CITATION REPORT List of articles citing

A lithium superionic conductor

DOI: 10.1038/nmat3066 Nature Materials, 2011, 10, 682-6.

Source: https://exaly.com/paper-pdf/51209975/citation-report.pdf

Version: 2024-04-19

This report has been generated based on the citations recorded by exaly.com for the above article. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

#	Paper	IF	Citations
2298			
2297	Ultrastrong Polyoxyzole Nanofiber Membranes for Dendrite-Proof and Heat-Resistant Battery Separators.		
2296	High Cycle Capability of All-Solid-State LithiumSulfur Batteries Using Composite Electrodes by Liquid-Phase and Mechanical Mixing.		
2295	Li Distribution Heterogeneity in Solid Electrolyte Li10GeP2S12 upon Electrochemical Cycling Probed by 7Li MRI.		
2294	Lithium Conductivity and Meyer-Neldel Rule in Li3PO4Li3VO4Li4GeO4 Lithium Superionic Conductors.		
2293	Influence of Anion Charge on Li Ion Diffusion in a New Solid-State Electrolyte, Li3LaI6.		
2292	Solid electrolytes: Lithium ions on the fast track. <i>Nature Materials</i> , 2011 , 10, 649-50	27	73
2291	One-dimensional stringlike cooperative migration of lithium ions in an ultrafast ionic conductor. 2012 , 101, 031901		60
2290	PREPARATION, STRUCTURAL CHARACTERIZATION AND IONIC CONDUCTIVITY STUDIES OF CALCIUM DOPED2(4)3. 2012 , 442-449		2
2289	Discharge Performance of All-Solid-State Battery Using a Lithium Superionic Conductor Li10GeP2S12. 2012 , 80, 749-751		102
2288	Bulk-Type All-Solid-State Lithium Secondary Battery with Li2S-P2S5 Thin-Film Separator. 2012 , 80, 839-	841	9
2287	Electrical conduction of superionic conductors: Na2ZrO3. 2012 , 1, 205-211		4
2286	All-solid-state Lithium Secondary Batteries Using Li2Sâ B 2S5 Solid Electrolytes and LiFePO4 Electrode Particles with Amorphous Surface Layer. 2012 , 41, 260-261		24
2285	Editorial. 2012 , 1, 168-169		
2284	Fabrication and Analysis of the Oriented LiCoO2 by Slip Casting in a Strong Magnetic Field. 2012 , 95, 3428-3433		6
2283	New compounds and structures in the solid state. 2012 , 108, 408		1
2282	Inorganic solid/organic liquid hybrid electrolyte for use in Li-ion battery. 2012 , 79, 8-16		41

(2012-2012)

2281	composed of lithium, Li1+xAlyGe2â¶(PO4)3 solid electrolyte and carbon nanotube air electrode. 2012, 5, 9077	125
2280	Electrochemical Investigation of All-Solid-State Lithium Batteries with a High Capacity Sulfur-Based Electrode. 2012 , 159, A1019-A1022	50
2279	Probing Li-Ni Cation Disorder in Li1â⊠Ni1+xâѾAlyO2Cathode Materials by Neutron Diffraction. 2012 , 159, A924-A928	36
2278	Rechargeable quasi-solid state lithium battery with organic crystalline cathode. 2012 , 2, 453	138
2277	Electrodeposited Polyacrylonitrile and Cobalt-Tin Composite Thin Film on Titanium Substrate. 2012 , 159, A1028-A1033	16
2276	Superionic glass-ceramic electrolytes for room-temperature rechargeable sodium batteries. 2012 , 3, 856	603
2275	Atomic and electronic structure of superionic solid electrolyte Li10GeP2S12. 2012 , 1440, 56	1
2274	Ion transport and phase transition in Li7 \hat{a} La3(Zr2 \hat{a} Mx)O12 (M = Ta5+, Nb5+, x = 0, 0.25). 2012 , 22, 1426-1434	177
2273	Local Structure and Ionic Conduction at Interfaces of Electrode and Solid Electrolytes. 2012 , 159, A380-A385	19
2272	Mechanochemical synthesis of Li-argyrodite Li6PS5X ($X = Cl$, Br, I) as sulfur-based solid electrolytes for all solid state batteries application. 2012 , 221, 1-5	256
2271	Elaboration and characterization of a free standing LiSICON membrane for aqueous lithiumâlir battery. 2012 , 214, 330-336	48
2270	Fabrication of favorable interface between sulfide solid electrolyte and Li metal electrode for bulk-type solid-state Li/S battery. 2012 , 22, 177-180	103
2269	Lithiumbatterien und elektrische Doppelschichtkondensatoren: aktuelle Herausforderungen. 2012 , 124, 10134-10166	176
2268	Challenges facing lithium batteries and electrical double-layer capacitors. 2012 , 51, 9994-10024	2149
2267	Lithium Salt Solutions in Mixed Sulfone and Sulfone-Carbonate Solvents: A Walden Plot Analysis of the Maximally Conductive Compositions. 2012 , 116, 23915-23920	45
2266	First Principles Study of the Li10GeP2S12 Lithium Super Ionic Conductor Material. 2012 , 24, 15-17	459
2265	Molecular germanium selenophosphate salts: phase-change properties and strong second harmonic generation. 2012 , 134, 20733-44	61
2264	Enhancing ionic conductivity of Li0.35La0.55TiO3 ceramics by introducing Li7La3Zr2O12. 2012 , 80, 133-139	39

2263	Interfacial phenomena in solid-state lithium battery with sulfide solid electrolyte. 2012 , 225, 594-597	123
2262	Synthesis and orientation control of Li-ion conducting epitaxial Li0.33La0.56TiO3 solid electrolyte thin films by pulsed laser deposition. 2012 , 228, 80-82	27
2261	Introduction to J-PARC. 2012 , 2012,	23
2260	Superionic conductivity in lithium-rich anti-perovskites. 2012 , 134, 15042-7	322
2259	Ion Transport in Liquid Salt Solutions with Oxide Dispersions: "Soggy Sand" Electrolytes. 2012 , 3, 744-50	28
2258	New Lithium Chalcogenidotetrelates, LiChT: Synthesis and Characterization of the Li+-Conducting Tetralithium ortho-Sulfidostannate Li4SnS4. 2012 , 24, 2211-2219	97
2257	LiCe(BH4)3Cl, a New Lithium-Ion Conductor and Hydrogen Storage Material with Isolated Tetranuclear Anionic Clusters. 2012 , 24, 1654-1663	123
2256	Lithium-lon Conducting Properties of a Hot-pressed 75Li2S區P2S3型0P2S5 (mol%) Glass. 2012 , 59, 8-13	1
2255	Enlarged Lithium-Ions Migration Pathway by Substitution of B3+ for P5+ in Li3PS4. 2012 ,	
2254	Lithium-ion conducting La2/3â\Li3xTiO3 solid electrolyte thin films with stepped and terraced surfaces. 2012 , 100, 173107	16
2253	Battery and solid oxide fuel cell materials. 2012 , 108, 424	10
2252	Structural requirements for fast lithium ion migration in Li10GeP2S12. 2012 , 22, 7687	129
2251	Li14Ln5[Si11N19O5]O2F2 with Ln = Ce, Ndrepresentatives of a family of potential lithium ion conductors. 2012 , 134, 10132-7	15
2250	Electrochemical Performance of Solid-State Lithiumâ'Air Batteries Using Carbon Nanotube Catalyst in the Air Electrode. 2012 , 2, 889-894	101
2249	Towards systems materials engineering. <i>Nature Materials</i> , 2012 , 11, 560-3	232
2248	All-solid-state lithium secondary batteries with metal-sulfide-coated LiCoO2 prepared by thermal decomposition of dithiocarbamato complexes. 2012 , 22, 15247	46
2247	Solution-processed Li-containing chalcogenide for solid electrolyte applications. 2012 , 8, 215-218	
2246	Invited paper: Recent development of bulk-type solid-state rechargeable lithium batteries with sulfide glass-ceramic electrolytes. 2012 , 8, 199-207	62

2245	Preparation of amorphous TiS x thin film electrodes by the PLD method and their application to all-solid-state lithium secondary batteries. 2012 , 47, 6601-6606	13
2244	Rechargeable batteries: challenges old and new. 2012 , 16, 2019-2029	262
2243	Solâgel synthesis and lithium ion conduction properties of garnet-type Li6BaLa2Ta2O12. 2012 , 47, 1932-1935	28
2242	Making Li-Air Batteries Rechargeable: Material Challenges. 2013 , 23, 987-1004	439
2241	A stable electrolyte makes a nonaqueous LiâD2 battery truly rechargeable. 2013 , 37, 2568	22
2240	Cellulose-based Li-ion batteries: a review. 2013 , 20, 1523-1545	209
2239	Electrochemical properties of all-solid-state lithium batteries with amorphous titanium sulfide electrodes prepared by mechanical milling. 2013 , 17, 2697-2701	18
2238	Effect of Rb and Ta Doping on the Ionic Conductivity and Stability of the Garnet Li7+2xâJ(La3â¼Rbx)(Zr2âJTay)O12 (0 âlk âlD.375, 0 âlJ âll) Superionic Conductor: A First Principles Investigation. 2013 , 25, 3048-3055	140
2237	Suppression of H2S gas generation from the 75Li2SP25P2S5 glass electrolyte by additives. 2013 , 48, 4137-414.	253
2236	All-solid-state batteries with Li2O-Li2S-P2S5 glass electrolytes synthesized by two-step mechanical milling. 2013 , 17, 2551-2557	34
2235	A physical organogel electrolyte: characterized by in situ thermo-irreversible gelation and single-ion-predominent conduction. 2013 , 3, 1917	34
2234	Sulfide solid electrolyte with favorable mechanical property for all-solid-state lithium battery. 2013 , 3, 2261	504
2233	Electrochemical properties of all-solid-state lithium secondary batteries using Li-argyrodite Li6PS5Cl as solid electrolyte. 2013 , 242, 45-48	58
2232	All-solid secondary batteries with sulfide-based thin film electrolytes. 2013 , 240, 510-514	10
2231	Preparation and Characterization of Mesoporous Silica and Lithium-Ion-Conductive Halocomplex Salt Composite. 2013 , 582, 119-122	
2230	Lithium Chalcogenidotetrelates: LiChTâBynthesis and Characterization of New Li+ Ion Conducting Li/Sn/Se Compounds. 2013 , 25, 2961-2969	22
2229	Tetragonal Li10GeP2S12 and Li7GePS8 âlexploring the Li ion dynamics in LGPS Li electrolytes. 2013 , 6, 3548	176
2228	Structures, Li+ mobilities, and interfacial properties of solid electrolytes Li3PS4 and Li3PO4 from first principles. 2013 , 88,	105

2227	Oxidation reaction of polyether-based material and its suppression in lithium rechargeable battery using 4 V class cathode, LiNi1/3Mn1/3Co1/3O2. 2013 , 5, 12387-93	25
2226	Improvement of chemical stability of Li3PS4 glass electrolytes by adding MxOy (M = Fe, Zn, and Bi) nanoparticles. 2013 , 1, 6320	115
2225	All-solid-state lithium metal batteries for next generation energy storage. 2013,	2
2224	Degradation of NASICON-Type Materials in Contact with Lithium Metal: Formation of Mixed Conducting Interphases (MCI) on Solid Electrolytes. 2013 , 117, 21064-21074	308
2223	KCu7S4 nanowires and the Mn/KCu7S4 nanostructure for solid-state supercapacitors. 2013 , 1, 15530	31
2222	Long-range Li+ dynamics in the lithium argyrodite Li7PSe6 as probed by rotating-frame spin-lattice relaxation NMR. 2013 , 15, 7123-32	51
2221	Ionic mobility and 19F MAS NMR spectra of lithium octafluorozirconate Li4ZrF8. 2013 , 54, 168-173	2
2220	CHAPTER 5:Chalcogenâ B hosphorus (and Heavier Congener) Compounds. 2013 , 238-306	1
2219	Effect of mixing method on the properties of composite cathodes for all-solid-state lithium batteries using Li2SâP2S5 solid electrolytes. 2013 , 244, 476-481	27
2218	Improved coulombic efficiency in nanocomposite thin film based on electrodeposited-oxidized FeNi-electrodes for lithium-ion batteries. 2013 , 557, 82-90	5
2217	Development of all-solid-state lithium battery using quasi-solidified tetraglymeâllthium bis(trifluoromethanesulfonyl)amideâlumed silica nano-composites as electrolytes. 2013 , 244, 354-362	22
2216	Effects of Li-ion vacancies on the ionic conduction mechanism of LiMgSO4F. 2013 , 21, 074003	2
2215	Ab initio study of the stabilities of and mechanism of superionic transport in lithium-rich antiperovskites. 2013 , 87,	98
2214	Li10SnP2S12: an affordable lithium superionic conductor. 2013 , 135, 15694-7	410
2213	Nuclear Magnetic Resonance Studies of BH4 Reorientations and Li Diffusion in LiLa(BH4)3Cl. 2013 , 117, 14965-14972	68
2212	Supercapacitor operating at 200 degrees celsius. 2013 , 3, 2572	75
2211	Highly Conductive [3fi] Gold-Ion Clusters Enclosed within Self-Assembled Cages. 2013, 125, 6322-6325	11
2210	An All-Solid-State Li-Ion Battery with a Pre-Lithiated Si-Ti-Ni Alloy Anode. 2013 , 160, A1497-A1501	30

(2013-2013)

2209	In situ SEM study of a lithium deposition and dissolution mechanism in a bulk-type solid-state cell with a Li2S-P2S5 solid electrolyte. 2013 , 15, 18600-6	176
2208	Anode properties of magnesium hydride catalyzed with niobium oxide for an all solid-state lithium-ion battery. 2013 , 49, 7174-6	40
2207	Single-crystal X-ray structure analysis of the superionic conductor Li10GeP2S12. 2013 , 15, 11620-2	99
2206	Highly lithium-ion conductive thio-LISICON thin film processed by low-temperature solution method. 2013 , 224, 225-229	73
2205	All-solid-state lithium battery with LiBH4 solid electrolyte. 2013 , 226, 61-64	109
2204	High temperature sodium batteries: status, challenges and future trends. 2013 , 6, 734	500
2203	Composite of a nonwoven fabric with poly(vinylidene fluoride) as a gel membrane of high safety for lithium ion battery. 2013 , 6, 618-624	287
2202	Electrical Conductivity, Self-Diffusivity and Electrolyte Performance of a Quasi-Solid-State Pseudo-Ternary System, Bis(trifluoromethanesulfonyl)amide-Based Room Temperature Ionic Liquidâ[Iithium Bis(trifluoromethanesulfonyl)amideâ[Iumed Silica Nanoparticles. 2013 , 160, A138-A147	38
2201	Reversible chemical delithiation/lithiation of LiFePO4: towards a redox flow lithium-ion battery. 2013 , 15, 1793-7	133
22 00	Progress and prospective of solid-state lithium batteries. 2013, 61, 759-770	737
2199	Anomalous high ionic conductivity of nanoporous £13PS4. 2013 , 135, 975-8	537
2198	Charge/discharge performances of glymeâlIthium salt equimolar complex electrolyte for lithium secondary batteries. 2013 , 243, 323-327	17
2197	Recent development of sulfide solid electrolytes and interfacial modification for all-solid-state rechargeable lithium batteriesPeer review under responsibility of The Ceramic Society of Japan and the Korean Ceramic Society.View all notes. 2013 , 1, 17-25	306
2196	Improvement of solid-state symmetric cell performance with lithium vanadium phosphate. 2013 , 244, 312-317	20
2195	Characteristics of the Li2Oâlii2Sâli2S5 glasses synthesized by the two-step mechanical milling. 2013 , 364, 57-61	82
2194	Preparation and ionic conductivities of (100 âlk)(0.75Li2SlD.25P2S5)lkLiBH4 glass electrolytes. 2013 , 244, 707-710	68
2193	A structural, spectroscopic and electrochemical study of a lithium ion conducting Li10GeP2S12 solid electrolyte. 2013 , 229, 117-122	67
	Phase Stability and Transport Mechanisms in Antiperovskite Li3OCl and Li3OBr Superionic	

2191	Synthesis and Raman micro-spectroscopy investigation of Li7La3Zr2O12. 2013 , 230, 77-82	89
2190	All-solid-state lithium secondary batteries using the 75Li2S\(\mathbb{D}\)5P2S5 glass and the 70Li2S\(\mathbb{D}\)0P2S5 glass\(\alpha\)Beramic as solid electrolytes. 2013 , 233, 231-235	129
2189	Determination of the rate-determining step in the electrochemical oxidation of Li metal at the Li negative electrode/Li2SâP2S5 solid electrolyte interface. 2013 , 244, 675-678	9
2188	Formation and conductivity studies of lithium argyrodite solid electrolytes using in-situ neutron diffraction. 2013 , 230, 72-76	81
2187	Effect of lithium borate addition on the physical and electrochemical properties of the lithium ion conductor Li3.4Si0.4P0.6O4. 2013 , 231, 109-115	20
2186	Phase stability, electrochemical stability and ionic conductivity of the Li10 \oplus 1MP2X12 (M = Ge, Si, Sn, Al or P, and X = O, S or Se) family of superionic conductors. 2013 , 6, 148-156	429
2185	A new class of Solvent-in-Salt electrolyte for high-energy rechargeable metallic lithium batteries. 2013 , 4, 1481	1631
2184	String-like cooperative motion in homogeneous melting. 2013 , 138, 12A538	62
2183	The mechanism of ultrafast structural switching in superionic copper (I) sulphide nanocrystals. 2013 , 4, 1369	65
2182	Lithium transport through nanosized amorphous silicon layers. 2013 , 13, 1237-44	35
	Lithium transport through nanosized amorphous silicon layers. 2013 , 13, 1237-44 Lithium Atom and A-Site Vacancy Distributions in Lanthanum Lithium Titanate. 2013 , 25, 1607-1614	35 77
2181	Lithium Atom and A-Site Vacancy Distributions in Lanthanum Lithium Titanate. 2013 , 25, 1607-1614 Surface modification of LiCoO2 with Li3xLa2/3â\text{MTiO3} for all-solid-state lithium ion batteries using	77
2181 2180	Lithium Atom and A-Site Vacancy Distributions in Lanthanum Lithium Titanate. 2013, 25, 1607-1614 Surface modification of LiCoO2 with Li3xLa2/3â\text{MTiO3} for all-solid-state lithium ion batteries using Li2Sâ\text{P2S5} glassâ\text{Geramic.} 2013, 39, 8453-8458 Interface phenomena between Li anode and lithium phosphate electrolyte for Li-ion battery. 2013,	77
2181 2180 2179	Lithium Atom and A-Site Vacancy Distributions in Lanthanum Lithium Titanate. 2013, 25, 1607-1614 Surface modification of LiCoO2 with Li3xLa2/3â\text{MTiO3} for all-solid-state lithium ion batteries using Li2Sâ\text{P2S5} glassâ\text{Beramic. 2013}, 39, 8453-8458 Interface phenomena between Li anode and lithium phosphate electrolyte for Li-ion battery. 2013, 244, 136-142	77 34 22
2181 2180 2179 2178	Lithium Atom and A-Site Vacancy Distributions in Lanthanum Lithium Titanate. 2013, 25, 1607-1614 Surface modification of LiCoO2 with Li3xLa2/3â\tiO3 for all-solid-state lithium ion batteries using Li2Sâ\tilde{P}2S5 glassâ\tilde{B}eramic. 2013, 39, 8453-8458 Interface phenomena between Li anode and lithium phosphate electrolyte for Li-ion battery. 2013, 244, 136-142 Thermodynamics of electrochemical lithium storage. 2013, 52, 4998-5026 Highly Mobile Ions: Low-Temperature NMR Directly Probes Extremely Fast Li+ Hopping in	77 34 22 154
2181 2180 2179 2178 2177	Lithium Atom and A-Site Vacancy Distributions in Lanthanum Lithium Titanate. 2013, 25, 1607-1614 Surface modification of LiCoO2 with Li3xLa2/3â\text{MTiO3} for all-solid-state lithium ion batteries using Li2Sâ\text{P2S5} glassâ\text{Beramic.} 2013, 39, 8453-8458 Interface phenomena between Li anode and lithium phosphate electrolyte for Li-ion battery. 2013, 244, 136-142 Thermodynamics of electrochemical lithium storage. 2013, 52, 4998-5026 Highly Mobile Ions: Low-Temperature NMR Directly Probes Extremely Fast Li+ Hopping in Argyrodite-Type Li6PS5Br. 2013, 4, 2118-2123	77 34 22 154 90

2173	Interfacial nanoarchitectonics for solid-state lithium batteries. 2013 , 29, 7538-41	100
2172	A trilayer poly(vinylidene fluoride)/polyborate/poly(vinylidene fluoride) gel polymer electrolyte with good performance for lithium ion batteries. 2013 , 1, 7790	144
2171	The pursuit of rechargeable solid-state LiâBir batteries. 2013 , 6, 2302	142
2170	All-solid-state lithium secondary batteries using NiS-carbon fiber composite electrodes coated with LiâB-PâBâßolid electrolytes by pulsed laser deposition. 2013 , 5, 686-90	55
2169	Highly conductive [3fi] gold-ion clusters enclosed within self-assembled cages. 2013 , 52, 6202-5	60
2168	Effect of Heat Treatment on the Lithium Ion Conduction of the LiBH4â[ii] Solid Solution. 2013, 117, 3249-3257	53
2167	In Situ TEM Observation of Local Phase Transformation in a Rechargeable LiMn2O4 Nanowire Battery. 2013 , 117, 24236-24241	58
2166	Solid State Enabled Reversible Four Electron Storage. 2013 , 3, 120-127	131
2165	Cheap glass fiber mats as a matrix of gel polymer electrolytes for lithium ion batteries. 2013 , 3, 3187	88
2164	Electrochemical properties of all-solid-state lithium secondary batteries using Li-argyrodite Li6PS5Cl as solid electrolyte. 2013 , 1496, 1	
2163	Lithium Polysulfidophosphates: A Family of Lithium-Conducting Sulfur-Rich Compounds for LithiumâBulfur Batteries. 2013 , 125, 7608-7611	64
2162	First-principles calculations of lithium-ion migration at a coherent grain boundary in a cathode material, LiCoO(2). 2013 , 25, 618-22	118
2161	Formation of Li2Sâ B 2S5 Solid Electrolyte from N-Methylformamide Solution. 2013 , 42, 1435-1437	25
2160	Thermodynamik der elektrochemischen Lithiumspeicherung. 2013 , 125, 5100-5131	18
2159	Synthesis of Pure Lithium Amide Nanoparticles. 2013 , 2013, 1993-1996	1
2158	Glass Electrolytes with High Ion Conductivity and High Chemical Stability in the System Lil-Li2O-Li2S-P2S5. 2013 , 81, 428-431	46
2157	Recent Advances in Inorganic Solid Electrolytes for Lithium Batteries. 2014 , 2,	205
2156	Preparation of Li 3 BO 3 âlli 2 SO 4 glassâderamic electrolytes for all-oxide lithium batteries. 2014 , 270, 603-607	78

2155	Transformation of a layered perovskite to a defect perovskite via cooperative Li-insertion and O/N substitution. 2014 , 43, 16830-7	2
2154	Separators - Technology review: Ceramic based separators for secondary batteries. 2014 ,	31
2153	Electrode-Electrolyte Interface for Solid State Li-Ion Batteries: Point Defects and Mechanical Strain. 2014 , 161, F3104-F3110	24
2152	Nanosecond quantum molecular dynamics simulations of the lithium superionic conductor Li4â\Ge1â\PxS4. 2014 , 90,	16
2151	Transformation of P2S5 into a Solid Electrolyte with Ionic Conductivity at the Positive Composite Electrode of All-Solid-State LithiumâBulfur Batteries. 2014 , 2, 753-756	19
2150	All-Solid-State Rechargeable Lithium Batteries Using LiTi2(PS4)3Cathode with Li2S-P2S5Solid Electrolyte. 2014 , 161, A154-A159	19
2149	Sulfide Glass-Ceramic Electrolytes for All-Solid-State Lithium and Sodium Batteries. 2014 , 5, 226-235	114
2148	New Desolvated Gel Electrolyte for Rechargeable Lithium Metal Sulfurized Polyacrylonitrile (S-PAN) Battery. 2014 , 118, 28369-28376	26
2147	Ionic Liquid Based Electrolytes: Correlating Li Diffusion Coefficients and Battery Performance. 2014 , 161, A2036-A2041	18
2146	Gallium Sulfideâßingle-Walled Carbon Nanotube Composites: High-Performance Anodes for Lithium-Ion Batteries. 2014 , 24, 5435-5442	78
2145	Sustainable Electrical Energy Storage through the Ferrocene/Ferrocenium Redox Reaction in Aprotic Electrolyte. 2014 , 126, 11216-11220	29
2144	Synthesis, structure, and ionic conductivity of solid solution, Li10+M1+P2-B12 (M = Si, Sn). 2014 , 176, 83-94	63
2143	Investigation of cyano resin-based gel polymer electrolyte: in situ gelation mechanism and electrodeâBlectrolyte interfacial fabrication in lithium-ion battery. 2014 , 2, 20059-20066	65
2142	The synergistic effects of Al and Te on the structure and Li+-mobility of garnet-type solid electrolytes. 2014 , 2, 20271-20279	71
2141	Emerging electrochemical energy conversion and storage technologies. 2014 , 2, 79	196
2140	Improved chemical stability and cyclability in Li2SâP2S5âP2O5âInO composite electrolytes for all-solid-state rechargeable lithium batteries. 2014 , 591, 247-250	73
2139	Preparation of Li2Sâ B 2S5 solid electrolyte from N-methylformamide solution and application for all-solid-state lithium battery. 2014 , 248, 939-942	75
2138	Development of high capacity all-solid-state lithium battery using quasi-solid-state electrolyte containing tetraglymeâli-TFSA equimolar complexes. 2014 , 262, 765-768	9

2137	A Composite Gel Polymer Electrolyte with High Performance Based on Poly(Vinylidene Fluoride) and Polyborate for Lithium Ion Batteries. 2014 , 4, 1300647	202
2136	Progress in flexible lithium batteries and future prospects. 2014 , 7, 1307-1338	1103
2135	Development of lithium-sulfur batteries using room temperature ionic liquid-based quasi-solid-state electrolytes. 2014 , 125, 386-394	40
2134	Waxing and waning of dynamical heterogeneity in the superionic state. 2014 , 89, 010301	15
2133	High sodium ion conductivity of glassateramic electrolytes with cubic Na3PS4. 2014 , 258, 420-423	185
2132	Preparation and electrochemical characterization of (100 âlk)(0.7Li2SE0.3P2S5)kLiBr glassâderamic electrolytes. 2014 , 3, 1	18
2131	Synthesis, structure, physicochemical characterization and electronic structure of thio-lithium super ionic conductors, Li4GeS4 and Li4SnS4. 2014 , 586, 736-744	21
2130	Insight into lithium distribution in lithium-stuffed garnet oxides through neutron diffraction and atomistic simulation: Li7-xLa3Zr2-xTaxO12 ($x = 0\hat{a}$) series. 2014 , 255, 39-49	35
2129	Complex Hydrides for Electrochemical Energy Storage. 2014 , 24, 2267-2279	156
2128	Garnet related lithium ion conductor processed by spark plasma sintering for all solid state batteries. 2014 , 249, 197-206	131
2127	The Lithium Air Battery. 2014 ,	95
2126	Understanding Ionic Conduction and Energy Storage Materials with Bond-Valence-Based Methods. 2014 , 129-159	28
2125	Wide electrochemical window ionic salt for use in electropositive metal electrodeposition and solid state Li-ion batteries. 2014 , 2, 2194-2201	19
2124	Synthesis of rock-salt type lithium borohydride and its peculiar Li+ ion conduction properties. 2014 , 2, 056109	13
2123	Aprotic and aqueous Li-Oâlbatteries. 2014 , 114, 5611-40	841
2122	Heterostructures for Improved Stability of Lithium Sulfur Batteries. 2014 , 161, A1173-A1180	8
2121	Activation of sulfur active material in an all-solid-state lithiumâBulfur battery. 2014 , 263, 141-144	58
2120	Spark plasma sintered/synthesized dense and nanostructured materials for solid-state Li-ion batteries: Overview and perspective. 2014 , 247, 920-931	77

2119	Liquid-phase synthesis of a Li3PS4 solid electrolyte using N-methylformamide for all-solid-state lithium batteries. 2014 , 2, 5095	107
2118	Block copolymer electrolytes for rechargeable lithium batteries. 2014 , 52, 1-16	262
2117	A sulphide lithium super ion conductor is superior to liquid ion conductors for use in rechargeable batteries. 2014 , 7, 627-631	771
2116	Recent progress on flexible lithium rechargeable batteries. 2014 , 7, 538-551	314
2115	Lithium metal anodes for rechargeable batteries. 2014 , 7, 513-537	2793
2114	Air-stable, high-conduction solid electrolytes of arsenic-substituted Li4SnS4. 2014 , 7, 1053-1058	228
2113	Delithiation kinetics study of carbon coated and carbon free LiFePO4. 2014 , 256, 61-65	37
2112	Nonaqueous Li-air batteries: a status report. 2014 , 114, 11721-50	761
2111	Room-temperature stabilization of nanoscale superionic AgâBe. 2014 , 25, 415705	17
2110	Pressure-induced amorphization of a dense coordination polymer and its impact on proton conductivity. 2014 , 2, 124401	16
2109	Crystal structure, migration mechanism and electrochemical performance of Cr-stabilized garnet. 2014 , 268, 135-139	38
2108	Solid-State Lithium-Ion Batteries for Electric Vehicles. 2014 , 273-291	8
2107	Empowering the Lithium Metal Battery through a Silicon-Based Superionic Conductor. 2014 , 161, A1812-A181	17102
2106	Structural limitations for optimizing garnet-type solid electrolytes: a perspective. 2014 , 43, 16133-8	49
2105	Aluminum based sulfide solid lithium ionic conductors for all solid state batteries. 2014 , 6, 6661-7	16
2104	Lithium and sodium battery cathode materials: computational insights into voltage, diffusion and nanostructural properties. 2014 , 43, 185-204	765
2103	A facile method for the synthesis of the Li(0.3)La(0.57)TiOâlsolid state electrolyte. 2014 , 50, 5593-6	18
2102	Novel Li3ClO based glasses with superionic properties for lithium batteries. 2014 , 2, 5470-5480	109

210	Bessere Batterien Mit Festem statt fl\u00e4sigem Elektrolyt. 2014 , 9, 20-25	1
210	Nitrile-assistant eutectic electrolytes for cryogenic operation of lithium ion batteries at fast charges and discharges. 2014 , 7, 1737-1743	33
209	A gel single ion polymer electrolyte membrane for lithium-ion batteries with wide-temperature range operability. 2014 , 4, 21163-21170	41
209	An integrated approach for structural characterization of complex solid state electrolytes: the case of lithium lanthanum titanate. 2014 , 2, 2418	17
209	Preparation conditions of NiS active material in high-boiling solvents for all-solid-state lithium secondary batteries. 2014 , 38, 1731-1737	10
209	Solâtiel-Derived Lithium Superionic Conductor Li1.5Al0.5Ge1.5(PO4)3 Electrolyte for Solid-State Lithiumâtixygen Batteries. 2014 , 2, 391-396	13
209	Dendrite-free nanostructured anode: entrapment of lithium in a 3D fibrous matrix for ultra-stable lithium-sulfur batteries. 2014 , 10, 4257-63	130
209	4 Mit Tetraedern zum Ziel. 2014 , 62, 753-758	1
209	3 Heterolayered, one-dimensional nanobuilding block mat batteries. 2014 , 14, 5677-86	99
209	LithiumâBulfur batteriesâ E he solution is in the electrolyte, but is the electrolyte a solution?. 2014 , 7, 3902-3920	250
209	An unnoticed inorganic solid electrolyte: dilithium sodium phosphate with the nalipoite structure. 2014, 53, 2310-6	17
209	Examination of the fundamental relation between ionic transport and segmental relaxation in polymer electrolytes. 2014 , 55, 4067-4076	105
208	Vapor-phase atomic-controllable growth of amorphous Li2S for high-performance lithium-sulfur batteries. 2014 , 8, 10963-72	96
208	Order vs. disorderâ huge increase in ionic conductivity of nanocrystalline LiAlO2 embedded in an amorphous-like matrix of lithium aluminate. 2014 , 2, 20295-20306	64
208	A synthesis of crystalline Li7P3S11 solid electrolyte from 1,2-dimethoxyethane solvent. 2014 , 271, 342-345	120
208	Surfactant-thermal syntheses, structures, and magnetic properties of Mn-Ge-sulfides/selenides. 2014 , 53, 10248-56	39
208	Comparative Study of TiS 2 /Li-In All-Solid-State Lithium Batteries Using Glass-Ceramic Li 3 PS 4 and Li 10 GeP 2 S 12 Solid Electrolytes. 2014 , 146, 395-402	145
208	Short-range Li diffusion vs. long-range ionic conduction in nanocrystalline lithium peroxide Li2O2â E he discharge product in lithium-air batteries. 2014 , 7, 2739-2752	100

2083	Interconnected hollow carbon nanospheres for stable lithium metal anodes. 2014 , 9, 618-23	1304
2082	Structure and properties of the Na2Sâ B 2S5 glasses and glassâBeramics prepared by mechanical milling. 2014 , 269, 260-265	54
2081	Structural Evolution and Li Dynamics in Nanophase Li3PS4 by Solid-State and Pulsed-Field Gradient NMR. 2014 , 26, 3558-3564	46
2080	Ultrathin two-dimensional atomic crystals as stable interfacial layer for improvement of lithium metal anode. 2014 , 14, 6016-22	545
2079	Design and synthesis of a single ion conducting block copolymer electrolyte with multifunctionality for lithium ion batteries. 2014 , 4, 43857-43864	34
2078	A high conductivity oxideâBulfide composite lithium superionic conductor. 2014 , 2, 4111-4116	63
2077	A new ultrafast superionic Li-conductor: ion dynamics in Li11Si2PS12 and comparison with other tetragonal LGPS-type electrolytes. 2014 , 16, 14669-74	197
2076	Synthesis, structure and lithium ionic conductivity of solid solutions of Li10(Ge1âMx)P2S12 (M = Si, Sn). 2014 , 271, 60-64	61
2075	The influence of the carbonate species on LiNi0.8Co0.15Al0.05O2 surfaces for all-solid-state lithium ion battery performance. 2014 , 269, 396-402	40
2074	Determination of Elemental Sulfur in Phosphorus Pentasulfide. 1. A New Approach Using Reverse-Phase UHPLC and HPLC. 2014 , 53, 4429-4433	1
2073	Structures, Thermodynamics, and Li+ Mobility of Li10GeP2S12: A First-Principles Analysis. 2014 , 118, 10590-10595	42
2072	General observation of lithium intercalation into graphite in ethylene-carbonate-free superconcentrated electrolytes. 2014 , 6, 10892-9	142
2071	The origin of high electrolyte-electrode interfacial resistances in lithium cells containing garnet type solid electrolytes. 2014 , 16, 18294-300	335
2070	Poly(methyl methacrylateâ\(\text{B}\)crylonitrileâ\(\text{B}\)thyl acrylate) terpolymer based gel electrolyte for LiNi0.5Mn1.5O4 cathode of high voltage lithium ion battery. 2014 , 269, 299-307	45
2069	The LiBH4-LiI Solid Solution as an Electrolyte in an All-Solid-State Battery. 2014 , 161, A1432-A1439	39
2068	High lithium ion conductivity of Li7La3Zr2O12 synthesized by solid state reaction. 2014 , 258, 13-17	30
2067	Oxygen Ion Diffusion and Surface Exchange Properties of the ⊞- and Ephases of Bi2O3. 2014 , 4, 1301575	33
2066	Ionic conductivity and the formation of cubic CaH2 in the LiBH4âta(BH4)2 composite. 2014 , 211, 81-89	12

(2014-2014)

2065	SpaceâlIharge Layer Effect at Interface between Oxide Cathode and Sulfide Electrolyte in All-Solid-State Lithium-Ion Battery. 2014 , 26, 4248-4255	298
2064	Inverse opal-inspired, nanoscaffold battery separators: a new membrane opportunity for high-performance energy storage systems. 2014 , 14, 4438-48	68
2063	Solid-State Electrolytes: Revealing the Mechanisms of Li-Ion Conduction in Tetragonal and Cubic LLZO by First-Principles Calculations. 2014 , 118, 6668-6679	128
2062	Screening possible solid electrolytes by calculating the conduction pathways using Bond Valence method. 2014 , 57, 1526-1536	29
2061	Effect of annealing on properties of lithium aluminum germanium phosphate electrolyte thick films prepared by aerosol deposition. 2014 , 20, 399-404	17
2060	Effects of SiO2 Nanoparticles and Diethyl Carbonate on the Electrochemical Properties of a Fibrous Nanocomposite Polymer Electrolyte for Rechargeable Lithium Batteries. 2014 , 39, 6711-6720	11
2059	A high-conduction Ge substituted Li3AsS4 solid electrolyte with exceptional low activation energy. 2014 , 2, 10396-10403	51
2058	Bond Valences. 2014,	12
2057	An All-Ceramic Solid-State Rechargeable Na+-Battery Operated at Intermediate Temperatures. 2014 , 24, 5380-5384	39
2056	Chalcogenide glasses as electrolytes for batteries. 2014 , 632-654	3
2055	Preparation of thick-film LiNi1/3Co1/3Mn1/3O2 electrodes by aerosol deposition and its application to all-solid-state batteries. 2014 , 272, 1086-1090	40
2054	Sustainable electrical energy storage through the ferrocene/ferrocenium redox reaction in aprotic electrolyte. 2014 , 53, 11036-40	118
2053	Diamondoid Hydrazones and Hydrazides: Sterically Demanding Ligands for Sn/S Cluster Design. 2014 , 33, 1678-1688	28
2052	Rechargeable lithium-sulfur batteries. 2014 , 114, 11751-87	3074
2051	Increase in grain boundary ionic conductivity of Li1.5Al0.5Ge1.5(PO4)3 by adding excess lithium. 2014 , 263, 125-130	54
2051		54 66
	2014, 263, 125-130 Solid-state synthesis of submicron-sized Li4Ti5O12/Li2TiO3 composites with rich grain boundaries for lithium ion batteries. 2014, 266, 114-120 Different proportions of C/KCu7S4 hybrid structure for high-performance supercapacitors. 2014,	

2047	In-situ Li7La3Zr2O12/LiCoO2 interface modification for advanced all-solid-state battery. 2014 , 260, 292-298	169
2046	High performance Li2Sâ B 2S5 solid electrolyte induced by selenide. 2014 , 260, 264-267	18
2045	A lithium sulfur battery with high power density. 2014 , 264, 206-210	82
2044	Low temperature synthesis of Al-doped Li7La3Zr2O12 solid electrolyte by a solâgel process. 2014 , 255, 104-107	89
2043	Interfacial phenomena between lithium ion conductors and cathodes. 2014 , 262, 879-882	13
2042	A new lithium-ion conducting glass ceramic in the composition of 75Li2S \$\mathbb{1}\$5P2S3\$\mathbb{1}\$20P2S5 (mol%). 2014 , 262, 733-737	9
2041	Insights into structural stability and Li superionic conductivity of Li10GeP2S12 from first-principles calculations. 2014 , 591, 16-20	28
2040	Recent advances in lithiumâBulfur batteries. 2014 , 267, 770-783	329
2039	Preparation and characterization of highly sodium ion conducting Na3PS4âNa4SiS4 solid electrolytes. 2014 , 4, 17120-17123	123
2038	Synthesis and characterization of lithium germanogallium sulfide, Li2GeGa2S6. 2014 , 261, 106-110	3
2037	Point defects in garnet-type solid electrolyte (c-Li7La3Zr2O12) for Li-ion batteries. 2014 , 261, 100-105	24
2036	Better batteries with Solid-state instead of liquid-based electrolytes. 2014 , 9, 10-15	3
2035	Water-stable lithium ion conducting solid electrolyte of iron and aluminum doped NASICON-type LiTi2(PO4)3. 2014 , 263, 27-32	30
2034	Stannous sulfide/multi-walled carbon nanotube hybrids as high-performance anode materials of lithium-ion batteries. 2014 , 136, 355-362	30
2033	In-Situ Electron Microscope Observations of Electrochemical Li Deposition/Dissolution with a LiPON Electrolyte. 2014 , 82, 364-368	25
2032	Lithium Ion Conducting Solid Electrolytes for Aqueous Lithium-air Batteries. 2014 , 82, 938-945	11
2031	Bulk-type All-solid-state Lithium Secondary Batteries Using Highly Ion-conductive Sulfide Solid Electrolyte Thin Films. 2014 , 82, 591-594	9
2030	Evaluation of youngâl modulus of Li2SâP2S5âP2O5 oxysulfide glass solid electrolytes. 2014 , 122, 552-555	27

All-solid-state LithiumâBulfur Batteries Using a Conductive Composite Containing Activated Ca and Electroconductive Polymers. 2014 , 43, 1335-1336	irbon 15
2028 ?3? ?????,?????????? 2014 , 82, 1108-1113	1
2027 1.???????. 2014 , 82, 169-174	1
2026 2.??????????ât???????? 2014 , 82, 175-180	6
Electrochemical Properties of the Mesocarbon Microbeads (MCMBs) in an All-solid-state Electrochemical Cell by use of the Amorphous Solid Electrolyte Li3PS4. 2014 , 61, 298-305	
2024 1.????????? 2014 , 82, 671-676	
Improvement of Instrument Devices for Super High Resolution Powder Diffractometer at J-PAI 2023 2014 , 502, 012052	RC. ₁₈
2022 Energy Storage Options for Self-powering Devices. 2014 , 15, 248-257	1
2021 Review: Ionic liquids as a potential electrolyte for energy devices. 2014 ,	
2020 Long-range, low-cost electric vehicles enabled by robust energy storage. 2015 , 2, 1	21
In-Situ Scanning Electron Microscope Observations of Strain-Confined Lithium Nucleation at Electrode/Electrolyte Interfaces in All-Solid-State-Lithium Battery. 2015 , 1754, 25-30	2
2018 Bibliography. 2015 , 63-74	
2017 Electrolytic properties of Na+-doped pillared montmorillonite. 2015 , 10, 872-877	
2016 SodiumâBulfur Batteries. 2015 , 1-18	
2015 All-solid-state lithium-oxygen battery with high safety in wide ambient temperature range. 201	1 5 , 5, 13271 ₅₂
2014 Solid State Ionic Materials. 2015 , 53-118	
High-throughput design and optimization of fast lithium ion conductors by the combination of bond-valence method and density functional theory. 2015 , 5, 14227	88
Synergistic multi-doping effects on the Li7La3Zr2O12 solid electrolyte for fast lithium ion conduction. 2015 , 5, 18053	100

