Memory effects in complex materials and nanoscale sys

Advances in Physics 60, 145-227 DOI: 10.1080/00018732.2010.544961

Citation Report

#	Article	IF	CITATIONS
1	A new frame error estimation criterion for digital communication links. , 0, , .		0
2	Closed-form solutions for discriminative filtering using impulse restoration techniques. Electronics Letters, 2002, 38, 1332.	1.0	4
3	Langmuir–Schaefer films of a polyaniline–gold nanoparticle composite material for applications in organic memristive devices. RSC Advances, 2011, 1, 1537.	3.6	23
4	Field-effect modulation of conductance in VO2 nanobeam transistors with HfO2 as the gate dielectric. Applied Physics Letters, 2011, 99, .	3.3	70
5	A Simple Device Unit Consisting of All NiO Storage and Switch Elements for Multilevel Terabit Nonvolatile Random Access Memory. ACS Applied Materials & Interfaces, 2011, 3, 4475-4479.	8.0	26
6	Unipolar memristors enable "stateful―logic operations via material implication. Applied Physics Letters, 2011, 99, 072101.	3.3	39
7	Teaching Memristors to EE Undergraduate Students [Class Notes]. IEEE Circuits and Systems Magazine, 2011, 11, 36-44.	2.3	19
8	Solving mazes with memristors: A massively parallel approach. Physical Review E, 2011, 84, 046703.	2.1	127
9	Pinched hysteretic loops of ideal memristors, memcapacitors and meminductors must be â€ ⁻ self-crossing'. Electronics Letters, 2011, 47, 1385-1387.	1.0	176
10	Chaotic memristive circuit: equivalent circuit realization and dynamical analysis. Chinese Physics B, 2011, 20, 120502.	1.4	125
11	Intrinsic Mechanisms of Memristive Switching. Nano Letters, 2011, 11, 2114-2118.	9.1	110
12	Memristor-based synaptic networks and logical operations using in-situ computing. , 2011, , .		12
13	Kinetics of spin relaxation in quantum wires and channels: Boundary spin echo and formation of a persistent spin helix. Physical Review B, 2011, 84, .	3.2	4
14	Hybrid CMOS/nanodevice circuits for high throughput pattern matching applications. , 2011, , .		30
15	Dynamical properties of electrical circuits with fully nonlinear memristors. Nonlinear Analysis: Real World Applications, 2011, 12, 3674-3686.	1.7	14
16	Memory materials: a unifying description. Materials Today, 2011, 14, 584-591.	14.2	74
17	Bistable Nonvolatile Elastic-Membrane Memcapacitor Exhibiting a Chaotic Behavior. IEEE Transactions on Electron Devices, 2011, 58, 1809-1812.	3.0	57
18	Electrical properties of an organic memristive system. Applied Physics A: Materials Science and Processing, 2011, 104, 1039-1046.	2.3	30

ION RE

#	Article	IF	CITATIONS
19	Material Memristive Device Circuits with Synaptic Plasticity: Learning and Memory. BioNanoScience, 2011, 1, 24-30.	3.5	93
20	On the Hysteresis Loop of Organic Memristive Device. BioNanoScience, 2011, 1, 198-201.	3.5	10
21	Arithmetic and Biologicallyâ€Inspired Computing Using Phaseâ€Change Materials. Advanced Materials, 2011, 23, 3408-3413.	21.0	237
22	Anatomy of a Nanoscale Conduction Channel Reveals the Mechanism of a Highâ€Performance Memristor. Advanced Materials, 2011, 23, 5633-5640.	21.0	393
23	Electric field induced crystallization in phase-change materials for memory applications. Applied Physics Letters, 2011, 98, .	3.3	33
24	Non-volatile high-speed resistance switching nanogap junction memory. Applied Physics Letters, 2011, 99, .	3.3	11
25	Ion motion and electrochemistry in nanostructures. MRS Bulletin, 2011, 36, 914-920.	3.5	7
26	Analogue-to-digital and digital-to-analogue conversion with memristive devices. Electronics Letters, 2012, 48, 73.	1.0	20
27	High precision tuning of state for memristive devices by adaptable variation-tolerant algorithm. Nanotechnology, 2012, 23, 075201.	2.6	447
28	Chains of organic memristive devices: Cross-talk of elements. , 2012, , .		5
28 29	Chains of organic memristive devices: Cross-talk of elements. , 2012, , . Second and higher harmonics generation with memristive systems. Applied Physics Letters, 2012, 100, .	3.3	5
28 29 30	Chains of organic memristive devices: Cross-talk of elements. , 2012, , . Second and higher harmonics generation with memristive systems. Applied Physics Letters, 2012, 100, . A Kondo insulating memristor. Applied Physics Letters, 2012, 101, 013505.	3.3	5 18 12
28 29 30 31	Chains of organic memristive devices: Cross-talk of elements. , 2012, , . Second and higher harmonics generation with memristive systems. Applied Physics Letters, 2012, 100, . A Kondo insulating memristor. Applied Physics Letters, 2012, 101, 013505. Current oscillations in vanadium dioxide: Evidence for electrically triggered percolation avalanches. Physical Review B, 2012, 86, .	3.3 3.3 3.2	5 18 12 76
28 29 30 31 32	 Chains of organic memristive devices: Cross-talk of elements. , 2012, , . Second and higher harmonics generation with memristive systems. Applied Physics Letters, 2012, 100, . A Kondo insulating memristor. Applied Physics Letters, 2012, 101, 013505. Current oscillations in vanadium dioxide: Evidence for electrically triggered percolation avalanches. Physical Review B, 2012, 86, . Fourier Response of a Memristor: Generation of High Harmonics With Increasing Weights. IEEE Transactions on Circuits and Systems II: Express Briefs, 2012, 59, 830-834. 	3.3 3.3 3.2 3.0	5 18 12 76 9
28 29 30 31 32 33	 Chains of organic memristive devices: Cross-talk of elements. , 2012, , . Chains of organic memristive devices: Cross-talk of elements. , 2012, , . Second and higher harmonics generation with memristive systems. Applied Physics Letters, 2012, 100, . A Kondo insulating memristor. Applied Physics Letters, 2012, 101, 013505. Current oscillations in vanadium dioxide: Evidence for electrically triggered percolation avalanches. Physical Review B, 2012, 86, . Fourier Response of a Memristor: Generation of High Harmonics With Increasing Weights. IEEE Transactions on Circuits and Systems II: Express Briefs, 2012, 59, 830-834. Resistive switching phenomena in thin films: Materials, devices, and applications. MRS Bulletin, 2012, 37, 108-114. 	3.3 3.3 3.2 3.0 3.5	5 18 12 76 9 137
28 29 30 31 32 33 33	Chains of organic memristive devices: Cross-talk of elements. , 2012, , . Second and higher harmonics generation with memristive systems. Applied Physics Letters, 2012, 100, . A Kondo insulating memristor. Applied Physics Letters, 2012, 101, 013505. Current oscillations in vanadium dioxide: Evidence for electrically triggered percolation avalanches. Physical Review B, 2012, 86, . Fourier Response of a Memristor: Generation of High Harmonics With Increasing Weights. IEEE Transactions on Circuits and Systems II: Express Briefs, 2012, 59, 830-834. Resistive switching phenomena in thin films: Materials, devices, and applications. MRS Bulletin, 2012, 37, 108-114. Effects of a Load Resistor on Conducting Filament Characteristics and Unipolar Resistive Switching Behaviors in a Pt/NiO/Pt Structure. IEEE Electron Device Letters, 2012, 33, 881-883.	3.3 3.3 3.2 3.0 3.5 3.9	5 18 12 76 9 137
28 29 30 31 32 33 33	Chains of organic memristive devices: Cross-talk of elements. , 2012, , . Second and higher harmonics generation with memristive systems. Applied Physics Letters, 2012, 100, . A Kondo insulating memristor. Applied Physics Letters, 2012, 101, 013505. Current oscillations in vanadium dioxide: Evidence for electrically triggered percolation avalanches. Physical Review B, 2012, 86, . Fourier Response of a Memristor: Generation of High Harmonics With Increasing Weights. IEEE Transactions on Circuits and Systems II: Express Briefs, 2012, 59, 830-834. Resistive switching phenomena in thin films: Materials, devices, and applications. MRS Bulletin, 2012, 37, 108-114. Effects of a Load Resistor on Conducting Filament Characteristics and Unipolar Resistive Switching Behaviors in a Pt/NiO/Pt Structure. IEEE Electron Device Letters, 2012, 33, 881-883. Switching Properties of Titanium Dioxide Nanowire Memristor. Japanese Journal of Applied Physics, 2012, 51, 11PE09.	3.3 3.3 3.2 3.0 3.5 3.9 1.5	5 18 12 76 9 137 16 10

#	Article	IF	CITATIONS
37	Memory Elements: A Paradigm Shift in Lagrangian Modeling of Electrical Circuits. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2012, 45, 445-450.	0.4	16
38	AFM-utilizing approach to search for new oxide materials for perspective applications in memristive devices. EPJ Applied Physics, 2012, 58, 20102.	0.7	4
39	On Synthesis of Boolean Expressions for Memristive Devices Using Sequential Implication Logic. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2012, 31, 1129-1134.	2.7	33
40	Dynamic behaviors of memristor-based recurrent neural networks with time-varying delays. Neural Networks, 2012, 36, 1-10.	5.9	176
41	The Quantum Point-Contact Memristor. IEEE Electron Device Letters, 2012, 33, 1474-1476.	3.9	46
42	Manifolds of Equilibria and Bifurcations without Parameters in Memristive Circuits. SIAM Journal on Applied Mathematics, 2012, 72, 877-896.	1.8	43
43	Neuromorphic, Digital, and Quantum Computation With Memory Circuit Elements. Proceedings of the IEEE, 2012, 100, 2071-2080.	21.3	201
44	Memristors: Devices, Models, and Applications [Scanning the Issue]. Proceedings of the IEEE, 2012, 100, 1911-1919.	21.3	153
45	Memristive properties of single-molecule magnets. Physical Review B, 2012, 86, .	3.2	22
46	Analog-input analog-weight dot-product operation with Ag/a-Si/Pt memristive devices. , 2012, , .		14
47	Memristive-biosensors: A new detection method by using nanofabricated memristors. Sensors and Actuators B: Chemical, 2012, 171-172, 449-457.	7.8	110
48	Memristor-based information gathering approaches, both ant-inspired and hypothetical. Nano Communication Networks, 2012, 3, 203-216.	2.9	7
49	Engineering nonlinearity into memristors for passive crossbar applications. Applied Physics Letters, 2012, 100, .	3.3	179
50	Confining grains of textured Cu2O films to single-crystal nanowires and resultant change in resistive switching characteristics. Nanoscale, 2012, 4, 2029.	5.6	31
51	Dual Defects of Cation and Anion in Memristive Nonvolatile Memory of Metal Oxides. Journal of the American Chemical Society, 2012, 134, 2535-2538.	13.7	44
52	Coexistence of Memristive Behaviors and Negative Capacitance Effects in Single-Crystal \$hbox{TiO}_{2}\$ Thin-Film-Based Devices. IEEE Electron Device Letters, 2012, 33, 890-892.	3.9	6
53	Fast computation with memory circuit elements. , 2012, , .		3
54	Quantitative measure of hysteresis for memristors through explicit dynamics. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2012, 468, 2210-2229.	2.1	24

#	Article	IF	CITATIONS
55	A very reliable multilevel YSZ resistive switching memory. , 2012, , .		2
56	ORGANIC MEMRISTOR DEVICES FOR LOGIC ELEMENTS WITH MEMORY. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2012, 22, 1250283.	1.7	43
57	Transmembrane Potential across Single Conical Nanopores and Resulting Memristive and Memcapacitive Ion Transport. Journal of the American Chemical Society, 2012, 134, 3651-3654.	13.7	70
58	Role of Hole Injection in Electroforming of LiF-Polymer Memory Diodes. Journal of Physical Chemistry C, 2012, 116, 12443-12447.	3.1	10
59	Prominent Thermodynamical Interaction with Surroundings on Nanoscale Memristive Switching of Metal Oxides. Nano Letters, 2012, 12, 5684-5690.	9.1	40
60	Stochastic hybrid 3D matrix: learning and adaptation of electrical properties. Journal of Materials Chemistry, 2012, 22, 22881.	6.7	54
61	Computation of the Area of Memristor Pinched Hysteresis Loop. IEEE Transactions on Circuits and Systems II: Express Briefs, 2012, 59, 607-611.	3.0	62
62	Catecholate and 2,3-acenediolate complexes of d0 ions as prospective materials for molecular electronics and spintronics. Coordination Chemistry Reviews, 2012, 256, 1706-1731.	18.8	22
63	Memristors and memristive circuits - an overview. , 2012, , .		7
64	Phaseâ€change processors, memristors and memflectors. Physica Status Solidi (B): Basic Research, 2012, 249, 1978-1984.	1.5	22
65	Realization of Associative Memory in an Enzymatic Process: Toward Biomolecular Networks with Learning and Unlearning Functionalities. Journal of Physical Chemistry Letters, 2012, 3, 1234-1237.	4.6	16
66	Biologically-Inspired Electronics with Memory Circuit Elements. , 2012, , 15-36.		5
67	Stochastic memory: Memory enhancement due to noise. Physical Review E, 2012, 85, 011116.	2.1	58
68	Teaching Memory Circuit Elements via Experiment-Based Learning. IEEE Circuits and Systems Magazine, 2012, 12, 64-74.	2.3	17
69	Development of a silicon oxide-based resistive memory device using a spin-on hydrogen silsesquioxane precursor. Journal of Materials Research, 2012, 27, 3110-3116.	2.6	2
70	Electroforming and Ohmic contacts in Al-Al2O3-Ag diodes. Journal of Applied Physics, 2012, 111, .	2.5	13
71	An Analytical Approach for Memristive Nanoarchitectures. IEEE Nanotechnology Magazine, 2012, 11, 374-385.	2.0	52
72	Fractional-order circuit elements with memory. , 2012, , .		15

