through local resonance and strain rate effects. Scientific Reports, 2020, 10, 11539.	3.3	4
765	Two-dimensional mechanical metamaterials with bending-induced expansion behavior. Applied Physics Letters, 2020, 117, 011904.	3.3	4
766	An emerging class of hyperbolic lattice exhibiting tunable elastic properties and impact absorption through chiral twisting. Extreme Mechanics Letters, 2020, 40, 100869.	4.1	56
767	Dimensionless process development for lattice structure design in laser powder bed fusion. Materials and Design, 2020, 194, 108952.	7.0	11

#	Article	IF	CITATIONS
768	Robust, amphiphobic and super-buoyant CNT foams promising for self-floating functional platforms. Carbon, 2020, 168, 439-447.	10.3	12
769	Ultra-light, heat-resistant, flexible and thermal insulation graphene-fluororubber foam prepared by using N2 as a blowing agent. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 604, 125310.	4.7	8
770	Discretely assembled mechanical metamaterials. Science Advances, 2020, 6, .	10.3	88
771	A simple density filter for the topology optimization of coated structures. Engineering Optimization, 2021, 53, 2088-2107.	2.6	7
772	Introduction - Porous Metals: From Nano to Macro. Journal of Materials Research, 2020, 35, 2529-2534.	2.6	4
773	Mechanical performance of additive manufactured shoe midsole designed using variable-dimension helical springs. International Journal of Advanced Manufacturing Technology, 2020, 111, 3273-3292.	3.0	14
774	In-situ synchrotron X-ray tomography investigation of micro lattice manufactured with the projection micro-stereolithography ($Pl\sqrt{4}$ SL) 3D printing technique: Defects characterization and in-situ shear test. Composite Structures, 2020, 252, 112710.	5.8	19
775	Shockwave dissipation by interface-dominated porous structures. AIP Advances, 2020, 10, .	1.3	14
776	3D Printing metamaterials towards tissue engineering. Applied Materials Today, 2020, 20, 100752.	4.3	62
777	Folding at the Microscale: Enabling Multifunctional 3D Origamiâ€Architected Metamaterials. Small, 2020, 16, e2002229.	10.0	30
778	Highly compressible and anisotropic lamellar ceramic sponges with superior thermal insulation and acoustic absorption performances. Nature Communications, 2020, 11, 3732.	12.8	172
779	Elastic response of hollow truss lattice micro-architectures. International Journal of Solids and Structures, 2020, 206, 472-564.	2.7	15
780	Liquid Metalâ€Polymer Microlattice Metamaterials with High Fracture Toughness and Damage Recoverability. Small, 2020, 16, e2004190.	10.0	32
781	A review on metallic micro lattice. Materials Today: Proceedings, 2020, 33, 1695-1700.	1.8	3
782	Ultrastrong, Superelastic, and Lamellar Multiarch Structured ZrO ₂ –Al ₂ O ₃ Nanofibrous Aerogels with High-Temperature Resistance over 1300 °C. ACS Nano, 2020, 14, 15616-15625.	14.6	131
783	Nanographitic coating enables hydrophobicity in lightweight and strong microarchitected carbon. Communications Materials, 2020, 1, .	6.9	10
784	Optimal isotropic, reusable truss lattice material with near-zero Poisson's ratio. Extreme Mechanics Letters, 2020, 41, 101048.	4.1	30
785	<i>In situ</i> synthesis of silver nanowire gel and its super-elastic composite foams. Nanoscale, 2020, 12, 19861-19869.	5.6	18

#	Article	IF	CITATIONS
786	Additive manufacturing of metamaterials: A review. Additive Manufacturing, 2020, 36, 101562.	3.0	125
787	3D face-centered-cubic cement-based hybrid composites reinforced by tension-resistant polymeric truss network. Automation in Construction, 2020, 120, 103380.	9.8	8
788	3D Graphene Materials: From Understanding to Design and Synthesis Control. Chemical Reviews, 2020, 120, 10336-10453.	47.7	319
789	Interweaved Cellular Structured Ceramic Nanofibrous Aerogels with Superior Bendability and Compressibility. Advanced Functional Materials, 2020, 30, 2005928.	14.9	76
790	Leachableâ€Free Fabrication of Hydrogel Foams Enabling Homogeneous Viability of Encapsulated Cells in Largeâ€Volume Constructs. Advanced Healthcare Materials, 2020, 9, e2000543.	7.6	7
791	Novel architectures of boron. Structural Chemistry, 2020, 31, 2105-2128.	2.0	15
792	General Fabrication of 3D Hierarchically Structured Bamboo-like Nitrogen-Doped Carbon Nanotube Arrays on 1D Nitrogen-Doped Carbon Skeletons for Highly Efficient Electromagnetic Wave Energy Attenuation. ACS Applied Materials & Diterfaces, 2020, 12, 40692-40701.	8.0	69
793	Surface functionalization – a new functional dimension added to 3D printing. Journal of Materials Chemistry C, 2020, 8, 12380-12411.	5.5	36
794	A Novel Precipitate-Type Architected Metamaterial Strengthened via Orowan Bypass-Like Mechanism. Applied Sciences (Switzerland), 2020, 10, 7525.	2.5	10
795	Mechanics of 2D Materials-Based Cellular Kirigami Structures: A Computational Study. Jom, 2020, 72, 4706-4717.	1.9	2
796	3D printed Mg-NiTi interpenetrating-phase composites with high strength, damping capacity, and energy absorption efficiency. Science Advances, 2020, 6, eaba5581.	10.3	87
797	Surface Defects Sensitivity during the Unfolding of Corrugated Struts Made by Powderâ€Bed Additive Manufacturing. Advanced Engineering Materials, 2020, 22, 2000315.	3.5	4
798	Conjugated microporous polymers bearing isocyanurate moiety as efficient antibacterial membrane and aerogels. Separation and Purification Technology, 2020, 248, 117020.	7.9	25
799	Mechanical behavior of steel and aluminum foams at elevated temperatures. Local buckling based approach toward understanding of the material system behavior. International Journal of Mechanical Sciences, 2020, 181, 105754.	6.7	9
800	Highly compressible and anisotropic polyimide aerogels containing aramid nanofibers. Reactive and Functional Polymers, 2020, 154, 104672.	4.1	20
801	Effect of grain size on the mechanical properties of Mg foams. Journal of Materials Science and Technology, 2020, 58, 46-54.	10.7	7
802	Direct co-deposition of mono-sized nanoparticles during sputtering. Scripta Materialia, 2020, 186, 387-391.	5.2	8
803	Multi-morphology lattices lead to improved plastic energy absorption. Materials and Design, 2020, 194, 108883.	7.0	70

#	Article	IF	CITATIONS
804	Coulomb friction in twisting of biomimetic scale-covered substrate. Bioinspiration and Biomimetics, 2020, 15, 056013.	2.9	8
805	Hardening in Au-Ag nanoboxes from stacking fault-dislocation interactions. Nature Communications, 2020, 11, 2923.	12.8	23
806	Facile template-free synthesis of multifunctional 3D cellular carbon from edible rice paper. RSC Advances, 2020, 10, 16616-16628.	3.6	12
807	Effect of hierarchical features on the critical buckling strength of periodic cellular solids. , 2020, , .		1
808	Improving the buckling strength of honeycomb cores using periodic imperfections. , 2020, , .		1
809	Multiscale topology optimization for non-uniform microstructures with hybrid cellular automata. Structural and Multidisciplinary Optimization, 2020, 62, 757-770.	3.5	28
810	Effective Anisotropic Elastic and Plastic Yield Properties of Periodic Foams Derived from Triply Periodic Schoen's I-WP Minimal Surface. Journal of Engineering Mechanics - ASCE, 2020, 146, .	2.9	31
811	Understanding mechanical behavior of metallic foam with hollow struts using the hollow pentagonal dodecahedron model. Scripta Materialia, 2020, 182, 114-119.	5.2	10
812	Shape-Adaptive Metastructures with Variable Bandgap Regions by 4D Printing. Polymers, 2020, 12, 519.	4.5	92
813	Temperature-invariant superelastic, fatigue resistant, and binary-network structured silica nanofibrous aerogels for thermal superinsulation. Journal of Materials Chemistry A, 2020, 8, 7775-7783.	10.3	53
814	Healable, memorizable, and transformable lattice structures made of stiff polymers. NPG Asia Materials, 2020, 12, .	7.9	18
815	Plate-nanolattices at the theoretical limit of stiffness and strength. Nature Communications, 2020, 11, 1579.	12.8	85
816	Laserâ€Induced Graphene for Electrothermally Controlled, Mechanically Guided, 3D Assembly and Human–Soft Actuators Interaction. Advanced Materials, 2020, 32, e1908475.	21.0	118
817	Extreme mechanical resilience of self-assembled nanolabyrinthine materials. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 5686-5693.	7.1	87
818	Nanocelluloseâ€MXene Biomimetic Aerogels with Orientationâ€Tunable Electromagnetic Interference Shielding Performance. Advanced Science, 2020, 7, 2000979.	11.2	303
819	1D Ceric Hydrogen Phosphate Aerogels: Noncarbonaceous Ultraflyweight Monolithic Aerogels. ACS Omega, 2020, 5, 17592-17600.	3.5	8
820	Mechanics of sandwich panels with a buckling-dominated lattice core: The effects of the initial rod curvatures. Composite Structures, 2020, 251, 112669.	5.8	7
821	Anisotropic and hierarchical SiC@SiO ₂ nanowire aerogel with exceptional stiffness and stability for thermal superinsulation. Science Advances, 2020, 6, eaay6689.	10.3	164

#	Article	IF	CITATIONS
822	Surface effects on the elastic modulus of regular polygonal prism nanoporous materials. Acta Mechanica, 2020, 231, 3451-3460.	2.1	3
823	In situ Synthesis of Biomimetic Silica Nanofibrous Aerogels with Temperatureâ€Invariant Superelasticity over One Million Compressions. Angewandte Chemie - International Edition, 2020, 59, 8285-8292.	13.8	106
824	Lightweight Liquid Metal Entity. Advanced Functional Materials, 2020, 30, 1910709.	14.9	51
825	Finite element simulation of the compressive response of additively manufactured lattice structures with large diameters. Computational Materials Science, 2020, 175, 109610.	3.0	50
826	Design of Architected Materials for Thermoelastic Macrostructures Using Level Set Method. Jom, 2020, 72, 1734-1744.	1.9	8
827	Angleâ€Dependent Transitions Between Structural Bistability and Multistability. Advanced Engineering Materials, 2020, 22, 1900871.	3.5	13
828	3D printing geopolymer nanocomposites: Graphene oxide size effects on a reactive matrix. Carbon, 2020, 164, 215-223.	10.3	35
829	In situ Synthesis of Biomimetic Silica Nanofibrous Aerogels with Temperatureâ€Invariant Superelasticity over One Million Compressions. Angewandte Chemie, 2020, 132, 8362-8369.	2.0	21
830	Nanoelectrode design from microminiaturized honeycomb monolith with ultrathin and stiff nanoscaffold for high-energy micro-supercapacitors. Nature Communications, 2020, 11, 299.	12.8	55
831	Archimedean lattices emerge in template-directed eutectic solidification. Nature, 2020, 577, 355-358.	27.8	21
832	A biomimeticâ€structured woodâ€derived carbon sponge with highly compressible and biocompatible properties for humanâ€motion detection. InformaÄnÃ-Materiály, 2020, 2, 1225-1235.	17.3	34
833	A Monte Carlo simulation-based approach to realistic modelling of additively manufactured lattice structures. Additive Manufacturing, 2020, 32, 101092.	3.0	32
834	Experimental and computational analysis of the in situ tensile deformation of 2D honeycomb lattice structures in Ni single crystals. Composites Part B: Engineering, 2020, 186, 107823.	12.0	10
835	Self-Limiting Electrospray Deposition for the Surface Modification of Additively Manufactured Parts. ACS Applied Materials & Samp; Interfaces, 2020, 12, 20901-20911.	8.0	29
836	3D Freestanding DNA Nanostructure Hybrid as a Low-Density High-Strength Material. ACS Nano, 2020, 14, 6582-6588.	14.6	12
837	Strong, Ultralight Nanofoams with Extreme Recovery and Dissipation by Manipulation of Internal Adhesive Contacts. ACS Nano, 2020, 14, 8383-8391.	14.6	16
838	Architecture design of periodic truss-lattice cells for additive manufacturing. Additive Manufacturing, 2020, 34, 101172.	3.0	48
839	Architected porous metals in electrochemical energy storage. Current Opinion in Electrochemistry, 2020, 21, 201-208.	4.8	37

