Phosphoglycerate dehydrogenase diverts glycolytic flux

Nature Genetics 43, 869-874 DOI: 10.1038/ng.890

Citation Report

CITATION	DEDODT

#	Article	IF	CITATIONS
1	Targeting cancer metabolism: a therapeutic window opens. Nature Reviews Drug Discovery, 2011, 10, 671-684.	46.4	1,227
2	Serine Metabolism: Some Tumors Take the Road Less Traveled. Cell Metabolism, 2011, 14, 285-286.	16.2	91
3	Cancer Cell Metabolism. Cold Spring Harbor Symposia on Quantitative Biology, 2011, 76, 299-311.	1.1	136
4	Metabolic Pathway Alterations that Support Cell Proliferation. Cold Spring Harbor Symposia on Quantitative Biology, 2011, 76, 325-334.	1.1	252
5	<i>PHGDH</i> amplification and altered glucose metabolism in human melanoma. Pigment Cell and Melanoma Research, 2011, 24, 1112-1115.	3.3	114
6	Cancer's sweet tooth for serine. Breast Cancer Research, 2011, 13, 317.	5.0	29
7	Serine biosynthesis with one carbon catabolism represents a novel pathway for ATP generation in cells using alternative glycolysis with zero net ATP production. Nature Precedings, 2011, , .	0.1	0
8	Metabolomic Profiling from Formalin-Fixed, Paraffin-Embedded Tumor Tissue Using Targeted LC/MS/MS: Application in Sarcoma. PLoS ONE, 2011, 6, e25357.	2.5	70
9	Flexible flux. Nature Reviews Cancer, 2011, 11, 621-621.	28.4	2
10	Genetic selection for enhanced serine metabolism in cancer development. Cell Cycle, 2011, 10, 3812-3813.	2.6	32
10	Genetic selection for enhanced serine metabolism in cancer development. Cell Cycle, 2011, 10, 3812-3813. Extracellular Matrix Regulation of Metabolism and Implications for Tumorigenesis. Cold Spring Harbor Symposia on Quantitative Biology, 2011, 76, 313-324.	2.6 1.1	32 58
	Extracellular Matrix Regulation of Metabolism and Implications for Tumorigenesis. Cold Spring		
11	Extracellular Matrix Regulation of Metabolism and Implications for Tumorigenesis. Cold Spring Harbor Symposia on Quantitative Biology, 2011, 76, 313-324. Mouse Genetics Suggests Cell-Context Dependency for Myc-Regulated Metabolic Enzymes during	1.1	58
11 12	Extracellular Matrix Regulation of Metabolism and Implications for Tumorigenesis. Cold Spring Harbor Symposia on Quantitative Biology, 2011, 76, 313-324. Mouse Genetics Suggests Cell-Context Dependency for Myc-Regulated Metabolic Enzymes during Tumorigenesis. PLoS Genetics, 2012, 8, e1002573. Cancer cell growth and survival as a system-level property sustained by enhanced glycolysis and	1.1 3.5	58 75
11 12 13	Extracellular Matrix Regulation of Metabolism and Implications for Tumorigenesis. Cold Spring Harbor Symposia on Quantitative Biology, 2011, 76, 313-324. Mouse Genetics Suggests Cell-Context Dependency for Myc-Regulated Metabolic Enzymes during Tumorigenesis. PLoS Genetics, 2012, 8, e1002573. Cancer cell growth and survival as a system-level property sustained by enhanced glycolysis and mitochondrial metabolic remodeling. Frontiers in Physiology, 2012, 3, 362.	1.1 3.5 2.8	58 75 24
11 12 13 14	 Extracellular Matrix Regulation of Metabolism and Implications for Tumorigenesis. Cold Spring Harbor Symposia on Quantitative Biology, 2011, 76, 313-324. Mouse Genetics Suggests Cell-Context Dependency for Myc-Regulated Metabolic Enzymes during Tumorigenesis. PLoS Genetics, 2012, 8, e1002573. Cancer cell growth and survival as a system-level property sustained by enhanced glycolysis and mitochondrial metabolic remodeling. Frontiers in Physiology, 2012, 3, 362. Interactions between epigenetics and metabolism in cancers. Frontiers in Oncology, 2012, 2, 163. Approaches to Ras signaling modulation and treatment of Ras-dependent disorders: a patent review 	1.1 3.5 2.8 2.8	58 75 24 67
11 12 13 14 15	 Extracellular Matrix Regulation of Metabolism and Implications for Tumorigenesis. Cold Spring Harbor Symposia on Quantitative Biology, 2011, 76, 313-324. Mouse Genetics Suggests Cell-Context Dependency for Myc-Regulated Metabolic Enzymes during Tumorigenesis. PLoS Genetics, 2012, 8, e1002573. Cancer cell growth and survival as a system-level property sustained by enhanced glycolysis and mitochondrial metabolic remodeling. Frontiers in Physiology, 2012, 3, 362. Interactions between epigenetics and metabolism in cancers. Frontiers in Oncology, 2012, 2, 163. Approaches to Ras signaling modulation and treatment of Ras-dependent disorders: a patent review (2007 ã€" present). Expert Opinion on Therapeutic Patents, 2012, 22, 1263-1287. The Metabolomic Signature of Malignant Glioma Reflects Accelerated Anabolic Metabolism. Cancer 	1.1 3.5 2.8 2.8 5.0	 58 75 24 67 15

<u><u> </u></u>			Depa	
	TAT	ON	REPC	NDT
\sim			ICLI C	

#	Article	IF	CITATIONS
19	Glucose Oxidation Modulates Anoikis and Tumor Metastasis. Molecular and Cellular Biology, 2012, 32, 1893-1907.	2.3	186
20	Nicotinamide, NAD(P)(H), and Methyl-Group Homeostasis Evolved and Became a Determinant of Ageing Diseases: Hypotheses and Lessons from Pellagra. Current Gerontology and Geriatrics Research, 2012, 2012, 1-24.	1.6	34
21	An Integrated Genomic Screen Identifies LDHB as an Essential Gene for Triple-Negative Breast Cancer. Cancer Research, 2012, 72, 5812-5823.	0.9	153
22	A world of sphingolipids and glycolipids in the brain —Novel functions of simple lipids modified with glucose—. Proceedings of the Japan Academy Series B: Physical and Biological Sciences, 2012, 88, 129-143.	3.8	42
23	How cancer metabolism is tuned for proliferation and vulnerable to disruption. Nature, 2012, 491, 364-373.	27.8	800
24	Global Profiling Strategies for Mapping Dysregulated Metabolic Pathways in Cancer. Cell Metabolism, 2012, 16, 565-577.	16.2	103
25	Genetically-defined metabolic reprogramming in cancer. Trends in Endocrinology and Metabolism, 2012, 23, 552-559.	7.1	72
26	The Proline Regulatory Axis and Cancer. Frontiers in Oncology, 2012, 2, 60.	2.8	120
27	SIRT6 Puts Cancer Metabolism in the Driver's Seat. Cell, 2012, 151, 1155-1156.	28.9	28
28	Expanding the concepts and tools of metabolic engineering to elucidate cancer metabolism. Biotechnology Progress, 2012, 28, 1409-1418.	2.6	18
29	Small Molecule Activation of PKM2 in Cancer Cells Induces Serine Auxotrophy. Chemistry and Biology, 2012, 19, 1187-1198.	6.0	149
30	Distinct Urinary Metabolic Profile of Human Colorectal Cancer. Journal of Proteome Research, 2012, 11, 1354-1363.	3.7	184
31	New aspects of the Warburg effect in cancer cell biology. Seminars in Cell and Developmental Biology, 2012, 23, 352-361.	5.0	262
32	Therapeutic targets in cancer cell metabolism and autophagy. Nature Biotechnology, 2012, 30, 671-678.	17.5	310
33	Cancer Cell Metabolism: One Hallmark, Many Faces. Cancer Discovery, 2012, 2, 881-898.	9.4	773
34	Glycine Decarboxylase Activity Drives Non-Small Cell Lung Cancer Tumor-Initiating Cells and Tumorigenesis. Cell, 2012, 148, 259-272.	28.9	593
35	Cellular Metabolism and Disease: What Do Metabolic Outliers Teach Us?. Cell, 2012, 148, 1132-1144.	28.9	684
36	Metabolic Regulation of Epigenetics. Cell Metabolism, 2012, 16, 9-17.	16.2	568

#	Article	IF	CITATIONS
37	Amplification of phosphoglycerate dehydrogenase diverts glycolytic flux and contributes to oncogenesis. BMC Proceedings, 2012, 6, .	1.6	2
38	A positive/negative ion–switching, targeted mass spectrometry–based metabolomics platform for bodily fluids, cells, and fresh and fixed tissue. Nature Protocols, 2012, 7, 872-881.	12.0	863
39	Glutamineâ€fueled mitochondrial metabolism is decoupled from glycolysis in melanoma. Pigment Cell and Melanoma Research, 2012, 25, 732-739.	3.3	93
40	Mitophagy or how to control the Jekyll and Hyde embedded in mitochondrial metabolism: implications for melanoma progression and drug resistance. Pigment Cell and Melanoma Research, 2012, 25, 721-731.	3.3	16
41	Serine is a natural ligand and allosteric activator of pyruvate kinase M2. Nature, 2012, 491, 458-462.	27.8	519
42	Isotope Enhanced Approaches in Metabolomics. Advances in Experimental Medicine and Biology, 2012, 992, 147-164.	1.6	13
43	The metabolic and biochemical impact of glucose 6-sulfonate (sulfoquinovose), a dietary sugar, on carbohydrate metabolism. Carbohydrate Research, 2012, 362, 21-29.	2.3	11
44	The consequences of enhanced cell-autonomous glucose metabolism. Trends in Endocrinology and Metabolism, 2012, 23, 545-551.	7.1	17
45	Metabolic regulation by SIRT3: implications for tumorigenesis. Trends in Molecular Medicine, 2012, 18, 516-523.	6.7	108
46	Cancer metabolism: current perspectives and future directions. Cell Death and Disease, 2012, 3, e248-e248.	6.3	327
47	Reconstruction of genome-scale metabolic models for 126 human tissues using mCADRE. BMC Systems Biology, 2012, 6, 153.	3.0	239
48	Human Metabolic Network: Reconstruction, Simulation, and Applications in Systems Biology. Metabolites, 2012, 2, 242-253.	2.9	9
49	Targeting the Human Kinome for Cancer Therapy: Current Perspectives. Critical Reviews in Oncogenesis, 2012, 17, 233-246.	0.4	26
50	Metabolite Profiling Identifies a Key Role for Glycine in Rapid Cancer Cell Proliferation. Science, 2012, 336, 1040-1044.	12.6	1,201
51	Functional Metabolic Screen Identifies 6-Phosphofructo-2-Kinase/Fructose-2,6-Biphosphatase 4 as an Important Regulator of Prostate Cancer Cell Survival. Cancer Discovery, 2012, 2, 328-343.	9.4	174
52	Links between metabolism and cancer. Genes and Development, 2012, 26, 877-890.	5.9	846
53	Pyruvate kinase M2 promotes de novo serine synthesis to sustain mTORC1 activity and cell proliferation. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 6904-6909.	7.1	323
54	Pharmacoâ€metabolomics: An emerging "omics―tool for the personalization of anticancer treatments and identification of new valuable therapeutic targets. Journal of Cellular Physiology, 2012, 227, 2827-2831.	4.1	68

#	Article	IF	CITATIONS
55	Oncogenic Kras Maintains Pancreatic Tumors through Regulation of Anabolic Glucose Metabolism. Cell, 2012, 149, 656-670.	28.9	1,587
56	Resurgence of Serine: An Often Neglected but Indispensable Amino Acid. Journal of Biological Chemistry, 2012, 287, 19786-19791.	3.4	228
57	Targeting glucose metabolism for cancer therapy. Journal of Experimental Medicine, 2012, 209, 211-215.	8.5	333
58	Stimulation of MC38 tumor growth by insulin analog X10 involves the serine synthesis pathway. Endocrine-Related Cancer, 2012, 19, 557-574.	3.1	10
59	Metabotyping of human colorectal cancer using two-dimensional gas chromatography mass spectrometry. Analytical and Bioanalytical Chemistry, 2012, 403, 483-493.	3.7	66
60	Glycine Decarboxylase Cleaves a "Malignant―Metabolic Path to Promote Tumor Initiation. Cancer Cell, 2012, 21, 143-145.	16.8	5
61	Metabolic Reprogramming: A Cancer Hallmark Even Warburg Did Not Anticipate. Cancer Cell, 2012, 21, 297-308.	16.8	2,617
62	Targeting cancer metabolism – aiming at a tumour's sweet-spot. Drug Discovery Today, 2012, 17, 232-241.	6.4	145
63	Reverse TCA cycle flux through isocitrate dehydrogenases 1 and 2 is required for lipogenesis in hypoxic melanoma cells. Pigment Cell and Melanoma Research, 2012, 25, 375-383.	3.3	153
64	Comparative 2D-DIGE proteomic analysis of ovarian carcinoma cells: Toward a reorientation of biosynthesis pathways associated with acquired platinum resistance. Journal of Proteomics, 2012, 75, 1157-1169.	2.4	14
65	Metabolism of [Uâ€ ¹³ C]glucose in human brain tumors <i>in vivo</i> . NMR in Biomedicine, 2012, 25, 1234-1244.	2.8	282
66	Regulation of glycolysis and the Warburg effect by estrogen-related receptors. Oncogene, 2013, 32, 2079-2086.	5.9	84
67	The Transcription Factor FOXM1 (Forkhead box M1). Advances in Cancer Research, 2013, 118, 97-398.	5.0	135
68	Isotopic labeling-assisted metabolomics using LC–MS. Analytical and Bioanalytical Chemistry, 2013, 405, 27-33.	3.7	87
69	Phosphoglycerate dehydrogenase induces glioma cells proliferation and invasion by stabilizing forkhead box M1. Journal of Neuro-Oncology, 2013, 111, 245-255.	2.9	89
70	Distinct metabolic differences between various human cancer and primary cells. Electrophoresis, 2013, 34, 2836-2847.	2.4	29
71	Reversed argininosuccinate lyase activity in fumarate hydratase-deficient cancer cells. Cancer & Metabolism, 2013, 1, 12.	5.0	87
72	The cancer and metabolism link. Cancer, 2013, 119, 2665-2666.	4.1	0

#	Article	IF	CITATIONS
73	Free Glycine Accelerates the Autoproteolytic Activation of Human Asparaginase. Chemistry and Biology, 2013, 20, 533-540.	6.0	28
74	TIGAR Is Required for Efficient Intestinal Regeneration and Tumorigenesis. Developmental Cell, 2013, 25, 463-477.	7.0	154
75	Dependence of Tumor Cell Lines and Patient-Derived Tumors on the NAD Salvage Pathway Renders Them Sensitive to NAMPT Inhibition with GNE-618. Neoplasia, 2013, 15, 1151-IN23.	5.3	67
76	The Histone H3 Methyltransferase G9A Epigenetically Activates the Serine-Glycine Synthesis Pathway to Sustain Cancer Cell Survival and Proliferation. Cell Metabolism, 2013, 18, 896-907.	16.2	194
77	Metabolic targets for cancer therapy. Nature Reviews Drug Discovery, 2013, 12, 829-846.	46.4	592
78	Stress eating and tuning out: Cancer cells re-wire metabolism to counter stress. Critical Reviews in Biochemistry and Molecular Biology, 2013, 48, 609-619.	5.2	32
79	Molecular Pathways: Targeting MYC-induced Metabolic Reprogramming and Oncogenic Stress in Cancer. Clinical Cancer Research, 2013, 19, 5835-5841.	7.0	94
80	Functional Characterization of the Plastidial 3-Phosphoglycerate Dehydrogenase Family in Arabidopsis. Plant Physiology, 2013, 163, 1164-1178.	4.8	70
81	Is Glioblastoma an Epigenetic Malignancy?. Cancers, 2013, 5, 1120-1139.	3.7	51
82	Modulation of oxidative stress as an anticancer strategy. Nature Reviews Drug Discovery, 2013, 12, 931-947.	46.4	2,735
83	Contribution of serine, folate and glycine metabolism to the ATP, NADPH and purine requirements of cancer cells. Cell Death and Disease, 2013, 4, e877-e877.	6.3	223
84	Synthesis of a new type of echinus-like Fe3O4@TiO2 core–shell-structured microspheres and their applications in selectively enriching phosphopeptides and removing phospholipids. Journal of Chromatography A, 2013, 1275, 9-16.	3.7	22
85	Fueling Immunity: Insights into Metabolism and Lymphocyte Function. Science, 2013, 342, 1242454.	12.6	1,070
86	¹H NMR-based metabolic profiling of human rectal cancer tissue. Molecular Cancer, 2013, 12, 121.	19.2	77
87	Biology – cancer metabolic phenotype. , 2013, , 15-138.		2
88	Mass Spectrometry and NMR Spectroscopy–Based Quantitative Metabolomics. , 2013, , 279-297.		9
89	Equipment and metabolite identification (ID) strategies for mass-based metabolomic analysis. , 2013, , 3-28.		1
90	Dual roles of PKM2 in cancer metabolism. Acta Biochimica Et Biophysica Sinica, 2013, 45, 27-35.	2.0	70

#	Article	IF	Citations
91	The PI3K, Metabolic, and Autophagy Networks: Interactive Partners in Cellular Health and Disease. Annual Review of Pharmacology and Toxicology, 2013, 53, 89-106.	9.4	112
92	The Warburg Effect and Beyond: Metabolic Dependencies for Cancer Cells. , 2013, , 35-51.		3
93	Diagnostic Applications of High-Throughput DNA Sequencing. Annual Review of Pathology: Mechanisms of Disease, 2013, 8, 381-410.	22.4	58
94	EBV-miR-BART1 is involved in regulating metabolism-associated genes in nasopharyngeal carcinoma. Biochemical and Biophysical Research Communications, 2013, 436, 19-24.	2.1	56
95	Racial/Ethnic Disparities in Breast Cancer Risk: Genomics Meets Metabolomics. Breast Diseases, 2013, 24, 212-216.	0.0	0
96	Stimulation of de Novo Pyrimidine Synthesis by Growth Signaling Through mTOR and S6K1. Science, 2013, 339, 1323-1328.	12.6	596
97	Imaging heterogeneity in the mitochondrial redox state of premalignant pancreas in the pancreas-specific PTEN-null transgenic mouse model. Biomarker Research, 2013, 1, 6.	6.8	22
98	Profiling metabolic networks to study cancer metabolism. Current Opinion in Biotechnology, 2013, 24, 60-68.	6.6	99
99	The Hunger Games: p53 Regulates Metabolism upon Serine Starvation. Cell Metabolism, 2013, 17, 159-161.	16.2	15
100	Chemical approaches to study metabolic networks. Pflugers Archiv European Journal of Physiology, 2013, 465, 427-440.	2.8	13
101	SnapShot: Cancer Metabolism Pathways. Cell Metabolism, 2013, 17, 466-466.e2.	16.2	43
102	Control of Nutrient Stress-Induced Metabolic Reprogramming by PKCζ in Tumorigenesis. Cell, 2013, 152, 599-611.	28.9	160
103	Red blood cell metabolism under prolonged anaerobic storage. Molecular BioSystems, 2013, 9, 1196.	2.9	76
104	Cancer metabolism: fatty acid oxidation in the limelight. Nature Reviews Cancer, 2013, 13, 227-232.	28.4	969
105	1H-NMR based metabonomic profiling of human esophageal cancer tissue. Molecular Cancer, 2013, 12, 25.	19.2	65
106	Lin28: Primal Regulator of Growth and Metabolism in Stem Cells. Cell Stem Cell, 2013, 12, 395-406.	11.1	415
107	BCAT1 promotes cell proliferation through amino acid catabolism in gliomas carrying wild-type IDH1. Nature Medicine, 2013, 19, 901-908.	30.7	388
108	Serine, glycine and one-carbon units: cancer metabolism in full circle. Nature Reviews Cancer, 2013, 13, 572-583.	28.4	1,221