ARTICLE IF CITATIONS # Surface plasmon polariton enhanced electroluminescence and electron emission from electroformed 73 2.5 7 Al-Al2O3-Ag diodes. Journal of Applied Physics, 2012, 112, 073717. Two centuries of memristors. Nature Materials, 2012, 11, 478-481. 74 334 Lagrange formalism of memory circuit elements: Classical and quantum formulations. Physical Review 75 3.2 23 B, 2012, 85, . The tractability index of memristive circuits: branchâ€oriented and treeâ€based models. Mathematical Methods in the Applied Sciences, 2012, 35, 1659-1669. An Electronic Version of Pavlov's Dog. Advanced Functional Materials, 2012, 22, 2744-2749. 77 14.9 168 Macroscale Ordered Ultrathin Telluride Nanowire Films, and Tellurium/Telluride Heteroâ€Nanowire 79 13.8 84 Films. Angewandte Chemie - International Edition, 2012, 51, 7420-7425. Cyclic matrices of weighted digraphs. Discrete Applied Mathematics, 2012, 160, 280-290. 80 0.9 4 Non linear dynamics of memristor based 3rd order oscillatory system. Microelectronics Journal, 2012, 2.0 79 43, 169-175. Neural Learning Circuits Utilizing Nano-Crystalline Silicon Transistors and Memristors. IEEE 82 11.3 110 Transactions on Neural Networks and Learning Systems, 2012, 23, 565-573. On the physical properties of memristive, memcapacitive and meminductive systems. Nanotechnology, 84 2.6 2013, 24, 255201. A bioinspired associative memory system based on enzymatic cascades. Chemical Communications, 2013, 4.1 85 30 49, 6962. Molecular beam epitaxy of Âcomplex oxides., 2013, , 417-449. 86 Memory Models of Adaptive Behavior. IEEE Transactions on Neural Networks and Learning Systems, 87 11.3 35 2013, 24, 1437-1448. Universal Electricâ€Fieldâ€Driven Resistive Transition in Narrowâ€Gap Mott Insulators. Advanced Materials, 21.0 114 2013, 25, 3222-3226. Utilizing NDR effect to reduce switching threshold variations in memristive devices. Applied Physics A: 89 2.310 Materials Science and Processing, 2013, 111, 199-202. Hybrid Analysis of Nonlinear Circuits: DAE Models with Indices Zero and One. Circuits, Systems, and 2.0 Signal Processing, 2013, 32, 2065-2095. Transparent and flexible resistive switching memory devices with a very high ON/OFF ratio using gold 91 2.6 109 nanoparticles embedded in a silk protein matrix. Nanotechnology, 2013, 24, 345202. Chaos and Complex Systems., 2013, , .

#	Article	IF	CITATIONS
94	Electric field induced avalanche breakdown and non-volatile resistive switching in the Mott Insulators AM4Q8. European Physical Journal: Special Topics, 2013, 222, 1046-1056.	2.6	14
95	Memcapacitive properties of poly(3,4-ethylenedioxythiophene) modified electrodes. Electrochemistry Communications, 2013, 28, 63-66.	4.7	3
96	Coexistence of high performance resistance and capacitance memory based on multilayered metal-oxide structures. Scientific Reports, 2013, 3, 2482.	3.3	75
97	Analog Memristors Based on Thickening/Thinning of Ag Nanofilaments in Amorphous Manganite Thin Films. ACS Applied Materials & Interfaces, 2013, 5, 11258-11264.	8.0	84
98	Self-Aligned Formation of Sub 1 nm Gaps Utilizing Electromigration during Metal Deposition. ACS Applied Materials & Interfaces, 2013, 5, 12869-12875.	8.0	23
99	Conductivity enhancement and resistance changes in polymer films filled with reduced graphene oxide. Journal of Applied Physics, 2013, 113, 064307.	2.5	10
100	Bipolar resistive switchings in Bi2Sr2CaCu2O8+δ. Solid State Communications, 2013, 170, 48-52.	1.9	9
101	GENERALIZED MEMORY ELEMENT AND CHAOTIC MEMORY SYSTEM. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2013, 23, 1350135.	1.7	48
102	Development system for memristor circuits. , 2013, , .		0
103	Synaptic Variability in a Cortical Neuromorphic Circuit. IEEE Transactions on Neural Networks and Learning Systems, 2013, 24, 397-409.	11.3	20
104	Memristive devices for computing. Nature Nanotechnology, 2013, 8, 13-24.	31.5	3,019
105	Towards artificial neurons and synapses: a materials point of view. RSC Advances, 2013, 3, 3169.	3.6	171
106	First Order Mem-Circuits: Modeling, Nonlinear Oscillations and Bifurcations. IEEE Transactions on Circuits and Systems I: Regular Papers, 2013, 60, 1570-1583.	5.4	27
107	Memristor-based neural networks. Journal Physics D: Applied Physics, 2013, 46, 093001.	2.8	307
108	The parallel approach. Nature Physics, 2013, 9, 200-202.	16.7	213
109	Flexible quantum dots interacting with phonons: A quantum capacitive approach. Physica E: Low-Dimensional Systems and Nanostructures, 2013, 50, 6-10.	2.7	3
110	A Singleâ€Device Universal Logic Gate Based on a Magnetically Enhanced Memristor. Advanced Materials, 2013, 25, 534-538.	21.0	95
111	Nanobatteries in redox-based resistive switches require extension of memristor theory. Nature Communications, 2013, 4, 1771.	12.8	473

#	Article	IF	CITATIONS
112	Scaling Effect on Unipolar and Bipolar Resistive Switching of Metal Oxides. Scientific Reports, 2013, 3, 1657.	3.3	87
113	Chemical insight into electroforming of resistive switching manganite heterostructures. Nanoscale, 2013, 5, 3954.	5.6	44
114	Reconfigurable resistive switching devices based on individual tungsten trioxide nanowires. AIP Advances, 2013, 3, .	1.3	17
115	High-Performance Nanocomposite Based Memristor with Controlled Quantum Dots as Charge Traps. ACS Applied Materials & Interfaces, 2013, 5, 2249-2254.	8.0	90
116	Anti-synchronization control of a class of memristive recurrent neural networks. Communications in Nonlinear Science and Numerical Simulation, 2013, 18, 373-385.	3.3	160
117	Decay of persistent spin helix due to the spin relaxation at boundaries. Physical Review B, 2013, 87, .	3.2	3
118	Molecular neuron based on the Franck–Condon blockade. Nanotechnology, 2013, 24, 384001.	2.6	2
119	Some fingerprints of ideal memristors. , 2013, , .		44
120	Organic memristive devices: Architecture, properties and applications in neuromorphic networks. , 2013, , .		6
121	Pattern classification by memristive crossbar circuits using ex situ and in situ training. Nature Communications, 2013, 4, 2072.	12.8	501
122	TWO CENTURIES OF MEMRISTORS. , 2013, , 508-517.		5
123	Extensional framework for pinched hysteresis systems. IETE Journal of Research, 2013, 59, 438.	2.6	0
124	Memristors for neural branch prediction. , 2013, , .		18
125	The voltage—current relationship and equivalent circuit implementation of parallel flux-controlled memristive circuits. Chinese Physics B, 2013, 22, 068401.	1.4	10
126	Computing Areas of Pinched Hysteresis Loops of Mem-Systems in OrCAD PSPICE. Applied Mechanics and Materials, 0, 278-280, 1081-1090.	0.2	7
127	Nonvolatile Resistive Switching in <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mi>Pt</mml:mi><mml:mo>/</mml:mo><mml:msub><mml:mi>LaAlO</mml:mi><mml:mn> Physical Review X, 2013, 3, .</mml:mn></mml:msub></mml:math>	-3 8/m ml:m	າກ49./mml : ກ
128	A 2D driven brownian particle with memory. , 2013, , .		0
129	Generalized Floquet Theory: Application to Dynamical Systems with Memory and Bloch's Theorem for Nonlocal Potentials. Physical Review Letters, 2013, 110, 170602.	7.8	27

	Cı	tation Repc	DRT	
#	ARTICLE	I	F	CITATIONS
130	Organic electronic memory devices. , 2013, , 618-653.			2
131	A physical model of switching dynamics in tantalum oxide memristive devices. Applied Physics Letters 2013, 102, 223502.	' 3	.3	66
132	Surveys in Differential-Algebraic Equations I. , 2013, , .			16
133	Complex dynamics and scale invariance of one-dimensional memristive networks. Physical Review E, 2013, 87, 022116.	2	2.1	24
134	Changing the state of a memristive system with white noise. Physical Review E, 2013, 87, 042103.	2	2.1	22
135	Kondo Memory in Driven Strongly Correlated Quantum Dots. Physical Review Letters, 2013, 111, 086	601. 7	7.8	68
136	On the analog computational characteristics of memristive networks. , 2013, , .			9
137	Pulse-induced resistive and capacitive switching in TiO2 thin film devices. Applied Physics Letters, 201 103, .	3, 3	.3	34
138	Self-organization and solution of shortest-path optimization problems with memristive networks. Physical Review E, 2013, 88, 013305.	2	2.1	51
139	Optical microcavities and enhanced electroluminescence from electroformed Al-Al2O3-Ag diodes. Journal of Applied Physics, 2013, 114, 233702.	2	2.5	7
140	A QUANTUM-MECHANICAL MODEL FOR AN LC CIRCUIT WITH ELASTIC CAPACITOR. Modern Physics I B, 2013, 27, 1350138.	.etters 1	.9	4
141	Beyond vonâ€Neumann Computing with Nanoscale Phaseâ€Change Memory Devices. Advanced Fun Materials, 2013, 23, 2248-2254.	ctional 1	.4.9	336
142	Multilayer memristive/memcapacitive devices with engineered conduction fronts. EPJ Applied Physics, 2013, 62, 30102.	C).7	2
145	Effect of ion-milled barriers on electron transport in micrometer-sized tunnel junctions. Journal Physics D: Applied Physics, 2014, 47, 105305.	2	2.8	0
146	lf it's pinched it's a memristor. Semiconductor Science and Technology, 2014, 29, 104001.	2	2.0	448
147	TiO ₂ -based memristors and ReRAM: materials, mechanisms and models (a review). Semiconductor Science and Technology, 2014, 29, 104004.	2	2.0	133
148	Threshold flux-controlled memristor model and its equivalent circuit implementation. Chinese Physics B, 2014, 23, 118401.	1	.4	13
149	Memory elements in the electrical network of <i>Mimosa pudica</i> L Plant Signaling and Behavior, 2014, 9, e982029.	2	2.4	21

		CITATION REPORT	
#	Article	IF	CITATIONS
150	Memristor for Neuromorphic Applications: Models and Circuit Implementations. , 2014, , 379-403		4
151	Study of Memristive Elements Networks. Journal of Nano Research, 2014, 27, 5-14.	0.8	6
152	Memristor pinched hysteresis loops: Touching points, Part II. , 2014, , .		2
153	Negative differential resistance effect in ITO/TiO <inf>2</inf> /ITO based RRAM sandwich structure 2014, , .	5. ,	Ο
154	The Memory-Conservation Theory of Memristance. , 2014, , .		8
155	Memristor-based devices for sensing. , 2014, , .		25
156	Temporal modulation of plasma species in atmospheric dielectric barrier discharges. Physics of Plasmas, 2014, 21, 073507.	1.9	9
157	Novel implementation of memristive systems for data encryption and obfuscation. Journal of Appl Physics, 2014, 115, .	ied 2.5	11
158	Memristors and Memristive Systems. , 2014, , .		109
159	Memristor pinched hysteresis loops: Touching points, Part I. , 2014, , .		5
160	Electrode-material dependent switching in TaO _{<i>x</i>} memristors. Semiconductor Science and Technology, 2014, 29, 104003.	2.0	27
161	Realization of rectifying and resistive switching behaviors of mesoscopic niobium oxide-based structures. Materials Letters, 2014, 136, 404-406.	2.6	5
162	Switching and memory characteristics of thin films of an ambipolar organic compound: effects of device processing and electrode materials. Journal Physics D: Applied Physics, 2014, 47, 485103.	2.8	7
163	Hardware-based artificial neural networks for size, weight, and power constrained platforms. Proceedings of SPIE, 2014, , .	0.8	1
164	Frequency Selectivity in Pulse Responses of Pt/Poly(3-Hexylthiophene-2,5-Diyl)/Polyethylene Oxide Li+/Pt Hetero-Junction. PLoS ONE, 2014, 9, e108316.	+ 2.5	21
165	Network Science and Cybersecurity. Advances in Information Security, 2014, , .	1.2	4
166	Memristor-based combinational circuits: A design methodology for encoders/decoders. Microelectronics Journal, 2014, 45, 59-70.	2.0	35
167	Control of multistability. Physics Reports, 2014, 540, 167-218.	25.6	625