#	Article	IF	CITATIONS
840	Compression and buckling of microarchitectured Neovius-lattice. Extreme Mechanics Letters, 2020, 37, 100688.	4.1	27
841	The superior mechanical and physical properties of nanocarbon reinforced bulk composites achieved by architecture design – A review. Progress in Materials Science, 2020, 113, 100672.	32.8	163
842	Designing complex architectured materials with generative adversarial networks. Science Advances, 2020, 6, eaaz4169.	10.3	144
843	Engineering lattice metamaterials for extreme property, programmability, and multifunctionality. Journal of Applied Physics, 2020, 127, .	2.5	77
844	Influence of manufacturing orientations on the morphology of alloy 718 single struts manufactured by selective laser melting. Material Design and Processing Communications, 2021, 3, e140.	0.9	2
845	A fully parameterized methodology for lattice materials with octahedron-based structures. Mechanics of Advanced Materials and Structures, 2021, 28, 1035-1048.	2.6	13
846	Microalloyed medium-entropy alloy (MEA) composite nanolattices with ultrahigh toughness and cyclability. Materials Today, 2021, 42, 10-16.	14.2	32
847	3D printing of lightweight, super-strong yet flexible all-cellulose structure. Chemical Engineering Journal, 2021, 405, 126668.	12.7	68
848	Ground States Phase Diagrams and Magnetizations Properties of Ferrimagnetic Model on Decorated Hexagonal Nanolattice: Monte Carlo Study. Journal of Cluster Science, 2021, 32, 857-863.	3.3	3
849	Mixed variational one-dimensional dynamic thermo-viscoplasticity for wave propagation. European Journal of Mechanics, A/Solids, 2021, 85, 104086.	3.7	1
850	Effects of heat treatment on microstructure and mechanical properties of selective laser melted Ti-6Al-4V lattice materials. International Journal of Mechanical Sciences, 2021, 190, 106042.	6.7	71
851	Numerical evaluation of additively manufactured lattice architectures for heat sink applications. International Journal of Thermal Sciences, 2021, 159, 106607.	4.9	30
852	Additive manufacturing of advanced ceramic materials. Progress in Materials Science, 2021, 116, 100736.	32.8	323
853	CuNi alloy/ carbon foam nanohybrids as high-performance electromagnetic wave absorbers. Carbon, 2021, 172, 488-496.	10.3	113
854	Understanding the Electrical Behavior of Pyrolyzed Threeâ€Dimensionalâ€Printed Microdevices. Advanced Engineering Materials, 2021, 23, 2001027.	3.5	4
855	A synergistic strategy for fabricating an ultralight and thermal insulating aramid nanofiber/polyimide aerogel. Materials Chemistry Frontiers, 2021, 5, 804-816.	5.9	36
856	Stiff or Extensible in Seconds: Lightâ€Induced Corrugations in Thin Polymer Sheets. Advanced Materials Technologies, 2021, 6, .	5.8	4
857	Interpenetrating lattices with enhanced mechanical functionality. Additive Manufacturing, 2021, 38, 101741.	3.0	27

#	ARTICLE	IF	CITATIONS
858	Nanocellulose-based lightweight porous materials: A review. Carbohydrate Polymers, 2021, 255, 117489.	10.2	118
859	On the competition for ultimately stiff and strong architected materials. Materials and Design, 2021, 198, 109356.	7.0	32
860	<scp>Topology</scp> optimization for threeâ€dimensional elastoplastic architected materials using a pathâ€dependent adjoint method. International Journal for Numerical Methods in Engineering, 2021, 122, 1889-1910.	2.8	10
861	Bézier-based metamaterials: Synthesis, mechanics and additive manufacturing. Materials and Design, 2021, 199, 109412.	7.0	22
862	3D Nanomagnetism in Low Density Interconnected Nanowire Networks. Nano Letters, 2021, 21, 716-722.	9.1	39
863	Deformation behavior of heterogeneous multi-morphology lattice core hybrid structures. Additive Manufacturing, 2021, 37, 101674.	3.0	17
864	Rotational snap-through behavior of multi-stable beam-type metastructures. International Journal of Mechanical Sciences, 2021, 193, 106172.	6.7	24
865	Design of mechanical metamaterial with controllable stiffness using curved beam unit cells. Composite Structures, 2021, 258, 113195.	5.8	10
866	Mechanically robust lattices inspired by deep-sea glass sponges. Nature Materials, 2021, 20, 237-241.	27.5	144
867	Artificial intelligence-enabled smart mechanical metamaterials: advent and future trends. International Materials Reviews, 2021, 66, 365-393.	19.3	63
868	Influence of specimen size on the mechanical properties of microlattices obtained by selective laser melting. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2021, 235, 1774-1787.	2.1	8
869	Numerical and experimental investigations on the mechanical properties of cellular structures with open Kelvin cells. Mechanics of Advanced Materials and Structures, 2021, 28, 1367-1376.	2.6	7
870	Metal and metal oxides aerogels in purification systems. , 2021, , 145-169.		0
871	Research Progress of Selective Laser Melting to Fabricate Outer Space Lightweight Drilling Tools. Mechanical Engineering and Technology, 2021, 10, 33-43.	0.1	0
872	Shape transformers for band gaps customization of Bloch-periodic triangular lattice structures. , 2021, , .		1
873	A Review of Thermo-Hydraulic Performance of Metal Foam and Its Application as Heat Sinks for Electronics Cooling. Journal of Electronic Packaging, Transactions of the ASME, 2021, 143, .	1.8	24
874	3D metal lattice structure manufacturing with continuous rods. Scientific Reports, 2021, 11, 434.	3.3	18
875	Recent advances in the synthesis of smart hydrogels. Materials Advances, 2021, 2, 4532-4573.	5.4	85

#	ARTICLE	IF	Citations
876	Interfacial Design and Assembly for Flexible Energy Electrodes with Highly Efficient Energy Harvesting, Conversion, and Storage. Advanced Energy Materials, 2021, 11, 2002969.	19.5	16
877	Superelastic, Hygroscopic, and Ionic Conducting Cellulose Nanofibril Monoliths by 3D Printing. ACS Nano, 2021, 15, 1869-1879.	14.6	71
878	New Sensing Technologies: Microtas/NEMS/MEMS. , 2023, , 526-540.		2
879	Biomass-derived tubular carbon materials: progress in synthesis and applications. Journal of Materials Chemistry A, 2021, 9, 13822-13850.	10.3	31
880	Printed aerogels: chemistry, processing, and applications. Chemical Society Reviews, 2021, 50, 3842-3888.	38.1	128
881	A review on application of mechanical metamaterials for vibration control. Mechanics of Advanced Materials and Structures, 2022, 29, 3237-3262.	2.6	62
882	Scalable Fabrication of High-Performance Thin-Shell Oxide Nanoarchitected Materials <i>via</i> Proximity-Field Nanopatterning. ACS Nano, 2021, 15, 3960-3970.	14.6	11
883	Design and Characterization of Microscale Auxetic and Anisotropic Structures Fabricated by Multiphoton Lithography. Nanomaterials, 2021, 11, 446.	4.1	8
884	Exploring the property space of periodic cellular structures based on crystal networks. Proceedings of the National Academy of Sciences of the United States of America, $2021,118,.$	7.1	25
885	Effect of elevated temperature on the out-of-plane compressive properties of nickel based pyramidal lattice truss structures with hollow trusses. Thin-Walled Structures, 2021, 159, 107247.	5.3	9
887	Mechanical behavior of ultralight nickel metamaterial. Applied Physics Letters, 2021, 118, .	3.3	2
888	Hierarchically Porous Ceramics via Direct Writing of Binary Colloidal Gel Foams. ACS Applied Materials & Samp; Interfaces, 2021, 13, 8976-8984.	8.0	34
889	Understanding and suppressing shear band formation in strut-based lattice structures manufactured by laser powder bed fusion. Materials and Design, 2021, 199, 109416.	7.0	48
890	Tensegrity Metamaterials: Toward Failureâ€Resistant Engineering Systems through Delocalized Deformation. Advanced Materials, 2021, 33, e2005647.	21.0	37
891	Manufacturing and Characterization of 3D Miniature Polymer Lattice Structures Using Fused Filament Fabrication. Polymers, 2021, 13, 635.	4.5	17
892	An experimental investigation of analytical vs. numerical lattice structure design tools. Mechanics of Advanced Materials and Structures, 2022, 29, 3614-3622.	2.6	3
893	Mechanical properties of additively manufactured variable lattice structures of Ti6Al4V. Materials Science & Science amp; Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 809, 140925.	5.6	29
894	From 1D electrospun nanofibers to advanced multifunctional fibrous 3D aerogels. Applied Materials Today, 2021, 22, 100964.	4.3	33

#	Article	IF	Citations
895	Functionally Graded Materials Beams Subjected to Bilateral Constraints: Structural Instability and Material Topology. International Journal of Mechanical Sciences, 2021, 194, 106218.	6.7	11
896	Design of self-supporting lattices for additive manufacturing. Journal of the Mechanics and Physics of Solids, 2021, 148, 104298.	4.8	39
897	3D ordered nanoelectrodes for energy conversion applications: thermoelectric, piezoelectric, and electrocatalytic applications. Journal of the Korean Ceramic Society, 2021, 58, 379-398.	2.3	12
898	Fluid interfacial energy drives the emergence of three-dimensional periodic structures in micropillar scaffolds. Nature Physics, 2021, 17, 794-800.	16.7	17
899	Scaling behavior of stiffness and strength of hierarchical network nanomaterials. Science, 2021, 371, 1026-1033.	12.6	88
900	Scalable fiber composite lattice structures via continuous spatial weaving. Composite Structures, 2021, 262, 113651.	5.8	5
901	A Novel Rapid Manufacturing Process for Metal Lattice Structure. 3D Printing and Additive Manufacturing, 2021, 8, 111-125.	2.9	10
902	Mechanical properties and failure behaviour of architected alumina microlattices fabricated by stereolithography 3D printing. International Journal of Mechanical Sciences, 2021, 196, 106285.	6.7	27
903	Thermal insulation performance and heat transfer mechanism of C/SiC corrugated lattice core sandwich panel. Aerospace Science and Technology, 2021, 111, 106539.	4.8	19
904	Geometry Design Using Function Representation on a Sparse Hierarchical Data Structure. CAD Computer Aided Design, 2021, 133, 102989.	2.7	7
905	Hollow medium-entropy alloy nanolattices with ultrahigh energy absorption and resilience. NPG Asia Materials, 2021, 13, .	7.9	34
906	Deformation and ductile fracture of nanocrystalline gold ultrathin nanoribbon: Width effect. Fatigue and Fracture of Engineering Materials and Structures, 2021, 44, 1850-1861.	3.4	5
907	Broad Tunability in mechanical properties of closed cellular foams using micro-bubble assembly of Graphene/silica Nanocomposites. Materials and Design, 2021, 202, 109558.	7.0	6
908	Nanonetwork Thermosets from Templated Polymerization for Enhanced Energy Dissipation. Nano Letters, 2021, 21, 3355-3363.	9.1	17
909	A review of coated nano- and micro-lattice materials. Journal of Materials Research, 2021, 36, 3607-3627.	2.6	10
910	Additiveâ€free, robust and superelastic dualâ€network graphene/melamine composite sponge for motion sensing. Journal of Applied Polymer Science, 2021, 138, 50788.	2.6	1
911	Mechanical Characteristics of Superimposed 316L Lattice Structures under Static and Dynamic Loading. Advanced Engineering Materials, 2021, 23, 2001536.	3.5	11
912	The mechanical and catalytic behavior of nanoporous copper film on octet-truss lattice via magnetron sputtering. Thin Solid Films, 2021, 724, 138628.	1.8	4