		CITATION REPOR	SL	
#	Article	IF		CITATIONS
109	Metabolomics in noninvasive breast cancer. Clinica Chimica Acta, 2013, 424, 3-7.	1.1	1	84
110	Glycine consumption and mitochondrial serine hydroxymethyltransferase in cancer cells: The heme connection. Medical Hypotheses, 2013, 80, 633-636.	2 1.8	5	55
111	Metabolic network modeling approaches for investigating the "hungry cancer― Seminars in G Biology, 2013, 23, 227-234.	Cancer 9.0	6	13
112	Influence of Threonine Metabolism on <i>S</i> -Adenosylmethionine and Histone Methylation. Sci 2013, 339, 222-226.	ence, 12	2.6	555
113	Exploring metabolic pathways that contribute to the stem cell phenotype. Biochimica Et Biophysic Acta - General Subjects, 2013, 1830, 2361-2369.	:a 2.4	4	42
114	Expression and Clinical Significance of Phosphoglycerate Dehydrogenase and Squamous Cell Carcinoma Antigen in Cervical Cancer. International Journal of Gynecological Cancer, 2013, 23, 1465-1469.	2.8	5	28
115	Cancer cell metabolism: implications for therapeutic targets. Experimental and Molecular Medicine 2013, 45, e45-e45.	2, 7.7	7	295
116	Mapping cancer cell metabolism with13C flux analysis: Recent progress and future challenges. Jou of Carcinogenesis, 2013, 12, 13.	rnal 2.8	5	29
117	Proteomic Profiling of Triple-negative Breast Carcinomas in Combination With a Three-tier Orthogonal Technology Approach Identifies Mage-A4 as Potential Therapeutic Target in Estrogen Receptor Negative Breast Cancer. Molecular and Cellular Proteomics, 2013, 12, 381-394.	3.8	8	40
118	The Phosphorylated Pathway of Serine Biosynthesis Is Essential Both for Male Gametophyte and Embryo Development and for Root Growth in Arabidopsis. Plant Cell, 2013, 25, 2084-2101.	6.0	6	80
119	Pharmacologic Activation of PKM2 Slows Lung Tumor Xenograft Growth. Molecular Cancer Therapeutics, 2013, 12, 1453-1460.	4.5	1	62
120	Pharmacological Inhibition of Nicotinamide Phosphoribosyltransferase (NAMPT), an Enzyme Essen for NAD+ Biosynthesis, in Human Cancer Cells. Journal of Biological Chemistry, 2013, 288, 3500-3		4	144
121	Mitochondrial Dysfunction in Cancer. Frontiers in Oncology, 2013, 3, 292.	2.8	8	382
122	TMEFF2 and SARDH cooperate to modulate one arbon metabolism and invasion of prostate can cells. Prostate, 2013, 73, 1561-1575.	ncer 2.3	3	33
123	Anti-cancer Drug Development: Computational Strategies to Identify and Target Proteins Involved Cancer Metabolism. Current Pharmaceutical Design, 2013, 19, 532-577.	in 1.9	9	30
124	Serine biosynthesis by photorespiratory and nonâ€photorespiratory pathways: an interesting interwith unknown regulatory networks. Plant Biology, 2013, 15, 707-712.	rplay 3.ႏ	8	41
125	Identification of p130Cas/ErbB2-dependent invasive signatures in transformed mammary epithelia cells. Cell Cycle, 2013, 12, 2409-2422.	l 2.0	6	18
126	The metabolic demands of cancer cells are coupled to their size and protein synthesis rates. Cance Metabolism, 2013, 1, 20.	er & 5.0	0	142

#	Article	IF	CITATIONS
127	Phosphoglycerate dehydrogenase is dispensable for breast tumor maintenance and growth. Oncotarget, 2013, 4, 2502-2511.	1.8	71
128	Stretching Morphogenesis of the Roof Plate and Formation of the Central Canal. PLoS ONE, 2013, 8, e56219.	2.5	33
129	Feasibility of MR Metabolomics for Immediate Analysis of Resection Margins during Breast Cancer Surgery. PLoS ONE, 2013, 8, e61578.	2.5	62
130	Genomic Approach to Identify Factors That Drive the Formation of Three-Dimensional Structures by EA.hy926 Endothelial Cells. PLoS ONE, 2013, 8, e64402.	2.5	48
131	The evolution of genome-scale models of cancer metabolism. Frontiers in Physiology, 2013, 4, 237.	2.8	79
132	The Future of NMR Metabolomics in Cancer Therapy: Towards Personalizing Treatment and Developing Targeted Drugs?. Metabolites, 2013, 3, 373-396.	2.9	41
133	Biomarker Discovery and Translation in Metabolomics. Current Metabolomics, 2013, 1, 227-240.	0.5	88
134	HIF-1 mediates metabolic responses to intratumoral hypoxia and oncogenic mutations. Journal of Clinical Investigation, 2013, 123, 3664-3671.	8.2	1,017
135	Insight out: Advances in understanding metabolism achieved by high-throughput mass spectrometry. Biomedical Spectroscopy and Imaging, 2013, 2, 1-8.	1.2	0
136	Phosphoglycerate Dehydrogenase: Potential Therapeutic Target and Putative Metabolic Oncogene. Journal of Oncology, 2014, 2014, 1-13.	1.3	26
137	Pathways and therapeutic targets in melanoma. Oncotarget, 2014, 5, 1701-1752.	1.8	202
138	Endothelial cell metabolism: parallels and divergences with cancer cell metabolism. Cancer & Metabolism, 2014, 2, 19.	5.0	91
139	Somatic mutations of amino acid metabolism-related genes in gastric and colorectal cancers and their regional heterogeneity - a short report. Cellular Oncology (Dordrecht), 2014, 37, 455-461.	4.4	14
140	SHMT1 knockdown induces apoptosis in lung cancer cells by causing uracil misincorporation. Cell Death and Disease, 2014, 5, e1525-e1525.	6.3	88
141	Redox control of glutamine utilization in cancer. Cell Death and Disease, 2014, 5, e1561-e1561.	6.3	113
142	Characterization of the Usage of the Serine Metabolic Network in Human Cancer. Cell Reports, 2014, 9, 1507-1519.	6.4	136
143	Estimating Relative Changes of Metabolic Fluxes. PLoS Computational Biology, 2014, 10, e1003958.	3.2	12
144	Arginine Starvation Impairs Mitochondrial Respiratory Function in ASS1-Deficient Breast Cancer Cells. Science Signaling, 2014, 7, ra31.	3.6	144

		LPORT	
#	ARTICLE	IF	CITATIONS
145	Advances in NMR-Based Metabolomics. Comprehensive Analytical Chemistry, 2014, , 187-211.	1.3	8
146	Mitochondrial One-Carbon Metabolism Maintains Redox Balance during Hypoxia. Cancer Discovery, 2014, 4, 1371-1373.	9.4	51
147	The role of phosphoglycerate mutase 1 in tumor aerobic glycolysis and its potential therapeutic implications. International Journal of Cancer, 2014, 135, 1991-1996.	5.1	48
148	Integrated Omic analysis of lung cancer reveals metabolism proteome signatures with prognostic impact. Nature Communications, 2014, 5, 5469.	12.8	93
150	Effect of Oxygen Tension on the Amino Acid Utilisation of Human Embryonic Stem Cells. Cellular Physiology and Biochemistry, 2014, 33, 237-246.	1.6	20
151	Regulating Mitochondrial Respiration in Cancer. Cancer Drug Discovery and Development, 2014, , 29-73.	0.4	2
152	Glucose Metabolism and the Antioxidative Defense System in Cancer Cells: Options for the Application of ROS-based Anticancer Drugs. Cancer Drug Discovery and Development, 2014, , 109-130.	0.4	0
153	The Intercellular Metabolic Interplay between Tumor and Immune Cells. Frontiers in Immunology, 2014, 5, 358.	4.8	77
154	Tumor Metabolome Targeting and Drug Development. Cancer Drug Discovery and Development, 2014, , .	0.4	0
155	Cancer Metabolism: A Nexus of Matter, Energy, and Reactive Oxygen Species. Cancer Drug Discovery and Development, 2014, , 7-27.	0.4	1
156	Changing appetites: the adaptive advantages of fuel choice. Trends in Cell Biology, 2014, 24, 118-127.	7.9	42
157	Serine, but Not Glycine, Supports One-Carbon Metabolism and Proliferation of Cancer Cells. Cell Reports, 2014, 7, 1248-1258.	6.4	468
159	Metabolic implication of tumor:stroma crosstalk in breast cancer. Journal of Molecular Medicine, 2014, 92, 117-126.	3.9	21
160	Proteomic profiles of human lung adeno and squamous cell carcinoma using superâ€&ILAC and labelâ€free quantification approaches. Proteomics, 2014, 14, 795-803.	2.2	24
161	Serine and glycine metabolism in cancer. Trends in Biochemical Sciences, 2014, 39, 191-198.	7.5	801
162	Comparative Oncogenomics Identifies PSMB4 and SHMT2 as Potential Cancer Driver Genes. Cancer Research, 2014, 74, 3114-3126.	0.9	128
163	Identification of candidate circulating cisplatin-resistant biomarkers from epithelial ovarian carcinoma cell secretomes. British Journal of Cancer, 2014, 110, 123-132.	6.4	57
164	Post-translational modifications and the Warburg effect. Oncogene, 2014, 33, 4279-4285.	5.9	110

#	Article	IF	CITATIONS
165	The role of mitochondrial electron transport in tumorigenesis and metastasis. Biochimica Et Biophysica Acta - General Subjects, 2014, 1840, 1454-1463.	2.4	47
166	Prediction of therapeutic microRNA based on the human metabolic network. Bioinformatics, 2014, 30, 1163-1171.	4.1	6
167	Hypoxia and Metabolism in Cancer. Advances in Experimental Medicine and Biology, 2014, 772, 1-39.	1.6	39
168	Serine Deprivation Enhances Antineoplastic Activity of Biguanides. Cancer Research, 2014, 74, 7521-7533.	0.9	113
169	Antineoplastic activity of strawberry (Fragaria × ananassa Duch.) crude extracts on B16-F10 melanoma cells. Molecular BioSystems, 2014, 10, 1255-1263.	2.9	31
170	Reconstruction of a generic metabolic network model of cancer cells. Molecular BioSystems, 2014, 10, 3014-3021.	2.9	20
171	Mapping of Glycine Distributions in Gliomas. American Journal of Neuroradiology, 2014, 35, S31-S36.	2.4	32
172	Fatty Acid Flippase Activity of UCP2 Is Essential for Its Proton Transport in Mitochondria. Cell Metabolism, 2014, 20, 541-552.	16.2	67
173	Serine Catabolism Regulates Mitochondrial Redox Control during Hypoxia. Cancer Discovery, 2014, 4, 1406-1417.	9.4	342
174	Reconstruction of Insulin Signal Flow from Phosphoproteome and Metabolome Data. Cell Reports, 2014, 8, 1171-1183.	6.4	82
175	p73 regulates serine biosynthesis in cancer. Oncogene, 2014, 33, 5039-5046.	5.9	102
176	Pyruvate kinase and aspartate-glutamate carrier distributions reveal key metabolic links between neurons and glia in retina. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 15579-15584.	7.1	112
177	Serine in plants: biosynthesis, metabolism, and functions. Trends in Plant Science, 2014, 19, 564-569.	8.8	216
178	Metabolomic strategies to map functions of metabolic pathways. American Journal of Physiology - Endocrinology and Metabolism, 2014, 307, E237-E244.	3.5	8
179	Development and Quantitative Evaluation of a High-Resolution Metabolomics Technology. Analytical Chemistry, 2014, 86, 2175-2184.	6.5	164
180	Regulation of mitochondrial apoptosis by Pin1 in cancer and neurodegeneration. Mitochondrion, 2014, 19, 88-96.	3.4	33
181	Exploring Metabolic Pathways and Regulation through Functional Chemoproteomic and Metabolomic Platforms. Chemistry and Biology, 2014, 21, 1171-1184.	6.0	19
182	A low carbohydrate, high protein diet combined with celecoxib markedly reduces metastasis. Carcinogenesis, 2014, 35, 2291-2299.	2.8	16

#	Article	IF	CITATIONS
183	Pathway-Centric Integrative Analysis Identifies RRM2 as a Prognostic Marker in Breast Cancer Associated with Poor Survival and Tamoxifen Resistance. Neoplasia, 2014, 16, 390-402.	5.3	66
184	Localization of NADPH Production: A Wheel within a Wheel. Molecular Cell, 2014, 55, 158-160.	9.7	23
185	Cancer cell survival during detachment from the ECM: multiple barriers to tumour progression. Nature Reviews Cancer, 2014, 14, 632-641.	28.4	312
186	From gametogenesis and stem cells to cancer: common metabolic themes. Human Reproduction Update, 2014, 20, 924-943.	10.8	26
187	Differential Incorporation of Glucose into Biomass during Warburg Metabolism. Biochemistry, 2014, 53, 4755-4757.	2.5	19
188	Emerging Regulatory Paradigms in Glutathione Metabolism. Advances in Cancer Research, 2014, 122, 69-101.	5.0	129
189	Human phosphoglycerate dehydrogenase produces the oncometabolite D-2-hydroxyglutarate and promotes histone methylation. Cancer & Metabolism, 2014, 2, P75.	5.0	3
190	Polymorphism of cytosolic serine hydroxymethyltransferase and breast cancer risk: evidence from a meta-analysis. Tumor Biology, 2014, 35, 7361-7367.	1.8	2
191	Pulsed Stable Isotope-Resolved Metabolomic Studies of Cancer Cells. Methods in Enzymology, 2014, 543, 179-198.	1.0	13
192	Dihydropyrimidine Accumulation Is Required for the Epithelial-Mesenchymal Transition. Cell, 2014, 158, 1094-1109.	28.9	186
193	Combining Amine Metabolomics and Quantitative Proteomics of Cancer Cells Using Derivatization with Isobaric Tags. Analytical Chemistry, 2014, 86, 3585-3593.	6.5	34
194	Metabolism of stromal and immune cells in health and disease. Nature, 2014, 511, 167-176.	27.8	377
195	Quantitative flux analysis reveals folate-dependent NADPH production. Nature, 2014, 510, 298-302.	27.8	892
196	A Mitochondrial RNAi Screen Defines Cellular Bioenergetic Determinants and Identifies an Adenylate Kinase as a Key Regulator of ATP Levels. Cell Reports, 2014, 7, 907-917.	6.4	73
197	The Metabolic Alterations of Cancer Cells. Methods in Enzymology, 2014, 542, 1-23.	1.0	87
198	Techniques to Monitor Glycolysis. Methods in Enzymology, 2014, 542, 91-114.	1.0	215
199	mTORC2 in the center of cancer metabolic reprogramming. Trends in Endocrinology and Metabolism, 2014, 25, 364-373.	7.1	110
200	The driver and passenger effects of isocitrate dehydrogenase 1 and 2 mutations in oncogenesis and survival prolongation. Biochimica Et Biophysica Acta: Reviews on Cancer, 2014, 1846, 326-341.	7.4	118

#	Article	IF	CITATIONS
201	Tumor Macroenvironment and Metabolism. Seminars in Oncology, 2014, 41, 281-295.	2.2	129
202	Down Regulation of Asparagine Synthetase and 3-Phosphoglycerate Dehydrogenase, and the Up-Regulation of Serine Dehydratase in Rat Liver from Intake of Excess Amount of Leucine Are Not Related to Leucine-Caused Amino Acid Imbalance. Journal of Nutritional Science and Vitaminology, 2015. 61. 441-448.	0.6	1
203	Modeling cancer metabolism on a genome scale. Molecular Systems Biology, 2015, 11, 817.	7.2	152
204	Angiogenesis Revisited: An Overlooked Role of Endothelial Cell Metabolism in Vessel Sprouting. Microcirculation, 2015, 22, 509-517.	1.8	97
205	Intracellular metabolic flux analysis of <scp>CHO</scp> cells supplemented with wheat hydrolysates for improved <scp>mAb</scp> production and cellâ€growth. Journal of Chemical Technology and Biotechnology, 2015, 90, 291-302.	3.2	12
206	Functional screening identifies <scp>MCT4</scp> as a key regulator of breast cancer cell metabolism and survival. Journal of Pathology, 2015, 237, 152-165.	4.5	73
207	Functional genomic screening reveals asparagine dependence as a metabolic vulnerability in sarcoma. ELife, 2015, 4, .	6.0	56
208	Positive correlation between expression level of mitochondrial serine hydroxymethyltransferase and breast cancer grade. OncoTargets and Therapy, 2015, 8, 1069.	2.0	19
209	Targeting amino acid metabolism in cancer growth and anti-tumor immune response. World Journal of Biological Chemistry, 2015, 6, 281.	4.3	131
210	Cancer Metabolism and Drug Resistance. Metabolites, 2015, 5, 571-600.	2.9	130
211	Insulin and mTOR Pathway Regulate HDAC3-Mediated Deacetylation and Activation of PGK1. PLoS Biology, 2015, 13, e1002243.	5.6	72
212	Cancer Metabolism: A Modeling Perspective. Frontiers in Physiology, 2015, 6, 382.	2.8	58
213	Downregulation of phosphoglycerate dehydrogenase inhibits proliferation and enhances cisplatin sensitivity in cervical adenocarcinoma cells by regulating Bcl-2 and caspase-3. Cancer Biology and Therapy, 2015, 16, 541-548.	3.4	52
214	Defining the Metabolome: Size, Flux, and Regulation. Molecular Cell, 2015, 58, 699-706.	9.7	234
215	High level PHGDH expression in breast is predominantly associated with keratin 5â€positive cell lineage independently of malignancy. Molecular Oncology, 2015, 9, 1636-1654.	4.6	34
216	Tumor Cell Complexity and Metabolic Flexibility in Tumorigenesis and Metastasis. , 2015, , 23-43.		3
217	Clinical Implication of Serine Metabolism-Associated Enzymes in Colon Cancer. Oncology, 2015, 89, 351-359.	1.9	37
218	Different Levels of Twist1 Regulate Skin Tumor Initiation, Stemness, and Progression. Cell Stem Cell, 2015, 16, 67-79.	11.1	169