#	Article	IF	CITATIONS
168	Progress in Industrial Mathematics at ECMI 2012. Mathematics in Industry, 2014, , .	0.3	0
169	Lagrange stability of neural networks with memristive synapses and multiple delays. Information Sciences, 2014, 280, 135-151.	6.9	43
170	Global Mittag-Leffler stability and synchronization of memristor-based fractional-order neural networks. Neural Networks, 2014, 51, 1-8.	5.9	477
171	Intermittency, quasiperiodicity and chaos in probe-induced ferroelectric domain switching. Nature Physics, 2014, 10, 59-66.	16.7	129
172	Realizing a family of transition-metal-oxide memristors based on volatile resistive switching at a rectifying metal/oxide interface. Journal Physics D: Applied Physics, 2014, 47, 045108.	2.8	4
173	Probing the switching mechanism in ZnO nanoparticle memristors. Journal of Applied Physics, 2014, 116, 114501.	2.5	23
174	Electric Field Cycling Behavior of Ferroelectric Hafnium Oxide. ACS Applied Materials & Interfaces, 2014, 6, 19744-19751.	8.0	154
175	Memcomputing: A computing paradigm to store and process information on the same physical platform. , 2014, , .		7
176	On the generalization of composite memristive network structures for computational analog/digital circuits and systems. Microelectronics Journal, 2014, 45, 1380-1391.	2.0	24
177	Recent progress in resistive random access memories: Materials, switching mechanisms, and performance. Materials Science and Engineering Reports, 2014, 83, 1-59.	31.8	1,160
178	Memristor Kinetics and Diffusion Characteristics for Mixed Anionicâ€Electronic SrTiO _{3â€Î´} Bits: The Memristorâ€Based Cottrell Analysis Connecting Material to Device Performance. Advanced Functional Materials, 2014, 24, 7448-7460.	14.9	99
179	On memristor ideality and reciprocity. Microelectronics Journal, 2014, 45, 1363-1371.	2.0	19
180	Driving knots on DNA with AC/DC electric fields: topological friction and memory effects. Soft Matter, 2014, 10, 6491-6498.	2.7	33
181	A Single Nanoscale Junction with Programmable Multilevel Memory. ACS Nano, 2014, 8, 11724-11729.	14.6	53
182	Beyond series and parallel: Coupling as a third relation in memristive systems. , 2014, , .		13
183	Gas Discharge Lamps Are Volatile Memristors. IEEE Transactions on Circuits and Systems I: Regular Papers, 2014, 61, 2066-2073.	5.4	34
184	Dynamic computing random access memory. Nanotechnology, 2014, 25, 285201.	2.6	33
185	How Can the Hysteresis Loop of the Ideal Memristor Be Pinched?. IEEE Transactions on Circuits and Systems II: Express Briefs, 2014, 61, 491-495.	3.0	17

		CITATION RE	PORT	
#	Article		IF	Citations
186	Nonthermal and purely electronic resistive switching in a Mott memory. Physical Review	/ B, 2014, 90, .	3.2	44
187	Global exponential almost periodicity of a delayed memristor-based neural networks. No Networks, 2014, 60, 33-43.	eural	5.9	33
188	Ionic field effect and memristive phenomena in single-point ferroelectric domain switch Communications, 2014, 5, 4545.	ing. Nature	12.8	48
189	Hysteresis loop and cross-talk of organic memristive devices. Microelectronics Journal, 2 1396-1400.	2014, 45,	2.0	12
190	Nano-Crossbar Memories Comprising Parallel/Serial Complementary Memristive Switche BioNanoScience, 2014, 4, 166-179.	25.	3.5	22
191	Superconducting Memristors. Physical Review Applied, 2014, 2, .		3.8	40
192	A fast operation of nanometer-scale metallic memristors: highly transparent conductan in Ag ₂ S devices. Nanoscale, 2014, 6, 2613-2617.	ce channels	5.6	23
193	Memristive sensors for pH measure in dry conditions. Surface Science, 2014, 624, 76-7	9.	1.9	28
194	Interrelated responses for a class of material–metamaterial: Polarization, magnetizati opposite-sign-window. Physica B: Condensed Matter, 2014, 442, 29-33.	on and	2.7	3
196	Switching synchronization in one-dimensional memristive networks. Physical Review E, 052917.	2015, 92,	2.1	3
197	Stability and conductivity of self assembled wires in a transverse electric field. Scientific 2015, 5, 15044.	Reports,	3.3	17
198	Reconfigurable transmission lines with memcapacitive materials. Applied Physics Letter 253101.	s, 2015, 107,	3.3	3
199	Resistive switching and diode properties of mesoscopic niobium oxide-based structures the Russian Academy of Sciences: Physics, 2015, 79, 759-762.	. Bulletin of	0.6	1
200	On the action parameter and one-period loops of oscillatory memristive circuits. Nonlin 2015, 82, 619-628.	ear Dynamics,	5.2	11
201	Control of resistive switching in AM ₄ Q ₈ narrow gap Mott insistep towards neuromorphic applications. Physica Status Solidi (A) Applications and Mat 2015, 212, 239-244.	ulators: A first cerials Science,	1.8	18
202	How Does Moisture Affect the Physical Property of Memristance for Anionic–Electror Switching Memories?. Advanced Functional Materials, 2015, 25, 5117-5125.	ic Resistive	14.9	147
203	Comments on Pinched Hysteresis Loops of Memristive Elements. Radioengineering, 20	15, 24, 962-967.	0.6	7
204	Bioelectronics brain using memristive polymer statistical systems. , 0, , 256-265.			3

#	Article	IF	CITATIONS
205	Reliable Modeling of Ideal Generic Memristors via State-Space Transformation. Radioengineering, 2015, 24, 393-407.	0.6	39
206	Tunnel junction based memristors as artificial synapses. Frontiers in Neuroscience, 2015, 9, 241.	2.8	28
207	Paper Essentials. , 2015, , 105-140.		0
208	Resistive switching in metallic Ag ₂ S memristors due to a local overheating induced phase transition. Nanoscale, 2015, 7, 11248-11254.	5.6	19
209	Investigating conduction mechanism and frequency dependency of nanostructured memristor device. Materials Science in Semiconductor Processing, 2015, 38, 228-233.	4.0	41
210	Quasi-Ideal Memory System. IEEE Transactions on Cybernetics, 2015, 45, 1353-1362.	9.5	37
211	Layer-by-layer technique for the fabrication of organic memristors and neuromorphic systems. , 2015, ,		1
212	Electromechanical Emulator of Memristive Systems and Devices. IEEE Transactions on Electron Devices, 2015, 62, 3678-3684.	3.0	10
213	Polymer coated ZnO nanowires for memristive devices. , 2015, , .		6
214	Multi-state memristive nanocrossbar for high-radix computer arithmetic systems. , 2015, , .		4
215	A non-ideal memristor device. , 2015, , .		4
216	Synthesis of Fibrous Complex Structures: Designing Microstructure to Deliver Targeted Macroscale Response. Applied Mechanics Reviews, 2015, 67, .	10.1	101
217	Spin memristive magnetic tunnel junctions with CoO-ZnO nano composite barrier. Scientific Reports, 2014, 4, 3835.	3.3	21
218	Second order memâ€circuits. International Journal of Circuit Theory and Applications, 2015, 43, 1719-1742.	2.0	8
219	Resistive Switching Induced by Electric Pulses in a Single-Component Molecular Mott Insulator. Journal of Physical Chemistry C, 2015, 119, 2983-2988.	3.1	15
220	Non-exponential resistive switching in Ag ₂ S memristors: a key to nanometer-scale non-volatile memory devices. Nanoscale, 2015, 7, 4394-4399.	5.6	32
221	SPICE modeling of nonlinear memristive behavior. International Journal of Circuit Theory and Applications, 2015, 43, 553-565.	2.0	83
222	Non-ideal memristors for a non-ideal world. Physica Status Solidi (A) Applications and Materials Science, 2015, 212, 229-238.	1.8	6

		CITATION R	EPORT	
#	Article		IF	CITATIONS
223	Scale-free networks as an epiphenomenon of memory. Europhysics Letters, 2015, 109	, 28006.	2.0	16
224	Skeleton-supported stochastic networks of organic memristive devices: Adaptations a Advances, 2015, 5, 027129.	nd learning. AIP	1.3	14
225	Theoretical thermodynamics connections between Dual (Left-Handed) and Direct (Rigl systems: Entropy, temperature, pressure and heat capacity. Physica B: Condensed Mat 88-90.	nt Handed) .ter, 2015, 476,	2.7	11
226	The Missing Memristor has Not been Found. Scientific Reports, 2015, 5, 11657.		3.3	84
227	Generic meminductive characteristics of switched reluctance machines. Chinese Physic 068401.	cs B, 2015, 24,	1.4	0
228	Numerical and experimental studies of attractors in memristor-based Chua's oscilla equilibria. Noise-induced effects. European Physical Journal: Special Topics, 2015, 224,	ator with a line of 1553-1561.	2.6	29
229	On the method of the fabrication of active channels of organic memristive devices: Lar vs layer-by-layer. , 2015, , .	ngmuir-Blodgett		0
230	Toward the complete relational graph of fundamental circuit elements. Chinese Physic 068402.	s B, 2015, 24,	1.4	24
231	A hybrid living/organic electrochemical transistor based on the Physarum polycephalur endowed with both sensing and memristive properties. Chemical Science, 2015, 6, 28	n cell 59-2868.	7.4	61
232	Memcomputing with membrane memcapacitive systems. Nanotechnology, 2015, 26, 2	225201.	2.6	24
233	Universal Memcomputing Machines. IEEE Transactions on Neural Networks and Learni 26, 2702-2715.	ng Systems, 2015,	11.3	106
234	Application of the Memristor in Reconfigurable Electromagnetic Devices. IEEE Antenna Propagation Magazine, 2015, 57, 239-248.	s and	1.4	33
235	Conductive Atomic Force Microscopy Investigation of Switching Thresholds in Titaniur Films. Journal of Physical Chemistry C, 2015, 119, 11958-11964.	n Dioxide Thin	3.1	34
236	Investigation of process parameter variation in the memristor based resistive random a (RRAM): Effect of device size variations. Materials Science in Semiconductor Processin 174-180.	access memory g, 2015, 35,	4.0	39
237	Rectification and resistive switching in mesoscopic heterostructures based on Bi2Se3. Letters, 2015, 158, 403-405.	Materials	2.6	13
238	Modelling of nanostructured memristor device characteristics using Artificial Neural Ne (ANN). Journal of Computational Science, 2015, 11, 82-90.	etwork	2.9	23
239	Spectra of surface plasmon polariton enhanced electroluminescence from electroform diodes. Journal of Applied Physics, 2015, 117, .	ed Al-Al2O3-Ag	2.5	5
240	LC filters with enhanced memristive damping. , 2015, , .			15

#	Article	IF	CITATIONS
241	Memristor-based Willshaw network: Capacity and robustness to noise in the presence of defects. Applied Physics Letters, 2015, 106, .	3.3	12
242	Least Action Principle for Mem-Elements. Journal of Circuits, Systems and Computers, 2015, 24, 1550148.	1.5	5
243	Organic memristive device as key element for neuromorphic networks. AIP Conference Proceedings, 2015, , .	0.4	0
244	Polyaniline-based organic memristive device fabricated by layer-by-layer deposition technique. Electronic Materials Letters, 2015, 11, 801-805.	2.2	13
245	The effect of changing electrode metal on solution-processed flexible titanium dioxide memristors. Materials Chemistry and Physics, 2015, 162, 20-30.	4.0	34
246	Resistive switching phenomena: A review of statistical physics approaches. Applied Physics Reviews, 2015, 2, .	11.3	338
247	Layered memristive and memcapacitive switches for printable electronics. Nature Materials, 2015, 14, 199-204.	27.5	423
248	Adaptive Finite-Time Complete Periodic Synchronization of Memristive Neural Networks with Time Delays. Neural Processing Letters, 2015, 42, 563-583.	3.2	33
249	Frequency dependent figure-of-merit in cylindrical thermoelectric nanodevices. Physica B: Condensed Matter, 2015, 456, 57-65.	2.7	3
250	Memory Impedance in TiO2 based Metal-Insulator-Metal Devices. Scientific Reports, 2014, 4, 4522.	3.3	97
251	The experimental model of a non-ideal memristor. , 2016, , .		3
252	High On/Off Ratio Memristive Switching of Manganite/Cuprate Bilayer by Interfacial Magnetoelectricity. Advanced Materials Interfaces, 2016, 3, 1600086.	3.7	5
253	Realization of a flux-driven memtranstor at room temperature. Chinese Physics B, 2016, 25, 027703.	1.4	9
254	HEOM-QUICK: a program for accurate, efficient, and universal characterization of strongly correlated quantum impurity systems. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2016, 6, 608-638.	14.6	87
255	From MEMRISTOR to MEMImpedance device. Applied Physics Letters, 2016, 108, 053502.	3.3	16
256	A flux-controlled model of meminductor and its application in chaotic oscillator. Chinese Physics B, 2016, 25, 090502.	1.4	24
257	Memristive Sisyphus circuit for clock signal generation. Scientific Reports, 2016, 6, 26155.	3.3	7
258	Thin film versus paper-like reduced graphene oxide: Comparative study of structural, electrical, and thermoelectrical properties. Journal of Applied Physics, 2016, 120, 051706.	2.5	17

