Ascaris suum draft genome

Nature 479, 529-533 DOI: 10.1038/nature10553

Citation Report

#	Article	IF	CITATIONS
1	In Vitro and In Vivo Efficacy of Monepantel (AAD 1566) against Laboratory Models of Human Intestinal Nematode Infections. PLoS Neglected Tropical Diseases, 2011, 5, e1457.	3.0	59
2	Toward 959 nematode genomes. Worm, 2012, 1, 42-50.	1.0	51
3	The Transcriptome Analysis of Strongyloides stercoralis L3i Larvae Reveals Targets for Intervention in a Neglected Disease. PLoS Neglected Tropical Diseases, 2012, 6, e1513.	3.0	29
4	WormBase. Worm, 2012, 1, 15-21.	1.0	14
5	A Research Agenda for Helminth Diseases of Humans: Basic Research and Enabling Technologies to Support Control and Elimination of Helminthiases. PLoS Neglected Tropical Diseases, 2012, 6, e1445.	3.0	27
6	Clear Genetic Distinctiveness between Human- and Pig-Derived Trichuris Based on Analyses of Mitochondrial Datasets. PLoS Neglected Tropical Diseases, 2012, 6, e1539.	3.0	98
7	RNAseq Analysis of the Parasitic Nematode Strongyloides stercoralis Reveals Divergent Regulation of Canonical Dauer Pathways. PLoS Neglected Tropical Diseases, 2012, 6, e1854.	3.0	79
8	Molecular Changes in Opisthorchis viverrini (Southeast Asian Liver Fluke) during the Transition from the Juvenile to the Adult Stage. PLoS Neglected Tropical Diseases, 2012, 6, e1916.	3.0	19
9	Assessing the zoonotic potential of <i>Ascaris suum</i> and <i>Trichuris suis</i> : looking to the future from an analysis of the past. Journal of Helminthology, 2012, 86, 148-155.	1.0	94
10	The Origin and Function of Anti-Fungal Peptides in C. elegans: Open Questions. Frontiers in Immunology, 2012, 3, 237.	4.8	28
11	Silencing of Germline-Expressed Genes by DNA Elimination in Somatic Cells. Developmental Cell, 2012, 23, 1072-1080.	7.0	101
12	Decreased emodepside sensitivity in unc-49 γ-aminobutyric acid (GABA)-receptor-deficient Caenorhabditis elegans. International Journal for Parasitology, 2012, 42, 761-770.	3.1	17
13	Silencing by Throwing Away: A Role for Chromatin Diminution. Developmental Cell, 2012, 23, 918-919.	7.0	12
14	A New Direction for Gene Looping. Developmental Cell, 2012, 23, 919-921.	7.0	3
15	lvermectin binding sites in human and invertebrate Cys-loop receptors. Trends in Pharmacological Sciences, 2012, 33, 432-441.	8.7	84
16	Serine protease inhibitors of parasitic helminths. Parasitology, 2012, 139, 681-695.	1.5	80
17	Whole-genome sequence of Schistosoma haematobium. Nature Genetics, 2012, 44, 221-225.	21.4	383
18	Fish immune responses against endoparasitic nematodes – experimental models. Journal of Fish Diseases 2012, 35, 623-635	1.9	62

ATION REDO

#	Article	IF	CITATIONS
19	Ascariasis in people and pigs: New inferences from DNA analysis of worm populations. Infection, Genetics and Evolution, 2012, 12, 227-235.	2.3	57
20	Advances in molecular identification, taxonomy, genetic variation and diagnosis of Toxocara spp Infection, Genetics and Evolution, 2012, 12, 1344-1348.	2.3	66
21	Monoaminergic signaling as a target for anthelmintic drug discovery: Receptor conservation among the free-living and parasitic nematodes. Molecular and Biochemical Parasitology, 2012, 183, 1-7.	1.1	16
22	Identification and characterization of microRNAs in Baylisascaris schroederi of the giant panda. Parasites and Vectors, 2013, 6, 216.	2.5	38
23	TIMPs of parasitic helminths – a large-scale analysis of high-throughput sequence datasets. Parasites and Vectors, 2013, 6, 156.	2.5	18
24	Decoding the Ascaris suum Genome using Massively Parallel Sequencing and Advanced Bioinformatic Methods – Unprecedented Prospects for Fundamental and Applied Research. , 2013, , 287-314.		1
25	Ascaris – Antigens, Allergens, Immunogenetics, Protein Structures. , 2013, , 51-79.		3
26	Larval Ascariasis. , 2013, , 107-125.		10
27	Genomic landscapes of Chinese hamster ovary cell lines as revealed by the Cricetulus griseus draft genome. Nature Biotechnology, 2013, 31, 759-765.	17.5	340
28	Molecular characterization of Ascaridia galli infecting native chickens in Egypt. Parasitology Research, 2013, 112, 3223-3227.	1.6	11
29	Gene expression analysis distinguishes tissue-specific and gender-related functions among adult Ascaris suum tissues. Molecular Genetics and Genomics, 2013, 288, 243-260.	2.1	9
30	Mutation scanning analysis of genetic variation within and among <i>Echinococcus</i> species: Implications and future prospects. Electrophoresis, 2013, 34, 1852-1862.	2.4	2
31	Getting the most out of parasitic helminth transcriptomes using HelmDB: Implications for biology and biotechnology. Biotechnology Advances, 2013, 31, 1109-1119.	11.7	23
32	Insights into the immuno-molecular biology of Angiostrongylus vasorum through transcriptomics—Prospects for new interventions. Biotechnology Advances, 2013, 31, 1486-1500.	11.7	18
33	Getting to the guts of the matter: The status and potential of â€~omics' research of parasitic protists of the human gastrointestinal system. International Journal for Parasitology, 2013, 43, 971-982.	3.1	11
34	Transcriptome analysis of a parasitic clade V nematode: Comparative analysis of potential molecular anthelmintic targets in Cylicostephanus goldi. International Journal for Parasitology, 2013, 43, 917-927.	3.1	11
35	The genome of Romanomermis culicivorax: revealing fundamental changes in the core developmental genetic toolkit in Nematoda. BMC Genomics, 2013, 14, 923.	2.8	43
36	Let's not forget the thinkers. Trends in Parasitology, 2013, 29, 581-584.	3.3	11

