Isoxazolâ€5(4<i>H</i>)one Derivatives as PTP1B Inhibit

Chemistry - an Asian Journal 6, 2073-2079 DOI: 10.1002/asia.201100154

Citation Report

#	Article	IF	CITATIONS
1	Combinatorial Chemistry Online. Combinatorial Chemistry, 2011, 13, 37-39.	0.0	0
2	N-Heterocyclic carbene mediated Reformatsky reaction of aldehydes withÂα-trimethylsilylcarbonyl compounds. Tetrahedron, 2013, 69, 607-612.	1.0	19
3	Regioselektive katalytische asymmetrische Câ€Alkylierung von Isoxazolinonen durch basenfreie Palladacyclusâ€katalysierte direkte 1,4â€Addition. Angewandte Chemie, 2015, 127, 2829-2833.	1.6	25
4	Regioselective Catalytic Asymmetric Câ€Alkylation of Isoxazolinones by a Baseâ€Free Palladacycleâ€Catalyzed Direct 1,4â€Addition. Angewandte Chemie - International Edition, 2015, 54, 2788-2791.	7.2	64
5	N-bromosuccinimide (NBS)-promoted, three-component synthesis of α,β-unsaturated isoxazol-5(4H)-ones, and spectroscopic investigation and computational study of 3-methyl-4-(thiophen-2-ylmethylene)isoxazol-5(4H)-one. Research on Chemical Intermediates, 2015, 41, 7739-7773.	1.3	47
6	A ZnCl ₂ â€Catalyzed Knoevenagel Condensation/1,5â€Hydride Shift/Cyclization Sequence: Synthesis of Novel Spiroisoxazolâ€5â€one Tetrahydroquinolines. ChemistrySelect, 2016, 1, 3713-3717.	0.7	20
7	Expeditious green synthesis of 3,4-disubstituted isoxazole-5(4H)-ones catalyzed by nano-MgO. Research on Chemical Intermediates, 2016, 42, 6831-6844.	1.3	51
8	Selective Oxidative Coupling of 3 <i>H</i> â€Pyrazolâ€3â€ones, Isoxazolâ€5(2 <i>H</i>)â€ones, Pyrazolidineâ€3,5â€diones, and Barbituric Acids with Malonyl Peroxides: An Effective Câ€O Functionalization. ChemistrySelect, 2017, 2, 3334-3341.	0.7	23
9	Sulfated polyborate catalyzed expeditious and efficient three-component synthesis of 3-methyl-4-(hetero)arylmethylene isoxazole-5(4H)-ones. Tetrahedron Letters, 2017, 58, 3256-3261.	0.7	58
10	The synthetic and therapeutic expedition of isoxazole and its analogs. Medicinal Chemistry Research, 2018, 27, 1309-1344.	1.1	129
11	Doppelt regioselektive asymmetrische Câ€Allylierung von Isoxazolinonen: Iridiumâ€katalysierte Nâ€Allylierung mit nachfolgender Azaâ€Copeâ€Umlagerung. Angewandte Chemie, 2018, 130, 1418-1422.	1.6	21
12	Double Regioselective Asymmetric Câ€Allylation of Isoxazolinones: Iridium atalyzed Nâ€Allylation Followed by an Azaâ€Cope Rearrangement. Angewandte Chemie - International Edition, 2018, 57, 1404-1408.	7.2	71
13	Total Synthesis of Natural Product Piperodione and Its Analogues. ChemistrySelect, 2018, 3, 5975-5980.	0.7	2
14	Synthesis and characterization of nanocrystalline hydroxyapatite and its catalytic behavior towards synthesis of 3,4â€disubstituted isoxazoleâ€5(4H)â€ones in water. Applied Organometallic Chemistry, 2019, 33, e5118.	1.7	52
15	Oxidative C–O coupling as a new idea in the â€~click-like chemistry': malonyl peroxides for the conjugation of two molecules. Mendeleev Communications, 2019, 29, 132-134.	0.6	3
16	Isatins 3-C annulation vs ring-opening: Two different pathways for synthesis of spiro compounds via multicomponent reactions. Tetrahedron Letters, 2019, 60, 151181.	0.7	22
17	Green Synthesis of 3-Substituted-4-arylmethylideneisoxazol-5(4H)-one Derivatives Catalyzed by Salicylic Acid. Current Organocatalysis, 2019, 6, 28-35.	0.3	32
18	2,2′-((1,4-Dimethoxy-1,4-dioxobutane-2,3-diylidene)bis(azanylylidene))bis(quinoline-3-carboxylic acid). MolBank, 2019, 2019, M1093.	0.2	1