#	ARTICLE	IF	CITATIONS
913	Simultaneous Reciprocal and Real Space X-Ray Imaging of Time-Evolving Systems. Physical Review Applied, 2021, 15 , .	3.8	8
914	Topology optimization design of quasi-periodic cellular structures based on erode–dilate operators. Computer Methods in Applied Mechanics and Engineering, 2021, 377, 113720.	6.6	26
915	Selectively Metalizable Stereolithography Resin for Three-Dimensional DC and High-Frequency Electronics via Hybrid Additive Manufacturing. ACS Applied Materials & Electronics (2021, 13, 22891-22901.	8.0	25
916	Microlattice Metamaterials with Simultaneous Superior Acoustic and Mechanical Energy Absorption. Small, 2021, 17, e2100336.	10.0	72
917	Three-Dimensional Reticulated, Spongelike, Resilient Aerogels Assembled by SiC/Si ₃ N ₄ Nanowires. Nano Letters, 2021, 21, 4167-4175.	9.1	34
918	The Twisting of Domeâ€Like Metamaterial from Brittle to Ductile. Advanced Science, 2021, 8, 2002701.	11.2	17
919	Influence of microstructure topology on the mechanical properties of powder compacted materials. International Journal of Mechanical Sciences, 2021, 198, 106353.	6.7	3
920	Lightweight and low thermal conducted face-centered-cubic cementitious lattice materials (FCLMs). Composite Structures, 2021, 263, 113536.	5.8	6
921	A Sierpiński triangle geometric algorithm for generating stronger structures. Journal of Physics: Conference Series, 2021, 1901, 012066.	0.4	7
922	Developable Metamaterials: Mass-fabricable Metamaterials by Laser-Cutting Elastic Structures. , 2021, , .		11
923	Intelligent Shape-Morphing Micromachines. Research, 2021, 2021, 9806463.	5.7	6
924	Multiscale optimization of specific elastic properties and microscopic frequency band-gaps of architectured microtruss lattice materials. International Journal of Mechanical Sciences, 2021, 197, 106320.	6.7	23
925	Design for additive manufacturing from a force-flow perspective. Materials and Design, 2021, 204, 109664.	7.0	29
926	Hollow-grained "Voronoi foam―ceramics with high strength and thermal superinsulation up to 1400â€ ⁻ °C. Materials Today, 2021, 46, 35-43.	14.2	14
927	Cellular fluidics. Nature, 2021, 595, 58-65.	27.8	106
928	Cu2Se-based thermoelectric cellular architectures for efficient and durable power generation. Nature Communications, 2021, 12, 3550.	12.8	41
929	Compressive properties of 3-D printed Mg–NiTi interpenetrating-phase composite: Effects of strain rate and temperature. Composites Part B: Engineering, 2021, 215, 108783.	12.0	16
930	Discontinuous yielding of pristine micro-crystals. Comptes Rendus Physique, 2021, 22, 201-248.	0.9	4

#	Article	IF	CITATIONS
931	Microstructural design of tunable elastoplastic two-phase random heterogeneous materials. Materials Today Communications, 2021, 27, 102300.	1.9	0
932	Highly anisotropic graphene aerogels fabricated by calcium ion-assisted unidirectional freezing for highly sensitive sensors and efficient cleanup of crude oil spills. Carbon, 2021, 178, 301-309.	10.3	36
933	Optimization Design of Lattice Structures in Internal Cooling Channel of Turbine Blade. Applied Sciences (Switzerland), 2021, 11, 5838.	2.5	5
934	Light-induced levitation of ultralight carbon aerogels via temperature control. Scientific Reports, 2021, 11, 12413.	3.3	7
935	Multiscale Modelling and Mechanical Anisotropy of Periodic Cellular Solids with Rigid-Jointed Truss-Like Microscopic Architecture. Applied Mechanics, 2021, 2, 331-355.	1.5	3
936	Flow and heat transfer characteristics of a staggered array of Kagome lattice structures in rectangular channels. Heat and Mass Transfer, 2022, 58, 41-64.	2.1	10
937	3D architected temperature-tolerant organohydrogels with ultra-tunable energy absorption. IScience, 2021, 24, 102789.	4.1	3
938	Design, fabrication and applications of soft network materials. Materials Today, 2021, 49, 324-350.	14.2	36
939	A novel type of tubular structure with auxeticity both in radial direction and wall thickness. Thin-Walled Structures, 2021, 163, 107758.	5.3	54
940	Fabrication of Nonâ€Uniform Nanolattices with Spatially Varying Geometry and Material Composition. Advanced Materials Interfaces, 2021, 8, 2100690.	3.7	7
941	Stiffness characteristics for a series of lightweight mechanical metamaterials with programmable thermal expansion. International Journal of Mechanical Sciences, 2021, 202-203, 106527.	6.7	22
942	Robust 3D Graphene/Cellulose Nanocrystals Hybrid Lamella Network for Stable and Highly Efficient Solar Desalination. Solar Rrl, 2021, 5, 2100317.	5.8	29
943	Fast Spontaneous Transport of a Non-wetting Fluid in a Disordered Nanoporous Medium. Transport in Porous Media, 2021, 139, 21-44.	2.6	4
944	Mechanical design and energy absorption of 3D novel hybrid lattice metamaterials. Science China Technological Sciences, 2021, 64, 2220-2228.	4.0	18
945	Influence of pore shape on impact dynamics characteristics of functionally graded brittle materials. Journal of Strain Analysis for Engineering Design, 0, , 030932472110297.	1.8	2
946	Damage-tolerant 3D-printed ceramics via conformal coating. Science Advances, 2021, 7, .	10.3	32
947	3D printed recoverable honeycomb composites reinforced by continuous carbon fibers. Composite Structures, 2021, 268, 113974.	5.8	30
948	Non-invasive morphological characterization of cellular loofa sponges using digital microscopy and micro-CT. International Journal of Chemical Reactor Engineering, 2021, .	1.1	0

#	Article	IF	Citations
949	Elastic Recovery Properties of Ultralight Carbon Nanotube/Carboxymethyl Cellulose Composites. Materials, 2021, 14, 4059.	2.9	3
950	3D-Printed Architected Materials Inspired by Cubic Bravais Lattices. ACS Biomaterials Science and Engineering, 2023, 9, 3935-3944.	5.2	18
951	Fiber-tip polymer clamped-beam probe for high-sensitivity nanoforce measurements. Light: Science and Applications, 2021, 10, 171.	16.6	61
952	Recent Advancements of Micro-Lattice Structures: Application, Manufacturing Methods, Mechanical Properties, Topologies and Challenges. Arabian Journal for Science and Engineering, 2021, 46, 11587-11600.	3.0	15
953	Shape transformers for phononic band gaps tuning in two-dimensional Bloch-periodic lattice structures. European Journal of Mechanics, A/Solids, 2021, 89, 104278.	3.7	15
954	3D printing of carbon-based materials for supercapacitors. Journal of Materials Research, 2021, 36, 4508-4526.	2.6	7
955	A Fabrication Strategy for Reconfigurable Millimeterâ€Scale Metamaterials. Advanced Functional Materials, 2021, 31, 2103428.	14.9	12
956	Three-Dimensional Trampolinelike Behavior in an Ultralight Elastic Metamaterial. Physical Review Applied, 2021, 16, .	3.8	12
957	Effect of strain rate on the deformation of hollow CoS nanoboxes and doubly porous self-assembled films. Extreme Mechanics Letters, 2021, 47, 101354.	4.1	1
958	Synthesis of Free-Standing Silver Foam via Oriented and Additive Nanojoining. ACS Applied Materials & Samp; Interfaces, 2021, 13, 38637-38646.	8.0	3
959	Stiff and strong, lightweight bi-material sandwich plate-lattices with enhanced energy absorption. Journal of Materials Research, 2021, 36, 3628-3641.	2.6	10
960	3D-Printing Damage-Tolerant Architected Metallic Materials with Shape Recoverability via Special Deformation Design of Constituent Material. ACS Applied Materials & Samp; Interfaces, 2021, 13, 39915-39924.	8.0	17
961	Study on flow and heat transfer performance of X-type truss array cooling channel. Case Studies in Thermal Engineering, 2021, 26, 101034.	5.7	10
962	Neuronâ€Inspired Steiner Tree Networks for 3D Lowâ€Density Metastructures. Advanced Science, 2021, 8, e2100141.	11.2	10
963	Unconventional Additive Manufacturing for Multiscale Ceramic Structures. Journal of the Korean Society for Precision Engineering, 2021, 38, 639-650.	0.2	1
964	Scalable 3D printing of aperiodic cellular structures by rotational stacking of integral image formation. Science Advances, 2021, 7, eabh1200.	10.3	17
965	Controlling Liquid Crystal Orientations for Programmable Anisotropic Transformations in Cellular Microstructures. Advanced Materials, 2021, 33, e2105024.	21.0	22
966	3D direct printing of mechanical and biocompatible hydrogel meta-structures. Bioactive Materials, 2022, 10, 48-55.	15.6	13

#	Article	IF	CITATIONS
967	Architected Multimaterial Lattices with Thermally Programmable Mechanical Response. Advanced Functional Materials, 2022, 32, 2105128.	14.9	44
968	Functional mechanical metamaterial with independently tunable stiffness in the three spatial directions. Materials Today Advances, 2021, 11, 100155.	5.2	12
969	Multi-step metamaterials with two phases of elastic and plastic deformation. Composite Structures, 2021, 271, 114152.	5.8	20
970	Energy absorption diagram characteristic of metallic self-supporting 3D lattices fabricated by additive manufacturing and design method of energy absorption structure. International Journal of Solids and Structures, 2021, 226-227, 111082.	2.7	23
971	Biomimetic assembly to superplastic metal–organic framework aerogels for hydrogen evolution from seawater electrolysis. Exploration, 2021, 1, 217.	11.0	59
972	Dual plateau stress of C15-type topologically close-packed lattice structures additive-manufactured by laser powder bed fusion. Scripta Materialia, 2021, 202, 114003.	5. 2	14
973	Tailoring Nanonetsâ€Engineered Superflexible Nanofibrous Aerogels with Hierarchical Cageâ€Like Architecture Enables Renewable Antimicrobial Air Filtration. Advanced Functional Materials, 2021, 31, 2107223.	14.9	50
974	Experimental and Analytical Analysis of Mechanical Properties for Large-Size Lattice Truss Panel Structure Including Role of Connected Structure. Materials, 2021, 14, 5099.	2.9	1
975	Strain Rate and Structure Dependent Behavior of Lattice Structures of a Titanium Alloy Fabricated by Selective Laser Melting. Journal of Dynamic Behavior of Materials, 2022, 8, 57-72.	1.7	4
976	Additively Manufactured Deformationâ€Recoverable and Broadband Soundâ€Absorbing Microlattice Inspired by the Concept of Traditional Perforated Panels. Advanced Materials, 2021, 33, e2104552.	21.0	67
977	Mechanical behavior of <scp>3D</scp> â€printed polymeric metamaterials for lightweight applications. Journal of Applied Polymer Science, 2022, 139, 51618.	2.6	15
978	Hollow-walled lattice materials by additive manufacturing: Design, manufacture, properties, applications and challenges. Current Opinion in Solid State and Materials Science, 2021, 25, 100940.	11.5	31
979	Self-assembling of versatile Si3N4@SiO2 nanofibre sponges by direct nitridation of photovoltaic silicon waste. Journal of Hazardous Materials, 2021, 419, 126385.	12.4	5
980	Double-wall ceramic nanolattices: Increased stiffness and recoverability by design. Materials and Design, 2021, 208, 109928.	7.0	6
981	Compression behavior of strut-reinforced hierarchical latticeâ€"Experiment and simulation. International Journal of Mechanical Sciences, 2021, 210, 106749.	6.7	32
982	3D printed polymeric formwork for lattice cementitious composites. Journal of Building Engineering, 2021, 43, 103074.	3.4	6
983	A design strategy of bio-inspired defensive structures with stiffness programmability for reusable impact-resistance protection. International Journal of Impact Engineering, 2021, 157, 103982.	5.0	8
984	Mechanical design and energy absorption performances of rational gradient lattice metamaterials. Composite Structures, 2021, 277, 114606.	5.8	37

#	Article	IF	Citations
985	Impact resistance of additively manufactured 3D double-U auxetic structures. Thin-Walled Structures, 2021, 169, 108373.	5.3	21
986	Metal-Based 3D-Printed Micro Parts & Structures., 2022,, 448-461.		10
987	Rigid and flexible polyimide aerogels with less fatigue for use in harsh conditions. Chemical Engineering Journal, 2022, 428, 131193.	12.7	19
988	3D nonlinear photolithography of Tin oxide ceramics via femtosecond laser. Science China Materials, 2021, 64, 1477-1484.	6.3	9
989	Hierarchical Interface Engineering for Advanced Nanocellulosic Hybrid Aerogels with High Compressibility and Multifunctionality. Advanced Functional Materials, 2021, 31, 2009349.	14.9	80
990	Introduction to mechanical metamaterials and their effective properties. Comptes Rendus Physique, 2020, 21, 751-765.	0.9	2
991	Optimizing film thickness to delay strut fracture in high-entropy alloy composite microlattices. International Journal of Extreme Manufacturing, 2021, 3, 025101.	12.7	12
993	Photosynthesis-assisted remodeling of three-dimensional printed structures. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	20
994	Soap film inspired mechanical metamaterials approaching theoretical bound of stiffness across full density range. Materials Horizons, 2021, 8, 987-996.	12.2	18
995	Metals by Microâ€Scale Additive Manufacturing: Comparison of Microstructure and Mechanical Properties. Advanced Functional Materials, 2020, 30, 1910491.	14.9	52
996	Numerical Analysis of the Response of Biomimetic Cellular Materials Under Static and Dynamic Loadings., 2014,, 55-89.		3
997	Novel Protection Mechanism of Blast and Impact Waves by Using Nanoporous Materials. Conference Proceedings of the Society for Experimental Mechanics, 2016, , 177-183.	0.5	4
998	Automated Casting Systems for Spatial Concrete Lattices. , 2015, , 213-223.		6
999	Topology Optimization Design of Typical Hinge for Civil Aircraft. Lecture Notes in Electrical Engineering, 2019, , 2872-2881.	0.4	2
1000	Graphene-based 3D lightweight cellular structures: Synthesis and applications. Korean Journal of Chemical Engineering, 2020, 37, 189-208.	2.7	10
1001	Maximizing mechanical properties and minimizing support material of PolyJet fabricated 3D lattice structures. Additive Manufacturing, 2020, 35, 101257.	3.0	20
1002	Dual-templated electrodeposition and characterization of regular metallic foam based microarchitectures. Applied Materials Today, 2020, 20, 100667.	4.3	5
1003	Design and characterization of 3D AuxHex lattice structures. International Journal of Mechanical Sciences, 2020, 181, 105700.	6.7	57