#	Article	IF	Citations
259	Photo-controllable memristive behavior of graphene/diamond heterojunctions. Applied Physics Letters, 2016, 108, 222102.	3.3	14
260	First steps towards the realization of a double layer perceptron based on organic memristive devices. AIP Advances, 2016, 6, .	1.3	77
261	Emulating short-term synaptic dynamics with memristive devices. Scientific Reports, 2016, 6, 18639.	3.3	104
262	Metallic monoclinic phase in VO 2 induced by electrochemical gating: In situ Raman study. Europhysics Letters, 2016, 115, 17001.	2.0	7
263	Memristive jounce (Newtonian) circuits. Applied Mathematical Modelling, 2016, 40, 2619-2624.	4.2	6
264	Dynamics of ion transport and electric double layer in single conical nanopores. Journal of Electroanalytical Chemistry, 2016, 779, 39-46.	3.8	16
265	Spontaneous symmetry breaking during the switching of a buckled graphene membrane. JETP Letters, 2016, 103, 244-247.	1.4	4
266	Study on the bio-functionalization of memristive nanowires for optimum memristive biosensors. Journal of Materials Chemistry B, 2016, 4, 2153-2162.	5.8	19
267	Saddle-Node Bifurcations in Classical and Memristive Circuits. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2016, 26, 1650064.	1.7	1
268	A spiking and bursting neuron circuit based on memristor. Neurocomputing, 2016, 203, 86-91.	5.9	135
269	Some electromechanical systems and analogies of mem-systems integer and fractional order. , 2016, , .		7
270	Emerging Memristor-Based Logic Circuit Design Approaches: A Review. IEEE Circuits and Systems Magazine, 2016, 16, 15-30.	2.3	157
271	Chaos in a Meminductor-Based Circuit. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2016, 26, 1650130.	1.7	34
272	Class A and Class AB CMOS-Only Nanopower Memristive Dynamics Emulators. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2016, 26, 1650127.	1.7	1
273	Coherent diffraction of thermal currents in long Josephson tunnel junctions. Physical Review B, 2016, 94, .	3.2	24
274	Qubit-Based Memcapacitors and Meminductors. Physical Review Applied, 2016, 6, .	3.8	27
275	A two-transistor non-ideal memristor emulator. , 2016, , .		12
276	The simplest memristor in the world. , 2016, , .		7

#	Article	IF	CITATIONS
277	Frequency properties of heterostructures based on bismuth selenide upon bipolar resistive switching: Experiments and numerical simulation. Bulletin of the Russian Academy of Sciences: Physics, 2016, 80, 672-674.	0.6	7
279	Geometry-Induced Memory Effects in Isolated Quantum Systems: Cold-Atom Applications. Physical Review Applied, 2016, 5, .	3.8	8
280	Electro-Photo-Sensitive Memristor for Neuromorphic and Arithmetic Computing. Physical Review Applied, 2016, 5, .	3.8	37
281	Evolution of resistive switching and its ionic models in Pt/Nb-doped SrTiO ₃ junctions. Materials Research Express, 2016, 3, 075903.	1.6	7
282	Multistability in Bistable Ferroelectric Materials toward Adaptive Applications. Advanced Functional Materials, 2016, 26, 5748-5756.	14.9	20
283	Neuromorphic elements and systems as the basis for the physical implementation of artificial intelligence technologies. Crystallography Reports, 2016, 61, 992-1001.	0.6	15
284	Asymmetry-induced resistive switching in Ag-Ag2S-Ag memristors enabling a simplified atomic-scale memory design. Scientific Reports, 2016, 6, 30775.	3.3	30
285	Resistive Switching Memory Phenomena in PEDOT PSS: Coexistence of Switchable Diode Effect and Write Once Read Many Memory. Scientific Reports, 2016, 6, 19594.	3.3	25
286	On lossy memristive behavior of metal conductors. , 2016, , .		0
287	Numerical simulation of resistive switching in heterostructures based on anisotropic oxide compounds. Bulletin of the Russian Academy of Sciences: Physics, 2016, 80, 497-499.	0.6	4
288	Fracmemristor: Fractional-Order Memristor. IEEE Access, 2016, 4, 1872-1888.	4.2	151
289	Impedance Hyperbolicity in Inkjetâ€Printed Graphene Nanocomposites: Tunable Capacitors for Advanced Devices. Advanced Electronic Materials, 2016, 2, 1500312.	5.1	19
290	Generalized boundary condition memristor model. International Journal of Circuit Theory and Applications, 2016, 44, 60-84.	2.0	59
291	2D bifurcations and Newtonian properties of memristive Chua's circuits. Europhysics Letters, 2016, 113, 10005.	2.0	20
292	Memristive and Memcapacitive Models ofÂPhysarum Learning. Emergence, Complexity and Computation, 2016, , 413-422.	0.3	2
293	Memcomputing Implementation of Ant Colony Optimization. Neural Processing Letters, 2016, 44, 265-277.	3.2	11
294	A Memristive Pascaline. IEEE Transactions on Circuits and Systems II: Express Briefs, 2016, 63, 558-562.	3.0	10
295	Memristive model of hysteretic field emission from carbon nanotube arrays. Journal of Nanophotonics, 2016, 10, 012524.	1.0	11

		CITATION REPORT		
#	Article		IF	CITATIONS
296	Mesoscopic Theories of Heat Transport in Nanosystems. SEMA SIMAI Springer Series, 2	2016,,.	0.7	69
297	Influence of carrier concentration on the resistive switching characteristics of a ZnO-b memristor. Nano Research, 2016, 9, 1116-1124.	ased	10.4	35
298	Hard X-ray PhotoElectron Spectroscopy of transition metal oxides: Bulk compounds ar metal-oxide interfaces. Journal of Electron Spectroscopy and Related Phenomena, 201	1d device-ready 6, 208, 95-99.	1.7	4
299	Memristor Modeling. Emergence, Complexity and Computation, 2016, , 9-28.		0.3	1
300	Memristor-Based Logic Circuits. Emergence, Complexity and Computation, 2016, , 61-	-100.	0.3	2
301	High-Radix Arithmetic-Logic Unit (ALU) Based on Memristors. Emergence, Complexity 2016, , 149-172.	and Computation,	0.3	2
302	Memristor-Based Nanoelectronic Computing Circuits and Architectures. Emergence, C Computation, 2016, , .	omplexity and	0.3	51
303	Complex dynamics of memristive circuits: Analytical results and universal slow relaxati Review E, 2017, 95, 022140.	on. Physical	2.1	26
304	Polynomial-time solution of prime factorization and NP-complete problems with digita memcomputing machines. Chaos, 2017, 27, 023107.	1	2.5	67
305	Conducting-insulating transition in adiabatic memristive networks. Physical Review E,	2017, 95, 012305.	2.1	14
306	Pinched hysteresis loops and symmetry. IET Science, Measurement and Technology, 20	017, 11, 134-140.	1.6	1
307	Quantum Memristors with Superconducting Circuits. Scientific Reports, 2017, 7, 4204	14.	3.3	46
308	Stochastic CBRAM-Based Neuromorphic Time Series Prediction System. ACM Journal o Technologies in Computing Systems, 2017, 13, 1-14.	n Emerging	2.3	3
309	Similarity between the response of memristive and memcapacitive circuits subjected t Journal of Nanophotonics, 2017, 11, 032507.	o ramped voltage.	1.0	0
310	Memristor-based nonvolatile synchronous flip-flop circuits. , 2017, , .			16
311	Memristor for computing: Myth or reality?. , 2017, , .			79
312	Memristor Crossbar for Adaptive Synchronization. IEEE Transactions on Circuits and Sy Regular Papers, 2017, 64, 2124-2133.	ystems I:	5.4	30
313	Correlated resistive/capacitive state variability in solid TiO2 based memory devices. Ap Materials Science and Processing, 2017, 123, 1.	plied Physics A:	2.3	3

#	ARTICLE	IF	Citations
314	Analog memristive and memcapacitive properties of Ti / Al <inf>2</inf> O <inf>3</inf> / Nb <inf>2</inf> O <inf>5</inf> / Ti resistive switches. , 2017, , .		0
315	Oxide-based RRAM models for circuit designers: A comparative analysis. , 2017, , .		17
316	X-ray photoelectron spectroscopy studies of electronic structure of Nd2â^'xCexCuO4â^'y and YBa2Cu3O7â^'y epitaxial film surfaces and resistive switchings in high temperature superconductor-based heterostructures. Materials Letters, 2017, 203, 97-99.	2.6	9
317	Graphene and Related Materials for Resistive Random Access Memories. Advanced Electronic Materials, 2017, 3, 1600195.	5.1	175
318	Solitonic Josephson-based meminductive systems. Scientific Reports, 2017, 7, 46736.	3.3	30
319	Millimeter distance effects of surface plasmon polaritons in electroformed Al-Al2O3-Ag diodes. Journal of Applied Physics, 2017, 121, .	2.5	4
320	Crossbar-Based Memristive Logic-in-Memory Architecture. IEEE Nanotechnology Magazine, 2017, 16, 491-501.	2.0	57
321	Nanoscale Tipping Bucket Effect in a Quantum Dot Transistor-Based Counter. Nano Letters, 2017, 17, 2273-2279.	9.1	5
322	Arduino-controlled HP memristor emulator for memristor circuit applications. The Integration VLSI Journal, 2017, 58, 438-445.	2.1	18
323	Computing with volatile memristors: an application of non-pinched hysteresis. Nanotechnology, 2017, 28, 075204.	2.6	7
324	Memristive stochastic plasticity enables mimicking of neural synchrony: Memristive circuit emulates an optical illusion. Science Advances, 2017, 3, e1700849.	10.3	56
325	Asymptotic Floquet states of non-Markovian systems. Physical Review A, 2017, 96, .	2.5	10
326	Quantification of the memory effect of steady-state currents from interaction-induced transport in quantum systems. Physical Review A, 2017, 96, .	2.5	6
327	Memristive response of a new class of hydrated vanadium oxide intercalation compounds. MRS Communications, 2017, 7, 634-641.	1.8	7
328	Double quantum dot memristor. Physical Review B, 2017, 96, .	3.2	15
329	Pinched Hysteresis Loop Characteristics ofÂaÂFractional-Order HP \$\$mathrm{TiO_2}\$\$ memristor. Communications in Computer and Information Science, 2017, , 705-713.	0.5	5
330	Synchronization stability of memristor-based complex-valued neural networks with time delays. Neural Networks, 2017, 96, 115-127.	5.9	50
331	Metastable memristive lines for signal transmission and information processing applications. Physical Review E, 2017, 95, 042213.	2.1	5

щ	Apticis	IE	CITATIONS
#	A low-cost copper oxide thin film memristive device based on successive ionic laver adsorption and	IF	CHATIONS
332	reaction method. Materials Science in Semiconductor Processing, 2017, 71, 102-108.	4.0	32
333	Effects of resistive switching in Au/FeOx/Pt structures. Journal of Communications Technology and Electronics, 2017, 62, 894-897.	0.5	1
334	Locality of interactions for planar memristive circuits. Physical Review E, 2017, 96, 052206.	2.1	14
335	Global attractivity of memristor-based fractional-order neural networks. Neurocomputing, 2017, 227, 64-73.	5.9	13
336	Organic Memristor Based Elements for Bio-inspired Computing. Emergence, Complexity and Computation, 2017, , 469-496.	0.3	10
337	Switching synchronization in one-dimensional memristive networks: An exact solution. Physical Review E, 2017, 96, 062213.	2.1	2
338	Filamentary model in resistive switching materials. AIP Conference Proceedings, 2017, , .	0.4	9
339	Study of two-memcapacitor circuit model with semi-explicit ODE solver. , 2017, , .		1
340	Coupling Resistive Switching Devices with Neurons: State of the Art and Perspectives. Frontiers in Neuroscience, 2017, 11, 70.	2.8	46
341	Voltage-Current Differential Equations of Extended Memristors with One-Dimensional State. , 2017, , .		1
342	Multi-terminal memtransistors from polycrystalline monolayer molybdenum disulfide. Nature, 2018, 554, 500-504.	27.8	705
343	Current–Voltage Characteristics of Commercial Ferroelectric Capacitors: Deviations from the Preisach Model. Journal of Contemporary Physics, 2018, 53, 65-72.	0.6	1
344	Autonomous models of self-crossing pinched hystereses for mem-elements. Nonlinear Dynamics, 2018, 92, 1975-1983.	5.2	6
345	Fine structure of metal–insulator transition in EuO resolved by doping engineering. Nanotechnology, 2018, 29, 195706.	2.6	22
346	Bipolar resistive switching and memristive properties of hydrothermally synthesized TiO2 nanorod array: Effect of growth temperature. Materials and Design, 2018, 151, 37-47.	7.0	56
347	Numerical Simulation Research of Fracmemristor Circuit Based on HP Memristor. Journal of Circuits, Systems and Computers, 2018, 27, 1850227.	1.5	3
348	Analog Circuit Implementation of Fractional-Order Memristor: Arbitrary-Order Lattice Scaling Fracmemristor. IEEE Transactions on Circuits and Systems I: Regular Papers, 2018, 65, 2903-2916.	5.4	52
349	Photo-Electrosensitive Memristor Using Oxygen Doping in HgTe Nanocrystal Films. ACS Applied Materials & amp; Interfaces, 2018, 10, 18927-18934.	8.0	12