#	Article	IF	CITATIONS
37	Effects of excretory/secretory products from Anisakis simplex (Nematoda) on immune gene expression in rainbow trout (Oncorhynchus mykiss). Fish and Shellfish Immunology, 2013, 35, 734-739.	3.6	35
38	A perfect time to harness advanced molecular technologies to explore the fundamental biology of Toxocara species. Veterinary Parasitology, 2013, 193, 353-364.	1.8	41
39	Toxocara canis: Molecular basis of immune recognition and evasion. Veterinary Parasitology, 2013, 193, 365-374.	1.8	110
40	The transcriptome of Echinostoma caproni adults: Further characterization of the secretome and identification of new potential drug targets. Journal of Proteomics, 2013, 89, 202-214.	2.4	19
41	Comparative profiling of microRNAs in male and female adults of Ascaris suum. Parasitology Research, 2013, 112, 1189-1195.	1.6	19
42	Functional Annotation of the Human Chromosome 7 "Missing―Proteins: A Bioinformatics Approach. Journal of Proteome Research, 2013, 12, 2504-2510.	3.7	17
43	Transcriptomic analysis of four developmental stages of Strongyloides venezuelensis. Parasitology International, 2013, 62, 57-65.	1.3	15
44	Three Independent Techniques Localize Expression of Transcript <i>afp-11</i> and Its Bioactive Peptide Products to the Paired AVK Neurons in Ascaris suum: In Situ Hybridization, Immunocytochemistry, and Single Cell Mass Spectrometry. ACS Chemical Neuroscience, 2013, 4, 418-434.	3.5	11
45	Ascaris lumbricoides and Ascaris suum: Comparative proteomic studies using 2-DE coupled with mass spectrometry. International Journal of Mass Spectrometry, 2013, 339-340, 1-6.	1.5	4
46	Prolyl 4-Hydroxlase Activity Is Essential for Development and Cuticle Formation in the Human Infective Parasitic Nematode Brugia malayi. Journal of Biological Chemistry, 2013, 288, 1750-1761.	3.4	24
47	Ascaris and Allergy. , 2013, , 21-50.		6
48	The Neurobiology of Ascaris and Other Parasitic Nematodes. , 2013, , 127-152.		5
49	From the Twig Tips to the Deeper Branches. , 2013, , 265-285.		8
50	Phylogeographical Studies of Ascaris spp. Based on Ribosomal and Mitochondrial DNA Sequences. PLoS Neglected Tropical Diseases, 2013, 7, e2170.	3.0	43
51	Proteomic Analysis of the Excretory-Secretory Products from Larval Stages of Ascaris suum Reveals High Abundance of Glycosyl Hydrolases. PLoS Neglected Tropical Diseases, 2013, 7, e2467.	3.0	63
52	Intranasal Immunization of Lambs with Serine/Threonine Phosphatase 2A against Gastrointestinal Nematodes. Vaccine Journal, 2013, 20, 1352-1359.	3.1	9
53	The genome and developmental transcriptome of the strongylid nematode Haemonchus contortus. Genome Biology, 2013, 14, R89.	9.6	192
54	A genome-wide analysis of annexins from parasitic organisms and their vectors. Scientific Reports, 2013, 3, 2893.	3.3	31