#	ARTICLE	IF	Citations
1004	Introducing Bioinspired Initiator into Resins for In Situ Repairing of 3D-Printed Metallic Structures. ACS Applied Materials & Structures, 2020, 12, 49073-49079.	8.0	5
1005	3D Printing of Liquid Crystal Elastomer Foams for Enhanced Energy Dissipation Under Mechanical Insult. ACS Applied Materials & Samp; Interfaces, 2021, 13, 12698-12708.	8.0	52
1006	Origami lattices and folding-induced lattice transformations. Physical Review Research, 2019, 1, .	3.6	11
1007	Stiffness and Strength of Hexachiral Honeycomb-Like Metamaterials. Journal of Applied Mechanics, Transactions ASME, 2019, 86, .	2.2	32
1008	Mechanical design of negative stiffness honeycomb materials. Integrating Materials and Manufacturing Innovation, 2015, 4, 165.	2.6	1
1009	Blowing Route to Fabricate Foams of 2D Materials. Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2020, 35, 1315.	1.3	7
1010	Topology Optimization of Solid Rocket Fuel. AIAA Journal, 2019, 57, 1684-1690.	2.6	4
1011	Epitaxial Growth of Three-Dimensional ZnO and GaN Light Emitting Crystals. Journal of the Korean Ceramic Society, 2018, 55, 108-115.	2.3	1
1012	Shock plasticity design of brittle material. Wuli Xuebao/Acta Physica Sinica, 2015, 64, 188301.	0.5	2
1013	Support vector machines for predicting the compressive response of defected 3D printed polymeric sandwich structures. Journal of Engineering, Design and Technology, 2021, ahead-of-print, .	1.7	O
1014	A reusable metastructure for tri-directional energy dissipation. International Journal of Mechanical Sciences, 2022, 214, 106870.	6.7	15
1015	Manufacturability of Ti-6Al-4V Hollow-Walled Lattice Struts by Laser Powder Bed Fusion. Jom, 2021, 73, 4199-4208.	1.9	10
1016	Poroelastic microlattices for underwater wave focusing. Extreme Mechanics Letters, 2021, 49, 101499.	4.1	5
1017	On the accuracy of a homogenized continuum model of lattice structures in modal analyses. Mechanics of Advanced Materials and Structures, 2022, 29, 6768-6785.	2.6	9
1018	The effect of topology on the quasi-static and dynamic behaviour of SLM AlSi10Mg lattice structures. International Journal of Advanced Manufacturing Technology, 2022, 118, 4085-4104.	3.0	34
1019	Two elastically equivalent compound truss lattice materials with controllable anisotropic mechanical properties. International Journal of Mechanical Sciences, 2022, 213, 106879.	6.7	13
1020	Ultra-low-density digitally architected carbon with a strutted tube-in-tube structure. Nature Materials, 2021, 20, 1498-1505.	27.5	28
1021	Mechanical properties of 3D hybrid double arrow-head structure with tunable Poisson's ratio. Aerospace Science and Technology, 2021, 119, 107177.	4.8	19

#	Article	IF	CITATIONS
1022	Fractal Structures Do More with Less. Physics Magazine, 0, 5, .	0.1	0
1024	Materials ultralleugers: la importÃncia de l'estructura tridimensional. CiÃ^ncies Revista Del Professorat De CiÂ^ncies De PrimÀria I SecundÀria, 2016, , 55.	0.3	O
1025	Biopolymers and Phospho-Bioassemblies. , 2016, , 863-954.		0
1026	TWO-LAYER PLATE MECHANICAL METAMATERIALS., 2016, , .		1
1027	Preliminary Development of Pinwheel Model Created by Convergent Truss Structure with Biological DNA Structure. Journal of the Korea Convergence Society, 2016, 7, 181-190.	0.1	0
1028	Development of Effective Stiffness and Effective Strength for a Truss-Wall Rectangular model combined with Micro-Lattice Truss. Journal of the Korean Society of Industry Convergence, 2016, 19, 133-143.	0.0	0
1029	Study of Effective Stiffness and Effective Strength for a Pinwheel Model combined with Diamond Truss-Wall Corrugation (P-TDC). Journal of the Korean Society of Industry Convergence, 2016, 19, 109-124.	0.0	0
1030	Ferroic Nanometamaterials and Composites. Nanostructure Science and Technology, 2017, , 193-214.	0.1	0
1031	High-throughput 3D printing of customized imaging lens. , 2018, , .		2
1032	In-situ compression and electrochemical studies of graphene foam. Veruscript Functional Nanomaterials, 2018, 2, 1-10.	0.2	0
1033	Fabrication Techniques for Three-Dimensional Optical Metamaterials. Springer Series in Materials Science, 2019, , 7-42.	0.6	1
1035	Out-of-Plane Impact Resistance Enhancement in Plane Lattice With Curved Links. Journal of Applied Mechanics, Transactions ASME, 2019, 86, .	2.2	1
1036	Engineer Energy Dissipation in 3D Graphene Nanolattice Via Reversible Snap-Through Instability. Journal of Applied Mechanics, Transactions ASME, 2020, 87, .	2.2	4
1037	Energy-based approach for failure assessment of 3D architectured materials. Procedia Structural Integrity, 2020, 28, 2181-2186.	0.8	O
1038	AkÄ \pm msÄ \pm z nikel kaplanmÄ \pm ÅŸ mikro kafes yapÄ \pm larÄ \pm n mekanik özelliklerinin incelenmesi. Journal of the Facul of Engineering and Architecture of Gazi University, 0, , .	ty _{0.8}	0
1039	Additive manufacturing of metallic lattice structures: Unconstrained design, accurate fabrication, fascinated performances, and challenges. Materials Science and Engineering Reports, 2021, 146, 100648.	31.8	209
1040	Ultralight Metallic/Composite Materials with Architected Cellular Structures. Mechanisms and Machine Science, 2021, , 20-28.	0.5	1
1041	Enhance the energy dissipation ability of sleeve-type negative stiffness structures via a phase-difference mechanism. International Journal of Mechanical Sciences, 2022, 213, 106803.	6.7	13

#	Article	IF	CITATIONS
1042	Isotropic design and mechanical characterization of TPMS-based hollow cellular structures. Composite Structures, 2022, 279, 114818.	5.8	28
1043	MEMS lithography. , 2020, , 399-416.		1
1044	Architectured hierarchical porous metals enabled by additive manufacturing. Australian Journal of Mechanical Engineering, 2021, 19, 669-679.	2.1	3
1045	Hierarchically Structured Components: Design, Additive Manufacture, and Their Energy Applications. Advanced Materials Technologies, 0, , 2100672.	5.8	4
1046	Postbuckling behavior and imperfection sensitivity of elastic–plastic periodic plate-lattice materials. Extreme Mechanics Letters, 2022, 50, 101510.	4.1	6
1047	Mechanical performances and coupling design for the mechanical metamaterials with tailorable thermal expansion. Mechanics of Materials, 2022, 165, 104176.	3.2	22
1048	Density, Microstructure, and Strain-Rate Effects on the Compressive Response of Polyurethane Foams. Experimental Mechanics, 2022, 62, 505-519.	2.0	10
1049	Multiscale modeling of materials: Computing, data science, uncertainty and goal-oriented optimization. Mechanics of Materials, 2022, 165, 104156.	3.2	20
1050	Experimental and Optimization Study of Compression Behavior of Sandwich Panels with New Symmetric Lattice Cores. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 0, , 146442072110497.	1.1	0
1051	Hierarchical porous materials made by stereolithographic printing of photo-curable emulsions. Scientific Reports, 2021, 11, 22316.	3.3	18
1052	Elastic and highly fatigue resistant ZrO2-SiO2 nanofibrous aerogel with low energy dissipation for thermal insulation. Chemical Engineering Journal, 2022, 433, 133628.	12.7	31
1053	Mechanical Properties and Energy Absorption Characteristics of Additively Manufactured Lightweight Novel Re-Entrant Plate-Based Lattice Structures. Polymers, 2021, 13, 3882.	4.5	13
1054	Ultralight, anisotropic, and self-supported graphene/MWCNT aerogel with high-performance microwave absorption. Carbon, 2022, 188, 442-452.	10.3	44
1055	Compressive properties of imperfect Ti-6Al-4V lattice structure fabricated by electron beam powder bed fusion under static and dynamic loadings. Additive Manufacturing, 2022, 49, 102497.	3.0	4
1056	Bump deformation of gold film induced by ultrafast laser. , 2021, , .		0
1057	h-BN and graphene-based ultralight hybrid aerogels: Highly efficient sorbent for recovery of hydrocarbon oils and organic solvents. Journal of Environmental Chemical Engineering, 2021, 9, 106788.	6.7	14
1059	Smart/stimuli-responsive hydrogels: Cutting-edge platforms for tissue engineering and other biomedical applications. Materials Today Bio, 2022, 13, 100186.	5.5	129
1060	Cooling performance analysis and structural parameter optimization of X-type truss array channel based on neural networks and genetic algorithm. International Journal of Heat and Mass Transfer, 2022, 186, 122452.	4.8	13

#	Article	IF	CITATIONS
1061	Properties and applications of additively manufactured metallic cellular materials: A review. Progress in Materials Science, 2022, 125, 100918.	32.8	164
1063	Geometrical parameters and mechanical properties of Ti6Al4V hollow-walled lattices. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 840, 142667.	5.6	16
1064	Recent advances in the stereolithographic three-dimensional printing of ceramic cores: Challenges and prospects. Journal of Materials Science and Technology, 2022, 117, 79-98.	10.7	29
1065	Effective electromagnetic interference shielding properties of micro-truss structured CNT/Epoxy composites fabricated based on visible light processing. Composites Science and Technology, 2022, 221, 109296.	7.8	20
1066	Structural material with designed thermal twist for a simple actuation. Nanotechnology Reviews, 2022, 11, 414-422.	5.8	3
1067	Effect of surface residual stress and surface layer stiffness on mechanical properties of nanowires. Acta Mechanica, 2022, 233, 233-257.	2.1	6
1068	3D Printed Templateâ€Directed Assembly of Multiscale Graphene Structures. Advanced Functional Materials, 2022, 32, .	14.9	18
1069	Strutâ€Based Cellular to Shellular Funicular Materials. Advanced Functional Materials, 2022, 32, .	14.9	10
1070	On Stiffness, Strength, Anisotropy, and Buckling of 30 Strutâ€Based Lattices with Cubic Crystal Structures. Advanced Engineering Materials, 2022, 24, .	3.5	21
1071	Fully-printed metamaterial-type flexible wings with controllable flight characteristics. Bioinspiration and Biomimetics, 2022, 17, 025002.	2.9	7
1072	Shape Memory Alloys via Halideâ€Activated Pack Equilibration (SHAPE). Advanced Engineering Materials, 0, , .	3.5	0
1073	Micro-engineered architected metamaterials for cell and tissue engineering. Materials Today Advances, 2022, 13, 100206.	5.2	15
1074	High strain-rate compression behavior of polymeric rod and plate Kelvin lattice structures. Mechanics of Materials, 2022, 166, 104216.	3.2	17
1075	A novel parameter to tailor the properties of prismatic lattice materials. International Journal of Mechanical Sciences, 2022, 219, 107079.	6.7	4
1076	Repeated energy absorption and multiple compressive responses of thermoplastic composite hierarchical cylindrical structures. Composites Science and Technology, 2022, 221, 109306.	7.8	8
1078	Nanograin–glass dual-phasic, elasto-flexible, fatigue-tolerant, and heat-insulating ceramic sponges at large scales. Materials Today, 2022, 54, 72-82.	14.2	62
1079	A Programmable Liquid Crystal Elastomer Metamaterials With Soft Elasticity. Frontiers in Robotics and Al, 2022, 9, 849516.	3.2	3
1080	Elastic response of polymer-nanoparticle composite sponges: Microscopic model for large deformations. Physical Review Materials, 2022, 6, .	2.4	0