#	Article	IF	CITATIONS
350	A Collective Study on Modeling and Simulation of Resistive Random Access Memory. Nanoscale Research Letters, 2018, 13, 8.	5.7	93
351	Impact-activated programming of electro-mechanical resonators through ferroelectret nanogenerator (FENG) and vanadium dioxide. Nano Energy, 2018, 43, 278-284.	16.0	20
352	Chemical sensors are hybrid-input memristors. Applied Surface Science, 2018, 436, 1018-1021.	6.1	7
353	Modulating the Hysteresis of an Electronic Transition: Launching Alternative Transformation Pathways in the Metal–Insulator Transition of Vanadium(IV) Oxide. Chemistry of Materials, 2018, 30, 214-224.	6.7	20
354	Bipolar resistive switching with coexistence of mem-elements in the spray deposited CoFe2O4 thin film. Journal of Materials Science: Materials in Electronics, 2018, 29, 3231-3238.	2.2	24
355	Static and dynamic effects of the resistive switchings in heterocontacts based on superconductive Nd2â^'xCexCuO4â^'y films. Microelectronic Engineering, 2018, 187-188, 116-120.	2.4	2
356	The <i>mise en scéne</i> of memristive networks: effective memory, dynamics and learning. International Journal of Parallel, Emergent and Distributed Systems, 2018, 33, 350-366.	1.0	8
357	Diode Polarization and Resistive Switching in Metal/TlGaSe2 Semiconductor/Metal Devices. Semiconductors, 2018, 52, 2007-2016.	0.5	5
358	Efficient synthesis of <i>N</i> -butadiene substituted oxindole derivatives. Organic Chemistry Frontiers, 2018, 5, 3460-3463.	4.5	3
359	Solution-phase synthesized iron telluride nanostructures with controllable thermally triggered p-type to n-type transition. Nanoscale, 2018, 10, 20664-20670.	5.6	3
360	A study on the preparation and application of a core–shell surface imprinted uranyl magnetic chelating adsorbent. RSC Advances, 2018, 8, 37401-37409.	3.6	1
361	An Angiopep-2 functionalized nanoformulation enhances brain accumulation of tanshinone IIA and exerts neuroprotective effects against ischemic stroke. New Journal of Chemistry, 2018, 42, 17359-17370.	2.8	9
362	Coexistence of memristive and memcapacitive effects in oxide thin films. Japanese Journal of Applied Physics, 2018, 57, 121502.	1.5	14
363	Deformation of Charged Graphene Membrane. Journal of Structural Chemistry, 2018, 59, 900-904.	1.0	2
364	A Novel Approach to Analyze Current-Voltage Characteristics of Double Gated-Memristor. , 2018, , .		2
365	Transient electrical behavior of an electrode/electrolyte interface based on a surface micro-structured with gold mushroom shapes. Journal of Applied Physics, 2018, 124, .	2.5	2
366	Challenges in materials and devices for resistive-switching-based neuromorphic computing. Journal of Applied Physics, 2018, 124, .	2.5	155
367	Coexistence of filamentary and homogeneous resistive switching with memristive and meminductive memory effects in Al/MnO2/SS thin film metal–insulator–metal device. International Nano Letters, 2018, 8, 263-275.	5.0	25

#	Article	IF	CITATIONS
368	Initial conditions-related dynamical behaviors in PI-type memristor emulator-based canonical Chua's circuit. Circuit World, 2018, 44, 178-186.	0.9	12
369	A multi-level memristor based on atomic layer deposition of iron oxide. Nanotechnology, 2018, 29, 495201.	2.6	26
370	Self-Organized Formation of Quasi-Regular Ferroelectric Nanodomain Structure on the Nonpolar Cuts by Grounded SPM Tip. ACS Applied Materials & Interfaces, 2018, 10, 36211-36217.	8.0	23
371	Window function for fractionalâ€order HP nonâ€linear memristor model. IET Circuits, Devices and Systems, 2018, 12, 447-452.	1.4	13
372	Memory effects in the ion conductor Rb2Ti2O5. Journal of Applied Physics, 2018, 124, 152104.	2.5	1
373	Dynamical Behavior of a 3D Jerk System with a Generalized Memristive Device. Complexity, 2018, 2018, 1-10.	1.6	6
374	When Memristance Crosses the Path with Humidity Sensing—About the Importance of Protons and Its Opportunities in Valence Change Memristors. Advanced Electronic Materials, 2018, 4, 1800282.	5.1	23
375	Development of self-rectifying ZnO thin film resistive switching memory device using successive ionic layer adsorption and reaction method. Journal of Materials Science: Materials in Electronics, 2018, 29, 18733-18741.	2.2	29
376	Operating conditions analysis of memristor model. International Journal of Engineering and Technology(UAE), 2018, 7, 2291.	0.3	0
377	Effect of Ice Accretion on Safe Flight Envelope. , 2018, , .		0
377 378	Effect of Ice Accretion on Safe Flight Envelope. , 2018, , . Neuromorphic Computing with Memristor Crossbar. Physica Status Solidi (A) Applications and Materials Science, 2018, 215, 1700875.	1.8	0 60
377 378 379	Effect of Ice Accretion on Safe Flight Envelope. , 2018, , . Neuromorphic Computing with Memristor Crossbar. Physica Status Solidi (A) Applications and Materials Science, 2018, 215, 1700875. Energetically consistent modeling of passive memelements. AEU - International Journal of Electronics and Communications, 2018, 93, 19-25.	1.8 2.9	0 60 6
377 378 379 380	Effect of Ice Accretion on Safe Flight Envelope., 2018, , . Neuromorphic Computing with Memristor Crossbar. Physica Status Solidi (A) Applications and Materials Science, 2018, 215, 1700875. Energetically consistent modeling of passive memelements. AEU - International Journal of Electronics and Communications, 2018, 93, 19-25. Perspective: Memcomputing: Leveraging memory and physics to compute efficiently. Journal of Applied Physics, 2018, 123, .	1.8 2.9 2.5	0 60 6 60
377 378 379 380 381	Effect of Ice Accretion on Safe Flight Envelope. , 2018, , . Neuromorphic Computing with Memristor Crossbar. Physica Status Solidi (A) Applications and Materials Science, 2018, 215, 1700875. Energetically consistent modeling of passive memelements. AEU - International Journal of Electronics and Communications, 2018, 93, 19-25. Perspective: Memcomputing: Leveraging memory and physics to compute efficiently. Journal of Applied Physics, 2018, 123, . Invited Article: Quantum memristors in quantum photonics. APL Photonics, 2018, 3, 080801.	1.8 2.9 2.5 5.7	0 60 6 60 28
377 378 379 380 381 382	Effect of Ice Accretion on Safe Flight Envelope. , 2018, , . Neuromorphic Computing with Memristor Crossbar. Physica Status Solidi (A) Applications and Materials Science, 2018, 215, 1700875. Energetically consistent modeling of passive memelements. AEU - International Journal of Electronics and Communications, 2018, 93, 19-25. Perspective: Memcomputing: Leveraging memory and physics to compute efficiently. Journal of Applied Physics, 2018, 123, . Invited Article: Quantum memristors in quantum photonics. APL Photonics, 2018, 3, 080801. Thermometry and Memcapacitance with a Qubit-Resonator System. Physical Review Applied, 2018, 10, .	1.8 2.9 2.5 5.7 3.8	0 60 6 60 28 8
377 378 379 380 381 382 383	Effect of Ice Accretion on Safe Flight Envelope. , 2018, , . Neuromorphic Computing with Memristor Crossbar. Physica Status Solidi (A) Applications and Materials Science, 2018, 215, 1700875. Energetically consistent modeling of passive memelements. AEU - International Journal of Electronics and Communications, 2018, 93, 19-25. Perspective: Memcomputing: Leveraging memory and physics to compute efficiently. Journal of Applied Physics, 2018, 123, . Invited Article: Quantum memristors in quantum photonics. APL Photonics, 2018, 3, 080801. Thermometry and Memcapacitance with a Qubit-Resonator System. Physical Review Applied, 2018, 10, . Snap-through transition of buckled graphene membranes for memcapacitor applications. Scientific Reports, 2018, 8, 3566.	1.8 2.9 2.5 5.7 3.8 3.3	0 60 60 28 8
377 378 379 380 381 382 383 384	Effect of Ice Accretion on Safe Flight Envelope. , 2018, , . Neuromorphic Computing with Memristor Crossbar. Physica Status Solidi (A) Applications and Materials Science, 2018, 215, 1700875. Energetically consistent modeling of passive memelements. AEU - International Journal of Electronics and Communications, 2018, 93, 19-25. Perspective: Memcomputing: Leveraging memory and physics to compute efficiently. Journal of Applied Physics, 2018, 123, . Invited Article: Quantum memristors in quantum photonics. APL Photonics, 2018, 3, 080801. Thermometry and Memcapacitance with a Qubit-Resonator System. Physical Review Applied, 2018, 10, . Snap-through transition of buckled graphene membranes for memcapacitor applications. Scientific Reports, 2018, 8, 3566. Solution-processed resistive switching memory devices based on hybrid organic–inorganic materials and composites. Physical Chemistry Chemical Physics, 2018, 20, 23837-23846.	1.8 2.9 2.5 5.7 3.8 3.3 2.8	0 60 60 28 8 19 68

#	Article	IF	CITATIONS
386	Tutorial: Experimental Nonlinear Dynamical Circuit Analysis of a Ferromagnetic Inductor. IEEE Circuits and Systems Magazine, 2018, 18, 28-34.	2.3	5
387	Studying the Dynamic Effects in Memristive Structures Based on Bismuth Selenide: Does a Memristor Need a Shuttle Tail?. Bulletin of the Russian Academy of Sciences: Physics, 2019, 83, 740-744.	0.6	7
388	Semiconductor–Metal Phase Transition and "Tristable―Electrical Switching in Nanocrystalline Vanadium Oxide Films on Silicon. Technical Physics Letters, 2019, 45, 584-587.	0.7	0
389	Dynamical nonlinear memory capacitance in biomimetic membranes. Nature Communications, 2019, 10, 3239.	12.8	51
390	Comment on â€~lf it's pinched it's a memristor'. Semiconductor Science and Technology, 2019, 34, 098001.	2.0	8
391	A neural memristor system with infinite or without equilibrium. European Physical Journal: Special Topics, 2019, 228, 1527-1534.	2.6	5
392	Adaptive synchronization of memristor-based complex-valued neural networks with time delays. Neurocomputing, 2019, 364, 119-128.	5.9	11
393	Memristive resistive switch based on spontaneous barrier creation in metal-chalcogenide junctions. Journal Physics D: Applied Physics, 2019, 52, 385101.	2.8	8
394	Measurement of the activation energies of oxygen ion diffusion in yttria stabilized zirconia by flicker noise spectroscopy. Applied Physics Letters, 2019, 114, .	3.3	88
395	Bifurcation analysis of a TaO memristor model. Journal Physics D: Applied Physics, 2019, 52, 505304.	2.8	14
396	Approximate Computing With Stochastic Transistors' Voltage Over-Scaling. IEEE Access, 2019, 7, 6373-6385.	4.2	6
397	CAMEM: A Computationally-Efficient and Accurate Memristive Model With Experimental Verification. IEEE Nanotechnology Magazine, 2019, 18, 1040-1049.	2.0	5
399	Local temperatures out of equilibrium. Physics Reports, 2019, 830, 1-66.	25.6	22
401	Building Brain-Inspired Logic Circuits from Dynamically Switchable Transition-Metal Oxides. Trends in Chemistry, 2019, 1, 711-726.	8.5	39
402	Alternative Approaches to Program Memristor and Reduce the Effect of Random Telegraphic Noise. IETE Journal of Research, 2022, 68, 1748-1756.	2.6	2
403	Dynamical investigation and chaotic associated behaviors of memristor Chua's circuit with a non-ideal voltage-controlled memristor and its application to voice encryption. AEU - International Journal of Electronics and Communications, 2019, 107, 183-191.	2.9	24
404	Memristive devices based on emerging two-dimensional materials beyond graphene. Nanoscale, 2019, 11, 12413-12435.	5.6	87
405	Memristor: Modeling and Research of Information Properties. Springer Proceedings in Complexity, 2019, , 229-238.	0.3	3

#	Article	IF	CITATIONS
406	Semi-Explicit Composition Methods in Memcapacitor Circuit Simulation. International Journal of Embedded and Real-Time Communication Systems, 2019, 10, 37-52.	0.5	16
407	Pulse-width modulated oscillations in a nonlinear resonator under two-tone driving as a means for MEMS sensor readout. Japanese Journal of Applied Physics, 2019, 58, SBBI05.	1.5	4
408	MemSens: a new detection method for heavy metals based on silver nanoparticle assisted memristive switching principle. Journal of Materials Science: Materials in Electronics, 2019, 30, 11383-11394.	2.2	19
409	Organic electronic memory devices. , 2019, , 843-874.		0
410	Finite-time synchronization of memristor-based complex-valued neural networks with time delays. Physics Letters, Section A: General, Atomic and Solid State Physics, 2019, 383, 2255-2263.	2.1	23
411	Fully Printed All-Solid-State Organic Flexible Artificial Synapse for Neuromorphic Computing. ACS Applied Materials & Interfaces, 2019, 11, 16749-16757.	8.0	70
412	Dynamical effects of memristive load on peak current mode buck-boost switching converter. Chaos, Solitons and Fractals, 2019, 122, 69-79.	5.1	32
413	Synthesis of Donor–Acceptor Gridarenes with Tunable Electronic Structures for Synaptic Learning Memristor. ACS Omega, 2019, 4, 5863-5869.	3.5	19
414	Insulator–metal transition induced by electric voltage in a ruthenate Mott insulator. Journal of Physics Condensed Matter, 2019, 31, 195602.	1.8	3
415	Dynamical attractors of memristors and their networks. Europhysics Letters, 2019, 125, 20002.	2.0	25
416	Engineering Oxygen Migration for Homogeneous Volume Resistive Switching in 3â€Terminal Devices. Advanced Electronic Materials, 2019, 5, 1800629.	5.1	18
417	Photomemristors using carbon nanowall/diamond heterojunctions. Journal of Materials Research, 2019, 34, 626-633.	2.6	5
419	IoT and Big Data Analytics in E-Learning. , 2019, , .		5
420	Analysis of factors influencing severity of urban expressway accidents in Guangdong province. , 2019, , .		3
421	APMAR 2019 Message from General Chairs. , 2019, , .		0
422	Your Gameplay Says It All: Modelling Motivation in Tom Clancy's The Division. , 2019, , .		22
423	A load management optimization strategy for smart distribution network considering Time-Of-Use electricity price and load control. , 2019, , .		1
424	Detecting and Mitigating Low-and-Slow DoS Attacks in NoC-based MPSoCs. , 2019, , .		2