#	Article	IF	CITATIONS
219	GC/MS-based metabolomic studies reveal key roles of glycine inÂregulating silk synthesis in silkworm, Bombyx mori. Insect Biochemistry and Molecular Biology, 2015, 57, 41-50.	2.7	24
220	Targeting glucose uptake with siRNA-based nanomedicine for cancer therapy. Biomaterials, 2015, 51, 1-11.	11.4	54
222	Catabolic metabolism during cancer EMT. Archives of Pharmacal Research, 2015, 38, 313-320.	6.3	49
223	Famine versus feast: understanding the metabolism of tumors in vivo. Trends in Biochemical Sciences, 2015, 40, 130-140.	7.5	150
224	Metabolic signatures of human breast cancer. Molecular and Cellular Oncology, 2015, 2, e992217.	0.7	56
226	p53 Protein-mediated Regulation of Phosphoglycerate Dehydrogenase (PHGDH) Is Crucial for the Apoptotic Response upon Serine Starvation. Journal of Biological Chemistry, 2015, 290, 457-466.	3.4	99
227	Gene Expression Changes in Progression of Cervical Neoplasia Revealed by Microarray Analysis of Cervical Neoplastic Keratinocytes. Journal of Cellular Physiology, 2015, 230, 806-812.	4.1	49
228	Inhibition of nicotinamide phosphoribosyltransferase (NAMPT) as a therapeutic strategy in cancer. , 2015, 151, 16-31.		205
229	Screening and In Vitro Testing of Antifolate Inhibitors of Human Cytosolic Serine Hydroxymethyltransferase. ChemMedChem, 2015, 10, 490-497.	3.2	34
230	Metabolic dysregulation in monogenic disorders and cancer — finding method in madness. Nature Reviews Cancer, 2015, 15, 440-448.	28.4	89
231	Metabolomic profiling of hormone-dependent cancers: a bird's eye view. Trends in Endocrinology and Metabolism, 2015, 26, 477-485.	7.1	42
232	Context-dependent utilization of serine in cancer. Molecular and Cellular Oncology, 2015, 2, e996418.	0.7	5
233	Nutrient stress revamps cancer cell metabolism. Cell Research, 2015, 25, 537-538.	12.0	6
234	p53 in survival, death and metabolic health: a lifeguard with a licence to kill. Nature Reviews Molecular Cell Biology, 2015, 16, 393-405.	37.0	885
235	An epitope tag alters phosphoglycerate dehydrogenase structure and impairs ability to support cell proliferation. Cancer & Metabolism, 2015, 3, 5.	5.0	34
236	Lack of phosphoserine phosphatase activity alters pollen and tapetum development in Arabidopsis thaliana. Plant Science, 2015, 235, 81-88.	3.6	11
237	Organ-Specific Cancer Metabolism and Its Potential for Therapy. Handbook of Experimental Pharmacology, 2015, 233, 321-353.	1.8	86
238	Epithelial–mesenchymal transition induces similar metabolic alterations in two independent breast cancer cell lines. Cancer Letters, 2015, 364, 44-58.	7.2	78

#	ARTICLE Molecular cloning and expression of phosphoglycerate dehydrogenase and phosphoserine	IF	CITATIONS
239	aminotransferase in the serine biosynthetic pathway from Ácanthamoeba castellanii. Parasitology Research, 2015, 114, 1387-1395.	1.6	4
240	Intersections between mitochondrial sirtuin signaling and tumor cell metabolism. Critical Reviews in Biochemistry and Molecular Biology, 2015, 50, 242-255.	5.2	18
241	2-Hydroxyglutarate production is necessary for the reaction catalyzed by 3-phosphoglycerate dehydrogenase in Escherichia coli. Review Journal of Chemistry, 2015, 5, 21-29.	1.0	5
242	Proteome mapping of epidermal growth factor induced hepatocellular carcinomas identifies novel cell metabolism targets and mitogen activated protein kinase signalling events. BMC Genomics, 2015, 16, 124.	2.8	9
243	Metabolic pathways promoting cancer cell survival and growth. Nature Cell Biology, 2015, 17, 351-359.	10.3	1,142
244	cMyc-mediated activation of serine biosynthesis pathway is critical for cancer progression under nutrient deprivation conditions. Cell Research, 2015, 25, 429-444.	12.0	228
245	Metabolic pathways in cancers: key targets and implications in cancer therapy. RSC Advances, 2015, 5, 41751-41762.	3.6	9
246	The intrinsic disorder alphabet. III. Dual personality of serine. Intrinsically Disordered Proteins, 2015, 3, e1027032.	1.9	37
247	Ras-mediated modulation of pyruvate dehydrogenase activity regulates mitochondrial reserve capacity and contributes to glioblastoma tumorigenesis. Neuro-Oncology, 2015, 17, 1220-1230.	1.2	33
248	Metabolic reprogramming induces resistance to anti-NOTCH1 therapies in T cell acute lymphoblastic leukemia. Nature Medicine, 2015, 21, 1182-1189.	30.7	180
249	Serine and SAM Responsive Complex SESAME Regulates Histone Modification Crosstalk by Sensing Cellular Metabolism. Molecular Cell, 2015, 60, 408-421.	9.7	136
250	Artemether Exhibits Amoebicidal Activity against Acanthamoeba castellanii through Inhibition of the Serine Biosynthesis Pathway. Antimicrobial Agents and Chemotherapy, 2015, 59, 4680-4688.	3.2	16
251	Mitochondrial Phosphoenolpyruvate Carboxykinase Regulates Metabolic Adaptation and Enables Glucose-Independent Tumor Growth. Molecular Cell, 2015, 60, 195-207.	9.7	200
252	6-Phosphogluconate dehydrogenase links oxidative PPP, lipogenesis and tumour growth by inhibiting LKB1–AMPK signalling. Nature Cell Biology, 2015, 17, 1484-1496.	10.3	224
253	NRF2 regulates serine biosynthesis in non–small cell lung cancer. Nature Genetics, 2015, 47, 1475-1481.	21.4	579
254	Dysregulated metabolism contributes to oncogenesis. Seminars in Cancer Biology, 2015, 35, S129-S150.	9.6	225
255	Oxidative stress inhibits distant metastasis by human melanoma cells. Nature, 2015, 527, 186-191.	27.8	964
256	Amino acid management in cancer. Seminars in Cell and Developmental Biology, 2015, 43, 22-32.	5.0	96

#	Article	IF	CITATIONS
257	MicroRNA-340 Inhibits Esophageal Cancer Cell Growth and Invasion by Targeting Phosphoserine Aminotransferase 1. Cellular Physiology and Biochemistry, 2015, 37, 375-386.	1.6	48
258	Metabolic reprogramming and dysregulated metabolism: cause, consequence and/or enabler of environmental carcinogenesis?. Carcinogenesis, 2015, 36, S203-S231.	2.8	93
259	Research into cancer metabolomics: Towards a clinical metamorphosis. Seminars in Cell and Developmental Biology, 2015, 43, 52-64.	5.0	36
260	Cancer's Fuel Choice: New Flavors for a Picky Eater. Molecular Cell, 2015, 60, 514-523.	9.7	120
261	The Metabolism of Cell Growth and Proliferation. , 2015, , 191-208.e2.		4
262	Integrating phenotypic small-molecule profiling and human genetics: the next phase in drug discovery. Trends in Genetics, 2015, 31, 16-23.	6.7	16
263	<scp>TET</scp> proteins and 5â€methylcytosine oxidation in hematological cancers. Immunological Reviews, 2015, 263, 6-21.	6.0	158
264	PSAT1 regulates cyclin D1 degradation and sustains proliferation of nonâ€small cell lung cancer cells. International Journal of Cancer, 2015, 136, E39-50.	5.1	67
265	Metabolism and epigenetics: a link cancer cells exploit. Current Opinion in Biotechnology, 2015, 34, 23-29.	6.6	80
266	Epigenetics and cancer metabolism. Cancer Letters, 2015, 356, 309-314.	7.2	90
267	Metabolic adaptation to cancer growth: From the cell to the organism. Cancer Letters, 2015, 356, 171-175.	7.2	21
268	Prediction of intracellular metabolic states from extracellular metabolomic data. Metabolomics, 2015, 11, 603-619.	3.0	66
269	Human Phosphoglycerate Dehydrogenase Produces the Oncometabolite <scp>d</scp> -2-Hydroxyglutarate. ACS Chemical Biology, 2015, 10, 510-516.	3.4	152
270	The Warburg effect: Evolving interpretations of an established concept. Free Radical Biology and Medicine, 2015, 79, 253-263.	2.9	161
271	How do glycolytic enzymes favour cancer cell proliferation by nonmetabolic functions?. Oncogene, 2015, 34, 3751-3759.	5.9	161
272	The platelet isoform of phosphofructokinase contributes to metabolic reprogramming and maintains cell proliferation in clear cell renal cell carcinoma. Oncotarget, 2016, 7, 27142-27157.	1.8	41
273	NRF2 Rewires Cellular Metabolism to Support the Antioxidant Response. , 0, , .		24
274	Phosphoglycerate dehydrogenase is a novel predictor for poor prognosis in gastric cancer. OncoTargets and Therapy, 2016, Volume 9, 5553-5560.	2.0	23

#	Article	IF	CITATIONS
275	Overexpression of the PSAT1 Gene in Nasopharyngeal Carcinoma Is an Indicator of Poor Prognosis. Journal of Cancer, 2016, 7, 1088-1094.	2.5	29
276	Compartmentation of Metabolites in Regulating Epigenomes of Cancer. Molecular Medicine, 2016, 22, 349-360.	4.4	16
277	Hybolites Revisited. Recent Patents on Anti-infective Drug Discovery, 2016, 11, 16-31.	0.8	1
278	Tissue metabolic profiling of human gastric cancer assessed by 1H NMR. BMC Cancer, 2016, 16, 371.	2.6	52
279	Relation of exposure to amino acids involved in sarcosine metabolic pathway on behavior of non-tumor and malignant prostatic cell lines. Prostate, 2016, 76, 679-690.	2.3	16
280	Tissue metabolic profiling of lymph node metastasis of colorectal cancer assessed by 1H NMR. Oncology Reports, 2016, 36, 3436-3448.	2.6	14
282	Mitochondrial phosphoenolpyruvate carboxykinase (PEPCK-M) and serine biosynthetic pathway genes are co-ordinately increased during anabolic agent-induced skeletal muscle growth. Scientific Reports, 2016, 6, 28693.	3.3	29
283	Nutrient Exploitation within the Tumor–Stroma Metabolic Crosstalk. Trends in Cancer, 2016, 2, 736-746.	7.4	41
284	High Expression of PHGDH Predicts Poor Prognosis in Non–Small Cell Lung Cancer. Translational Oncology, 2016, 9, 592-599.	3.7	56
285	Cancer, Oxidative Stress, and Metastasis. Cold Spring Harbor Symposia on Quantitative Biology, 2016, 81, 163-175.	1.1	200
286	The ERK signaling target RNF126 regulates anoikis resistance in cancer cells by changing the mitochondrial metabolic flux. Cell Discovery, 2016, 2, 16019.	6.7	40
287	A laser microdissection-based workflow for FFPE tissue microproteomics: Important considerations for small sample processing. Methods, 2016, 104, 154-162.	3.8	72
288	A novel small-molecule inhibitor of 3-phosphoglycerate dehydrogenase. Molecular and Cellular Oncology, 2016, 3, e1164280.	0.7	21
289	Adaptive response to l â€serine deficiency is mediated by p38 MAPK activation via 1â€deoxysphinganine in normal fibroblasts. FEBS Open Bio, 2016, 6, 303-316.	2.3	12
290	Addicted to serine. Nature Chemical Biology, 2016, 12, 389-390.	8.0	25
291	Reversal of Cytosolic One-Carbon Flux Compensates for Loss of the Mitochondrial Folate Pathway. Cell Metabolism, 2016, 23, 1140-1153.	16.2	296
292	Global Isotope Metabolomics Reveals Adaptive Strategies for Nitrogen Assimilation. ACS Chemical Biology, 2016, 11, 1677-1685.	3.4	17
293	KDM4C and ATF4 Cooperate in Transcriptional Control of Amino Acid Metabolism. Cell Reports, 2016, 14, 506-519.	6.4	112

#	Article	IF	CITATIONS
294	Differential Glutamate Metabolism in Proliferating and Quiescent Mammary Epithelial Cells. Cell Metabolism, 2016, 23, 867-880.	16.2	214
295	A PHGDH inhibitor reveals coordination of serine synthesis and one-carbon unit fate. Nature Chemical Biology, 2016, 12, 452-458.	8.0	389
296	Celecoxib Alters the Intestinal Microbiota and Metabolome in Association with Reducing Polyp Burden. Cancer Prevention Research, 2016, 9, 721-731.	1.5	35
297	Protein-Based Calcium Sensors. , 2016, , 96-111.		Ο
298	A Flux Balance of Glucose Metabolism Clarifies the Requirements of the Warburg Effect. Biophysical Journal, 2016, 111, 1088-1100.	0.5	42
299	MicroRNAs and oncogenic transcriptional regulatory networks controlling metabolic reprogramming in cancers. Computational and Structural Biotechnology Journal, 2016, 14, 223-233.	4.1	62
300	Targeting One Carbon Metabolism with an Antimetabolite Disrupts Pyrimidine Homeostasis and Induces Nucleotide Overflow. Cell Reports, 2016, 15, 2367-2376.	6.4	33
301	Altered metabolite levels in cancer: implications for tumour biology and cancer therapy. Nature Reviews Cancer, 2016, 16, 680-693.	28.4	306
302	The metabolomic signature of hematologic malignancies. Leukemia Research, 2016, 49, 22-35.	0.8	29
303	Psat1-Dependent Fluctuations in α-Ketoglutarate Affect the Timing of ESC Differentiation. Cell Metabolism, 2016, 24, 494-501.	16.2	125
304	The Hippo effector <scp>TAZ</scp> (<i><scp>WWTR1</scp></i>) transforms myoblasts and TAZ abundance is associated with reduced survival in embryonal rhabdomyosarcoma. Journal of Pathology, 2016, 240, 3-14.	4.5	40
305	The importance of serine metabolism in cancer. Journal of Cell Biology, 2016, 214, 249-257.	5.2	299
306	The Role of Glucose and Lipid Metabolism in Growth and Survival of Cancer Cells. Recent Results in Cancer Research, 2016, 207, 1-22.	1.8	12
307	Repression of phosphoglycerate dehydrogenase sensitizes triple-negative breast cancer to doxorubicin. Cancer Chemotherapy and Pharmacology, 2016, 78, 655-659.	2.3	32
308	Metabolic requirements for cancer cell proliferation. Cancer & Metabolism, 2016, 4, 16.	5.0	99
309	Lactate Formation in Primary and Metastatic Colon Cancer Cells at Hypoxia and Normoxia. Cell Biochemistry and Function, 2016, 34, 483-490.	2.9	11
310	Clinical significance of T cell metabolic reprogramming in cancer. Clinical and Translational Medicine, 2016, 5, 29.	4.0	69
311	Undercover: gene control by metabolites and metabolic enzymes. Genes and Development, 2016, 30, 2345-2369.	5.9	192

ARTICLE IF CITATIONS # Targeting Cancer Metabolism: Dietary and Pharmacologic Interventions. Cancer Discovery, 2016, 6, 312 9.4 137 1315-1333. 313 Serine and one-carbon metabolism in cancer. Nature Reviews Cancer, 2016, 16, 650-662. 28.4 669 314 Cancer metabolism at a glance. Journal of Cell Science, 2016, 129, 3367-3373. 2.0 176 Reprogramming glucose metabolism in cancer: can it be exploited for cancer therapy?. Nature Reviews 28.4 Cancer, 2016, 16, 635-649. Metabolomics in Cancer Biomarker Research. Current Pharmacology Reports, 2016, 2, 293-298. 316 3.0 20 <scp>PKM</scp> 2, cancer metabolism, and the road ahead. EMBO Reports, 2016, 17, 1721-1730. 4.5 384 318 Fundamentals of cancer metabolism. Science Advances, 2016, 2, e1600200. 2,039 10.3 Serine Synthesis Helps Hypoxic Cancer Stem Cells Regulate Redox. Cancer Research, 2016, 76, 6458-6462. 49 Six Hours after Infection, the Metabolic Changes Induced by WSSV Neutralize the Host's Oxidative 320 3.3 40 Stress Defenses. Scientific Reports, 2016, 6, 27732. LKB1 loss links serine metabolism to DNA methylation and tumorigenesis. Nature, 2016, 539, 390-395. 27.8 248 PHGDH Expression Is Required for Mitochondrial Redox Homeostasis, Breast Cancer Stem Cell 322 0.9 201 Maintenance, and Lung Metastasis. Cancer Research, 2016, 76, 4430-4442. Expression of serine/glycine metabolism-related proteins is different according to the thyroid cancer 4.4 50 subtype. Journal of Translational Medicine, 2016, 14, 168. Chromatin-Bound MDM2 Regulates Serine Metabolism and Redox Homeostasis Independently of p53. 324 9.7 96 Molecular Cell, 2016, 62, 890-902. Inhibition of phosphoserine phosphatase enhances the anticancer efficacy of 5-fluorouracil in 2.1 colorectal cancer. Biochemical and Biophysical Research Communications, 2016, 477, 633-639. Oncogenic KRAS and BRAF Drive Metabolic Reprogramming in Colorectal Cancer. Molecular and 326 79 3.8 Cellular Proteomics, 2016, 15, 2924-2938. Increased Expression of PHGDH and Prognostic Significance in Colorectal Cancer. Translational 327 59 Oncology, 2016, 9, 191-196. Give it or take it: the flux of oneâ€carbon in cancer cells. FEBS Journal, 2016, 283, 3695-3704. 328 4.7 34 Nonessential amino acid metabolism in breast cancer. Advances in Biological Regulation, 2016, 62, 11-17. 2.3