#	Article	IF	CITATIONS
1081	Ag Nanoparticle-Enabled Electroless Deposition of Ni on Mine-Formaldehyde Sponges for Oil–Water Separation, Piezoresistive Sensing, and Electromagnetic Shielding. ACS Applied Nano Materials, 2022, 5, 4204-4213.	5.0	7
1082	Additive manufacturing of cellular ceramic structures: From structure to structure–function integration. Materials and Design, 2022, 215, 110470.	7.0	57
1083	Grafted-to Polymeric Layers Enabling Highly Adhesive Copper Films Deposited by Electroless Plating on Ultra-Smooth Three-Dimensional-Printed Surfaces. ACS Applied Electronic Materials, 2022, 4, 1864-1874.	4.3	7
1084	Vibration of a Satellite Structure with Composite Lattice Truss Core Sandwich Panels. AIAA Journal, 2022, 60, 3389-3401.	2.6	1
1085	Harnessing Friction in Intertwined Structures for Highâ€Capacity Reusable Energyâ€Absorbing Architected Materials. Advanced Science, 2022, 9, e2105769.	11.2	13
1086	Overview of Geometric Ways to Increase the Constructions' Specific Strength: Topological Optimization and Fractal Structures. Geometry & Graphics, 2022, , 46-62.	2.4	3
1087	A metafluid with multistable density and internal energy states. Nature Communications, 2022, 13, 1810.	12.8	5
1088	Topology Optimization of Graded Truss Lattices Based on On-the-Fly Homogenization. Journal of Applied Mechanics, Transactions ASME, 2022, 89, .	2.2	12
1089	Stochastic analysis of geometrically imperfect thin cylindrical shells using topology-aware uncertainty models. Computer Methods in Applied Mechanics and Engineering, 2022, 393, 114780.	6.6	8
1090	Machine learning assisted investigation of defect influence on the mechanical properties of additively manufactured architected materials. International Journal of Mechanical Sciences, 2022, 221, 107190.	6.7	26
1091	Design and fabrication of architected multi-material lattices with tunable stiffness, strength, and energy absorption. Materials and Design, 2022, 217, 110613.	7.0	34
1092	Ceramic/polymer microlattices: Increasing specific energy absorption through sandwich construction. Extreme Mechanics Letters, 2022, 53, 101708.	4.1	6
1093	3D lightweight double arrow-head plate-lattice auxetic structures with enhanced stiffness and energy absorption performance. Composite Structures, 2022, 290, 115484.	5.8	43
1094	Self-adaptive 3D lattice for curved sandwich structures. Additive Manufacturing, 2022, 54, 102761.	3.0	1
1095	High performance, microarchitected, compact heat exchanger enabled by 3D printing. Applied Thermal Engineering, 2022, 210, 118339.	6.0	59
1097	Three-scale concurrent topology optimization for the design of the hierarchical cellular structure. Structural and Multidisciplinary Optimization, 2022, 65, .	3.5	2
1098	Twin mechanical metamaterials inspired by nano-twin metals: Experimental investigations. Composite Structures, 2022, 291, 115580.	5.8	5
1099	Additive manufacturing of high aspect-ratio structures with self-focusing photopolymerization. Light Advanced Manufacturing, 2022, 3, 542.	5.1	4

#	Article	IF	CITATIONS
1100	Study on thermal-mechanical coupling performance and failure mechanism of titanium alloy lattice structures in high temperature environment. Xibei Gongye Daxue Xuebao/Journal of Northwestern Polytechnical University, 2022, 40, 25-32.	0.5	1
1101	Deformation behaviour of hexagonal- and circular-patterned Ni single-crystal 2D micro-lattices via in situ micro-tensile testing and computational analysis. Journal of Materials Science, 2022, 57, 8276-8297.	3.7	1
1102	Design and Analysis of a Hollow Metallic Microlattice Active Cooling System for Microsatellites. Nanomaterials, 2022, 12, 1485.	4.1	0
1103	Mechanics of Three-Dimensional Soft Network Materials With a Class of Bio-Inspired Designs. Journal of Applied Mechanics, Transactions ASME, 2022, 89, .	2.2	7
1104	Design Method of the Conformal Lattice Structures. Advanced Engineering Materials, 2022, 24, .	3.5	3
1105	Structural Design and Fabrication of Multifunctional Nanocarbon Materials for Extreme Environmental Applications. Advanced Materials, 2022, 34, e2201046.	21.0	26
1106	Multifunctionality of Nanoengineered Self‧ensing Lattices Enabled by Additive Manufacturing. Advanced Engineering Materials, 2022, 24, .	3.5	8
1107	Enhancing specific energy absorption of additively manufactured titanium lattice structures through simultaneous manipulation of architecture and constituent material. Additive Manufacturing, 2022, 55, 102887.	3.0	4
1108	Thermo-mechanical performance of 3D-printed TC4 hierarchical lattice-truss-core sandwich structures in high temperature conditions. Mechanics of Advanced Materials and Structures, 2023, 30, 3280-3292.	2.6	2
1109	Block Copolymer Modified Nanonetwork Epoxy Resin for Superior Energy Dissipation. Polymers, 2022, 14, 1891.	4.5	2
1110	Broadband mechanical metamaterial absorber enabled by fused filament fabrication 3D printing. Additive Manufacturing, 2022, 55, 102856.	3.0	3
1111	Preliminary study on the effect of microstructure shape on impact compression dynamic fracture of two-dimensional brittle materials protective structures. European Journal of Mechanics, A/Solids, 2022, 95, 104625.	3.7	3
1112	Halloysite-based aerogels by bidirectional freezing with mechanical properties, thermal insulation and flame retardancy. Applied Clay Science, 2022, 225, 106547.	5.2	6
1113	FLUID3EAMS: Fluid–Fluid Interfacial Energy Driven 3D Structure Emergence in A Micropillar Scaffold and Development in Bioengineering. Seibutsu Butsuri, 2022, 62, 110-113.	0.1	1
1114	A Modified Three-Dimensional Negative-Poisson-Ratio Metal Metamaterial Lattice Structure. Materials, 2022, 15, 3752.	2.9	7
1115	Effective continuum models for the buckling of non-periodic architected sheets that display quasi-mechanism behaviors. Journal of the Mechanics and Physics of Solids, 2022, 166, 104934.	4.8	6
1116	Resonance frequency prediction approach of lattice structure fabricated by selective laser melting. Advances in Astronautics Science and Technology, 0, , .	0.8	1
1117	Architectural Design and Additive Manufacturing of Mechanical Metamaterials: A Review. Engineering, 2022, 17, 44-63.	6.7	44

#	Article	lF	CITATIONS
1118	An Nylon lattice structure with improved mechanical property and energy absorption capability. Composites Part C: Open Access, 2022, 8, 100285.	3.2	3
1119	Lightâ€Based Printing of Leachable Salt Molds for Facile Shaping of Complex Structures. Advanced Materials, 2022, 34, .	21.0	10
1120	Free-standing and binder-free porous monolithic electrodes prepared via sol–gel processes. Journal of Sol-Gel Science and Technology, 2022, 103, 637-679.	2.4	5
1121	On the damage tolerance of 3-D printed Mg-Ti interpenetrating-phase composites with bioinspired architectures. Nature Communications, 2022, 13, .	12.8	58
1122	Asymmetric chiral and antichiral mechanical metamaterials with tunable Poisson's ratio. APL Materials, 2022, 10, .	5.1	9
1123	Modeling lattice metamaterials with deformable joints as an elastic micropolar continuum. AIP Advances, 2022, 12, 065116.	1.3	0
1124	Selectively Metalizable Low-Temperature Cofired Ceramic for Three-Dimensional Electronics via Hybrid Additive Manufacturing. ACS Applied Materials & Samp; Interfaces, 2022, 14, 28060-28073.	8.0	16
1125	Energy dissipation and shock isolation using novel metamaterials. International Journal of Mechanical Sciences, 2022, 228, 107464.	6.7	17
1126	Responsive materials architected in space and time. Nature Reviews Materials, 2022, 7, 683-701.	48.7	80
1127	Dynamic cryo-mechanical properties of additively manufactured nanocrystalline nickel 3D microarchitectures. Materials and Design, 2022, 220, 110836.	7.0	4
1128	Forming three-dimensional micro-objects using two-dimensional gradient printing. Applied Materials Today, 2022, 28, 101538.	4.3	1
1129	Fabrication and experimental characterisation of a bistable tensegrity-like unit for lattice metamaterials. Additive Manufacturing, 2022, 57, 102946.	3.0	5
1130	Mechanical Properties of Three-Dimensional Printed Combination-Design Truss Lattice Materials: Static and Dynamic Loading. Journal of Aerospace Engineering, 2022, 35, .	1.4	2
1131	Beam formulation and FE framework for architected structures under finite deformations. European Journal of Mechanics, A/Solids, 2022, 96, 104706.	3.7	2
1132	A novel hybrid design method of lattice structure based on failure mode. Science China: Physics, Mechanics and Astronomy, 2022, 65, .	5.1	4
1133	Multifunctional protective aerogel with superelasticity over \hat{a} 196 to 500 \hat{A} C. Nano Research, 2022, 15, 7797-7805.	10.4	39
1134	Design of lightweight and ultrastrong nanoarchitected carbon by a coarse-grained model. Composites Part A: Applied Science and Manufacturing, 2022, 161, 107066.	7.6	1
1135	A class of periodic lattices for tuning elastic instabilities. Extreme Mechanics Letters, 2022, 55, 101839.	4.1	3

#	Article	IF	CITATIONS
1136	Mechanical characterization of additively-manufactured metallic lattice structures with hollow struts under static and dynamic loadings. International Journal of Impact Engineering, 2022, 169, 104333.	5.0	27
1137	On compacting pattern control of finite-size 2D soft periodic structures through combined loading. Engineering Structures, 2022, 266, 114574.	5.3	2
1138	Multiscale modeling of 3D nano-architected materials under large deformations. International Journal of Solids and Structures, 2022, 252, 111839.	2.7	1
1139	Shock compression behavior of stainless steel 316L octet-truss lattice structures. International Journal of Impact Engineering, 2022, 169, 104324.	5.0	8
1140	Bloch wave propagation in finitely stretched soft lattice. Mechanical Systems and Signal Processing, 2022, 181, 109487.	8.0	4
1141	Effect of architecture disorder on the elastic response of two-dimensional lattice materials. Physical Review E, 2022, 106, .	2.1	1
1142	Research on Pressurized Structure Based on Lattice Truss Sandwich. Advances in Astronautics Science and Technology, 0, , .	0.8	0
1143	Compositional optimization of high-solid-loading ceramic cores via 3D printing. Additive Manufacturing, 2022, 58, 103054.	3.0	1
1144	Constructive adaptation of 3D-printable polymers in response to typically destructive aquatic environments. , 2022, 1 , .		3
1145	Hierarchically porous ceramics via direct writing of preceramic polymer-triblock copolymer inks. Materials Today, 2022, 58, 71-79.	14.2	30
1146	Growing designability in structural materials. Nature Materials, 2022, 21, 968-970.	27.5	8
1147	Achieving the theoretical limit of strength in shell-based carbon nanolattices. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	23
1148	A novel strategy for designable alloy coatings in electroless plating. Transactions of the Institute of Metal Finishing, 2023, 101, 101-112.	1.3	2
1149	Thermal transport in 3D printed shape memory polymer metamaterials. APL Materials, 2022, 10, .	5.1	7
1150	Mechanical properties and failure behavior of 3D printed thermoplastic composites using continuous basalt fiber under high-volume fraction. Defence Technology, 2023, 27, 237-250.	4.2	6
1151	Nanoarchitected metal/ceramic interpenetrating phase composites. Science Advances, 2022, 8, .	10.3	25
1152	Understanding the effect of defects on compressive behaviors of closed-cell foams: Experiment and statistical model. Composites Part B: Engineering, 2022, 244, 110179.	12.0	9
1153	Design, preparation and characterization of a 3D hierarchical auxetic lattice structure produced by selective laser melting. Structures, 2022, 44, 1219-1231.	3.6	7