#	Article	IF	CITATIONS
425	Formal Verification of Orchestration Templates for Reliable Deployment with OpenStack Heat*. , 2019, ,		0
426	Phase Error Analysis of Phase-locked Loop under Voltage Perturbation. , 2019, , .		1
427	Combined-LSTM based User Electricity Consumption Prediction in a Smart Grid System. , 2019, , .		2
428	A Study on Tensor and Matrix Models for Super-Resolution Fluorescence Microscopy. , 2019, , .		0
429	Real-Time and Embedded Deep Learning on FPGA for RF Signal Classification. , 2019, , .		28
430	Analysis and Implementation of HOT Standby Operation of Variable Frequency Drives. , 2019, , .		0
431	Employment Recommendation Algorithm Based on Ensemble Learning. , 2019, , .		1
433	LQG Reference Tracking with Safety and Reachability Guarantees under False Data Injection Attacks. , 2019, , .		7
434	TSN Traffic Shaping for OPC UA Field Devices. , 2019, , .		17
435	Imaging characteristic for large elliptical orbit SAR. , 2019, , .		1
436	Challenges and Distinctions in Nanonetworks Design. , 2019, , .		5
437	An Energy-Efficient Transmission Scheme for Buffer-Aided UAV Relaying Networks. , 2019, , .		2
438	Research on the design and control strategy of surgical manipulator for knee surgery assistant robot. , 2019, , .		1
439	Cross-Modality Personalization for Retrieval. , 2019, , .		10
440	Network Capacity Reliability Evaluation Based on Monte Carlo Simulation and Line Sampling Methods. , 2019, , .		0
441	Fault-Tolerant Neuromorphic Computing Systems. , 2019, , .		3
442	A Buffer and Splitter Insertion Framework for Adiabatic Quantum-Flux-Parametron Superconducting Circuits. , 2019, , .		12
443	A fast baseline and trigger level calibration method in digital oscilloscope. , 2019, , .		3

# 444	ARTICLE terahertz for highâ€speed communications. Electronics Letters, 2019, 55, 923-924.	IF 1.0	Citations 0
445	Leakage Reduction Tehniques in SRAM. , 2019, , .		0
446	Pattern Recognition of Wireless Modulation Signals Based on Deep Learning. , 2019, , .		3
447	Towards Human Values Traceability in Software: A Goal Modeling Approach. , 2019, , .		4
448	ICDAR2019 Robust Reading Challenge on Multi-lingual Scene Text Detection and Recognition $\hat{a} \in$ " RRC-MLT-2019. , 2019, , .		136
449	Memcomputing and Nondestructive Reading in Functional Ferroelectric Heterostructures. Physical Review Applied, 2019, 12, .	3.8	7
450	RRAM Device Models: A Comparative Analysis With Experimental Validation. IEEE Access, 2019, 7, 168963-168980.	4.2	36
451	Hybrid dualâ€complementary metal–oxide–semiconductor/memristor synapseâ€based neural network with its applications in image superâ€resolution. IET Circuits, Devices and Systems, 2019, 13, 1241-1248.	1.4	25
452	Generalized modeling and character analyzing of composite fractional-order memristors in series connection. Nonlinear Dynamics, 2019, 95, 101-115.	5.2	17
453	Properties of percolation channels in planar memristive structures based on epitaxial films of a YBa ₂ Cu ₃ O _{7â^²<i>Î</i>} high temperature superconductor. Superconductor Science and Technology, 2019, 32, 015003.	3.5	7
454	Memristive networks: From graph theory to statistical physics. Europhysics Letters, 2019, 125, 10001.	2.0	9
455	A Demonstration of Implication Logic Based on Volatile (Diffusive) Memristors. IEEE Transactions on Circuits and Systems II: Express Briefs, 2019, 66, 1033-1037.	3.0	8
456	A simple test for ideal memristors. Journal Physics D: Applied Physics, 2019, 52, 01LT01.	2.8	27
457	Delay-Distribution-Dependent \$H_infty\$ State Estimation for Discrete-Time Memristive Neural Networks With Mixed Time-Delays and Fading Measurements. IEEE Transactions on Cybernetics, 2020, 50, 440-451.	9.5	87
458	On the validity of memristor modeling in the neural network literature. Neural Networks, 2020, 121, 52-56.	5.9	31
459	Theoretical Foundations of Memristor Cellular Nonlinear Networks: Memcomputing With Bistable-Like Memristors. IEEE Transactions on Circuits and Systems I: Regular Papers, 2020, 67, 502-515.	5.4	49
460	Applications of Emerging Memory Technology. Springer Series in Advanced Microelectronics, 2020, , .	0.3	6
461	Memristive Biosensors for Ultrasensitive Diagnostics and Therapeutics. Springer Series in Advanced Microelectronics, 2020, , 133-157.	0.3	4

ARTICLE IF CITATIONS # Exploring the "resistance change per energy unit―as universal performance parameter for resistive 462 1.4 7 switching devices. Solid-State Electronics, 2020, 165, 107748. Mathematic Modeling and Circuit Implementation on Multi-Valued Memristor., 2020,,. Image Processing by Cellular Memcomputing Structures., 2020,,. 0 464 Targeting Multistable Dynamics in a Second-Order Memristor Circuit., 2020, , . Inputâ& Output Characterization of the Dynamical Properties of Circuits with a Memelement. 466 1.7 8 International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2020, 30, 2050110. Inkâ€Based Additive Nanomanufacturing of Functional Materials for Humanâ€Integrated Smart Wearables. Advanced Intelligent Systems, 2020, 2, 2000117. 6.1 Implementation of Logical and Memory Functions with Memristor Cellular Nonlinear Networks., 468 1 2020,,. The Study of Switching Dynamics in Planar Structures Based on Epitaxial Films of YBa2Cu3O7-Î′ High-Temperature Superconductor. Journal of Superconductivity and Novel Magnetism, 2020, 33, 1.8 3695-3704. Tunable Si Dangling Bond Pathway Induced Forming-Free Hydrogenated Silicon Carbide Resistive 470 4.6 6 Switching Memory Device. Journal of Physical Chemistry Letters, 2020, 11, 8451-8458. Multibit optoelectronic memory using graphene/diamond (carbon sp2-sp3) heterojunctions and its 471 3.3 arithmetic functions. Applied Physics Letters, 2020, 117, 092103. In-Memory Logic Operations and Neuromorphic Computing in Non-Volatile Random Access Memory. 472 31 2.9 Materials, 2020, 13, 3532. Image Mem-Processing Bio-Inspired Cellular Arrays with Bistable and Analogue Dynamic Memristors., 2020,,. Thin Films of Nanocrystalline Vanadium Dioxide: Modification of the Properties, and Electrical 474 0.4 2 Switching. Key Engineering Materials, 2020, 854, 103-108. Microgrids., 2020,,. Synthesis of nanosize tetratitanium heptoxide and its anomalous phase transition. Materials Research 476 8.7 5 Letters, 2020, 8, 261-267. Theoretical Foundations of Memristor Cellular Nonlinear Networks: A DRM₂-Based Method to Design Memcomputers With Dynamic Memristors. IEEE Transactions on Circuits and 44 Systems I: Regular Papers, 2020, 67, 2753-2766. 478 The memristive system behavior of a diac. Journal of Computational Electronics, 2020, 19, 1344-1355. 2.51 Monitored Reconstruction: Computed Tomography as an Anytime Algorithm. IEEE Access, 2020, 8, 479 4.2 110759-110774.

#	Article	IF	CITATIONS
480	An Experimental Proof that Resistance‣witching Memory Cells are not Memristors. Advanced Electronic Materials, 2020, 6, 2000010.	5.1	20
481	Anti-synchronization of a Class Of Fuzzy Memristive Competitive Neural Networks with Different Time Scales. Neural Processing Letters, 2020, 52, 647-661.	3.2	11
482	Towards a Trust-Enhanced Blockchain P2P Topology for Enabling Fast and Reliable Broadcast. IEEE Transactions on Network and Service Management, 2020, 17, 904-917.	4.9	41
483	A Memristive Model for Graphene Emitters: Hysteresis and Selfâ€Crossing. Physica Status Solidi (B): Basic Research, 2020, 257, 2000020.	1.5	2
484	Mimicking the competitive and cooperative behaviors with multi-terminal synaptic memtransistors. Journal of Materials Chemistry C, 2020, 8, 6063-6071.	5.5	14
485	Global Sensitivity Analysis in Load Modeling via Low-Rank Tensor. IEEE Transactions on Smart Grid, 2020, 11, 2737-2740.	9.0	11
486	ÄŒerenkov phonon radiation and phonon structure in electron emission, electroluminescence, and current–voltage characteristics of electroformed Al–Al2O3–Ag diodes. Journal of Applied Physics, 2020, 127, 165303.	2.5	0
487	A novel meminductor-based chaotic oscillating circuit and its DSP realisation for generating PN sequences. Pramana - Journal of Physics, 2020, 94, 1.	1.8	1
488	Memristive Properties of Oxide-based High-Temperature Superconductors. Journal of Superconductivity and Novel Magnetism, 2020, 33, 2279-2286.	1.8	4
489	Neuromorphic nanoelectronic materials. Nature Nanotechnology, 2020, 15, 517-528.	31.5	464
489 490	Neuromorphic nanoelectronic materials. Nature Nanotechnology, 2020, 15, 517-528. Electronic mechanism for resistive switching in metal/insulator/metal nanodevices. Journal Physics D: Applied Physics, 2020, 53, 295302.	31.5 2.8	464 1
489 490 491	Neuromorphic nanoelectronic materials. Nature Nanotechnology, 2020, 15, 517-528. Electronic mechanism for resistive switching in metal/insulator/metal nanodevices. Journal Physics D: Applied Physics, 2020, 53, 295302. Modelling the switching effect in graphene oxide-based memristors. Semiconductor Science and Technology, 2020, 35, 055020.	31.5 2.8 2.0	464 1 4
489 490 491 492	Neuromorphic nanoelectronic materials. Nature Nanotechnology, 2020, 15, 517-528. Electronic mechanism for resistive switching in metal/insulator/metal nanodevices. Journal Physics D: Applied Physics, 2020, 53, 295302. Modelling the switching effect in graphene oxide-based memristors. Semiconductor Science and Technology, 2020, 35, 055020. Metamaterials: What Is Out There and What Is about to Come., 2020, , 3-51.	31.5 2.8 2.0	464 1 4
489 490 491 492 493	Neuromorphic nanoelectronic materials. Nature Nanotechnology, 2020, 15, 517-528. Electronic mechanism for resistive switching in metal/insulator/metal nanodevices. Journal Physics D: Applied Physics, 2020, 53, 295302. Modelling the switching effect in graphene oxide-based memristors. Semiconductor Science and Technology, 2020, 35, 055020. Metamaterials: What Is Out There and What Is about to Come. , 2020, , 3-51. Framework for faster key search using relatedâ€key higherâ€order differentialproperties: applications to Agrasta. IET Information Security, 2020, 14, 202-209.	31.5 2.8 2.0 1.7	464 1 4 1
 489 490 491 492 493 494 	Neuromorphic nanoelectronic materials. Nature Nanotechnology, 2020, 15, 517-528. Electronic mechanism for resistive switching in metal/insulator/metal nanodevices. Journal Physics D: Applied Physics, 2020, 53, 295302. Modelling the switching effect in graphene oxide-based memristors. Semiconductor Science and Technology, 2020, 35, 055020. Metamaterials: What Is Out There and What Is about to Come. , 2020, , 3-51. Framework for faster key search using relatedâ€key higherâ€order differentialproperties: applications to Agrasta. IET Information Security, 2020, 14, 202-209. Study on High JC and Low AC Loss NbTi/Cu5Ni Superconducting Wire for HIAF Magnets in WST. IEEE Transactions on Applied Superconductive, 2020, 30, 1-4.	31.5 2.8 2.0 1.7 1.7	464 1 4 1 4 1
 489 490 491 492 493 494 495 	Neuromorphic nanoelectronic materials. Nature Nanotechnology, 2020, 15, 517-528. Electronic mechanism for resistive switching in metal/insulator/metal nanodevices. Journal Physics D: Applied Physics, 2020, 53, 295302. Modelling the switching effect in graphene oxide-based memristors. Semiconductor Science and Technology, 2020, 35, 055020. Metamaterials: What Is Out There and What Is about to Come. , 2020, , 3-51. Framework for faster key search using relatedâ€key higherâ€order differentialproperties: applications to Agrasta. IET Information Security, 2020, 14, 202-209. Study on High JC and Low AC Loss NbTi/Cu5Ni Superconducting Wire for HIAF Magnets in WST. IEEE Transactions on Applied Superconductivity, 2020, 30, 1-4. Joint Optimization of Cooperative Communication and Computation in Two-Way Relay MEC Systems. IEEE Transactions on Vehicular Technology, 2020, 69, 4596-4600.	31.5 2.8 2.0 1.7 1.7 6.3	464 1 4 1 4 1 1 6
 489 490 491 492 493 494 495 496 	Neuromorphic nanoelectronic materials. Nature Nanotechnology, 2020, 15, 517-528. Electronic mechanism for resistive switching in metal/insulator/metal nanodevices. Journal Physics D: Applied Physics, 2020, 53, 295302. Modelling the switching effect in graphene oxide-based memristors. Semiconductor Science and Technology, 2020, 35, 055020. Metamaterials: What Is Out There and What Is about to Come. , 2020, , 3-51. Framework for faster key search using relatedåCkey higheråCorder differentialproperties: applications to Agrasta. IET Information Security, 2020, 14, 202-209. Study on High JC and Low AC Loss NbTi/Cu5Ni Superconducting Wire for HIAF Magnets in WST. IEEE Image: Transactions on Applied Superconductivity, 2020, 30, 1-4. Joint Optimization of Cooperative Communication and Computation in Two-Way Relay MEC Systems. IEEE Transactions on Vehicular Technology, 2020, 69, 4596-4600. Nonå€"zero-crossing current-voltage hysteresis behavior in memristive system. Materials Today Advances, 2020, 6, 100056.	 31.5 2.8 2.0 1.7 1.7 6.3 5.2 	464 1 4 1 4 1 1 6 37