2011	Expectation of a Scientific Breakthrough for Realization of a Sustainable Mobile Society. 2015 , 83, 797-802	2
2010	Structure Analyses of Amorphous MoS3 Active Materials in All-solid-state Lithium Batteries. 2015 , 83, 889-893	25
2009	Correlation of anisotropy and directional conduction in £i3PS4 fast Li+ conductor. 2015 , 107, 013904	22
2008	Mobility propagation and dynamic facilitation in superionic conductors. 2015 , 143, 194502	9
2007	Safer Electrolytes for Lithium-Ion Batteries: State of the Art and Perspectives. 2015 , 8, 2154-75	474
2006	Hetero-Nanonet Rechargeable Paper Batteries: Toward Ultrahigh Energy Density and Origami Foldability. 2015 , 25, 6029-6040	89
2005	Design Considerations for Unconventional Electrochemical Energy Storage Architectures. 2015 , 5, 1402115	224
2004	In Situ Synthesis of a Hierarchical All-Solid-State Electrolyte Based on Nitrile Materials for High-Performance Lithium-Ion Batteries. 2015 , 5, 1500353	215
2003	Excellent Compatibility of Solvate Ionic Liquids with Sulfide Solid Electrolytes: Toward Favorable Ionic Contacts in Bulk-Type All-Solid-State Lithium-Ion Batteries. 2015 , 5, 1500865	92
2002	Safety-Reinforced Poly(Propylene Carbonate)-Based All-Solid-State Polymer Electrolyte for Ambient-Temperature Solid Polymer Lithium Batteries. 2015 , 5, 1501082	391
2001	Phase Diagram of the Li4GeS4â Li3PS4 Quasi-Binary System Containing the Superionic Conductor Li10GeP2S12. 2015 , 98, 3352-3360	50
2000	Na3PSe4: A Novel Chalcogenide Solid Electrolyte with High Ionic Conductivity. 2015 , 5, 1501294	156
1999	Significant Capacity and Cycle-Life Improvement of Lithium-Ion Batteries through Ultrathin Conductive Film Stabilized Cathode Particles. 2015 , 2, 1500046	26
1998	Fabrication and All Solid-State Battery Performance of TiS2/Li10GeP2S12 Composite Electrodes. 2015 , 62, 548-552	2
1997	Influence of N2 Concentration in the Induction Gases on the Ionic Conductivity of Lithium Phosphorus Oxynitride Solid Electrolyte Thin Film Prepared by Magnetron Sputtering. 2015 , 66, 540-543	
1996	Dual Doping: An Effective Method to Enhance the Electrochemical Properties of Li10GeP2S12-Based Solid Electrolytes. 2015 , 98, 3831-3835	25
1995	Ultra-thin Solid-State Li-Ion Electrolyte Membrane Facilitated by a Self-Healing Polymer Matrix. 2015 , 27, 6922-7	128
1994	Polymerized Ionic Networks with High Charge Density: Quasi-Solid Electrolytes in Lithium-Metal Batteries. 2015 , 27, 8088-94	92

(2015-2015)

1993	High-Performance Lithium Solid-State Batteries Operating at Elevated Temperature. 2015 , 2, 1500268	6
1992	Oxide Electrolytes for Lithium Batteries. 2015 , 98, 3603-3623	163
1991	Glass Formation and Ionic Conduction Behavior in GeSe2â©a2Se3âNaI Chalcogenide System. 2015 , 98, 3770-3774	7
1990	Liquid-Crystalline Electrolytes for Lithium-Ion Batteries: Ordered Assemblies of a Mesogen-Containing Carbonate and a Lithium Salt. 2015 , 25, 1206-1212	78
1989	From lithium to sodium: cell chemistry of room temperature sodium-air and sodium-sulfur batteries. 2015 , 6, 1016-55	307
1988	A hybrid gel-solid-state polymer electrolyte for long-life lithium oxygen batteries. 2015 , 51, 8269-72	39
1987	Ionic conductivity enhancement of polymer electrolytes with ceramic nanowire fillers. 2015 , 15, 2740-5	589
1986	Informatics-Aided Density Functional Theory Study on the Li Ion Transport of Tavorite-Type LiMTO4F (M(3+)-T(5+), M(2+)-T(6+)). 2015 , 55, 1158-68	36
1985	A simple composite protective layer coating that enhances the cycling stability of lithium metal batteries. 2015 , 284, 103-108	182
1984	Phase formation of a garnet-type lithium-ion conductor Li7 âlBxAlxLa3Zr2O12. 2015 , 277, 23-29	43
1983	A Polyborate Coated Cellulose Composite Separator for High Performance Lithium Ion Batteries. 2015 , 162, A834-A838	29
1982	Theoretical prediction of a highly conducting solid electrolyte for sodium batteries: Na10GeP2S12. 2015 , 3, 12992-12999	59
1981	Application of LiCoO2Particles Coated with Lithium Ortho-Oxosalt Thin Films to Sulfide-Type All-Solid-State Lithium Batteries. 2015 , 162, A1610-A1616	42
1980	Lithium Diffusion in Li-Rich and Li-Poor Amorphous Lithium Niobate. 2015 , 363, 62-67	3
1979	Conductive porous carbon film as a lithium metal storage medium. 2015 , 176, 172-178	58
1978	Very fast bulk Li ion diffusivity in crystalline Li(1.5)Al(0.5)Ti(1.5)(PO4)3 as seen using NMR relaxometry. 2015 , 17, 32115-21	59
1977	Structure-property relationships in lithium superionic conductors having a Li10GeP2S12-type structure. 2015 , 71, 727-36	34
1976	Structural characterization for alkali ion conductive phosphosilicate glass ceramics. 2015 , 50, 7735-7741	1

1975	Influence of phosphorus sources on lithium ion conducting performance in the system of Li2OâAl2O3âAeO2âP2O5 glassâEeramics. 2015 , 270, 61-65	25
1974	Domain boundaries and their influence on Li migration in solid-state electrolyte (La,Li)TiO3. 2015 , 276, 203-207	53
1973	Honeycomb-alumina supported garnet membrane: Composite electrolyte with low resistance and high strength for lithium metal batteries. 2015 , 281, 399-403	7
1972	High lithium ion conductivity solid electrolyte of chromium and aluminum co-doped NASICON-type LiTi2(PO4)3. 2015 , 272, 101-106	53
1971	Lithium-lon Batteries. 2015, 139-203	2
1970	Prospects and Limits of Energy Storage in Batteries. 2015 , 6, 830-44	197
1969	Computational Identification and Experimental Realization of Lithium Vacancy Introduction into the Olivine LiMgPO4. 2015 , 27, 2074-2091	29
1968	A review of lithium and non-lithium based solid state batteries. 2015 , 282, 299-322	442
1967	Effect of surface microstructure on electrochemical performance of garnet solid electrolytes. 2015 , 7, 2073-81	277
1966	All Solid-State Lithiumâßulfur Battery Using a Glass-Type P2S5âlli2S Electrolyte: Benefits on Anode Kinetics. 2015 , 162, A646-A651	173
1965	A dendrite-suppressing composite ion conductor from aramid nanofibres. 2015 , 6, 6152	225
1964	Epitaxy of Li3xLa2/3â⊠TiO3 Films and the Influence of La Ordering on Li-Ion Conduction. 2015 , 27, 1233-1241	25
1963	Interfacial architecture for extra Li+ storage in all-solid-state lithium batteries. 2014, 4, 5572	48
1962	An iodide-based Li7P2S8I superionic conductor. 2015 , 137, 1384-7	228
1961	Issues and Challenges for Bulk-Type All-Solid-State Rechargeable Lithium Batteries using Sulfide Solid Electrolytes. 2015 , 55, 472-485	168
1960	Ion Transport in Na2M2TeO6: Insights from Molecular Dynamics Simulation. 2015 , 119, 1651-1658	25
1959	Analysis of the structure and degree of crystallisation of 70Li2SâB0P2S5 glass ceramic. 2015 , 3, 2756-2761	72
1958	Synthesis, structure, and conduction mechanism of the lithium superionic conductor Li10+Ge1+P2âB12. 2015 , 3, 438-446	103

1957	Recent Progress in Interfacial Nanoarchitectonics in Solid-State Batteries. 2015 , 25, 205-213	57
1956	Elegant design of electrode and electrode/electrolyte interface in lithium-ion batteries by atomic layer deposition. 2015 , 26, 024001	106
1955	Li3PO4-doped Li7P3S11 glass-ceramic electrolytes with enhanced lithium ion conductivities and application in all-solid-state batteries. 2015 , 284, 206-211	80
1954	Influence of the LiâtGeâ P âB based solid electrolytes on NCA electrochemical performances in all-solid-state lithium batteries. 2015 , 274, 8-11	50
1953	Physikalische Chemie. 2015 , 63, 315-326	0
1952	Stability and bonding of new superalkali phosphide species. 2015 , 44, 14753-62	12
1951	Investigation of the structure and ionic conductivity of intercalated kaolinites with potassium acetate in hydrous and anhydrous phases. 2015 , 44, 4665-70	7
1950	Influence of annealing on ionic transfer and storage stability of Li2SâP2S5 solid electrolyte. 2015 , 294, 494-500	31
1949	First-principles molecular simulations of Li diffusion in solid electrolytes Li3PS4. 2015 , 107, 134-138	18
1948	Preparation of cubic Li7La3Zr2O12 solid electrolyte using a nano-sized coreâlhell structured precursor. 2015 , 644, 793-798	25
1947	Interrelationships among Grain Size, Surface Composition, Air Stability, and Interfacial Resistance of Al-Substituted Li7La3Zr2O12 Solid Electrolytes. 2015 , 7, 17649-55	172
1946	Rational Composition Optimization of the Lithium-Rich Li3OCl1â\(\mathbb{B}\)Brx Anti-Perovskite Superionic Conductors. 2015 , 27, 3749-3755	92
1945	In-Channel and In-Plane Li Ion Diffusions in the Superionic Conductor Li10GeP2S12 Probed by Solid-State NMR. 2015 , 27, 5503-5510	59
1944	Transparent cubic garnet-type solid electrolyte of Al2O3-doped Li7La3Zr2O12. 2015 , 278, 172-176	117
1943	A Thermally Conductive Separator for Stable Li Metal Anodes. 2015 , 15, 6149-54	262
1942	Solid-State Lithium Ion Electrolytes. 2015 , 311-335	5
1941	Structural and Mechanistic Insights into Fast Lithium-Ion Conduction in Li4SiO4-Li3PO4 Solid Electrolytes. 2015 , 137, 9136-45	164
1940	Bulk-Phase Ion Conduction in Cocrystalline LiCl E N,N-Dimethylformamide: A New Paradigm for Solid Electrolytes Based upon the Pearson HardâBoft AcidâBase Concept. 2015 , 27, 5479-5482	14

1939 Aqueous Lithium-Air Batteries. 2015, 559-585

1938	Preparation of high lithium-ion conducting Li6PS5Cl solid electrolyte from ethanol solution for all-solid-state lithium batteries. 2015 , 293, 941-945	159
1937	Structural manipulation approaches towards enhanced sodium ionic conductivity in Na-rich antiperovskites. 2015 , 293, 735-740	69
1936	Lithium Ion Conduction in LiTi2(PO4)3 and Related Compounds Based on the NASICON Structure: A First-Principles Study. 2015 , 27, 5040-5048	143
1935	Stable Interface Formation between TiS2 and LiBH4 in Bulk-Type All-Solid-State Lithium Batteries. 2015 , 27, 5407-5416	85
1934	A fluorophosphate glassâderamic electrolyte with superior ionic conductivity and stability for Na-ion batteries. 2015 , 3, 17558-17562	19
1933	Role of Ionâlbn Correlations on Fast Ion Transport: Molecular Dynamics Simulation of Na2Ni2TeO6. 2015 , 119, 18030-18037	20
1932	Mechanistic insights for the development of Li-O2 battery materials: addressing Li2O2 conductivity limitations and electrolyte and cathode instabilities. 2015 , 51, 12701-15	97
1931	A gel polymer electrolyte based on composite of nonwoven fabric and methyl cellulose with good performance for lithium ion batteries. 2015 , 5, 52382-52387	39
1930	High conductivity of mixed phase Al-substituted Li7La3Zr2O12. 2015 , 35, 25-32	41
1929	The synergetic effect of lithium polysulfide and lithium nitrate to prevent lithium dendrite growth. 2015 , 6, 7436	1034
1928	Stability and ionic mobility in argyrodite-related lithium-ion solid electrolytes. 2015 , 17, 16494-506	76
1927	Integrated study of first principles calculations and experimental measurements for Li-ionic conductivity in Al-doped solid-state LiGe2(PO4)3 electrolyte. 2015 , 293, 11-16	60
1926	Reduced Grain Boundary Resistance by Surface Modification. 2015 , 119, 5412-5419	37
1925	Preparation and characterization of solâḡel derived high lithium ion conductive NZP-type ceramics Li1+x AlxTi2â⊠(PO4)3. 2015 , 274, 77-82	72
1924	Insight into structural, elastic, phonon, and thermodynamic properties of ∃-sulfur and energy-related sulfides: a comprehensive first-principles study. 2015 , 3, 8002-8014	29
1923	Bendable and thin sulfide solid electrolyte film: a new electrolyte opportunity for free-standing and stackable high-energy all-solid-state lithium-ion batteries. 2015 , 15, 3317-23	170
1922	A Battery Made from a Single Material. 2015 , 27, 3473-83	231

1921	Structure and crystallization kinetics of Li2O modified sodium-phosphate glasses. 2015 , 1094, 174-182	7
1920	Intricate short-range ordering and strongly anisotropic transport properties of Li(1-x)Sn(2+x)Asâ□ 2015 , 137, 3622-30	30
1919	Electrochemical reactions of layered niobate material as novel anode for sodium ion batteries. 2015 , 287, 158-163	17
1918	Flexible Ion-Conducting Composite Membranes for Lithium Batteries. 2015 , 5, 1500265	97
1917	Electrochemical Properties of Li1+xCoO2Synthesized for All-Solid-State Lithium Ion Batteries with Li2S-P2S5Glass-Ceramics Electrolyte. 2015 , 162, A1041-A1045	12
1916	Electrochemical properties of all-solid-state lithium batteries with amorphous MoS3 electrodes prepared by mechanical milling. 2015 , 3, 14142-14147	50
1915	2D hybrid anode based on SnS nanosheet bonded with graphene to enhance electrochemical performance for lithium-ion batteries. 2015 , 5, 46941-46946	61
1914	Development of bipolar all-solid-state lithium battery based on quasi-solid-state electrolyte containing tetraglyme-LiTFSA equimolar complex. 2015 , 5, 8869	43
1913	Structure and Stoichiometry in Supervalent Doped Li7La3Zr2O12. 2015 , 27, 3658-3665	76
1912	General method to predict voltage-dependent ionic conduction in a solid electrolyte coating on electrodes. 2015 , 91,	94
1911	Shape-Tailorable Graphene-Based Ultra-High-Rate Supercapacitor for Wearable Electronics. 2015 , 9, 5636-45	111
1910	Developments of Electrolyte Systems for Lithium and Sulfur Batteries: A Review. 2015, 3,	27
1909	Plant nanobionic materials with a giant temperature response mediated by pectin-Ca2+. 2015 , 112, 4541-5	32
1908	In Situ Neutron Diffraction Monitoring of Li7La3Zr2O12 Formation: Toward a Rational Synthesis of Garnet Solid Electrolytes 2015 , 27, 2903-2910	69
1907	Rational material design for ultrafast rechargeable lithium-ion batteries. 2015 , 44, 5926-40	716
1906	Lithium Doping of MgAl2O4 and ZnAl2O4 Investigated by High-Resolution Solid State NMR. 2015 , 119, 7565-7577	19
1905	Superior Conductive Solid-like Electrolytes: Nanoconfining Liquids within the Hollow Structures. 2015 , 15, 3398-402	104
1904	Single-layer ionic conduction on carboxyl-terminated silane monolayers patterned[by constructive lithography. <i>Nature Materials</i> , 2015 , 14, 613-21	28

1903	Solid Polymer-in-Ceramic Electrolyte Formed by Electrophoretic Deposition. 2015 , 162, D3084-D3089	15
1902	Evaluation of mechanical properties of Na2Sâ P 2S5 sulfide glass electrolytes. 2015 , 3, 22061-22065	45
1901	Insight into the loading temperature of sulfur on sulfur/carbon cathode in lithium-sulfur batteries. 2015 , 185, 62-68	31
1900	Technology: A solid future. 2015 , 526, S96-7	55
1899	Crystalline Inorganic Solid Electrolytes: Computer Simulations and Comparisons with Experiment. 2015 , 191-232	1
1898	Candidate structures for inorganic lithium solid-state electrolytes identified by high-throughput bond-valence calculations. 2015 , 1, 325-332	42
1897	ReviewâBolid Electrolytes in Rechargeable Electrochemical Cells. 2015 , 162, A2387-A2392	170
1896	A chemistry and material perspective on lithium redox flow batteries towards high-density electrical energy storage. 2015 , 44, 7968-96	322
1895	A new class of lithium ion conductors with tunable structures and compositions: Quaternary diamond-like thiogermanates. 2015 , 278, 268-274	10
1894	Flexible thin-film battery based on graphene-oxide embedded in solid polymer electrolyte. 2015 , 7, 17516-22	50
1893	A study of suppressed formation of low-conductivity phases in doped Li7La3Zr2O12 garnets by in situ neutron diffraction. 2015 , 3, 22868-22876	42
1892	Separating bulk from grain boundary Li ion conductivity in the solâgel prepared solid electrolyte Li1.5Al0.5Ti1.5(PO4)3. 2015 , 3, 21343-21350	101
1891	Reviewâldvances in Anode and Electrolyte Materials for the Progress of Lithium-Ion and beyond Lithium-Ion Batteries. 2015 , 162, A2582-A2588	89
1890	Neutron Reflectometry to Measure In Situ Li Permeation through Ultrathin Silicon Layers and Interfaces. 2015 , 162, A7104-A7109	13
1889	Characterization of Sputter-Deposited LiZr2(PO4)3Thin Film Solid Electrolyte. 2015 , 162, A2080-A2084	3
1888	Origin of Outstanding Stability in the Lithium Solid Electrolyte Materials: Insights from Thermodynamic Analyses Based on First-Principles Calculations. 2015 , 7, 23685-93	862
1887	Unparalleled Lithium and Sodium Superionic Conduction in Solid Electrolytes with Large Monovalent Cage-like Anions. 2015 , 8, 3637-3645	183
1886	Characterization of thin films of the solid electrolyte $Li(x)Mg(1-2x)Al(2+x)O4$ (x = 0, 0.05, 0.15, 0.25). 2015 , 17, 29045-56	5

(2015-2015)

1885	ab-Initio Calculations. 2015 , 119, 20783-20791	17
1884	A crystalline low molecular weight cyclic organoboron compound for efficient solid state lithium ion transport. 2015 , 51, 15035-8	4
1883	W-Doped Li7La3Zr2O12 Ceramic Electrolytes for Solid State Li-ion Batteries. 2015 , 180, 37-42	99
1882	Design principles for solid-state lithium superionic conductors. <i>Nature Materials</i> , 2015 , 14, 1026-31 27	817
1881	Ion Dynamics in Solid Electrolytes: NMR Reveals the Elementary Steps of Li+ Hopping in the Garnet Li6.5La3Zr1.75Mo0.25O12. 2015 , 27, 6571-6582	49
1880	Nonstoichiometric Oxides as Low-Cost and Highly-Efficient Oxygen Reduction/Evolution Catalysts for Low-Temperature Electrochemical Devices. 2015 , 115, 9869-921	631
1879	Free-standing high-voltage LiCoO2/multi-wall carbon nanotube paper electrodes with extremely high areal mass loading for lithium ion batteries. 2015 , 3, 23180-23184	16
1878	Li-ion conductivity in Li9S3N. 2015 , 3, 20338-20344	22
1877	Toward Understanding the Lithium Transport Mechanism in Garnet-type Solid Electrolytes: Li+ Ion Exchanges and Their Mobility at Octahedral/Tetrahedral Sites. 2015 , 27, 6650-6659	78
1876	Defect chemistry and lithium transport in Li3OCl anti-perovskite superionic conductors. 2015 , 17, 32547-55	81
1876 1875	Defect chemistry and lithium transport in Li3OCl anti-perovskite superionic conductors. 2015 , 17, 32547-55 Interfacial challenges in solid-state Li ion batteries. 2015 , 6, 4599-604	297
,		
1875	Interfacial challenges in solid-state Li ion batteries. 2015 , 6, 4599-604 The functional separator coated with coreâEhell structured silicaâBoly(methyl methacrylate)	297
1875 1874	Interfacial challenges in solid-state Li ion batteries. 2015, 6, 4599-604 The functional separator coated with coreâlhell structured silicaâpoly(methyl methacrylate) sub-microspheres for lithium-ion batteries. 2015, 474, 148-155 Theoretically Designed Li3PO4 (100)/LiFePO4 (010) Coherent Electrolyte/Cathode Interface for All	297
1875 1874 1873	Interfacial challenges in solid-state Li ion batteries. 2015, 6, 4599-604 The functional separator coated with coreâEhell structured silicaâFoly(methyl methacrylate) sub-microspheres for lithium-ion batteries. 2015, 474, 148-155 Theoretically Designed Li3PO4 (100)/LiFePO4 (010) Coherent Electrolyte/Cathode Interface for All Solid-State Li Ion Secondary Batteries. 2015, 119, 14-22 Semiconducting Properties and Phase-Matching Nonlinear Optical Response of the	297 121 44
1875 1874 1873	Interfacial challenges in solid-state Li ion batteries. 2015, 6, 4599-604 The functional separator coated with coreâBhell structured silicaâBoly(methyl methacrylate) sub-microspheres for lithium-ion batteries. 2015, 474, 148-155 Theoretically Designed Li3PO4 (100)/LiFePO4 (010) Coherent Electrolyte/Cathode Interface for All Solid-State Li Ion Secondary Batteries. 2015, 119, 14-22 Semiconducting Properties and Phase-Matching Nonlinear Optical Response of the One-Dimensional Selenophosphates ANb2PSe10 (A = K, Rb, and Cs). 2015, 27, 255-265 Preparation of sodium ion conducting Na3PS4âNal glasses by a mechanochemical technique. 2015,	297 121 44 24
1875 1874 1873 1872	Interfacial challenges in solid-state Li ion batteries. 2015, 6, 4599-604 The functional separator coated with coreâBhell structured silicaâBoly(methyl methacrylate) sub-microspheres for lithium-ion batteries. 2015, 474, 148-155 Theoretically Designed Li3PO4 (100)/LiFePO4 (010) Coherent Electrolyte/Cathode Interface for All Solid-State Li Ion Secondary Batteries. 2015, 119, 14-22 Semiconducting Properties and Phase-Matching Nonlinear Optical Response of the One-Dimensional Selenophosphates ANb2PSe10 (A = K, Rb, and Cs). 2015, 27, 255-265 Preparation of sodium ion conducting Na3PS4âBlal glasses by a mechanochemical technique. 2015, 270, 6-9 A facile strategy to achieve high conduction and excellent chemical stability of lithium solid	297 121 44 24 27

1867	Taichi-inspired rigid-flexible coupling cellulose-supported solid polymer electrolyte for high-performance lithium batteries. 2014 , 4, 6272	108
1866	Preferential orientation of I2-LiI(HPN)2 film for a flexible all-solid-state rechargeable lithiumâlbdine paper battery. 2015 , 274, 280-285	14
1865	LithiumâBulfur batteries: from liquid to solid cells. 2015 , 3, 936-958	300
1864	Towards greener and more sustainable batteries for electrical energy storage. 2015 , 7, 19-29	4222
1863	Polyvinyl Alcoholâ B orax Slime as Promising Polyelectrolyte for High-Performance, Easy-to-Make Electrochromic Devices. 2015 , 2, 218-223	39
1862	Enhancement of ionic conductivity of composite membranes for all-solid-state lithium rechargeable batteries incorporating tetragonal Li7La3Zr2O12 into a polyethylene oxide matrix. 2015 , 274, 458-463	189
1861	Development of Electrolytes towards Achieving Safe and High-Performance Energy-Storage Devices: A Review. 2015 , 2, 22-36	224
1860	Solid Electrolyte: the Key for High-Voltage Lithium Batteries. 2015 , 5, 1401408	419
1859	Experimental and Computational Approaches to Interfacial Resistance in Solid-State Batteries. 2016 , 4,	10
1858	High Lithium-Ion-Conducting NASICON-Type Li1+xAlxGeyTi2â⊠âД(PO4)3 Solid Electrolyte. 2016 , 4,	14
1857	Intermittent Contact Alternating Current Scanning Electrochemical Microscopy: A Method for Mapping Conductivities in Solid Li Ion Conducting Electrolyte Samples. 2016 , 4,	13
1856	Aqueous Stability of Alkali Superionic Conductors from First-Principles Calculations. 2016, 4,	15
1855	The Electrochemical Characteristics and Applicability of an Amorphous Sulfide-Based Solid Ion Conductor for the Next-Generation Solid-State Lithium Secondary Batteries. 2016 , 4,	37
1854	High Reversibility of åBoftåŒlectrode Materials in All-Solid-State Batteries. 2016 , 4,	15
1853	Structure and Ionic Conductivity of Li2Sâ P 2S5 Glass Electrolytes Simulated with First-Principles Molecular Dynamics. 2016 , 4,	22
1852	Development of Sulfide Solid Electrolytes and Interface Formation Processes for Bulk-Type All-Solid-State Li and Na Batteries. 2016 , 4,	117
1851	Fabrication of All-Solid-State Lithium-Ion Cells Using Three-Dimensionally Structured Solid Electrolyte Li7La3Zr2O12 Pellets. 2016 , 4,	29
1850	Lithium Superionic Conductor Li9.42Si1.02P2.1S9.96O2.04 with Li10GeP2S12-Type Structure in the Li2SâB2SSâBiO2 Pseudoternary System: Synthesis, Electrochemical Properties, and StructureâDomposition Relationships 2016 4	34

12	InorganicâDrganic Hybrid Surfactant Crystals: Structural Aspects and Functions. 2016 , 6, 24	21
1848	Preparation and characterization of Na3BO3âNa2SO4 glass electrolytes with Na+ ion conductivity prepared by a mechanical milling techniquePeer review under responsibility of The Ceramic Society of Japan and the Korean Ceramic Society. View all notes. 2016 , 4, 6-10	6
1847	Theoretical study of lithium ionic conductors by electronic stress tensor density and electronic kinetic energy density. 2016 , 37, 1924-34	7
1846	Anion Acceptors Dioxaborinane Contained in Solid State Polymer Electrolyte: Preparation, Characterization, and DFT Calculations. 2016 , 26, 5930-5939	20
1845	Germaniumbasierte Nanomaterialien fil wiederaufladbare Batterien. 2016 , 128, 8028-8054	5
1844	An Air-Stable Na3SbS4 Superionic Conductor Prepared by a Rapid and Economic Synthetic Procedure. 2016 , 128, 8693-8697	22
1843	Germanium-Based Nanomaterials for Rechargeable Batteries. 2016 , 55, 7898-922	122
1842	An Air-Stable Na3 SbS4 Superionic Conductor Prepared by a Rapid and Economic Synthetic Procedure. 2016 , 55, 8551-5	125
1841	NiS Nanorods as Cathode Materials for All-Solid-State Lithium Batteries with Excellent Rate Capability and Cycling Stability. 2016 , 3, 764-769	31
1840	Cable-Type Water-Survivable Flexible Li-O2 Battery. 2016 , 12, 3101-5	2.4
1040	Cable-Type Water-Survivable Flexible Li-O2 Battery. 2016, 12, 3101-3	94
1839	All-Solid-State LithiumâBulfur Battery with High Energy and Power Densities at the Cell Level. 2016 , 4, 484-489	33
1839	All-Solid-State LithiumâBulfur Battery with High Energy and Power Densities at the Cell Level. 2016 ,	
1839	All-Solid-State LithiumâBulfur Battery with High Energy and Power Densities at the Cell Level. 2016 , 4, 484-489	33
1839	All-Solid-State LithiumâBulfur Battery with High Energy and Power Densities at the Cell Level. 2016 , 4, 484-489 Electrochemical Stability of Li10GeP2S12 and Li7La3Zr2O12 Solid Electrolytes. 2016 , 6, 1501590	33533
1839 1838 1837	All-Solid-State LithiumâBulfur Battery with High Energy and Power Densities at the Cell Level. 2016, 4, 484-489 Electrochemical Stability of Li10GeP2S12 and Li7La3Zr2O12 Solid Electrolytes. 2016, 6, 1501590 Synthesis of Crystalline Chalcogenides in Ionic Liquids. 2016, 55, 876-93 Oxygen-driven transition from two-dimensional to three-dimensional transport behaviour in	33533101
1839 1838 1837	All-Solid-State LithiumâBulfur Battery with High Energy and Power Densities at the Cell Level. 2016, 4, 484-489 Electrochemical Stability of Li10GeP2S12 and Li7La3Zr2O12 Solid Electrolytes. 2016, 6, 1501590 Synthesis of Crystalline Chalcogenides in Ionic Liquids. 2016, 55, 876-93 Oxygen-driven transition from two-dimensional to three-dimensional transport behaviour in Eli3PS4 electrolyte. 2016, 18, 21269-77 Fabrication and All Solid-State Battery Performance of TiS2/Li10GeP2S12 Composite Electrodes.	3353310146
1839 1838 1837 1836 1835	All-Solid-State LithiumâBulfur Battery with High Energy and Power Densities at the Cell Level. 2016, 4, 484-489 Electrochemical Stability of Li10GeP2S12 and Li7La3Zr2O12 Solid Electrolytes. 2016, 6, 1501590 Synthesis of Crystalline Chalcogenides in Ionic Liquids. 2016, 55, 876-93 Oxygen-driven transition from two-dimensional to three-dimensional transport behaviour in ELi3PS4 electrolyte. 2016, 18, 21269-77 Fabrication and All Solid-State Battery Performance of TiS2/Li10GeP2S12 Composite Electrodes. 2016, 57, 549-552 Reshaping Lithium Plating/Stripping Behavior via Bifunctional Polymer Electrolyte for	335331014634

1831	Lithium Dendrite Formation on a Lithium Metal Anode from Liquid, Polymer and Solid Electrolytes. 2016 , 84, 210-218	101
1830	Improved electrochemical performance of amorphous TiS3 electrodes compared to its crystal for all-solid-state rechargeable lithium batteries. 2016 , 124, 242-246	10
1829	Solid electrolytes and solid-state batteries. 2016 ,	7
1828	Enhanced ionic conductivity with Li7O2Br3 phase in Li3OBr anti-perovskite solid electrolyte. 2016 , 109, 101904	27
1827	Nanoscale electrochemical characterization of a solid-state electrolyte using a manganese-based thin-film probe. 2016 , 8, 19978-19983	4
1826	Structural and electronic features of binary LiâB-PâBâlglasses. 2016 , 6, 21302	68
1825	Effect of the structural evolution on the ionic conductivity of Li-N-H system during the dehydrogenation. 2016 , 108, 213903	9
1824	Forming solid electrolyte interphase in situ in an ionic conducting Li 1.5 Al 0.5 Ge 1.5 (PO 4) 3 -polypropylene (PP) based separator for Li-ion batteries. 2016 , 25, 078204	20
1823	Origin of Fast Ion Conduction in Li10GeP2S12, a Superionic Conductor. 2016 , 120, 29002-29010	19
1822	Computational Analysis of Li Diffusion in NZP-Type Materials by Atomistic Simulation and Compositional Screening. 2016 , 177-187	
1821	Cross-linked branching nanohybrid polymer electrolyte with monodispersed TiO2 nanoparticles for high performance lithium-ion batteries. 2016 , 317, 103-111	51
1820	Bulk-Type All Solid-State Batteries with 5 V Class LiNi0.5Mn1.5O4 Cathode and Li10GeP2S12 Solid Electrolyte. 2016 , 28, 2634-2640	161
1819	A solid lithium superionic conductor Li11AlP2S12 with a thio-LISICON analogous structure. 2016 , 52, 6091-4	45
1818	Recent progress in sulfide-based solid electrolytes for Li-ion batteries. 2016 , 213, 169-176	58
1817	Cu2ZnSnS4/graphene nanocomposites for ultrafast, long life all-solid-state lithium batteries using lithium metal anode. 2016 , 4, 59-65	67
1816	Li+ conduction in LiâNbâD films deposited by a solâgel method. 2016 , 285, 13-18	4
1815	Effect of surface modification and oxygen deficiency on intercalation property of lithium nickel manganese oxide in an all-solid-state battery. 2016 , 288, 244-247	9
1814	Ion-mediated charge transport in ionomeric electrolytes. 2016 , 12, 3943-54	20

1813	Infiltrated porous oxide monoliths as high lithium transference number electrolytes. 2016 , 4, 7135-7140	24
1812	Li0.6[Li0.2Sn0.8S2] â屆 layered lithium superionic conductor. 2016 , 9, 2578-2585	39
1811	In Situ STEM-EELS Observation of Nanoscale Interfacial Phenomena in All-Solid-State Batteries. 2016 , 16, 3760-7	203
1810	Fabrication of ultrathin solid electrolyte membranes of £Li3PS4 nanoflakes by evaporation-induced self-assembly for all-solid-state batteries. 2016 , 4, 8091-8096	89
1809	Ultrastrong Polyoxyzole Nanofiber Membranes for Dendrite-Proof and Heat-Resistant Battery Separators. 2016 , 16, 2981-7	97
1808	Organically directed heterometallic chalcogenidometalates containing group 12(II)/13(III)/14(IV) metal ions and antimony(III). 2016 , 322, 41-68	53
1807	Liquid-Like Ionic Conduction in Solid Lithium and Sodium Monocarba-closo-Decaborates Near or at Room Temperature. 2016 , 6, 1502237	148
1806	Rechargeable Lithium Batteries with Electrodes of Small Organic Carbonyl Salts and Advanced Electrolytes. 2016 , 55, 5795-5804	74
1805	Fast Li-Ion Transport in Amorphous Li2Si2O5: An Ab Initio Molecular Dynamics Simulation. 2016 , 163, A1401-A1407	11
1804	Li Diffusion in Lithium Containing Metal Oxides Investigated by Tracer Methods. 2016 , 8, 109-128	
1804	Li Diffusion in Lithium Containing Metal Oxides Investigated by Tracer Methods. 2016 , 8, 109-128 Stabilizing Superionic-Conducting Structures via Mixed-Anion Solid Solutions of Monocarba-closo-borate Salts. 2016 , 1, 659-664	113
	Stabilizing Superionic-Conducting Structures via Mixed-Anion Solid Solutions of	113 424
1803	Stabilizing Superionic-Conducting Structures via Mixed-Anion Solid Solutions of Monocarba-closo-borate Salts. 2016 , 1, 659-664 Transition from Superlithiophobicity to Superlithiophilicity of Garnet Solid-State Electrolyte. 2016 ,	
1803	Stabilizing Superionic-Conducting Structures via Mixed-Anion Solid Solutions of Monocarba-closo-borate Salts. 2016 , 1, 659-664 Transition from Superlithiophobicity to Superlithiophilicity of Garnet Solid-State Electrolyte. 2016 , 138, 12258-62 Flexible and ion-conducting membrane electrolytes for solid-state lithium batteries: Dispersion of	424
1803 1802 1801	Stabilizing Superionic-Conducting Structures via Mixed-Anion Solid Solutions of Monocarba-closo-borate Salts. 2016, 1, 659-664 Transition from Superlithiophobicity to Superlithiophilicity of Garnet Solid-State Electrolyte. 2016, 138, 12258-62 Flexible and ion-conducting membrane electrolytes for solid-state lithium batteries: Dispersion of garnet nanoparticles in insulating polyethylene oxide. 2016, 28, 447-454 All solid-state battery using layered oxide cathode, lithium-carbon composite anode and	424
1803 1802 1801 1800	Stabilizing Superionic-Conducting Structures via Mixed-Anion Solid Solutions of Monocarba-closo-borate Salts. 2016 , 1, 659-664 Transition from Superlithiophobicity to Superlithiophilicity of Garnet Solid-State Electrolyte. 2016 , 138, 12258-62 Flexible and ion-conducting membrane electrolytes for solid-state lithium batteries: Dispersion of garnet nanoparticles in insulating polyethylene oxide. 2016 , 28, 447-454 All solid-state battery using layered oxide cathode, lithium-carbon composite anode and thio-LISICON electrolyte. 2016 , 296, 13-17 Elastic Properties, Defect Thermodynamics, Electrochemical Window, Phase Stability, and Li(+)	424 449 30
1803 1802 1801 1800	Stabilizing Superionic-Conducting Structures via Mixed-Anion Solid Solutions of Monocarba-closo-borate Salts. 2016, 1, 659-664 Transition from Superlithiophobicity to Superlithiophilicity of Garnet Solid-State Electrolyte. 2016, 138, 12258-62 Flexible and ion-conducting membrane electrolytes for solid-state lithium batteries: Dispersion of garnet nanoparticles in insulating polyethylene oxide. 2016, 28, 447-454 All solid-state battery using layered oxide cathode, lithium-carbon composite anode and thio-LISICON electrolyte. 2016, 296, 13-17 Elastic Properties, Defect Thermodynamics, Electrochemical Window, Phase Stability, and Li(+) Mobility of Li3PS4: Insights from First-Principles Calculations. 2016, 8, 25229-42 Li10Si0.3Sn0.7P2S12 âl'A low-cost and low-grain-boundary-resistance lithium superionic conductor.	424 449 30 80

1795	La3Li3W2O12: Ionic Diffusion in a Perovskite with Lithium on both A- and B-Sites. 2016 , 28, 7833-7851	19
1794	Organic-inorganic hybrid solid electrolytes for solid-state lithium cells operating at room temperature. 2016 , 218, 271-277	57
1793	Interfacial Reactivity Benchmarking of the Sodium Ion Conductors NaPS and Sodium FAlumina for Protected Sodium Metal Anodes and Sodium All-Solid-State Batteries. 2016 , 8, 28216-28224	138
1792	Hybrid solid electrolyte with the combination of Li7La3Zr2O12 ceramic and ionic liquid for high voltage pseudo-solid-state Li-ion batteries. 2016 , 4, 17025-17032	51
1791	Improved ionic conductivity in NASICON-type Sr2 + doped LiZr2(PO4)3. 2016 , 296, 1-6	37
1790	Li-Ion Conductivity and Phase Stability of Ca-Doped LiBH under High Pressure. 2016 , 55, 10484-10489	15
1789	Challenges and prospects of the role of solid electrolytes in the revitalization of lithium metal batteries. 2016 , 4, 17251-17259	202
1788	Preparation of Li7P3S11 glass-ceramic electrolyte by dissolution-evaporation method for all-solid-state lithium ion batteries. 2016 , 219, 235-240	107
1787	Interface-enhanced Li ion conduction in a LiBH4-SiO2 solid electrolyte. 2016 , 18, 22540-7	51
1786	Flame made nanoparticles permit processing of dense, flexible, Li+ conducting ceramic electrolyte thin films of cubic-Li7La3Zr2O12 (c-LLZO). 2016 , 4, 12947-12954	103
1785	In Situ Monitoring of Fast Li-Ion Conductor Li7P3S11 Crystallization Inside a Hot-Press Setup. 2016 , 28, 6152-6165	113
1784	Structural Insights and 3D Diffusion Pathways within the Lithium Superionic Conductor Li10GeP2S12. 2016 , 28, 5905-5915	136
1783	Experimental and Computational Evaluation of a Sodium-Rich Anti-Perovskite for Solid State Electrolytes. 2016 , 163, A2165-A2171	29
1782	Unravelling Li-Ion Transport from Picoseconds to Seconds: Bulk versus Interfaces in an Argyrodite Li6PS5Cl-Li2S All-Solid-State Li-Ion Battery. 2016 , 138, 11192-201	141
1781	An Organic Mixed Ion-Electron Conductor for Power Electronics. 2016 , 3, 1500305	140
1780	Vacancy-Contained Tetragonal NaSbS Superionic Conductor. 2016 , 3, 1600089	115
1779	Effect of Al2O3 on the sintering of garnet-type Li6.5La3Zr1.5Ta0.5O12. 2016 , 294, 108-115	33
1778	Influence of ionâl⁄bn correlation on Na+ transport in Na2Ni2TeO6: molecular dynamics study. 2016 , 22, 2379-2385	10

(2016-2016)

1777	Garnet. 2016 , 68, 2593-2600	26
1776	An all-solid-state lithiumâBulfur battery using two solid electrolytes having different functions. 2016 , 329, 268-272	52
1775	Synthesis, structure and electrochemical performance of the argyrodite Li 6 PS 5 Cl solid electrolyte for Li-ion solid state batteries. 2016 , 215, 93-99	146
1774	Experimental and first-principles DFT study on the electrochemical reactivity of garnet-type solid electrolytes with carbon. 2016 , 4, 14371-14379	16
1773	Na-ion dynamics in tetragonal and cubic Na3PS4, a Na-ion conductor for solid state Na-ion batteries. 2016 , 4, 15095-15105	54
1772	High temperature electrical energy storage: advances, challenges, and frontiers. 2016 , 45, 5848-5887	182
1771	A review of recent developments in rechargeable lithium-sulfur batteries. 2016 , 8, 16541-16588	269
1770	Interfacial behaviours between lithium ion conductors and electrode materials in various battery systems. 2016 , 4, 15266-15280	155
1769	Fluorine-Doped Antiperovskite Electrolyte for All-Solid-State Lithium-Ion Batteries. 2016 , 128, 10119-10122	22
1768	The pursuit of solid-state electrolytes for lithium batteries: from comprehensive insight to emerging horizons. 2016 , 3, 487-516	414
1767	Interface Stability in Solid-State Batteries. 2016 , 28, 266-273	792
1766	Improved Lithium Ionic Conductivity in Composite Polymer Electrolytes with Oxide-Ion Conducting Nanowires. 2016 , 10, 11407-11413	216
1765	X-ray photoelectron spectroscopy for sulfide glass electrolytes in the systems Li2S–P2S5 and Li2S–P2S5–LiBr. 2016 , 124, 597-601	24
1764	Mechanochemical synthesis and crystallization of Li3BO3–Li2CO3 glass electrolytes. 2016 , 124, 915-919	19
1763	Li+ ionic conduction properties on NaI doped with a small amount of LiBH4. 2016 , 20, 2759-2764	11
1762	About the Compatibility between High Voltage Spinel Cathode Materials and Solid Oxide Electrolytes as a Function of Temperature. 2016 , 8, 26842-26850	122
1761	Effect of Ag Ion Insertion on Electron Transport through Au Ion Wires. 2016 , 45, 764-766	4
1760	Design of Li1+2xZn1â⊠PS4, a new lithium ion conductor. 2016 , 9, 3272-3278	81