#	Article	IF	CITATIONS
1154	A 3D metamaterial with negative stiffness for six-directional energy absorption and cushioning. Thin-Walled Structures, 2022, 180, 109963.	5. 3	12
1155	Stretching-dominated truss lattice materials: Elastic anisotropy evaluation, control, and design. Composite Structures, 2022, 298, 116004.	5.8	9
1156	Hydrogen embrittlement in micro-architectured materials. Engineering Fracture Mechanics, 2022, 274, 108762.	4.3	4
1157	Functional aerogel coatings on tetrakaidecahedron lattice. European Polymer Journal, 2022, 180, 111575.	5.4	3
1158	Aerogel Nanomaterials for Dye Degradation. Environmental Science and Engineering, 2022, , 151-172.	0.2	0
1159	Moisture-sensitive mechanical metamaterials with unusual and re-programmable hygroscopic deformation modes. Materials Horizons, 2022, 9, 2835-2845.	12.2	4
1160	A graph-based path planning method for additive manufacturing of continuous fiber-reinforced planar thin-walled cellular structures. Rapid Prototyping Journal, 2023, 29, 344-353.	3.2	7
1161	Compression performances and damage mechanisms of Al2O3 ceramic lattices fabricated by additive manufacturing: Imitating metal crystal structures. Ceramics International, 2023, 49, 1419-1435.	4.8	5
1162	3D nanoprinting of semiconductor quantum dots by photoexcitation-induced chemical bonding. Science, 2022, 377, 1112-1116.	12.6	65
1163	Three Dimensional Printing of Bioinspired Crossed-Lamellar Metamaterials with Superior Toughness for Syntactic Foam Substitution. ACS Applied Materials & Samp; Interfaces, 2022, 14, 42504-42512.	8.0	10
1164	Anelasticity in thin-shell nanolattices. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	3
1165	Study of manufacturing defects on compressive deformation of 3D-printed polymeric lattices. International Journal of Advanced Manufacturing Technology, 2022, 122, 2561-2576.	3.0	5
1166	Lightweight, ultra-tough, 3D-architected hybrid carbon microlattices. Matter, 2022, 5, 4029-4046.	10.0	13
1168	Nanoporous black silver film with high porosity for efficient solar steam generation. Nano Research, 2023, 16, 5610-5618.	10.4	20
1169	Highly compressible and environmentally adaptive conductors with high-tortuosity interconnected cellular architecture., 2022, 1, 975-986.		16
1170	Superior mechanical properties by exploiting size-effects and multiscale interactions in hierarchically architected foams. Extreme Mechanics Letters, 2022, 57, 101899.	4.1	5
1171	Multifunctional sound-absorbing and mechanical metamaterials <i>via</i> a decoupled mechanism design approach. Materials Horizons, 2023, 10, 75-87.	12.2	44
1172	Recent advances in smartâ€responsive hydrogels for tissue repairing. , 2022, 1, .		4

#	Article	IF	CITATIONS
1173	The Novel Hybrid Lattice Structure Approach Fabricated by Laser Powder Bed Fusion and Mechanical Properties Comparison. 3D Printing and Additive Manufacturing, 0, , .	2.9	1
1174	Bioinspired Nanonetwork Hydroxyapatite from Block Copolymer Templated Synthesis for Mechanical Metamaterials. ACS Nano, 2022, 16, 18298-18306.	14.6	5
1175	Decoupling toughness and strength through architected plasticity. Extreme Mechanics Letters, 2022, 57, 101912.	4.1	3
1176	A review on the research progress of mechanical meta-structures and their applications in rail transit. , 2022, 1 , .		1
1177	Robust Carbonaceous Nanofiber Aerogels from All Biomass Precursors. Advanced Functional Materials, 2023, 33, .	14.9	16
1178	Energy-based fracture mechanics of brittle lattice materials. Journal of the Mechanics and Physics of Solids, 2022, 169, 105093.	4.8	6
1179	Reprogrammable flexible mechanical metamaterials. Applied Materials Today, 2022, 29, 101662.	4.3	9
1180	Mechanical behavior analyses of 4D printed metamaterials structures with excellent energy absorption ability. Composite Structures, 2023, 304, 116360.	5.8	17
1181	Novel slow-sound lattice absorbers based on the sonic black hole. Composite Structures, 2023, 304, 116434.	5.8	14
1182	Compressive mechanical behaviors of PPR and NPR chiral compression–twist coupling lattice structures under quasi-static and dynamic loads. Thin-Walled Structures, 2023, 182, 110234.	5. 3	9
1183	Hydrogels and Aerogels of Carbon Nanotubes. , 2022, , 1827-1844.		0
1184	Particle-reinforced ultralight hollow Ni-P-B4C microlattice composite materials. Materials Letters, 2023, 331, 133438.	2.6	2
1185	Mechanically Robust and Flexible GO/PI Hybrid Aerogels as Highly Efficient Oil Absorbents. Polymers, 2022, 14, 4903.	4.5	3
1186	Modeling and Design of Zeroâ€Stiffness Elastomer Springs Using Machine Learning. Advanced Intelligent Systems, 2022, 4, .	6.1	3
1187	Parametric shell lattice with tailored mechanical properties. Additive Manufacturing, 2022, 60, 103258.	3.0	2
1188	Experimental investigation and numerical modeling of laser powder bed fusion process-induced angle-dependent defects in strut-based lattice structure. Materials and Design, 2022, 224, 111354.	7.0	4
1189	Liquid metal lattice materials with simultaneously high strength and reusable energy absorption. Applied Materials Today, 2022, 29, 101671.	4.3	2
1190	Tailoring Structureâ€Borne Sound through Bandgap Engineering in Phononic Crystals and Metamaterials: A Comprehensive Review. Advanced Functional Materials, 2023, 33, .	14.9	37

#	Article	IF	Citations
1191	Embedded 3D Printing of Multimaterial Polymer Lattices via Graphâ€Based Print Path Planning. Advanced Materials, 2023, 35, .	21.0	20
1192	Microstructure and mechanical properties of open-cell Ni-foams with hollow struts and NiO oxide layers. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2023, 863, 144519.	5.6	O
1193	Microstructure and Properties of Hollow Octet Nickel Lattice Materials. Materials, 2022, 15, 8417.	2.9	3
1194	Inverse design of truss lattice materials with superior buckling resistance. Npj Computational Materials, 2022, 8, .	8.7	23
1195	Hierarchically Structured Nanocomposites via a "Systems Materials Science―Approach. Accounts of Materials Research, 2022, 3, 1248-1259.	11.7	5
1196	Deep-learning-based inverse design of three-dimensional architected cellular materials with the target porosity and stiffness using voxelized Voronoi lattices. Science and Technology of Advanced Materials, 2023, 24, .	6.1	8
1197	Effect of Cell Geometry on the Mechanical Properties of 3D Voronoi Tessellation. Journal of Functional Biomaterials, 2022, 13, 302.	4.4	0
1198	Reusable and efficient energy-absorbing architected materials via synergy of snap-through instability and inter-locking mechanism. Extreme Mechanics Letters, 2022, , 101948.	4.1	1
1199	Effect of Topology on Transient Dynamic and Shock Response of Polymeric Lattice Structures. Journal of Dynamic Behavior of Materials, 2023, 9, 44-64.	1.7	1
1200	On Quasi-Static and Dynamic Compressive Behaviors of Interlocked Composite Kagome Lattice Structures. Journal of Applied Mechanics, Transactions ASME, 2023, 90, .	2.2	2
1201	Macroscale Fabrication of Lightweight and Strong Porous Carbon Foams through Templateâ€Coating Pair Design. Advanced Materials, 2023, 35, .	21.0	3
1202	Additively manufactured materials and structures: A state-of-the-art review on their mechanical characteristics and energy absorption. International Journal of Mechanical Sciences, 2023, 246, 108102.	6.7	67
1203	Characterization of Filigree Additively Manufactured NiTi Structures Using Micro Tomography and Micromechanical Testing for Metamaterial Material Models. Materials, 2023, 16, 676.	2.9	1
1204	Nonâ€Hierarchical Architected Materials with Extreme Stiffness and Strength. Advanced Functional Materials, 2023, 33, .	14.9	4
1205	Electromagnetic Reconfiguration Using Stretchable Mechanical Metamaterials. Advanced Science, 2023, 10, .	11.2	4
1206	Strut and sheet metal lattices produced via AM-assisted casting and powder bed fusion: A comparative study. Additive Manufacturing Letters, 2023, 4, 100118.	2.1	3
1207	Auxetic mechanical metamaterials and their futuristic developments: A state-of-art review. Materials Today Communications, 2023, 34, 105285.	1.9	17
1208	Cooling performance of a teardrop cross-section Kagome truss-filled array jet impingement composite cooling structure. International Journal of Thermal Sciences, 2023, 186, 108140.	4.9	2

#	Article	IF	CITATIONS
1209	Fabricating polymer/HEA-hybrid topological lattice structure for enhanced mechanical properties. Progress in Natural Science: Materials International, 2022, 32, 800-805.	4.4	2
1210	Laser additive manufacturing and mechanical deformation behavior of novel multirod structure inspired by front wing of beetle., 2023,, 589-608.		O
1211	Bird-inspired robotics principles as a framework for developing smart aerospace materials. Journal of Composite Materials, 2023, 57, 679-710.	2.4	3
1212	Synthesis and Properties of Octet NiCr Alloy Lattices Obtained by the Pack Cementation Process. Applied Sciences (Switzerland), 2023, 13, 1684.	2.5	0
1213	3D Laser Nanoprinting of Functional Materials. Advanced Functional Materials, 2023, 33, .	14.9	8
1214	Corrugation Reinforced Architectured Materials by Direct Laser Hardening: A Study of Geometrically Induced Work Hardening in Steel. Steel Research International, 2023, 94, .	1.8	0
1215	Architected lightweight, sound-absorbing, and mechanically efficient microlattice metamaterials by digital light processing 3D printing. Virtual and Physical Prototyping, 2023, 18, .	10.4	19
1216	Non-Fourier thermal wave in 2D cellular metamaterials: From transient heat propagation to harmonic band gaps. International Journal of Heat and Mass Transfer, 2023, 205, 123917.	4.8	9
1217	Influence mechanism of cell-arrangement strategy on energy absorption of dual-phase hybrid lattice structure. International Journal of Impact Engineering, 2023, 175, 104528.	5.0	7
1218	Compressive strength and energy absorption characteristics of the negative stiffness honeycomb cell structure. Materials Today Communications, 2023, 35, 105498.	1.9	1
1219	Mechanical metamaterials made of freestanding quasi-BCC nanolattices of gold and copper with ultra-high energy absorption capacity. Nature Communications, 2023, 14 , .	12.8	12
1220	3D Printing of Ceramic Elements with Q-Surface Geometry for the Fabrication of Protective Barrier. Ceramics, 2023, 6, 912-921.	2.6	O
1221	Geometric imperfections in CFS structural members: Part I: A review of the basics and some modeling strategies. Thin-Walled Structures, 2023, 186, 110619.	5.3	6
1222	Tunable properties and responses of architected lattice-reinforced cementitious composite components induced by versatile cell topology and distributions. Composite Structures, 2023, 312, 116850.	5.8	3
1223	Chiral-based mechanical metamaterial with tunable normal-strain shear coupling effect. Engineering Structures, 2023, 284, 115952.	5. 3	8
1224	Discovery of quasi-disordered truss metamaterials inspired by natural cellular materials. Journal of the Mechanics and Physics of Solids, 2023, 175, 105294.	4.8	4
1225	Effect of micro-hole shape and arrangement on the impact properties of three-dimensional isotropic brittle structures. Theoretical and Applied Fracture Mechanics, 2023, 125, 103875.	4.7	1
1226	Mechanical performances of novel cosine function cell-based metallic lattice structures under quasi-static compressive loading. Composite Structures, 2023, 314, 116962.	5.8	5