#	Article	IF	CITATIONS
56	The Draft Genome and Transcriptome of <i>Panagrellus redivivus</i> Are Shaped by the Harsh Demands of a Free-Living Lifestyle. Genetics, 2013, 193, 1279-1295.	2.9	57
57	Genomes and evolutionary genomics of animals. Environmental Epigenetics, 2013, 59, 87-98.	1.8	4
58	A Satellite Explosion in the Genome of Holocentric Nematodes. PLoS ONE, 2013, 8, e62221.	2.5	22
59	Proteomic and Immunochemical Characterization of Glutathione Transferase as a New Allergen of the Nematode Ascaris lumbricoides. PLoS ONE, 2013, 8, e78353.	2.5	57
60	-Omics fields of study related to plant-parasitic nematodes. Journal of Integrated OMICS, 2013, 3, .	0.5	8
61	FANSe2: A Robust and Cost-Efficient Alignment Tool for Quantitative Next-Generation Sequencing Applications. PLoS ONE, 2014, 9, e94250.	2.5	42
62	Structure of the Trehalose-6-phosphate Phosphatase from Brugia malayi Reveals Key Design Principles for Anthelmintic Drugs. PLoS Pathogens, 2014, 10, e1004245.	4.7	30
63	Bioinformatic exploration of RIO protein kinases of parasitic and free-living nematodes. International Journal for Parasitology, 2014, 44, 827-836.	3.1	13
64	Harnessing the Helminth Secretome for Therapeutic Immunomodulators. BioMed Research International, 2014, 2014, 1-14.	1.9	45
65	Genome-Wide Tissue-Specific Gene Expression, Co-expression and Regulation of Co-expressed Genes in Adult Nematode Ascaris suum. PLoS Neglected Tropical Diseases, 2014, 8, e2678.	3.0	50
66	Proteomic Analysis of Adult Ascaris suum Fluid Compartments and Secretory Products. PLoS Neglected Tropical Diseases, 2014, 8, e2939.	3.0	55
67	Advancing a multivalent â€~Pan-anthelmintic' vaccine against soil-transmitted nematode infections. Expert Review of Vaccines, 2014, 13, 321-331.	4.4	65
68	Recent advances in candidate-gene and whole-genome approaches to the discovery of anthelmintic resistance markers and the description of drug/receptor interactions. International Journal for Parasitology: Drugs and Drug Resistance, 2014, 4, 164-184.	3.4	149
70	WormBase 2014: new views of curated biology. Nucleic Acids Research, 2014, 42, D789-D793.	14.5	149
71	Genome of the human hookworm Necator americanus. Nature Genetics, 2014, 46, 261-269.	21.4	166
72	Immunoproteomic approach for identification of Ascaris suum proteins recognized by pigs with porcine ascariasis. Veterinary Parasitology, 2014, 203, 343-348.	1.8	6
73	Protannotator: A Semiautomated Pipeline for Chromosome-Wise Functional Annotation of the "Missing―Human Proteome. Journal of Proteome Research, 2014, 13, 76-83.	3.7	13
74	Diversity in parasitic helminths of Australasian marsupials and monotremes: a molecular perspective. International Journal for Parasitology, 2014, 44, 859-864.	3.1	12

#	Article	IF	CITATIONS
75	Comparative Analysis of the Secretome from a Model Filarial Nematode (Litomosoides sigmodontis) Reveals Maximal Diversity in Gravid Female Parasites. Molecular and Cellular Proteomics, 2014, 13, 2527-2544.	3.8	32
76	Genome and transcriptome of the porcine whipworm Trichuris suis. Nature Genetics, 2014, 46, 701-706.	21.4	93
77	Efficient de novo assembly of highly heterozygous genomes from whole-genome shotgun short reads. Genome Research, 2014, 24, 1384-1395.	5.5	1,000
78	Identification and characterization of alternative splicing in parasitic nematode transcriptomes. Parasites and Vectors, 2014, 7, 151.	2.5	10
79	Comparative analysis of microRNA profiles between adult Ascaris lumbricoides and Ascaris suum. BMC Veterinary Research, 2014, 10, 99.	1.9	49
80	Hc-daf-2 encodes an insulin-like receptor kinase in the barber's pole worm, Haemonchus contortus, and restores partial dauer regulation. International Journal for Parasitology, 2014, 44, 485-496.	3.1	25
81	Worm peptidomics. EuPA Open Proteomics, 2014, 3, 280-290.	2.5	17
82	Programmed Genome Rearrangements in <i>Tetrahymena</i> . Microbiology Spectrum, 2014, 2, .	3.0	33
83	Nematode Hsp90: highly conserved but functionally diverse. Parasitology, 2014, 141, 1203-1215.	1.5	11
84	Anthelmintic activity of trans-cinnamaldehyde and A- and B-type proanthocyanidins derived from cinnamon (Cinnamomum verum). Scientific Reports, 2015, 5, 14791.	3.3	70
85	Transposons, Genome Size, and Evolutionary Insights in Animals. Cytogenetic and Genome Research, 2015, 147, 217-239.	1.1	119
86	The Haemonchus contortus kinome - a resource for fundamental molecular investigations and drug discovery. Parasites and Vectors, 2015, 8, 623.	2.5	14
87	Accurate inference of isoforms from multiple sample RNA-Seq data. BMC Genomics, 2015, 16, S15.	2.8	11
88	Comparative genomics of Steinernema reveals deeply conserved gene regulatory networks. Genome Biology, 2015, 16, 200.	8.8	77
89	Draft genome of Brugia pahangi: high similarity between B. pahangi and B. malayi. Parasites and Vectors, 2015, 8, 451.	2.5	19
90	The Validation of Nematode-Specific Acetylcholine-Gated Chloride Channels as Potential Anthelmintic Drug Targets. PLoS ONE, 2015, 10, e0138804.	2.5	13
91	Expression of Genes Encoding the Enzymes for Glycogen and Trehalose Metabolism in L3 and L4 Larvae of Anisakis simplex. Journal of Parasitology Research, 2015, 2015, 1-8.	1.2	10
92	What helminth genomes have taught us about parasite evolution. Parasitology, 2015, 142, S85-S97.	1.5	75