1759	Recent Developments of the Lithium Metal Anode for Rechargeable Non-Aqueous Batteries. 2016 , 6, 1600811	259
1758	Na3 SbS4 : A Solution Processable Sodium Superionic Conductor for All-Solid-State Sodium-Ion Batteries. 2016 , 55, 9634-8	197
1757	A Review of Solid Electrolyte Interphases on Lithium Metal Anode. 2016 , 3, 1500213	962
1756	Nanoengineering Energy Conversion and Storage Devices via Atomic Layer Deposition. 2016 , 6, 1600468	46
1755	Mechanically Shaped Two-Dimensional Covalent Organic Frameworks Reveal Crystallographic Alignment and Fast Li-Ion Conductivity. 2016 , 138, 9767-70	177
1754	Fluorine-Doped Antiperovskite Electrolyte for All-Solid-State Lithium-Ion Batteries. 2016 , 55, 9965-8	155
1753	Na3SbS4: A Solution Processable Sodium Superionic Conductor for All-Solid-State Sodium-Ion Batteries. 2016 , 128, 9786-9790	53
1752	Decoupled Ion Transport in a Protein-Based Solid Ion Conductor. 2016 , 7, 4304-4310	29
1751	Lithium-ion-based solid electrolyte tuning of the carrier density in graphene. 2016 , 6, 34816	13
1750	Synthesis, Crystal Structure, and Stability of Cubic LiLaZrBiO. 2016 , 55, 12211-12219	35
1749	Tin Sulfide Clusters with Polyheteroatomic Ligands: Syntheses, Structures, and Photoluminescence Properties. 2016 , 2016, 5300-5304	7
1748	Local Structural Investigations, Defect Formation, and Ionic Conductivity of the Lithium Ionic Conductor Li4P2S6. 2016 , 28, 8764-8773	74
1747	Design and synthesis of the superionic conductor Na10SnP2S12. 2016 , 7, 11009	193
1746	A novel quasi-solid state electrolyte with highly effective polysulfide diffusion inhibition for lithium-sulfur batteries. 2016 , 6, 25484	32
1745	Sintering Mechanisms of High-Performance Garnet-type Solid Electrolyte Densified by Spark Plasma Sintering. 2016 , 222, 648-656	52
1744	Lithium-coated polymeric matrix as a minimum volume-change and dendrite-free lithium metal anode. 2016 , 7, 10992	641
1743	Lithium Ion Mobility in Lithium Phosphidosilicates: Crystal Structure, Li, Si, and P MAS NMR Spectroscopy, and Impedance Spectroscopy of Li SiP and Li SiP. 2016 , 22, 17635-17645	47
1742	Batteries: Getting solid. 2016 , 1,	218

(2016-2016)

1741	dynamics. 2016 , 94,	9
1740	High-power all-solid-state batteries using sulfide superionic conductors. 2016 , 1,	166 7
1739	Room-Temperature All-solid-state Rechargeable Sodium-ion Batteries with a Cl-doped Na3PS4 Superionic Conductor. 2016 , 6, 33733	147
1738	Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth. 2016 , 1,	1065
1737	High-Energy All-Solid-State Lithium Batteries with Ultralong Cycle Life. 2016 , 16, 7148-7154	243
1736	A solid future for battery development. 2016 , 1,	1454
1735	High lithium-ion conducting NASICON-type Li1 + x âl̄yAlxNbyTi2 âl̄x âl̄y(PO4)3 solid electrolytes. 2016 , 297, 43-48	18
1734	LithiumâAir Batteries. 2016 , 21-64	
1733	MetalâBulfur Batteries. 2016 , 151-172	1
1732	Stabilizing Lithium Metal Anodes by Uniform Li-Ion Flux Distribution in Nanochannel Confinement. 2016 , 138, 15443-15450	315
1731	Structural origin of the superionic Na conduction in Na2B10H10closo-borates and enhanced conductivity by Na deficiency for high performance solid electrolytes. 2016 , 4, 17740-17748	50
1730	Preparation of Li3PS4 Solid Electrolyte by Liquid-Phase Shaking Using Organic Solvents with Carbonyl Group as Complex Forming Medium. 2016 , 63, 976-980	13
1729	Ion-ion repulsion and entropic effects on Na+ transport in Na2Ni2TeO6: Molecular dynamics study. 2016 ,	2
1728	Size dependent polaronic conduction in hematite. 2016,	2
1727	Synthesis, Crystal Structure, and the Ionic Conductivity of New Lithium Ion Conductors, M-Doped LiScO2 (M = Zr, Nb, Ta). 2016 , 57, 1370-1373	5
1726	Solution-Processable Glass Lil-Li4 SnS4 Superionic Conductors for All-Solid-State Li-Ion Batteries. 2016 , 28, 1874-83	214
1725	Ionic Covalent Organic Frameworks with Spiroborate Linkage. 2016 , 128, 1769-1773	71
1724	Ionic Covalent Organic Frameworks with Spiroborate Linkage. 2016 , 55, 1737-41	380

1723 Computational studies of solid-state alkali conduction in rechargeable alkali-ion batteries. 2016, 8, e254-e254 57 Oxygen substitution effects in Li10GeP2S12 solid electrolyte. 2016, 324, 798-803 85 Scandium-Substituted Na3Zr2(SiO4)2(PO4) Prepared by a Solution-Assisted Solid-State Reaction 146 1721 Method as Sodium-Ion Conductors. 2016, 28, 4821-4828 A new composite solid electrolyte PEO/Li10GeP2S12/SN for all-solid-state lithium battery. 2016, 1720 135 210, 905-914 Atomic scale characterization and surface chemistry of metal modified titanate nanotubes and 76 1719 nanowires. 2016, 71, 473-546 1718 A lithium ion conductor in Li4SiO4-Li3PO4-LiBO2 ternary system. 2016, 293, 72-76 4 Li-Ion Conduction and Stability of Perovskite Li3/8Sr7/16Hf1/4Ta3/4O3. 2016, 8, 14552-7 69 Amorphous TiS3/S/C Composite Positive Electrodes with High Capacity for Rechargeable Lithium 1716 5 Batteries. 2016, 163, A1730-A1735 Charged and Discharged States of Cathode/Sulfide Electrolyte Interfaces in All-Solid-State Lithium 64 1715 Ion Batteries. 2016, 120, 13332-13339 1714 All-solid-state lithium-ion batteries with TiS2 nanosheets and sulphide solid electrolytes. 2016, 4, 10329-1033576 Graphene-Analogues Boron Nitride Nanosheets Confining Ionic Liquids: A High-Performance 1713 45 Quasi-Liquid Solid Electrolyte. 2016, 12, 3535-42 High-throughput theoretical design of lithium battery materials. 2016, 25, 018208 1712 10 First-Principles Characterization of the Unknown Crystal Structure and Ionic Conductivity of 32 Li7P2S8I as a Solid Electrolyte for High-Voltage Li Ion Batteries. 2016, 7, 2671-5 1710 Synthese kristalliner Chalkogenide in ionischen Fl\(\bar{S} igkeiten. 2016, 128, 886-904 36 Fabrication and electrochemical properties of a LiCoO2 and Li10GeP2S12 composite electrode for 1709 42 use in all-solid-state batteries. 2016, 285, 136-142 1708 Li2OHCl Crystalline Electrolyte for Stable Metallic Lithium Anodes. 2016, 138, 1768-71 109 1707 Structural and electrolyte properties of Li4P2S6. 2016, 284, 61-70 43 Microstructural evolution of solution-processed Liaßeaßaaß chalcogenide powders for Li+ ion 1706

battery applications. 2016, 431, 57-60

(2016-2016)

1705	âlliquid-in-Solidâland âlolid-in-LiquidâlElectrolytes with High Rate Capacity and Long Cycling Life for Lithium-Ion Batteries. 2016 , 28, 848-856	78
1704	Metal boranes: Progress and applications. 2016 , 323, 60-70	94
1703	Chemical synthesis of Li3PS4 precursor suspension by liquid-phase shaking. 2016 , 285, 2-5	58
1702	Preparation of Li3PS4 solid electrolyte using ethyl acetate as synthetic medium. 2016 , 288, 240-243	73
1701	Investigation on the grain boundaries electrical characteristics of perovskite lithium ion conductors by derivative of tanlapproach. 2016 , 74, 134-139	3
1700	Conduction below 100 ℃ in nominal Li6ZnNb4O14. 2016 , 51, 854-860	3
1699	Complex hydride for composite negative electrodeâlpplicable to bulk-type all-solid-state Li-ion battery with wide temperature operation. 2016 , 285, 96-100	16
1698	Superionic conduction of silver in homogeneous chalcogenide glasses. 2016 , 4, 861-868	10
1697	Ionic conductivity of bias sputtered lithium phosphorus oxy-nitride thin films. 2016, 287, 48-59	22
1696	Underlying mechanisms of the synergistic role of Li2MnO3 and LiNi1/3Co1/3Mn1/3O2 in high-Mn, Li-rich oxides. 2016 , 18, 11411-21	12
1695	Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes. 2016 , 11, 626-32	1261
1694	Effects of non-equimolar lithium salt glyme solvate ionic liquid on the control of interfacial degradation in lithium secondary batteries. 2016 , 6, 33043-33047	15
1693	Sol-gel-processed amorphous lithium ion electrolyte thin films: Structural evolution, theoretical considerations, and ion transport processes. 2016 , 287, 60-70	23
1692	Pure H? conduction in oxyhydrides. 2016 , 351, 1314-7	110
1691	Methane emissions from the 2015 Aliso Canyon blowout in Los Angeles, CA. 2016 , 351, 1317-20	141
1690	Review of developments in lithium secondary battery technology. 2016 , 33, 153-163	6
1689	Antiperovskite LiOCl Superionic Conductor Films for Solid-State Li-Ion Batteries. 2016 , 3, 1500359	120
1688	Complex hydrides as room-temperature solid electrolytes for rechargeable batteries. 2016 , 122, 1	41

1687	Uniform 8LiFePO 4 Li 3 V 2 (PO 4) 3 /C nanoflakes for high-performance Li-ion batteries. 2016 , 22, 48-58	69
1686	Lithium-ion conductivity in Li6Y(BO3)3: a thermally and electrochemically robust solid electrolyte. 2016 , 4, 6972-6979	9
1685	Radio frequency magnetron sputtering of Li7La3Zr2O12 thin films for solid-state batteries. 2016 , 307, 684-689	85
1684	Fast Ion Conduction in Nanodimensional Lithium Silicate Glasses. 2016 , 120, 431-436	12
1683	Volumetric variation confinement: surface protective structure for high cyclic stability of lithium metal electrodes. 2016 , 4, 2427-2432	60
1682	Synthesis, structure, and electrochemical properties of crystalline LiâPâBâD solid electrolytes: Novel lithium-conducting oxysulfides of Li10GeP2S12 family. 2016 , 288, 229-234	38
1681	First principle study of Li X S 2 (X = Ga, In) as cathode materials for Li ion batteries. 2016 , 25, 028202	2
1680	Impedance spectroscopic study of the charge transfer resistance at the interface between a LiNi0.5Mn1.5O4 high-voltage cathode film and a LiNbO3 coating film. 2016 , 287, 8-12	29
1679	Insights on the fundamental lithium storage behavior of all-solid-state lithium batteries containing the LiNi0.8Co0.15Al0.05O2 cathode and sulfide electrolyte. 2016 , 307, 724-730	44
16 7 8	Rechargeable lithium semi-flow battery using Li7P3S11. 2016 , 288, 253-256	7
1677	Membranes for rechargeable lithium sulphur semi-flow batteries. 2016 , 51, 5556-5564	5
16 7 6	The effect of diamond-like carbon coating on LiNi0.8Co0.15Al0.05O2 particles for all solid-state lithium-ion batteries based on Li2Sâ P 2S5 glass-ceramics. 2016 , 314, 85-92	79
1675	Revealing the Intrinsic Li Mobility in the Li2MnO3 Lithium-Excess Material. 2016 , 28, 2081-2088	46
1674	Direct Observation of the Interfacial Instability of the Fast Ionic Conductor Li10GeP2S12 at the Lithium Metal Anode. 2016 , 28, 2400-2407	463
1673	Inorganic and organic hybrid solid electrolytes for lithium-ion batteries. 2016 , 18, 4236-4258	79
1672	Local structure and composition change at surface of lithium-ion conducting solid electrolyte. 2016 , 285, 41-46	7
1671	Lithium Diffusion Pathway in Li(1.3)Al(0.3)Ti(1.7)(PO4)3 (LATP) Superionic Conductor. 2016 , 55, 2941-5	131
1670	Structure analyses using X-ray photoelectron spectroscopy and X-ray absorption near edge structure for amorphous MS3 (M: Ti, Mo) electrodes in all-solid-state lithium batteries. 2016 , 313, 104-111	30

(2016-2016)

1669	Cubic phase behavior and lithium ion conductivity of Li7La3Zr2O12 prepared by co-precipitation synthesis for all-solid batteries. 2016 , 36, 279-283	18
1668	Low temperature synthesis of garnet type solid electrolyte by modified polymer complex process and its characterization. 2016 , 83, 309-315	13
1667	Insights into the Performance Limits of the Li7P3S11 Superionic Conductor: A Combined First-Principles and Experimental Study. 2016 , 8, 7843-53	130
1666	Li-ion conducting Li0.35La0.55TiO3 electrolyte thick films fabricated by aerosol deposition. 2016 , 68, 12-16	5
1665	Electrical Characterization of Ultrathin RF-Sputtered LiPON Layers for Nanoscale Batteries. 2016, 8, 7060-9	47
1664	Reaction mechanism studies towards effective fabrication of lithium-rich anti-perovskites Li3OX (X= Cl, Br). 2016 , 284, 14-19	58
1663	Elastic Properties of the Solid Electrolyte Li7La3Zr2O12 (LLZO). 2016 , 28, 197-206	299
1662	Computational and Experimental Investigations of Na-Ion Conduction in Cubic Na3PSe4. 2016 , 28, 252-258	83
1661	First principles study on electrochemical and chemical stability of solid electrolytealectrode interfaces in all-solid-state Li-ion batteries. 2016 , 4, 3253-3266	496
1660	Union operation image processing of data cubes separately processed by different objective filters and its application to void analysis in an all-solid-state lithium-ion battery. 2016 , 65, 191-8	2
1659	Li+ interstitials as the charge carriers in superionic lithium-rich anti-perovskites. 2016 , 4, 1586-1590	22
1658	Compliant glass-polymer hybrid single ion-conducting electrolytes for lithium batteries. 2016 , 113, 52-7	91
1657	Interphase formation and degradation of charge transfer kinetics between a lithium metal anode and highly crystalline Li7P3S11 solid electrolyte. 2016 , 286, 24-33	276
1656	Inorganic Solid-State Electrolytes for Lithium Batteries: Mechanisms and Properties Governing Ion Conduction. 2016 , 116, 140-62	1273
1655	Elastic Properties of Alkali Superionic Conductor Electrolytes from First Principles Calculations. 2016 , 163, A67-A74	188
1654	Lithium Superionic Conducting Oxysulfide Solid Electrolyte with Excellent Stability against Lithium Metal for All-Solid-State Cells. 2016 , 163, A96-A101	82
1653	Thin hybrid electrolyte based on garnet-type lithium-ion conductor Li7La3Zr2O12 for 12[V-class bipolar batteries. 2016 , 302, 283-290	52
1652	High Ionic Conductivity of Composite Solid Polymer Electrolyte via In Situ Synthesis of Monodispersed SiO2 Nanospheres in Poly(ethylene oxide). 2016 , 16, 459-65	535

1651	Fast lithium-ionic conduction in a new complex hydride-sulphide crystalline phase. 2016 , 52, 564-6	28
1650	5 V class LiNi0.5Mn1.5O4 positive electrode coated with Li3PO4 thin film for all-solid-state batteries using sulfide solid electrolyte. 2016 , 285, 79-82	86
1649	A new solid polymer electrolyte incorporating Li10GeP2S12 into a polyethylene oxide matrix for all-solid-state lithium batteries. 2016 , 301, 47-53	273
1648	Reactions at the electrode/electrolyte interface of all-solid-state lithium batteries incorporating LiâM (M = Sn, Si) alloy electrodes and sulfide-based solid electrolytes. 2016 , 285, 101-105	66
1647	Fabrication of all-solid-state lithium secondary batteries with amorphous TiS4 positive electrodes and Li7La3Zr2O12 solid electrolytes. 2016 , 285, 122-125	26
1646	Thermodynamic stability of sulfide electrolyte/oxide electrode interface in solid-state lithium batteries. 2016 , 285, 126-135	20
1645	Enhancement of the lithium-ion conductivity of LiBH4 by hydration. 2016 , 285, 47-50	16
1644	Oligosiloxanes with Silatrane Moieties for Use in Lithium-ion Conductive Matrices. 2017 , 9, 85-96	6
1643	Mesoporous Germanium Anode Materials for Lithium-Ion Battery with Exceptional Cycling Stability in Wide Temperature Range. 2017 , 13, 1603045	41
1642	Data mining of molecular dynamics data reveals Li diffusion characteristics in garnet LiLaZrO. 2017 , 7, 40769	43
1641	Nonaqueous Polyelectrolyte Solutions as Liquid Electrolytes with High Lithium Ion Transference Number and Conductivity. 2017 , 2, 481-487	54
1640	Synthesis and structure of novel lithium-ion conductor Li7Ge3PS12. 2017 , 246, 334-340	32
1639	Investigating the Dendritic Growth during Full Cell Cycling of Garnet Electrolyte in Direct Contact with Li Metal. 2017 , 9, 3808-3816	227
1638	Origin of the low grain boundary conductivity in lithium ion conducting perovskites: LiLaTiO. 2017 , 19, 5880-5887	69
1637	High-voltage and free-standing poly(propylene carbonate)/Li6.75La3Zr1.75Ta0.25O12 composite solid electrolyte for wide temperature range and flexible solid lithium ion battery. 2017 , 5, 4940-4948	284
1636	Enhancing the Lithium Ion Conductivity in Lithium Superionic Conductor (LISICON) Solid Electrolytes through a Mixed Polyanion Effect. 2017 , 9, 7050-7058	97
1635	Structural Stability Diagram of ALnPS Compounds (A = Na, K, Rb, Cs; Ln = Lanthanide). 2017 , 56, 1121-1131	23
1634	Research Progress in Improving the Cycling Stability of High-Voltage LiNiMnO Cathode in Lithium-Ion Battery. 2017 , 9, 22	74

1633	High performance lithium metal anode: Progress and prospects. 2017 , 7, 115-129	119
1632	Enhanced process and composition control for atomic layer deposition with lithium trimethylsilanolate. 2017 , 35, 01B133	11
1631	Li4PS4I: A Li+ Superionic Conductor Synthesized by a Solvent-Based Soft Chemistry Approach. 2017 , 29, 1830-1835	76
1630	Recent advances in all-solid-state rechargeable lithium batteries. 2017 , 33, 363-386	962
1629	Compliant Yet Brittle Mechanical Behavior of Li2Sâ B 2S5 Lithium-Ion-Conducting Solid Electrolyte. 2017 , 7, 1602011	144
1628	Impedance spectroscopy modeling of lithium borate with silica: A dispersed ionic conductor system. 2017 , 43, 6796-6806	2
1627	A stabilized high-energy Li-polyiodide semi-liquid battery with a dually-protected Li anode. 2017 , 347, 136-144	11
1626	Structural origin of massive improvement in Li-ion conductivity on transition from (Li2S)5(GeS2)(P2S5) glass to Li10GeP2S12 crystal. 2017 , 301, 163-169	12
1625	Electrolytes for Li- and Na-Ion Batteries: Concepts, Candidates, and the Role of Nanotechnology. 2017 , 1-43	7
1624	Exceptionally High Ionic Conductivity in Na P As S with Improved Moisture Stability for Solid-State Sodium-Ion Batteries. 2017 , 29, 1605561	122
1623	Metal borohydrides and derivatives - synthesis, structure and properties. 2017 , 46, 1565-1634	249
1622	Discovery-Synthesis, Design, and Prediction of Chalcogenide Phases. 2017 , 56, 3158-3173	102
1621	All-solid-state lithiumâBulfur batteries based on a newly designed Li7P2.9Mn0.1S10.7I0.3 superionic conductor. 2017 , 5, 6310-6317	108
1620	Synthesis and Ionic Conductivity Studies of In- and Y-Doped Li6Hf2O7as Solid-State Electrolyte for All-Solid State Li-Ion Batteries. 2017 , 164, A6395-A6400	6
1619	Core-Shell Nanoparticle Coating as an Interfacial Layer for Dendrite-Free Lithium Metal Anodes. 2017 , 3, 135-140	140
1618	A facile strategy to improve the electrochemical stability of a lithium ion conducting Li10GeP2S12 solid electrolyte. 2017 , 301, 59-63	29
1617	Energetics of metal ion adsorption on and diffusion through crown ethers: First principles study on two-dimensional electrolyte. 2017 , 301, 176-181	6
1616	Conductivity and electrochemical stability of perovskite-structured lithiumaßtrontiumaßiobiumaßafnium-oxide solid Li-ion conductors. 2017 , 28, 8621-8629	8

1615	Reviving the lithium metal anode for high-energy batteries. 2017 , 12, 194-206	3302
1614	Enhanced Li+ conduction in perovskite Li3xLa2/3â\?1/3â\ZxTiO3 solid-electrolytes via microstructural engineering. 2017 , 5, 6257-6262	70
1613	Lithium ion conductivity and dielectric relaxation in dendritic nanostructured LiTaO3 glassâʿBanocrystal composites. 2017 , 121, 094101	5
1612	In-Situ XPS Monitoring and Characterization of Electrochemically Prepared Au Nanoparticles in an Ionic Liquid. 2017 , 2, 478-486	22
1611	Effect of Mo6+ Substitution on Microstructure and Lithium Ionic Conductivity of Garnet-Type Li7La3Zr2O12 Solid Electrolytes by Field Assisted Sintering Technology. 2017 , 115-123	2
1610	Odyssey of Multivalent Cathode Materials: Open Questions and Future Challenges. 2017 , 117, 4287-4341	687
1609	Effects of Li 2 O-Al 2 O 3 -SiO 2 system glass on the microstructure and ionic conductivity of Li 7 La 3 Zr 2 O 12 solid electrolyte. 2017 , 193, 251-254	18
1608	Lithium battery chemistries enabled by solid-state electrolytes. 2017 , 2,	2006
1607	In Situ Formation of Stable Interfacial Coating for High Performance Lithium Metal Anodes. 2017 , 29, 3572-3579	87
1606	Ionic conductivities of lithium borohydride-lithium nitride composites. 2017 , 304, 150-155	14
1605	Lithium garnets: Synthesis, structure, Li + conductivity, Li + dynamics and applications. 2017 , 88, 325-411	216
1604	FePS3 electrodes in all-solid-state lithium secondary batteries using sulfide-based solid electrolytes. 2017 , 241, 370-374	25
1603	Possible Polymerization of PS4 at a Li3PS4/FePO4 Interface with Reduction of the FePO4 Phase. 2017 , 121, 9698-9704	24
1602	Superhalogen-based lithium superionic conductors. 2017 , 5, 13373-13381	40
1602 1601	Superhalogen-based lithium superionic conductors. 2017, 5, 13373-13381 Reducing Interfacial Resistance between Garnet-Structured Solid-State Electrolyte and Li-Metal Anode by a Germanium Layer. 2017, 29, 1606042	40 378
	Reducing Interfacial Resistance between Garnet-Structured Solid-State Electrolyte and Li-Metal Anode by a Germanium Layer. 2017 , 29, 1606042 Efficient Storing Energy Harvested by Triboelectric Nanogenerators Using a Safe and Durable	
1601	Reducing Interfacial Resistance between Garnet-Structured Solid-State Electrolyte and Li-Metal Anode by a Germanium Layer. 2017 , 29, 1606042 Efficient Storing Energy Harvested by Triboelectric Nanogenerators Using a Safe and Durable	378

1597	Garnet Solid Electrolyte Protected Li-Metal Batteries. 2017 , 9, 18809-18815	181
1596	A novel dischargeâtharge mechanism of a Sât 2S5 composite electrode without electrolytes in all-solid-state Li/S batteries. 2017 , 5, 11224-11228	38
1595	A nonvolatile memory device with very low power consumption based on the switching of a standard electrode potential. 2017 , 5, 046105	6
1594	Molten salt synthesis and characterization of fast ion conductor Li6.75La3Zr1.75Ta0.25O12. 2017 , 21, 2921-2928	16
1593	Study on (100-x)(70Li 2 S-30P 2 S 5)-xLi 2 ZrO 3 glass-ceramic electrolyte for all-solid-state lithium-ion batteries. 2017 , 356, 163-171	30
1592	Conformational Dynamics in an Organic Ionic Plastic Crystal. 2017 , 121, 5439-5446	23
1591	Effects of the microstructure of solid-electrolyte-coated LiCoO2 on its discharge properties in all-solid-state lithium batteries. 2017 , 5, 10658-10668	43
1590	Coatable Li SnS Solid Electrolytes Prepared from Aqueous Solutions for All-Solid-State Lithium-Ion Batteries. 2017 , 10, 2605-2611	68
1589	Synthesis, Structural Characterization, and Lithium Ion Conductivity of the Lithium Thiophosphate LiPS. 2017 , 56, 6681-6687	67
1588	Interfacial Processes and Influence of Composite Cathode Microstructure Controlling the Performance of All-Solid-State Lithium Batteries. 2017 , 9, 17835-17845	232
1587	Transparent flexible lithium ion conducting solid polymer electrolyte. 2017 , 5, 11152-11162	57
1586	Post-anneal effect on the structural and Li+ conduction properties in NaI - LiBH4 system. 2017 , 2, 389-394	6
1585	Benzotriazole as an electrolyte additive on lithium-ion batteries performance. 2017 , 53, 241-246	11
1584	Synergistic effect of processing and composition x on conductivity of xLi 2 S-(100 âlk)P 2 S 5 electrolytes. 2017 , 305, 1-6	22
1583	Structural and Electronic-State Changes of a Sulfide Solid Electrolyte during the Li Deinsertionâlhsertion Processes. 2017 , 29, 4768-4774	111
1582	Study of Lithium Silicide Nanoparticles as Anode Materials for Advanced Lithium Ion Batteries. 2017 , 9, 16071-16080	34
1581	Solid-State Lithium Metal Batteries Promoted by Nanotechnology: Progress and Prospects. 2017 , 2, 1385-139	4259
1580	(Electro)chemical expansion during cycling: monitoring the pressure changes in operating solid-state lithium batteries. 2017 , 5, 9929-9936	161

1579	Li+ Defects in a Solid-State Li Ion Battery: Theoretical Insights with a Li3OCl Electrolyte. 2017 , 29, 4330-4340	56
1578	Syntheses, Structures, and Characterization of Quaternary Tellurites, LiMTeO ($M = Al$, Ga, and Fe). 2017 , 56, 5873-5879	9
1577	High-voltage positive electrode materials for lithium-ion batteries. 2017, 46, 3006-3059	700
1576	Compatibility issues between electrodes and electrolytes in solid-state batteries. 2017 , 10, 1150-1166	196
1575	Atomic-scale surface modifications and novel electrode designs for high-performance sodium-ion batteries via atomic layer deposition. 2017 , 5, 10127-10149	46
1574	Surface and morphological investigation of the electrode/electrolyte properties in an all-solid-state battery using a Li2S-P2S5 solid electrolyte. 2017 , 38, 207-214	31
1573	Origin of Outstanding Phase and Moisture Stability in a NaPAsS Superionic Conductor. 2017 , 9, 16261-16269	38
1572	Holistic computational structure screening of more than 12 000 candidates for solid lithium-ion conductor materials. 2017 , 10, 306-320	177
1571	Electrochemical and structural evaluation for bulk-type all-solid-state batteries using Li4GeS4-Li3PS4 electrolyte coating on LiCoO2 particles. 2017 , 360, 328-335	46
1570	Relative Li-ion mobility mapping in Li0.33La0.56TiO3polycrystalline by electron backscatter diffraction and electrochemical strain microscopy. 2017 , 10, 061102	11
1569	Anode Improvement in Rechargeable Lithium-Sulfur Batteries. 2017 , 29, 1700542	154
1568	Lithium ion, lithium metal, and alternative rechargeable battery technologies: the odyssey for high energy density. 2017 , 21, 1939-1964	541
1567	Origin of fast ion diffusion in super-ionic conductors. 2017 , 8, 15893	365
1566	Preparation and characterization of glass solid electrolytes in the pseudoternary system Li 3 BO 3 -Li 2 SO 4 -Li 2 CO 3. 2017 , 308, 68-76	34
1565	In Situ Neutron Diffraction Studies of the Ion Exchange Synthesis Mechanism of LiMgPON: Evidence for a Hidden Phase Transition. 2017 , 139, 9192-9202	13
1564	A Lithium Amide-Borohydride Solid-State Electrolyte with Lithium-Ion Conductivities Comparable to Liquid Electrolytes. 2017 , 7, 1700294	72
1563	Capacity Fade in Solid-State Batteries: Interphase Formation and Chemomechanical Processes in Nickel-Rich Layered Oxide Cathodes and Lithium Thiophosphate Solid Electrolytes. 2017 , 29, 5574-5582	413
1562	Compositional introduction of lithium ions into conductive polyoxovanadateâBurfactant hybrid crystals. 2017 , 19, 3037-3043	4

1561	Quantum Mechanics Reactive Dynamics Study of Solid Li-Electrode/Li6PS5Cl-Electrolyte Interface. 2017 , 2, 1454-1459	58
1560	Polymeric ionic liquid-functionalized mesoporous silica nanoplates: a new high-performance composite polymer electrolyte for lithium batteries. 2017 , 245, 1010-1022	17
1559	Improving ionic conductivity by Mg-doping of A2SnO3 (A = Li+, Na+). 2017 , 308, 16-21	6
1558	Enhanced lithium-ion conductivity in a LiZr 2 (PO 4) 3 solid electrolyte by Al doping. 2017 , 43, S598-S602	24
1557	A Sandwich PVDF/HEC/PVDF Gel Polymer Electrolyte for Lithium Ion Battery. 2017, 245, 752-759	100
1556	Time resolved impedance spectroscopy analysis of lithium phosphorous oxynitride - LiPON layers under mechanical stress. 2017 , 359, 157-165	6
1555	Reviewâ P ractical Challenges Hindering the Development of Solid State Li Ion Batteries. 2017 , 164, A1731-A17	744 08
1554	Infiltration of Solution-Processable Solid Electrolytes into Conventional Li-Ion-Battery Electrodes for All-Solid-State Li-Ion Batteries. 2017 , 17, 3013-3020	205
1553	Enhancing ionic conductivity in composite polymer electrolytes with well-aligned ceramic nanowires. 2017 , 2,	520
1552	The long life-span of a Li-metal anode enabled by a protective layer based on the pyrolyzed N-doped binder network. 2017 , 5, 9339-9349	39
1551	Impedance characterization reveals mixed conducting interphases between sulfidic superionic conductors and lithium metal electrodes. 2017 , 352, 127-134	77
1550	Garnet-Type Fast Li-Ion Conductors with High Ionic Conductivities for All-Solid-State Batteries. 2017 , 9, 12461-12468	121
1549	Mechanochemical synthesis of high lithium ion conducting solid electrolytes in a Li2S-P2S5-Li3N system. 2017 , 304, 85-89	23
1548	Interface Stability of Argyrodite Li6PS5Cl toward LiCoO2, LiNi1/3Co1/3Mn1/3O2, and LiMn2O4 in Bulk All-Solid-State Batteries. 2017 , 29, 3883-3890	262
1547	All-solid-state thin film battery based on well-aligned slanted LiCoO 2 nanowires fabricated by glancing angle deposition. 2017 , 412, 537-544	16
1546	Solid-State Lithium-Sulfur Batteries Operated at 37 LC with Composites of Nanostructured LiLaZrO/Carbon Foam and Polymer. 2017 , 17, 2967-2972	297
1545	Ion dynamics in solid electrolytes for lithium batteries. 2017 , 38, 142-156	59
1544	Evolution at the Solid Electrolyte/Gold Electrode Interface during Lithium Deposition and Stripping. 2017 , 29, 3029-3037	83

1543	Lithium Metal Anodes with an Adaptive "Solid-Liquid" Interfacial Protective Layer. 2017, 139, 4815-4820	352
1542	The ionic conductivities, stabilities and ionic mobilities of xLiBH4-Li2NH (x 回 , 2, 4) composites as fast ion conductor. 2017 , 695, 2894-2901	6
1541	Tailored Li2Sâ P 2S5 glass-ceramic electrolyte by MoS2 doping, possessing high ionic conductivity for all-solid-state lithium-sulfur batteries. 2017 , 5, 2829-2834	127
1540	A Single-Phase, All-Solid-State Sodium Battery Using Na3â\V2â\Zrx(PO4)3 as the Cathode, Anode, and Electrolyte. 2017 , 4, 1600942	34
1539	Are All-Solid-State Lithium-Ion Batteries Really Safe?-Verification by Differential Scanning Calorimetry with an All-Inclusive Microcell. 2017 , 9, 1507-1515	104
1538	Gallium-Doped LiLaZrO Garnet-Type Electrolytes with High Lithium-Ion Conductivity. 2017 , 9, 1542-1552	166
1537	Multitopic ligand directed assembly of low-dimensional metal-chalcogenide organic frameworks. 2017 , 46, 1481-1486	3
1536	Fast Na+ Ion Conduction in NASICON-Type Na3.4Sc2(SiO4)0.4(PO4)2.6 Observed by 23Na NMR Relaxometry. 2017 , 121, 1449-1454	27
1535	High lithium ion conductivity in mechanically milled Nb-doped m-Li3Fe2(PO4)3. 2017, 699, 662-671	4
1534	Li-ion site disorder driven superionic conductivity in solid electrolytes: a first-principles investigation of £13PS4. 2017 , 5, 1153-1159	34
1533	Study of the Mechanisms of Internal Short Circuit in a Li/Li Cell by Synchrotron X-ray Phase Contrast Tomography. 2017 , 2, 94-104	71
1532	A long life 4 V class lithium-ion polymer battery with liquid-free polymer electrolyte. 2017 , 341, 257-263	22
1531	Cathode-electrolyte material interactions during manufacturing of inorganic solid-state lithium batteries. 2017 , 38, 197-206	42
1530	Li3Y(PS4)2 and Li5PS4Cl2: New Lithium Superionic Conductors Predicted from Silver Thiophosphates using Efficiently Tiered Ab Initio Molecular Dynamics Simulations. 2017 , 29, 2474-2484	68
1529	Li/Li7La3Zr2O12/LiFePO4 All-Solid-State Battery with Ultrathin Nanoscale Solid Electrolyte. 2017 , 121, 1431-1435	79
1528	Fire retardant, superionic solid state polymer electrolyte membranes for lithium ion batteries. 2017 , 15, 68-75	24
1527	Superior polymer backbone with poly(arylene ether) over polyamide for single ion conducting polymer electrolytes. 2017 , 525, 349-358	47
1526	Negating interfacial impedance in garnet-based solid-state Li metal batteries. <i>Nature Materials</i> , 2017 , 16, 572-579	1192

(2017-2017)

1525	Cation Mixing Properties toward Co Diffusion at the LiCoO Cathode/Sulfide Electrolyte Interface in a Solid-State Battery. 2017 , 9, 286-292	77
1524	Redox activity of argyrodite Li6PS5Cl electrolyte in all-solid-state Li-ion battery: An XPS study. 2017 , 300, 78-85	132
1523	Conformal, Nanoscale ZnO Surface Modification of Garnet-Based Solid-State Electrolyte for Lithium Metal Anodes. 2017 , 17, 565-571	416
1522	LithiumâSulfur Battery Electrolytes. 2017 , 149-194	
1521	The Lithium Electrode Revisited through the Prism of LiâB Batteries. 2017 , 195-273	1
1520	Interaction of solid and polymeric lithium electrolytes with composites based on carbon fibers and silicon nanoclusters: Quantum-chemical modeling. 2017 , 62, 1360-1365	3
1519	Role of Point Defects in Spinel Mg Chalcogenide Conductors. 2017 , 29, 9657-9667	34
1518	Mechanocaloric effects in superionic thin films from atomistic simulations. 2017 , 8, 963	39
1517	Recent Advancements in Li-Ion Conductors for All-Solid-State Li-Ion Batteries. 2017, 2, 2734-2751	168
1516	Fe3S4@Li7P3S11 nanocomposites as cathode materials for all-solid-state lithium batteries with improved energy density and low cost. 2017 , 5, 23919-23925	53
1515	Solid Fluoride Electrolytes and Their Composite with Carbon: Issues and Challenges for Rechargeable Solid State Fluoride-Ion Batteries. 2017 , 121, 24962-24970	32
1514	Free-Standing Hollow Carbon Fibers as High-Capacity Containers for Stable Lithium Metal Anodes. 2017 , 1, 563-575	243
1513	A novel class of halogen-free, super-conductive lithium argyrodites: Synthesis and characterization. 2017 , 366, 151-160	16
1512	Analysis of structural and thermal stability in the positive electrode for sulfide-based all-solid-state lithium batteries. 2017 , 367, 42-48	23
1511	Li-rich antiperovskite superionic conductors based on cluster ions. 2017 , 114, 11046-11051	76
1510	Mechanical and Thermal Failure Induced by Contact between a Li1.5Al0.5Ge1.5(PO4)3 Solid Electrolyte and Li Metal in an All Solid-State Li Cell. 2017 , 29, 8611-8619	137
1509	Instantaneous preparation of high lithium-ion conducting sulfide solid electrolyte Li7P3S11 by a liquid phase process. 2017 , 7, 46499-46504	58
1508	Facile synthesis of NASICON-type Li1.3Al0.3Ti1.7(PO4)3 solid electrolyte and its application for enhanced cyclic performance in lithium ion batteries through the introduction of an artificial Li3PO4 SEI layer. 2017 , 7, 46545-46552	47

1507	Metal Borohydrides as Electrolytes for Solid-State Li, Na, Mg, and Ca Batteries: A First-Principles Study. 2017 , 29, 9308-9319	80
1506	Recent advances in solid polymer electrolytes for lithium batteries. 2017 , 10, 4139-4174	233
1505	Local Structures and Li Ion Dynamics in a Li10SnP2S12-Based Composite Observed by Multinuclear Solid-State NMR Spectroscopy. 2017 , 121, 23370-23376	22
1504	Ionic Conduction and Applications. 2017 , 1-1	4
1503	Promising Routes to a High Li+ Transference Number Electrolyte for Lithium Ion Batteries. 2017 , 2, 2563-2575	5 347
1502	Redox-active cathode interphases in solid-state batteries. 2017 , 5, 22750-22760	152
1501	Direct observation of a non-isothermal crystallization process in precursor Li10GeP2S12 glass electrolyte. 2017 , 369, 57-64	15
1500	Amorphous modified silyl-terminated 3D polymer electrolyte for high-performance lithium metal battery. 2017 , 41, 646-653	67
1499	Charge Transport in Electronic-Ionic Composites. 2017 , 8, 5385-5389	9
1498	Influence of Lattice Dynamics on Na+ Transport in the Solid Electrolyte Na3PS4â⊠Sex. 2017 , 29, 8859-8869	87
1497	Theoretical design of solid electrolytes with superb ionic conductivity: alloying effect on Li+transportation in cubic Li6PA5X chalcogenides. 2017 , 5, 21846-21857	55
1496	Ultrafast Charging High Capacity Asphalt-Lithium Metal Batteries. 2017 , 11, 10761-10767	70
1495	Recent progress on interface formation in all-solid-state batteries. 2017, 6, 108-114	29
1494	Stress-Mediated Enhancement of Ionic Conductivity in Fast-Ion Conductors. 2017 , 9, 38773-38783	19
1493	Impact of CuS on the crystallization kinetics of Na 2 S-P 2 S 5 glasses. 2017 , 477, 31-41	12
1492	Accessing the bottleneck in all-solid state batteries, lithium-ion transport over the solid-electrolyte-electrode interface. 2017 , 8, 1086	212
1491	Transforming from planar to three-dimensional lithium with flowable interphase for solid lithium metal batteries. 2017 , 3, eaao0713	102
1490	Modifying Specific Li-Sites of LiNH2 by Na: Study of Multication Hydride Li3Na(NH2)4 in Electrochemical Applications. 2017 , 121, 23906-23910	3