#	Article	IF	CITATIONS
498	Probabilistic Transfer Factor Analysis for Machinery Autonomous Diagnosis Cross Various Operating Conditions. IEEE Transactions on Instrumentation and Measurement, 2020, 69, 5335-5344.	4.7	13
499	Compliance Current-Controlled Conducting Filament Formation in Tantalum Oxide-Based RRAM Devices with Different Top Electrodes. ACS Applied Electronic Materials, 2020, 2, 1154-1161.	4.3	55
500	Efficient Closed-Form Solution for Moving Target Localization in MIMO Radars With Minimum Number of Antennas. IEEE Transactions on Signal Processing, 2020, 68, 2545-2557.	5.3	25
501	Multiple CFOs Estimation and Implementation of SC-FDMA Uplink System Using Oversampling and Iterative Method. IEEE Transactions on Vehicular Technology, 2020, 69, 6254-6263.	6.3	16
502	A Comprehensive Study on the Characteristics, Complex Materials and Applications of Memristor. , 2020, , .		3
503	Energy Efficiency Enhancement in 5G Heterogeneous Cellular Networks Using System Throughput Based Sleep Control Scheme. , 2020, , .		10
504	Recent Advances in Halide Perovskite Memristors: Materials, Structures, Mechanisms, and Applications. Advanced Materials Technologies, 2020, 5, .	5.8	110
505	Integrity Authentication for SQL Query Evaluation on Outsourced Databases: A Survey. IEEE Transactions on Knowledge and Data Engineering, 2021, 33, 1601-1618.	5.7	4
506	Adaptive Terminal Sliding Mode Control for Magnetic Levitation Systems With Enhanced Disturbance Compensation. IEEE Transactions on Industrial Electronics, 2021, 68, 756-766.	7.9	76
507	Asymmetric coexisting bifurcations and multi-stability in an asymmetric memristive diode-bridge-based Jerk circuit. Chinese Journal of Physics, 2021, 70, 69-81.	3.9	51
508	Probabilistic memristive networks: Application of a master equation to networks of binary ReRAM cells. Chaos, Solitons and Fractals, 2021, 142, 110385.	5.1	14
509	Research progress of neuromorphic computation based on memcapacitors. Wuli Xuebao/Acta Physica Sinica, 2021, 70, 078701.	0.5	3
510	Neuromorphic nanowire networks: principles, progress and future prospects for neuro-inspired information processing. Advances in Physics: X, 2021, 6, .	4.1	17
511	On State Estimation for Discrete Time-Delayed Memristive Neural Networks Under the WTOD Protocol: A Resilient Set-Membership Approach. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2022, 52, 2145-2155.	9.3	14
512	Multilevel memristive structures based on bismuth selenide microcrystals. Chaos, Solitons and Fractals, 2021, 143, 110542.	5.1	7
513	The Fourier signatures of memristive hysteresis. Journal Physics D: Applied Physics, 2021, 54, 245302.	2.8	3
514	Predictability as a probe of manifest and latent physics: The case of atomic scale structural, chemical, and polarization behaviors in multiferroic Sm-doped BiFeO3. Applied Physics Reviews, 2021, 8, .	11.3	7
515	Digital and analog memory devices based on 2D layered MPS ₃ (M = Mn, Co, Ni) materials*. Chinese Physics B, 2021, 30, 047303.	1.4	2

		CITATION R	EPORT	
#	Article		IF	Citations
516	FORMATTING OF JULIA SETS OF COMPLEX DYNAMIC SYSTEMS. Fractals, 2021, 29, 2150	069.	3.7	0
517	Designing nonlinear thermal devices and metamaterials under the Fourier law: A route to thermotics. Frontiers of Physics, 2021, 16, 1.	nonlinear	5.0	40
518	Synaptic behavior of Niâ \in "Co layered double hydroxide-based memristor. Applied Physics 118, .	Letters, 2021,	3.3	13
520	Leaking elastic capacitor as model for active matter. Physical Review E, 2021, 103, 05213	31.	2.1	4
521	Modeling and character analyzing of multiple fractional-order memcapacitors in parallel c Chinese Physics B, 2022, 31, 018401.	onnection.	1.4	0
522	Transient Control in Targeting Multistable Dynamics of a Memristor Circuit. , 2021, , .			1
523	System-Theoretic Methods for Designing Bio-Inspired Mem-Computing Memristor Cellula Networks. Frontiers in Nanotechnology, 2021, 3, .	r Nonlinear	4.8	12
524	Negative differential resistance and threshold-switching in conical nanopores with KF solu Applied Physics Letters, 2021, 118, .	itions.	3.3	7
525	Memristor Circuits for Simulating Neuron Spiking and Burst Phenomena. Frontiers in Neu 2021, 15, 681035.	roscience,	2.8	11
526	Theory of Hysteresis in Halide Perovskites by Integration of the Equivalent Circuit. ACS Ph Chemistry Au, 2021, 1, 25-44.	iysical	4.0	35
527	Influence of oxygen ion elementary diffusion jumps on the electron current through the c filament in yttria stabilized zirconia nanometer-sized memristor. Chaos, Solitons and Frac 148, 111014.	onductive tals, 2021,	5.1	7
528	Memristive Devices and Circuits. , 2022, , 1-17.			0
529	The capabilities of nanoelectronic 2-D materials for bio-inspired computing and drug deliv their significance in modern drug design. Life Sciences, 2021, 279, 119272.	ery indicate	4.3	11
530	Impedance Spectroscopy Dynamics of Biological Neural Elements: From Memristors to No Synapses. Journal of Physical Chemistry B, 2021, 125, 9934-9949.	eurons and	2.6	32
531	Optoelectronic synapses using vertically aligned graphene/diamond heterojunctions. Car 182, 669-676.	bon, 2021,	10.3	13
532	Computer Investigation of the Influence of Metal Contact Inhomogenees on Resistive Sw Heterostructure Based on Bismuth Selenide. Russian Microelectronics, 2021, 50, 326-33	itching in a 2.	0.5	3
533	Fourth Fundamental Circuit Element: SPICE Modeling and Simulation. , 2014, , 105-162.			15
534	Cellular Nonlinear Networks with Memristor Synapses. , 2014, , 267-291.			7

#	Article	IF	CITATIONS
535	Memristive in Situ Computing. , 2014, , 413-428.		2
536	Computing Shortest Paths in 2D and 3D Memristive Networks. , 2014, , 537-552.		13
537	Memristor Fundamentals. Emergence, Complexity and Computation, 2016, , 1-8.	0.3	3
538	DAEs in Circuit Modelling: A Survey. , 2013, , 97-136.		6
539	The memristive effect as a novelty in drug monitoring. Nanoscale, 2017, 9, 9676-9684.	5.6	24
541	Harnessing adaptive dynamics in neuro-memristive nanowire networks for transfer learning. , 2020, , .		9
543	Recent Progress and Patents on Computational Structures and Methods with Memristive Devices. Recent Patents on Electrical and Electronic Engineering, 2013, 6, 101-116.	0.5	7
544	STDP and STDP variations with memristors for spiking neuromorphic learning systems. Frontiers in Neuroscience, 2013, 7, 2.	2.8	368
545	Memristor based on a layered FePS ₃ 2D material with dual modes of resistive switching. Applied Physics Express, 2020, 13, 105001.	2.4	7
546	An introduction to the memristor – a valuable circuit element in bioelectricity and bioimpedance. Journal of Electrical Bioimpedance, 2012, 3, 20-28.	0.9	33
547	Frequency dependent rectifier memristor bridge used as a programmable synaptic membrane voltage generator. Journal of Electrical Bioimpedance, 2013, 4, 23-32.	0.9	6
548	Equivalent circuit analysis model of charge-controlled memristor and its circuit characteristics. Wuli Xuebao/Acta Physica Sinica, 2013, 62, 218401.	0.5	11
549	Research progress of memristors and memristive mechanism. Wuli Xuebao/Acta Physica Sinica, 2014, 63, 187301.	0.5	9
550	Study on dynamical characteristics of a meminductor model and its meminductor-based oscillator. Wuli Xuebao/Acta Physica Sinica, 2015, 64, 210504.	0.5	8
551	Switching Properties of Titanium Dioxide Nanowire Memristor. Japanese Journal of Applied Physics, 2012, 51, 11PE09.	1.5	13
553	Nanoelectronic devices with memory-effect of electromigration of oxygen vacancies in complex oxides of transition metals. Electronics and Communications, 2013, 18, 9-15.	0.2	0
554	Hardware-Based Computational Intelligence for Size, Weight, and Power Constrained Environments. Advances in Information Security, 2014, , 137-153.	1.2	0
555	Memory Effects in Multi-terminal Solid State Devices and Their Applications. , 2014, , 429-472.		0

#	Article	IF	CITATIONS
557	Organic Memristive Devices and Neuromorphic Circuits. , 2014, , 389-411.		1
558	Memristor, a New Nano-Scaled Element of the Electronic Circuitry. Visnik Nacional Noi Academii Nauk Ukrai Ni, 2014, , 32-39.	0.3	Ο
560	Dynamic Response of Multiple Interconnected Memristors. Emergence, Complexity and Computation, 2016, , 29-59.	0.3	0
561	Bifurcation without parameters in circuits with memristors: A DAE approach. , 2015, , .		Ο
562	Mesoscopic Description of Boundary Effects and Effective Thermal Conductivity in Nanosystems: Phonon Hydrodynamics. SEMA SIMAI Springer Series, 2016, , 53-89.	0.7	1
563	Neuromorphic Computing Based on Organic Memristive Systems. , 2017, , 1-19.		1
564	Small signal model of memcapacitor-inductor oscillation circuit. , 2017, , .		3
565	Frequency Characteristics of Memristor Structures Based on the Complex Transition-Metal Oxides. Metallofizika I Noveishie Tekhnologii, 2017, 39, 733-742.	0.5	0
566	Neuromorphic Computing Based on Organic Memristive Systems. , 2018, , 411-429.		0
567	Plasmonic vanadium dioxide microbolometers with wavelength and polarisation sensitivity. , 2018, , .		0
568	Cellular Nonlinear Networks withÂMemristor Synapses. , 2019, , 637-660.		0
569	Memory Effects in Multi-terminal Solid State Devices and Their Applications. , 2019, , 1021-1064.		0
570	Memristive In Situ Computing. , 2019, , 1005-1020.		1
571	Memory capacitance behavior at single resistance state in memristor and multi-state characteristic. Wuli Xuebao/Acta Physica Sinica, 2019, 68, 068502.	0.5	0
573	Mimicking Physarum Space Exploration with Networks of Memristive Oscillators. , 2019, , 1241-1274.		1
574	Switching Synchronization and Metastable States in 1D Memristive Networks. , 2019, , 955-971.		0
575	If It's Pinched It's a Memristor. , 2019, , 15-88.		1
576	Computing Shortest Paths in 2D and 3D Memristive Networks. , 2019, , 1161-1176.		0

#	Article	IF	CITATIONS
577	SPICE Model of Current Polarity-Dependent Piecewise Linear Window Function for Memristors. Gazi University Journal of Science, 2020, 33, 766-777.	1.2	3
578	Stored Energy and the Charging Energy Efficiency in a Memcapacitor Circuit. , 0, , .		1
579	Application of Floquet theory to dynamical systems with memory. Chaos, 2020, 30, 123102.	2.5	3
580	Applying Numerical Simulation for the Investigation of Memristor Structures Based on Oxides and Chalcogenides. Russian Microelectronics, 2020, 49, 562-567.	0.5	0
581	Application of numerical simulation in investigation of memristor structures based on oxides and chalcogenides. Izvestiya Vysshikh Uchebnykh Zavedenii Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering, 2020, 22, 246-252.	0.2	0
582	Fluoride-Induced Negative Differential Resistance in Nanopores: Experimental and Theoretical Characterization. ACS Applied Materials & amp; Interfaces, 2021, 13, 54447-54455.	8.0	5
583	Lévy noise effects on Josephson junctions. Chaos, Solitons and Fractals, 2021, 153, 111531.	5.1	16
584	Orientation of adsorbed polar molecules (dipoles) in external electrostatic field. Journal of Physics Condensed Matter, 2021, 33, 035004.	1.8	2
586	Mott barrier behavior of metal–TlGaSe ₂ layered semiconductor junction. Semiconductor Science and Technology, 2020, 35, 125010.	2.0	5
587	Impedance Spectroscopy of Metal Halide Perovskite Solar Cells from the Perspective of Equivalent Circuits. Chemical Reviews, 2021, 121, 14430-14484.	47.7	121
588	Nanoscale neuromorphic networks and criticality: a perspective. Journal of Physics Complexity, 2021, 2, 042001.	2.2	16
589	Spatiotemporal evolution of resistance state in simulated memristive networks. Applied Physics Letters, 2021, 119, 193502.	3.3	3
590	Initial-condition-switched boosting extreme multistability and mechanism analysis in a memcapacitive oscillator. Frontiers of Information Technology and Electronic Engineering, 2021, 22, 1517-1531.	2.6	15
591	Bifurcations underlying different excitability transitions modulated by excitatory and inhibitory memristor and chemical autapses. Chaos, Solitons and Fractals, 2021, 153, 111611.	5.1	18
592	Second Harmonic Generation Exploiting Ultra-Stable Resistive Switching Devices for Secure Hardware Systems. IEEE Nanotechnology Magazine, 2022, 21, 71-80.	2.0	5
593	A 250 MHz-to-1.6 GHz Phase Locked Loop Design in Hybrid FinFET-Memristor Technology. , 2020, , .		9
594	Multi-tasking and Memcomputing with Memristor Cellular Nonlinear Networks. , 2020, , .		3
595	Analysis and implementation of a meminductor-based colpitts sinusoidal oscillator. Chaos, Solitons and Fractals, 2022, 156, 111814.	5.1	5