#	Article	IF	CITATIONS
93	Expression of nicotinic acetylcholine receptor subunits from parasitic nematodes in Caenorhabditis elegans. Molecular and Biochemical Parasitology, 2015, 204, 44-50.	1,1	16
94	Genome-wide analysis of excretory/secretory proteins in Echinococcus multilocularis: insights into functional characteristics of the tapeworm secretome. Parasites and Vectors, 2015, 8, 666.	2.5	26
95	Functional and Phylogenetic Characterization of Proteins Detected in Various Nematode Intestinal Compartments*. Molecular and Cellular Proteomics, 2015, 14, 812-827.	3.8	23
96	Comparison of RPâ€HPLC modes to analyse the Nâ€glycome of the freeâ€living nematode <i>Pristionchus pacificus</i> . Electrophoresis, 2015, 36, 1314-1329.	2.4	37
97	The Same or Not the Same: Lineage-Specific Gene Expansions and Homology Relationships in Multigene Families in Nematodes. Journal of Molecular Evolution, 2015, 80, 18-36.	1.8	23
98	Exploiting Solved Genomes of Plant-Parasitic Nematodes to Understand Parasitism. Advances in Botanical Research, 2015, 73, 241-258.	1.1	3
99	Genetic blueprint of the zoonotic pathogen Toxocara canis. Nature Communications, 2015, 6, 6145.	12.8	103
100	The barber's pole worm CAP protein superfamily — A basis for fundamental discovery and biotechnology advances. Biotechnology Advances, 2015, 33, 1744-1754.	11.7	16
101	Cracking the nodule worm code advances knowledge of parasite biology and biotechnology to tackle major diseases of livestock. Biotechnology Advances, 2015, 33, 980-991.	11.7	21
102	The Conqueror Worm: recent advances with cholinergic anthelmintics and techniques excite research for better therapeutic drugs. Journal of Helminthology, 2015, 89, 387-397.	1.0	13
103	Peptidases Compartmentalized to the Ascaris suum Intestinal Lumen and Apical Intestinal Membrane. PLoS Neglected Tropical Diseases, 2015, 9, e3375.	3.0	14
104	Pan-phylum Comparison of Nematode Metabolic Potential. PLoS Neglected Tropical Diseases, 2015, 9, e0003788.	3.0	26
105	Application of small RNA technology for improved control of parasitic helminths. Veterinary Parasitology, 2015, 212, 47-53.	1.8	39
106	Draft genome of neurotropic nematode parasite Angiostrongylus cantonensis, causative agent of human eosinophilic meningitis. Acta Tropica, 2015, 148, 51-57.	2.0	16
107	Low cost whole-organism screening of compounds for anthelmintic activity. International Journal for Parasitology, 2015, 45, 333-343.	3.1	106
108	Different Neuropeptides Are Expressed in Different Functional Subsets of Cholinergic Excitatory Motorneurons in the NematodeAscaris suum. ACS Chemical Neuroscience, 2015, 6, 855-870.	3.5	7
109	Signatures of adaptation to plant parasitism in nematode genomes. Parasitology, 2015, 142, S71-S84.	1.5	68
110	Human Ascariasis: Diagnostics Update. Current Tropical Medicine Reports, 2015, 2, 189-200.	3.7	56