1489	Recent progress in solid-state electrolytes for alkali-ion batteries. 2017 , 62, 1473-1490	51
1488	Smart Electrochemical Energy Storage Devices with Self-Protection and Self-Adaptation Abilities. 2017 , 29, 1703040	57
1487	On/off switchable electronic conduction in intercalated metal-organic frameworks. 2017, 3, e1603103	35
1486	Preparation, characterization and ionic conductivity studies of composite sulfide solid electrolyte. 2017 , 727, 1136-1141	11
1485	All-Solid-State Battery Electrode Sheets Prepared by a Slurry Coating Process. 2017 , 164, A2474-A2478	83
1484	Metal Thio- and Selenophosphates as Multifunctional van der Waals Layered Materials. 2017 , 29, 1602852	156
1483	Synthesis of an Environmentally Friendly Alkyl Carbonate Electrolyte Based on Glycerol for Lithium-Ion Supercapacitor Operation at 100 LC. 2017 , 1, 1700067	5
1482	Low temperature pulsed laser deposition of garnet Li6.4La3Zr1.4Ta0.6O12 films as all solid-state lithium battery electrolytes. 2017 , 365, 43-52	54
1481	Advances in lithiumâBulfur batteries. 2017 , 121, 1-29	77
1480	Characterization of sulfur nanocomposite electrodes containing phosphorus sulfide for high-capacity all-solid-state Na/S batteries. 2017 , 311, 6-13	24
1479	In Situ Neutron Depth Profiling of Lithium Metal-Garnet Interfaces for Solid State Batteries. 2017 , 139, 14257-14264	117
1478	Single-step wet-chemical fabrication of sheet-type electrodes from solid-electrolyte precursors for all-solid-state lithium-ion batteries. 2017 , 5, 20771-20779	83
1477	Variation of ionic conductivity in a plastic-crystalline mixture. 2017 , 147, 104502	5
1476	Tailored perovskite Li0.33La0.56TiO3 via an adipic acid-assisted solution process: A promising solid electrolyte for lithium batteries. 2017 , 729, 338-343	11
1475	Single-Phase All-Solid-State Lithium-Ion Battery Using Li3V2(PO4)3 as the Cathode, Anode, and Electrolyte. 2017 , 2, 7925-7929	10
1474	Revealing the relation between the structure, Li-ion conductivity and solid-state battery performance of the argyrodite Li6PS5Br solid electrolyte. 2017 , 5, 21178-21188	52
1473	Progress in the Development of Sodium-Ion Solid Electrolytes. 2017 , 1, 1700219	123
1472	A Review of Inactive Materials and Components of Flexible Lithium-Ion Batteries. 2017 , 1, 1700061	28

1471 The Use of Lithium (Poly)sulfide Species in LiâB Batteries. **2017**, 105-148

1470	The Detrimental Effects of Carbon Additives in LiGePS-Based Solid-State Batteries. 2017 , 9, 35888-35896	169
1469	Enhanced energy density and electrochemical performance of all-solid-state lithium batteries through microstructural distribution of solid electrolyte. 2017 , 43, 15952-15958	23
1468	Electrochemical performance of all-solid-state lithium batteries using inorganic lithium garnets particulate reinforced PEO/LiClO4 electrolyte. 2017 , 253, 430-438	99
1467	Study on xLiBH4-NaBH4 (xଢ଼ିଘ.6, 2.3, and 4) composites with enhanced lithium ionic conductivity. 2017 , 729, 936-941	8
1466	Construction of interconnected micropores in poly(arylene ether) based single ion conducting blend polymer membranes via vapor-induced phase separation. 2017 , 544, 47-57	29
1465	Fluorite-type coordination compound as iodide ion conductor: crystal structure and ionic conductivity. 2017 , 46, 12916-12922	1
1464	Ad hoc solid electrolyte on acidized carbon nanotube paper improves cycle life of lithiumâBulfur batteries. 2017 , 10, 2544-2551	64
1463	Single-Ion Li, Na, and Mg Solid Electrolytes Supported by a Mesoporous Anionic Cu-Azolate Metal-Organic Framework. 2017 , 139, 13260-13263	156
1462	Construction of All-Solid-State Batteries based on a Sulfur-Graphene Composite and Li Si P S Cl Solid Electrolyte. 2017 , 23, 13950-13956	52
1461	Inverted battery design as ion generator for interfacing with biosystems. 2017 , 8, 15609	17
1460	Selection of Binder and Solvent for Solution-Processed All-Solid-State Battery. 2017 , 164, A2075-A2081	71
1459	Influence of Lattice Polarizability on the Ionic Conductivity in the Lithium Superionic Argyrodites LiPSX (X = Cl, Br, I). 2017 , 139, 10909-10918	304
1458	Narrowing the Gap between Theoretical and Practical Capacities in Li-Ion Layered Oxide Cathode Materials. 2017 , 7, 1602888	315
1457	The lithium ionic conductivity of 2LiBH4-MgH2 composite as solid electrolyte. 2017 , 83, 62-65	6
1456	LiF assisted synthesis of LiTi 2 (PO 4) 3 solid electrolyte with enhanced ionic conductivity. 2017 , 309, 22-26	28
1455	Computational Prediction and Evaluation of Solid-State Sodium Superionic Conductors Na7P3X11 (X = O, S, Se). 2017 , 29, 7475-7482	43
1454	Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review. 2017 , 117, 10403-10473	2918

1453	Pair distribution function analysis of sulfide glassy electrolytes for all-solid-state batteries: Understanding the improvement of ionic conductivity under annealing condition. 2017 , 7, 6972	39
1452	High Capacity, Superior Cyclic Performances in All-Solid-State Lithium-Ion Batteries Based on 78LiS-22PS Glass-Ceramic Electrolytes Prepared via Simple Heat Treatment. 2017 , 9, 28542-28548	36
1451	Impedance Spectroscopy Analysis of the Lithium Ion Transport through the Li7La3Zr2O12/P(EO)20Li Interface. 2017 , 164, A2298-A2303	43
1450	Synthesis, Structure, and Li-Ion Conductivity of LiLa(BH4)3X, X = Cl, Br, I. 2017 , 121, 19010-19021	28
1449	Phase Composition, Density, and Ionic Conductivity of the LiLaZrO-Based Composites with LiPO Glass Addition. 2017 , 56, 9880-9891	17
1448	Using First-Principles Calculations for the Advancement of Materials for Rechargeable Batteries. 2017 , 27, 1702887	25
1447	Iron oxyfluorides as lithium-free cathode materials for solid-state Li metal batteries. 2017 , 5, 18464-18468	11
1446	Reorientational Hydrogen Dynamics in Complex Hydrides with Enhanced Li+ Conduction. 2017 , 121, 17693-1	7702
1445	Lithium ion conductivity in Li2Sâ B 2S5 glasses âlbuilding units and local structure evolution during the crystallization of superionic conductors Li3PS4, Li7P3S11 and Li4P2S7. 2017 , 5, 18111-18119	159
1444	Solid state ionics: a Japan perspective. 2017 , 18, 504-527	19
1444	Solid state ionics: a Japan perspective. 2017 , 18, 504-527 Room-Temperature Performance of Poly(Ethylene Ether Carbonate)-Based Solid Polymer Electrolytes for All-Solid-State Lithium Batteries. 2017 , 7, 17482	19 46
	Room-Temperature Performance of Poly(Ethylene Ether Carbonate)-Based Solid Polymer	
1443	Room-Temperature Performance of Poly(Ethylene Ether Carbonate)-Based Solid Polymer Electrolytes for All-Solid-State Lithium Batteries. 2017 , 7, 17482 Solid polymer electrolytes incorporating cubic Li7La3Zr2O12 for all-solid-state lithium	46
1443	Room-Temperature Performance of Poly(Ethylene Ether Carbonate)-Based Solid Polymer Electrolytes for All-Solid-State Lithium Batteries. 2017, 7, 17482 Solid polymer electrolytes incorporating cubic Li7La3Zr2O12 for all-solid-state lithium rechargeable batteries. 2017, 258, 1106-1114	46
1443 1442 1441	Room-Temperature Performance of Poly(Ethylene Ether Carbonate)-Based Solid Polymer Electrolytes for All-Solid-State Lithium Batteries. 2017, 7, 17482 Solid polymer electrolytes incorporating cubic Li7La3Zr2O12 for all-solid-state lithium rechargeable batteries. 2017, 258, 1106-1114 The crystal structure and sodium disorder of high-temperature polymorph ENa3PS4. 2017, 5, 25025-25030 OrderâDisorder Transitions and Superionic Conductivity in the Sodium nido-Undeca(carba)borates.	46 130 32
1443 1442 1441 1440	Room-Temperature Performance of Poly(Ethylene Ether Carbonate)-Based Solid Polymer Electrolytes for All-Solid-State Lithium Batteries. 2017, 7, 17482 Solid polymer electrolytes incorporating cubic Li7La3Zr2O12 for all-solid-state lithium rechargeable batteries. 2017, 258, 1106-1114 The crystal structure and sodium disorder of high-temperature polymorph ENa3PS4. 2017, 5, 25025-25030 OrderâDisorder Transitions and Superionic Conductivity in the Sodium nido-Undeca(carba)borates. 2017, 29, 10496-10509 The First Quinary Rare Earth Thiophosphates: Cs5Ln3X3(P2S6)2(PS4) (Ln = La, Ce, X = Br, Cl) and the	46 130 32 39
1443 1442 1441 1440 1439	Room-Temperature Performance of Poly(Ethylene Ether Carbonate)-Based Solid Polymer Electrolytes for All-Solid-State Lithium Batteries. 2017, 7, 17482 Solid polymer electrolytes incorporating cubic Li7La3Zr2O12 for all-solid-state lithium rechargeable batteries. 2017, 258, 1106-1114 The crystal structure and sodium disorder of high-temperature polymorph ENa3PS4. 2017, 5, 25025-25030 OrderâDisorder Transitions and Superionic Conductivity in the Sodium nido-Undeca(carba)borates. 2017, 29, 10496-10509 The First Quinary Rare Earth Thiophosphates: Cs5Ln3X3(P2S6)2(PS4) (Ln = La, Ce, X = Br, Cl) and the Quasi-Quaternary Cs10Y4Cl10(P2S6)3. 2017, 643, 1818-1823	46 130 32 39

1435	Reviving Lithium-Metal Anodes for Next-Generation High-Energy Batteries. 2017, 29, 1700007	641
1434	Superionic Conductors: Li10+[SnySi1â]]1+P2âB12 with a Li10GeP2S12-type Structure in the Li3PS4â[li4SnS4â[li4SiS4 Quasi-ternary System. 2017 , 29, 5858-5864	94
1433	Revealing Nanoscale Passivation and Corrosion Mechanisms of Reactive Battery Materials in Gas Environments. 2017 , 17, 5171-5178	62
1432	Chemically Evolved Composite Lithium-Ion Conductors with Lithium Thiophosphates and Nickel Sulfides. 2017 , 2, 1740-1745	20
1431	Advances in electrode materials for Li-based rechargeable batteries. 2017 , 7, 33789-33811	22
1430	Polymer-Rich Composite Electrolytes for All-Solid-State Li-S Cells. 2017 , 8, 3473-3477	85
1429	Solid polymer electrolyte based on thermoplastic polyurethane and its application in all-solid-state lithium ion batteries. 2017 , 309, 15-21	27
1428	Metal-organic chemical vapor deposition enabling all-solid-state Li-ion microbatteries: A short review. 2017 , 38, 230-247	17
1427	Relevance of solid electrolytes for lithium-based batteries: A realistic view. 2017 , 38, 128-141	71
1426	Direct observation of a non-crystalline state of LiS-PS solid electrolytes. 2017 , 7, 4142	31
1425	Dendrite-Free Lithium Deposition for Lithium Metal Anodes with Interconnected Microsphere Protection. 2017 , 29, 5906-5914	42
1424	Entropic crossovers in superionic fluorites from specific heat. 2017 , 23, 1043-1047	7
1423	On the way to high-conductivity single lithium-ion conductors. 2017 , 21, 1879-1905	53
1422	Effects of B2O3 on microstructure and ionic conductivity of Li6.5La3Zr1.5Nb0.5O12 solid electrolyte. 2017 , 43, 11879-11884	20
1421	Oxysulfide LiAlSO: A Lithium Superionic Conductor from First Principles. 2017 , 118, 195901	46
1420	In Situ Formation of Polysulfonamide Supported Poly(ethylene glycol) Divinyl Ether Based Polymer Electrolyte toward Monolithic Sodium Ion Batteries. 2017 , 13, 1601530	42
1419	xAgl-(1-x)MPO3 [M = Ag, Li) Superionic Composite Glasses and Their Current Issues. 2017 , 571-598	1
1418	Li-S and Li-O2 Batteries with High Specific Energy. 2017 ,	6

1417	Liäß and LiäØ2 Batteries with High Specific Energy. 2017 , 1-48	3
1416	Flexible and Stretchable Energy Storage: Recent Advances and Future Perspectives. 2017 , 29, 1603436	725
1415	Data-Driven First-Principles Methods for the Study and Design of Alkali Superionic Conductors. 2017 , 29, 281-288	120
1414	Lithium Metal Anodes and Rechargeable Lithium Metal Batteries. 2017,	62
1413	A high-performance all-metallocene-based, non-aqueous redox flow battery. 2017 , 10, 491-497	155
1412	High Coulombic Efficiency of Lithium Plating/Stripping and Lithium Dendrite Prevention. 2017, 45-152	2
1411	Parametric study of dry coating process of electrode particle with model material of sulfide solid electrolytes for all-solid-state battery. 2017 , 305, 241-249	12
1410	Anisotropic Li+ ion conductivity in a large single crystal of a Co(III) coordination complex. 2017 , 4, 79-83	9
1409	Extending the Life of Lithium-Based Rechargeable Batteries by Reaction of Lithium Dendrites with a Novel Silica Nanoparticle Sandwiched Separator. 2017 , 29, 1603987	164
1408	Hybrid solid electrolytes with excellent electrochemical properties and their applications in all-solid-state cells. 2017 , 23, 2603-2611	19
1407	Effect of excess Li2S on electrochemical properties of amorphous li3ps4 films synthesized by pulsed laser deposition. 2017 , 100, 746-753	13
1406	Lithium Metal Anodes: A Recipe for Protection. 2017 , 1, 649-650	31
1405	Visualization of Structures and Li-Ion Conduction Pathways in the Li2S-P2S5 System Using Neutron Scattering. 2017 , 59, 230-237	
1404	Synthesis and characterization of lithium-ion-conductive glass-ceramics of lithium chloroboracite Li4+xB7O12+x/2Cl ($x = 0$ %ndash;1). 2017 , 125, 348-352	7
1403	Cubic Rocksalt Li2SnS3 and a Solid Solution with Li3NbS4 Prepared by Mechanochemical Synthesis. 2017 , 85, 580-584	7
1402	A review of solid electrolytes for safe lithium-sulfur batteries. 2017 , 60, 1508-1526	79
1401	Materials and Life Science Experimental Facility (MLF) at the Japan Proton Accelerator Research Complex II: Neutron Scattering Instruments. 2017 , 1, 9	42
1400	Ion Conducting Materials: Superionic Conductors and Solid-State Ionics. 2017 , 293-313	Ο

1399	Electrical and mechanical properties of glass and glass-ceramic electrolytes in the system Li3BO3–Li2SO4. 2017 , 125, 433-437	37
1398	High magnesium mobility in ternary spinel chalcogenides. 2017 , 8, 1759	137
1397	Performance quantification of latest generation Li-ion batteries in wide temperature range. 2017,	2
1396	Recent Progress of Battery Materials. 2017 , 56, 135-139	
1395	Defect Chemistry and Its Relevance for Ionic Conduction and Reactivity. 2017, 665-701	2
1394	Lithium distribution analysis in all-solid-state lithium battery using microbeam particle-induced X-ray emission and particle-induced gamma-ray emission techniques. 2017 , 27, 11-20	4
1393	Complex Hydride as a Novel Solid Electrolyte and Its Application to an All-solid-state Battery. 2017 , 56, 448-452	
1392	Electrical Energy Storage: Batteries. 2017 , 1-24	
1391	Tuning mobility and stability of lithium ion conductors based on lattice dynamics. 2018 , 11, 850-859	105
1390	Anti-perovskite cathodes for lithium batteries. 2018 , 6, 5185-5192	30
1390 1389	Anti-perovskite cathodes for lithium batteries. 2018, 6, 5185-5192 Promises, Challenges, and Recent Progress of Inorganic Solid-State Electrolytes for All-Solid-State Lithium Batteries. 2018, 30, e1705702	30 506
	Promises, Challenges, and Recent Progress of Inorganic Solid-State Electrolytes for All-Solid-State	
1389	Promises, Challenges, and Recent Progress of Inorganic Solid-State Electrolytes for All-Solid-State Lithium Batteries. 2018 , 30, e1705702 Aqueous lithium-air batteries with a lithium-ion conducting solid electrolyte	506
1389 1388	Promises, Challenges, and Recent Progress of Inorganic Solid-State Electrolytes for All-Solid-State Lithium Batteries. 2018, 30, e1705702 Aqueous lithium-air batteries with a lithium-ion conducting solid electrolyte Li1.3Al0.5Nb0.2Ti1.3(PO4)3. 2018, 317, 136-141 Progress of the Interface Design in All-Solid-State Liâß Batteries. 2018, 28, 1707533	506
1389 1388 1387	Promises, Challenges, and Recent Progress of Inorganic Solid-State Electrolytes for All-Solid-State Lithium Batteries. 2018, 30, e1705702 Aqueous lithium-air batteries with a lithium-ion conducting solid electrolyte Li1.3Al0.5Nb0.2Ti1.3(PO4)3. 2018, 317, 136-141 Progress of the Interface Design in All-Solid-State Liâß Batteries. 2018, 28, 1707533	506 14 140
1389 1388 1387	Promises, Challenges, and Recent Progress of Inorganic Solid-State Electrolytes for All-Solid-State Lithium Batteries. 2018, 30, e1705702 Aqueous lithium-air batteries with a lithium-ion conducting solid electrolyte Li1.3Al0.5Nb0.2Ti1.3(PO4)3. 2018, 317, 136-141 Progress of the Interface Design in All-Solid-State Liâß Batteries. 2018, 28, 1707533 Engineering of lithium-metal anodes towards a safe and stable battery. 2018, 14, 22-48	506 14 140 165
1389 1388 1387 1386	Promises, Challenges, and Recent Progress of Inorganic Solid-State Electrolytes for All-Solid-State Lithium Batteries. 2018, 30, e1705702 Aqueous lithium-air batteries with a lithium-ion conducting solid electrolyte Li1.3Al0.5Nb0.2Ti1.3(PO4)3. 2018, 317, 136-141 Progress of the Interface Design in All-Solid-State LiâB Batteries. 2018, 28, 1707533 Engineering of lithium-metal anodes towards a safe and stable battery. 2018, 14, 22-48 Fabrication of Li7La3Zr2O12 fibers using bio-mass template Kapok. 2018, 217, 271-275 High Capacity and Superior Cyclic Performances of All-Solid-State Lithium Batteries Enabled by a	506 14 140 165 8

1381	Recent progress and perspective on lithium metal anode protection. 2018 , 14, 199-221	140
1380	Synthesis and Electrochemical Properties of I4 -Type Li1+2xZn1â⊠PS4 Solid Electrolyte. 2018 , 30, 2236-2244	24
1379	Correlating Transport and Structural Properties in LiAl Ge(PO) (LAGP) Prepared from Aqueous Solution. 2018 , 10, 10935-10944	52
1378	High Ion-Conducting Solid-State Composite Electrolytes with Carbon Quantum Dot Nanofillers. 2018 , 5, 1700996	94
1377	On the chemistry and electrochemistry of LiPON breakdown. 2018 , 6, 4848-4859	32
1376	Mechanical Properties of Li2Sâ P 2S5 Glasses with Lithium Halides and Application in All-Solid-State Batteries. 2018 , 1, 1002-1007	89
1375	Highly Crystalline Layered VS Nanosheets for All-Solid-State Lithium Batteries with Enhanced Electrochemical Performances. 2018 , 10, 10053-10063	61
1374	Sulfide solid electrolytes for all-solid-state lithium batteries: Structure, conductivity, stability and application. 2018 , 14, 58-74	228
1373	Interphase Engineering Enabled All-Ceramic Lithium Battery. 2018 , 2, 497-508	272
1372	High-Performance Anode Materials for Rechargeable Lithium-Ion Batteries. 2018, 1, 35-53	334
1371	Li metal batteries and solid state batteries benefiting from halogen-based strategies. 2018 , 14, 100-117	79
1370	Ab initio molecular dynamics study of 1-D superionic conduction and phase transition in Eucryptite. 2018 , 6, 5052-5064	13
1369	A single-phase all-solid-state lithium battery based on LiCrTi(PO) for high rate capability and low temperature operation. 2018 , 54, 3178-3181	9
1368	Design Strategies, Practical Considerations, and New Solution Processes of Sulfide Solid Electrolytes for All-Solid-State Batteries. 2018 , 8, 1800035	269
1367	New P2-Type Honeycomb-Layered Sodium-Ion Conductor: NaMgTeO. 2018 , 10, 15760-15766	30
1366	The role of the solid electrolyte interphase layer in preventing Li dendrite growth in solid-state batteries. 2018 , 11, 1803-1810	220
1365	Composite Sulfur Electrode for All-solid-state LithiumâBulfur Battery with Li2SâDeS2âP2S5-based Thio-LISICON Solid Electrolyte. 2018 , 86, 1-5	17
1364	Enhanced electrochemical performance of Li4Ti5O12 through in-situ coating 70Li2S-30P2S5 solid electrolyte for all-solid-state lithium batteries. 2018 , 752, 8-13	17

1363	Lithium diffusion in LiFeO. 2018 , 8, 5832	28
1362	Nanoporous and lyophilic battery separator from regenerated eggshell membrane with effective suppression of dendritic lithium growth. 2018 , 14, 258-266	41
1361	High ion conductive Sb2O5-doped ⊞i3PS4 with excellent stability against Li for all-solid-state lithium batteries. 2018 , 389, 140-147	62
1360	LithiumâBulfur Batteries: State of the Art and Future Directions. 2018 , 1, 1783-1814	74
1359	Crystallization behavior of the LiS-PS glass electrolyte in the LiNiMnCoO positive electrode layer. 2018 , 8, 6214	22
1358	Growth of self-textured Ga3+-substituted Li7La3Zr2O12 ceramics by solid state reaction and their significant enhancement in ionic conductivity. 2018 , 112, 113901	40
1357	Local Tetragonal Structure of the Cubic Superionic Conductor NaPS. 2018 , 57, 4739-4744	70
1356	Synthesis and Electrochemical Characterization of a Glass-Ceramic Li7P2S8I Solid Electrolyte for All-Solid-State Li-Ion Batteries. 2018 , 165, A957-A962	32
1355	Revisiting the Role of Polysulfides in Lithium-Sulfur Batteries. 2018 , 30, e1705590	291
1354	Advancing Lithium Metal Batteries. 2018, 2, 833-845	620
1353	Statistical variances of diffusional properties from ab initio molecular dynamics simulations. 2018 , 4,	143
1352	The application of synchrotron X-ray techniques to the study of rechargeable batteries. 2018 , 27, 1566-1583	38
1351	The effect of sintering process on lithium ionic conductivity of LiAlLaZrO garnet produced by solid-state synthesis 2018 , 8, 13083-13088	26
1350	Challenges and perspectives of garnet solid electrolytes for all solid-state lithium batteries. 2018 , 389, 120-134	236
1349	Review on solid electrolytes for all-solid-state lithium-ion batteries. 2018 , 389, 198-213	593
1348	Particle Morphology and Lithium Segregation to Surfaces of the Li7La3Zr2O12 Solid Electrolyte. 2018 , 30, 3019-3027	54
1347	A K2Fe4O7 superionic conductor for all-solid-state potassium metal batteries. 2018 , 6, 8413-8418	50
1346	3D lithium metal anodes hosted in asymmetric garnet frameworks toward high energy density batteries. 2018 , 14, 376-382	73

1345 Summary report of CALPHAD XLV - Awaji Island, Japan, 2016. **2018**, 61, 288-349

1344	Bottleneck of Diffusion and Inductive Effects in Li10Ge1â⊠SnxP2S12. 2018 , 30, 1791-1798	78
1343	Germanium Thin Film Protected Lithium Aluminum Germanium Phosphate for Solid-State Li Batteries. 2018 , 8, 1702374	146
1342	Partial nitridation of Li4SiO4 and ionic conductivity of Li4.1SiO3.9N0.1. 2018 , 44, 9058-9062	4
1341	Improvement of ionic conductivity in Li3.6Si0.6V0.4O4 ceramic inorganic electrolyte by addition of LiBO2 glass for Li ion battery application. 2018 , 265, 65-70	16
1340	A quaternary sodium superionic conductor - Na10.8Sn1.9PS11.8. 2018 , 47, 325-330	45
1339	The interfacial behaviours of all-solid-state lithium ion batteries. 2018 , 44, 7319-7328	33
1338	Ionic conduction and vibrational characteristics of Al3+ modified monoclinic LiZr2(PO4)3. 2018 , 263, 533-543	13
1337	Solid Electrolyte Layers by Solution Deposition. 2018 , 5, 1701328	35
1336	Recent Progress of the Solid-State Electrolytes for High-Energy Metal-Based Batteries. 2018 , 8, 1702657	577
1335	Configuring PSx tetrahedral clusters in Li-excess Li7P3S11 solid electrolyte. 2018 , 6, 047902	8
1334	Enhancing lithium-ion conductivity in NASICON glass-ceramics by adding yttria. 2018 , 20, 1375-1382	21
1333	Designing Safe Electrolyte Systems for a High-Stability LithiumâBulfur Battery. 2018 , 8, 1702348	210
1332	Synthesis and Structures of Novel Solid-State Electrolytes. 2018 , 279-298	
1331	All-Solid-State Batteries with Thick Electrode Configurations. 2018 , 9, 607-613	114
1330	Novel stable structure of Li3PS4 predicted by evolutionary algorithm under high-pressure. 2018 , 8, 015008	5
1329	Correlation of Structure and Fast Ion Conductivity in the Solid Solution Series Li1+2xZn1â⊠PS4. 2018 , 30, 592-596	32
1328	Polymorphism in Li4Zn(PO4)2 and Stabilization of its Structural Disorder to Improve Ionic Conductivity. 2018 , 30, 1379-1390	10

1327	High-Pressure Phase Diagram and Superionicity of Alkaline Earth Metal Difluorides. 2018, 122, 1267-1279	19
1326	Preparation of sulfide solid electrolytes in the Li2SâB2S5 system by a liquid phase process. 2018 , 5, 501-508	32
1325	Graphene oxide as a filler to improve the performance of PAN-LiClO4 flexible solid polymer electrolyte. 2018 , 315, 7-13	70
1324	Hybrid solid electrolytes composed of poly(1,4-butylene adipate) and lithium aluminum germanium phosphate for all-solid-state Li/LiNi0.6Co0.2Mn0.2O2 cells. 2018 , 315, 65-70	25
1323	Interface Re-Engineering of LiGePS Electrolyte and Lithium anode for All-Solid-State Lithium Batteries with Ultralong Cycle Life. 2018 , 10, 2556-2565	148
1322	Li+ ion doping into KI-KBH4 solid solvent systems: The role of the BH4âlanion. 2018 , 735, 1291-1296	4
1321	Cruising in ceramicsâdiscovering new structures for all-solid-state batteriesâdundamentals, materials, and performances. 2018 , 24, 639-660	33
1320	Vacancy-Controlled Na Superion Conduction in Na Sn PS. 2018 , 57, 1351-1355	103
1319	Fast Lithium-Ion Conduction in Atom-Deficient closo-Type Complex Hydride Solid Electrolytes. 2018 , 30, 386-391	44
1318	Origin of the Phase Transition in Lithium Garnets. 2018 , 122, 1963-1972	24
1317	Uniform Lithium Nucleation/Growth Induced by Lightweight Nitrogen-Doped Graphitic Carbon Foams for High-Performance Lithium Metal Anodes. 2018 , 30, 1706216	315
1316	Vacancy-Controlled Na+ Superion Conduction in Na11Sn2PS12. 2018 , 130, 1365-1369	23
1315	Ionic conductive GeS2-Ga2S3-Li2S-LiI glass powders prepared by mechanical synthesis. 2018 , 740, 61-67	9
1314	Mechanism of Formation of Li7P3S11 Solid Electrolytes through Liquid Phase Synthesis. 2018 , 30, 990-997	90
1313	Study on electrical and structural properties in SiO2 substituted Li2O-Al2O3-GeO2-P2O5 glass-ceramic systems. 2018 , 44, 13373-13380	6
1312	Progress and prospect on failure mechanisms of solid-state lithium batteries. 2018 , 392, 94-115	96
1311	Vertically Aligned and Continuous Nanoscale Ceramic-Polymer Interfaces in Composite Solid Polymer Electrolytes for Enhanced Ionic Conductivity. 2018 , 18, 3829-3838	178
1310	Drawing a Soft Interface: An Effective Interfacial Modification Strategy for Garnet-Type Solid-State Li Batteries. 2018 , 3, 1212-1218	236

(2018-2018)

1309	A first principle study of the phase stability, ion transport and substitution strategy for highly ionic conductive sodium antipervoskite as solid electrolyte for sodium ion batteries. 2018 , 390, 61-70	22
1308	Hybrid electrolytes incorporated with dandelion-like silaneâAl2O3 nanoparticles for high-safety high-voltage lithium ion batteries. 2018 , 391, 113-119	9
1307	XPS and SEM analysis between Li/Li3PS4 interface with Au thin film for all-solid-state lithium batteries. 2018 , 322, 1-4	72
1306	Creating Lithium-Ion Electrolytes with Biomimetic Ionic Channels in Metal-Organic Frameworks. 2018 , 30, e1707476	146
1305	Bayesian-Driven First-Principles Calculations for Accelerating Exploration of Fast Ion Conductors for Rechargeable Battery Application. 2018 , 8, 5845	53
1304	Ladderlike carbon nanoarrays on 3D conducting skeletons enable uniform lithium nucleation for stable lithium metal anodes. 2018 , 54, 5330-5333	32
1303	Monitoring the chemical and electronic properties of electrolyte-electrode interfaces in all-solid-state batteries using operando X-ray photoelectron spectroscopy. 2018 , 20, 11123-11129	33
1302	Li conduction pathways in solid-state electrolytes: Insights from dynamics and polarizability. 2018 , 698, 234-239	7
1301	Li Distribution Heterogeneity in Solid Electrolyte LiGePS upon Electrochemical Cycling Probed by Li MRI. 2018 , 9, 1990-1998	64
1300	Compositional descriptor-based recommender system for the materials discovery. 2018 , 148, 241719	22
1299	Lithium superionic conductors Li10MP2O12 (M = Ge, Si). 2018 , 11, 1850039	14
1298	NASICON-type La3+substituted LiZr2(PO4)3 with improved ionic conductivity as solid electrolyte. 2018 , 271, 120-126	31
1297	Unique rhombus-like precursor for synthesis of Li1.3Al0.3Ti1.7(PO4)3 solid electrolyte with high ionic conductivity. 2018 , 345, 483-491	35
1296	Preparation and characterization of Na3PS4âNa4GeS4 glass and glass-ceramic electrolytes. 2018,	
1290	320, 193-198	10
1295		37
	320, 193-198 Designing solution chemistries for the low-temperature synthesis of sulfide-based solid	
1295	Designing solution chemistries for the low-temperature synthesis of sulfide-based solid electrolytes. 2018 , 6, 7370-7374 Impact of Cathode Material Particle Size on the Capacity of Bulk-Type All-Solid-State Batteries.	37

1291	Importance of mixing protocol for enhanced performance of composite cathodes in all-solid-state batteries using sulfide solid electrolyte. 2018 , 40, 293-299	10
1290	New Insights into the Interphase between the Na Metal Anode and Sulfide Solid-State Electrolytes: A Joint Experimental and Computational Study. 2018 , 10, 10076-10086	62
1289	Synthesis of lithium superionic conductor by growth of a nanoglass within mesoporous silica SBA-15 template. 2018 , 51, 135301	8
1288	Atomistic Simulation of Interfaces in Materials of Solid State Ionics. 2018 , 63, 1-25	2
1287	Dry coating of electrode particle with model particle of sulfide solid electrolytes for all-solid-state secondary battery. 2018 , 323, 581-587	11
1286	Recent Developments in Oxide-Based Ionic Conductors: Bulk Materials, Nanoionics, and Their Memory Applications. 2018 , 43, 47-82	14
1285	Sulfurized solid electrolyte interphases with a rapid Li+ diffusion on dendrite-free Li metal anodes. 2018 , 10, 199-205	165
1284	Preparation of Sodium Ion Conductive Na10GeP2S12 Glass-ceramic Electrolytes. 2018, 47, 13-15	20
1283	ZnO/carbon framework derived from metal-organic frameworks as a stable host for lithium metal anodes. 2018 , 11, 191-196	99
1282	Recent Developments of All-Solid-State Lithium Secondary Batteries with Sulfide Inorganic Electrolytes. 2018 , 24, 6007-6018	36
1281	Synthesis of cubic Na3SbS4 solid electrolyte with enhanced ion transport for all-solid-state sodium-ion batteries. 2018 , 259, 100-109	42
1280	Improving Li anode performance by a porous 3D carbon paper host with plasma assisted sponge carbon coating. 2018 , 11, 47-56	41
1279	A novel porous gel polymer electrolyte based on poly(acrylonitrile-polyhedral oligomeric silsesquioxane) with high performances for lithium-ion batteries. 2018 , 545, 140-149	81
1278	Universal Soldering of Lithium and Sodium Alloys on Various Substrates for Batteries. 2018 , 8, 1701963	125
1277	Fast Lithium-Ion Transportation in Crystalline Polymer Electrolytes. 2018 , 19, 45-50	15
1276	On-Demand Reconfiguration of Nanomaterials: When Electronics Meets Ionics. 2018 , 30, 1702770	116
1275	Reviewâßolid Electrolytes for Safe and High Energy Density Lithium-Sulfur Batteries: Promises and Challenges. 2018 , 165, A6008-A6016	112
1274	Flexible/shape-versatile, bipolar all-solid-state lithium-ion batteries prepared by multistage printing. 2018 , 11, 321-330	102

(2018-2018)

1273	Rechargeable Solid-State LiâAir and LiâB Batteries: Materials, Construction, and Challenges. 2018 , 8, 1701602	165
1272	Mechanisms and properties of ion-transport in inorganic solid electrolytes. 2018 , 10, 139-159	155
1271	Structure of Li 5 AlS 4 and comparison with other lithium-containing metal sulfides. 2018 , 257, 19-25	7
1270	FeS nanosheets as positive electrodes for all-solid-state lithium batteries. 2018 , 318, 60-64	25
1269	Toward practical all-solid-state lithium-ion batteries with high energy density and safety: Comparative study for electrodes fabricated by dry- and slurry-mixing processes. 2018 , 375, 93-101	160
1268	A novel thin solid electrolyte film and its application in all-solid-state battery at room temperature. 2018 , 24, 1545-1551	15
1267	Using an in-plane geometry in Hebb-Wagner measurements to avoid errors from electrode overpotential. 2018 , 260, 855-860	4
1266	Toward understanding of ion dynamics in highly conductive lithium ion conductors: Some perspectives by solid state NMR techniques. 2018 , 318, 19-26	28
1265	Atomic-Scale Influence of Grain Boundaries on Li-Ion Conduction in Solid Electrolytes for All-Solid-State Batteries. 2018 , 140, 362-368	147
1264	Molecular insights into ether-based electrolytes for Li-FeS2 batteries. 2018 , 12, 85-93	8
1263	Probing SolidâBolid Interfacial Reactions in All-Solid-State Sodium-Ion Batteries with First-Principles Calculations. 2018 , 30, 163-173	104
1262	Microwave-assisted reactive sintering and lithium ion conductivity of Li1.3Al0.3Ti1.7(PO4)3 solid electrolyte. 2018 , 378, 48-52	49
1261	Effect of Si substitution on the structural and transport properties of superionic Li-argyrodites. 2018 , 6, 645-651	83
1260	Suppression of Dendritic Lithium Growth by in Situ Formation of a Chemically Stable and Mechanically Strong Solid Electrolyte Interphase. 2018 , 10, 593-601	78
1259	Ionic conductivity of metal oxides: An essential property for all-solid-state lithium-ion batteries. 2018 , 361-408	1
1258	Positive and Negative Aspects of Interfaces in Solid-State Batteries. 2018 , 3, 98-103	63
1257	Recent achievements on sulfide-type solid electrolytes: crystal structures and electrochemical performance. 2018 , 53, 3927-3938	38
1256	Na11Sn2PS12: a new solid state sodium superionic conductor. 2018 , 11, 87-93	160

1255	Hybrid electrolytes with 3D bicontinuous ordered ceramic and polymer microchannels for all-solid-state batteries. 2018 , 11, 185-201	176
1254	Beyond lithium ion batteries: Higher energy density battery systems based on lithium metal anodes. 2018 , 12, 161-175	284
1253	Bulk properties and transport mechanisms of a solid state antiperovskite Li-ion conductor Li3OCl: insights from first principles calculations. 2018 , 6, 1150-1160	33
1252	Ab Initio Molecular Dynamics Studies of Fast Ion Conductors. 2018 , 147-168	4
1251	From anti-perovskite to double anti-perovskite: tuning lattice chemistry to achieve super-fast Li+transport in cubic solid lithium halogenâdhalcogenides. 2018 , 6, 73-83	49
1250	Reviewâlli Metal Anode in Working Lithium-Sulfur Batteries. 2018 , 165, A6058-A6072	172
1249	Chalcogenide glass-ceramics: Functional design and crystallization mechanism. 2018, 93, 1-44	78
1248	Rational coating of Li 7 P 3 S 11 solid electrolyte on MoS 2 electrode for all-solid-state lithium ion batteries. 2018 , 374, 107-112	55
1247	LiTa2PO8: a fast lithium-ion conductor with new framework structure. 2018 , 6, 22478-22482	31
1246	Electrochemical behaviors of Li-argyrodite-based all-solid-state batteries under deep-freezing conditions. 2018 , 54, 14116-14119	15
1245	A gel single ion conducting polymer electrolyte enables durable and safe lithium ion batteries graft polymerization 2018 , 8, 39967-39975	27
1244	Visualizing the morphological and compositional evolution of the interface of InLi-anode thio-LISION electrolyte in an all-solid-state LiâB cell by in operando synchrotron X-ray tomography and energy dispersive diffraction. 2018 , 6, 22489-22496	36
1243	Theoretical description of alkali metal closo-boranes - towards the crystal structure of MgBH. 2018 , 20, 30140-30149	4
1242	Interface engineering in solid state Li metal batteries by quasi-2D hybrid perovskites. 2018 , 6, 20896-20903	23
1241	Microwave-aided synthesis of lithium thiophosphate solid electrolyte. 2018 , 6, 21261-21265	15
1240	Ultra-fine surface solid-state electrolytes for long cycle life all-solid-state lithiumâ∃ir batteries. 2018 , 6, 21248-21254	43
1239	High-performance all-solid-state lithiumâBulfur batteries with sulfur/carbon nano-hybrids in a composite cathode. 2018 , 6, 23345-23356	30
1238	Synthesis and Characterization of Three New Lithium-Scandium Hexathiohypodiphosphates: Li4âBxScxP2S6 (x = 0.358), m-LiScP2S6, and t-LiScP2S6. 2018 , 644, 1854-1862	1

1237	All-Solid-State Lithium Battery Fitted with Polymer Electrolyte Enhanced by Solid Plasticizer and Conductive Ceramic Filler. 2018 , 165, A3558-A3565	28
1236	Phase Stability of Dynamically Disordered Solids from First Principles. 2018 , 121, 225702	4
1235	High-Conductivity Argyrodite LiPSCl Solid Electrolytes Prepared via Optimized Sintering Processes for All-Solid-State Lithium-Sulfur Batteries. 2018 , 10, 42279-42285	94
1234	Composite Cathode of NCM Particles and Li3PS4-LiI Electrolytes Prepared using the SEED Method for All-Solid- State Lithium Batteries. 2018 , 429, 012033	4
1233	Micro-mechanics in Electrochemical Systems. 2018 , 1-54	
1232	Slurry-Based Processing of Solid Electrolytes: A Comparative Binder Study. 2018 , 165, A3993-A3999	29
1231	Discovery and design of lithium battery materials via high-throughput modeling. 2018, 27, 128801	1
1230	Imaging the diffusion pathway of Al 3+ ion in NASICON-type (Al 0.2 Zr 0.8) 20/19 Nb(PO 4) 3 as electrolyte for rechargeable solid-state Al batteries. 2018 , 27, 128201	28
1229	Revisiting Scientific Issues for Industrial Applications of LithiumâBulfur Batteries. 2018 , 1, 196-208	101
1228	Effects of Sintering Temperatures on the Crystallinity and Electrochemical Properties of the Li10GeP2S12 via Solid-State Sintering Method. 2018 , 394, 022038	1
1227	Insights into Grain Boundary in Lithium-Rich Anti-Perovskite as Solid Electrolytes. 2018 , 165, A3946-A3951	12
1226	Review of Recent Nuclear Magnetic Resonance Studies of Ion Transport in Polymer Electrolytes. 2018 , 8,	18
1225	Super-Ionic Conduction in Solid-State Li7P3S11-Type Sulfide Electrolytes. 2018 , 30, 8764-8770	20
1224	Understanding the Effect of Interlayers at the Thiophosphate Solid Electrolyte/Lithium Interface for All-Solid-State Li Batteries. 2018 , 30, 8747-8756	53
1223	Lithium Permeability Increase in Nanosized Amorphous Silicon Layers. 2018 , 122, 28528-28536	8
1222	Unique fitting of electrochemical impedance spectra by random walk Metropolis Hastings algorithm. 2018 , 403, 184-191	10
1221	Interface engineering of sulfide electrolytes for all-solid-state lithium batteries. 2018, 53, 958-966	133
1220	Elucidating the role of dopants in the critical current density for dendrite formation in garnet electrolytes. 2018 , 6, 19817-19827	61