#	Article	IF	Citations
330	Synthetic lethal approaches for assessing combinatorial efficacy of chemotherapeutic drugs. , 2016, 162, 69-85.		27
331	Phosphoinositide 3-Kinase Regulates Glycolysis through Mobilization of Aldolase from the Actin Cytoskeleton. Cell, 2016, 164, 433-446.	28.9	301
332	The Emerging Hallmarks of Cancer Metabolism. Cell Metabolism, 2016, 23, 27-47.	16.2	3,943
333	Chasing One-Carbon Units to Understand the Role of Serine in Epigenetics. Molecular Cell, 2016, 61, 185-186.	9.7	25
334	Leptin, BMI, and a Metabolic Gene Expression Signature Associated with Clinical Outcome to VEGF Inhibition in Colorectal Cancer. Cell Metabolism, 2016, 23, 77-93.	16.2	21
335	Metabolic control of methylation and acetylation. Current Opinion in Chemical Biology, 2016, 30, 52-60.	6.1	241
336	MERAV: a tool for comparing gene expression across human tissues and cell types. Nucleic Acids Research, 2016, 44, D560-D566.	14.5	106
337	Parkin Regulates the Activity of Pyruvate Kinase M2. Journal of Biological Chemistry, 2016, 291, 10307-10317.	3.4	85
338	mTORC1-Dependent Metabolic Reprogramming Underlies Escape from Glycolysis Addiction in Cancer Cells. Cancer Cell, 2016, 29, 548-562.	16.8	185
340	Identification of a small molecule inhibitor of 3-phosphoglycerate dehydrogenase to target serine biosynthesis in cancers. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 1778-1783.	7.1	239
341	Mitochondrial DNA Replication Defects Disturb Cellular dNTP Pools and Remodel One-Carbon Metabolism. Cell Metabolism, 2016, 23, 635-648.	16.2	222
342	Glutamine at focus: versatile roles in cancer. Tumor Biology, 2016, 37, 1541-1558.	1.8	38
343	Metabolic rewiring in melanoma. Oncogene, 2017, 36, 147-157.	5.9	129
344	Cancer metabolism: a therapeutic perspective. Nature Reviews Clinical Oncology, 2017, 14, 11-31.	27.6	1,028
345	Heterogeneity in Cancer Metabolism: New Concepts in an Old Field. Antioxidants and Redox Signaling, 2017, 26, 462-485.	5.4	162
346	Cancer cell metabolism and mitochondria: Nutrient plasticity for TCA cycle fueling. Biochimica Et Biophysica Acta: Reviews on Cancer, 2017, 1868, 7-15.	7.4	124
347	Serine Is an Essential Metabolite for Effector T Cell Expansion. Cell Metabolism, 2017, 25, 345-357.	16.2	429
348	α-Ketothioamide Derivatives: A Promising Tool to Interrogate Phosphoglycerate Dehydrogenase (PHGDH). Journal of Medicinal Chemistry, 2017, 60, 1591-1597.	6.4	50

#	Article	IF	CITATIONS
349	Interplay between epigenetics and metabolism in oncogenesis: mechanisms and therapeutic approaches. Oncogene, 2017, 36, 3359-3374.	5.9	219
350	Arginine Deprivation Inhibits the Warburg Effect and Upregulates Glutamine Anaplerosis and Serine Biosynthesis in ASS1-Deficient Cancers. Cell Reports, 2017, 18, 991-1004.	6.4	114
351	Recurrent patterns of DNA copy number alterations in tumors reflect metabolic selection pressures. Molecular Systems Biology, 2017, 13, 914.	7.2	73
352	High-throughput quantification of the levels and labeling abundance of free amino acids by liquid chromatography tandem mass spectrometry. Journal of Chromatography A, 2017, 1490, 148-155.	3.7	20
353	Metabolic Reprogramming by Folate Restriction Leads to a Less Aggressive Cancer Phenotype. Molecular Cancer Research, 2017, 15, 189-200.	3.4	33
354	Comprehensive Metaboproteomics of Burkitt's and Diffuse Large B-Cell Lymphoma Cell Lines and Primary Tumor Tissues Reveals Distinct Differences in Pyruvate Content and Metabolism. Journal of Proteome Research, 2017, 16, 1105-1120.	3.7	22
355	Understanding the Intersections between Metabolism and Cancer Biology. Cell, 2017, 168, 657-669.	28.9	1,561
356	Review of metabolic pathways activated in cancer cells as determined through isotopic labeling and network analysis. Metabolic Engineering, 2017, 43, 113-124.	7.0	52
357	L-2-Hydroxyglutarate production arises from noncanonical enzyme function at acidic pH. Nature Chemical Biology, 2017, 13, 494-500.	8.0	190
358	Allosteric regulation of metabolism in cancer: endogenous mechanisms and considerations for drug design. Current Opinion in Biotechnology, 2017, 48, 102-110.	6.6	11
359	When cancer needs what's non-essential. Nature Cell Biology, 2017, 19, 418-420.	10.3	13
360	Identification of a multienzyme complex for glucose metabolism in living cells. Journal of Biological Chemistry, 2017, 292, 9191-9203.	3.4	100
361	Identification of the Serine Biosynthesis Pathway as a Critical Component of BRAF Inhibitor Resistance of Melanoma, Pancreatic, and Non–Small Cell Lung Cancer Cells. Molecular Cancer Therapeutics, 2017, 16, 1596-1609.	4.1	59
362	One-carbon metabolism in cancer. British Journal of Cancer, 2017, 116, 1499-1504.	6.4	318
363	Functional and Metabolomic Consequences of KATP Channel Inactivation in Human Islets. Diabetes, 2017, 66, 1901-1913.	0.6	35
364	Mass spectrometry analysis shows the biosynthetic pathways supported by pyruvate carboxylase in highly invasive breast cancer cells. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2017, 1863, 537-551.	3.8	39
365	3-Bromopyruvate treatment induces alterations of metabolic and stress-related pathways in glioblastoma cells. Journal of Proteomics, 2017, 152, 329-338.	2.4	19
366	PHGDH Defines a Metabolic Subtype in Lung Adenocarcinomas with Poor Prognosis. Cell Reports, 2017, 19, 2289-2303.	6.4	118

		CITATION REPORT		
#	Article		IF	CITATIONS
367	Metabolism during ECM Detachment: Achilles Heel of Cancer Cells?. Trends in Cancer, 2	2017, 3, 475-481.	7.4	67
368	Serine and Functional Metabolites in Cancer. Trends in Cell Biology, 2017, 27, 645-657		7.9	138
369	Phosphoserine aminotransferase 1 is associated to poor outcome on tamoxifen therap breast cancer. Scientific Reports, 2017, 7, 2099.	y in recurrent	3.3	33
370	Identification of the Consistently Altered Metabolic Targets in Human Hepatocellular C Cellular and Molecular Gastroenterology and Hepatology, 2017, 4, 303-323.e1.	arcinoma.	4.5	103
371	Quantitative proteomics by SWATH-MS reveals sophisticated metabolic reprogramming hepatocellular carcinoma tissues. Scientific Reports, 2017, 7, 45913.	g in	3.3	61
372	Glyceraldehydeâ€3â€phosphate dehydrogenase promotes liver tumorigenesis by modu phosphoglycerate dehydrogenase. Hepatology, 2017, 66, 631-645.	lating	7.3	70
373	Isocitrate dehydrogenase (IDH) inhibition as treatment of myeloid malignancies: Progre directions. , 2017, 177, 123-128.	ess and future		23
374	Metabolic Reprogramming in Brain Tumors. Annual Review of Pathology: Mechanisms of 12, 515-545.	of Disease, 2017,	22.4	82
375	Hypoxiaâ€inducible factors: coupling glucose metabolism and redox regulation with ind breast cancer stem cell phenotype. EMBO Journal, 2017, 36, 252-259.	Juction ofÂthe	7.8	267
376	Rational Design of Selective Allosteric Inhibitors of PHGDH and Serine Synthesis with A Activity. Cell Chemical Biology, 2017, 24, 55-65.	nti-tumor	5.2	102
377	Challenges and Opportunities in the Development of Serine Synthetic Pathway Inhibitc Therapy. Journal of Medicinal Chemistry, 2017, 60, 1227-1237.	rs for Cancer	6.4	40
378	Targeting amino acid metabolism for cancer therapy. Drug Discovery Today, 2017, 22,	796-804.	6.4	215
380	Human SHMT inhibitors reveal defective glycine import as a targetable metabolic vulne diffuse large B-cell lymphoma. Proceedings of the National Academy of Sciences of the of America, 2017, 114, 11404-11409.	rability of United States	7.1	190
381	PHGDH as a Key Enzyme for Serine Biosynthesis in HIF2α-Targeting Therapy for Renal C Cancer Research, 2017, 77, 6321-6329.	Cell Carcinoma.	0.9	60
382	Targeting Metabolism for Cancer Therapy. Cell Chemical Biology, 2017, 24, 1161-1180		5.2	677
383	Coupling between <scp>d</scp> -3-phosphoglycerate dehydrogenase and <scp>d-2-hydroxyglutarate dehydrogenase drives bacterial <scp>I</scp> -serine synthesis. Pro National Academy of Sciences of the United States of America, 2017, 114, E7574-E758</scp>	ceedings of the	7.1	41
384	Immune Cell Metabolism in Tumor Microenvironment. Advances in Experimental Medic 2017, 1011, 163-196.	ine and Biology,	1.6	23
385	EWS/FLI is a Master Regulator of Metabolic Reprogramming in Ewing Sarcoma. Molecu Research, 2017, 15, 1517-1530.	lar Cancer	3.4	39

	CITATION I	Report	
#	Article	IF	CITATIONS
386	Deciphering metabolic rewiring in breast cancer subtypes. Translational Research, 2017, 189, 105-122.	5.0	45
387	mTORC1 Regulates Mitochondrial Integrated Stress Response and Mitochondrial Myopathy Progression. Cell Metabolism, 2017, 26, 419-428.e5.	16.2	291
388	Smad5 acts as an intracellular pH messenger and maintains bioenergetic homeostasis. Cell Research, 2017, 27, 1083-1099.	12.0	34
389	Similarities and Distinctions of Cancer and Immune Metabolism in Inflammation and Tumors. Cell Metabolism, 2017, 26, 49-70.	16.2	268
390	Understanding metabolism with flux analysis: From theory to application. Metabolic Engineering, 2017, 43, 94-102.	7.0	73
391	One-Carbon Metabolism in Health and Disease. Cell Metabolism, 2017, 25, 27-42.	16.2	1,275
392	Serine-Dependent Sphingolipid Synthesis Is a Metabolic Liability of Aneuploid Cells. Cell Reports, 2017, 21, 3807-3818.	6.4	42
393	Perspectives of Reprogramming Breast Cancer Metabolism. Advances in Experimental Medicine and Biology, 2017, 1026, 217-232.	1.6	28
394	Dysregulated metabolic enzymes and metabolicÃ ⁻ Âį¼2reprogramming in cancer cells (Review). Biomedical Reports, 2018, 8, 3-10.	2.0	54
395	ADHFE1 is a breast cancer oncogene and induces metabolic reprogramming. Journal of Clinical Investigation, 2017, 128, 323-340.	8.2	63
396	Similarities in the Metabolic Reprogramming of Immune System and Endothelium. Frontiers in Immunology, 2017, 8, 837.	4.8	45
397	The Central Role of Amino Acids in Cancer Redox Homeostasis: Vulnerability Points of the Cancer Redox Code. Frontiers in Oncology, 2017, 7, 319.	2.8	79
398	1H-NMR-based metabolic profiling of a colorectal cancer CT-26 lung metastasis model in mice. Oncology Reports, 2017, 38, 3044-3054.	2.6	12
399	A systems approach reveals distinct metabolic strategies among the NCI-60 cancer cell lines. PLoS Computational Biology, 2017, 13, e1005698.	3.2	19
400	Inhibition of LIN28B impairs leukemia cell growth and metabolism in acute myeloid leukemia. Journal of Hematology and Oncology, 2017, 10, 138.	17.0	49
401	PSAT1 is regulated byÂATF4 and enhances cell proliferation via the GSK3β/β-catenin/cyclin D1 signaling pathway in ER-negative breast cancer. Journal of Experimental and Clinical Cancer Research, 2017, 36, 179.	8.6	98
402	Isocitrate dehydrogenases in physiology and cancer: biochemical and molecular insight. Cell and Bioscience, 2017, 7, 37.	4.8	69
403	Bortezomib resistance in multiple myeloma is associated with increased serine synthesis. Cancer & Metabolism, 2017, 5, 7.	5.0	115

# 404	ARTICLE Cysteine transporter SLC3A1 promotes breast cancer tumorigenesis. Theranostics, 2017, 7, 1036-1046.	IF 10.0	CITATIONS
405	Disease monitoring of hepatocellular carcinoma through metabolomics. World Journal of Hepatology, 2017, 9, 1.	2.0	26
406	A plasma metabolomic signature discloses human breast cancer. Oncotarget, 2017, 8, 19522-19533.	1.8	61
407	Challenges and emergent solutions for LCâ€MS/MS based untargeted metabolomics in diseases. Mass Spectrometry Reviews, 2018, 37, 772-792.	5.4	219
408	Metabolic reprogramming in type 2 diabetes and the development of breast cancer. Journal of Endocrinology, 2018, 237, R35-R46.	2.6	29
409	Discovery and optimization of piperazine-1-thiourea-based human phosphoglycerate dehydrogenase inhibitors. Bioorganic and Medicinal Chemistry, 2018, 26, 1727-1739.	3.0	23
410	Menin regulates the serine biosynthetic pathway in Ewing sarcoma. Journal of Pathology, 2018, 245, 324-336.	4.5	35
411	Optimized twoâ€dimensional gel electrophoresis in an alkaline pH range improves the identification of intracellular CFDAâ€cisplatinâ€protein adducts in ovarian cancer cells. Electrophoresis, 2018, 39, 1488-1496.	2.4	7
412	Amino Acid Signature in Human Melanoma Cell Lines from Different Disease Stages. Scientific Reports, 2018, 8, 6245.	3.3	12
413	Chemistry-First Approach for Nomination of Personalized Treatment in Lung Cancer. Cell, 2018, 173, 864-878.e29.	28.9	102
414	Metabolism, Activity, and Targeting of D- and L-2-Hydroxyglutarates. Trends in Cancer, 2018, 4, 151-165.	7.4	160
415	Mechanisms of redox metabolism and cancer cell survival during extracellular matrix detachment. Journal of Biological Chemistry, 2018, 293, 7531-7537.	3.4	67
416	New concepts in feedback regulation of glucose metabolism. Current Opinion in Systems Biology, 2018, 8, 32-38.	2.6	28
417	Non-oncogenic roles of TAp73: from multiciliogenesis to metabolism. Cell Death and Differentiation, 2018, 25, 144-153.	11.2	63
418	Connections Between Metabolism and Epigenetics in Programming Cellular Differentiation. Annual Review of Immunology, 2018, 36, 221-246.	21.8	93
419	Metabolomics and Isotope Tracing. Cell, 2018, 173, 822-837.	28.9	537
420	Serine Availability Influences Mitochondrial Dynamics and Function through Lipid Metabolism. Cell Reports, 2018, 22, 3507-3520.	6.4	170
421	How the Warburg effect supports aggressiveness and drug resistance of cancer cells?. Drug Resistance Updates, 2018, 38, 1-11.	14.4	340

#	Article	IF	CITATIONS
422	Formaldehyde Detoxification Creates a New Wheel for the Folate-Driven One-Carbon "Bi―cycle. Biochemistry, 2018, 57, 889-890.	2.5	6
423	Metabolic strategies of melanoma cells: Mechanisms, interactions with the tumor microenvironment, and therapeutic implications. Pigment Cell and Melanoma Research, 2018, 31, 11-30.	3.3	149
424	Integrating splice-isoform expression into genome-scale models characterizes breast cancer metabolism. Bioinformatics, 2018, 34, 494-501.	4.1	23
425	Metabolism in cancer metastasis: bioenergetics, biosynthesis, and beyond. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2018, 10, e1406.	6.6	70
426	The Regulation of NRF2 by Nutrient-Responsive Signaling and Its Role in Anabolic Cancer Metabolism. Antioxidants and Redox Signaling, 2018, 29, 1774-1791.	5.4	54
427	Reverse engineering the cancer metabolic network using flux analysis to understand drivers of human disease. Metabolic Engineering, 2018, 45, 95-108.	7.0	36
428	Aberrant Metabolism in Hepatocellular Carcinoma Provides Diagnostic and Therapeutic Opportunities. Oxidative Medicine and Cellular Longevity, 2018, 2018, 1-13.	4.0	106
429	MicroRNA-365 suppresses cell growth and invasion in esophageal squamous cell carcinoma by modulating phosphoserine aminotransferase 1. Cancer Management and Research, 2018, Volume 10, 4581-4590.	1.9	19
430	From Single Level Analysis to Multi-Omics Integrative Approaches: A Powerful Strategy towards the Precision Oncology. High-Throughput, 2018, 7, 33.	4.4	48
431	The Influence of Metabolism on Drug Response in Cancer. Frontiers in Oncology, 2018, 8, 500.	2.8	182
431 432	The Influence of Metabolism on Drug Response in Cancer. Frontiers in Oncology, 2018, 8, 500. Serine synthesis through PHGDH coordinates nucleotide levels by maintaining central carbon metabolism. Nature Communications, 2018, 9, 5442.	2.8 12.8	182 143
	Serine synthesis through PHGDH coordinates nucleotide levels by maintaining central carbon		
432	Serine synthesis through PHGDH coordinates nucleotide levels by maintaining central carbon metabolism. Nature Communications, 2018, 9, 5442.	12.8	143
432 433	Serine synthesis through PHGDH coordinates nucleotide levels by maintaining central carbon metabolism. Nature Communications, 2018, 9, 5442. NAD Metabolism in Cancer Therapeutics. Frontiers in Oncology, 2018, 8, 622. Cell-specific proteome analyses of human bone marrow reveal molecular features of age-dependent	12.8 2.8	143 158
432 433 434	Serine synthesis through PHGDH coordinates nucleotide levels by maintaining central carbon metabolism. Nature Communications, 2018, 9, 5442. NAD Metabolism in Cancer Therapeutics. Frontiers in Oncology, 2018, 8, 622. Cell-specific proteome analyses of human bone marrow reveal molecular features of age-dependent functional decline. Nature Communications, 2018, 9, 4004. Glyceraldehyde 3â€phosphate dehydrogenase modulates nonoxidative pentose phosphate pathway to	12.8 2.8 12.8	143 158 71
432 433 434 435	Serine synthesis through PHGDH coordinates nucleotide levels by maintaining central carbon metabolism. Nature Communications, 2018, 9, 5442. NAD Metabolism in Cancer Therapeutics. Frontiers in Oncology, 2018, 8, 622. Cell-specific proteome analyses of human bone marrow reveal molecular features of age-dependent functional decline. Nature Communications, 2018, 9, 4004. Glyceraldehyde 3â€phosphate dehydrogenase modulates nonoxidative pentose phosphate pathway to provide anabolic precursors in hypoxic tumor cells. AICHE Journal, 2018, 64, 4289-4296. Phosphoglycerate dehydrogenase inhibition induces p-mTOR-independent autophagy and promotes multilineage differentiation in embryonal carcinoma stem-like cells. Cell Death and Disease, 2018, 9,	12.8 2.8 12.8 3.6	143 158 71 12
432 433 434 435 436	Serine synthesis through PHGDH coordinates nucleotide levels by maintaining central carbon metabolism. Nature Communications, 2018, 9, 5442. NAD Metabolism in Cancer Therapeutics. Frontiers in Oncology, 2018, 8, 622. Cell-specific proteome analyses of human bone marrow reveal molecular features of age-dependent functional decline. Nature Communications, 2018, 9, 4004. Glyceraldehyde 3â€phosphate dehydrogenase modulates nonoxidative pentose phosphate pathway to provide anabolic precursors in hypoxic tumor cells. AICHE Journal, 2018, 64, 4289-4296. Phosphoglycerate dehydrogenase inhibition induces p-mTOR-independent autophagy and promotes multilineage differentiation in embryonal carcinoma stem-like cells. Cell Death and Disease, 2018, 9, 990. Downregulated SIRT6 and upregulated NMNAT2 are associated with the presence, depth and stage of	12.8 2.8 12.8 3.6 6.3	143 158 71 12 22