#	Article	IF	CITATIONS
596	Bipolar resistive switching with improved memory window in W/ZnFe2O4/Pt devices. Materials Science in Semiconductor Processing, 2022, 142, 106497.	4.0	2
597	Emulating the short-term plasticity of a biological synapse with a ruthenium complex-based organic mixed ionic–electronic conductor. Materials Advances, 2022, 3, 2827-2837.	5.4	6
598	Ubiquitous memristors on-chip in multi-level memory, in-memory computing, data converters, clock generation and signal transmission. , 2022, , 445-463.		0
599	Polariton-Based Quantum Memristors. Physical Review Applied, 2022, 17, .	3.8	3
600	Infinitely Many Necklace-Shaped Coexisting Attractors in a Nonautonomous Memcapacitive Oscillator. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2022, 32, .	1.7	6
601	Crystallization kinetics and thermodynamics of an Ag–In–Sb–Te phase change material using complementary in situ microscopic techniques. Journal of Materials Research, 2022, 37, 1281.	2.6	0
602	Experimental photonic quantum memristor. Nature Photonics, 2022, 16, 318-323.	31.4	62
603	Custodial Chiral Symmetry in a Su-Schrieffer-Heeger Electrical Circuit with Memory. Physical Review Letters, 2022, 128, 097701.	7.8	13
604	Resistive switching properties for fluorine doped titania fabricated using atomic layer deposition. APL Materials, 2022, 10, .	5.1	9
605	The Rich Dynamics of Memristive Devices With Non-Separable Nonlinear Response. IEEE Transactions on Circuits and Systems II: Express Briefs, 2022, 69, 1802-1806.	3.0	4
606	Hopf bifurcations in electrochemical, neuronal, and semiconductor systems analysis by impedance spectroscopy. Applied Physics Reviews, 2022, 9, .	11.3	26
607	Chemical Inductor. Journal of the American Chemical Society, 2022, 144, 5996-6009.	13.7	49
608	Physical Model for the Current–Voltage Hysteresis and Impedance of Halide Perovskite Memristors. ACS Energy Letters, 2022, 7, 1214-1222.	17.4	47
609	Memristive and biological synaptic behavior in transition metal dichalcogenide-WS2 nanostructures: A review. Materials Today: Proceedings, 2022, , .	1.8	1
610	Memristor ratioed logic crossbarâ€based delay and jumpâ€key flipâ€flops design. International Journal of Circuit Theory and Applications, 2022, 50, 1353-1364.	2.0	3
611	Lightâ€Induced Synaptic Effects Controlled by Incorporation of Chargeâ€Trapping Layer into Hybrid Perovskite Memristor. Advanced Electronic Materials, 2022, 8, .	5.1	9
612	Dynamic Instability and Time Domain Response of a Model Halide Perovskite Memristor for Artificial Neurons. Journal of Physical Chemistry Letters, 2022, 13, 3789-3795.	4.6	26
613	Modeling of the generic memcapacitors using higher-order multi-ports. Communications in Nonlinear Science and Numerical Simulation, 2022, 113, 106497.	3.3	3

#	Article	IF	Citations
615	Temperature, detriment, or advantage for memory emergence: The case of ZnO. Journal of Chemical Physics, 2022, 157, .	3.0	3
616	Inverted spike-rate-dependent plasticity due to charge traps in a metal-oxide memristive device. Journal Physics D: Applied Physics, 2022, 55, 394002.	2.8	8
617	The Ubiquitous Memristive Response in Solids. IEEE Transactions on Electron Devices, 2022, 69, 5351-5356.	3.0	4
618	Memkapasitör ve Konformal Fraksiyonel Dereceli Kondansatörün Bir Araya Getirildiği İki Kapasitör Problemi. , 2022, 5, 9-15.		1
619	Resistive switching in emerging materials and their characteristics for neuromorphic computing. , 2022, 1, 100004.		19
620	Inductive and Capacitive Hysteresis of Halide Perovskite Solar Cells and Memristors Under Illumination. Frontiers in Energy Research, 0, 10, .	2.3	21
621	Low-power anisotropic molecular electronic memristors. Applied Materials Today, 2022, 29, 101569.	4.3	1
622	Nanoionic memristive phenomena in metal oxides: the valence change mechanism. Advances in Physics, 2021, 70, 155-349.	14.4	60
623	Review on the Basic Circuit Elements and Memristor Interpretation: Analysis, Technology and Applications. Journal of Low Power Electronics and Applications, 2022, 12, 44.	2.0	6
624	Advances in Emerging Photonic Memristive and Memristive‣ike Devices. Advanced Science, 2022, 9, .	11.2	15
625	Neuromorphic Liquids, Colloids, and Gels: A Review. ChemPhysChem, 2023, 24, .	2.1	11
626	Predictive Modeling of MEMS via Generic Meminductors: The Multiport Inductor Approach. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2022, 12, 785-792.	3.6	1
627	Tripartite Entanglement in Quantum Memristors. Physical Review Applied, 2022, 18, .	3.8	1
628	Review on data-centric brain-inspired computing paradigms exploiting emerging memory devices. Frontiers in Electronic Materials, 0, 2, .	3.1	0
629	Extended and Generic Higher-Order Elements for MEMS Modeling. Sensors, 2022, 22, 8007.	3.8	1
630	Initial-condition parameterization and dynamical effect of a dual-memelement-based oscillation circuit. European Physical Journal Plus, 2022, 137, .	2.6	2
631	Whiskyâ€born memristor. Physica Status Solidi (A) Applications and Materials Science, 0, , .	1.8	3
632	New results on stabilization of complex-valued second-order Memristive neural networks with mixed delays and discontinuous activations functions. Computational and Applied Mathematics, 2022, 41, .	2.2	5

#	Article	IF	CITATIONS
633	Negative inductor effects in nonlinear two-dimensional systems: Oscillatory neurons and memristors. Chemical Physics Reviews, 2022, 3, .	5.7	8
634	Long-term memory and synapse-like dynamics in two-dimensional nanofluidic channels. Science, 2023, 379, 161-167.	12.6	67
635	Bilayer Lipid Membrane as Memcapacitance: Capacitance–Voltage Pinched Hysteresis and Negative Insertion Conductance. Membranes, 2023, 13, 97.	3.0	2
636	Electrical Charge Coupling Dominates the Hysteresis Effect of Halide Perovskite Devices. Journal of Physical Chemistry Letters, 2023, 14, 1014-1021.	4.6	16
637	Physical Constraints for Ideal Memelements. SpringerBriefs in Physics, 2023, , 29-39.	0.7	0
638	Reality Versus Fiction. SpringerBriefs in Physics, 2023, , 13-28.	0.7	1
640	Recent advances in fermionic hierarchical equations of motion method for strongly correlated quantum impurity systems. , 2023, 53, 0302.		0
641	Physical evidence of meminductance in a passive, two-terminal circuit element. Scientific Reports, 2023, 13, .	3.3	1
642	Interfacing Biology and Electronics with Memristive Materials. Advanced Materials, 2023, 35, .	21.0	7
643	Forward growth and formation of 1D domain arrays by focused ion beam in Y-cut MgOLN. Ferroelectrics, 2023, 604, 53-61.	0.6	0
644	Tuning the conductance topology in solids. Journal of Applied Physics, 2023, 133, .	2.5	3
645	Energy efficient operation conditions of MoS ₂ â€based memristors. Physica Status Solidi (A) Applications and Materials Science, 0, , .	1.8	0
646	Application of Island Thin Films for Microelectronics Devices. , 2023, , .		0
647	Long-term potentiation mechanism of biological postsynaptic activity in neuro-inspired halide perovskite memristors. Neuromorphic Computing and Engineering, 2023, 3, 024005.	5.9	10
648	Testability design of memristive digital circuits based on Knowm memristor. Microelectronics Reliability, 2023, 146, 115009.	1.7	1
649	Understanding the complementary resistive switching in egg albumen-based single sandwich structure with non-inert Al electrode. Materials Research Express, 2023, 10, 056301.	1.6	2
650	Role of excess-carrier generation and recombination in memristivity. Materials Today: Proceedings, 2023, , .	1.8	0
651	Probabilistic model of resistance jumps in memristive devices. Physical Review E, 2023, 107, .	2.1	1

	CITATION RI	EPORT	
# 652	ARTICLE Resistance transient dynamics in switchable perovskite memristors. , 2023, 1, .	IF	Citations 8
653	Role of Metal Contacts on Halide Perovskite Memristors. Advanced Functional Materials, 2023, 33, .	14.9	3
654	Physical reservoir computing using vertically aligned graphene/diamond photomemristors. Applied Physics Express, 0, , .	2.4	0
655	Extended Higher-Order Elements with Frequency-Doubled Parameters: The Hysteresis Loops Are Always of Type II. Sensors, 2023, 23, 7179.	3.8	0
656	Energy transport between heat baths with oscillating temperatures. Physical Review E, 2023, 108, .	2.1	0
657	Enhancing the memristive effects in SnO2 nanowire networks. Current Applied Physics, 2023, 53, 165-171.	2.4	0
658	Device physics recipe to make spiking neurons. Chemical Physics Reviews, 2023, 4, .	5.7	5
659	Quasi-projective synchronization of memristor-based complex valued recurrent neural network with time-varying delay and mismatched parameters. Neurocomputing, 2023, 559, 126774.	5.9	2
660	Current-controlled memristors: Resistive switching systems with negative capacitance and inverted hysteresis. Physical Review Applied, 2023, 20, .	3.8	4
661	Electrical Bistability by Creating an Internal Electrical Field and Its Application in Emerging Two-terminal Electronic Memory Devices. , 2023, , 149-182.		0
662	New Insights Into the I/V Hysteretic Characteristics of Memristive Biosensors. , 2023, 7, 1-4.		0
663	Control of Network Bursting in a Model Spiking Network Supplied with Memristor—Implemented Plasticity. Mathematics, 2023, 11, 3888.	2.2	3
664	Kendiliğinden Kanal Oluşturmalı Karbon Tabanlı Memristörler İçin DC Dirençlerini Okuyarak Yapıla Sağlamlık Testinin Güvenilirliğinin İncelenmesi. Düzce Üniversitesi Bilim Ve Teknoloji Dergisi, 0, , 17	n Bir 15-1724.	0
665	Time Transients with Inductive Loop Traces in Metal Halide Perovskites. Advanced Functional Materials, 2024, 34, .	14.9	5
666	Effect of nitrogen ion diffusion jumps in nanometer-sized si ₃ n ₄ memristors investigated by low-frequency noise spectroscopy. Fluctuation and Noise Letters, 0, , .	1.5	0
667	Hydrophobically gated memristive nanopores for neuromorphic applications. Nature Communications, 2023, 14, .	12.8	3
668	A Power Factor Corrector Boost Converter Based Memristor Emulator. Iranian Journal of Science and Technology - Transactions of Electrical Engineering, 0, , .	2.3	0
669	Energy Flow Analysis of Nonlinear Dynamical Systems. Studies in Systems, Decision and Control, 2023, , 191-285.	1.0	0

#	Article	IF	CITATIONS
670	Synaptical Tunability of Multipore Nanofluidic Memristors. Journal of Physical Chemistry Letters, 2023, 14, 10930-10934.	4.6	2
671	Inductive and Capacitive Hysteresis of Current-Voltage Curves: Unified Structural Dynamics in Solar Energy Devices, Memristors, Ionic Transistors, and Bioelectronics. , 2024, 3, .		2
672	Physical insights into biological memory using phospholipid membranes. European Physical Journal E, 2024, 47, .	1.6	0
673	From fundamentals to frontiers: a review of memristor mechanisms, modeling and emerging applications. Journal of Materials Chemistry C, 2024, 12, 1583-1608.	5.5	0
674	Neuromorphic responses of nanofluidic memristors in symmetric and asymmetric ionic solutions. Journal of Chemical Physics, 2024, 160, .	3.0	0
675	Electromechanical memcapacitor model offering biologically plausible spiking. Chaos, Solitons and Fractals, 2024, 181, 114601.	5.1	0
676	Astrocyte control bursting mode of spiking neuron network with memristor-implemented plasticity. Chaos, Solitons and Fractals, 2024, 181, 114648.	5.1	0
677	An analytical approach to engineer multistability in the oscillatory response of a pulse-driven ReRAM. Scientific Reports, 2024, 14, .	3.3	0