#	Article	IF	CITATIONS
1227	Thermal control performance of phase change material combined with ultra-light hollow metallic microlattice for microsatellites. Applied Thermal Engineering, 2023, 227, 120374.	6.0	0
1228	Micro-holes' effect on energy absorption ability in three-dimensional brittle materials under impact loading: A preliminary research. Structures, 2023, 52, 220-229.	3.6	O
1229	The interplay between constituent material and architectural disorder in bioinspired honeycomb structures. International Journal of Engineering Science, 2023, 188, 103863.	5.0	2
1230	Designing Hierarchical Soft Network Materials with Developable Lattice Nodes for High Stretchability. Advanced Science, 2023, 10, .	11.2	4
1231	Optimization of a High Internal Phase Emulsion-Based Resin for Use in Commercial Vat Photopolymerization Additive Manufacturing. 3D Printing and Additive Manufacturing, 0, , .	2.9	4
1232	3D Printed Grapheneâ€Based Metamaterials: Guesting Multiâ€Functionality in One Gain. Small, 2023, 19, .	10.0	15
1233	Research on the coating formation of Al-induced electroless plating on metallic surfaces. Journal of Materials Science, 2023, 58, 3768-3789.	3.7	4
1234	æ£/è Ÿæ³Šæ³¼æ-"的排斥æ•^应è⁻±å⁻¼çš"å∰æ°′å‡èƒ¶åœ¨ä½Žåº"å• ä¸‹çš"å^𿀧å"应. Science China Mater	ials32023,	6 6, 1941-1
1235	Bioinspired Cellular Single-Walled Carbon Nanotube Aerogels with Temperature-Invariant Elasticity and Fatigue Resistance for Potential Energy Dissipation. ACS Applied Nano Materials, 2023, 6, 3012-3019.	5.0	2
1236	Mechanical Properties of Internally Hierarchical Multiphase Lattices Inspired by Precipitation Strengthening Mechanisms. ACS Applied Materials & Strengthening Mechanisms. ACS Applied Materials & Strengthening Mechanisms.	8.0	6
1237	The effect of geometric imperfections on the mechanical response of isotropic closed-cell plate lattices. Mechanics Research Communications, 2023, 128, 104073.	1.8	1
1238	Digitization of Freeâ€6hapable Graphene Foam with Damage Tolerance. Advanced Functional Materials, 2023, 33, .	14.9	4
1239	Design, material, function, and fabrication of metamaterials. APL Materials, 2023, 11, .	5.1	9
1240	Bandgap tuning and in-plane wave propagation of chiral and anti-chiral hybrid metamaterials with assembled six oscillators. Physica A: Statistical Mechanics and Its Applications, 2023, 615, 128600.	2.6	4
1241	Knots are not for naught: Design, properties, and topology of hierarchical intertwined microarchitected materials. Science Advances, 2023, 9, .	10.3	4
1242	Heat transfer characteristics of a channel filled with the array of drop-shaped Kagome truss cores. Numerical Heat Transfer; Part A: Applications, 0, , 1-20.	2.1	O
1243	Ultrafast 3D nanofabrication via digital holography. Nature Communications, 2023, 14, .	12.8	26
1244	A new hybrid lattice structure with improved modulus, strength and energy absorption properties. Science China Technological Sciences, 0, , .	4.0	O

#	Article	IF	CITATIONS
1245	Three-dimensional ori-kirigami metamaterials with multistability. Physical Review E, 2023, 107, .	2.1	5
1246	3Dâ€Printed Micro/Nanoâ€Scaled Mechanical Metamaterials: Fundamentals, Technologies, Progress, Applications, and Challenges. Small, 2023, 19, .	10.0	20
1247	Wood as a hydrothermally stimulated shape-memory material: mechanisms of shape-memory effect and molecular assembly structure networks. Holzforschung, 2023, .	1.9	0
1248	Design and advanced manufacturing of electromagnetic interference shielding materials. Materials Today, 2023, 66, 245-272.	14.2	40
1249	Three dimensional architected thermoelectric devices with high toughness and power conversion efficiency. Nature Communications, 2023, 14, .	12.8	14
1250	A Semiempirical Model for Postâ€Yield Stress Instability in the Stress–Strain Response of 3D Lattice Structures under Compressive Loads. Advanced Engineering Materials, 2023, 25, .	3 . 5	0
1251	Shape memory mechanical metamaterials. Materials Today, 2023, 66, 36-49.	14.2	19
1252	Interpenetrating Hollow Microlattice Metamaterial Enables Efficient Sound-Absorptive and Deformation-Recoverable Capabilities. ACS Applied Materials & Interfaces, 2023, 15, 24868-24879.	8.0	6
1253	Designable mechanical properties of modified body-centered cubic lattice materials. Composite Structures, 2023, 317, 117060.	5.8	6
1254	Environment-adaptive, anti-fatigue thermal interface graphene foam. Carbon, 2023, 212, 118142.	10.3	3
1255	Effect of truss core on sound radiation behavior of sandwich plate structures under structure borne excitation. Mechanics of Advanced Materials and Structures, 0, , 1-9.	2.6	5
1256	Effect of geometric deviations on the strength of additively manufactured ultralight periodic shell-based lattices. Engineering Failure Analysis, 2023, 150, 107328.	4.0	3
1257	Additively Manufactured Dualâ€Faced Structured Fabric for Shapeâ€Adaptive Protection. Advanced Science, 2023, 10, .	11.2	7
1258	Ultralight, ductile metal mechanical metamaterials with super elastic admissible strain (0.1). Journal of Materials Science and Technology, 2023, 162, 227-233.	10.7	2
1259	Disrupting Density-Dependent Property Scaling in Hierarchically Architected Foams. ACS Nano, 2023, 17, 10452-10461.	14.6	1
1260	Node-reinforced hollow-strut metal lattice materials for higher strength. Scripta Materialia, 2023, 234, 115547.	5.2	5
1261	Semi-open discrete mechanical metamaterials and application in robotics. Extreme Mechanics Letters, 2023, 62, 102031.	4.1	0
1262	Computational Design of Bio-inspired Mechanical Metamaterials Based on Lipidic Cubic Phases. Jom, 2023, 75, 2126-2136.	1.9	0

#	Article	IF	CITATIONS
1263	Mechanical characterization of a novel gradient thinning triangular honeycomb. Thin-Walled Structures, 2023, 188, 110862.	5.3	4
1264	Ti-6Al-4V hollow-strut lattice materials by laser powder bed fusion. Additive Manufacturing, 2023, 72, 103637.	3.0	O
1265	Response of Topological Soliton lattice structures subjected to dynamic compression and blast loading. Thin-Walled Structures, 2023, 188, 110858.	5 . 3	3
1266	Methods to spontaneously generate three dimensionally arrayed microdroplets triggered by capillarity for bioassays and bioengineering. Biophysics and Physicobiology, 2023, 20, n/a.	1.0	O
1267	Frequency-tunable and absorption/transmission-switchable microwave absorber based on a chitin-nanofiber-derived elastic carbon aerogel. Chemical Engineering Journal, 2023, 469, 144010.	12.7	14
1268	Buckling elastomeric springs and lattices for tailored energy absorption. Materials Today Communications, 2023, 35, 106417.	1.9	1
1269	Investigating the Potential of Electroless Nickel Plating for Fabricating Ultra-Porous Metal-Based Lattice Structures Using PolyHIPE Templates. ACS Applied Materials & Interfaces, 2023, 15, 30769-30779.	8.0	4
1270	Graphene aerogel-based vibration sensor with high sensitivity and wide frequency response range. Nano Research, 2023, 16, 11342-11349.	10.4	0
1271	Deep Learning in Mechanical Metamaterials: From Prediction and Generation to Inverse Design. Advanced Materials, 2023, 35, .	21.0	7
1272	Straightforward Manufacturing of 3D-Printed Metallic Structures toward Customized Electrical Components. ACS Applied Materials & Samp; Interfaces, 0, , .	8.0	O
1273	Diamond-structured nanonetwork gold as mechanical metamaterials from bottom-up approach. NPG Asia Materials, 2023, 15, .	7.9	1
1274	Additively manufactured cure tools for composites manufacture. International Journal of Advanced Manufacturing Technology, 0, , .	3.0	O
1275	Evaluation of shock migration performance for a multi-stable mechanical metamaterial. Composite Structures, 2023, 321, 117312.	5.8	1
1276	Mapping of elastic properties of twisting metamaterials onto micropolar continuum using static calculations. International Journal of Mechanical Sciences, 2023, 254, 108411.	6.7	5
1277	Improving stiffness and strength of body-centered cubic lattices with an I-shape beam cross-section. Mechanics of Materials, 2023, 182, 104665.	3.2	2
1278	Machine learning surrogate modeling toward the design of lattice-structured heat sinks fabricated by additive manufacturing. Materials and Design, 2023, 230, 111969.	7.0	5
1279	An origami-inspired design of highly efficient cellular cushion materials. Applied Materials Today, 2023, 32, 101835.	4.3	2
1280	Tunable thermal transport in 4D printed mechanical metamaterials. Materials and Design, 2023, 231, 111992.	7.0	2

#	ARTICLE	IF	CITATIONS
1282	Layered La2Zr2O7 flexible fibrous membrane for super thermal insulation and infrared stealth. Chemical Engineering Journal, 2023, 468, 143488.	12.7	6
1283	Optimized Modular Design of Acoustic Metamaterials: Targeted Noise Attenuation. Annalen Der Physik, 2023, 535, .	2.4	1
1284	Thermal expansion regulation and bandgap analysis of a novel dual-constituent negative Poisson's ratio lattice metamaterial. Materials Today Communications, 2023, 35, 106311.	1.9	1
1285	Mechanical metamaterials. Reports on Progress in Physics, 2023, 86, 094501.	20.1	5
1286	High-temperature resistant, super elastic aerogel sheet prepared based on in-situ supercritical separation method for thermal runaway prohibition of lithium-ion batteries. Energy Storage Materials, 2023, 61, 102871.	18.0	2
1287	Programmable multi-physical mechanics of mechanical metamaterials. Materials Science and Engineering Reports, 2023, 155, 100745.	31.8	23
1288	High-strength, lightweight nano-architected silica. Cell Reports Physical Science, 2023, 4, 101475.	5.6	2
1289	Crackâ€Induced Superelastic, Strengthâ€Tunable Carbon Nanotube Sponges. Advanced Functional Materials, 2023, 33, .	14.9	9
1290	Starfish-Inspired Diamond-Structured Calcite Single Crystals from a Bottom-up Approach as Mechanical Metamaterials. ACS Nano, 2023, 17, 15678-15686.	14.6	2
1291	Nanoâ€Metamaterial: A Stateâ€ofâ€theâ€Art Material for Magnetic Resonance Imaging. Small Science, 2023, 3, .	9.9	2
1292	Effective thermal conductivity of composite strut-based hollow periodic cellular solids. Thermal Science and Engineering Progress, 2023, 43, 102003.	2.7	1
1293	Peridynamic modeling of elastic instability and failure in lattice beam structures. Computer Methods in Applied Mechanics and Engineering, 2023, 415, 116210.	6.6	1
1294	Advanced Fabrication of Mechanical Metamaterials Based on Micro/Nanoscale Technology. Advanced Engineering Materials, 2023, 25, .	3.5	1
1295	Size effect in the compression of 3D polymerized micro-structures. Journal of Applied Mechanics, Transactions ASME, 0, , 1-32.	2.2	O
1296	High-strength, multifunctional and 3D printable mullite-based porous ceramics with a controllable shell-pore structure., 2024, 3, 100153.		3
1297	Static and dynamic mechanical behavior of self-supporting lattice with symmetric gradients. Thin-Walled Structures, 2023, 191, 111022.	5.3	O
1298	Novel metamaterial structures with negative thermal expansion and tunable mechanical properties. International Journal of Mechanical Sciences, 2024, 261, 108692.	6.7	3
1299	Superelastic Cobalt Silicate@Resorcinol Formaldehyde Resin Coreâ€Shell Nanobelt Aerogel Monoliths with Outstanding Fire Retardant and Thermal Insulating Capability. Small, 2023, 19, .	10.0	О

#	ARTICLE	IF	CITATIONS
1300	Tensile behavior of functionally graded sandwich PLA-ABS produced via fused filament fabrication process. Mechanics of Advanced Materials and Structures, 2024, 31, 261-270.	2.6	2
1301	Hybrid material usage in TPMS forms fabricated by additive manufacturing, comparison of mechanical strength of lattices produced with AlSi10Mg and 7050. Materials Today Communications, 2023, 36, 106872.	1.9	0
1302	Large-scale assembly of isotropic nanofiber aerogels based on columnar-equiaxed crystal transition. Nature Communications, 2023, 14, .	12.8	4
1303	Nanostructured Metal Foams via Combustion Synthesis. Springer Handbooks, 2023, , 1129-1154.	0.6	0
1304	Comparative performance evaluation of microarchitected lattices processed via SLS, MJ, and DLP 3D printing methods: Experimental investigation and modelling. Journal of Materials Research and Technology, 2023, 26, 7182-7198.	5 . 8	3
1305	Enhanced mechanical energy absorption via localized viscoplasticity of nano-cellular polymer coating under supersonic impact loading. Giant, 2023, 15, 100180.	5.1	0
1306	3D-printed Metamaterials with Versatile Functionalities. , 2023, 2, 100091.		0
1307	Topological phononic metamaterials. Reports on Progress in Physics, 2023, 86, 106501.	20.1	9
1308	Ultrastrong colloidal crystal metamaterials engineered with DNA. Science Advances, 2023, 9, .	10.3	3
1309	Suture Interface Inspired Self-Recovery Architected Structures for Reusable Energy Absorption. ACS Applied Materials & Samp; Interfaces, 2023, 15, 43102-43110.	8.0	2
1310	Reversible Optical Data Storage via Two-Photon Micropatterning of <i>o</i> -Carboranes-Embedded Switchable Materials. Chemistry of Materials, 2023, 35, 6979-6989.	6.7	2
1311	Low-density, high-strength metal mechanical metamaterials beyond the Gibson-Ashby model. Materials Today, 2023, 68, 96-107.	14.2	9
1313	Study of impact dynamics of porous brittle materials based on a three-dimensional lattice point-spring model. Applied Mathematical Modelling, 2023, 124, 678-693.	4.2	0
1314	Effective Young's modulus of Bézier-based honeycombs: Semi-analytical modeling and the role of design parameters and curvature. Thin-Walled Structures, 2023, 192, 111136.	5.3	3
1315	Research on three-point bending performance of hollow-core rod pyramidal gradient lattice sandwich beam. Structures, 2023, 57, 105165.	3.6	1
1316	Tuning the Degree of Protonation to Prepare Ultra-light and High Thermal Insulation Mullite Nanofiber Aerogels. Journal of Physics: Conference Series, 2023, 2587, 012021.	0.4	0
1317	Bioinspired hierarchical diamond triply periodic minimal surface lattices with high energy absorption and damage tolerance. Additive Manufacturing, 2023, 76, 103792.	3.0	3
1318	Additive Manufacturing of Elastomeric Composite Lattices with Thermally Grown Microâ€Architectures for Versatile Applications. Advanced Materials Technologies, 0, , .	5.8	1