1219	Interfaces in Solid-State Lithium Batteries. 2018 , 2, 1991-2015	287
1218	Computation-Accelerated Design of Materials and Interfaces for All-Solid-State Lithium-Ion Batteries. 2018 , 2, 2016-2046	162
1217	Opportunities for Rechargeable Solid-State Batteries Based on Li-Intercalation Cathodes. 2018 , 2, 2208-2224	97
1216	Architected Macroporous Polyelectrolytes That Suppress Dendrite Formation during High-Rate Lithium Metal Electrodeposition. 2018 , 51, 7666-7671	8
1215	A novel solid PEO/LLTO-nanowires polymer composite electrolyte for solid-state lithium-ion battery. 2018 , 292, 718-726	80
1214	A mixed anion hydroborate/carba-hydroborate as a room temperature Na-ion solid electrolyte. 2018 , 404, 7-12	49
1213	Realizing the Ultimate Thermal Stability of a Lithium-Ion Battery Using Two Zero-Strain Insertion Materials. 2018 ,	2
1212	Advanced sulfide solid electrolyte by core-shell structural design. 2018 , 9, 4037	83
1211	Computational Modeling of Morphology Evolution in Metal-Based Battery Electrodes. 2018 , 1-27	2
1210	Non-flammable organic liquid electrolyte for high-safety and high-energy density Li-ion batteries. 2018 , 404, 13-19	65
1209	Comparing the Descriptors for Investigating the Influence of Lattice Dynamics on Ionic Transport Using the Superionic Conductor NaPSSe. 2018 , 140, 14464-14473	86
1208	Ameliorating Interfacial Ionic Transportation in All-Solid-State Li-Ion Batteries with Interlayer Modifications. 2018 , 3, 2775-2795	45
1207	Interface Engineering for Garnet-Based Solid-State Lithium-Metal Batteries: Materials, Structures, and Characterization. 2018 , 30, e1802068	135
1206	LiCrS and LiMnS Cathodes with Extraordinary Mixed Electron-Ion Conductivities and Favorable Interfacial Compatibilities with Sulfide Electrolyte. 2018 , 10, 36941-36953	14
1205	Architectural design and fabrication approaches for solid-state batteries. 2018, 43, 775-781	48
1204	Polymer and composite electrolytes. 2018 , 43, 759-767	42
1203	Predictive modeling and design rules for solid electrolytes. 2018 , 43, 746-751	31
1202	Frontiers of solid-state batteries. 2018 , 43, 740-745	20

1201	⊞SR Study on Li Ionic Conductors. 2018 ,	2
1200	Synthesis and characterisation of the new oxyfluoride Li+ ion conductor, Li5SiO4F. 2018 , 327, 64-70	8
1199	Competing Structural Influences in the Li Superionic Conducting Argyrodites LiPSSe Br (0 âlk âll) upon Se Substitution. 2018 , 57, 13920-13928	61
1198	LiN-Modified Garnet Electrolyte for All-Solid-State Lithium Metal Batteries Operated at 40 fc. 2018 , 18, 7414-7418	160
1197	Nuclear Spin Relaxation in Nanocrystalline £1i3PS4 Reveals Low-Dimensional Li Diffusion in an Isotropic Matrix. 2018 , 30, 7575-7586	24
1196	Ion-Sieving Carbon Nanoshells for Deeply Rechargeable Zn-Based Aqueous Batteries. 2018 , 8, 1802470	86
1195	Metal-phosphide-doped Li7P3S11 glass-ceramic electrolyte with high ionic conductivity for all-solid-state lithium-sulfur batteries. 2018 , 97, 100-104	23
1194	Inducing High Ionic Conductivity in the Lithium Superionic Argyrodites LiPGe SI for All-Solid-State Batteries. 2018 , 140, 16330-16339	205
1193	Li3BO3âlli2CO3: Rationally Designed Buffering Phase for Sulfide All-Solid-State Li-Ion Batteries. 2018 , 30, 8190-8200	92
1192	Reactivity of Li14P6S22 as a Potential Solid Electrolyte for All-Solid-State Lithium-Ion Batteries. 2018 , 39, 1149-1159	
1191	A New Version of the Lithium Ion Conducting Plastic Crystal Solid Electrolyte. 2018 , 8, 1801324	15
1190	Lithium Transport in Li4.4M0.4M?0.6S4 (M = Al3+, Ga3+, and M? = Ge4+, Sn4+): Combined Crystallographic, Conductivity, Solid State NMR, and Computational Studies. 2018 , 30, 7183-7200	21
1189	Thermally Induced S-Sublattice Transition of LiPS for Fast Lithium-Ion Conduction. 2018 , 9, 5592-5597	10
1188	Theoretical design of double anti-perovskite Na6SOI2 as a super-fast ion conductor for solid Na+ion batteries. 2018 , 6, 19843-19852	23
1187	Reaction Mechanism of FePS3 Electrodes in All-Solid-State Lithium Secondary Batteries Using Sulfide-Based Solid Electrolytes. 2018 , 165, A2948-A2954	8
1186	An AB alternating diblock single ion conducting polymer electrolyte membrane for all-solid-state lithium metal secondary batteries. 2018 , 566, 181-189	26
1185	Formation, Structural Variety, and Impact of Antiphase Boundaries on Li Diffusion in LiCoO Thin-Film Cathodes. 2018 , 9, 5515-5520	12
1184	The all-solid-state battery with vanadate glass-ceramic cathode. 2018 , 24, 3299-3304	2

1183	Lithium permeation within lithium niobate multilayers with ultrathin chromium, silicon and carbon spacer layers. 2018 , 20, 23233-23243	4
1182	Reversible thixotropic gel electrolytes for safer and shape-versatile lithium-ion batteries. 2018 , 401, 126-134	10
1181	Ultrafast solid-state lithium ion conductor through alloying induced lattice softening of Li6PS5Cl. 2018 , 6, 19231-19240	28
1180	Mechanical properties of sulfide glasses in all-solid-state batteries. 2018 , 126, 719-727	46
1179	Lithiophilic-lithiophobic gradient interfacial layer for a highly stable lithium metal anode. 2018 , 9, 3729	236
1178	Synthesis of submicron-sized NiPS3 particles and electrochemical properties as active materials in all-solid-state lithium batteries. 2018 , 126, 568-572	5
1177	Solid Halide Electrolytes with High Lithium-Ion Conductivity for Application in 4 V Class Bulk-Type All-Solid-State Batteries. 2018 , 30, e1803075	264
1176	A Dual-Crosslinking Design for Resilient Lithium-Ion Conductors. 2018 , 30, e1804142	80
1175	In-situ investigation of pressure effect on structural evolution and conductivity of Na3SbS4 superionic conductor. 2018 , 401, 111-116	13
1174	Controllable preparation and high ionic conductivity of Fe2O3-doped 46Li2O-4Al2O3-50P2O5 glass-ceramics. 2018 , 500, 401-409	6
1173	Impact of Structural Polymorphism on Ionic Conductivity in Lithium Copper Pyroborate LiCuBO. 2018 , 57, 11646-11654	3
1172	Ionic conduction and dielectric properties of yttrium doped LiZr2(PO4)3 obtained by a Pechini-type polymerizable complex route. 2018 , 44, 15509-15516	10
1171	Materials from binary tetrahedral main group element units. 2018 , 21, 923-931	
1170	Super Atomic Clusters: Design Rules and Potential for Building Blocks of Materials. 2018 , 118, 5755-5870	265
1169	A study on the interfacial stability of the cathode/polycarbonate interface: implication of overcharge and transition metal redox. 2018 , 6, 11846-11852	22
1168	Progress and future prospects of high-voltage and high-safety electrolytes in advanced lithium batteries: from liquid to solid electrolytes. 2018 , 6, 11631-11663	166
1167	Progress in solid electrolytes toward realizing solid-state lithium batteries. 2018 , 394, 74-85	132
1166	Recent Advancements in Polymer-Based Composite Electrolytes for Rechargeable Lithium Batteries. 2018 , 1, 113-138	203

1165 Mechanochemically Prepared LiS-PS-LiBH Solid Electrolytes with an Argyrodite Structure. 2018, 3, 5453-5458 24 Superion Conductor Na11.1Sn2.1P0.9Se12: Lowering the Activation Barrier of Na+ Conduction in 1164 53 Quaternary 1â\a\a\B\a\B\a\B\a\B\a\Electrolytes. 2018, 30, 4134-4139 Investigation on the interface between LiGePS electrolyte and carbon conductive agents in 1163 35 all-solid-state lithium battery. 2018, 8, 8066 Appearance of Lithium-Ion Conduction in a Laâlliâlloâl Band Insulator: Possible Route to Oxide 1162 4 Electrolyte. 2018, 1, 2546-2554 Rotational motion of polyanion versus volume effect associated with ionic conductivity of several 1161 26 solid electrolytes. 2018, 37, 497-503 Sr- and Nb-co-doped Li7La3Zr2O12 solid electrolyte with Al2O3 addition towards high ionic 1160 conductivity. 2018, 124, 1 Nickel sulfide anchored carbon nanotubes for all-solid-state lithium batteries with enhanced rate 1159 55 capability and cycling stability. 2018, 6, 12098-12105 Performance enhancement of lithium-polysulphide batteries by atomic layer deposition of lithium 1158 tantalate on sulphide solid electrolytes. 2018, 323, 97-104 Electronic and Ionic Channels in Working Interfaces of Lithium Metal Anodes. 2018, 3, 1564-1570 158 Development of the cold sintering process and its application in solid-state lithium batteries. 2018, 1156 53 393, 193-203 1155 A mini-review on the development of Si-based thin film anodes for Li-ion batteries. 2018, 9, 49-66 70 Strain tunable ionic transport properties and electrochemical window of Li10GeP2S12 superionic 1154 11 conductor. 2018, 153, 170-175 High-performance Li6.4La3Zr1.4Ta0.6O12/Poly(ethylene oxide)/Succinonitrile composite 1153 74 electrolyte for solid-state lithium batteries. 2018, 397, 87-94 High Ionic Conductor Member of Garnet-Type Oxide Li6.5La3Zr1.5Ta0.5O12. 2018, 5, 2551-2557 16 Reviving lithium cobalt oxide-based lithium secondary batteries-toward a higher energy density. 1151 219 **2018**, 47, 6505-6602 A Silica-Aerogel-Reinforced Composite Polymer Electrolyte with High Ionic Conductivity and High 1150 242 Modulus. 2018, 30, e1802661 Structural Design of LithiumâBulfur Batteries: From Fundamental Research to Practical Application. 1149 197 2018, 1, 239-293 1148 Sodium superionic conduction in tetragonal Na3PS4. 2018, 265, 353-358 30

1147	Lithium-ion conducting solid electrolytes of Li1.4Al0.4Ge0.2Ti1.4(PO4)3 and MOx (M = Al, Ti, and Zr) composites. 2018 , 324, 114-127	18
1146	Lithium-ion conducting oxide single crystal as solid electrolyte for advanced lithium battery application. 2018 , 8, 9965	61
1145	All-solid-state interpenetrating network polymer electrolytes for long cycle life of lithium metal batteries. 2018 , 6, 14847-14855	34
1144	Diagnosis of failure modes for all-solid-state Li-ion batteries enabled by three-electrode cells. 2018 , 6, 14867-14875	31
1143	Native Defects in Li10GeP2S12 and Their Effect on Lithium Diffusion. 2018 , 30, 4995-5004	26
1142	Helium-Iron Compounds at Terapascal Pressures. 2018 , 121, 015301	16
1141	Incorporating Ionic Paths into 3D Conducting Scaffolds for High Volumetric and Areal Capacity, High Rate Lithium-Metal Anodes. 2018 , 30, e1801328	112
1140	Simultaneously Enhancing the Thermal Stability, Mechanical Modulus, and Electrochemical Performance of Solid Polymer Electrolytes by Incorporating 2D Sheets. 2018 , 8, 1800866	132
1139	Ameliorating the Interfacial Problems of Cathode and Solid-State Electrolytes by Interface Modification of Functional Polymers. 2018 , 8, 1801528	77
1138	Electrochemical properties of NASICON-structured glass-ceramics of the Li1+xCrx(GeyTi1-y)2-x(PO4)3 system. 2018 , 283, 1835-1844	2
1137	Metal hydrides for lithium-ion battery application: A review. 2018 , 769, 167-185	26
1136	A solid polymer electrolyte based on star-like hyperbranched Etyclodextrin for all-solid-state sodium batteries. 2018 , 399, 363-371	28
1135	Sulfide Solid Electrolytes for Lithium Battery Applications. 2018 , 8, 1800933	252
1134	Aliphatic Polycarbonate-Based Solid-State Polymer Electrolytes for Advanced Lithium Batteries: Advances and Perspective. 2018 , 14, e1800821	79
1133	Survey on Complex Optimization and Simulation for the New Power Systems Paradigm. 2018, 2018, 1-32	25
1132	Investigation of the Li-ion conduction behavior in the LiGePS solid electrolyte by two-dimensional T-spin alignment echo correlation NMR. 2018 , 294, 133-142	8
1131	Developing a "Water-Defendable" and "Dendrite-Free" Lithium-Metal Anode Using a Simple and Promising GeCl Pretreatment Method. 2018 , 30, e1705711	142
1130	Multilayered, Bipolar, All-Solid-State Battery Enabled by a Perovskite-Based Biphasic Solid Electrolyte. 2018 , 11, 3184-3190	29

1	1129	Electrolyte and LiCoO2 Cathode. 2018 , 30, 6259-6276	79
1	128	Niobium tungsten oxides for high-rate lithium-ion energy storage. 2018 , 559, 556-563	373
1	1127	Challenges for Developing Rechargeable Room-Temperature Sodium Oxygen Batteries. 2018 , 3, 1800110	24
1	126	Lithium Conductivity and Meyer-Neldel Rule in Li3PO4â[li3VO4â[li4GeO4 Lithium Superionic Conductors. 2018 , 30, 5573-5582	48
1	1125	Interfacial challenges and progress for inorganic all-solid-state lithium batteries. 2018, 284, 177-187	67
1	124	Engineering Materials for Progressive All-Solid-State Na Batteries. 2018 , 3, 2181-2198	78
1	1123	Review of electrical energy storage technologies, materials and systems: challenges and prospects for large-scale grid storage. 2018 , 11, 2696-2767	865
1	122	Lithium-Ion-Conducting Argyrodite-Type Li6PS5X (X = Cl, Br, I) Solid Electrolytes Prepared by a Liquid-Phase Technique Using Ethanol as a Solvent. 2018 , 1, 3622-3629	69
1	121	Sigma-Holes in Battery Materials Using Iso-Electrostatic Potential Surfaces. 2018 , 8, 33	5
1	1 12 0	Na+ ion migration on the surface of reduced graphene oxide. 2018 , 51, 325301	1
1	1119	Ab Initio Calculations of the Redox Potentials of Additives for Lithium-Ion Batteries and Their Prediction through Machine Learning. 2018 , 3, 7868-7874	24
1	1118	Quantitative Analysis of Microstructures and Reaction Interfaces on Composite Cathodes in All-Solid-State Batteries Using a Three-Dimensional Reconstruction Technique. 2018 , 10, 23740-23747	36
1	1117	Exploring interfacial stability of solid-state electrolytes at the lithium-metal anode surface. 2018 , 396, 782-790	43
1	1116	Extremely Low Resistance of LiPO Electrolyte/Li(NiMn)O Electrode Interfaces. 2018, 10, 27498-27502	30
1	1115	Stabilizing LiSnPS/Li Interface via an in Situ Formed Solid Electrolyte Interphase Layer. 2018 , 10, 25473-25482	58
1	1114	Spectroscopic characterization of lithium thiophosphates by XPS and XAS - a model to help monitor interfacial reactions in all-solid-state batteries. 2018 , 20, 20088-20095	51
1	1113	Demonstration of the conductive species in âlli-freeâlsolid solvent doped with LiBH4 and its Li+dominating conduction mechanism. 2018 , 283, 1188-1194	4
1	1112	Unlocking the Energy Capabilities of Lithium Metal Electrode with Solid-State Electrolytes. 2018 , 2, 1674-1689	133

1111	High-performance all-solid-state LiâBe batteries induced by sulfide electrolytes. 2018 , 11, 2828-2832	69
1110	Conductivity spectra of lithium ion conducting glassy ceramics. 2018 , 546, 10-14	11
1109	Advanced Lithium-Ion Batteries for Practical Applications: Technology, Development, and Future Perspectives. 2018 , 3, 1700376	61
1108	In Situ Scanning Electron Microscope Observations of Li Plating/Stripping Reactions with Pt Current Collectors on LiPON Electrolyte. 2018 , 165, A1338-A1347	15
1107	Designing Ionic Conductors: The Interplay between Structural Phenomena and Interfaces in Thiophosphate-Based Solid-State Batteries. 2018 , 30, 4179-4192	95
1106	Defects and lithium migration in LiCuO. 2018 , 8, 6754	26
1105	Hybrid electrolytes for lithium metal batteries. 2018 , 392, 206-225	125
1104	Ammonia, a Switch for Controlling High Ionic Conductivity in Lithium Borohydride Ammoniates. 2018 , 2, 1522-1533	52
1103	Lithium ionic conduction in composites of Li(BH4)0.75I0.25 and amorphous 0.75Li2SID.25P2S5 for battery applications. 2018 , 278, 332-339	30
1102	Solid-state lithium battery chemistries achieving high cycle performance at room temperature by a new garnet-based composite electrolyte. 2018 , 393, 128-134	36
1101	Reassessing the bulk ionic conductivity of solid-state electrolytes. 2018 , 2, 1458-1462	16
1100	A comprehensive approach to reviewing latent topics addressed by literature across multiple disciplines. 2018 , 228, 2111-2128	5
1099	Machine Learning Enabled Computational Screening of Inorganic Solid Electrolytes for Suppression of Dendrite Formation in Lithium Metal Anodes. 2018 , 4, 996-1006	92
1098	Interface features between 30Li2OE47.5V2O5E22.5B2O3 glassy cathode and Li7La3Zr2O12 solid electrolyte. 2018 , 285, 326-335	7
1097	Perovskite Membranes with Vertically Aligned Microchannels for All-Solid-State Lithium Batteries. 2018 , 8, 1801433	136
1096	A LiPO2F2/LiFSI dual-salt electrolyte enabled stable cycling of lithium metal batteries. 2018 , 400, 449-456	20
1095	Scalable fabrication of flexible thin-film batteries for smart lens applications. 2018 , 53, 225-231	35
1094	Fast Na ion transport triggered by rapid ion exchange on local length scales. 2018 , 8, 11970	16

1093	Lil-Doped Sulfide Solid Electrolyte: Enabling a High-Capacity Slurry-Cast Electrode by Low-Temperature Post-Sintering for Practical All-Solid-State Lithium Batteries. 2018 , 10, 31404-31412	54
1092	Salt-Based Organic-Inorganic Nanocomposites: Towards A Stable Lithium Metal/Li GeP S Solid Electrolyte Interface. 2018 , 57, 13608-13612	97
1091	Exotic solid state ion conductor from fluorinated titanium oxide and molten metallic lithium. 2018 , 400, 16-22	9
1090	Refinement of the crystal structure of LiPS using NMR crystallography. 2018 , 47, 11691-11695	13
1089	Reducing lithium deposition overpotential with silver nanocrystals anchored on graphene aerogel. 2018 , 10, 16562-16567	32
1088	Mechanochemical Synthesis and Characterization of Metastable Hexagonal LiSnS Solid Electrolyte. 2018 , 57, 9925-9930	40
1087	Solid-State Polymer Electrolytes Based on AB3-Type Miktoarm Star Copolymers. 2018 , 7, 1046-1050	30
1086	Development of a ReaxFF reactive force field for lithium ion conducting solid electrolyte LiAlTi(PO) (LATP). 2018 , 20, 22134-22147	14
1085	Bibliography. 2018 , 145-166	
1084	Analysis of the statistical and convergence properties of ionic transport coefficients with application to the solid electrolyte Li2OHCl. 2018 , 325, 80-89	4
1083	Correlating Ion Mobility and Single Crystal Structure in Sodium-Ion Chalcogenide-Based Solid State Fast Ion Conductors: Na11Sn2PnS12 (Pn = Sb, P). 2018 , 30, 7413-7417	40
1082	Salt-Based Organicâlhorganic Nanocomposites: Towards A Stable Lithium Metal/Li10GeP2S12 Solid Electrolyte Interface. 2018 , 130, 13796-13800	5
1081	Quantitative Operando Visualization of Electrochemical Reactions and Li Ions in All-Solid-State Batteries by STEM-EELS with Hyperspectral Image Analyses. 2018 , 18, 5892-5898	40
1080	Solid-Liquid Lithium Electrolyte Nanocomposites Derived from Porous Molecular Cages. 2018 , 140, 7504-7509	28
1079	Recent research trends in LiâB batteries. 2018 , 6, 11582-11605	130
1078	Non-equilibrium microstructure of Li1.4Al0.4Ti1.6(PO4)3 superionic conductor by spark plasma sintering for enhanced ionic conductivity. 2018 , 51, 19-25	20
1077	NaSbSeS as Sodium Superionic Conductors. 2018 , 8, 9146	23
1076	Ion transport limitations in all-solid-state lithium battery electrodes containing a sulfide-based electrolyte. 2018 , 396, 175-181	37

1075	The influence of void space on ion transport in a composite cathode for all-solid-state batteries. 2018 , 396, 363-370	43
1074	High capacity and stable all-solid-state Li ion battery using SnO-embedded nanoporous carbon. 2018 , 8, 8747	19
1073	Lithium garnet based free-standing solid polymer composite membrane for rechargeable lithium battery. 2018 , 22, 2989-2998	36
1072	New horizons for inorganic solid state ion conductors. 2018 , 11, 1945-1976	601
1071	High Capacity Garnet-Based All-Solid-State Lithium Batteries: Fabrication and 3D-Microstructure Resolved Modeling. 2018 , 10, 22329-22339	55
1070	A highly plastic Li+ ion conductor based on the KI-KBH4 solid solvent system. 2018 , 22, 2855-2861	2
1069	Monolithic All-Phosphate Solid-State Lithium-Ion Battery with Improved Interfacial Compatibility. 2018 , 10, 22264-22277	49
1068	Lithium Conductivity and Ions Dynamics in LiBH4/SiO2 Solid Electrolytes Studied by Solid-State NMR and Quasi-Elastic Neutron Scattering and Applied in LithiumâBulfur Batteries. 2018 , 122, 15264-15275	39
1067	Electrochemical and interfacial behavior of all solid state batteries using Li10SnP2S12 solid electrolyte. 2018 , 396, 824-830	32
1066	Enabling room-temperature solid-state lithium-metal batteries with fluoroethylene carbonate-modified plastic crystal interlayers. 2019 , 18, 311-319	60
1065	High air-stability and superior lithium ion conduction of Li3+3P1-Zn S4-O by aliovalent substitution of ZnO for all-solid-state lithium batteries. 2019 , 17, 266-274	61
1064	Identifying the components of the solid-electrolyte interphase in Li-ion batteries. 2019 , 11, 789-796	181
1063	Mechanochemical synthesis of fast sodium ion conductor Na11Sn2PSe12 enables first sodiumâBelenium all-solid-state battery. 2019 , 7, 20790-20798	17
1062	Artificial Interphases for Highly Stable Lithium Metal Anode. 2019 , 1, 317-344	303
1061	Optimization of glass properties by substituting AgI with Ag2S in chalcogenide system. 2019 , 45, 22694-2269	86
1060	Annealing-induced vacancy formation enables extraordinarily high Li+ ion conductivity in the amorphous electrolyte 0.33 LiI + 0.67 Li3PS4. 2019 , 341, 115040	16
1059	Practical evaluation of energy densities for sulfide solid-state batteries. 2019 , 1, 100010	47
1058	Solid-State Electrolytes for Lithium-Ion Batteries: Fundamentals, Challenges and Perspectives. 2019 , 2, 574-605	113

1057	Fast Ionic Conductivity in the Most Lithium-Rich Phosphidosilicate LiSiP. 2019 , 141, 14200-14209	32
1056	Enhancing Fast Lithium Ion Conduction in Li4GeO4âli3PO4 Solid Electrolytes. 2019 , 2, 6608-6615	19
1055	The Active Interface of Ta-Doped Li7La3Zr2O12 for Li Plating/Stripping Revealed by Acid Aqueous Etching. 2019 , 2, 6720-6731	30
1054	Influence of Anion Charge on Li Ion Diffusion in a New Solid-State Electrolyte, Li3LaI6. 2019 , 31, 7425-7433	41
1053	Origin of High Interfacial Resistances in Solid-State Batteries: Interdiffusion and Amorphous Film Formation in Li0.33La0.57TiO3/LiMn2O4 Half Cells. 2019 , 6, 4576-4585	12
1052	Motif-Based Design of an Oxysulfide Class of Lithium Superionic Conductors: Toward Improved Stability and Record-High Li-Ion Conductivity. 2019 , 31, 7265-7276	14
1051	A high performance all solid state lithium sulfur battery with lithium thiophosphate solid electrolyte. 2019 , 7, 24173-24179	37
1050	Liquid-involved synthesis and processing of sulfide-based solid electrolytes, electrodes, and all-solid-state batteries. 2019 , 8, 100048	25
1049	Recent Progress in Covalent Organic Frameworks as Solid-State Ion Conductors. 2019 , 1, 327-335	36
1048	Interfacial Incompatibility and Internal Stresses in All-Solid-State Lithium Ion Batteries. 2019 , 9, 1901810	46
1047	Selective Effect of Gel Polymer Electrolytes on Suppressing Decomposition and Evaporation of Electrolyte in Acetonitrile-Based Supercapacitors at Elevated Temperature. 2019 , 6, 4418-4428	3
1046	First-Principles Investigations on Sodium Superionic Conductor Na11Sn2PS12. 2019 , 31, 6066-6075	15
1045	Improvement of Inter-particle Contact in Positive Electrodes Using the Composite Deformable Solid Electrolyte in an Oxide-type All-solid-state Lithium Ion Battery. 2019 , 48, 891-893	4
1044	Synthesis and characterizations of highly conductive and stable electrolyte Li10P3S12I. 2019 , 22, 397-401	14
1043	Inorganic sulfide solid electrolytes for all-solid-state lithium secondary batteries. 2019 , 7, 20540-20557	66
1042	Sulfide-Based Solid-State Electrolytes: Synthesis, Stability, and Potential for All-Solid-State Batteries. 2019 , 31, e1901131	179
1041	An Air-Stable and Dendrite-Free Li Anode for Highly Stable All-Solid-State Sulfide-Based Li Batteries. 2019 , 9, 1902125	72
1040	Atomically Intimate Contact between Solid Electrolytes and Electrodes for Li Batteries. 2019 , 1, 1001-1016	27

1039	Review on Polymer-Based Composite Electrolytes for Lithium Batteries. 2019 , 7, 522	162
1038	Recent advances on separator membranes for lithium-ion battery applications: From porous membranes to solid electrolytes. 2019 , 22, 346-375	127
1037	Superionic Diffusion through Frustrated Energy Landscape. 2019 , 5, 2450-2460	59
1036	On the Use of the Angell-Walden Equation To Determine the "Ionicity" of Molten Salts and Ionic Liquids. 2019 , 123, 7014-7023	36
1035	Ion-exchange Synthesis of Li2NaPS4 from Na3PS4. 2019 , 48, 863-865	
1034	Polypropylene Carbonate-Based Adaptive Buffer Layer for Stable Interfaces of Solid Polymer Lithium Metal Batteries. 2019 , 11, 27906-27912	17
1033	Double-shelled nanoporous NiO nanocrystal doped MnO/Ni network for high performance lithium-ion battery. 2019 , 320, 134542	15
1032	A New Lithium-Ion Conductor LiTaSiO5: Theoretical Prediction, Materials Synthesis, and Ionic Conductivity. 2019 , 29, 1904232	9
1031	A designer fast Li-ion conductor Li6.25PS5.25Cl0.75 and its contribution to the polyethylene oxide based electrolyte. 2019 , 493, 1326-1333	17
1030	Interfacial stability between LiBH4-based complex hydride solid electrolytes and Li metal anode for all-solid-state Li batteries. 2019 , 436, 226821	25
1029	In-situ visualization of lithium plating in all-solid-state lithium-metal battery. 2019 , 63, 103895	78
1028	Lithium-polymer battery with ionic liquid tethered nanoparticles incorporated P(VDF-HFP) nanocomposite gel polymer electrolyte. 2019 , 319, 753-765	23
1027	Lithium Ion Conductivity in Double Antiperovskite Li6.5OS1.5I1.5: Alloying and Boundary Effects. 2019 , 2, 6288-6294	25
1026	Influence of NaI Additions on the Electrical, Dielectric, and Transport Properties in the GeS2â͡ᡌa2S3â͡ŊaI Glass System. 2019 , 55, 501-509	1
1025	Theoretical Insights into Li-Ion Transport in LiTa2PO8. 2019 , 123, 19282-19287	8
1024	Flexible Organicâlhorganic Composite Solid Electrolyte with Asymmetric Structure for Room Temperature Solid-State Li-Ion Batteries. 2019 , 7, 15896-15903	25
1023	High-performance Li6PS5Cl-based all-solid-state lithium-ion batteries. 2019 , 7, 18612-18618	23
1022	Identifying and Addressing Critical Challenges of High-Voltage Layered Ternary Oxide Cathode Materials. 2019 , 31, 6033-6065	90

1021	Operando Visualization of Morphological Dynamics in All-Solid-State Batteries. 2019 , 9, 1901547	37
1020	Constructing Multifunctional Interphase between Li1.4Al0.4Ti1.6(PO4)3 and Li Metal by Magnetron Sputtering for Highly Stable Solid-State Lithium Metal Batteries. 2019 , 9, 1901604	103
1019	Chemo-Mechanical Challenges in Solid-State Batteries. 2019 , 1, 845-857	102
1018	Toward Understanding the Different Influences of Grain Boundaries on Ion Transport in Sulfide and Oxide Solid Electrolytes. 2019 , 31, 5296-5304	52
1017	Plastic-crystalline solid-state electrolytes: Ionic conductivity and orientational dynamics in nitrile mixtures. 2019 , 150, 244507	11
1016	The critical role of oxygen-evolution kinetics in the electrochemical stability of oxide superionic conductors. 2019 , 7, 17008-17013	6
1015	High Capacity Utilization of Li Metal Anodes by Application of Celgard Separator-Reinforced Ternary Polymer Electrolyte. 2019 , 166, A2142-A2150	19
1014	New lithium-conducting nitride glass Li3BN2. 2019 , 339, 114985	7
1013	Solution-based synthesis of lithium thiophosphate superionic conductors for solid-state batteries: a chemistry perspective. 2019 , 7, 17735-17753	52
1012	Strain-Stabilized Ceramic-Sulfide Electrolytes. 2019 , 15, e1901470	28
1011	New Insight for Solid Sulfide Electrolytes LSiPSI by Using Si/P/S as the Raw Materials and I Doping. 2019 , 7, 12930-12937	7
1010	Effects of transition metal cation additives on the passivation of lithium metal anode in LiâB batteries. 2019 , 319, 511-517	14
1009	Effects of CuO on the microstructure and electrochemical properties of garnet-type Li6.3La3Zr1.65W0.35O12 solid electrolyte. 2019 , 135, 109080	26
1008	Multiple superionic states in heliumâlvater compounds. 2019 , 15, 1065-1070	28
1007	An Interfacial Layer Based on Polymers of Intrinsic Microporosity to Suppress Dendrite Growth on Li Metal Anodes. 2019 , 25, 12052-12057	14
1006	Computationally Guided Discovery of the Sulfide LiAlS in the Li-Al-S Phase Field: Structure and Lithium Conductivity. 2019 , 31, 9699-9714	8
1005	Low-Energy-Consumption Three-Valued Memory Device Inspired by Solid-State Batteries. 2019 , 11, 45150-451	5µ4
1004	Stable Lithium Ion Conducting Thiophosphate Solid Electrolytes Lix(PS4)yXz (X = Cl, Br, I). 2019 , 31, 8649-8662	14

1003	A Solid with Liquid-like Diffusion: A Unique Superionic Conductor. 2019 , 5, 2289-2290	2
1002	Modeling of lithium electrodeposition at the lithium/ceramic electrolyte interface: The role of interfacial resistance and surface defects. 2019 , 441, 227186	20
1001	Flexible Garnet Solid-State Electrolyte Membranes Enabled by Tile-and-Grout Design. 2019, 4, 2668-2674	33
1000	Factors associated with human papillomavirus infection - findings from a cervical cancer screening program for female employees in Beijing. 2019 , 11, 8033-8041	O
999	Crystal Structural Framework of Lithium Super-Ionic Conductors. 2019 , 9, 1902078	58
998	Water-Mediated Synthesis of a Superionic Halide Solid Electrolyte. 2019 , 131, 16579-16584	40
997	Water-Mediated Synthesis of a Superionic Halide Solid Electrolyte. 2019 , 58, 16427-16432	113
996	Anisotropically Electrochemical-Mechanical Evolution in Solid-State Batteries and Interfacial Tailored Strategy. 2019 , 58, 18647-18653	29
995	Challenges and development of composite solid-state electrolytes for high-performance lithium ion batteries. 2019 , 441, 227175	89
994	AC conductivity studies of polyethylene oxide-garnet-type Li7La3Zr2O12 hybrid composite solid polymer electrolyte films. 2019 , 343, 115089	5
993	New Family of Argyrodite Thioantimonate Lithium Superionic Conductors. 2019 , 141, 19002-19013	115
992	Li-Ion Battery Materials: Understanding From Computational View-Point. 2019 , 67-143	
991	Anisotropically ElectrochemicalâMechanical Evolution in Solid-State Batteries and Interfacial Tailored Strategy. 2019 , 131, 18820-18826	4
990	Novel Conjugated Side Chain Fluorinated Polymers Based on Fluorene for Light-Emitting and Ternary Flash Memory Devices. 2019 , 8, 1267-1275	3
989	Pharmacokinetics of ceftiofur sodium in cats following a single intravenous and subcutaneous injection. 2019 , 42, 602-608	2
988	Coupled Cation-Anion Dynamics Enhances Cation Mobility in Room-Temperature Superionic Solid-State Electrolytes. 2019 , 141, 19360-19372	56
987	Fast Li-ion conduction at grain boundaries in (La,Li)NbO3 polycrystals. 2019 , 441, 227187	10
986	Construction of 3D Electronic/Ionic Conduction Networks for All-Solid-State Lithium Batteries. 2019 , 15, e1905849	26

985	From Local to Diffusive Dynamics in Polymer Electrolytes: NMR Studies on Coupling of Polymer and Ion Dynamics across Length and Time Scales. 2019 , 52, 9128-9139	8
984	Influence of precipitate/supernatant ratio during liquid-phase synthesis of solid electrolyte Li7P3S11. 2019 , 343, 115073	7
983	First Principle Material Genome Approach for All Solid-State Batteries. 2019 , 2, 234-250	36
982	All-Solid-State Printed Bipolar Liâß Batteries. 2019 , 9, 1901841	33
981	Correlated Migration Invokes Higher Na+-Ion Conductivity in NaSICON-Type Solid Electrolytes. 2019 , 9, 1902373	86
980	Controlling the White-Light Generation of [(RSn) E]: Effects of Substituent and Chalcogenide Variation. 2019 , 58, 17041-17046	23
979	Lithium Imide (Li2NH) as a Solid-State Electrolyte for Electrochemical Energy Storage Applications. 2019 , 123, 1619-1625	7
978	Air-stable Li3InCl6 electrolyte with high voltage compatibility for all-solid-state batteries. 2019 , 12, 2665-267	1 158
977	Dendrite-Free Fluorinated Graphene/Lithium Anodes Enabling in Situ LiF Formation for High-Performance Lithium-Oxygen Cells. 2019 , 11, 39737-39745	15
976	Remarkable Conductivity of a Self-Healing Single-Ion Conducting Polymer Electrolyte, Poly(ethyleneacrylic lithium (fluoro sulfonyl)imide), for All-Solid-State Li-Ion Batteries. 2019 , 11, 34930-3493	38 ³²
975	An in Situ-Formed Mosaic LiSn/LiF Interface Layer for High-Rate and Long-Life Garnet-Based Lithium Metal Batteries. 2019 , 11, 34939-34947	32
974	Localization model description of diffusion and structural relaxation in superionic crystalline UO. 2019 , 151, 071101	9
973	Li-Ion Conductive Li3PO4-Li3BO3-Li2SO4 Mixture: Prevision through Density Functional Molecular Dynamics and Machine Learning. 2019 , 92, 1100-1106	12
972	An Entropically Stabilized Fast-Ion Conductor: Li3.25[Si0.25P0.75]S4. 2019 , 31, 7801-7811	38
971	A review on strategies addressing interface incompatibilities in inorganic all-solid-state lithium batteries. 2019 , 3, 3279-3309	60
970	Investigation of Al2O3 Crucible Contamination induced by extra Li2CO3 during Li7La3Zr2O12 Solid Electrolyte Sintering process. 2019 , 9695-9703	6
969	Room-temperature-operating Na solid-state battery with complex hydride as electrolyte. 2019 , 106, 106534	20
968	Building better all-solid-state batteries with Li-garnet solid electrolytes and metalloid anodes. 2019 , 7, 21299-21308	29

967	Direct Observation of Ion Concentration Distribution in All-Solid-State Rechargeable Battery Using operando X-ray Radiography and Silver-Ion Conductor. 2019 , 87, 182-187	5
966	High Capacity and Superior Cyclic Performances of All-Solid-State Lithium-Sulfur Batteries Enabled by a High-Conductivity LiSnPS Solid Electrolyte. 2019 , 11, 36774-36781	35
965	Phase Stability and Electronic Structure of Tin Sulfide Compounds for Li-ion Batteries. 2019 , 123, 29086-2909	52
964	The effects of mechanical constriction on the operation of sulfide based solid-state batteries. 2019 , 7, 23604-23627	32
963	Experimental and numerical analysis to identify the performance limiting mechanisms in solid-state lithium cells under pulse operating conditions. 2019 , 21, 22740-22755	7
962	A strategy to stabilize 4 V-class cathode with ether-containing electrolytes in lithium metal batteries. 2019 , 440, 227101	4
961	Titanium Dioxide Doping toward High-Lithium-Ion-Conducting Li1.5Al0.5Ge1.5(PO4)3 Glass-Ceramics for All-Solid-State Lithium Batteries. 2019 , 2, 7299-7305	8
960	Thermodynamic Assessment of Coating Materials for Solid-State Li, Na, and K Batteries. 2019 , 11, 36607-366	1515
959	Development of a compact all-solid-state lithium secondary battery using single-crystal electrolyte. 2019 , 12, 29-40	2
958	Inducing interfacial progress based on a new sulfide-based composite electrolyte for all-solid-state lithium batteries. 2019 , 325, 134943	8
957	Toward an Understanding of Deformation Mechanisms in Metallic Lithium and Sodium from First-Principles. 2019 , 31, 8222-8229	11
956	Ionic Conductivity and Its Dependence on Structural Disorder in Halogenated Argyrodites Li6PS5X (X = Br, Cl, I). 2019 , 31, 8673-8678	23
955	Predicting Wettability and the Electrochemical Window of Lithium-Metal/Solid Electrolyte Interfaces. 2019 , 11, 39940-39950	12
954	PEO/LAGP hybrid solid polymer electrolytes for ambient temperature lithium batteries by solvent-free, âBne potâlpreparation. 2019 , 26, 100947	71
953	Nd2O3 encapsulation-assisted surface passivation of Ni-rich LiNi0.8Co0.1Mn0.1O2 active material and its electrochemical performance. 2019 , 325, 134889	20
952	Experimental Assessment of the Practical Oxidative Stability of Lithium Thiophosphate Solid Electrolytes. 2019 , 31, 8328-8337	86
951	Anode Properties of Si Nanoparticles in All-Solid-State Li Batteries. 2019 , 2, 7005-7008	18
950	Design and synthesis of room temperature stable Li-argyrodite superionic conductors via cation doping. 2019 , 7, 2717-2722	29

949	Lithium-Graphite Paste: An Interface Compatible Anode for Solid-State Batteries. 2019 , 31, e1807243	150
948	Interface-Enabled Ion Conduction in Li10GeP2S12â P oly(ethylene Oxide) Hybrid Electrolytes. 2019 , 2, 1452-1459	49
947	Enhancing interfacial contact in all solid state batteries with a cathode-supported solid electrolyte membrane framework. 2019 , 12, 938-944	260
946	An argyrodite sulfide-based superionic conductor synthesized by a liquid-phase technique with tetrahydrofuran and ethanol. 2019 , 7, 558-566	79
945	Correlating lattice distortions, ion migration barriers, and stability in solid electrolytes. 2019 , 7, 3216-3227	38
944	Interphase Morphology between a Solid-State Electrolyte and Lithium Controls Cell Failure. 2019 , 4, 591-599	108
943	Sulfur Redox Reactions at Working Interfaces in LithiumâBulfur Batteries: A Perspective. 2019 , 6, 1802046	95
942	Electronic and mechanistic origins of the superionic conductivity of sulfide-based solid electrolytes. 2019 , 415, 189-196	7
941	PEO-based electrolytes blended with star polymers with precisely imprinted polymeric pseudo-crown ether cavities for alkali metal ion batteries. 2019 , 576, 182-189	47
940	Lesson Learned from NMR: Characterization and Ionic Conductivity of LGPS-like Li7SiPS8. 2019 , 31, 1280-128	8 40
939	Ionic Conductivity of the NASICON-Related Thiophosphate Na Ti Ga (PS). 2019 , 25, 4143-4148	6
938	Assembling All-Solid-State Lithium-Sulfur Batteries with Li N-Protected Anodes. 2019 , 84, 183-189	19
937	Preparation and characterization of lithium ion conductive Li3SbS4 glass and glass-ceramic electrolytes. 2019 , 333, 45-49	35
936	Electrochemical Redox Behavior of Li Ion Conducting Sulfide Solid Electrolytes. 2019 , 31, 707-713	57
935	Nanoscale layers in polymers to promote ion transport. 2019 , 4, 252-262	11
934	Enhanced Li-ion dynamics in trivalently doped lithium phosphidosilicate Li2SiP2: a candidate material as a solid Li electrolyte. 2019 , 7, 3953-3961	7
933	Reactivity-Guided Interface Design in Na Metal Solid-State Batteries. 2019, 3, 1037-1050	80
932	Revisiting polymeric single lithium-ion conductors as an organic route for all-solid-state lithium ion and metal batteries. 2019 , 7, 1917-1935	70