#	Article	IF	CITATIONS
440	Deletion of PHGDH in adipocytes improves glucose intolerance in diet-induced obese mice. Biochemical and Biophysical Research Communications, 2018, 504, 309-314.	2.1	11
441	Reciprocal Regulation of Metabolic Reprogramming and Epigenetic Modifications in Cancer. Frontiers in Genetics, 2018, 9, 394.	2.3	46
442	HIV-1 Envelope Protein gp120 Promotes Proliferation and the Activation of Glycolysis in Glioma Cell. Cancers, 2018, 10, 301.	3.7	22
443	The NAD+ Salvage Pathway Supports PHGDH-Driven Serine Biosynthesis. Cell Reports, 2018, 24, 2381-2391.e5.	6.4	47
444	Shift from stochastic to spatially-ordered expression of serine-glycine synthesis enzymes in 3D microtumors. Scientific Reports, 2018, 8, 9388.	3.3	10
445	Metabolic reprogramming for cancer cells and their microenvironment: Beyond the Warburg Effect. Biochimica Et Biophysica Acta: Reviews on Cancer, 2018, 1870, 51-66.	7.4	241
446	Glutathione metabolism in cancer progression and treatment resistance. Journal of Cell Biology, 2018, 217, 2291-2298.	5.2	762
447	Beyond the Warburg Effect: How Do Cancer Cells Regulate One-Carbon Metabolism?. Frontiers in Cell and Developmental Biology, 2018, 6, 90.	3.7	88
448	Metabolic Signaling to the Nucleus in Cancer. Molecular Cell, 2018, 71, 398-408.	9.7	147
449	Epstein-Barr virus-encoded microRNAs as regulators in host immune responses. International Journal of Biological Sciences, 2018, 14, 565-576.	6.4	67
450	Metabolic Reprogramming by Dual AKT/ERK Inhibition through Imipridones Elicits Unique Vulnerabilities in Glioblastoma. Clinical Cancer Research, 2018, 24, 5392-5406.	7.0	67
451	Emerging Molecular Targets for Anti-Cancer Drug Design. Current Chemical Biology, 2018, 12, 88-99.	0.5	0
452	Overcoming erlotinib resistance in EGFR mutation-positive lung adenocarcinomas through repression of phosphoglycerate dehydrogenase. Theranostics, 2018, 8, 1808-1823.	10.0	57
453	A Similar Metabolic Profile Between the Failing Myocardium and Tumor Could Provide Alternative Therapeutic Targets in Chemotherapy-Induced Cardiotoxicity. Frontiers in Cardiovascular Medicine, 2018, 5, 61.	2.4	3
454	Classical NF-κB Metabolically Reprograms Sarcoma Cells Through Regulation of Hexokinase 2. Frontiers in Oncology, 2018, 8, 104.	2.8	49
455	Signaling Pathways Regulating Redox Balance in Cancer Metabolism. Frontiers in Oncology, 2018, 8, 126.	2.8	57
456	Inhibiting Glycine Decarboxylase Suppresses Pyruvate-to-Lactate Metabolism in Lung Cancer Cells. Frontiers in Oncology, 2018, 8, 196.	2.8	15
457	Serine Synthesis via PHGDH Is Essential for Heme Production in Endothelial Cells. Cell Metabolism, 2018, 28, 573-587.e13.	16.2	127

#	Article	IF	CITATIONS
458	Metabolic adaptation of cancer and immune cells mediated by hypoxia-inducible factors. Biochimica Et Biophysica Acta: Reviews on Cancer, 2018, 1870, 15-22.	7.4	134
459	The metabolic axis of macrophage and immune cell polarization. DMM Disease Models and Mechanisms, 2018, 11, .	2.4	46
460	Links between Serine Biosynthesis Pathway and Epigenetics in Cancer Metabolism. Clinical Nutrition Research, 2018, 7, 153.	1.2	12
461	Resistant to Targeted Therapy - Aim for Metabolic Liabilities. Theranostics, 2018, 8, 2061-2063.	10.0	6
462	EWSâ€FL11 reprograms the metabolism of Ewing sarcoma cells via positive regulation of glutamine import and serineâ€glycine biosynthesis. Molecular Carcinogenesis, 2018, 57, 1342-1357.	2.7	40
463	Chromatin and Metabolism. Annual Review of Biochemistry, 2018, 87, 27-49.	11.1	37
464	Melanoma Metabolism. , 2019, , 99-122.		0
465	One-Carbon Metabolism Supports S-Adenosylmethionine and Histone Methylation to Drive Inflammatory Macrophages. Molecular Cell, 2019, 75, 1147-1160.e5.	9.7	186
466	Increased PHGDH expression promotes aberrant melanin accumulation. BMC Cancer, 2019, 19, 723.	2.6	6
467	Glycine decarboxylase is a transcriptional target of MYCN required for neuroblastoma cell proliferation and tumorigenicity. Oncogene, 2019, 38, 7504-7520.	5.9	20
468	<p>Mechanisms of resistance to a PI3K inhibitor in gastrointestinal stromal tumors: an omic approach to identify novel druggable targets</p> . Cancer Management and Research, 2019, Volume 11, 6229-6244.	1.9	2
469	Serine and one-carbon metabolism, a bridge that links mTOR signaling and DNA methylation in cancer. Pharmacological Research, 2019, 149, 104352.	7.1	45
470	Metabolic Regulation of Redox Balance in Cancer. Cancers, 2019, 11, 955.	3.7	80
471	Inhibition of 3-phosphoglycerate dehydrogenase (PHGDH) by indole amides abrogates de novo serine synthesis in cancer cells. Bioorganic and Medicinal Chemistry Letters, 2019, 29, 2503-2510.	2.2	37
472	De novo synthesis of serine and glycine fuels purine nucleotide biosynthesis in human lung cancer tissues. Journal of Biological Chemistry, 2019, 294, 13464-13477.	3.4	58
473	Intracellular Trapping of the Selective Phosphoglycerate Dehydrogenase (PHGDH) Inhibitor BI-4924 Disrupts Serine Biosynthesis. Journal of Medicinal Chemistry, 2019, 62, 7976-7997.	6.4	46
474	Epstein-Barr-Virus-Induced One-Carbon Metabolism Drives B Cell Transformation. Cell Metabolism, 2019, 30, 539-555.e11.	16.2	119
475	Cell Metabolism in Cancer: An Energetic Switch. Learning Materials in Biosciences, 2019, , 97-116.	0.4	Ο

#	Article	IF	CITATIONS
476	Toxicoâ€Metabolomics of Engineered Nanomaterials: Progress and Challenges. Advanced Functional Materials, 2019, 29, 1904268.	14.9	20
477	Genome-wide CRISPR/Cas9 library screening identified PHGDH as a critical driver for Sorafenib resistance in HCC. Nature Communications, 2019, 10, 4681.	12.8	229
478	Potassium and Sodium Channels and the Warburg Effect: Biophysical Regulation of Cancer Metabolism. Bioelectricity, 2019, 1, 188-200.	1.1	15
479	Measurement of Conditional Relatedness Between Genes Using Fully Convolutional Neural Network. Frontiers in Genetics, 2019, 10, 1009.	2.3	6
480	Targeting glucose metabolism to suppress cancer progression: prospective of anti-glycolytic cancer therapy. Pharmacological Research, 2019, 150, 104511.	7.1	300
481	Activation of <scp>LXR</scp> β inhibits tumor respiration and is synthetically lethal with Bcl― <scp>xL</scp> inhibition. EMBO Molecular Medicine, 2019, 11, e10769.	6.9	32
482	Kinetic model optimization and its application to mitigating the Warburg effect through multiple enzyme alterations. Metabolic Engineering, 2019, 56, 154-164.	7.0	8
483	Drugging cancer metabolism: Expectations vs. reality. International Review of Cell and Molecular Biology, 2019, 347, 1-26.	3.2	24
484	Mechanisms and Implications of Metabolic Heterogeneity in Cancer. Cell Metabolism, 2019, 30, 434-446.	16.2	355
485	NRF2 SUMOylation promotes de novo serine synthesis and maintains HCC tumorigenesis. Cancer Letters, 2019, 466, 39-48.	7.2	37
486	Warburg and Krebs and related effects in cancer. Expert Reviews in Molecular Medicine, 2019, 21, e4.	3.9	22
487	Metabolic crosstalk in the breast cancer microenvironment. European Journal of Cancer, 2019, 121, 154-171.	2.8	128
488	Hypoxia-inducible factors promote breast cancer stem cell specification and maintenance in response to hypoxia or cytotoxic chemotherapy. Advances in Cancer Research, 2019, 141, 175-212.	5.0	54
489	Ex vivo and in vivo stable isotope labelling of central carbon metabolism and related pathways with analysis by LC–MS/MS. Nature Protocols, 2019, 14, 313-330.	12.0	106
490	Splicing factor <i> <scp>ESRP</scp> 1 </i> controls <scp>ER</scp> â€positive breast cancer by altering metabolic pathways. EMBO Reports, 2019, 20, .	4.5	48
491	Prostate cancer-specific hallmarks of amino acids metabolism: Towards a paradigm of precision medicine. Biochimica Et Biophysica Acta: Reviews on Cancer, 2019, 1871, 248-258.	7.4	34
492	A critical review of the role of M2PYK in the Warburg effect. Biochimica Et Biophysica Acta: Reviews on Cancer, 2019, 1871, 225-239.	7.4	22
493	Control of the Antitumor Immune Response by Cancer Metabolism. Cells, 2019, 8, 104.	4.1	50

#	Article	IF	CITATIONS
494	Identification of metabolic vulnerabilities of receptor tyrosine kinases-driven cancer. Nature Communications, 2019, 10, 2701.	12.8	82
495	Sulfur metabolism and its contribution to malignancy. International Review of Cell and Molecular Biology, 2019, 347, 39-103.	3.2	40
496	Molecular and Cell Biology of Cancer. Learning Materials in Biosciences, 2019, , .	0.4	3
497	Gluconeogenesis in cancer cells – Repurposing of a starvation-induced metabolic pathway?. Biochimica Et Biophysica Acta: Reviews on Cancer, 2019, 1872, 24-36.	7.4	146
498	Hypoxia-induced switch in SNAT2/SLC38A2 regulation generates endocrine resistance in breast cancer. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 12452-12461.	7.1	86
499	Determinants of nutrient limitation in cancer. Critical Reviews in Biochemistry and Molecular Biology, 2019, 54, 193-207.	5.2	36
500	Proteomic analysis of bacterial response to a 4-hydroxybenzylidene indolinone compound, which re-sensitizes bacteria to traditional antibiotics. Journal of Proteomics, 2019, 202, 103368.	2.4	27
501	The Diverse Functions of Non-Essential Amino Acids in Cancer. Cancers, 2019, 11, 675.	3.7	119
502	Ixocarpalactone A from dietary tomatillo inhibits pancreatic cancer growth by targeting PHGDH. Food and Function, 2019, 10, 3386-3395.	4.6	29
503	Methionine is a metabolic dependency of tumor-initiating cells. Nature Medicine, 2019, 25, 825-837.	30.7	226
504	Acyl-CoA-Binding Protein Drives Glioblastoma Tumorigenesis by Sustaining Fatty Acid Oxidation. Cell Metabolism, 2019, 30, 274-289.e5.	16.2	115
505	The Fate of Clutamine in Human Metabolism. The Interplay with Glucose in Proliferating Cells. Metabolites, 2019, 9, 81.	2.9	20
506	Increased Serine Synthesis Provides an Advantage for Tumors Arising in Tissues Where Serine Levels Are Limiting. Cell Metabolism, 2019, 29, 1410-1421.e4.	16.2	168
507	Cause and effect of microenvironmental acidosis on bone metastases. Cancer and Metastasis Reviews, 2019, 38, 133-147.	5.9	28
508	Anti-alcohol abuse drug disulfiram inhibits human PHGDH via disruption of its active tetrameric form through a specific cysteine oxidation. Scientific Reports, 2019, 9, 4737.	3.3	39
509	Curcumin and its Potential for Systemic Targeting of Inflamm-Aging and Metabolic Reprogramming in Cancer. International Journal of Molecular Sciences, 2019, 20, 1180.	4.1	19
510	Microvascular Rarefaction and Heart Failure With Preserved Ejection Fraction. Frontiers in Cardiovascular Medicine, 2019, 6, 15.	2.4	43
511	Metabolic regulation of cell growth and proliferation. Nature Reviews Molecular Cell Biology, 2019, 20, 436-450.	37.0	577

#	Article	IF	CITATIONS
512	Alcohol and DNA Methylation: An Epigenome-Wide Association Study in Blood and Normal Breast Tissue. American Journal of Epidemiology, 2019, 188, 1055-1065.	3.4	43
513	Azacoccone E inhibits cancer cell growth by targeting 3-phosphoglycerate dehydrogenase. Bioorganic Chemistry, 2019, 87, 16-22.	4.1	26
514	Cancer cells change their glucose metabolism to overcome increased ROS: One step from cancer cell to cancer stem cell?. Biomedicine and Pharmacotherapy, 2019, 112, 108690.	5.6	120
515	Metabolic signatures of cancer cells and stem cells. Nature Metabolism, 2019, 1, 177-188.	11.9	215
516	Deficiency in the Phosphorylated Pathway of Serine Biosynthesis Perturbs Sulfur Assimilation. Plant Physiology, 2019, 180, 153-170.	4.8	19
517	Phosphoglycerate dehydrogenase promotes pancreatic cancer development by interacting with eIF4A1 and eIF4E. Journal of Experimental and Clinical Cancer Research, 2019, 38, 66.	8.6	51
518	A New Classification Method of Metastatic Cancers Using a 1H-NMR-Based Approach: A Study Case of Melanoma, Breast, and Prostate Cancer Cell Lines. Metabolites, 2019, 9, 281.	2.9	5
519	Changes in expression of serine biosynthesis and integrated stress response genes during myogenic differentiation of C2C12 cells. Biochemistry and Biophysics Reports, 2019, 20, 100694.	1.3	14
520	Cysteine catabolism and the serine biosynthesis pathway support pyruvate production during pyruvate kinase knockdown in pancreatic cancer cells. Cancer & Metabolism, 2019, 7, 13.	5.0	33
521	Toward a better understanding of folate metabolism in health and disease. Journal of Experimental Medicine, 2019, 216, 253-266.	8.5	109
522	A plasma metabolite panel as biomarkers for early primary breast cancer detection. International Journal of Cancer, 2019, 144, 2833-2842.	5.1	50
523	Mitochondrial functions and melatonin: a tour of the reproductive cancers. Cellular and Molecular Life Sciences, 2019, 76, 837-863.	5.4	41
524	Epigenetic Loci of Blood Pressure. Circulation Genomic and Precision Medicine, 2019, 12, e002341.	3.6	3
525	Tracing metabolic fluxes using mass spectrometry: Stable isotope-resolved metabolomics in health and disease. TrAC - Trends in Analytical Chemistry, 2019, 120, 115371.	11.4	12
526	Metabolome Wide Association Study of serum DDT and DDE in Pregnancy and Early Postpartum. Reproductive Toxicology, 2020, 92, 129-137.	2.9	25
527	Role of coenzymes in cancer metabolism. Seminars in Cell and Developmental Biology, 2020, 98, 44-53.	5.0	25
528	Cancer Metabolism. , 2020, , 127-138.e4.		3
529	Formate metabolism in health and disease. Molecular Metabolism, 2020, 33, 23-37.	6.5	112

		CITATION REPORT		
#	Article		IF	CITATIONS
530	Mass spectrometry and NMR spectroscopy based quantitative metabolomics. , 2020, ,	289-311.		5
531	The serine transporter SdaC prevents cell lysis upon glucose depletion in <i>Escherichia MicrobiologyOpen, 2020, 9, e960.</i>	i coli.	3.0	12
532	The complexity of the serine glycine one-carbon pathway in cancer. Journal of Cell Biolo	gy, 2020, 219, .	5.2	71
533	Metabolic pathway analyses identify proline biosynthesis pathway as a promoter of live tumorigenesis. Journal of Hepatology, 2020, 72, 725-735.	r	3.7	71
534	Metabolic reprogramming in tumors: Contributions of the tumor microenvironment. Ge Diseases, 2020, 7, 185-198.	enes and	3.4	45
535	2-Hydroxyglutarate in Cancer Cells. Antioxidants and Redox Signaling, 2020, 33, 903-9.	26.	5.4	68
536	MET Inhibition Elicits PGC1α-Dependent Metabolic Reprogramming in Glioblastoma. C 2020, 80, 30-43.	ancer Research,	0.9	35
537	Knockdown of ISOC1 inhibits the proliferation and migration and induces the apoptosic cancer cells through the AKT/GSK-3Î ² pathway. Carcinogenesis, 2020, 41, 1123-1133.	s of colon	2.8	9
538	ILF3 is a substrate of SPOP for regulating serine biosynthesis in colorectal cancer. Cell F 2020, 30, 163-178.	lesearch,	12.0	48
539	Aberrant mitochondrial function in ageing and cancer. Biogerontology, 2020, 21, 445-4	¥59.	3.9	17
540	Targeting extracellular nutrient dependencies of cancer cells. Molecular Metabolism, 20)20, 33, 67-82.	6.5	50
541	Metabolism in tumour-associated macrophages: a quid pro quo with the tumour micro European Respiratory Review, 2020, 29, 200134.	environment.	7.1	25
542	Role of the Sterol Regulatory Element Binding Protein Pathway in Tumorigenesis. Front Oncology, 2020, 10, 1788.	iers in	2.8	17
543	Cancer Metabolism: Phenotype, Signaling and Therapeutic Targets. Cells, 2020, 9, 2308	8.	4.1	211
544	Drug Resistant Melanoma May Be Vulnerable to Inhibitors of Serine Synthesis. Journal o Dermatology, 2020, 140, 2114-2116.	of Investigative	0.7	3
545	Adaptive redox homeostasis in cutaneous melanoma. Redox Biology, 2020, 37, 101753	3.	9.0	37
546	Transcriptional Activation of Chac1 and Other Atf4-Target Genes Induced by Extracellul Depletion is negated with Glycine Consumption in Hepa1-6 Hepatocarcinoma Cells. Nu 3018.	ar l-Serine trients, 2020, 12,	4.1	12
547	Dissecting the Crosstalk between NRF2 Signaling and Metabolic Processes in Cancer. C 3023.	lancers, 2020, 12,	3.7	43