#	Article	IF	CITATIONS
111	Mass Spectrometry of Single GABAergic Somatic Motorneurons Identifies a Novel Inhibitory Peptide, As-NLP-22, in the Nematode <i>Ascaris suum</i> . Journal of the American Society for Mass Spectrometry, 2015, 26, 2009-2023.	2.8	7
112	RNA interference in adult Ascaris suum – an opportunity for the development of a functional genomics platform that supports organism-, tissue- and cell-based biology in a nematode parasite. International Journal for Parasitology, 2015, 45, 673-678.	3.1	42
113	Immunoblot for the detection of Ascaris suum-specific antibodies in patients with visceral larva migrans (VLM) syndrome. Parasitology Research, 2015, 114, 305-310.	1.6	15
114	Expanding the view on the evolution of the nematode dauer signalling pathways: refinement through gene gain and pathway co-option. BMC Genomics, 2016, 17, 476.	2.8	35
115	Los macroinvertebrados como bioindicadores de la calidad del agua: cuatro décadas de desarrollo en Colombia y Latinoamerica. Revista De La Academia Colombiana De Ciencias Exactas, Fisicas Y Naturales, 2016, 40, 254.	0.2	33
116	The Anisakis Transcriptome Provides a Resource for Fundamental and Applied Studies on Allergy-Causing Parasites. PLoS Neglected Tropical Diseases, 2016, 10, e0004845.	3.0	41
117	Harnessing the Toxocara Genome to Underpin Toxocariasis Research and New Interventions. Advances in Parasitology, 2016, 91, 87-110.	3.2	23
118	Vaccination against parasites – status quo and the way forward. Porcine Health Management, 2016, 2, 30.	2.6	10
119	Eliminating heterozygosity from reads through coverage normalization. , 2016, , .		0
120	CAP protein superfamily members in Toxocara canis. Parasites and Vectors, 2016, 9, 360.	2.5	6
121	Haemonchus contortus. Advances in Parasitology, 2016, 93, 569-598.	3.2	19
122	Comparative genomics reveals adaptive evolution of Asian tapeworm in switching to a new intermediate host. Nature Communications, 2016, 7, 12845.	12.8	43
123	ASAP: a machine learning framework for local protein properties. Database: the Journal of Biological Databases and Curation, 2016, 2016, baw133.	3.0	19
124	Recent Advances in Elucidating Nematode Moulting – Prospects of Using Oesophagostomum dentatum as a Model. Advances in Parasitology, 2016, 91, 233-264.	3.2	6
125	WormBase 2016: expanding to enable helminth genomic research. Nucleic Acids Research, 2016, 44, D774-D780.	14.5	329
126	Phylogenomic and biogeographic reconstruction of the Trichinella complex. Nature Communications, 2016, 7, 10513.	12.8	107
127	Making sense of genomes of parasitic worms: Tackling bioinformatic challenges. Biotechnology Advances, 2016, 34, 663-686.	11.7	30
128	The PCome of Ascaris suum as a model system for intestinal nematodes: identification of phosphorylcholine-substituted proteins and first characterization of the PC-epitope structures.	1.6	3

#	Article	IF	CITATIONS
129	A perspective on genomic-guided anthelmintic discovery and repurposing using Haemonchus contortus. Infection, Genetics and Evolution, 2016, 40, 368-373.	2.3	19
130	Compartmentalization of functions and predicted miRNA regulation among contiguous regions of the nematode intestine. RNA Biology, 2017, 14, 1335-1352.	3.1	11
131	WormBase ParaSite â^' a comprehensive resource for helminth genomics. Molecular and Biochemical Parasitology, 2017, 215, 2-10.	1.1	527
132	Comparative analysis of pre- and post-parasitic transcriptomes and mining pioneer effectors of Heterodera avenae. Cell and Bioscience, 2017, 7, 11.	4.8	33
133	Excretory/secretory products from the gastrointestinal nematode Trichuris muris. Experimental Parasitology, 2017, 178, 30-36.	1.2	49
134	Whipworm kinomes reflect a unique biology and adaptation to the host animal. International Journal for Parasitology, 2017, 47, 857-866.	3.1	10
135	Direct experimental manipulation of intestinal cells in Ascaris suum , with minor influences on the global transcriptome. International Journal for Parasitology, 2017, 47, 271-279.	3.1	6
136	Comparative genome analysis of programmed DNA elimination in nematodes. Genome Research, 2017, 27, 2001-2014.	5.5	94
137	Excretory/secretory products of anisakid nematodes: biological and pathological roles. Acta Veterinaria Scandinavica, 2017, 59, 42.	1.6	34
138	Recombinant proteins of helminths with immunoregulatory properties and their possible therapeutic use. Acta Tropica, 2017, 166, 202-211.	2.0	23
139	Perusal of parasitic nematode â€~omics in the post-genomic era. Molecular and Biochemical Parasitology, 2017, 215, 11-22.	1.1	13
140	Differences in the genetic control of early egg development and reproduction between C. elegans and its parthenogenetic relative D. coronatus. EvoDevo, 2017, 8, 16.	3.2	4
141	The Distribution of Lectins across the Phylum Nematoda: A Genome-Wide Search. International Journal of Molecular Sciences, 2017, 18, 91.	4.1	34
142	Overview on Ascariasis in Humans in South Asia. Neglected Tropical Diseases, 2017, , 83-120.	0.4	5
144	Different Bioactive Neuropeptides are Expressed in Two Sub-Classes of GABAergic RME Nerve Ring Motorneurons in <i>Ascaris suum</i> . ACS Chemical Neuroscience, 2018, 9, 2025-2040.	3.5	6
145	Comparative Genomics of Gene Loss and Gain in Caenorhabditis and Other Nematodes. Methods in Molecular Biology, 2018, 1704, 419-432.	0.9	22
146	Monepantel is a non-competitive antagonist of nicotinic acetylcholine receptors from Ascaris suum and Oesophagostomum dentatum. International Journal for Parasitology: Drugs and Drug Resistance, 2018, 8, 36-42.	3.4	7
147	Advances in kinome research of parasitic worms - implications for fundamental research and applied biotechnological outcomes. Biotechnology Advances, 2018, 36, 915-934.	11.7	8