931	Li7La3Zr2O12 ceramic nanofiber-incorporated composite polymer electrolytes for lithium metal batteries. 2019 , 7, 3391-3398	109
930	Spatial confinement - rapid 2D F diffusion in micro- and nanocrystalline RbSnF. 2019 , 21, 1872-1883	10
929	Neutron reflectometry to measure in situ the rate determining step of lithium ion transport through thin silicon layers and interfaces. 2019 , 21, 16444-16450	4
928	Overcoming binder limitations of sheet-type solid-state cathodes using a solvent-free dry-film approach. 2019 , 21, 390-398	56
927	Influence of Li2OâM2O3âBiO2 glass additive on conductivity and stability of cubic Li7La3Zr2O12. 2019 , 25, 5189-5199	6
926	High-Throughput Screening of Solid-State Li-Ion Conductors Using Lattice-Dynamics Descriptors. 2019 , 16, 270-282	86
925	Microscopic ion migration in solid electrolytes revealed by terahertz Lime-domain pectroscopy. 2019 , 10, 2662	16
924	Enhancing ionic conductivity in Ag3PS4 via mechanical amorphization. 2019 , 521, 119476	10
923	Theoretical picture of positive electrodeâBolid electrolyte interface in all-solid-state battery from electrochemistry and semiconductor physics viewpoints. 2019 , 17, 149-157	25
922	Electrospun ceramic nanofibers as 1D solid electrolytes for lithium batteries. 2019 , 104, 106483	30
921	Exothermal mechanisms in the charged LiNi1/3Mn1/3Co1/3O2 electrode layers for sulfide-based all-solid-state lithium batteries. 2019 , 434, 226714	22
920	Exploiting Lithium-Depleted Cathode Materials for Solid-State Li Metal Batteries. 2019 , 9, 1901335	9
919	Visualizing percolation and ion transport in hybrid solid electrolytes for Liâthetal batteries. 2019 , 7, 23914-23	9 4 3
918	Solid-State Lithium Batteries: Bipolar Design, Fabrication, and Electrochemistry. 2019 , 6, 3842-3859	49
917	Recent progress on solid-state hybrid electrolytes for solid-state lithium batteries. 2019, 21, 308-334	117
916	Boron nitride enhanced polymer/salt hybrid electrolytes for all-solid-state lithium ion batteries. 2019 , 435, 226736	26
915	Low-Temperature Ionothermal Synthesis of Li-Ion Conductive Li4B7O12Cl Solid-State Electrolyte. 2019 , 2, 5140-5145	13
914	Diatomite derived hierarchical hybrid anode for high performance all-solid-state lithium metal batteries. 2019 , 10, 2482	66

913	A highly ionic conductive poly(methyl methacrylate) composite electrolyte with garnet-typed Li6.75La3Zr1.75Nb0.25O12 nanowires. 2019 , 375, 121922	32
912	Single-step synthesis of highly conductive Na3PS4 solid electrolyte for sodium all solid-state batteries. 2019 , 435, 126623	32
911	The Discharge Mechanism for Solid-State Lithium-Sulfur Batteries. 2019 , 4, 2627-2634	14
910	Further Evidence for Energy Landscape Flattening in the Superionic Argyrodites Li6+xP1â⊠MxS5I (M = Si, Ge, Sn). 2019 , 31, 4936-4944	63
909	Electrolyte for lithium protection: From liquid to solid. 2019 , 4, 360-374	67
908	Bifunctional ionic liquid and conducting ceramic co-assisted solid polymer electrolyte membrane for quasi-solid-state lithium metal batteries. 2019 , 586, 122-129	37
907	Advances and Prospects of Sulfide All-Solid-State Lithium Batteries via One-to-One Comparison with Conventional Liquid Lithium Ion Batteries. 2019 , 31, e1900376	70
906	Interface in Solid-State Lithium Battery: Challenges, Progress, and Outlook. 2019 , 11, 22029-22050	127
905	Cooperative transport enabling fast Li-ion diffusion in Thio-LISICON Li10SiP2S12 solid electrolyte. 2019 , 62, 844-852	20
904	Cathode coating using LiInO-LiI composite for stable sulfide-based all-solid-state batteries. 2019 , 9, 8099	20
903	In situ X-ray photoelectron spectroscopy investigation of the solid electrolyte interphase in a Li/Li6.4Ga0.2La3Zr2O12/LiFePO4 all-solid-state battery. 2019 , 23, 2107-2117	12
902	A highly stable glass fiber host for lithium metal anode behaving enhanced coulombic efficiency. 2019 , 317, 333-340	6
901	Lithium diffusion in Li2X (X=O, S, and Se): Ab initio simulations and inelastic neutron scattering measurements. 2019 , 99,	6
900	Characteristic fast H ion conduction in oxygen-substituted lanthanum hydride. 2019 , 10, 2578	38
899	Interfacial Stability of Phosphate-NASICON Solid Electrolytes in Ni-Rich NCM Cathode-Based Solid-State Batteries. 2019 , 11, 23244-23253	38
898	Ion Transport and the True Transference Number in Nonaqueous Polyelectrolyte Solutions for Lithium Ion Batteries. 2019 , 5, 1250-1260	72
897	Structure and ionic conductivity of new Ga2S3-Sb2S3-NaI chalcogenide glass system. 2019 , 570, 53-57	2
896	Progress in development of electrolytes for magnesium batteries. 2019 , 21, 136-153	85

895 Nanostructures and Nanomaterials for Solid-State Batteries. **2019**, 215-263

894	Crystal phase and surface defect driven synthesis of Pb1â\SnxF2 solid solution electrolyte for fluoride ion batteries. 2019 , 845, 154-159	11
893	Superionic UO: A model anharmonic crystalline material. 2019 , 150, 174506	19
892	Quantitative analysis of crystallinity in an argyrodite sulfide-based solid electrolyte synthesized solution processing 2019 , 9, 14465-14471	12
891	Guidelines for All-Solid-State Battery Design and Electrode Buffer Layers Based on Chemical Potential Profile Calculation. 2019 , 11, 19968-19976	52
890	A low ride on processing temperature for fast lithium conduction in garnet solid-state battery films. 2019 , 4, 475-483	94
889	One-pot synthesis of crosslinked polymer electrolyte beyond 5V oxidation potential for all-solid-state lithium battery. 2019 , 431, 1-7	17
888	Dense, Melt Cast Sulfide Glass Electrolyte Separators for Li Metal Batteries. 2019 , 166, A1535-A1542	8
887	Structures and Properties of Oxygen-Substituted Li10SiP2S12â\(\mathbb{U}\)Ox Solid-State Electrolytes. 2019 , 31, 3984-3991	24
886	Low-Temperature Performance of a Ferroelectric Glass Electrolyte Rechargeable Cell. 2019 , 2, 4943-4953	4
885	Atomically tailoring vacancy defects in FeF2.2(OH)0.8 toward ultra-high rate and long-life Li/Na-ion batteries. 2019 , 7, 14180-14191	1
884	Nanostructures and Nanomaterials for Batteries. 2019,	9
883	Computation-Guided Design of LiTaSiO5, a New Lithium Ionic Conductor with Sphene Structure. 2019 , 9, 1803821	28
882	Highly Tough, Li-Metal Compatible Organicâlhorganic Double-Network Solvate Ionogel. 2019 , 9, 1900257	42
881	Implications of OxygenâBulfur Exchange on Structural, Electronic Properties, and Stability of Alkali-Metal Hexatitanates. 2019 , 256, 1800568	2
880	High Li+ transference gel interface between solid-oxide electrolyte and cathode for quasi-solid lithium-ion batteries. 2019 , 7, 12244-12252	20
879	Li+ ion conductor based on NaBr doped with LiBH4. 2019 , 9, 304-309	1
878	A High-Throughput Search for Functionally Stable Interfaces in Sulfide Solid-State Lithium Ion Conductors. 2019 , 9, 1900807	39

877	Exfoliated MoS2 as Electrode for All-Solid-State Rechargeable Lithium-Ion Batteries. 2019 , 123, 12126-12134	35
876	Utmost limits of various solid electrolytes in all-solid-state lithium batteries: A critical review. 2019 , 109, 367-385	94
875	Solid-State Plastic Crystal Electrolytes: Effective Protection Interlayers for Sulfide-Based All-Solid-State Lithium Metal Batteries. 2019 , 29, 1900392	92
874	Lithium-stable NASICON-type lithium-ion conducting solid electrolyte film coated with a polymer electrolyte. 2019 , 337, 101-106	5
873	Fabrication of a Dendrite-Free all Solid-State Li Metal Battery via Polymer Composite/Garnet/Polymer Composite Layered Electrolyte. 2019 , 6, 1900186	31
872	Solid Garnet Batteries. 2019 , 3, 1190-1199	230
871	Stabilizing Solid Electrolyte-Anode Interface in Li-Metal Batteries by Boron Nitride-Based Nanocomposite Coating. 2019 , 3, 1510-1522	146
870	Stable Cycling Lithium-Sulfur Solid Batteries with Enhanced Li/LiGePS Solid Electrolyte Interface Stability. 2019 , 11, 18436-18447	44
869	Visualization of the Interfacial Decomposition of Composite Cathodes in Argyrodite-Based All-Solid-State Batteries Using Time-of-Flight Secondary-Ion Mass Spectrometry. 2019 , 31, 3745-3755	138
868	Weak Anisotropic Lithium-Ion Conductivity in Single Crystals of Li10GeP2S12. 2019 , 31, 3694-3699	29
867	Current Li-Ion Battery Technologies in Electric Vehicles and Opportunities for Advancements. 2019 , 12, 1074	200
866	Mechanistic understanding and strategies to design interfaces of solid electrolytes: insights gained from transmission electron microscopy. 2019 , 54, 10571-10594	11
865	Crystalline Lithium Imidazolate Covalent Organic Frameworks with High Li-Ion Conductivity. 2019 , 141, 7518-7525	165
864	A Li2CuPS4 superionic conductor: a new sulfide-based solid-state electrolyte. 2019 , 7, 12645-12653	22
863	The role of glass crystallization processes in preparation of high Li-conductive NASICON-type ceramics. 2019 , 21, 3106-3115	10
862	ElectroâthemoâtMechanical Issues at the Interfaces in Solid-State Lithium Metal Batteries. 2019 , 29, 1900950	79
861	Group 14 element based sodium chalcogenide Na4Sn0.67Si0.33S4 as structure template for exploring sodium superionic conductors. 2019 , 23, 508-513	18
860	Conduction Mechanism of Li10GeP2S12-type Lithium Superionic Conductors in a LiâBnâBiâ P âB System. 2019 , 31, 3485-3490	13

859	Solid-state electrolyte considerations for electric vehicle batteries. 2019 , 3, 1647-1659	22
858	Manipulating Interfacial Nanostructure to Achieve High-Performance All-Solid-State Lithium-Ion Batteries. 2019 , 3, 1900261	60
857	Influence of the Lithium Substructure on the Diffusion Pathways and Transport Properties of the Thio-LISICON Li4Ge1â\subsetensx54. 2019 , 31, 3794-3802	25
856	Acid induced conversion towards a robust and lithiophilic interface for Liâlli7La3Zr2O12 solid-state batteries. 2019 , 7, 14565-14574	79
855	The Ab Initio Calculations on the Areal Specific Resistance of Li-Metal/Li7La3Zr2O12 Interphase. 2019 , 2, 1900028	14
854	Recent Research on Strategies to Improve Ion Conduction in Alkali Metal-Ion Batteries. 2019 , 2, 403-427	20
853	Fabrication of composite probe electrode used for localized impedance analysis of solid-state electrolyte LATP. 2019 , 336, 11-18	3
852	The recent research status quo and the prospect of electrolytes for lithium sulfur batteries. 2019 , 369, 874-897	53
851	A concentrated poly(ethylene carbonate)/poly(trimethylene carbonate) blend electrolyte for all-solid-state Li battery. 2019 , 51, 753-760	12
850	Nanohybrid electrolytes for high-energy lithium-ion batteries: recent advances and future challenges. 2019 , 30, 302002	16
849	Rational Design of a Composite Electrode to Realize a High-Performance All-Solid-State Battery. 2019 , 12, 2637-2643	15
848	A complex hydride lithium superionic conductor for high-energy-density all-solid-state lithium metal batteries. 2019 , 10, 1081	174
847	Superionic conduction and interfacial properties of the low temperature phase Li7P2S8Br0.5I0.5. 2019 , 19, 80-87	24
846	The Indiumâllithium Electrode in Solid-State Lithium-Ion Batteries: Phase Formation, Redox Potentials, and Interface Stability. 2019 , 2, 524-529	98
845	Tape-casted liquid-tight lithium-conductive membranes for advanced lithium batteries. 2019 , 54, 8531-8541	4
844	Room temperature demonstration of a sodium superionic conductor with grain conductivity in excess of 0.01 S cmâd and its primary applications in symmetric battery cells. 2019 , 7, 7766-7776	57
843	Computational Screening of Cathode Coatings for Solid-State Batteries. 2019 , 3, 1252-1275	162
842	Development of all-solid-state battery based on lithium ion conductive polymer nanofiber framework. 2019 , 423, 255-262	38

(2019-2019)

841	In Situ Formed Li-B-H Complex with High Li-Ion Conductivity as a Potential Solid Electrolyte for Li Batteries. 2019 , 11, 14136-14141	23
840	A review of rechargeable batteries for portable electronic devices. 2019 , 1, 6-32	400
839	A shear thickening fluid based impact resistant electrolyte for safe Li-ion batteries. 2019 , 423, 297-304	21
838	Decomposition pathway of KAlH altered by the addition of AlS. 2019 , 48, 5048-5057	O
837	The synergistic effect of poly(ethylene glycol)-borate ester on the electrochemical performance of all solid state Si doped-poly(ethylene glycol) hybrid polymer electrolyte for lithium ion battery. 2019 , 423, 349-357	17
836	Electrolytes. 2019 , 79-115	
835	A highly conductive Na3V2(PO4)3 ceramic sheet prepared by tape-casting method. 2019, 305, 197-203	6
834	Amorphous Ni-Rich Li(Ni1â⊠âŪMnxCoy)O2âŪi2SO4 Positive Electrode Materials for Bulk-Type All-Oxide Solid-State Batteries. 2019 , 6, 1802016	8
833	Fast Charging Lithium Batteries: Recent Progress and Future Prospects. 2019 , 15, e1805389	151
832	High-Performance Li-SeS All-Solid-State Lithium Batteries. 2019 , 31, e1808100	79
831	. 2019,	11
830	Modeling Solid State Batteries. 2019 , 1-18	
829	Solid-State Electrolyte. 2019 , 1-9	1
828	Graphitic Hollow Nanocarbon as a Promising Conducting Agent for Solid-State Lithium Batteries. 2019 , 15, e1900235	24
827	Electrochemical performance of sulfide solid electrolyte Li10GeP2S12 synthesized by a new method. 2019 , 248, 153-156	8
826	Lithium Chlorides and Bromides as Promising Solid-State Chemistries for Fast Ion Conductors with Good Electrochemical Stability. 2019 , 131, 8123-8127	19
825	Lithium Chlorides and Bromides as Promising Solid-State Chemistries for Fast Ion Conductors with Good Electrochemical Stability. 2019 , 58, 8039-8043	151
824	Cathode-Supported All-Solid-State Lithiumâßulfur Batteries with High Cell-Level Energy Density. 2019 , 4, 1073-1079	86

823	Sheet-type Li6PS5Cl-infiltrated Si anodes fabricated by solution process for all-solid-state lithium-ion batteries. 2019 , 426, 143-150	38
822	Key Aspects of Lithium Metal Anodes for Lithium Metal Batteries. 2019 , 15, e1900687	134
821	Editors' Choiceâ�nderstanding Chemical Stability Issues between Different Solid Electrolytes in All-Solid-State Batteries. 2019 , 166, A975-A983	43
820	Development of a compact all-solid-state lithium secondary battery using single-crystal electrolyte. 2019 , 12, 28-38	3
819	Improving the electrochemical cycling performance of anode materials via facile in situ surface deposition of a solid electrolyte layer. 2019 , 424, 150-157	17
818	Amorphous versus Crystalline Li3PS4: Local Structural Changes during Synthesis and Li Ion Mobility. 2019 , 123, 10280-10290	33
817	Prospects of production technologies and manufacturing costs of oxide-based all-solid-state lithium batteries. 2019 , 12, 1818-1833	63
816	High temperature and high rate lithium-ion batteries with boron nitride nanotubes coated polypropylene separators. 2019 , 19, 352-359	38
815	Preparation of high-density garnet thin sheet electrolytes for all-solid-state Li-Metal batteries by tape-casting technique. 2019 , 791, 923-928	24
814	Observation of Chemomechanical Failure and the Influence of Cutoff Potentials in All-Solid-State Liâß Batteries. 2019 , 31, 2930-2940	69
813	Formation of interfacial contact with ductile Li3BO3-based electrolytes for improving cyclability in all-solid-state batteries. 2019 , 424, 215-219	15
812	Insights into Sodium Ion Transfer at the Na/NASICON Interface Improved by Uniaxial Compression. 2019 , 2, 2913-2920	24
811	In-situ electron microscopy mapping of an order-disorder transition in a superionic conductor. 2019 , 10, 1505	13
810	Substitutional disorder: structure and ion dynamics of the argyrodites LiPSCl, LiPSBr and LiPSI. 2019 , 21, 8489-8507	69
809	Recent Progress in All-Solid-State LithiumâBulfur Batteries Using High Li-Ion Conductive Solid Electrolytes. 2019 , 2, 199-230	118
808	Chemical Solution Deposition (CSD). 2019 , 1-34	2
807	MgSc Se -A Magnesium Solid Ionic Conductor for All-Solid-State Mg Batteries?. 2019 , 12, 2286-2293	31
806	Bulk-type all-solid-state batteries with mechanically prepared LiCoPO4 composite cathodes. 2019 , 23, 1297-1302	6

805	Interfacial modification of Li/Garnet electrolyte by a lithiophilic and breathing interlayer. 2019, 419, 91-98	68
804	Direct Observation of a Li-Ionic Space-Charge Layer Formed at an Electrode/Solid-Electrolyte Interface. 2019 , 58, 5292-5296	22
803	Direct Observation of a Li-Ionic Space-Charge Layer Formed at an Electrode/Solid-Electrolyte Interface. 2019 , 131, 5346-5350	11
802	Free-Standing PEO/LiTFSI/LAGP Composite Electrolyte Membranes for Applications to Flexible Solid-State Lithium-Based Batteries. 2019 , 166, A416-A422	25
801	Evaluation of Mg Compounds as Coating Materials in Mg Batteries. 2019 , 7, 24	27
800	Ionic transport in highly concentrated lithium bis(fluorosulfonyl)amide electrolytes with keto ester solvents: structural implications for ion hopping conduction in liquid electrolytes. 2019 , 21, 5097-5105	20
799	Scalable Synthesis of Size-Controlled Li2S Nanocrystals for Next-Generation Battery Technologies. 2019 , 2, 2246-2254	12
798	Recent advances in solid state lithiumâBxygen batteries: electrolytes and multi-functions. 2020 , 4, 032005	1
797	Training machine-learning potentials for crystal structure prediction using disordered structures. 2020 , 102,	2
796	Ionic correlations and failure of Nernst-Einstein relation in solid-state electrolytes. 2017, 1,	58
795	Role of anisotropy in determining stability of electrodeposition at solid-solid interfaces. 2017, 1,	20
794	Interfacial strain effects on lithium diffusion pathways in the spinel solid electrolyte Li-doped MgAl2O4. 2018 , 2,	10
793	Stability and conductivity of cation- and anion-substituted LiBH4-based solid-state electrolytes. 2018 , 2,	9
792	Modeling lithium-ion solid-state electrolytes with a pinball model. 2018 , 2,	23
791	Achieving accurate energetics beyond (semi-)local density functional theory: Illustrated with transition metal disulfides, Cu2ZnSnS4, and Na3PS4 related semiconductors. 2019 , 3,	4
790	Computational evaluation of new lithium-3 garnets for lithium-ion battery applications as anodes, cathodes, and solid-state electrolytes. 2019 , 3,	7
789	Influence of lattice dynamics on lithium-ion conductivity: A first-principles study. 2019, 3,	28
788	Unsupervised landmark analysis for jump detection in molecular dynamics simulations. 2019, 3,	17

787	Reorientational motion and Li+-ion transport in Li2B12H12 system: Molecular dynamics study. 2019 , 3,	12
786	Boosting ionic conductivity in antiperovskite Li3OCl via defect engineering: Interstitial versus vacancy. 2019 , 3,	7
7 ⁸ 5	First-principles study of Li-ion distribution at 🖽 i3PO4/metal interfaces. 2020, 4,	3
784	An investigation of the structural properties of Li and Na fast ion conductors using high-throughput bond-valence calculations and machine learning. 2019 , 52, 148-157	21
783	Reviewâ P olymer/Ceramic Interface Barriers: The Fundamental Challenge for Advancing Composite Solid Electrolytes for Li-Ion Batteries. 2020 , 167, 160514	13
782	Tailored Solid Polymer Electrolytes by Montmorillonite with High Ionic Conductivity for Lithium-Ion Batteries. 2019 , 14, 366	9
781	Enhanced Cathode/Sulfide Electrolyte Interface Stability Using an Li2ZrO3 Coating for All-Solid-State Batteries. 2018 , 9, 176-183	15
780	New Applications of Solid State Ionics. 2013 , 28, 1163-1164	3
779	Microscopic Analysis of High Lithium-Ion Conducting Glass-Ceramic Sulfides. 2016 , 53, 568-573	3
778	Challenges in the Development of Film-Forming Additives for Lithium Ion Battery: A Review. 2013 , 04, 7-12	3
777	Research Trend of Solid Electrolyte for Lithium Rechargeable Batteries. 2012 , 15, 1-11	3
776	Development of new lithium battery materials by material genome initiative. 2018 , 67, 128801	5
775	Advance in interface and characterizations of sulfide solid electrolyte materials. 2020 , 69, 228803-228803	18
774	Sulfurized polyacrylonitrile cathodes with electrochemical and structural tuning for high capacity all-solid-state lithiumâBulfur batteries. 2021 , 5, 5603-5614	2
773	Investigation of Li3P as Electrolyte and Lithium-ion conductor: An Ab- Initio Study. 2021,	
772	Wet-Milling Synthesis of Superionic Lithium Argyrodite Electrolytes with Different Concentrations of Lithium Vacancy. 2021 , 13, 46644-46649	1
771	Preparation and infiltration of NASICON-type solid electrolytes with microporous channels. 2021 , 48, 2203-2203	1
770	Structural and Chemical Compatibilities of Li Ni Co Mn O Cathode Material with Garnet-Type Solid Electrolyte for All-Solid-State Batteries. 2021 , 17, e2103306	1

769	Fast ion transport for synthesis and stabilization of EZnSb. 2021 , 12, 6077	Ο
768	Predicting Li-Rich Layered Oxide Compounds as High-Conductivity and Stable Solid Electrolytes. 3793-3800	2
767	Insights into Bulk Properties and Transport Mechanisms in New Ternary Halide Solid Electrolytes: First-Principles Calculations. 2021 , 125, 23510-23520	3
766	Fuzzy logic: about the origins of fast ion dynamics in crystalline solids. 2021 , 379, 20200434	2
765	Theoretical analysis of reversible phase evolution in Li-ion conductive halides. 2022, 574, 151621	0
764	Paradigms of frustration in superionic solid electrolytes. 2021 , 379, 20190467	6
763	All-Solid-State Lithium Metal Batteries with Sulfide Electrolytes: Understanding Interfacial Ion and Electron Transport.	8
762	Role of Filler Content and Morphology in LLZO/PEO Membranes. 2021 , 9,	4
761	Control of chemical structure and lithium-ion conductivity of amorphous lithium phosphate thin film deposited by pulsed laser deposition.	1
760	Stable Cycling of All-Solid-State Batteries with Sacrificial Cathode and Lithium-Free Indium Layer. 2108203	3
759	Formed Li-Ag Alloy Interface Enables LiGePS-Based All-Solid-State Lithium Batteries. 2021, 13, 50076-50082	5
758	The effect of solvent on reactivity of the LiS-PS system in liquid-phase synthesis of LiPS solid electrolyte. 2021 , 11, 21097	4
757	J-PARC Neutron Source. 2012 , 61, 343-351	
756	Optimum valence bond scheme for its applications to the prediction of nano-structures and the study of matter properties. 2013 , 62, 093601	
755	Solid Electrolytes for Aqueous Lithium Air Batteries. 2014 , 215-234	0
754	Structures and Ion Conduction Pathways of Amorphous Lithium Ion Conductors. 2014 , 24, 267-272	
753	Ion Conducting Materials: Superionic Conductors and Solid-State Ionics. 2017, 17-37	
75 ²	3.???????????. 2017, 85, 597-600	

751	Polymer/Graphene Composites for Energy Storage. 2017 , 337-364	
75°	1.??????????????????????????. 2017 , 85, 586-590	
749	Influence of Aland Ga on Lithium Ion Conductivities of Cubic Garnet-Type Li7-xLa3Zr2-xTaxO12 Electrolytes. 2017 , 07, 243-253	
748	Development of High Temperature Durable All-solid-state Lithium Ion Secondary Battery Employing Complex Hydride. 2017 , 56, 76-78	
747	Structure Studies of Lithium Ion Conducting Glasses Using Neutron Diffraction. 2017, 56, 443-447	
746	2.????????? â世?,????,???,???. 2017 , 85, 591-596	
745	Fast Na Ion Transport Triggered By Rapid Ion Exchange on Local Length Scales.	1
744	???????????. 2018 , 86, 53-59	O
743	Rechargeable Lithium Metal Batteries. 2019 , 147-203	
742	Development of Solid Electrolytes for All-Solid-State Batteries. 2019 , 92, 430-434	
741	Advanced Coupling of Energy Storage and Photovoltaics. 2019 , 317-350	
740	Micro-mechanics in Electrochemical Systems. 2019 , 901-953	
739	All-Solid-State Batteries Based on Glass-Ceramic Lithium Vanadate. 2019 , 297-334	O
738	CHAPTER 3:Electrolyte Development for Solid-state Lithium Batteries. 2019 , 100-135	
737	Composite Electrolytes Based on Tetragonal Li7La3Zr2O12 for Lithium Batteries. 2019 , 167-193	
736	High-Energy All-Solid-State Lithium-Metal Batteries by Nanomaterial Designs. 2019 , 205-262	
735	Research Development of All Solid-state Battery by Using Thin Film Technology. 2019 , 58, 311-319	
734	Solid-State Battery Technologies for Advanced IoT Sensor Device Applications. 2019 , 31, 334-337	

717

716

Introduction. **2020**, 1-9

6.?????????????????. **2019**, 87, 227-232 733 Quasi-Solid Electrolytes Comprising Sulfide Electrolyte and Carboxylate Esters: Investigation of the 732 Influence of the Carboxylate Ester Structure. 2020, 167, 120521 Recent Advancements in High-Performance Solid Electrolytes for Li-ion Batteries: Towards a Solid 731 Future. 2020, 16, 507-533 Self-Healing: An Emerging Technology for Next-Generation Smart Batteries. 2102652 730 7 Anion-Rectifying Polymeric Single Lithium-Ion Conductors. 2107753 729 0 Solid Electrolyte with Oxidation Tolerance Provides a High-Capacity Li2S-Based Positive Electrode 728 4 for All-Solid-State Li/S Batteries. 2106174 Chemical Heterogeneity in PAN/LLZTO Composite Electrolytes by Synchrotron Imaging. 727 O Graphite/Li7P3S11 composite prepared by alleedalprocess for all-solid-state batteries. 2021, 372, 115789 726 Anode interface in all-solid-state lithium-metal batteries: Challenges and strategies. 2020, 69, 228805 1 First principles study of the electronic, elastic, infrared and electrical properties of LiZnPS4. 2020, 724 322, 114057 Thin, flexible sulfide-based electrolyte film and its interface engineering for high performance 8 723 solid-state lithium metal batteries. 2022, 430, 132991 Chlorine-rich lithium argyrodite enabling solid-state batteries with capabilities of high voltage, high 722 16 rate, low-temperature and ultralong cyclability. 2022, 430, 132896 Recent advancement and enhanced battery performance using phase change materials based 4 hybrid battery thermal management for electric vehicles. 2022, 154, 111759 Formulation of Li-Metal-Halide (LMX) Solid State Electrolytes through Extensive First Principles 720 Modelling. Electronic Structure and Reactivity of Electrodea Bolid Electrolyte Interfaces. 2020, 55-71 719 718 Three-dimensional porous ceramic framework reinforcing composite electrolyte. 2020, 69, 228203-228203

A brief analysis of the microscopic physical image of ions transport in electrolyte. 2020, 0-0

10

715	Stability of interphase between solid state electrolyte and electrode. 2020 , 69, 228206-228206	2
714	Facile synthesis and electrochemical properties of Na-rich anti-perovskite solid electrolytes. 2020 , 69, 228201-228201	1
713	1.??????????â∰???????â ⊞ ???????â □2020 , 88, 3-8	
712	Preparation of (50-x)Li2SO4â\Li2WO4â\B0LiPO3 (mol%) Glasses and Their Lithium-ion Conducting Properties. 2020 , 67, 158-162	
711	High-Temperature Battery Technologies: Na-S. 1-35	
710	Preparation of Lithium-ion Conducting Glasses in the System Li2SO4-LiPO3. 2020 , 67, 153-157	
709	OVERVIEW OF APPLICATIONS IN POWER AND ENERGY SYSTEMS. 2020 , 21-37	
708	AC Impedance Measurement and Electron Holography of Ionic Liquid in a Transmission Electron Microscope. 2020 , 61, 423-429	2
707	Extended Condensed Ultraphosphate Frameworks with Monovalent Ions Combine Lithium Mobility with High Computed Electrochemical Stability. 2021 , 143, 18216-18232	0
706	Emerging Characterization Techniques for Electrode Interfaces in Sulfide-Based All-Solid-State Lithium Batteries. 2100146	4
705	Challenges and Strategies towards Practically Feasible Solid-State Lithium Metal Batteries. 2021 , 34, e2104666	15
704	Lithium-ion-conductive sulfide polymer electrolyte with disulfide bond-linked PS4 tetrahedra for all-solid-state batteries. 2021 , 2,	4
703	Independent component analysis combined with Laplace inversion of spectrally resolved spin-alignment echo/T 1 3D 7Li NMR of superionic Li10GeP2S12. 2021 ,	1
702	Origin of High Electrochemical Stability of Multi-Metal Chloride Solid Electrolytes for High Energy All-Solid-State Lithium-Ion Batteries. 2021 , 92, 106674	7
701	Tuning solid interfaces via varying electrolyte distributions enables high performance solid-state batteries.	6
700	Room-temperature Operation of Lithium Sulfide Positive and Silicon Negative Composite Electrodes Employing Oxide Solid Electrolytes for All-solid-state Battery. 2021 ,	3
699	Synthesis and Lithium-ion Conductivity of Sr(La1â⊠Li3x)ScO4 with a K2NiF4 Structure. 2021 ,	
698	The ionic interphases of the lithium anode in solid state batteries. 2022 , 26, 100973	1

697	Pushing the boundaries of lithium battery research with atomistic modelling on diarent scales.	2
696	Application of Porous Ceramics. 2022 , 499-537	
695	A mechanistic investigation of the LiGePS LiNiCoMnO interface stability in all-solid-state lithium batteries. 2021 , 12, 6669	13
694	2D argyrodite LPSCl solid electrolyte for all-solid-state Li ion battery using reduced graphene oxide template. 2021 , 100913	O
693	Composite polymer electrolyte with three-dimensional ion transport channels constructed by NaCl template for solid-state lithium metal batteries. 2021 ,	3
692	Rapid synthesis of garnet-type Li7La3Zr2O12 solid electrolyte with superior electrochemical performance. 2021 , 42, 1568-1568	1
691	Thermal and Electrochemical Interface Compatibility of a Hydroborate Solid Electrolyte with 3 V-Class Cathodes for All-Solid-State Sodium Batteries. 2021 , 13, 55319-55328	1
690	A Fluoride-Ion-Conducting Solid Electrolyte with Both High Conductivity and Excellent Electrochemical Stability. 2021 , e2104508	2
689	High-Pressure Synthesis and Lithium-Ion Conduction of Li4OBr2 Derivatives with a Layered Inverse-Perovskite Structure.	1
688	A Dry-Processed Al2O3/LiAlO2 Coating for Stabilizing the Cathode/Electrolyte Interface in High-Ni NCM-Based All-Solid-State Batteries. 2101428	3
687	Modeling study of stress generation of a single active material particle connected to solid electrolyte in solid-state batteries. 2021 , 403, 139639	1
686	In Search of the Best Solid Electrolyte-Layered Oxide Pairing for Assembling Practical All-Solid-State Batteries.	6
685	Hybrid poly-ether/carbonate ester electrolyte engineering enables high oxidative stability for quasi-solid-state lithium metal batteries. 2021 , 100893	7
684	Janus-faced graphene substrate stabilizes lithium metal anode. 2021 , 433, 133561	O
683	In Situ Formed Ag-Li Intermetallic Layer for Stable Cycling of All-Solid-State Lithium Batteries. 2021 , e2103826	4
682	Enhanced Electrochemical Performance of Al- and Nb-Codoped LLZO Ceramic Powder and Its Composite Solid Electrolyte.	O
681	Ion migration and defect effect of electrode materials in multivalent-ion batteries. 2021, 125, 100911	11
680	Mechanochemical synthesis of air-stable hexagonal LiSnS-based solid electrolytes containing LiI and LiPS 2021 , 11, 38880-38888	2

679	Impact of Surface Coating on the Low Temperature Performance of a Sulfide-Based All-Solid-State Battery Cathode. 2021 , 90,	4
678	Plant Technology for the Industrial Coating Process for Sulfide-Based All-Solid-State Batteries. 2021 , 104, 56-61	2
677	Controllable Li3PS4â[ii4SnS4 solid electrolytes with affordable conductor and high conductivity for solid-state battery.	1
676	Computational Screening of Anode Coatings for Garnet-type Solid-State Batteries.	1
675	Mitigating Interfacial Mismatch between Lithium Metal and Garnet-Type Solid Electrolyte by Depositing Metal Nitride Lithiophilic Interlayer 2022 , 5, 648-657	4
674	High areal capacity, long cycle life 4 V ceramic all-solid-state Li-ion batteries enabled by chloride solid electrolytes.	39
673	Mechanism of Lithium Dendrites Formation and Suppression Strategies in Li Metal Batteries. 2022 , 2152, 012026	
672	Unraveling the crystallinity on battery performances of chlorine-rich argyrodite electrolytes. 2022 , 520, 230890	5
671	Electrochemo-mechanical effects as a critical design factor for all-solid-state batteries. 2022, 26, 100977	8
670	Recent progress and perspectives on designing high-performance thick electrodes for all-solid-state lithium batteries. 2022 , 11, 100152	7
669	Interfaces in all solid state Li-metal batteries: A review on instabilities, stabilization strategies, and scalability. 2022 , 45, 969-1001	8
668	Synergistic effects of chlorine substitution in sulfide electrolyte solid state batteries. 2022 , 45, 484-493	8
667	A deformable dual-layer interphase for high-performance Li10GeP2S12-based solid-state Li metal batteries. 2022 , 431, 134019	3
666	Solvation chemistry of rare earth nitrates in carbonate electrolyte for advanced lithium metal batteries. 2022 , 433, 134468	3
665	Hydride-ion-conducting KNiF-type Ba-Li oxyhydride solid electrolyte <i>Nature Materials</i> , 2022 , 27	2
664	Characteristics of a Li3BS3 Thioborate Glass Electrolyte Obtained via a Mechanochemical Process.	3
663	Poly (vinylidene fluoride) binder reinforced poly (propylene carbonate)/3D garnet nanofiber composite polymer electrolyte toward dendrite-free lithium metal batteries. 2022 , 24, 100952	O
662	Rate-Dependent Deformation of Amorphous Sulfide Glass Electrolytes for Solid-State Batteries.	

661	A Direct View on Li-Ion Transport and Li-Metal Plating in Inorganic and Hybrid Solid-State Electrolytes 2022 ,	3
660	Failure mechanism of solid-state electrolyte Li10GeP2S12 in moist atmosphere: A first-principles study.	1
659	Perspective on design and technical challenges of Li-garnet solid-state batteries 2022 , 23, 2018919	2
658	The chemical origin of temperature-dependent lithium-ion concerted diffusion in sulfide solid electrolyte Li10GeP2S12. 2022 ,	2
657	Role of Critical Oxygen Concentration in the Łi3PS4âNOx Solid Electrolyte. 2022 , 5, 35-41	1
656	Density Functional Theory Studies on Li Metal Electrode/Garnet-Type Li 7 La 3 Zr 2 O 12 Solid Electrolyte Interfaces for Application in All-Solid-State Batteries. 2100546	1
655	Design of Polymeric Zwitterionic Solid Electrolytes with Superionic Lithium Transport 2022 , 8, 169-175	8
654	Antiperovskite Electrolytes for Solid-State Batteries 2022 ,	18
653	Exploiting the paddle-wheel mechanism for the design of fast ion conductors.	23
652	Polyacrylonitrile Nanofiber-Reinforced Flexible Single-Ion Conducting Polymer Electrolyte for High-Performance, Room-Temperature All-Solid-State Li-Metal Batteries. 1	1
651	Enhancing Moisture and Electrochemical Stability of the LiPSCl Electrolyte by Oxygen Doping 2022 ,	6
650	Chemical Stability of Sulfide Solid-state Electrolytes: Stability Toward Humid Air and Compatibility with Solvents and Binders.	12
649	Exploring the Synthesis of Alkali Metal Anti-perovskites. 2022 , 34, 947-958	2
648	A low resistance and stable lithium-garnet electrolyte interface enabled by a multifunctional anode additive for solid-state lithium batteries. 2022 , 10, 2519-2527	6
647	Structural manipulation for solid electrolyte Na3OBr by sulfur ions doping.	
646	Li5SnP3 - a member of the series Li10+4xSn2-xP6 for $x = 0$ comprising the fast lithium-ion conductors Li8SnP4 ($x = 0.5$) and Li14SnP6 ($x = 1$) 2021 , e202104219	
645	Interfacial challenges in all-solid-state lithium batteries. 2022, 33, 100933	4
644	Anion Substitution at Apical Sites of Ruddlesdenâ P opper-type Cathodes toward High Power Density for All-Solid-State Fluoride-Ion Batteries. 2022 , 34, 609-616	2

643	Effect of Liquid Metal Coating on Improved Cycle Performance of Anode-Free Lithium Metal Battery.	1
642	Confining nonflammable liquid in solid polymer electrolyte to enable nickel-rich cathode-based 4.2 ly high-energy solid-state lithium-metal and lithium-ion batteries. 2022 , 24, 100950	3
641	Li-rich channels as the material gene for facile lithium diffusion in halide solid electrolytes. 2022,	3
640	Suppressing lithium dendrites within inorganic solid-state electrolytes. 2022 , 3, 100706	2
639	Doping Strategy and Mechanism for Oxide and Sulfide Solid Electrolytes with High Ionic Conductivity.	6
638	Combinatorial Synthesis and Ionic Conductivity of Amorphous Oxynitrides in a Pseudo-ternary Li3PO4-Li4SiO4-LiAlO2 System. 2022 , 90,	O
637	A Nanoscale Design Approach for Enhancing the Li-Ion Conductivity of the LiGePS Solid Electrolyte 2022 , 4, 424-431	1
636	Thermally-driven reactivity of Li0.35La0.55TiO3 solid electrolyte with LiCoO2 cathode.	Ο
635	Can Substitutions Affect the Oxidative Stability of Lithium Argyrodite Solid Electrolytes?.	0
634	Air Stability and Interfacial Compatibility of Sulfide Solid Electrolytes for Solid-State Lithium Batteries: Advances and Perspectives. 2022 , 9,	3
633	Regulation of the Interfaces Between Argyrodite Solid Electrolytes and Lithium Metal Anode 2022 , 10, 837978	1
632	Deterioration process of argyrodite solid electrolytes during exposure to humidity-controlled air. 2022 , 524, 231085	4
631	Studies on the inhibition of lithium dendrite formation in sulfide solid electrolytes doped with LiX (XI≟IBr, I). 2022 , 377, 115869	3
630	Local ionic structure unit design in sulfide solid electrolyte flakes by improving pressing process. 2022 , 435, 134663	1
629	Solid state ionics âlbelected topics and new directions. 2022 , 126, 100921	2
628	Effect of Nb5+ doping on the microstructure and conductivity of Li1.125Ta0.875Zr0.125SiO5 electrolyte. 2022 , 902, 163760	O
627	Fast-Charging Solid-State Lithium Metal Batteries: A Review. 2100203	1
626	New Insights into the Effects of Zr Substitution and Carbon Additive on LiErZrCl Halide Solid Electrolytes 2022 ,	5

625	Interfacial Barrier of Ion Transport in Poly(ethylene oxide)-LiLaZrO Composite Electrolytes Illustrated by Li-Tracer Nuclear Magnetic Resonance Spectroscopy 2022 , 1500-1505	1
624	Thiotetrelates LiZnXS (X = Si, Ge, and Sn) As Potential Li-Ion Solid-State Electrolytes 2022 ,	o
623	Smart Materials Prediction: Applying Machine Learning to Lithium Solid-State Electrolyte 2022 , 15,	1
622	Anomalously High Ionic Conductivity of LiSiS-Type Conductors 2022,	4
621	Challenges, interface engineering, and processing strategies toward practical sulfide-based all-solid-state lithium batteries.	9
620	The recent research progress and application of nanoparticles and ions supporting by covalent organic frameworks. 2022 , 111701	О
619	Systematic evaluation of materials and recipe for scalable processing of sulfide-based solid-state batteries. 2022 , 30, 103189	O
618	Achieving fast ionic conductivity and high electrochemical stability through polyhedral structure design. 2022 , 47, 70-78	
617	Size-Dependent Chemomechanical Failure of Sulfide Solid Electrolyte Particles during Electrochemical Reaction with Lithium 2021 ,	5
616	LiSiO Doped-LiPSI solid electrolytes with high lithium stability synthesised using liquid-phase shaking 2022 , 12, 7469-7474	
615	Hydride ion intercalation and conduction in the electride Sr3CrN3.	О
614	Investigating dry room compatibility of sulfide solid-state electrolytes for scalable manufacturing. 2022 , 10, 7155-7164	4
613	Designing a descriptor for the computational screening of argyrodite-based solid-state superionic conductors: uniformity of ion-cage size. 2022 , 10, 7888-7895	
612	Cycle Degradation Analysis by High Precision Coulometry for Sulfide-Based All-Solid-State Battery Cathode under Various Potentials. 2022 ,	2
611	Atomistic insight into the dopant impacts at the garnet Li7La3Zr2O12 solid electrolyte grain boundaries.	1
610	Effectively raising the rate performance and cyclability of a graphite anode via hydrothermal modification with melamine and its electrochemical derivatives.	О
609	Stabilizing Solid Electrolyte/Li Interface Via Polymer-in-Salt Artificial Protection Layer for High-Rate and Stable Lithium Metal Batteries.	
608	Sulfide glass solid-state electrolyte separators for Li metal batteries: using an interlayer to increase rate performance and reduce stack pressure.	О