#	ARTICLE The Roles of Mitochondrial Folate Metabolism in Supporting Mitochondrial DNA Synthesis, Oxidative	IF	CITATIONS
548	Phosphorylation, and Cellular Function. Current Developments in Nutrition, 2020, 4, nzaa153.	0.3	27
549	Fructose contributes to the Warburg effect for cancer growth. Cancer & Metabolism, 2020, 8, 16.	5.0	76
550	Escher-Trace: a web application for pathway-based visualization of stable isotope tracing data. BMC Bioinformatics, 2020, 21, 297.	2.6	12
551	Role of tyrosine phosphorylation in modulating cancer cell metabolism. Biochimica Et Biophysica Acta: Reviews on Cancer, 2020, 1874, 188442.	7.4	33
552	Glutathione Synthesis in Cancer Cells. Biochemistry (Moscow), 2020, 85, 895-907.	1.5	23
553	The RNA-binding protein SERBP1 functions as a novel oncogenic factor in glioblastoma by bridging cancer metabolism and epigenetic regulation. Genome Biology, 2020, 21, 195.	8.8	55
554	Endogenous toxic metabolites and implications in cancer therapy. Oncogene, 2020, 39, 5709-5720.	5.9	25
555	Lipids and cancer: Emerging roles in pathogenesis, diagnosis and therapeutic intervention. Advanced Drug Delivery Reviews, 2020, 159, 245-293.	13.7	316
556	Acetylation Stabilizes Phosphoglycerate Dehydrogenase by Disrupting the Interaction of E3 Ligase RNF5 to Promote Breast Tumorigenesis. Cell Reports, 2020, 32, 108021.	6.4	35
557	Serine restriction alters sphingolipid diversity to constrain tumour growth. Nature, 2020, 586, 790-795.	27.8	166
558	Therapeutic Targeting of Mitochondrial One-Carbon Metabolism in Cancer. Molecular Cancer Therapeutics, 2020, 19, 2245-2255.	4.1	38
559	Revisiting the Warburg Effect: Diet-Based Strategies for Cancer Prevention. BioMed Research International, 2020, 2020, 1-9.	1.9	22
560	The glutathione peroxidase 8 (GPX8)/IL-6/STAT3 axis is essential in maintaining an aggressive breast cancer phenotype. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 21420-21431.	7.1	36
561	Matrix Metalloproteinase-11 Promotes Early Mouse Mammary Gland Tumor Growth through Metabolic Reprogramming and Increased IGF1/AKT/FoxO1 Signaling Pathway, Enhanced ER Stress and Alteration in Mitochondrial UPR. Cancers, 2020, 12, 2357.	3.7	17
562	Oncology Therapeutics Targeting the Metabolism of Amino Acids. Cells, 2020, 9, 1904.	4.1	21
563	Extracellular Citrate Fuels Cancer Cell Metabolism and Growth. Frontiers in Cell and Developmental Biology, 2020, 8, 602476.	3.7	25
564	Targeting PHGDH Upregulation Reduces Glutathione Levels and Resensitizes Resistant NRAS-Mutant Melanoma to MAPK Kinase Inhibition. Journal of Investigative Dermatology, 2020, 140, 2242-2252.e7.	0.7	23
565	p53 is regulated by aerobic glycolysis in cancer cells by the CtBP family of NADH-dependent transcriptional regulators. Science Signaling, 2020, 13, .	3.6	28

#	Article	IF	CITATIONS
566	Paternal restraint stress affects offspring metabolism via ATF-2 dependent mechanisms in Drosophila melanogaster germ cells. Communications Biology, 2020, 3, 208.	4.4	16
567	Characterization of <i>PHGDH</i> expression in bladder cancer: potential targeting therapy with gemcitabine/cisplatin and the contribution of promoter DNA hypomethylation. Molecular Oncology, 2020, 14, 2190-2202.	4.6	17
568	Serine catabolism produces ROS, sensitizes cells to actin dysfunction, and suppresses cell growth in fission yeast. Journal of Antibiotics, 2020, 73, 574-580.	2.0	6
569	Methotrexate elicits pro-respiratory and anti-growth effects by promoting AMPK signaling. Scientific Reports, 2020, 10, 7838.	3.3	10
570	EWS-FLI1–regulated Serine Synthesis and Exogenous Serine are Necessary for Ewing Sarcoma Cellular Proliferation and Tumor Growth. Molecular Cancer Therapeutics, 2020, 19, 1520-1529.	4.1	21
571	Metabolic reprogramming in triple-negative breast cancer. Cancer Biology and Medicine, 2020, 17, 44-59.	3.0	78
572	Dietary Approaches to Cancer Therapy. Cancer Cell, 2020, 37, 767-785.	16.8	105
573	Common biochemical properties of metabolic genes recurrently dysregulated in tumors. Cancer & Metabolism, 2020, 8, 5.	5.0	9
574	MAX Functions as a Tumor Suppressor and Rewires Metabolism in Small Cell Lung Cancer. Cancer Cell, 2020, 38, 97-114.e7.	16.8	46
575	Limited Environmental Serine and Glycine Confer Brain Metastasis Sensitivity to PHGDH Inhibition. Cancer Discovery, 2020, 10, 1352-1373.	9.4	145
576	Regulators of glucose uptake in thyroid cancer cell lines. Cell Communication and Signaling, 2020, 18, 83.	6.5	43
577	Heterogeneity of Glucose Transport in Lung Cancer. Biomolecules, 2020, 10, 868.	4.0	19
578	Metabolic Traits in Cutaneous Melanoma. Frontiers in Oncology, 2020, 10, 851.	2.8	18
579	New insights on sorafenib resistance in liver cancer with correlation of individualized therapy. Biochimica Et Biophysica Acta: Reviews on Cancer, 2020, 1874, 188382.	7.4	54
580	A multi-omics analysis reveals the unfolded protein response regulon and stress-induced resistance to folate-based antimetabolites. Nature Communications, 2020, 11, 2936.	12.8	51
581	Targeting MDM2-dependent serine metabolism as a therapeutic strategy for liposarcoma. Science Translational Medicine, 2020, 12, .	12.4	24
582	Serine-dependent redox homeostasis regulates glioblastoma cell survival. British Journal of Cancer, 2020, 122, 1391-1398.	6.4	41
583	Glycolysis-Independent Glucose Metabolism Distinguishes TE from ICM Fate during Mammalian Embryogenesis. Developmental Cell, 2020, 53, 9-26.e4.	7.0	97

#	Article	IF	CITATIONS
584	Nitrogen Metabolism in Cancer and Immunity. Trends in Cell Biology, 2020, 30, 408-424.	7.9	72
585	<p>Phosphoglycerate Mutase 1: Its Glycolytic and Non-Glycolytic Roles in Tumor Malignant Behaviors and Potential Therapeutic Significance</p> . OncoTargets and Therapy, 2020, Volume 13, 1787-1795.	2.0	19
586	Examination of sulfonamide-based inhibitors of MMP3 using the conditioned media of invasive glioma cells. Journal of Enzyme Inhibition and Medicinal Chemistry, 2020, 35, 672-681.	5.2	5
587	The Role of D-3-Phosphoglycerate Dehydrogenase in Cancer. International Journal of Biological Sciences, 2020, 16, 1495-1506.	6.4	49
588	Stem metabolism: Insights from oncometabolism and vice versa. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2020, 1866, 165760.	3.8	5
589	PHGDH supports liver ceramide synthesis and sustains lipid homeostasis. Cancer & Metabolism, 2020, 8, 6.	5.0	17
590	Intermediary metabolism: An intricate network at the crossroads of cell fate and function. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2020, 1866, 165887.	3.8	12
591	The serine hydroxymethyltransferase-2 (SHMT2) initiates lymphoma development through epigenetic tumor suppressor silencing. Nature Cancer, 2020, 1, 653-664.	13.2	35
592	Inhibition of Serine Metabolism Promotes Resistance to Cisplatin in Gastric Cancer. OncoTargets and Therapy, 2020, Volume 13, 4833-4842.	2.0	11
593	The PHGDH enigma: Do cancer cells only need serine or also a redox modulator?. Cancer Letters, 2020, 476, 97-105.	7.2	37
594	Modulation of dysregulated cancer metabolism by plant secondary metabolites: A mechanistic review. Seminars in Cancer Biology, 2022, 80, 276-305.	9.6	53
595	Impairment of Glycolysis-Derived I-Serine Production in Astrocytes Contributes to Cognitive Deficits in Alzheimer's Disease. Cell Metabolism, 2020, 31, 503-517.e8.	16.2	160
596	Phosphoglycerate dehydrogenase promotes proliferation and bortezomib resistance through increasing reduced glutathione synthesis in multiple myeloma. British Journal of Haematology, 2020, 190, 52-66.	2.5	40
597	Macrophages induce malignant traits in mammary epithelium via IKKε/TBK1 kinases and the serine biosynthesis pathway. EMBO Molecular Medicine, 2020, 12, e10491.	6.9	11
598	A dynamic EFM-based model for antibody producing cell lines and model based evaluation of fed-batch processes. Biochemical Engineering Journal, 2020, 156, 107494.	3.6	6
599	Structure–Activity Relationships (SARs) of α-Ketothioamides as Inhibitors of Phosphoglycerate Dehydrogenase (PHGDH). Pharmaceuticals, 2020, 13, 20.	3.8	13
600	Overexpression of PSAT1 promotes metastasis of lung adenocarcinoma by suppressing the IRF1-IFNÎ ³ axis. Oncogene, 2020, 39, 2509-2522.	5.9	30
601	Metabolic Profiling Reveals a Dependency of Human Metastatic Breast Cancer on Mitochondrial Serine and One-Carbon Unit Metabolism. Molecular Cancer Research, 2022, 18, 599-611.	3.4	56

#	Article	IF	CITATIONS
602	Regulation of immune cell metabolism by cancer cell oncogenic mutations. International Journal of Cancer, 2020, 147, 307-316.	5.1	3
603	Nutritional Exchanges Within Tumor Microenvironment: Impact for Cancer Aggressiveness. Frontiers in Oncology, 2020, 10, 396.	2.8	35
604	Links between cancer metabolism and cisplatin resistance. International Review of Cell and Molecular Biology, 2020, 354, 107-164.	3.2	48
605	Glutathione Restricts Serine Metabolism to Preserve Regulatory T Cell Function. Cell Metabolism, 2020, 31, 920-936.e7.	16.2	109
606	Severe metabolic alterations in liver cancer lead to ERK pathway activation and drug resistance. EBioMedicine, 2020, 54, 102699.	6.1	36
607	Cysteine Deprivation Targets Ovarian Clear Cell Carcinoma <i>Via</i> Oxidative Stress and Ironâ^`Sulfur Cluster Biogenesis Deficit. Antioxidants and Redox Signaling, 2020, 33, 1191-1208.	5.4	25
608	Overexpression of PSAT1 regulated by G9A sustains cell proliferation in colorectal cancer. Signal Transduction and Targeted Therapy, 2020, 5, 47.	17.1	15
609	Human Melanoma-Cell Metabolic Profiling: Identification of Novel Biomarkers Indicating Metastasis. International Journal of Molecular Sciences, 2020, 21, 2436.	4.1	18
610	l-Serine links metabolism with neurotransmission. Progress in Neurobiology, 2021, 197, 101896.	5.7	44
611	Immunometabolic Pathways and Its Therapeutic Implication in Autoimmune Diseases. Clinical Reviews in Allergy and Immunology, 2021, 60, 55-67.	6.5	30
612	InÂVivo Evidence for Serine Biosynthesis-Defined Sensitivity of Lung Metastasis, but Not of Primary Breast Tumors, to mTORC1 Inhibition. Molecular Cell, 2021, 81, 386-397.e7.	9.7	63
613	Germline <i>EGFR</i> variants are over-represented in adolescents and young adults (AYA) with adrenocortical carcinoma. Human Molecular Genetics, 2021, 29, 3679-3690.	2.9	6
614	High Fructose Drives the Serine Synthesis Pathway in Acute Myeloid Leukemic Cells. Cell Metabolism, 2021, 33, 145-159.e6.	16.2	34
616	Exploring Metabolic Adaptations to the Acidic Microenvironment of Osteosarcoma Cells Unveils Sphingosine 1-Phosphate as a Valuable Therapeutic Target. Cancers, 2021, 13, 311.	3.7	16
617	Serine Biosynthesis Is a Metabolic Vulnerability in IDH2-Driven Breast Cancer Progression. Cancer Research, 2021, 81, 1443-1456.	0.9	14
618	Serine Biosynthesis Is a Metabolic Vulnerability in FLT3-ITD–Driven Acute Myeloid Leukemia. Cancer Discovery, 2021, 11, 1582-1599.	9.4	35
619	Metabolic compensation activates pro-survival mTORC1 signaling upon 3-phosphoglycerate dehydrogenase inhibition in osteosarcoma. Cell Reports, 2021, 34, 108678.	6.4	33
620	Metabolic Codependencies in the Tumor Microenvironment. Cancer Discovery, 2021, 11, 1067-1081.	9.4	144

#	Article	IF	CITATIONS
622	Epigenetic regulations in gastrointestine: Implications on sensitivity to ionizing radiation, inflammatory diseases, and cancer development. , 2021, , 199-235.		0
623	Metabolism of Amino Acids in Cancer. Frontiers in Cell and Developmental Biology, 2020, 8, 603837.	3.7	182
624	Dimerization of PHGDH via the catalytic unit is essential for its enzymatic function. Journal of Biological Chemistry, 2021, 296, 100572.	3.4	7
625	Metabolic Reprogramming and the Control of Anoikis Resistance in Cancer. , 2021, , 17-50.		0
626	NMR-Based Metabolomics. Advances in Experimental Medicine and Biology, 2021, 1280, 19-37.	1.6	40
627	Metabolic Contributions to Anoikis-Resistance in Metastatic Dissemination. , 2021, , 1-16.		0
628	Tumor Cells and Cancer-Associated Fibroblasts: An Updated Metabolic Perspective. Cancers, 2021, 13, 399.	3.7	27
629	Metabolic control of cancer progression as novel targets for therapy. Advances in Cancer Research, 2021, 152, 103-177.	5.0	5
630	One-carbon metabolism in cancer cells: a critical review based on a core model of central metabolism. Biochemical Society Transactions, 2021, 49, 1-15.	3.4	7
631	1-C Metabolism—Serine, Clycine, Folates—In Acute Myeloid Leukemia. Pharmaceuticals, 2021, 14, 190.	3.8	6
632	Exogenous and Endogenous Sources of Serine Contribute to Colon Cancer Metabolism, Growth, and Resistance to 5-Fluorouracil. Cancer Research, 2021, 81, 2275-2288.	0.9	55
633	Transporters at the Interface between Cytosolic and Mitochondrial Amino Acid Metabolism. Metabolites, 2021, 11, 112.	2.9	21
634	Prognostic significance of phosphoglycerate dehydrogenase in breast cancer. Breast Cancer Research and Treatment, 2021, 186, 655-665.	2.5	9
635	Signaling, metabolism, and cancer: An important relationship for therapeutic intervention. Journal of Cellular Physiology, 2021, 236, 5512-5532.	4.1	30
636	Systematic Identification of MACC1-Driven Metabolic Networks in Colorectal Cancer. Cancers, 2021, 13, 978.	3.7	4
637	Phosphoglycerate dehydrogenase (PHGDH) inhibitors: a comprehensive review 2015–2020. Expert Opinion on Therapeutic Patents, 2021, 31, 597-608.	5.0	11
638	Serine biosynthesis defect due to haploinsufficiency of PHGDH causes retinal disease. Nature Metabolism, 2021, 3, 366-377.	11.9	32
639	PSPH promotes melanoma growth and metastasis by metabolic deregulation-mediated transcriptional activation of NR4A1. Oncogene, 2021, 40, 2448-2462.	5.9	19

#	Article	IF	CITATIONS
640	An expanded universe of cancer targets. Cell, 2021, 184, 1142-1155.	28.9	135
641	Linking Serine/Glycine Metabolism to Radiotherapy Resistance. Cancers, 2021, 13, 1191.	3.7	20
642	EWS-FLI1 and Menin Converge to Regulate ATF4 Activity in Ewing Sarcoma. Molecular Cancer Research, 2021, 19, 1182-1195.	3.4	6
643	Energy stress-induced linc01564 activates the serine synthesis pathway and facilitates hepatocellular carcinogenesis. Oncogene, 2021, 40, 2936-2951.	5.9	15
644	3-Phosphoglycerate dehydrogenase: a potential target for cancer treatment. Cellular Oncology (Dordrecht), 2021, 44, 541-556.	4.4	17
645	Melatonin Targets Metabolism in Head and Neck Cancer Cells by Regulating Mitochondrial Structure and Function. Antioxidants, 2021, 10, 603.	5.1	24
646	Mechanisms of Metabolic Reprogramming in Cancer Cells Supporting Enhanced Growth and Proliferation. Cells, 2021, 10, 1056.	4.1	197
647	Can small molecular inhibitors that stop de novo serine synthesis be used in cancer treatment?. Cell Death Discovery, 2021, 7, 87.	4.7	11
648	A retrospective overview of PHGDH and its inhibitors for regulating cancer metabolism. European Journal of Medicinal Chemistry, 2021, 217, 113379.	5.5	23
649	The phosphorylated pathway of serine biosynthesis links plant growth with nitrogen metabolism. Plant Physiology, 2021, 186, 1487-1506.	4.8	20
650	Metabolic Response of Triple-Negative Breast Cancer to Folate Restriction. Nutrients, 2021, 13, 1637.	4.1	5
651	The role of metabolomics in hepatocellular carcinoma. Egyptian Liver Journal, 2021, 11, .	0.6	4
652	Serine Metabolism Regulates YAP Activity Through USP7 in Colon Cancer. Frontiers in Cell and Developmental Biology, 2021, 9, 639111.	3.7	17
653	Metabolomics in cancer research and emerging applications in clinical oncology. Ca-A Cancer Journal for Clinicians, 2021, 71, 333-358.	329.8	267
654	A network approach reveals driver genes associated with survival of patients with triple-negative breast cancer. IScience, 2021, 24, 102451.	4.1	8
655	Mammary epithelial cells have lineage-rooted metabolic identities. Nature Metabolism, 2021, 3, 665-681.	11.9	24
657	Targeting nucleotide metabolism as the nexus of viral infections, cancer, and the immune response. Science Advances, 2021, 7, .	10.3	47
658	PHGDH Is Upregulated at Translational Level and Implicated in Platin-Resistant in Ovarian Cancer Cells. Frontiers in Oncology, 2021, 11, 643129.	2.8	17

ARTICLE IF CITATIONS Immune-regulated IDO1-dependent tryptophan metabolism is source of one-carbon units for pancreatic cancer and stellate cells. Molecular Cell, 2021, 81, 2290-2302.e7. 659 9.7 54 ATF3 coordinates serine and nucleotide metabolism to drive cell cycle progression in acute myeloid 28 leukemia. Molecular Cell, 2021, 81, 2752-2764.e6. Amino Acid Depletion Therapies: Starving Cancer Cells to Death. Trends in Endocrinology and 661 7.1 121 Metabolism, 2021, 32, 367-381. One carbon metabolism in human lung cancer. Translational Lung Cancer Research, 2021, 10, 2523-2538. 2.8 Identification of a novel PHGDH covalent inhibitor by chemical proteomics and phenotypic profiling. 663 12.0 15 Acta Pharmaceutica Sinica B, 2022, 12, 246-261. A methionine-Mettl3-N-methyladenosine axis promotes polycystic kidney disease. Cell Metabolism, 2021, 664 16.2 33, 1234-1247.e7. Cancer cell metabolism connects epigenetic modifications to transcriptional regulation. FEBS 665 4.7 23 Journal, 2022, 289, 1302-1314. Complementary Nuclear Magnetic Resonance-Based Metabolomics Approaches for Glioma Biomarker Identification in a <i>Drosophila melanogaster</i> Model. Journal of Proteome Research, 2021, 20, 3.7 3977-3991. Metformin Decreases 2-HG Production through the MYC-PHGDH Pathway in Suppressing Breast Cancer 667 2.9 6 Cell Proliferation. Metabolites, 2021, 11, 480. Metabolic landscapes in sarcomas. Journal of Hematology and Oncology, 2021, 14, 114. Mitochondria: The metabolic switch of cellular oncogenic transformation. Biochimica Et Biophysica 669 7.4 36 Acta: Reviews on Cancer, 2021, 1876, 188534. Insights on Metabolic Reprogramming and Its Therapeutic Potential in Acute Leukemia. International 4.1 Journal of Molecular Sciences, 2021, 22, 8738. Astrocyte-neuron metabolic cooperation shapes brain activity. Cell Metabolism, 2021, 33, 1546-1564. 671 16.2 143 Metabolomics, metabolic flux analysis and cancer pharmacology., 2021, 224, 107827. 44 Anoikis resistant gastric cancer cells promote angiogenesis and peritoneal metastasis through 673 5.9 41 C/EBPÎ²-mediated PDGFB autocrine and paracrine signaling. Oncogene, 2021, 40, 5764-5779. CircMYH9 drives colorectal cancer growth by regulating serine metabolism and redox homeostasis in 674 a p53-dependent manner. Molecular Cancer, 2021, 20, 114. Control of topoisomerase II activity and chemotherapeutic inhibition by TCA cycle metabolites. Cell 675 5.210 Chemical Biology, 2022, 29, 476-489.e6. Increased Proliferation of Neuroblastoma Cells under Fructose Metabolism Can Be Measured by 676 1.5 Isothermal Microcalorimetry. Children, 2021, 8, 784.