		CITATION REF	PORT	
#	Article		IF	CITATIONS
148	The genomic basis of nematode parasitism. Briefings in Functional Genomics, 2018, 17,	8-14.	2.7	31
149	Similar yet different: co-analysis of the genetic diversity and structure of an invasive ner parasite and its invasive mammalian host. International Journal for Parasitology, 2018, 4	natode +8, 233-243.	3.1	14
150	Ascaris spp antigens. Contemporary Engineering Sciences, 2018, 11, 333-355.		0.2	4
151	The transcription factor SKN-1 and detoxification gene ugt-22 alter albendazole efficacy Caenorhabditis elegans. International Journal for Parasitology: Drugs and Drug Resistan 312-319.	/ in ce, 2018, 8,	3.4	19
152	Tissue-specific transcriptomes of Anisakis simplex (sensu stricto) and Anisakis pegreffi potential molecular mechanisms involved in pathogenicity. Parasites and Vectors, 2018	reveal , 11, 31.	2.5	46
153	Cysteine proteases as digestive enzymes in parasitic helminths. PLoS Neglected Tropica 12, e0005840.	Diseases, 2018,	3.0	82
154	Omics Driven Understanding of the Intestines of Parasitic Nematodes. Frontiers in Gene 652.	rtics, 2019, 10,	2.3	13
155	Identification of small molecule enzyme inhibitors as broad-spectrum anthelmintics. Sci Reports, 2019, 9, 9085.	entific	3.3	25
156	Asynchronous generation of oil droplets using a microfluidic flow focusing system. Scie Reports, 2019, 9, 10600.	ntific	3.3	13
157	GAAP: A Genome Assembly + Annotation Pipeline. BioMed Research International, 2019	, 2019, 1-12.	1.9	8
158	Ascaris lumbricoides Cystatin Prevents Development of Allergic Airway Inflammation in Model. Frontiers in Immunology, 2019, 10, 2280.	a Mouse	4.8	24
159	Serum metabolomic alterations in Beagle dogs experimentally infected with Toxocara ca and Vectors, 2019, 12, 447.	anis. Parasites	2.5	32
160	Reflections upon immunological mechanisms involved in fertility, pregnancy and parasit Journal of Reproductive Immunology, 2019, 136, 102610.	e infections.	1.9	7
161	A Review on the Current Knowledge and Prospects for the Development of Improved De Methods for Soil-Transmitted Helminth Ova for the Safe Reuse of Wastewater and Mitig Public Health Risks. Water (Switzerland), 2019, 11, 1212.	etection gation of	2.7	8
162	Omics-Driven Knowledge-Based Discovery of Anthelmintic Targets and Drugs. , 2019, , 3	329-358.		2
163	Common workflow language (CWL)-based software pipeline forde novogenome asseml and short-read data. GigaScience, 2019, 8, .	bly from long-	6.4	17
164	The genetic basis of adaptive evolution in parasitic environment from the Angiostrongy cantonensis genome. PLoS Neglected Tropical Diseases, 2019, 13, e0007846.	us	3.0	9
165	Comparative bioinformatic analysis suggests that specific dauer-like signalling pathway regulate Toxocara canis development and migration in the mammalian host. Parasites a 2019, 12, 32.	components nd Vectors,	2.5	15