607	Interface modification of NASICON-type Li-ion conducting ceramic electrolytes: a critical evaluation. 2022 , 3, 3055-3069	2
606	Garnet solid-state electrolyte with benzenedithiolate catholyte for rechargeable lithium batteries 2022 ,	1
605	Block copolymer binders with hard and soft segments for scalable fabrication of sulfide-based all-solid-state batteries.	0
604	Controlling Li deposition below the interface. 2022 ,	15
603	Two-dimensional Materials for all-solid-state Lithium Batteries 2021 , e2108079	8
602	Lithium Metal Batteries. 2022 , 1-53	
601	A review of the recent progress in battery informatics. 2022 , 8,	4
600	Optimized Lithium-Indium Chloride Solid Electrolyte for High Energy All-Solid-State Batteries. 34, 3-8	
599	Li2CO3: Insights into Its Blocking Effect on Li-Ion Transfer in Garnet Composite Electrolytes. 2022 , 5, 2853-2861	2
598	A Highly Stable Li-Organic All-Solid-State Battery Based on Sulfide Electrolytes. 2103932	3
597	Elastic Binder for High-Performance Sulfide-Based All-Solid-State Batteries. 2022, 7, 1374-1382	5
596	Ionic Conductivity of LiSiON and the Effect of Amorphization/Heterovalent Doping on Li+ Diffusion. 2022 , 10, 45	О
595	Universal Solution Synthesis of Sulfide Solid Electrolytes Using Alkahest for All-Solid-State Batteries 2022 , e2200083	5
594	Fast-Charging Halide-Based All-Solid-State Batteries by Manipulation of Current Collector Interface. 2200767	6
593	Lithium superionic conductors with corner-sharing frameworks <i>Nature Materials</i> , 2022 ,	12
592	Review of Multifunctional Separators: Stabilizing the Cathode and the Anode for Alkali (Li, Na, and K) Metal-Sulfur and Selenium Batteries 2022 ,	13
591	Preparation of Li-Excess and Li-Deficient Antiperovskite Structured LiOHBr and Their Effects on Total Ionic Conductivity 2022 ,	0
590	Recent Advances in Interface Engineering for All-Solid-State Batteries. 2022 , 25, 104-121	

589	Promoting Mechanistic Understanding of Lithium Deposition and Solid-Electrolyte Interphase (SEI) Formation Using Advanced Characterization and Simulation Methods: Recent Progress, Limitations, and Future Perspectives. 2200398	5
588	Enhancement of Superionic Conductivity by Halide Substitution in Strongly Stacking Faulted Li3HoBr6â⊠lx Phases.	3
587	Sb, O cosubstituted Li10SnP2S12 with high electrochemical stability and air stability for all-solid-state lithium batteries.	
586	ReviewâMicrostructural Modification in Lithium Garnet Solid-State Electrolytes: Emerging Trends. 2022 , 169, 030548	O
585	Recent Advances and Strategies toward Polysulfides Shuttle Inhibition for High-Performance Li-S Batteries 2022 , e2106004	14
584	Solid-state lithium batteries: Safety and prospects. 2022 ,	29
583	Stable All-Solid-State Lithium Metal Batteries Enabled by Machine Learning Simulation Designed Halide Electrolytes 2022 ,	4
582	Lithium ion transport in micro- and nanocrystalline lithium sulphide Li2S. 2022 ,	O
581	Simulation of All-Solid-State Lithium-Ion Batteries With Fastening Stress and Volume Expansion. 2022 , 19,	
580	Synthesis and Proton Conductivity of the Mixed Cation Phosphate, KCo_{1â<i>x}(PO<sub>H_{2<i>x</i>}(PO<sub>with a with a One-dimensional Tunnel Structure. 2022 , 69, 99-103	;3
580 579	KCo _{1â<i>x</i>} H _{2<i>x</i>} (PO <sub>< td=""><td>;3</td></sub><>	;3
	KCo_{1â<i>x</i>}H_{2<i>x</i>}(PO<sub>with a with a One-dimensional Tunnel Structure. 2022 , 69, 99-103	;31
579	KCo _{1â<i>x</i>} H _{2<i>x</i>} (PO _{with a with a One-dimensional Tunnel Structure. 2022, 69, 99-103 Liquid-phase Synthesis of Sulfide Electrolytes and Synthesis Mechanism. 2022, 69, 95-98 Insights into the sinterability and electrical properties of Li1.3Al0.3Ti1.7(PO4)3-(Li2CO3Bi2O3)}	
579 578	KCo _{1â<i>x</i>} H _{2<i>x</i>} (PO _{with a with a One-dimensional Tunnel Structure. 2022, 69, 99-103 Liquid-phase Synthesis of Sulfide Electrolytes and Synthesis Mechanism. 2022, 69, 95-98 Insights into the sinterability and electrical properties of Li1.3Al0.3Ti1.7(PO4)3-(Li2CO3Bi2O3) composite electrolytes. 2022, 48, 8387-8394}	1
579 578 577	KCo _{1â<i>x</i>} H _{2<i>x</i>} (PO _{with a with a One-dimensional Tunnel Structure. 2022, 69, 99-103 Liquid-phase Synthesis of Sulfide Electrolytes and Synthesis Mechanism. 2022, 69, 95-98 Insights into the sinterability and electrical properties of Li1.3Al0.3Ti1.7(PO4)3-(Li2CO3Bi2O3) composite electrolytes. 2022, 48, 8387-8394 Dry electrode technology, the rising star in solid-state battery industrialization. 2022, 5, 876-898 Synthesis and Modification of Tetrahedron LiSiPS Elemental Doping for All-Solid-State Lithium Batteries 2022, 10, 851264 Review of modification strategies in emerging inorganic solid-state electrolytes for lithium, sodium, and potassium batteries. 2022, 6, 543-587}	1 14
579 578 577 576	KCo _{1å<i>x</i>x} H _{2<i>x</i>} (PO <sub> 10,="" 2022,="" 48,="" 5,="" 69,="" 8387-8394="" 851264="" 876-898="" 95-98="" 99-103="" a="" all-solid-state="" and="" batteries="" battery="" composite="" doping="" dry="" electrical="" electrode="" electrolytes="" electrolytes.="" elemental="" emerging="" for="" in="" industrialization.="" inorganic="" insights="" into="" li1.3al0.3ti1.7(po4)3-(li2co3ebi2o3)="" liquid-phase="" lisips="" lithium="" lithium,<="" mechanism.="" modification="" of="" one-dimensional="" properties="" review="" rising="" sinterability="" solid-state="" star="" strategies="" structure.="" sulfide="" synthesis="" td="" technology,="" tetrahedron="" the="" tunnel="" with=""><td>1 14 0</td></sub>>	1 14 0
579 578 577 576 575	KCo _{1â<i>x</i>x} H _{2x} (PO <sub>) 10,="" 2022,="" 48,="" 5,="" 543-587="" 6,="" 69,="" 8387-8394="" 851264="" 876-898="" 95-98="" 99-103="" a="" all-solid-state="" and="" batteries="" batteries.="" battery="" composite="" doping="" dry="" electrical="" electrode="" electrolyte="" electrolytes="" electrolytes.="" elemental="" emerging="" for="" in="" industrialization.="" inorganic="" insights="" into="" li1.3al0.3ti1.7(po4)3-(li2co3bi2o3)="" li<sub="" liquid-phase="" lisips="" lithium="" lithium,="" mechanism.="" modification="" of="" one-dimensional="" potassium="" properties="" review="" rising="" sinterability="" sodium,="" solid="" solid-state="" star="" strategies="" structure.="" sulfide="" synthesis="" technology,="" tetrahedron="" the="" tunnel="" wet="" with="">10GeP₂S₁₂ and Its Ion</sub>)>	1 14 0 8

571	Advancements in extreme fast charging to foster sustainable electrification. 2022 , 5, 216-219	1
570	Lead-Free Solid-State Organic-Inorganic Halide Perovskite Electrolyte for Lithium-Ion Conduction 2022 ,	1
569	An insulating material in a structured host enables sustainable formation of a granular Li metal for highly durable Li metal battery. 2022 , 527, 231170	2
568	Transport and Mechanical Aspects of All-Solid-State Lithium Batteries. 2022 , 100679	2
567	Redox Activity of Li2Sâ P 2S5 Electrolyte Inducing Chemo-Mechanical Failure in All-Solid-State Batteries Comprising Sulfur Composite Cathode and Liâ B i Alloy Anode. 2022 , 136229	1
566	Rate-dependent deformation of amorphous sulfide glass electrolytes for solid-state batteries. 2022 , 100845	2
565	Atomic-Scale Simulations of the Solid Electrolyte Li 7 La 3 Zr 2 O 12 . 2022 , 375-391	0
564	Amorphous Titanium Polysulfide Composites with Electronic/Ionic Conduction Networks for All-Solid-State Lithium Batteries 2022 ,	O
563	Promoting favorable interfacial properties in lithium-based batteries using chlorine-rich sulfide inorganic solid-state electrolytes 2022 , 13, 1909	6
562	Design and Characterization of Host Frameworks for Facile Magnesium Transport. 2022 , 52,	O
561	Improving thermal stability of sulfide solid electrolytes: An intrinsic theoretical paradigm.	4
560	Electrochemical stability of a NASICON solid electrolyte from the lithium aluminum germanium phosphate (LAGP) series. 2022 , 378, 115888	3
559	Characteristic mechanism for fast HâlŁonduction in LaH2.5O0.25. 2022 , 230, 117825	0
558	Systematic study and effective improvement of voltammetry for accurate electrochemical window measurement of solid electrolytes. 2022 , 414, 140210	
557	Metal-organic framework derived gradient interfacial layer for stable lithium metal anode. 2022 , 417, 140333	O
556	Li+ transportation mechanisms in the halide solid-state electrolytes Li3YCl6 and Li3InCl6. 2022 , 11, 1-8	
555	Effect of selected dopants on conductivity and moisture stability of Li3PS4 sulfide solid electrolyte: a first-principles study. 2022 , 24, 100837	1
554	High areal capacity LiNi1/3Co1/3Mn1/3O2 positive composite electrode employing an oxide solid electrolyte for an all-solid-state lithium-ion battery. 2022 , 379, 115905	3

553	Stabilizing the interphase between Li and Argyrodite electrolyte through synergistic phosphating process for all-solid-state lithium batteries. 2022 , 96, 107104	3
552	LiF involved interphase layer enabling thousand cycles of LAGP-based solid-state Li metal batteries with 80% capacity retention. 2022 , 48, 145-154	4
551	Challenges and prospects of nickel-rich layered oxide cathode material. 2022, 909, 164727	1
550	Recent developments and progress of halogen elements in enhancing the performance of all-solid-state lithium metal batteries. 2022 , 49, 19-57	1
549	Correlated Lithium-Ion Migration in Solid Electrolyte Li₁₀GeP₂S₁₂:. 2021 , 63, 280-286	
548	Selective Blockage of Li-Ion Diffusion Pathways in Li10SnP2S12: Insights from Nuclear Magnetic Resonance. 2021 , 125, 27884-27890	1
547	LiGePS-Type Structured Solid Solution Phases in the LiPSO System: Controlling Crystallinity by Synthesis to Improve the Air Stability 2021 ,	3
546	Enhanced Room-Temperature Ionic Conductivity of NaCBH via High-Energy Mechanical Milling 2021 , 13, 61346-61356	4
545	Computational Investigation of the Interfacial Stability of Lithium Chloride Solid Electrolytes in All-Solid-State Lithium Batteries 2021 ,	4
544	High-Efficiency Hybrid Sulfur Cathode Based on Electroactive Niobium Tungsten Oxide and Conductive Carbon Nanotubes for All-Solid-State Lithium-Sulfur Batteries 2021 ,	3
543	Identifying Hidden Li-Si-O Phases for Lithium-Ion Batteries via First-Principles Thermodynamic Calculations.	1
542	Excellent Li/Garnet Interface Wettability Achieved by Porous Hard Carbon Layer for Solid State Li Metal Battery. 2021 , e2106142	O
541	Solid-State Calcium-Ion Diffusion in Ca1.5Ba0.5Si5O3N6. 2022 , 34, 128-139	1
540	Crystal Channel Engineering for Rapid Ion Transport: From Nature to Batteries. 2021,	2
539	References. 2021 , 317-358	
538	Structure transitions of lithium ionic conductor Li<sub>3</sub>PS<sub>4</sub>. 2021 ,	O
537	STEM-EELS Spectrum Imaging of an Aerosol-Deposited NASICON-Type LATP Solid Electrolyte and LCO Cathode Interface. 2022 , 5, 98-107	1
536	Bimetallic Hexagonal Layered Niâtīo Sulfides with High Electrochemical Performance for All-Solid-State Lithium Batteries. 2021 , 9, 17061-17067	1

535	A Low Temperature Soldered All Ceramic Lithium Battery 2021,	1
534	Enabling ultrafast lithium-ion conductivity of Li2ZrCl6 by indium doping. 2021,	2
533	GraphiteâBilicon Diffusion-Dependent Electrode with Short Effective Diffusion Length for High-Performance All-Solid-State Batteries. 2022 , 12, 2103108	5
532	A review of the rational interfacial designs and characterizations for solid-state lithium/sulfur cells.	
531	Revealing Atomic-Scale Ionic Stability and Transport around Grain Boundaries of Garnet Li 7 La 3 Zr 2 O 12 Solid Electrolyte. 2022 , 12, 2102151	4
530	Novel fast lithium-ion conductor LiTa2PO8 enhances the performance of poly(ethylene oxide)-based polymer electrolytes in all-solid-state lithium metal batteries. 2021 ,	O
529	Lithium Argyrodite Sulfide Electrolytes with High Ionic Conductivity and Air Stability for All-Solid-State Li-Ion Batteries. 2022 , 7, 171-179	8
528	The quest for the holy grail of solid-state lithium batteries.	10
527	Development of High Energy A node s for All-Solid-State L ithium Batteries Based on Sulfide Electrolytes.	O
526	Air exposure towards stable Li/Li10GeP2S12 interface for all-solid-state lithium batteries.	4
525	Argyrodite-type advanced lithium conductors and transport mechanisms beyond peddle-wheel effect 2022 , 13, 2078	3
524	Covalent Organic Framework for Rechargeable Batteries: Mechanisms and Properties of Ionic Conduction. 2200057	8
523	Instability of the Li7SiPS8 Solid Electrolyte at the Lithium Metal Anode and Interphase Formation.	1
522	Composite solid electrolytes containing single-ion lithium polymer grafted garnet for dendrite-free, long-life all-solid-state lithium metal batteries. 2022 , 136436	3
521	Thermal stability and thermal conductivity of solid electrolytes. 2022, 10, 040902	2
520	Carbon-free and binder-free Li-Al alloy anode enabling an all-solid-state Li-S battery with high energy and stability 2022 , 8, eabn4372	10
519	Combining Organic Plastic Salts with a Bicontinuous Electrospun PVDF-HFP/LiLaZrO Membrane: LiF-Rich Solid-Electrolyte Interphase Enabling Stable Solid-State Lithium Metal Batteries 2022 ,	2
518	Superionic Lithium Argyrodite Electrolytes by Bromine-Doping for All-Solid-State Lithium Batteries.	1

517	Xenon Ion Implantation Induced Surface Compressive Stress for Preventing Dendrite Penetration in Solid-State Electrolytes 2022 , e2108124	О
516	Crack Healing Mechanism by Application of Stack Pressure to the Carbon-Based Composite Anode of an All-Solid-State Battery.	1
515	Electrolyte chemistry for lithium metal batteries. 2022 , 65, 840	1
514	First-Principles Insights into Lithium-Rich Ternary Phosphide Superionic Conductors: Solid Electrolytes or Active Electrodes 2022 ,	
513	Development of High Energy A node s for All-Solid-State L ithium Batteries Based on Sulfide Electrolytes 2022 ,	2
512	Electrolyte-free graphite electrode with enhanced interfacial conduction using Li+-conductive binder for high-performance all-solid-state batteries. 2022 ,	1
511	Operando analysis of electronic band structure in an all-solid-state thin-film battery. 2022, 5,	2
510	Synthesis and ionic conductivity of Li boracites, Li4B7O12Cl and Li4B4Al3O12Cl1-Br. 2022 , 380, 115921	1
509	Solid state lithium metal batteries âllssues and challenges at the lithium-solid electrolyte interface. 2022 , 26, 100999	4
508	Nanoscale interface engineering of inorganic Solid-State electrolytes for High-Performance alkali metal batteries 2022 , 621, 41-66	1
507	Data_Sheet_1.pdf. 2019 ,	
506	Data_Sheet_1.zip. 2020 ,	
505	Data_Sheet_2.PDF. 2020 ,	
504	Data_Sheet_1.PDF. 2019 ,	
503	Enhancing ionic conductivity in solid electrolyte by relocating diffusion ions to under-coordination sites 2022 , 8, eabj7698	4
502	Sodium-Ion Conducting Solid Electrolytes in the Na₂3</sub> System. 2022 ,	1
501	Design and developments in ceramic materials for electrochemical applications. 2022, 353-377	
500	Advanced carbon-based nanostructure frameworks for lithium anodes. 2022 , 499-520	

Stabilizing Solid Electrolyte/Li Interface Via Polymer-in-Salt Artificial Protection Layer for High-Rate and Stable Lithium Metal Batteries.

498	Transport in Lithium Garnet Oxides as Revealed by Atomistic Simulations. 2022 , 52,	Ο
497	Emerging Halide Superionic Conductors for All-Solid-State Batteries: Design, Synthesis, and Practical Applications. 2022 , 7, 1776-1805	16
496	Ring mechanism of fast Na+ ion transport in Na2LiFeTeO6: Insight from molecular dynamics simulation. 2022 , 6,	1
495	Electrolyte measures to prevent polysulfide shuttle in Li-S batteries.	4
494	Progress and perspectives on electrospinning techniques for solid-state lithium batteries.	6
493	Solution Processing via Dynamic Sulfide Radical Anions for Sulfide Solid Electrolytes. 2200019	2
492	Extending the Frontiers of Lithium-Ion Conducting Oxides: Development of Multicomponent Materials with £Li3PO4-Type Structures. 2022 , 34, 3948-3959	7
491	First-principles simulations to understand the structural and electrolyte properties of idealized Li7.5B10S18X1.5 . 2022 , 6,	0
490	Characterizing the Structural Change of Na3PS4 Solid Electrolytes in a Humid N2 Atmosphere. 2022 , 126, 7383-7389	O
489	Understanding electro-mechanical-thermal coupling in solid-state lithium metal batteries via phase-field modeling. 1	1
488	Cl-Doped LiSnPS with Enhanced Ionic Conductivity and Lower Li-Ion Migration Barrier 2022,	O
487	High Ionic Conductivity with Improved Lithium Stability of CaS- and CaI2-Doped Li7P3S11 Solid Electrolytes Synthesized by Liquid-Phase Synthesis.	0
486	Progress in solvent-free dry-film technology for batteries and supercapacitors. 2022,	8
485	Accelerated identification of equilibrium structures of multicomponent inorganic crystals using machine learning potentials. 2022 , 8,	0
484	Strongly Anharmonic Phonons and Their Role in Superionic Diffusion and Ultralow Thermal Conductivity of Cu 7 PSe 6. 2200596	1
483	Fabrication and Electrochemical Characterization of an All-Solid-State Battery with an Anti-Perovskite Electrode Material (Li2Fe)SO.	
482	Achieving enhanced densification and superior ionic conductivity of garnet electrolytes via a co-doping strategy coupled with pressureless sintering. 2022 ,	1

481	Super Mg Conductivity around 10 S cm Observed in a Porous Metal-Organic Framework 2022,	3
480	Accurate and efficient molecular dynamics based on machine learning and non von Neumann architecture. 2022 , 8,	1
479	Super Long-Cycling All-Solid-State Battery with Thin Li 6 PS 5 Cl-Based Electrolyte. 2200660	15
478	Discovery of the Li-Sr-La-Zr-O Compound and the Investigation of Its Lithium-Ion Conductivity 2022 ,	
477	Combining NMR and Molecular Dynamics Simulations for Revealing the Alkali-Ion Transport in Solid-State Battery Materials. 2022 , 101048	
476	Perspectives on Improving the Safety and Sustainability of High Voltage Lithium-Ion Batteries Through the Electrolyte and Separator Region. 2200147	5
475	A gel polymer electrolyte film based on chitosan derivative and ionic liquid for the LiFePO4 cathode solid Li metal battery. 2022 , 31, 103597	1
474	Chemomechanics: Friend or foe of the âAND problemâ&f solid-state batteries?. 2022 , 26, 101002	O
473	A liquid cathode/anode based solid-state lithium-sulfur battery. 2022 , 421, 140456	1
472	Editorial: Special issue on solid-state battery materials, phenomena, and systems. 2022 , 26, 101006	
471	Tailoring shape and exposed crystal facet of single-crystal layered-oxide cathode particles for all-solid-state batteries. 2022 , 445, 136828	2
470	Exceptionally high sodium ion conductivity and enhanced air stability in Na3SbS4 via germanium doping. 2022 , 913, 165229	O
469	Crystalline precursor derived from Li3PS4 and ethylenediamine for ionic conductors. 1	
468	Advanced inorganic/polymer hybrid electrolytes for all-solid-state lithium batteries. 1	2
467	Mechanical damages in solid electrolyte battery due to electrode volume changes. 2022 , 52, 104810	1
466	Progress, challenges and perspectives of computational studies on glassy superionic conductors for solid-state batteries.	3
465	Ionic Conduction and Electric Modulus in Li₂SâtaS and CaX₂ (X = F, Cl, Br, and I) Nanocomposites. 2022 ,	O
464	Review on the lithium transport mechanism in solid-state battery materials.	O

463	Ionic Conductivity of Nanocrystalline and Amorphous Li10GeP2S12: The Detrimental Impact of Local Disorder on Ion Transport.	4
462	Zr doped NASICON-type LATP glass-ceramic as a super-thin coating onto deoxidized carbon wrapped CNT-S cathode for lithium-sulphur battery. 2022 , 140567	O
461	Li7P3S11 electrolyte for all-solid-state lithium-ion batteries: structure, synthesis, and applications. 2022 , 446, 137041	O
460	Cation-Assisted Lithium Ion Diffusion in a Lithium Oxythioborate Halide Glass Solid Electrolyte.	
459	Insight into the Integration Way of Ceramic Solid-State Electrolyte Fillers in the Composite Electrolyte for High Performance Solid-State Lithium Metal Battery.	
458	Poly(ethylene glycol)-functionalized 3D covalent organic frameworks as solid-state polyelectrolytes. 2022 , 12, 16354-16357	O
457	Anode-Free Solid-State Lithium Batteries: A Review. 2201044	9
456	The Origin of Fast Lithium-Ion Transport in the Inorganic Solid Electrolyte Interphase on Lithium Metal Anodes. 2200071	7
455	Revealing the Ion Dynamics in Li10GeP2S12 by Quasi-Elastic Neutron Scattering Measurements.	1
454	Distinguishing the Effects of the Space-Charge Layer and Interfacial Side Reactions on Li10GeP2S12-Based All-Solid-State Batteries with Stoichiometric-Controlled LiCoO2.	O
453	Revealing milling durations and sintering temperatures on conductivity and battery performances of Li2.25Zr0.75Fe0.25Cl6 electrolyte. 2022 ,	1
452	High Air Stability and Excellent Li Metal Compatibility of Argyrodite-Based Electrolyte Enabling Superior All-Solid-State Li Metal Batteries. 2203858	5
451	Li 2 Mg 2 Si 2 S 6 and Li 2 Mg 2 Ge 2 S 6 : Two nonlinear optical sulfides featuring a unique, polar trigonal structure incorporating ethane-like anions.	1
450	Advances, challenges and environmental impacts in metal-air battery electrolytes. 2022, 101064	2
449	Solid electrolyte/graphite composite particle for an all-solid-state lithium-ion battery. 2022, 33, 103633	O
448	Review of various sulfide electrolyte types for solid-state lithium-ion batteries. 2022 , 12, 409-423	O
447	Progress in Electrode and Electrolyte Materials: Path to All-solid-state Li-ion Batteries (ASSLIB).	4
446	First-Principles Assessment of Chemical Lithiation of Sulfide Electrolytes and its Impact on Their Transport, Electronic and Mechanical Properties.	

Practical Application of Data Science in Material Search of Lithium Ion Conductors. **2022**, 59, 220-225

444	Methods and Techniques of Solid-State Batteries. 39-89	
443	Solid-State Batteries: An Introduction. 1-20	
442	Percolated Sulfide in Salt-Concentrated Polymer Matrices Extricating High-Voltage All-Solid-State Lithium-metal Batteries. 2202474	1
441	A review on recent advancements in solid state lithium-sulphur batteries: Fundamentals, challenges, and perspectives.	1
440	Ceramic-Based Solid-State Electrolytes. 295-318	
439	Toward High Rate Performance Solid-State Batteries. 2200948	3
438	Automatically Capturing Key Features for Predicting Superionic Conductivity of Solid-State Electrolytes Using a Neural Network.	
437	Reducing oxy-contaminations for enhanced Li-ion conductivity of halide-based solid electrolyte in water-mediated synthesis.	1
436	Insight into the integration way of ceramic solid-state electrolyte fillers in the composite electrolyte for high performance solid-state lithium metal battery. 2022 ,	O
435	Sulfide-Based Solid-State Electrolytes. 319-351	
434	Revealing the dominant factor of domain boundary resistance on bulk conductivity in lanthanum lithium titanates. 2022 ,	
433	Solid-State Lithium-Air Batteries. 249-265	
432	Lithium-Sulfur Solid-State Batteries. 267-288	1
431	Controlling Defects to Achieve Reproducibly High Ionic Conductivity in Na3SbS4 Solid Electrolytes.	2
430	All-Solid-State Potassium Polymer Batteries Enabled by the Effective Pretreatment of Potassium Metal. 2244-2246	6
429	A Novel Ethanol-Mediated Synthesis of Superionic Halide Electrolytes for High-Voltage All-Solid-State LithiumâMetal Batteries.	О
428	Ultralong-life lithium metal batteries enabled by decorating robust hybrid interphases on 3D layered framworks. 2022 ,	

427	From protonation & Description of the proton	3
426	Stabilizing solid electrolyte/Li interface via polymer-in-salt artificial protection layer for high-rate and stable lithium metal batteries. 2022 , 137682	O
425	Solid-state electrolytes for solid-state lithium-sulfur batteries: Comparisons, advances and prospects. 2022 ,	4
424	Lithium Lanthanum Titanate Single Crystals: Dependence of Lithium-Ion Conductivity on Crystal Domain Orientation.	
423	Three-dimensional graphene with charge transfer doping for stable lithium metal anode. 2022 , 918, 116512	
422	In-situ construction of Li-Mg/LiF conductive layer to achieve an intimate lithium-garnet interface for all-solid-state Li metal battery. 2022 , 50, 810-818	4
421	Li6PS5Cl-based composite electrolyte reinforced with high-strength polyester fibers for all-solid-state lithium batteries. 2022 , 542, 231777	0
420	Interfacial and cycle stability of sulfide all-solid-state batteries with Ni-rich layered oxide cathodes. 2022 , 100, 107528	5
419	Degradation rate at the SolidâBolid interface of sulfide-based solid Electrolyteâ©athode active material. 2022 , 541, 231672	4
418	Constructing rapid ionic transfer layer to boost the performance of LiCoO2 cathode with high mass loading for all-solid-state lithium battery. 2022 , 541, 231703	O
417	Agglomeration-free composite solid electrolyte and enhanced cathode-electrolyte interphase kinetics for all-solid-state lithium metal batteries. 2022 , 51, 19-28	1
416	Synthesis and characterization of low-temperature lithium-ion conductive phase of LiX (X=Cl, Br)-Li3PS4 solid electrolytes. 2022 , 383, 115970	
415	A solid-state approach to a lithium-sulfur battery. 2022 , 441-488	
414	Machine learning reveals factors that control ion mobility in anti-perovskite solid electrolytes.	
413	Constructing a Pvdf-Based Composite Solid-State Electrolyte with High Ionic Conductivity Li6.5la3zr1.5ta0.1n0.4o12 for Lithium Metal Battery Operating at Room Temperature.	
412	Highly reversible Li2RuO3 cathodes in sulfide-based all solid-state lithium batteries.	O
411	Recent advances of non-lithium metal anode materials for solid-state lithium-ion batteries.	1
410	Recent progress in fundamental understanding of selenium-doped sulfur cathodes during charging and discharging with various electrolytes. 2022 , 235-260	

409	Future prospects for lithium-sulfur batteries: The criticality of solid electrolytes. 2022 , 327-351	
408	Polymorphism, ionic conductivity and electrochemical properties of lithium closo-deca- and dodeca borates and composites, Li2B10H10 - Li2B12H12.	O
407	Solid-State Nanocomposite Ionogel Electrolyte with In-Situ Formed Ionic Channels for Uniform Ion-Flux and Suppressing Dendrite Formation in Lithium Metal Batteries.	
406	Realizing the compatibility of a Li metal anode in an all-solid-state Liâß battery by chemical iodineâNapor deposition.	4
405	Liquid-phase synthesis of the Li10GeP2S12-type phase in the LiâBiâPâBâŒl system. 2022 , 10, 14392-14398	Ο
404	Study on cation-tuned performance of halide solid electrolyte. 2022 ,	
403	Liquid-phase Synthesis of Li2S and Li3PS4 with Lithium-based Organic Solutions.	1
402	Application of sol-gel processes to materials and interfaces in oxide-based all-solid-state batteries. 2022 , 103, 680-689	
401	Thio-/LISICON and LGPS-Type Solid Electrolytes for All-Solid-State Lithium-Ion Batteries. 2203551	2
400	Conformal Buffer Layer Coating on Ni-Rich Cathode Powder via Particle Atomic Layer Deposition for All-Solid-State Batteries.	0
399	Development of energy-related functions of metalâBrganic frameworks and metal/MOF composites. 2022 , 79, 88-99	
398	Correlating Structural Disorder to Li+ Ion Transport in Li4â\(\text{IG}\)Ge1â\(\text{IS}\)SbxS4 (0 â\(\text{Ix}\) â\(\text{ID}\).2). 2022 , 34, 5558-5570	2
397	Lithium Phosphosulfide Electrolytes for Solid-State Batteries: Part I.	2
396	Recent Advances and Perspectives of Air Stable Sulfide-Based Solid Electrolytes for All-Solid-State Lithium Batteries.	O
395	Preparation and characterization of Na_{0.88}W_{0.12}S<sub>4â< solid electrolyte. 2022 , 130, 498-503	:;/sub><
394	Chemomechanics of Rechargeable Batteries: Status, Theories, and Perspectives.	5
393	General Framework for the Study of Dynamical Properties and Arrested States of Ionic Liquids.	
392	NaSICON: A promising solid electrolytelfor solid-state sodium batteries.	1

391 Graphene in Solid-State Batteries: An Overview. **2022**, 12, 2310

390	Toward Automated Computational Discovery of Battery Materials. 2200616	2
389	Dry mixing of cathode composite powder for all-solid-state batteries using a high-shear mixer. 2022 , 33, 103705	0
388	Fabrication and electrochemical behavior of flexible composite solid electrolyte for bipolar solid-state lithium batteries. 2022 , 542, 231789	O
387	Cation-assisted lithium ion diffusion in a lithium oxythioborate halide glass solid electrolyte. 2022 , 426, 140806	
386	High-performance garnet solid-state battery enabled by improved interfaces. 2022 , 542, 231798	
385	Key issues and emerging trends in sulfide all solid state lithium battery. 2022 , 51, 527-549	1
384	Solid-state electrolytes for beyond lithium-ion batteries: A review. 2022 , 167, 112694	o
383	Development Trend of Solid-state Batteries. 2022 , 57, 495-500	
382	Heuristic Design of Cathode Hybrid Coating for Power-Limited Sulfide-Based All-Solid-State Lithium Batteries. 2201555	4
381	Solid Li- and Na-Ion Electrolytes for Next Generation Rechargeable Batteries.	3
380	Immense Reduction in Interfacial Resistance between Sulfide Electrolyte and Positive Electrode.	3
379	Issues Concerning Interfaces with Inorganic Solid Electrolytes in All-Solid-State Lithium Metal Batteries. 2022 , 14, 9090	0
378	Ion conduction path in composite solid electrolytes for lithium metal batteries: from polymer rich to ceramic rich.	
377	In Situ-Formed LiF-Rich Multifunctional Interfaces toward Stable Li 10 GeP 2 S 12 -Based All-Solid-State Lithium Batteries. 2200822	О
376	Preparation of highly ionic conductive lithium phosphorus oxynitride electrolyte particles using the polygonal barrel-plasma treatment method. 2022 , 923, 166350	O
375	Interface reconstruction via lithium thermal reduction to realize a long life all-solid-state battery. 2022 , 52, 1-9	0
374	Realizing high-performance all-solid-state batteries with sulfide solid electrolyte and silicon anode: A review.	O

273 Could Capacitive Behavior be Triggered in Inorganic Electrolyte-Based All-Solid-State Batteries?. 2205667

372	The Impact of Polymer Electrolyte Properties on Lithium-Ion Batteries. 2022 , 14, 3101	
371	Air Stability of Solid-State Sulfide Batteries and Electrolytes. 2022 , 5,	6
370	Superionic Conduction in One-Dimensional Nanostructures. 2022 , 16, 12445-12451	0
369	Composite Polymer Electrolytes for Lithium Batteries. 2022 , 7,	0
368	Lithium-ion conductive glass-ceramic electrolytes enable safe and practical Li batteries. 2022, 101118	0
367	Degradation Mechanism of All-Solid-State Li-Metal Batteries Studied by Electrochemical Impedance Spectroscopy.	1
366	Room-Temperature Anode-less All-Solid-State Batteries via the Conversion Reaction of Metal Fluorides. 2203580	3
365	Long-Life Sulfide All-Solid-State Battery Enabled by Substrate-Modulated Dry-Process Binder. 2201732	3
364	A Ceramic Rich Quaternary Composite Solid-State Electrolyte for Solid-State Lithium Metal Batteries. 2022 , 169, 080510	
363	Grain-Boundary-Free Glassy Solid Electrolytes based on Sulfide Materials: Effects of Oxygen and Nitrogen Doping on Electrochemical Performance.	
362	Toward Optimization of the Chemical/Electrochemical Compatibility of Halide Solid Electrolytes in All-Solid-State Batteries. 2979-2987	3
361	Heat Treatment-Induced Conductivity Enhancement in Sulfide-Based Solid Electrolytes: What is the Role of the Thio-LISICON II Phase and of Other Nanoscale Phases?.	
360	Dual Protection of a LiâAg Alloy Anode for All-Solid-State Lithium Metal Batteries with the Argyrodite Li6PS5Cl Solid Electrolyte. 2022 , 14, 37738-37746	1
359	Nanostructure of the Interphase Layer between a Single Li Dendrite and Sulfide Electrolyte in All-Solid-State Li Batteries. 3064-3071	3
358	A Silica Reinforced Composite Electrolyte with Greatly Enhanced Interfacial Lithium-Ion Transfer Kinetics for High-Performance Lithium Metal Batteries. 2205575	3
357	Interface Design Considering Intrinsic Properties of Dielectric Materials to Minimize Space-Charge Layer Effect between Oxide Cathode and Sulfide Solid Electrolyte in All-Solid-State Batteries. 2201208	1
356	Theoretical Insights on the Comparison of Li-Ion Conductivity in Halide Superionic Conductors Li3MCl6, Li2M2/3Cl4, and LiMCl4 (M = Y, Sc, Al, and Sm). 2022 , 126, 13105-13113	1

355	Material science as a cornerstone driving battery research.	2
354	Novel sulfur-doped single-ion conducting multi-block copolymer electrolyte. 10,	1
353	Effects of I and W co-doping on the structural and electrochemical characteristics of Na3SbS4 glass-ceramic electrolytes. 2022 ,	
352	Challenges and Opportunities of Ionic Liquid Electrolytes for Rechargeable Batteries.	O
351	Atomic-Scale Observations of Oxygen Release Degradation in Sulfide-Based All-Solid-State Batteries with Layered Oxide Cathodes.	4
350	Fundamental investigations on the sodium-ion transport properties of mixed polyanion solid-state battery electrolytes. 2022 , 13,	O
349	Enhanced Air and Electrochemical Stability of Li7P2.9Ge0.05S10.75O0.1 Electrolytes with High Ionic Conductivity for Thiophosphate-Based All-Solid-State Batteries.	О
348	Doping Effect and Li-Ion Conduction Mechanism of ALi6XO6 (A = K or Rb and X = Pentavalent): A First-Principles Study. 2022 , 126, 13548-13559	
347	Human- and machine-centred designs of molecules and materials for sustainability and decarbonization.	2
346	Highly stable lithium batteries enabled by composite solid electrolyte with synergistically enhanced in-built ion-conductive framework. 2022 , 545, 231928	O
345	Research progress and prospect in typical sulfide solid-state electrolytes. 2022 , 55, 105382	O
344	Sb-doped Li10GeP2S12-type electrolyte Li10SnP2-xSbxS12 with enhanced ionic conductivity and lower lithium-ion migration barrier. 2022 , 627, 1039-1046	O
343	3D frameworks in composite polymer Electrolytes: Synthesis, Mechanisms, and applications. 2023 , 451, 138787	2
342	Chlorine-rich lithium argyrodites enables superior performances for solid-state LiâBe batteries at wide temperature range.	1
341	Prospects of halide-based all-solid-state batteries: From material design to practical application. 2022 , 8,	6
340	Fabrication of Lithium Indolide and Derivates for Ion Conduction. 2022, 14, 41095-41102	O
339	Influence of low content metal intermixing on electrochemical stability and sodium ion transport in Na2(Mg2â☑n)TeO6 (x⊫☑.125, 1.875) for solid state sodium-ion batteries. 2022 , 385, 116006	O
338	Effect of TeO2 sintering aid on the microstructure and electrical properties of Li1.3Al0.3Ti1.7(PO4)3 solid electrolyte. 2022 , 927, 167019	O

337	Control of side reactions using LiNbO3 mixed/doped solid electrolyte for enhanced sulfide-based all-solid-state batteries. 2023 , 452, 138955	1
336	Different interfacial reactivity of lithium metal chloride electrolytes with high voltage cathodes determines solid-state battery performance. 2022 , 15, 3933-3944	3
335	Research Progress on Safety of Solid-State Lithium Metal Batteries. 2022 , 12, 210-224	О
334	Differentiating chemical and electrochemical degradation of lithium germanium thiophosphate and the role of atomic layer deposited protection layers.	O
333	Battery Applications. 2022 , 159-173	O
332	Solid-State Electrolytes for Lithium Batteries. 2022 ,	O
331	The crucial role of oxygen substitution in argyrodite solid electrolytes from the bulk to the surface under atmospheric conditions. 2022 , 10, 16908-16919	О
330	Na superionic conductor-type LiZr2(PO4)3 as a promising solid electrolyte for use in all-solid-state Li metal batteries. 2022 , 58, 9328-9340	O
329	Polyurethaneâ B 2S5 composite-based solid-state electrolyte assists low polarization and high stability all-solid-state lithium-ion batteries. 2022 , 12, 27881-27888	О
328	Synergy of non-lithium cation doping and the lithium concentration affecting lithium ion transport in solid electrolytes. 2022 , 10, 18087-18094	O
327	Pressure dependence on the three-dimensional structure of a composite electrode in an all-solid-state battery. 2022 , 10, 16602-16609	3
326	Hydrated lithium nido-boranes for solidâ[]quid hybrid batteries.	O
325	Co-sintering process of LiCoO2 cathodes and NASICON-type LATP solid electrolytes studied by X-ray diffraction and X-ray absorption near edge structure.	O
324	Applying the HSAB design principle to the 3.5 V-class all-solid-state Li-ion batteries with a chloride electrolyte.	O
323	A UV cross-linked gel polymer electrolyte enabling high-rate and high voltage window for quasi-solid-state supercapacitors. 2023 , 76, 41-50	1
322	Forced Disorder in the Solid Solution Li3PâIli2S: A New Class of Fully Reduced Solid Electrolytes for Lithium Metal Anodes. 2022 , 144, 16350-16365	O
321	Enhancing Ionic Conductivity by in Situ Formation of Li7SiPS8/Argyrodite Hybrid Solid Electrolytes. 2022 , 34, 7666-7677	О
320	High Formability Bromide Solid Electrolyte with Improved Ionic Conductivity for Bulk-Type All-Solid-State LithiumâMetal Batteries. 2022 , 5, 10604-10610	O

319	Tackling Structural Complexity in Li2S-P2S5 Solid-State Electrolytes Using Machine Learning Potentials. 2022 , 12, 2950	1
318	Super-Ionic Conductivity in ⊞Li 9 Tr P 4 (Tr 및 Al, Ga, In) and Lithium Diffusion Pathways in Li 9 AlP 4 Polymorphs. 2112377	O
317	Stabilized cathode/sulfide solid electrolyte interface via Li2ZrO3 coating for all-solid-state batteries. 2022 , 41, 3639-3645	1
316	Issues, Developments, and Computation Analyses of Interfacial Stability in All-Solid-State Li Batteries.	O
315	Novel Zr-doped £i3PS4 solid electrolyte for all-solid-state lithium batteries with a combined experimental and computational approach.	0
314	Nanoparticles embedded into glass matrices: glass nanocomposites. 2022 , 16,	1
313	Current Status of Formulations and Scalable Processes for Producing Sulfidic Solid-State Batteries.	1
312	Computational Screening of Na3MBr6 Compounds as Sodium Solid Electrolytes. 2022 , 34, 8356-8365	1
311	Rational Construction of Molecular Electron-Conducting Nanowires Encapsulated in a Proton-Conducting Matrix in a Charge Transfer Salt. 2022 , 144, 17149-17155	0
310	Effect of Li 2 O excess in Li 6.4 Ga 0.2 La 3 Zr 2 O 12 electrolyte for all-solid-state Li-ion batteries.	Ο
309	Boosting the mechanical strength and electrochemical performance of PEO/LiTFSI polymeric solid electrolyte via nylon nanofibers.	0
308	Decoupling Ion Transport and Matrix Dynamics to Make High Performance Solid Polymer Electrolytes.	Ο
307	Dense inorganic electrolyte particles as a lever to promote composite electrolyte conductivity.	1
306	High-Throughput Data-Driven Prediction of Stable High-Performance Na-Ion Sulfide Solid Electrolytes. 2206036	Ο
305	Ion slippage through Li + -centered G-quadruplex. 2022 , 8,	0
304	CO2 Laser Sintering of Garnet-Type Solid-State Electrolytes. 3392-3400	1
303	A Review of Nonaqueous Electrolytes, Binders, and Separators for Lithium-Ion Batteries. 2022 , 5,	1
302	Thermodynamics and Kinetics of the CathodeâElectrolyte Interface in All-Solid-State LiâB Batteries. 2022 , 144, 18009-18022	2