#	Article	IF	Citations
677	Acute regional changes in myocardial strain may predict ventricular remodelling after myocardial infarction in a large animal model. Scientific Reports, 2021, 11, 18322.	3.3	5
678	Glucose Metabolism and Glucose Transporters in Breast Cancer. Frontiers in Cell and Developmental Biology, 2021, 9, 728759.	3.7	69
679	Metabolic Flexibility Is a Determinant of Breast Cancer Heterogeneity and Progression. Cancers, 2021, 13, 4699.	3.7	10
680	The multifaceted roles of mitochondria at the crossroads of cell life and death in cancer. Free Radical Biology and Medicine, 2021, 176, 203-221.	2.9	20
681	The nexus between redox state and intermediary metabolism. FEBS Journal, 2022, 289, 5440-5462.	4.7	7
682	Mechanisms Governing Metabolic Heterogeneity in Breast Cancer and Other Tumors. Frontiers in Oncology, 2021, 11, 700629.	2.8	17
683	Supply and demand: Cellular nutrient uptake and exchange in cancer. Molecular Cell, 2021, 81, 3731-3748.	9.7	18
684	Metabolic shift to serine biosynthesis through 3-PG accumulation and PHGDH induction promotes tumor growth in pancreatic cancer. Cancer Letters, 2021, 523, 29-42.	7.2	16
685	Insights into the binding interactions at the nano-bio interface: Electrode potential and wavelength dependence study. Applied Surface Science, 2021, 562, 150228.	6.1	4
686	Discovery of novel inhibitors of human phosphoglycerate dehydrogenase by activity-directed combinatorial chemical synthesis strategy. Bioorganic Chemistry, 2021, 115, 105159.	4.1	2
687	Tumor metabolic reprogramming in therapeutic resistance. , 2021, , 199-225.		0
688	Non-coding RNAs rewire cancer metabolism networks. Seminars in Cancer Biology, 2021, 75, 116-126.	9.6	17
689	Serine synthesis pathway inhibition cooperates with dietary serine and glycine limitation for cancer therapy. Nature Communications, 2021, 12, 366.	12.8	138
690	Glucose Metabolism in Cancer: The Warburg Effect and Beyond. Advances in Experimental Medicine and Biology, 2021, 1311, 3-15.	1.6	76
691	Cell-Specific Expression of Enzymes for Serine Biosynthesis and Glutaminolysis in Farm Animals. Advances in Experimental Medicine and Biology, 2021, 1285, 17-28.	1.6	12
692	Unravelling the Allosteric Targeting of PHGDH at the ACT-Binding Domain with a Photoactivatable Diazirine Probe and Mass Spectrometry Experiments. Molecules, 2021, 26, 477.	3.8	6
693	The ins and outs of serine and glycine metabolism in cancer. Nature Metabolism, 2021, 3, 131-141.	11.9	82
694	Melanoma Metabolism. , 2019, , 1-24.		1

#	Article	IF	CITATIONS
695	Deconstructing the Metabolic Networks of Oncogenic Signaling Using Targeted Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS). Methods in Molecular Biology, 2017, 1636, 405-414.	0.9	1
696	Diverting Glycolysis to Combat Oxidative Stress. , 2015, , 3-23.		85
697	Enzymes in Metabolic Anticancer Therapy. Advances in Experimental Medicine and Biology, 2019, 1148, 173-199.	1.6	19
698	Reprogramming of serine, glycine and one-carbon metabolism in cancer. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2020, 1866, 165841.	3.8	53
699	Inverse Data-Driven Modeling and Multiomics Analysis Reveals Phgdh as a Metabolic Checkpoint of Macrophage Polarization and Proliferation. Cell Reports, 2020, 30, 1542-1552.e7.	6.4	52
700	Exploiting tumour addiction with a serine and glycine-free diet. Cell Death and Differentiation, 2017, 24, 1311-1313.	11.2	13
701	Extracellular serine controls epidermal stem cell fate and tumour initiation. Nature Cell Biology, 2020, 22, 779-790.	10.3	83
702	High Phosphoglycerate Dehydrogenase Expression Induces Stemness and Aggressiveness in Thyroid Cancer. Thyroid, 2020, 30, 1625-1638.	4.5	17
709	Repurposing the Antidepressant Sertraline as SHMT Inhibitor to Suppress Serine/Glycine Synthesis–Addicted Breast Tumor Growth. Molecular Cancer Therapeutics, 2021, 20, 50-63.	4.1	31
710	Mitochondrial Alteration: A Major Player in Carcinogenesis. Cell Biology, 2015, 3, 8.	0.2	3
711	Hotspot SF3B1 mutations induce metabolic reprogramming and vulnerability to serine deprivation. Journal of Clinical Investigation, 2019, 129, 4708-4723.	8.2	41
712	HDAC inhibitors elicit metabolic reprogramming by targeting super-enhancers in glioblastoma models. Journal of Clinical Investigation, 2020, 130, 3699-3716.	8.2	104
713	Parkin ubiquitinates phosphoglycerate dehydrogenase to suppress serine synthesis and tumor progression. Journal of Clinical Investigation, 2020, 130, 3253-3269.	8.2	51
714	Parkin on serine: a Parkinson disease gene suppresses serine synthesis in cancer. Journal of Clinical Investigation, 2020, 130, 2820-2822.	8.2	2
715	Common Features of Oxidative Stress and Metabolic Impairments in Human Erythrocytes and Nucleated Cells. , 2014, , 421-478.		2
716	High Expression of Serine Hydroxymethyltransferase 2 Indicates Poor Prognosis of Gastric Cancer Patients. Medical Science Monitor, 2019, 25, 7430-7438.	1.1	14
717	Serine Biosynthesis with One Carbon Catabolism and the Glycine Cleavage System Represents a Novel Pathway for ATP Generation. PLoS ONE, 2011, 6, e25881.	2.5	74
718	Activation of β-Catenin by Oncogenic PIK3CA and EGFR Promotes Resistance to Glucose Deprivation by Inducing a Strong Antioxidant Response. PLoS ONE, 2012, 7, e37526.	2.5	9

ARTICLE IF CITATIONS Discovery of Novel Allosteric Effectors Based on the Predicted Allosteric Sites for Escherichia coli 719 2.5 26 D-3-Phosphoglycerate Dehydrogenase. PLoS ONE, 2014, 9, e94829. TAp73 promotes anti-senescence-anabolism not proliferation. Aging, 2014, 6, 921-930. 3.1 Analysis and interpretation of transcriptomic data obtained from extended Warburg effect genes in 721 2.2 35 patients with clear cell renal cell carcinoma. Oncoscience, 2015, 2, 151-186. Another small molecule in the oncometabolite mix: L-2-Hydroxyglutarate in kidney cancer. Oncoscience, 2015, 2, 483-486. Downregulating serine hydroxymethyltransferase 2 (SHMT2) suppresses tumorigenesis in human 723 1.8 66 hepatocellular carcinomá. Oncotargét, 2016, 7, 53005-53017. A key role for transketolase-like 1 in tumor metabolic reprogramming. Oncotarget, 2016, 7, 51875-51897. 1.8 Validating and enabling phosphoglycerate dehydrogenase (PHGDH) as a target for fragment-based 725 1.8 25 drug discovery in PHGDH-amplified breast cancer. Oncotarget, 2018, 9, 13139-13153. One-carbon metabolism and nucleotide biosynthesis as attractive targets for anticancer therapy. 1.8 Oncotarget, 2017, 8, 23955-23977. Glycolytic reprogramming through PCK2 regulates tumor initiation of prostate cancer cells. 727 1.8 36 Oncotarget, 2017, 8, 83602-83618. Pyrimidine metabolic rate limiting enzymes in poorly-differentiated hepatocellular carcinoma are signature genes of cancer stemness and associated with poor prognosis. Oncotarget, 2017, 8, 1.8 38 <u>7773</u>4-77751. Structural insights into the enzymatic activity and potential substrate promiscuity of human 729 1.8 27 3-phosphoglycerate dehydrogenase (PHGDH). Oncotarget, 2017, 8, 104478-104491. Bioinformatics analysis of the serine and glycine pathway in cancer cells. Oncotarget, 2014, 5, 1.8 11004-11013. Distinct pattern of one-carbon metabolism, a nutrient-sensitive pathway, in invasive breast cancer: A 731 1.8 2 metabolomic study. Oncotarget, 2020, 11, 1637-1652. Apolipoprotein A-I anti-tumor activity targets cancer cell metabolism. Oncotarget, 2020, 11, 1777-1796. 1.8 Oncometabolic mutation IDH1 R132H confers a metformin-hypersensitive phenotype. Oncotarget, 2015, 733 53 1.8 6, 12279-12296. Reducing the serine availability complements the inhibition of the glutamine metabolism to block leukemia cell growth. Oncotarget, 2016, 7, 1765-1776. 734 1.8 53 735 NF-Y activates genes of metabolic pathways altered in cancer cells. Oncotarget, 2016, 7, 1633-1650. 1.8 50 A pyrazolopyran derivative preferentially inhibits the activity of human cytosolic serine 1.8 hydroxymethyltransferase and induces cell death in lung cancer cells. Oncotarget, 2016, 7, 4570-4583.

#	Article	IF	CITATIONS
737	A nuclear-directed human pancreatic ribonuclease (PE5) targets the metabolic phenotype of cancer cells. Oncotarget, 2016, 7, 18309-18324.	1.8	15
738	PHGDH as a mechanism for resistance in metabolically-driven cancers. , 2020, 3, 762-774.		14
739	Translational and HIF11-Dependent Metabolic Reprograming Underpin Oncometabolome Plasticity and Synergy Between Oncogenic Kinase Inhibitors and Biguanides. SSRN Electronic Journal, 0, , .	0.4	1
740	Amino Acid Degrading Enzymes and their Application in Cancer Therapy. Current Medicinal Chemistry, 2019, 26, 446-464.	2.4	29
741	Decoding key nodes in the metabolism of cancer cells: sugar & spice and all things nice. F1000 Biology Reports, 2012, 4, 2.	4.0	28
742	Oncogene-Driven Metabolic Alterations in Cancer. Biomolecules and Therapeutics, 2018, 26, 45-56.	2.4	58
743	Inhibitors of glucose transport and glycolysis as novel anticancer therapeutics. World Journal of Translational Medicine, 2014, 3, 37.	3.5	33
744	Metabolic Imbalance Associated Mitophagy in Tumor Cells: Genesis and Implications. Journal of Cancer Research Updates, 2015, 4, 95-107.	0.3	2
745	PCK1 and DHODH drive colorectal cancer liver metastatic colonization and hypoxic growth by promoting nucleotide synthesis. ELife, 2019, 8, .	6.0	59
746	The alternative activity of nuclear PHGDH contributes to tumour growth under nutrient stress. Nature Metabolism, 2021, 3, 1357-1371.	11.9	32
747	Nuclear PHGDH protects cancer cells from nutrient stress. Nature Metabolism, 2021, 3, 1284-1285.	11.9	2
748	Metabolic Adaptation in Reprogrammed Cancer Cells. Cancer Drug Discovery and Development, 2014, , 157-180.	0.4	0
749	Metabolic Enzymes: The Novel Targets for Cancer Stem Cells. Journal of Stem Cell Research & Therapy, 2014, 04, .	0.3	0
751	The Relevance of the Mitochondrial H+-ATP Synthase in Cancer Biology. , 2015, , 233-256.		0
753	Cancer Metabolism. , 2018, , 129-154.		0
754	A Topical Report on the Design Principles of Metabolism. , 2018, , 29-44.		0
756	Metabolism: The Sweet Spot in Melanoma Precision Medicine?. , 2018, , 1-24.		0
757	Metabolic Dysregulation in Environmental Carcinogenesis and Toxicology. , 0, , 511-606.		Ο

#	Article	IF	CITATIONS
765	The breast cancer oncogene IKKε coordinates mitochondrial function and serine metabolism. EMBO Reports, 2020, 21, e48260.	4.5	6
766	Cul4A-DDB1–mediated monoubiquitination of phosphoglycerate dehydrogenase promotes colorectal cancer metastasis via increased S-adenosylmethionine. Journal of Clinical Investigation, 2021, 131, .	8.2	36
767	Dietary intervention as a therapeutic for cancer. Cancer Science, 2021, 112, 498-504.	3.9	10
768	Metabolic Pathways of Eukaryotes and Connection to Cell Mechanics. Biological and Medical Physics Series, 2020, , 825-891.	0.4	1
770	Metabolic therapy and bioenergetic analysis: The missing piece of the puzzle. Molecular Metabolism, 2021, 54, 101389.	6.5	15
771	Fatty acid metabolism and acyl-CoA synthetases in the <i>liver-gut axis</i> . World Journal of Hepatology, 2021, 13, 1512-1533.	2.0	12
773	Leveraging disulfiram to treat cancer: Mechanisms of action, delivery strategies, and treatment regimens. Biomaterials, 2022, 281, 121335.	11.4	57
774	Signal pathways of melanoma and targeted therapy. Signal Transduction and Targeted Therapy, 2021, 6, 424.	17.1	115
775	Molecular Mechanisms of Glucose Uptake Regulation in Thyroid Cancer. , 0, , .		1
776	Lineage-specific silencing of PSAT1 induces serine auxotrophy and sensitivity to dietary serine starvation in luminal breast tumors. Cell Reports, 2022, 38, 110278.	6.4	14
777	Pathophysiological Integration of Metabolic Reprogramming in Breast Cancer. Cancers, 2022, 14, 322.	3.7	9
778	Therapeutic Metabolic Reprograming Using microRNAs: From Cancer to HIV Infection. Genes, 2022, 13, 273.	2.4	5
779	Ailanthone Inhibits Proliferation, Migration and Invasion of Osteosarcoma Cells by Downregulating the Serine Biosynthetic Pathway. Frontiers in Oncology, 2022, 12, 842406.	2.8	4
780	Subcellular regulation of glucose metabolism through multienzyme glucosome assemblies by EGF–ERK1/2 signaling pathways. Journal of Biological Chemistry, 2022, 298, 101675.	3.4	7
781	Targeting Nutrient Dependency in Cancer Treatment. Frontiers in Oncology, 2022, 12, 820173.	2.8	6
782	Regulation of Ferroptosis by Amino Acid Metabolism in Cancer. International Journal of Biological Sciences, 2022, 18, 1695-1705.	6.4	23
783	Mitochondrial protein import determines lifespan through metabolic reprogramming and de novo serine biosynthesis. Nature Communications, 2022, 13, 651.	12.8	21
784	The hallmarks of cancer metabolism: Still emerging. Cell Metabolism, 2022, 34, 355-377.	16.2	386

#	Article	IF	CITATIONS
785	Connections between metabolism and epigenetic modifications in cancer. Medical Review, 2021, 1, 199-221.	1.2	7
786	Vitamin C promotes anti-leukemia of DZNep in acute myeloid leukemia. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2022, 1868, 166357.	3.8	2
788	microRNAs and metabolism. , 2022, , 63-76.		0
789	Modifying dietary amino acids in cancer patients. International Review of Cell and Molecular Biology, 2022, , 1-36.	3.2	1
790	Clutamine metabolism in liver cancer: role in progression and potential therapeutic targeting. , 2022, , 199-217.		0
791	A Case Report of Drug Resistant Invasive Mole. Advances in Clinical Medicine, 2022, 12, 946-951.	0.0	0
792	De novo serine synthesis regulates chondrocyte proliferation during bone development and repair. Bone Research, 2022, 10, 14.	11.4	17
793	Themis is indispensable for IL-2 and IL-15 signaling in T cells. Science Signaling, 2022, 15, eabi9983.	3.6	11
794	Recent advances in metabolomics analysis for early drug development. Drug Discovery Today, 2022, 27, 1763-1773.	6.4	64
795	Combined Targeted and Untargeted Profiling of HeLa Cells Deficient in Purine De Novo Synthesis. Metabolites, 2022, 12, 241.	2.9	3
796	Construction and Validation of a 15-Top-prognostic-gene-based Signature to Indicate the Dichotomized Clinical Outcome and Response to Targeted Therapy for Bladder Cancer Patients. Frontiers in Cell and Developmental Biology, 2022, 10, 725024.	3.7	0
797	PHGDH is required for germinal center formation and is a therapeutic target in MYC-driven lymphoma. Journal of Clinical Investigation, 2022, 132, .	8.2	14
798	Discovery of PHGDH inhibitors by virtual screening and preliminary structure–activity relationship study. Bioorganic Chemistry, 2022, 121, 105705.	4.1	3
800	Oncogenic viral infection and amino acid metabolism in cancer progression: Molecular insights and clinical implications. Biochimica Et Biophysica Acta: Reviews on Cancer, 2022, 1877, 188724.	7.4	7
801	An amino acid-defined diet impairs tumour growth in mice by promoting endoplasmic reticulum stress and mTOR inhibition. Molecular Metabolism, 2022, 60, 101478.	6.5	7
802	Metabolic response to radiation therapy in cancer. Molecular Carcinogenesis, 2022, 61, 200-224.	2.7	3
803	USP25 promotes pathological HIF-1-driven metabolic reprogramming and is a potential therapeutic target in pancreatic cancer. Nature Communications, 2022, 13, 2070.	12.8	35
804	SHMT2 promotes cell viability and inhibits ROS-dependent, mitochondrial-mediated apoptosis via the intrinsic signaling pathway in bladder cancer cells. Cancer Gene Therapy, 2022, 29, 1514-1527.	4.6	15