#	Article	IF	CITATIONS
1319	Characterization of porosity in periodic 3D nanostructures using spectroscopic scatterometry. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2023, 41, .	1.2	0
1320	Wang tiles enable combinatorial design and robot-assisted manufacturing of modular mechanical metamaterials. Extreme Mechanics Letters, 2023, 64, 102087.	4.1	1
1321	A data-driven framework for structure-property correlation in ordered and disordered cellular metamaterials. Science Advances, 2023, 9, .	10.3	1
1322	A Variational Beam Model for Failure of Cellular and Trussâ€Based Architected Materials. Advanced Engineering Materials, 0, , .	3.5	1
1323	Electromagnetic functionalization of mechanical lattice to metastructure with oblique incident broadband microwave absorption. Composites Science and Technology, 2023, 244, 110308.	7.8	0
1324	Effect of standoff distance on printability of aluminum 5356 alloy through extrusion-based metal additive manufacturing using induction heating. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 0, , .	1.1	0
1325	Investigation of polymer template removal techniques in three-dimensional thin-shell nanolattices. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2023, 41, .	1,2	1
1326	Multifunctional elastomeric composites based on 3D graphene porous materials. Exploration, 0, , .	11.0	1
1327	Energy absorption and impact resistance of hybrid triply periodic minimal surface (TPMS) sheet-based structures. Materials Today Communications, 2023, 37, 107352.	1.9	0
1328	From Pixels to Voxels: A Mechanistic Perspective on Volumetric 3D-Printing. Progress in Polymer Science, 2023, , 101755.	24.7	0
1329	Study on the topological morphology and mechanical properties of variable-amplitude TPMS structures. Journal of Materials Research and Technology, 2023, 27, 3459-3472.	5.8	1
1330	Superior energy absorption characteristics of additively-manufactured hollow-walled lattices. International Journal of Mechanical Sciences, 2024, 264, 108834.	6.7	1
1331	Experiment Investigation of the Compression Behaviors of Nickel-Coated Hybrid Lattice Structure with Enhanced Mechanical Properties. Micromachines, 2023, 14, 1959.	2.9	0
1332	Toward the development of plasticity theories for application to small-scale metal structures. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	7.1	1
1333	High-speed and scalable combustion fabrication of ultralight carbon nanotube aerogels below air density. Carbon, 2024, 216, 118572.	10.3	0
1334	Magnetic semiconducting borophenes and their derivatives. Physical Chemistry Chemical Physics, 2023, 25, 30897-30902.	2.8	0
1335	Strength and Deformation Behavior of Graphene Aerogel of Different Morphologies. Materials, 2023, 16, 7388.	2.9	0
1336	Mechanical responses of architected boron carbide-aluminum lattice composites fabricated via reactive metallic infiltration of hierarchical pore structures. Materials Today Communications, 2023, 37, 107550.	1.9	O

#	Article	IF	CITATIONS
1337	Impact induced compression and decompression waves in porous meta-materials modeled using a continuum theory of phase transitions. International Journal of Solids and Structures, 2024, 288, 112597.	2.7	0
1338	Ultraâ€Stretchable Kirigami Piezoâ€Metamaterials for Sensing Coupled Large Deformations. Advanced Science, 2024, 11, .	11.2	0
1339	Ceramic aerogels constructed from dense, non-porous ceramic nanofibers with robust and elastic properties up to 1300°C. Ceramics International, 2023, , .	4.8	0
1340	Elucidating the Bulk Morphology of Celluloseâ€Based Conducting Aerogels with Xâ€Ray Microtomography. Advanced Materials Technologies, 2023, 8, .	5.8	0
1341	Mechanically Strengthened Aerogels through Multiscale, Multicompositional, and Multidimensional Approaches: A Review. Advanced Materials, 2024, 36, .	21.0	3
1342	3D Chiral Energy-Absorbing Structures with a High Deformation Recovery Ratio Fabricated via Selective Laser Melting of the NiTi Alloy. ACS Applied Materials & Selective Laser Melting of the NiTi Alloy. ACS Applied Materials & Selective Laser Melting of the NiTi Alloy. ACS Applied Materials & Selective Laser Melting of the NiTi Alloy. ACS Applied Materials & Selective Laser Melting of the NiTi Alloy. ACS Applied Materials & Selective Laser Melting of the NiTi Alloy. ACS Applied Materials & Selective Laser Melting of the NiTi Alloy. ACS Applied Materials & Selective Laser Melting of the NiTi Alloy. ACS Applied Materials & Selective Laser Melting of the NiTi Alloy. ACS Applied Materials & Selective Laser Melting of the NiTi Alloy. ACS Applied Materials & Selective Laser Melting of the NiTi Alloy.	8.0	0
1343	Acoustically soft and mechanically robust hierarchical metamaterials in water. Physical Review Applied, 2023, 20, .	3.8	0
1344	Kirigami pattern design for buckling-induced assembly 3D structures via topology optimization. Extreme Mechanics Letters, 2023, 65, 102099.	4.1	0
1345	Fracture behaviour of laser powder bed fusion AlSi10Mg microlattice structures under uniaxial compression. Materials and Design, 2023, 236, 112489.	7.0	0
1346	Effect of microstructure on the effectiveness of hybridization on additively manufactured Inconel718 lattices. Materials and Design, 2023, 236, 112484.	7.0	0
1347	Precise control of the optical refractive index in nanolattices. Optics Letters, 2023, 48, 6356.	3.3	1
1349	Hybrid manufacturing of AlSi10Mg metamaterials: Process, static and impact response attributes. Journal of Materials Research and Technology, 2023, 27, 7457-7469.	5.8	2
1350	Unifying the design space and optimizing linear and nonlinear truss metamaterials by generative modeling. Nature Communications, 2023, 14 , .	12.8	6
1351	Topology Optimization Method for Microscale Structures Described with Integral Nonlocal Theory. Acta Mechanica Solida Sinica, 2024, 37, 63-71.	1.9	0
1353	Oxidation-induced superelasticity in metallic glass nanotubes. Nature Materials, 0, , .	27.5	0
1354	Minimal-surface-based multiphase metamaterials with highly variable stiffness. Materials and Design, 2024, 237, 112548.	7.0	0
1355	Computational Design of 2D Lattice Structures based on Crystallographic Symmetries. Journal of Mechanical Design, Transactions of the ASME, 0, , 1-30.	2.9	0
1356	Modular reverse design of acoustic metamaterial and sound barrier engineering applications: High ventilation and broadband sound insulation. Thin-Walled Structures, 2024, 196, 111498.	5.3	O

#	Article	IF	CITATIONS
1357	Composite curved hourglass cellular structures: Design optimization for stiffness response and crashworthiness performance. Composite Structures, 2024, 330, 117834.	5.8	0
1358	Predicting buckling resistance of two three-dimensional lattice architectures. Mechanics of Advanced Materials and Structures, 0 , $1 \cdot 14$.	2.6	0
1359	Mechanical-thermal coupling structural failure and in-situ deformation mechanism of cellular high entropy alloy lattice structures. Journal of Materials Research and Technology, 2024, 28, 2792-2799.	5.8	0
1360	Additively manufactured composite lattices: A state-of-the-art review on fabrications, architectures, constituent materials, mechanical properties, and future directions. Thin-Walled Structures, 2024, 197, 111539.	5.3	O
1361	Experiment and finite element analysis of protective honeycombs based on equivalent method for ocean engineering under impact loading. Composite Structures, 2024, 331, 117858.	5.8	1
1362	A micro-architectured material as a pressure vessel for green mobility. Nature Communications, 2024, 15, .	12.8	1
1363	Titanium Multi‶opology Metamaterials with Exceptional Strength. Advanced Materials, 0, , .	21.0	2
1364	Nickel-based superalloy architectures with surface mechanical attrition treatment: Compressive properties and collapse behaviour. Nano Materials Science, 2024, , .	8.8	0
1365	Bioinspired airwings: Design and additive manufacturing of a geometrically graded microscale maple seed. Materials Today Communications, 2024, 38, 108014.	1.9	0
1366	Enhancing toughness through geometric control of the process zone. Journal of the Mechanics and Physics of Solids, 2024, 184, 105548.	4.8	1
1368	Ultralight, strong, and self-reprogrammable mechanical metamaterials. Science Robotics, 2024, 9, .	17.6	0
1369	Application of additively manufactured functionally graded porous structures., 2024,, 411-430.		0
1370	Dynamic behavior of additively manufactured materials., 2024,, 411-448.		0
1371	Design and fabrication of additively manufactured functionally graded porous structures. , 2024, , 347-379.		0
1372	Mechanical behavior of additively manufactured functionally graded porous structures. , 2024, , 381-410.		0
1373	De Novo Atomistic Discovery of Disordered Mechanical Metamaterials by Machine Learning. Advanced Science, 2024, 11, .	11.2	0
1374	2-D multistable structures under shear: equilibrium configurations, transition patterns, and boundary effects. Journal of Mechanics of Materials and Structures, 2024, 19, 265-302.	0.6	0
1375	Multilayer dielectric reflector using low-index nanolattices. Optics Letters, 2024, 49, 1093.	3.3	0

#	Article	IF	Citations
1376	Computational discovery of microstructured composites with optimal stiffness-toughness trade-offs. Science Advances, 2024, 10, .	10.3	0
1377	High-resilience conductive PVA+AgNW/PDMS nanocomposite via directional freeze-drying. Extreme Mechanics Letters, 2024, 68, 102132.	4.1	0
1378	Exploring novel mechanical metamaterials: Unravelling deformation mode coupling and size effects through second-order computational homogenisation. International Journal of Solids and Structures, 2024, 292, 112724.	2.7	0
1379	Design and mechanical properties analysis of a cellular Waterbomb origami structure. Theoretical and Applied Mechanics Letters, 2024, 14, 100509.	2.8	0
1380	A partially hollow BCC lattice structure with capsule-shaped cavities for enhancing load-bearing and energy absorption properties. Engineering Structures, 2024, 305, 117777.	5.3	0
1381	Scaling between elasticity and topological genus for random network nanomaterials. Extreme Mechanics Letters, 2024, 68, 102147.	4.1	0
1382	Wood-inspired metamaterial catalyst for robust and high-throughput water purification. Nature Communications, 2024, 15, .	12.8	0
1383	AlSi10Mg hollow-strut lattice metamaterials by laser powder bed fusion. Materials Advances, 2024, 5, 3751-3770.	5.4	0
1384	Energy absorption of PLA-based metamaterials manufactured by material extrusion: dynamic loads and shape recovery. International Journal of Advanced Manufacturing Technology, 2024, 132, 1697-1722.	3.0	0
1385	Bioâ€Inspired Ultrathin Perfect Absorber for Highâ€Performance Photothermal Conversion. Advanced Materials, 0, , .	21.0	0
1386	Strengthening nodes to obtain high-strength pyramid lattice structure by using wire arc additive manufacturing method. Journal of Manufacturing Processes, 2024, 117, 125-133.	5.9	0
1387	Research on the thermal response characteristics of lightweight insulation structure with various shaped lattice units. Applied Thermal Engineering, 2024, 246, 123006.	6.0	0
1388	Architected Lattice-Reinforced Composites for Cementitious Material and Asphalt Concrete Toward Lightweight and Energy Absorption. Lecture Notes in Civil Engineering, 2024, , 769-778.	0.4	0
1389	Strength of shellular structures with triply periodic minimal surfaces under external hydrostatic pressure. Journal of Mechanical Science and Technology, 2024, 38, 1197-1208.	1.5	0