#	Article	IF	Citations
166	Transcriptomic Resources for Parasitic Nematodes of Veterinary Importance. Trends in Parasitology, 2019, 35, 72-84.	3.3	20
167	Ascariasis as a model to study the helminth/allergy relationships. Parasite Immunology, 2019, 41, e12595.	1.5	19
168	Evolutionary distribution of deoxynucleoside 5-monophosphate N-glycosidase, DNPH1. Gene, 2019, 683, 1-11.	2.2	3
169	Soil-Transmitted Helminth Vaccines: Are We Getting Closer?. Frontiers in Immunology, 2020, 11, 576748.	4.8	34
170	Intestinal helminths as a biomolecular complex in archaeological research. Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375, 20190570.	4.0	10
171	Advances in Omic Studies Drive Discoveries in the Biology of Anisakid Nematodes. Genes, 2020, 11, 801.	2.4	19
172	Speciation and adaptive evolution reshape antioxidant enzymatic system diversity across the phylum Nematoda. BMC Biology, 2020, 18, 181.	3.8	10
173	Rapid determination of nematode cell and organ susceptibility to toxic treatments. International Journal for Parasitology: Drugs and Drug Resistance, 2020, 14, 167-182.	3.4	6
174	Caenorhabditis elegans in anthelmintic research – Old model, new perspectives. International Journal for Parasitology: Drugs and Drug Resistance, 2020, 14, 237-248.	3.4	45
175	Whipworm and roundworm infections. Nature Reviews Disease Primers, 2020, 6, 44.	30.5	114
176	De novo identification of toxicants that cause irreparable damage to parasitic nematode intestinal cells. PLoS Neglected Tropical Diseases, 2020, 14, e0007942.	3.0	10
177	Plant-Based Natural Products for the Discovery and Development of Novel Anthelmintics against Nematodes. Biomolecules, 2020, 10, 426.	4.0	48
178	Extreme Genome and Nervous System Streamlining in the Invertebrate Parasite Intoshia variabili. Current Biology, 2020, 30, 1292-1298.e3.	3.9	35
179	Elucidating the molecular and developmental biology of parasitic nematodes: Moving to a multiomics paradigm. Advances in Parasitology, 2020, 108, 175-229.	3.2	17
180	Pro-fibrinolytic potential of the third larval stage of Ascaris suum as a possible mechanism facilitating its migration through the host tissues. Parasites and Vectors, 2020, 13, 203.	2.5	4
181	Toxocara "omics―and the promises it holds for medicine and veterinary medicine. Advances in Parasitology, 2020, 109, 89-108.	3.2	25
182	Genomic Signatures of Coevolution between Nonmodel Mammals and Parasitic Roundworms. Molecular Biology and Evolution, 2021, 38, 531-544.	8.9	10
183	Helminth-derived cystatins: the immunomodulatory properties of an <i>Ascaris lumbricoides</i> cystatin. Parasitology, 2021, 148, 1744-1756.	1.5	7

#	Article	IF	CITATIONS
184	Extensive non-redundancy in a recently duplicated developmental gene family. Bmc Ecology and Evolution, 2021, 21, 33.	1.6	5
185	Expression of Ascaris lumbricoides putative virulence-associated genes when infecting a human host. Parasites and Vectors, 2021, 14, 176.	2.5	1
186	Genomics of the Parasitic Nematode Ascaris and Its Relatives. Genes, 2021, 12, 493.	2.4	17
187	Host-Parasite Relationships in Porcine Ascariosis: Anticoagulant Potential of the Third Larval Stage of Ascaris suum as a Possible Survival Mechanism. Animals, 2021, 11, 804.	2.3	3
189	<i>Ascaris suum</i> Informs Extrasynaptic Volume Transmission in Nematodes. ACS Chemical Neuroscience, 2021, 12, 3176-3188.	3.5	13
190	Chromosomeâ€scale assembly and wholeâ€genome sequencing of 266 giant panda roundworms provide insights into their evolution, adaptation and potential drug targets. Molecular Ecology Resources, 2022, 22, 768-785.	4.8	6
191	Characterization of the β-tubulin gene family in Ascaris lumbricoides and Ascaris suum and its implication for the molecular detection of benzimidazole resistance. PLoS Neglected Tropical Diseases, 2021, 15, e0009777.	3.0	13
192	Genome of the Giant Panda Roundworm Illuminates Its Host Shift and Parasitic Adaptation. Genomics, Proteomics and Bioinformatics, 2022, 20, 366-381.	6.9	13
193	Phylum-Spanning Neuropeptide GPCR Identification and Prioritization: Shaping Drug Target Discovery Pipelines for Nematode Parasite Control. Frontiers in Endocrinology, 2021, 12, 718363.	3.5	11
194	Impact of Next-Generation Technologies on Exploring Socioeconomically Important Parasites and Developing New Interventions. Methods in Molecular Biology, 2015, 1247, 437-474.	0.9	9
195	Trichinella and Other Foodborne Nematodes. , 2018, , 175-215.		2
196	Diversity and History as Drivers of Helminth Systematics and Biology. , 2014, , 1-28.		1
197	A perspective on the discovery of selected compounds with anthelmintic activity against the barber's pole worm—Where to from here?. Advances in Parasitology, 2020, 108, 1-45.	3.2	17
198	Programmed Genome Rearrangements inTetrahymena. , 0, , 349-367.		1
199	LDscaff: LD-based scaffolding of de novo genome assemblies. BMC Bioinformatics, 2020, 21, 570.	2.6	3
200	A Proteomic Investigation of Hepatic Resistance to Ascaris in a Murine Model. PLoS Neglected Tropical Diseases, 2016, 10, e0004837.	3.0	20
201	Using C. elegans Forward and Reverse Genetics to Identify New Compounds with Anthelmintic Activity. PLoS Neglected Tropical Diseases, 2016, 10, e0005058.	3.0	45
202	Quantitative lipidomic analysis of Ascaris suum. PLoS Neglected Tropical Diseases, 2020, 14, e0008848.	3.0	5