#	Article	IF	CITATIONS
815	The Association between Serum Serine and Glycine and Related-Metabolites with Pancreatic Cancer in a Prospective Cohort Study. Cancers, 2022, 14, 2199.	3.7	3
816	Glycine decarboxylase maintains mitochondrial protein lipoylation to support tumor growth. Cell Metabolism, 2022, 34, 775-782.e9.	16.2	20
817	Glycolysis-derived L-serine levels versus PHGDH expression in Alzheimer's disease. Cell Metabolism, 2022, 34, 654-655.	16.2	4
818	Purine nucleotide depletion prompts cell migration by stimulating the serine synthesis pathway. Nature Communications, 2022, 13, 2698.	12.8	25
819	Mitochondria preserve an autarkic one-carbon cycle to confer growth-independent cancer cell migration and metastasis. Nature Communications, 2022, 13, 2699.	12.8	20
820	PHGDH heterogeneity potentiates cancerÂcell dissemination and metastasis. Nature, 2022, 605, 747-753.	27.8	77
822	Developing dietary interventions as therapy for cancer. Nature Reviews Cancer, 2022, 22, 452-466.	28.4	52
824	MicroRNAs in the Regulation of Solute Carrier Proteins Behind Xenobiotic and Nutrient Transport in Cells. Frontiers in Molecular Biosciences, 0, 9, .	3.5	4
825	The Role of Metabolic Plasticity of Tumor-Associated Macrophages in Shaping the Tumor Microenvironment Immunity. Cancers, 2022, 14, 3331.	3.7	17
826	Metabolic analysis as a driver for discovery, diagnosis, and therapy. Cell, 2022, 185, 2678-2689.	28.9	51
827	Mechanism and application of nonessential amino acid deprivation associated with tumor therapy. , 2022, 1, .		2
828	Connections between metabolism and epigenetics: mechanisms and novel anti-cancer strategy. Frontiers in Pharmacology, 0, 13, .	3.5	12
829	Metabolic targeting of malignant tumors: a need for systemic approach. Journal of Cancer Research and Clinical Oncology, 2023, 149, 2115-2138.	2.5	2
830	Metabolic rewiring directs melanoma immunology. Frontiers in Immunology, 0, 13, .	4.8	4
831	Serine metabolism remodeling after platinum-based chemotherapy identifies vulnerabilities in a subgroup of resistant ovarian cancers. Nature Communications, 2022, 13, .	12.8	18
832	Bourgeoning Cancer Targets. Recent Patents on Anti-Cancer Drug Discovery, 2023, 18, 147-160.	1.6	2
833	SHMT2-mediated mitochondrial serine metabolism drives 5-FU resistance by fueling nucleotide biosynthesis. Cell Reports, 2022, 40, 111233.	6.4	31
834	Metabolic dysregulation in cancer progression. , 2022, , 1-39.		0

#	Article	IF	CITATIONS
835	Insight into the interplay between mitochondria-regulated cell death and energetic metabolism in osteosarcoma. Frontiers in Cell and Developmental Biology, 0, 10, .	3.7	8
836	Diet and Exercise in Cancer Metabolism. Cancer Discovery, 2022, 12, 2249-2257.	9.4	7
838	Chronic activation of pDCs in autoimmunity is linked to dysregulated ER stress and metabolic responses. Journal of Experimental Medicine, 2022, 219, .	8.5	12
840	An LKB1–mitochondria axis controls TH17 effector function. Nature, 2022, 610, 555-561.	27.8	24
841	Amino acid metabolism in primary bone sarcomas. Frontiers in Oncology, 0, 12, .	2.8	2
842	Long non-coding RNAs affecting cell metabolism in cancer. Biology Direct, 2022, 17, .	4.6	13
843	Quantitative NMR Methods in Metabolomics. Handbook of Experimental Pharmacology, 2022, , 143-164.	1.8	1
844	Nonâ€canonical phosphoglycerate dehydrogenase activity promotes liver cancer growth via mitochondrial translation and respiratory metabolism. EMBO Journal, 2022, 41, .	7.8	6
845	Simplifying the B Complex: How Vitamins B6 and B9 Modulate One Carbon Metabolism in Cancer and Beyond. Metabolites, 2022, 12, 961.	2.9	8
847	Oncometabolism: A Paradigm for the Metabolic Remodeling of the Failing Heart. International Journal of Molecular Sciences, 2022, 23, 13902.	4.1	2
848	Target enzymes in serineâ€glycineâ€oneâ€carbon metabolic pathway for cancer therapy. International Journal of Cancer, 2023, 152, 2446-2463.	5.1	3
849	Cysteine restrictionâ€specific effects of sulfur amino acid restriction on lipid metabolism. Aging Cell, 2022, 21, .	6.7	6
850	Amino Acids in Cancer and Cachexia: An Integrated View. Cancers, 2022, 14, 5691.	3.7	15
851	Metabolic determinants of tumour initiation. Nature Reviews Endocrinology, 2023, 19, 134-150.	9.6	16
852	Extracellular serine empowers epidermal proliferation and psoriasis-like symptoms. Science Advances, 2022, 8, .	10.3	8
853	Overview of Cancer Metabolism and Signaling Transduction. International Journal of Molecular Sciences, 2023, 24, 12.	4.1	9
854	Alterations in cellular metabolisms after TKI therapy for Philadelphia chromosome-positive leukemia in children: A review. Frontiers in Oncology, 0, 12, .	2.8	1
855	Erwinia asparaginase (crisantaspase) increases plasma levels of serine and glycine. Frontiers in Oncology, 0, 12, .	2.8	0

#	Article	IF	CITATIONS
859	Immunoediting instructs tumor metabolic reprogramming to support immune evasion. Cell Metabolism, 2023, 35, 118-133.e7.	16.2	19
860	Discovery of Novel Drug-like PHGDH Inhibitors to Disrupt Serine Biosynthesis for Cancer Therapy. Journal of Medicinal Chemistry, 2023, 66, 285-305.	6.4	1
861	The Role of ESRP1 in the Regulation of PHGDH in Estrogen Receptor–Positive Breast Cancer. Laboratory Investigation, 2023, 103, 100002.	3.7	1
862	Deubiquitinating enzyme Josephin-2 stabilizes PHGDH to promote a cancer stem cell phenotype in hepatocellular carcinoma. Genes and Genomics, 2023, 45, 215-224.	1.4	4
863	The role of hypoxia-inducible factors in breast cancer stem cell specification. Pathology Research and Practice, 2023, 243, 154349.	2.3	3
865	PHCDH arginine methylation by PRMT1 promotes serine synthesis and represents a therapeutic vulnerability in hepatocellular carcinoma. Nature Communications, 2023, 14, .	12.8	12
866	Erchen decoction to reduce oxidative stress in dyslipidemia phlegm-dampness retention syndrome mice: In vivo mechanism revealed by metabolomics (liquid chromatography–mass spectrometry). Phytomedicine, 2023, 115, 154808.	5.3	4
867	Stable isotope-resolved metabolomics based on mass spectrometry: Methods and their applications. TrAC - Trends in Analytical Chemistry, 2023, 160, 116985.	11.4	8
868	Metabolism as a New Avenue for Hepatocellular Carcinoma Therapy. International Journal of Molecular Sciences, 2023, 24, 3710.	4.1	12
869	Unraveling the Peculiar Features of Mitochondrial Metabolism and Dynamics in Prostate Cancer. Cancers, 2023, 15, 1192.	3.7	1
870	PHCDH-mediated endothelial metabolism drives glioblastoma resistance to chimeric antigen receptor TÂcell immunotherapy. Cell Metabolism, 2023, 35, 517-534.e8.	16.2	20
871	What is cancer metabolism?. Cell, 2023, 186, 1670-1688.	28.9	41
872	Amino acid metabolic reprogramming in tumor metastatic colonization. Frontiers in Oncology, 0, 13, .	2.8	4
873	Bayesian kinetic modeling for tracer-based metabolomic data. BMC Bioinformatics, 2023, 24, .	2.6	2
874	Targeting Mitochondria with ClpP Agonists as a Novel Therapeutic Opportunity in Breast Cancer. Cancers, 2023, 15, 1936.	3.7	6
876	Transcription factor NKX2–1 drives serine and glycine synthesis addiction in cancer. British Journal of Cancer, 2023, 128, 1862-1878.	6.4	2
877	Phosphoglycerate dehydrogenase activates PKM2 to phosphorylate histone H3T11 and attenuate cellular senescence. Nature Communications, 2023, 14, .	12.8	11
879	Therapeutic Potential of Tumor Metabolic Reprogramming in Triple-Negative Breast Cancer. International Journal of Molecular Sciences, 2023, 24, 6945.	4.1	7

	Сітл	CITATION REPORT	
#	Article	IF	CITATIONS
880	Deregulated Metabolic Pathways in Ovarian Cancer: Cause and Consequence. Metabolites, 2023, 13, 5	60. 2.9	5
881	A contribution of metabolic engineering to addressing medical problems: Metabolic flux analysis. Metabolic Engineering, 2023, , .	7.0	0
882	Biology of Cancer. , 2023, , 86-186.		0
883	iPSC–derived retinal pigmented epithelial cells from patients with macular telangiectasia show decreased mitochondrial function. Journal of Clinical Investigation, 2023, 133, .	8.2	2
884	PHGDH preserves one-carbon cycle to confer metabolic plasticity in chemoresistant gastric cancer during nutrient stress. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	7.1	8
885	Serine Metabolic Reprogramming in Tumorigenesis, Tumor Immunity, and Clinical Treatment. Advances in Nutrition, 2023, 14, 1050-1066.	6.4	3
886	Advancing Cancer Therapy with Copper/Disulfiram Nanomedicines and Drug Delivery Systems. Pharmaceutics, 2023, 15, 1567.	4.5	4
887	The Interplay between Microbiota and Chemotherapy-Derived Metabolites in Breast Cancer. Metabolites, 2023, 13, 703.	2.9	О
888	Curcuminoids as Anticancer Drugs: Pleiotropic Effects, Potential for Metabolic Reprogramming and Prospects for the Future. Pharmaceutics, 2023, 15, 1612.	4.5	1
889	Interweaving catalysis and cancer using Ru- and Os-arene complexes to alter cellular redox state: A structure-activity relationship (SAR) review. Coordination Chemistry Reviews, 2023, 491, 215230.	18.8	3 4
890	Multi-Omics Analysis Revealed Increased De Novo Synthesis of Serine and Lower Activity of the Methionine Cycle in Breast Cancer Cell Lines. Molecules, 2023, 28, 4535.	3.8	0
891	Sources and Sinks of Serine in Nutrition, Health, and Disease. Annual Review of Nutrition, 2023, 43, 123-151.	10.1	. 6
892	YY2/PHGDH axis suppresses tumorigenesis by inhibiting tumor cell de novo serine biosynthesis. Biomedicine and Pharmacotherapy, 2023, 165, 115006.	5.6	0
893	Metabolo-epigenetic interplay provides targeted nutritional interventions in chronic diseases and ageing. Frontiers in Oncology, 0, 13, .	2.8	4
894	Serine Metabolic Networks in Plants. Progress in Botany Fortschritte Der Botanik, 2023, , 83-102.	0.3	1
895	Potassium Channels, Glucose Metabolism and Glycosylation in Cancer Cells. International Journal of Molecular Sciences, 2023, 24, 7942.	4.1	3
896	Serine metabolism during differentiation of human <scp>iPSC</scp> â€derived astrocytes. FEBS Journal 2023, 290, 4440-4464.	, 4.7	2
897	Simultaneous suppression of PKM2 and PHGDH elicits synergistic anti-cancer effect in NSCLC. Frontiers in Pharmacology, 0, 14, .	3.5	Ο

#	Article	IF	CITATIONS
898	ALDH1L2 regulation of formate, formyl-methionine, and ROS controls cancer cell migration and metastasis. Cell Reports, 2023, 42, 112562.	6.4	8
900	Adaptative response to changes in pyruvate metabolism on the epigenetic landscapes and transcriptomics of bovine embryos. Scientific Reports, 2023, 13, .	3.3	0
901	elF3f Mediates SGOCÂPathway Reprogramming by Enhancing Deubiquitinating Activity in Colorectal Cancer. Advanced Science, 2023, 10, .	11.2	2
902	Breast cancers as ecosystems: a metabolic perspective. Cellular and Molecular Life Sciences, 2023, 80, .	5.4	2
903	Antitumor effect of trimetazidine in a model of solid Ehrlich carcinoma is mediated by inhibition of glycolytic pathway and AKT signaling. Chemico-Biological Interactions, 2023, 383, 110672.	4.0	0
904	Serine-associated one-carbon metabolic reprogramming: a new anti-cancer therapeutic strategy. Frontiers in Oncology, 0, 13, .	2.8	1
905	Metabolomics analysis of MnO ₂ nanosheets CDT for breast cancer cells and mechanism of cytotoxic action. RSC Advances, 2023, 13, 26630-26639.	3.6	1
906	Stable Isotope-Assisted Untargeted Metabolomics Identifies ALDH1A1-Driven Erythronate Accumulation in Lung Cancer Cells. Biomedicines, 2023, 11, 2842.	3.2	0
907	Sulforaphane rewires central metabolism to support antioxidant response and achieve glucose homeostasis. Redox Biology, 2023, 67, 102878.	9.0	1
908	An Update on Potential Molecular Biomarkers of Dietary Phytochemicals Targeting Lung Cancer Interception and Prevention. Pharmaceutical Research, 2023, 40, 2699-2714.	3.5	1
909	The Warburg effect alters amino acid homeostasis in human retinal endothelial cells: implication for proliferative diabetic retinopathy. Scientific Reports, 2023, 13, .	3.3	0
911	Metabolomics and lipidomics strategies in modern drug discovery and development. Drug Discovery Today, 2023, 28, 103751.	6.4	2
912	Homoharringtonine as a PHGDH inhibitor: Unraveling metabolic dependencies and developing a potent therapeutic strategy for high-risk neuroblastoma. Biomedicine and Pharmacotherapy, 2023, 166, 115429.	5.6	0
913	Serine starvation silences estrogen receptor signaling through histone hypoacetylation. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	7.1	3
914	The serine-glycine-one carbon metabolic network orchestrates changes in nitrogen and sulfur metabolism and shapes plant development. Plant Cell, 0, , .	6.6	1
916	An idle PHGDH takes control of cell fate. Cell Research, 0, , .	12.0	0
917	Metabolic interventions combined with CTLA-4 and PD-1/PD-L1 blockade for the treatment of tumors: mechanisms and strategies. Frontiers of Medicine, 2023, 17, 805-822.	3.4	1
918	A transcriptional evaluation of the melanoma and squamous cell carcinoma TIL compartment reveals an unexpected spectrum of exhausted and functional T cells. Frontiers in Oncology, 0, 13, .	2.8	0

#	Article	IF	CITATIONS
919	Approaches to Study Tumor Metabolism in Mice. Cold Spring Harbor Perspectives in Medicine, 2023, 13, a041420.	6.2	0
921	Cancer stem cells and maintenance of tumor heterogeneity/microenvironment. , 2024, , 517-529.		0
922	Transcriptional regulation of amino acid metabolism by KDM2B, in the context of ncPRC1.1 and in concert with MYC and ATF4. Metabolism: Clinical and Experimental, 2024, 150, 155719.	3.4	0
923	Serine synthesis pathway enzyme PHGDH is critical for muscle cell biomass, anabolic metabolism, and mTORC1 signaling. American Journal of Physiology - Endocrinology and Metabolism, 2024, 326, E73-E91.	3.5	0
924	Phenotypic profiling of solute carriers characterizes serine transport in cancer. Nature Metabolism, 2023, 5, 2148-2168.	11.9	1
925	Mitochondrial metabolism as a dynamic regulatory hub to malignant transformation and anti-cancer drug resistance. Biochemical and Biophysical Research Communications, 2024, 694, 149382.	2.1	0
926	AMPK-HIF-1α signaling enhances glucose-derived de novo serine biosynthesis to promote glioblastoma growth. Journal of Experimental and Clinical Cancer Research, 2023, 42, .	8.6	0
927	Elucidating lactate metabolism in industrial CHO cultures through the combined use of flux balance and principal component analyses. Biochemical Engineering Journal, 2024, 202, 109184.	3.6	0
928	Glucose metabolism in B cell malignancies: a focus on glycolysis branching pathways. Molecular Oncology, 0, , .	4.6	0
929	Yap/Taz activity is associated with increased expression of phosphoglycerate dehydrogenase that supports myoblast proliferation. Cell and Tissue Research, 2024, 395, 271-283.	2.9	0
930	Breast cancer cells have an increased ferroptosis risk induced by system xcâ^' blockade after deliberately downregulating CYTL1 to mediate malignancy. Redox Biology, 2024, 70, 103034.	9.0	0
931	Antifungal activity of the repurposed drug disulfiram against Cryptococcus neoformans. Frontiers in Pharmacology, 0, 14, .	3.5	0
932	Targeting the Metabolic Paradigms in Cancer and Diabetes. Biomedicines, 2024, 12, 211.	3.2	0
933	A comprehensive review on signaling attributes of serine and serine metabolism in health and disease. International Journal of Biological Macromolecules, 2024, 260, 129607.	7.5	0
934	The redox requirement and regulation during cell proliferation. Trends in Endocrinology and Metabolism, 2024, , .	7.1	0
935	Metabolic heterogeneity in cancer. Nature Metabolism, 2024, 6, 18-38.	11.9	1
937	Metabolic reprogramming in the tumor microenvironment of liver cancer. Journal of Hematology and Oncology, 2024, 17, .	17.0	0
938	<i>PHGDH</i> knockdown increases sensitivity to <scp>SR1</scp> , an aryl hydrocarbon receptor antagonist, in colorectal cancer by activating the autophagy pathway. FEBS Journal, 2024, 291, 1780-1794.	4.7	0

IF ARTICLE CITATIONS # Unraveling the role of the mitochondrial one-carbon pathway in undifferentiated thyroid cancer by 939 12.8 0 multi-omics analyses. Nature Communications, 2024, 15, . Loss of mitochondrial pyruvate carrier 1 supports proline-dependent proliferation and collagen biosynthesis in ovarian cancer. Molecular Metabolism, 2024, 81, 101900. 940 6.5 Targeting PHGDH reverses the immunosuppressive phenotype of tumor-associated macrophages 941 0 through I±-ketoglutarate and mTORC1 signaling. , 2024, 21, 448-465. PKM2 diverts glycolytic flux in dependence on mitochondrial one-carbon cycle. Cell Reports, 2024, 43, 943 113868. Mitochondria at the Nanoscale: Physics Meets Biologyâ€"What Does It Mean for Medicine?. 944 4.1 0 International Journal of Molecular Ściences, 2024, 25, 2835. The down-regulation of GADD45B leads to a conversion of cellular oxidative phosphorylation to glycolysis and promotes the progression of bladder cancer. Heliyon, 2024, 10, e27427. 3.2

CITATION REPORT