301	Thermally Durable Electrolyte for Lithium-Ion Battery. 2022 , 141132	O
300	Te doping effect on the structure and ionic conductivity of LiTa2PO8 solid electrolyte. 2022 ,	Ο
299	Material Search for a Li10GeP2S12-Type Solid Electrolyte in the LiâPâBâß (X = Br, I) System via Clarification of the CompositionâBtructureâProperty Relationships. 2022 , 34, 8237-8247	O
298	Nb/Al co-doped Li 7 La 3 Zr 2 O 12 Composite Solid Electrolyte for High-Performance All-Solid-State Batteries. 2207874	1
297	Revealing the Impact of Cl Substitution on the Crystallization Behavior and Interfacial Stability of Superionic Lithium Argyrodites. 2207978	3
296	Understanding the synthesis of inorganic solid-state electrolytes for Li ion batteries: Features and progress. 2022 , 33, e00491	O
295	Highly Reversible Lithium Host Materials for High-Energy-Density Anode-Free Lithium Metal Batteries. 2208629	1
294	Multifunctional 1D Nanostructures toward Future Batteries: A Comprehensive Review. 2208374	1
293	Enabling Conversion-Type Iron Fluoride Cathode by Halide-Based Solid Electrolyte. 2206845	2
292	Role of Interfaces in Solid-State Batteries. 2206402	2
291	Development of Energy Conversion/storage Materials Based on Crystal Defect Cores. 2022 , 61, 666-670	O
290	Effect of Solvents on a Li10GeP2S12-Based Composite Electrolyte via Solution Method for Solid-State Battery Applications.	1
289	Interfacial Stability of Layered LiNixMnyCo1â∏â∏O2 Cathodes with Sulfide Solid Electrolytes in All-Solid-State Rechargeable Lithium-Ion Batteries from First-Principles Calculations.	O
288	Poly(ethylene oxide)-Based Composite Electrolyte with Lithium-Doped High-Entropy Oxide Ceramic Enabled Robust Solid-State Lithium-Metal Batteries.	O
287	Structural, electronic, optical, and thermoelectric properties of Li2ZnCl4 based on density functional theory computations. 2022 , 171, 111037	О
286	Process optimisation for NASICON-type solid electrolyte synthesis using a combination of experiments and bayesian optimisation.	O
285	Achieving a dendrite-free lithium metal anode through lithiophilic surface modification with sodium diethyldithiocarbamate.	О
284	Lithium Selenometallates of Triel Elements, Li5MSe4 (M = Al and Ga), Aliovalent Doping and Their Ionic Conductivity.	O

283	Fabrication of thin solid electrolytes containing a small volume of an Li3OCl-type antiperovskite phase by RF magnetron sputtering.	0
282	Interfaces in Solid-State Batteries: Challenges and Design Strategies. 2022 , 193-218	О
281	Future Challenges to Address the Market Demands of All-Solid-State Batteries. 2022, 275-295	О
2 80	Prospective Cathode Materials for All-Solid-State Batteries. 2022 , 83-125	O
279	Prospective Electrolytes for Solid-State Battery. 2022 , 127-155	0
278	How to commercialize solid-state batteries: A perspective from solid electrolytes. 2022,	O
277	Ionic Conductivity Enhancement of Li2ZrCl6 Halide Electrolytes via Mechanochemical Synthesis for All-Solid-State LithiumâMetal Batteries.	O
276	Anharmonic CationâAnion Coupling Dynamics Assisted Lithium-Ion Diffusion in Sulfide Solid Electrolytes. 2207411	O
275	Opportunities of Flexible and Portable Electrochemical Devices for Energy Storage: Expanding the Spotlight onto Semi-solid/Solid Electrolytes.	3
274	Electrode Potentials Part 2: Nonaqueous and Solid-State Systems. 2022 , 90, 102002-102002	O
273	Water-tolerant solid polymer electrolyte with high ion-conductivity for simplified battery manufacturing in air surroundings. 2022 , 121, 153905	1
272	Li-Rich and Halide-Deficient Argyrodite Fast Ion Conductors.	O
271	A Review on the Molecular Modeling of Argyrodite Electrolytes for All-Solid-State Lithium Batteries. 2022 , 15, 7288	O
270	Local lattice structures and electronic properties of £Li3PS4/CuS interface.	o
269	Directed and Continuous Interfacial Channels for Optimized Ion Transport in Solid-State Electrolytes. 2206976	1
268	Interstitial Li+ and Li+ Migrations in the Li2+xC1â⊠BxO3 Solid Electrolyte. 2022 , 126, 18466-18474	O
267	Thermal Runaway Behavior of Li6PS5Cl Solid Electrolytes for LiNi0.8Co0.1Mn0.1O2 and LiFePO4 in All-Solid-State Batteries. 2022 , 34, 9159-9171	О
266	Portraying the ionic transport and stability window of solid electrolytes by incorporating bond valence-Ewald with dynamically determined decomposition methods. 2022 , 121, 173904	O

265	An integrated polymer/electrode interface for high performance ceramic/polymer electrolyte-based solid-state lithium batteries. 2022 , 121, 151602	0
264	Bilayer Halide Electrolytes for All-Inorganic Solid-State Lithium-Metal Batteries with Excellent Interfacial Compatibility. 2022 , 14, 48619-48626	O
263	Significant regulation of stress on the contribution of optical phonons to thermal conductivity in layered Li2ZrCl6: First-principles calculations combined with the machine-learning potential approach. 2022 , 121, 172201	1
262	Advances in Sulfide-Based All-Solid-State Lithium-Sulfur Battery: Materials, Composite Electrodes and Electrochemo-Mechanical Effects. 2022 , 139923	2
261	Anisotropic magnetoelectric transport in AgCrSe2 single crystals. 2022 , 121, 182405	0
260	Li-Ion Diffusion Correlations in LiAlGeO4: Quasielastic Neutron Scattering and Ab Initio Simulation.	O
259	Superhalogen-based Li-rich double antiperovskite Li6OS(BH4)2 as solid electrolyte.	О
258	Decoupling Parasitic Reactions at the Positive Electrode Interfaces in Argyrodite-Based Systems. 2022 , 14, 49284-49294	О
257	Achieving High Performance of Lithium Metal Batteries by Improving the Interfacial Compatibility between Organic and Inorganic Electrolytes Using a Lithium Single-Ion Polymer.	O
256	First-principles study on selenium-doped Li10GeP2S12 solid electrolyte: Effects of doping on moisture stability and Li-ion transport properties. 2022 , 26, 101223	О
255	Microstructural, mechanical and electrical properties of superionic Ag6+x(P1-xGex)S5I ceramic materials. 2022 , 171, 111042	O
254	Solid-state nanocomposite ionogel electrolyte with in-situ formed ionic channels for uniform ion-flux and suppressing dendrite formation in lithium metal batteries. 2023 , 54, 40-50	О
253	Lithium-enhanced functionalized carbon nanofibers as a mixed electronic/ionic conductor for sulfide all solid-state batteries. 2023 , 610, 155490	0
252	Solid-state NMR of energy storage materials. 2022,	О
251	Lithium-Ion Conduction in a Class of Aluminoborates Li MAlB12O24 ($M = Ba$, Sr, Ca, or La; $n = 7$ or 6). 2023 , 159, 112087	О
250	Interfacial Behavior of a Thio-LISICON Solid-State Electrolyte under External Pressure.	О
249	Lithium Phosphosulfide Electrolytes for Solid State Batteries: Part II.	1
248	Crystallographic structure and electrical properties of LiF modified Li29Zr9Nb3O40 for electrolyte of solid-state batteries.	О

247	A review on design of cathode, anode and solid electrolyte for true All-Solid-State Lithium Sulfur Batteries. 2022 , 101201	1
246	Air-Stable Li3SbS4âlil Electrolytes Synthesized via an Aqueous Ion-Exchange Process and the Unique Temperature Dependence of Conductivity.	O
245	Progress of Atomic Layer Deposition and Molecular Layer Deposition in the development of All-Solid-State Lithium Batteries.	O
244	Overcoming Anode Instability in Solid-State Batteries through Control of the Lithium Metal Microstructure. 2211067	1
243	Disentangling Cation and Anion Dynamics in Li3PS4 Solid Electrolytes.	1
242	Overview and perspectives of solid electrolytes for sodium batteries.	0
241	Segmental molecular dynamics boosts Li-ion conduction in metal-organic solid electrolytes for Li-metal batteries. 2022 ,	0
240	The path toward practical Li-air batteries. 2022 , 6, 2458-2473	1
239	Low-Cost and Scalable Synthesis of High-Purity Li2S for Sulfide Solid Electrolyte.	0
238	Mapping and Modeling Physicochemical Fields in Solid-State Batteries. 10816-10822	0
237	The Application of Deep Learning on Room Temperature Conductivity of Li10GeP2S12 Type Solid State Electrolyte. 2022 , 2366, 012047	1
236	Insights on Lithium Plating Behavior in Graphite-based All-solid-state Lithium-ion Batteries. 2022 ,	0
235	Surface-modified and sulfide electrolyte-infiltrated LiNi0.6Co0.2Mn0.2O2 cathode for all-solid-state lithium batteries. 2022 ,	О
234	From Contaminated to Highly Lithiated Interfaces: A Versatile Modification Strategy for Garnet Solid Electrolytes. 2209120	O
233	Role of Bicontinuous Structure in Elastomeric Electrolytes for High-Energy Solid-State Lithium-Metal Batteries. 2205194	O
232	Electrolytes for Lithium Batteries: The Quest for Improving Lithium Battery Performance and Safety. 2023 , 187-229	O
231	Design of cation doped Li7P2S8Br I sulfide electrolyte with improved conductivity and stable interfacial properties for all-solid-state lithium batteries. 2022 , 29, 101692	1
230	Fast divalent conduction in MB12H12🛭 2H2O (M = Zn, Mg) complex hydrides: effects of rapid crystal water exchange and application for solid-state electrolytes.	O

229	Related Applications of Solid-State Electrolytes in Lithium-Sulfur Batteries. 2022, 12, 341-352	0
228	Electrochemistry in the Wild. 2022 , 1-28	O
227	The nature of stability and adsorption interactions of binary Au-Li clusters with bridge adsorption structures.	0
226	Broadband Wide-Angle VElocity Selector (BWAVES) neutron spectrometer designed for the SNS Second Target Station. 2022 , 272, 02003	O
225	Theoretical insights into interfacial stability and ionic transport of Li2OHBr solid electrolyte for all-solid-state batteries. 2022 , 12, 34627-34633	0
224	Sulfide solid electrolyte thin film with high ionic conductive from slurry-casting strategy for all-solid-state lithium batteries. 2023 , 928, 117032	Ο
223	Soft Anharmonic Coupled Vibrations of Li and SiO4 Enable Li-ion Diffusion in Amorphous Li2Si2O5.	O
222	Preparation and degradation of high air stability sulfide solid electrolyte 75Li2S 25P2S5 glass-ceramic. 2023 , 389, 116106	1
221	Enabling a compatible Li/garnet interface via a multifunctional additive of sulfur. 2022, 11, 251-258	0
220	Hybrid solid electrolyte-liquid electrolyte systems for (almost) solid-state batteries: Why, how, and where to?.	Ο
219	Investigating the Li+ substructure and ionic transport in Li10GeP2â\SbxS12 (0 â\kantak â\lambda.25).	O
218	Search for Lithium Ion Conducting Oxides Using the Predicted Ionic Conductivity by Machine Learning. 2023 , 64, 287-295	Ο
217	Heterogeneities affect solid-state battery cathode dynamics. 2023, 55, 312-321	1
216	A high-energy all-solid-state lithium metal battery with â⊠ingle-crystalâ∏ithium-rich layered oxides.	O
215	Lithium-rich diamond-like solid electrolytes for lithium batteries. 2023 , 439, 141637	O
214	Understanding the impedance spectra of all-solid-state lithium battery cells with sulfide superionic conductors. 2023 , 556, 232450	O
213	Synthesis of amorphous Li3BO3 nanoparticles as solid electrolyte for all-solid-state battery by induction thermal plasma. 2023 , 318, 123775	0
212	Selective and uniform Li-ion boosting polymer electrolytes for dendrite-less quasi-solid-state batteries. 2023 , 668, 121258	1

211	Modeling assisted synthesis of Zr-doped Li3-xIn1-xZrxCl6 with ultrahigh ionic conductivity for lithium-ion batteries. 2023 , 556, 232465	Ο
210	Solvent-free design of argyrodite sulfide composite solid electrolyte with superb interface and moisture stability in anode-free lithium metal batteries. 2023 , 556, 232462	Ο
209	Se-doped Li6PS5Cl and Li5.5PS4.5Cl1.5 with improved ionic conductivity and interfacial compatibility: a high-throughput DFT study. 2022 , 10, 18294-18302	Ο
208	Solid Electrolytes for Lithium-Metal Batteries. 2022 ,	O
207	Recent Developments of Solid-State Electrolytes for All-Solid-State Lithium Metal Batteries. 2022,	0
206	Impact of the Chlorination of Lithium Argyrodites on the Electrolyte/Cathode Interface in Solid-State Batteries.	O
205	Powder Property Evaluation Technology to Improve the Performance of All Solid-State Batteries. 2022 , 59, 575-581	0
204	Halide Solid-State Electrolytes: Stability and Application for High Voltage All-Solid-State Li Batteries. 2202854	O
203	Impact of the Chlorination of Lithium Argyrodites on the Electrolyte/Cathode Interface in Solid-State Batteries.	0
202	Realization of superior ionic conductivity by manipulating the atomic rearrangement in Al-doped Li7La3Zr2O12. 2022 ,	O
201	Temperature Dependence of Structure and Ionic Conductivity of LiTa2PO8 Ceramics. 2022 , 34, 10572-10583	О
200	Supramolecular Semiconductivity through Emerging Ionic Gates in IonâNanoparticle Superlattices.	Ο
199	Zeolite-Based Electrolytes: A Promising Choice for Solid-State Batteries. 2022 , 1,	Ο
198	Lithium-Rich Li 2 TiS 3 Cathode Enables High-Energy Sulfide All-Solid-State Lithium Batteries. 2202756	O
197	Stable Anode-Free All-Solid-State Lithium Battery through Tuned Metal Wetting on the Copper Current Collector. 2206762	1
196	Manipulating Charge-Transfer Kinetics of Lithium-Rich Layered Oxide Cathodes in Halide All-Solid-State Batteries. 2207234	Ο
195	A robust solid electrolyte interphase enabled by solvate ionic liquid for high-performance sulfide-based all-solid-state lithium metal batteries.	0
194	Electrolyte Engineering for Safer Lithium-ion Batteries: A Review.	1

193	Doping engineering of scandium-based solid-state electrolytes toward superior ionic conductivity.	О
192	Metal-air batteries: progress and perspective. 2022 , 67, 2449-2486	2
191	Diameter-Dependent Ultrafast Lithium-Ion Transport in Carbon Nanotubes.	Ο
190	Recent Advances in Conduction Mechanisms, Synthesis Methods, and Improvement Strategies for Li $1+ \times Al \times Ti \ 2alk$ (PO 4) 3 Solid Electrolyte for All-Solid-State Lithium Batteries. 2203440	O
189	Multi-layer Type All-Solid-State Battery Using Oxide-based Solid Electrolyte. 2022 , 90, 330-335	Ο
188	Annealing-Free Thioantimonate Argyrodites with High Li-Ion Conductivity and Low Elastic Modulus. 2211185	Ο
187	Structure of the Solid-State Electrolyte Li3+2xP1âMAlxS4: Lithium-Ion Transport Properties in Crystalline vs Glassy Phases.	0
186	Theoretical insight into lithium triborates as solid-state electrolytes. 2022 , 121, 243901	Ο
185	Tailoring lithium concentration in alloy anodes for long cycling and high areal capacity in sulfide-based all solid-state batteries. 2022 , 100087	1
184	Grain Boundary Electronic Insulation for High-Performance All-Solid-State Lithium Batteries.	0
183	Blocking Directional Lithium Diffusion in Solid-State Electrolytes at the Interface: First-Principles Insights into the Impact of the Space Charge Layer. 2022 , 14, 55471-55479	0
182	Grafting of Lithiophilic and Electron-Blocking Interlayer for Garnet-Based Solid-State Li Metal Batteries via One-Step Anhydrous Poly-Phosphoric Acid Post-Treatment. 2213443	0
181	Improving the Ionic Conductivity of Li1+xAlxTi2-x(PO4)3 in a Solid-State Synthesis by Regulating Li-O Bond with B3+ and Y3+.	0
180	Lithium Superionic Conduction in BH 4 -Substituted Thiophosphate Solid Electrolytes. 2204942	O
179	Fast Ion Transport in Li-Rich Alloy Anode for High-Energy-Density All Solid-State Lithium Metal Batteries. 2209715	0
178	Sn-O Dual-Substituted Chlorine-Rich Argyrodite Electrolyte with Enhanced Moisture and Electrochemical Stability. 2211805	O
177	Triggering Fast Lithium Ion Conduction in LiPS4I. 144-154	0
176	Challenges and Developments of High Energy Density Anode Materials in Sulfide-Based Solid-State Batteries. 2022 , 9,	O

175	All-Solid-State Garnet-Based Lithium Batteries at Workâlh Operando TEM Investigations of Delithiation/Lithiation Process and Capacity Degradation Mechanism. 2205012	1
174	Grain Boundary Electronic Insulation for High-Performance All-Solid-State Lithium Batteries.	O
173	Surficial Sulfur Loss of Jet-Milled Li6PS5Cl Powder under Mild-Temperature Heat Treatment. 2022 , 5, 15442-15451	0
172	The Progress in the Electrolytes for Solid State Sodium-Ion Battery. 2200822	O
171	Digital-twin-driven structural and electrochemical analysis of Li + single-ion conducting polymer electrolyte for all-solid-state batteries. 20220061	0
170	Screening chloride li-ion conductors using high-throughput force field molecular dynamics.	O
169	Review on composite solid electrolytes for solid-state lithium-ion batteries. 2023, 100316	1
168	Microstructure- and Interface-Modified Ni-Rich Cathode for High-Energy-Density All-Solid-State Lithium Batteries. 2023 , 8, 809-817	O
167	Aluminum Ion Doping Mechanism of Lithium Thiophosphate based Solid Electrolytes Revealed with Solid-state NMR.	0
166	Interface Design Enabling Stable Polymer/Thiophosphate Electrolyte Separators for Dendrite-Free Lithium Metal Batteries.	O
165	Lithium-ion Mobility in Li6B18(Li3N) and Li Vacancy Tuning in the Solid Solution Li6B18(Li3N)1- x (Li2O) x.	0
164	Design of Solid Electrolytes with Fast Ion Transport: Computation-driven and Practical Approaches.	O
163	3D nanofiber framework based on polyacrylonitrile and siloxane-modified Li6.4La3Zr1.4Ta0.6O12 reinforced poly (ethylene oxide)-based composite solid electrolyte for lithium batteries. 2023 , 168877	0
162	From atomistic modeling to materials design: computation-driven material development in lithium-ion batteries.	O
161	High-Performance All-Solid-State Batteries Enabled by Intimate Interfacial Contact Between the Cathode and Sulfide-Based Solid Electrolytes. 2211355	0
160	Degradation Analysis by X-ray Absorption Spectroscopy for LiNbO3 Coating of Sulfide-Based All-Solid-State Battery Cathode. 2023 , 15, 2979-2984	1
159	Correlate phonon modes with ion transport via isotope substitution.	0
158	Engineering Solution-Processed Non-Crystalline Solid Electrolytes for Li Metal Batteries.	O

157	Hydration and Dehydration Behavior of Li4SnS4 for Applications as a Moisture-Resistant All-Solid-State Battery Electrolyte.	O
156	Influence of the Halogen in Argyrodite Electrolytes on the Electrochemical Performance of All-Solid-State Lithium Batteries. 2201116	O
155	Degradation mechanism of all-solid-state lithium-ion batteries with argyrodite Li $7 a \ k$ PS $6 a \ k$ Cl x sulfide through high-temperature cycling test. 20220052	1
154	Enhanced ionic conductivity of sulfide solid electrolyte with high lithium content based on cryomilling. 2023 , 107438	O
153	Interface Design Enabling Stable Polymer/Thiophosphate Electrolyte Separators for Dendrite-Free Lithium Metal Batteries.	О
152	Anode-less All-Solid-State Batteries: Recent Advances and Future Outlook.	О
151	Enhanced ionic conductivity of protonated antiperovskites via tuning lattice and rotational dynamics.	О
150	Lithium-ion Mobility in Li6B18(Li3N) and Li Vacancy Tuning in the Solid Solution Li6B18(Li3N)1- x (Li2O) x.	O
149	A gradient oxy-thiophosphate-coated Ni-rich layered oxide cathode for stable all-solid-state Li-ion batteries. 2023 , 14,	О
148	Optimization on transport of charge carriers in cathode of sulfide electrolyte-based solid-state lithium-sulfur batteries.	O
147	Glassy/Ceramic Li 2 TiO 3 /Li x B y O z Analogous âBolid Electrolyte Interphaseâlto Boost 4.5[V LiCoO 2 in Sulfide-Based All-Solid-State Batteries. 2210744	O
146	Crystallization kinetics and structural studies of Li1.25Al0.5Ge1.5P2.75Mo0.25O12 (LAGPM) glass/glass-ceramics based solid state electrolyte. 2023 , 296, 127291	O
145	Enabling fast-charging capability for all-solid-state lithium-ion batteries. 2023, 559, 232647	O
144	Comparative simulation of thin-film and bulk-type all-solid-state batteries under adiabatic and isothermal conditions. 2023 , 223, 119957	1
143	Highly electrochemically stable Li2B12H12-Al2O3 nanocomposite electrolyte enabling A 3.8 V room-temperature all-solid-state Li-ion battery. 2023 , 938, 168689	О
142	Ag/Br dual-doped Li6PS5Br electrolyte with superior conductivity for all-solid-state batteries. 2023 , 227, 115303	O
141	Enhancing the Interfacial Stability of the Li2SâBiS2âB2S5 Solid Electrolyte toward Metallic Lithium Anode by LiI Incorporation. 2023 , 15, 1392-1400	O
140	Co-substitution Strategy for Boosting Rate-Capability of Lithium-Superionic-Conductor (LISICON)-Type Anode Materials in £Li3VO4â[li4GeO4â[li3PO4 Quasi-Ternary-System.	О

139	Double Paddle-Wheel Enhanced Sodium Ion Conduction in an Antiperovskite Solid Electrolyte. 2203284	O
138	Enhanced Moisture Stability of Lithium Rich Anti-perovskites for Sustainable All Solid-State Lithium Batteries. 2210365	O
137	3D Asymmetric Bilayer Garnet-Hybridized High-Energy-Density LithiumâBulfur Batteries. 2023 , 15, 751-760	O
136	Silicon-based composite anodes for all-solid-state lithium-ion batteries conceived by a mixture design approach.	O
135	Dual-functional ZnO/LiF layer protected lithium metal for stable Li 10 GeP 2 S 12 -based all-solid-state lithium batteries. 20220051	O
134	Origin of the High Conductivity of the LiI-Doped Li3PS4 Electrolytes for All-Solid-State LithiumâBulfur Batteries Working in Wide Temperature Ranges. 2023 , 62, 96-104	O
133	Sandwich-Structured Composite Polymer Electrolyte Based on PVDF-HFP/PPC/Al-Doped LLZO for High-Voltage Solid-State Lithium Batteries.	0
132	High conductivity enabled by concerted Li ion diffusion in Li3Y(Br3Cl3) solid electrolytes for all-solid-state batteries.	O
131	Re-investigating the structureaproperty relationship of the solid electrolytes Li 3alln1alzrxCl6 and the impact of Inalzr(iv) substitution.	О
130	Next-generation battery technology based on solid-state electrolytes. 2023 , 1-46	O
129	Engineering green and sustainable solvents for scalable wet synthesis of sulfide electrolytes in high-energy-density all-solid-state batteries.	0
128	Polymeric concentrated electrolyte enables simultaneous stabilization of electrode/electrolyte interphases for quasi-solid-state lithium metal batteries.	O
127	Fundamentals of the cathodeâBlectrolyte interface in allâBolidâBtate lithium batteries.	O
126	First-principles study on ultrafast Li-ion diffusion in halospinel Li2Sc2/3Cl4 through multichannels designed by aliovalent doping.	O
125	Charge and mass transport mechanisms in two-dimensional covalent organic frameworks (2D COFs) for electrochemical energy storage devices.	О
124	The Interface Engineering of AllâBolidâBtate Batteries Based on Inorganic Solid Electrolytes.	O
123	High-areal-capacity anode-free all-solid-state lithium batteries enabled by interconnected carbon-reinforced ionic-electronic composites.	О
122	Recent developments in the field of sulfide ceramic solid-state electrolytes.	O

121	Solids that are also liquids: elastic tensors of superionic materials. 2023 , 9,	O
120	Battery cathodes for lithium-ion batteries with liquid and solid-state electrolytes. 2023 , 171-195	О
119	Fast Li + Transport via Silica Network-Driven Nanochannels in Ionomer-in-Framework for Lithium Metal Batteries. 2210916	0
118	Working at room temperature. 2023 , 379, 436-437	O
117	Zn substituted Li4P2S6 as a solid lithium-ion electrolyte for all-solid-state lithium batteries. 2023 , 320, 123861	0
116	Self-organized hetero-nanodomains actuating super Li+ conduction in glass ceramics. 2023, 14,	О
115	Unraveling Electrochemical Stability and Reversible Redox of Y-Doped Li 2 ZrCl 6 Solid Electrolytes. 2023 , 4,	O
114	Advanced Energy Materials Characterization: In Situ/Operando Techniques. 2023, 323-348	О
113	Current Status and Future Directions in Environmental Stability of Sulfide Solid-State Electrolytes for All-Solid-State Batteries. 2023 , 4,	0
112	Carboxymethyl cellulose-based materials as an alternative source for sustainable electrochemical devices: a review. 2023 , 13, 5723-5743	O
111	Effect of Processing on Structure and Ionic Conductivity of Chlorine-Rich Lithium Argyrodites. 2200197	О
110	Electronic Conductivity of Lithium Solid Electrolytes. 2204098	О
109	The BatteriesâlNew Clothes: Li and H Dynamics in Poorly Conducting Li2OHCl Directly Probed by Nuclear Spin Relaxation.	0
108	On the Discrepancy between Local and Average Structure in the Fast Na+ Ionic Conductor Na2.9Sb0.9W0.1S4. 2023 , 145, 7147-7158	O
107	Versatility of Sb-doping enabling argyrodite electrolyte with superior moisture stability and Li metal compatibility towards practical all-solid-state Li metal batteries. 2023 , 462, 142183	0
106	Ferroelastic toughening: Can it solve the mechanics challenges of solid electrolytes?. 2023 , 27, 101056	O
105	Latest progresses and the application of various electrolytes in high-performance solid-state lithium-sulfur batteries. 2023 ,	0
104	An integrated study on the ionic migration across the nano lithium lanthanum titanate (LLTO) and lithium iron phosphate-carbon (LFP-C) interface in all-solid-state Li-ion batteries. 2023 , 565, 232907	O

103	SnS2 quantum dot as bifunctional âBlectrolyte additiveâlfor lithium metal anode. 2023 , 620, 156849	0
102	Preparation, crystal structure and Li ion conductivity of Li10.8Ba1.85Al3.5O12F. 2023 , 394, 116208	О
101	Deep dive into anionic metalâBrganic frameworks based quasi-solid-state electrolytes. 2023 , 81, 313-320	O
100	Enabling high ionic conductivity in yttrium-based lithium halide electrolytes by composition modulation for all-solid-state batteries. 2023 , 30, 101510	O
99	Exploring the use of butadiene rubbers as a binder in composite cathodes for all-solid-state lithium batteries. 2023 , 122, 341-348	0
98	Effect of nano Al2O3 addition on cycling performance of poly(ether block amide) based solid-state lithium metal batteries. 2023 , 2, 167-176	O
97	Multifunctional polymer electrolyte membrane networks for energy storage via ion-dipole complexation in lithium metal battery. 2023 , 64, 107138	0
96	Interface problems, modification strategies and prospects of Niâfich layered oxide cathode materials in allâßolidâßtate lithium batteries with sulfide electrolytes. 2023 , 571, 233079	O
95	First-principles assessment of chemical lithiation of sulfide solid electrolytes and its impact on their transport, electronic and mechanical properties. 2023 , 560, 232689	O
94	Strategies for fitting accurate machine-learned inter-atomic potentials for solid electrolytes. 2023 , 2, 015101	O
93	Moderately concentrated electrolyte enabling high-performance lithium metal batteries with a wide working temperature range. 2023 , 79, 201-210	0
92	Atomistic mechanism of high ionic conductivity in lithium ytterbium-based halide solid electrolytes: A first-principles study. 2023 ,	O
91	Encapsulating and Operating a Stable Li 3 ErBr 6 -Based Solid LiâBeS 2 Battery at Room Temperature. 2023 , 33,	0
90	Solid polymer electrolytes: Ion conduction mechanisms and enhancement strategies. 2023,	1
89	A room temperature rechargeable Li 2 O-based lithium-air battery enabled by a solid electrolyte. 2023 , 379, 499-505	1
88	Designing All-Solid-State Batteries by Theoretical Computation: A Review. 2023 , 6,	O
87	Degradation of an argyrodite-type sulfide solid electrolyte by a trace of water: A spectroscopic analysis. 2023 , 392, 116162	1
86	TaCl5-glassified Ultrafast Lithium Ion-conductive Halide Electrolytes for High-performance All-solid-state Lithium Batteries. 2023 , 52, 237-241	Ο

85	An end-to-end artificial intelligence platform enables real-time assessment of superionic conductors.	O
84	A Durable Solid-State NaâllO 2 Battery with Solid Composite Electrolyte Na 3.2 Zr 1.9 Ca 0.1 Si 2 PO 12 â B VDF-HFP. 2023 , 11,	O
83	Formation of an Artificial CathodeâElectrolyte Interphase to Suppress Interfacial Degradation of Ni-Rich Cathode Active Material with Sulfide Electrolytes for Solid-State Batteries. 2023 , 8, 1322-1329	Ο
82	Prospects of Sulfide-Based Solid-State Electrolytes Modified by Organic Thin Films. 2023 , 2023, 1-7	O
81	Investigation of the structure and ionic conductivity of a Li3InCl6 modified by dry room annealing for solid-state Li-ion battery applications. 2023 , 227, 111690	O
80	Frustration in Super-Ionic Conductors Unraveled by the Density of Atomistic States. 2023, 62,	O
79	New Oxyhalide Solid Electrolytes with High Lithium Ionic Conductivity >10 mS cm âll for All-Solid-State Batteries. 2023 , 62,	Ο
78	Frustration in Super-Ionic Conductors Unraveled by the Density of Atomistic States. 2023, 135,	O
77	Halogen-Rich Lithium Argyrodite Solid-State Electrolytes: A Review.	O
76	New Oxyhalide Solid Electrolytes with High Lithium Ionic Conductivity >10 mS cm âll for All-Solid-State Batteries. 2023 , 135,	O
75	Solution-Processed Synthesis of Nano-Sized Argyrodite Solid Electrolytes with Cavitation Effect for High Performance All-Solid-State Lithium-Ion Batteries. 2023 , 6,	О
74	Composite cathode for all-solid-state lithium batteries: Progress and perspective. 2023 , 32, 101009	O
73	Theoretical Evaluation of the Persistence of Transverse Phonons across a Liquid-like Transition in Superionic Conductor KAg3Se2. 2023 , 35, 1780-1787	O
72	Effect of Fluorine Substitution in Li₃YCl₆ Chloride Solid Electrolytes for All-solid-state Battery. 2023 , 91, 037002-037002	O
71	Beneficial Role of Inherently Formed Residual Lithium Compounds on the Surface of Ni-Rich Cathode Materials for All-Solid-State Batteries. 2023 , 15, 10744-10751	O
70	Simulations with machine learning potentials identify the ion conduction mechanism mediating non-Arrhenius behavior in LGPS. 2023 , 5, 024004	O
69	Prospect of Lithium-ion Battery in Designing Environment Friendly Hybrid Electric Vehicles. 2023 , 1110, 012062	Ο
68	Application of Potassium Ion Conducting KTiOPO4 as Effective Inner Solid-Contact Layer in All-Solid-State Potassium Ion-Selective Electrode. 2023 , 170, 027507	O

67	Advanced Characterization Techniques for Sulfide-Based Solid-State Lithium Batteries. 2023, 13,	O
66	A review of all-solid-state electrolytes for lithium batteries: high-voltage cathode materials, solid-state electrolytes and electrodeâ@lectrolyte interfaces. 2023 , 7, 1268-1297	O
65	Germanium-Free Dense Lithium Superionic Conductor and Interface Re-Engineering for All-Solid-State Lithium Batteries against High-Voltage Cathode. 2023 , 15, 10629-10641	0
64	Surface Oxygen Vacancy Inducing Li-Ion-Conducting Percolation Network in Composite Solid Electrolytes for All-Solid-State Lithium-Metal Batteries. 2207223	O
63	Synthesis and Characterization of Impurity-Free Li 6/16 Sr 7/16 Ta 3/4 Hf 1/4 O 3 Perovskite as a Solid-State Lithium-Ion Conductor. 2201455	О
62	NaGaSe2: A Water-Loving Multifunctional Non-van der Waals Layered Selenogallate. 2023 , 62, 3886-3895	O
61	Charge fluctuation drives anion rotation to enhance the conductivity of Na11M2PS12 (M = Si, Ge, Sn) superionic conductors. 2023 , 25, 7634-7641	0
60	Constructing a PVDF-based composite solid-state electrolyte with high ionic conductivity Li6.5La3Zr1.5Ta0.1Nb0.4O12 for lithium metal battery. 2023 , 564, 232849	O
59	Identification of potential solid-state Li-ion conductors with semi-supervised learning. 2023, 16, 1264-1276	О
58	Insight into the structural and electrochemical properties of the interface between a Na6SOI2 solid electrolyte and a metallic Na anode. 2023 , 25, 8544-8555	O
57	Flexible solid-state lithium-sulfur batteries based on structural designs. 2023 , 57, 429-459	O
56	Interfacial challenges and strategies towards practical sulfide-based solid-state lithium batteries.	O
55	Challenges in speeding up solid-state battery development. 2023 , 8, 230-240	O
54	Solid-state lithium-ion batteries for grid energy storage: opportunities and challenges.	1
53	Local Structural Analysis of Sulfide Polymer Electrolytes Prepared via I2-Induced Polymerization of Li3PS4. 2023 , 127, 4792-4798	O
52	Li-growth and SEI engineering for anode-free Li-metal rechargeable batteries: A review of current advances. 2023 , 57, 508-539	O
51	Incommensurately Modulated Structure in AgCuSe-Based Thermoelectric Materials for Intriguing Electrical, Thermal, and Mechanical Properties. 2300699	О
50	Positive Electrode Performance of All-Solid-State Battery with Sulfide Solid Electrolyte Exposed to Low-Moisture Air. 2023 , 91, 037005-037005	O

49	Microstructure analysis of Si/graphite composite anode during charge-discharge cycle for lithium-ion battery with tetraglyme- and sulfolane-based less volatile electrolyte. 2023 , 447, 142115	0
48	Feasible approaches for anode-free lithium-metal batteries as next generation energy storage systems. 2023 , 57, 471-496	Ο
47	Challenges of Stable Ion Pathways in Cathode Electrode for All-Solid-State Lithium Batteries: A Review. 2023 , 13,	1
46	Lithium Ion Transport Environment by Molecular Vibrations in Ion-Conducting Glasses.	Ο
45	Pseudo single lithium-ion conductors enabled by a metalâBrganic framework with biomimetic lithium-ion chains for lithium metal batteries.	Ο
44	Solid state battery, whatâʿl next?. 2023 , 1, 100007	Ο
43	Chemically Understanding the Liquid-Phase Synthesis of Argyrodite Solid Electrolyte Li6PS5Cl with the Highest Ionic Conductivity for All-Solid-State Batteries. 2023 , 35, 2549-2558	0
42	Fluorinated Li 10 GeP 2 S 12 Enables Stable All-Solid-State Lithium Batteries.	Ο
41	Stable all-solid-state Li-Te battery with Li3TbBr6 superionic conductor.	Ο
40	Understanding Electrochemical Reaction Mechanisms of Sulfur in All-Solid-State Batteries through Operando and Theoretical Studies**.	Ο
39	Understanding Electrochemical Reaction Mechanisms of Sulfur in All-Solid-State Batteries through Operando and Theoretical Studies**.	О
38	Solid-State Electrolytes in LithiumâBulfur Batteries: Latest Progresses and Prospects. 2208164	Ο
37	Advances of sulfide-type solid-state batteries with negative electrodes: Progress and perspectives.	1
36	A Liâ∏i 4 Ti 5 O 12 Composite Anode for Reducing Interfacial Resistance of Solid-State Batteries. 2200374	Ο
35	Achieving high-energy and high-safety lithium metal batteries with high-voltage-stable solid electrolytes. 2023 , 6, 1096-1124	0
34	All-Solid-State Thin Film Li-Ion Batteries: New Challenges, New Materials, and New Designs. 2023 , 9, 186	Ο
33	Vacancies Introduced during the Crystallization Process of the Glass-Ceramics Superionic Conductor, Na3PS4, Investigated by Neutron Total Scattering and Reverse Monte Carlo Method. 2023 , 127, 6199-6206	0
32	Review of the Developments and Difficulties in Inorganic Solid-State Electrolytes. 2023 , 16, 2510	Ο

31	Interfaces in Sulfide Solid Electrolyte-Based All-Solid-State Lithium Batteries: Characterization, Mechanism and Strategy. 2023 , 6,	0
30	Interface Engineering of a NASICON-Type Electrolyte Using Ultrathin CuS Film for Lithium Metal Batteries. 2023 , 9, 194	O
29	Nanofiber Materials for Lithium-Ion Batteries.	0
28	Ultrathin Lithiophilic 3D Arrayed Skeleton Enabling Spatial-Selection Deposition for Dendrite-Free Lithium Anodes.	O
27	Disentangling Phase and Morphological Evolution During the Formation of the Lithium Superionic Conductor Li 10 GeP 2 S 12.	O
26	Continuous Compositing Process of Sulfur/Conductive-Additive Composite Particles for All-Solid-State Lithium Sulfur Batteries.	O
25	Activating the paddle-wheel effect towards lower temperature in a new sodium-ion solid electrolyte, Na3.5Si0.5P0.5Se4.	O
24	Advance of lithium-rich cathode materials in all-solid-state lithium batteries. 2023, 0	O
23	Rapid Solution Synthesis of Argyrodite-Type Li6PS5X (X = Cl, Br, and I) Solid Electrolytes Using Excess Sulfur. 2023 , 62, 6076-6083	O
22	Interfacial Modification, Electrode/Solid-Electrolyte Engineering, and Monolithic Construction of Solid-State Batteries. 2023 , 6,	O
21	Pressureless all-solid-state Na/S batteries with self-supporting Na 5 YSi 4 O 12 scaffolds.	O
20	A LaCl3-based lithium superionic conductor compatible with lithium metal. 2023 , 616, 77-83	O
19	Electrochemical Stability and Li Ion Diffusion Kinetics of Grain Boundaries in Li10GeP2S12 Solid Electrolyte. 2023 , 127, 7528-7535	O
18	Rapid fabrication of Ga-doped Li7La3Zr2O12 powder via microwave-assisted solution combustion synthesis. 2023 , 58, 6174-6184	O
17	Nonequilibrium molecular dynamics for accelerated computation of ionâlon correlated conductivity beyond Nernstâlinstein limitation. 2023 , 9,	O
16	Recent Progress in and Perspectives on Emerging Halide Superionic Conductors for All-Solid-State Batteries. 2023 , 6,	O
15	Enhancing Li ion conduction through polyethylene glycol brushes towards long-life solid-state lithium metal batteries.	О
14	Topological Data analysis of Ion Migration Mechanism. 2023 , 158, 144116	O

CITATION REPORT

13	A practical perspective on the potential of rechargeable Mg batteries.	О
12	Effective regulation towards electrochemical stability of superionic solid electrolyte via facile dual-halogen strategy. 2023 , 465, 143036	Ο
11	Machine-Learning Approaches for the Discovery of Electrolyte Materials for Solid-State Lithium Batteries. 2023 , 9, 228	О
10	PVDF-HFP/PAN/PDA@LLZTO Composite Solid Electrolyte Enabling Reinforced Safety and Outstanding Low-Temperature Performance for Quasi-Solid-State Lithium Metal Batteries.	Ο
9	Ingress of Li into Solid Electrolytes: Cracking and Sparsely Filled Cracks.	О
8	Tailoring Conversion-Reaction-Induced Alloy Interlayer for Dendrite-Free Sulfide-Based All-Solid-State Lithium-Metal Battery.	Ο
7	Solid-state inorganic electrolytes (oxides, sulfides, and halides). 2023, 77-117	О
6	Polymer-ceramic composite solid-state electrolytes. 2023 , 119-156	Ο
5	Lithium Niobate for Fast Cycling in Li-ion Batteries: Review and New Experimental Results. 2023, 9, 244	O
4	Design of composite cathodes for sulfide-based all-solid-state batteries. 2023 , 17, 100246	O
3	Lattice Structures, Electronic Properties and Lithium-ion Transport Dynamics of Li10SnP2S12/Li interface. 2023 , 39, 102894	O
2	Perspective on powder technology for all-solid-state batteries: How to pair sulfide electrolyte with high-voltage cathode. 2024 , 86, 55-66	0
1	Halide-based solid electrolytes: The history, progress, and challenges.	О