#	Article	IF	CITATIONS
203	Identification of a Bacteria-Like Ferrochelatase in Strongyloides venezuelensis, an Animal Parasitic Nematode. PLoS ONE, 2013, 8, e58458.	2.5	12
204	A Lover and a Fighter: The Genome Sequence of an Entomopathogenic Nematode Heterorhabditis bacteriophora. PLoS ONE, 2013, 8, e69618.	2.5	89
205	Genome Survey Sequencing and Genetic Background Characterization of Gracilariopsis lemaneiformis (Rhodophyta) Based on Next-Generation Sequencing. PLoS ONE, 2013, 8, e69909.	2.5	52
206	Northeast India Helminth Parasite Information Database (NEIHPID): Knowledge Base for Helminth Parasites. PLoS ONE, 2016, 11, e0157459.	2.5	7
207	Plant-nematode Interactions: From Genomics to Metabolomics. International Journal of Agriculture and Biology, 2015, 17, 1071-1082.	0.4	30
208	Draft Genome of Toxocara canis, a Pathogen Responsible for Visceral Larva Migrans. Korean Journal of Parasitology, 2016, 54, 751-758.	1.3	5
209	Silent Witness: Dual-Species Transcriptomics Reveals Epithelial Immunological Quiescence to Helminth Larval Encounter and Fostered Larval Development. Frontiers in Immunology, 2018, 9, 1868.	4.8	13
210	Molecular evidence of hybridization between pig and human Ascaris indicates an interbred species complex infecting humans. ELife, 2020, 9, .	6.0	42
211	Insights into the functional expansion of the astacin peptidase family in parasitic helminths. International Journal for Parasitology, 2022, 52, 243-251.	3.1	5
212	Cryptosporidium: Current State of Genomics and Systems Biological Research. , 2014, , 327-344.		1
213	Astonishing Gene Permanence Throughout Vertebrates and the Origin of the Skeleton. , 2014, , 11-19.		0
217	Advances in the treatment, diagnosis, control and scientific understanding of taeniid cestode parasite infections over the past 50Âyears. International Journal for Parasitology, 2021, 51, 1167-1192.	3.1	21
219	Omics Technology: Role and Future in Providing Biotic and Abiotic Stress Tolerance to Plants. Rhizosphere Biology, 2021, , 151-168.	0.6	1
220	Incorporating genomics into the toolkit of nematology. Journal of Nematology, 2012, 44, 191-205.	0.9	12
221	Identification and Characterization of a Differentially Expressed Gene (07E12) in the Infective Larvae of the Parasitic Nematode Ascaris suum. Iranian Journal of Parasitology, 2014, 9, 209-17.	0.6	0
222	Advances in our understanding of nematode ion channels as potential anthelmintic targets. International Journal for Parasitology: Drugs and Drug Resistance, 2022, 18, 52-86.	3.4	11
231	Ivermectin-induced gene expression changes in adult Parascaris univalens and Caenorhabditis elegans: a comparative approach to study anthelminthic metabolism and resistance in vitro. Parasites and Vectors, 2022, 15, 158.	2.5	7
232	The Use of the Root-knot Nematodes, Meloidogyne spp., for Studying Biotrophic Parasitic Interactions. , 2022, , 58-81.		0

#	Article	IF	CITATIONS
233	Nematode Pharmacology: Neurotransmitters, Receptors, and Experimental Approaches. , 2022, , 127-164.		0
234	The improved genome of the nematode <i>Parapristionchus giblindavisi</i> provides insights into lineage-specific gene family evolution. G3: Genes, Genomes, Genetics, 2022, 12, .	1.8	2
235	History and Diversity: Establishing a Context for Helminth Biology. , 2022, , 35-72.		0
236	Ascariasis. , 2022, , 469-477.		0
237	Comparison of coproprevalence and seroprevalence to guide decision-making in national soil-transmitted helminthiasis control programs: Ethiopia as a case study. PLoS Neglected Tropical Diseases, 2022, 16, e0010824.	3.0	0
238	RNAi-Based Biocontrol of Pests to Improve the Productivity and Welfare of Livestock Production. , 2022, 1, 229-243.		4
239	A reverse vaccinology approach identifies putative vaccination targets in the zoonotic nematode Ascaris. Frontiers in Veterinary Science, 0, 9, .	2.2	4
240	Environmental DNA in human and veterinary parasitology - Current applications and future prospects for monitoring and control. Food and Waterborne Parasitology, 2022, 29, e00183.	2.7	4
241	Pharmacological Profiling of a Brugia malayi Muscarinic Acetylcholine Receptor as a Putative Antiparasitic Target. Antimicrobial Agents and Chemotherapy, 2023, 67, .	3.2	1
242	Programmed DNA elimination in the parasitic nematode Ascaris. PLoS Pathogens, 2023, 19, e1011087.	4.7	9
245	Identification of broadly-conserved parasitic nematode proteins that activate immunity. , 0, 2, .		0
246	Getting around the roundworms: Identifying knowledge gaps and research priorities for the ascarids. Advances in Parasitology, 2024, , 51-123.	3.2	0