TATION REDO

#	Article	IF	CITATIONS
19	Facile and expedient synthesis of α,β-unsaturated isoxazol-5(4H)-ones under mild conditions. Research on Chemical Intermediates, 2020, 46, 943-959.	1.3	29
20	Preparation and characterization of supported bimetallic gold–iron nanoparticles, and its potential for heterogeneous catalysis. Research on Chemical Intermediates, 2020, 46, 1373-1387.	1.3	17
21	Concentrated Solar Radiation Aided Green Approach for Preparative Scale and Solventâ€Free Synthesis of 3â€Methylâ€4â€(hetero)arylmethylene Isoxazoleâ€5(4H)â€ones. ChemistrySelect, 2020, 5, 12320-12323.	0.7	17
22	<i>N</i> -Allylation <i>versus C</i> -allylation of intermediates from aza-Michael adducts of arylideneisoxazol-5-ones. Organic and Biomolecular Chemistry, 2020, 18, 9516-9525.	1.5	11
23	On the Necessity of Oneâ€Pot Tautomer Trapping in Asymmetric Michael Reactions of Arylideneisoxazolâ€5â€ones. European Journal of Organic Chemistry, 2020, 2020, 2264-2270.	1.2	15
24	Regioselective catalytic asymmetric <i>N</i> -alkylation of isoxazol-5-ones with <i>para</i> -quinone methides. Organic and Biomolecular Chemistry, 2020, 18, 2398-2404.	1.5	19
25	Green Three-component Synthesis of Merocyanin Dyes Based on 4- Arylideneisoxazol-5(4H)-ones. Current Green Chemistry, 2020, 7, 217-225.	0.7	21
26	Green synthesis of 3,4â€disubstituted isoxazolâ€5(4 <i>H</i>)â€ones using ZnO@Fe ₃ O ₄ core–shell nanocatalyst in water. Applied Organometallic Chemistry, 2020, 34, e5544.	1.7	32
27	Sulfonated Grapheneâ€Oxide as Metalâ€Free Efficient Carbocatalyst for the Synthesis of 3â€Methylâ€4â€(hetero)arylmethylene isoxazoleâ€5(4 <i>H</i>)â€ones and Substituted Pyrazole. ChemistrySele 2020, 5, 626-636.	ctQ.7	27
28	MnO2@Zeolite-Y Nanoporous: Preparation and Application as a High Efficient Catalyst for Multi-Component Synthesis of 4-Arylidene-Isoxazolidinones. Silicon, 2021, 13, 201-210.	1.8	9
29	SP1-independent inhibition of FOXM1 by modified thiazolidinediones. European Journal of Medicinal Chemistry, 2021, 209, 112902.	2.6	16
30	Synthetic enzyme-catalyzed multicomponent reaction for Isoxazol-5(4H)-one Syntheses, their properties and biological application; why should one study mechanisms?. Organic and Biomolecular Chemistry, 2021, 19, 1514-1531.	1.5	15
31	Theoretical study of rhodium- and cobalt-catalyzed decarboxylative transformations of isoxazolones: origin of product selectivity. Organic Chemistry Frontiers, 2021, 8, 1257-1266.	2.3	2
32	ANTIOXIDANT, PTP 1B INHIBITION AND Îʿ-AMYLASE INHIBITION PROPERTY AND GC-MS ANALYSIS OF METHANOLIC LEAVES EXTRACT OF ACHYRANTHES ASPERA AND CATHARANTHUS ROSEUS OF NEPAL. International Journal of Pharmacy and Pharmaceutical Sciences, 0, , 49-55.	0.3	2
33	Fruit Extract of Averrhoa bilimbi: A Green Neoteric Micellar Medium for Isoxazole and Biginelli-Like Synthesis. Research on Chemical Intermediates, 2021, 47, 4369-4398.	1.3	14
34	An efficient solvent-free synthesis of 3,4-disubstituted isoxazole-5(4H)-ones using microwave irradiation. Journal of the Indian Chemical Society, 2021, 98, 100013.	1.3	16
35	Isoxazolone Derivatives as Potent Inhibitors of PTP1B. Bulletin of the Korean Chemical Society, 2012, 33, 275-277.	1.0	16
36	Amine Functionalized Dendronized Polymer as a Homogeneous Base Catalyst for the Synthesis of Polyhydroquinolines and 4-Arylidene-3-Methylisoxazol-5(4H)-Ones. Catalysis Letters, 2022, 152, 2457-2469	1.4	3

CITATION REPORT

#	Article	IF	CITATIONS
37	Asymmetric Addition and Cycloaddition Reactions with Ylideneâ€Fiveâ€Membered Heterocycles. Advanced Synthesis and Catalysis, 2021, 363, 5196-5234.	2.1	9
38	Pyruvic acid-catalyzed one-pot three-component green synthesis of isoxazoles in aqueous medium: a comparable study of conventional heating versus ultra-sonication. Journal of Chemical Sciences, 2022, 134, 1.	0.7	14
39	Catalytic Approaches to Multicomponent Reactions: A Critical Review and Perspectives on the Roles of Catalysis. Molecules, 2022, 27, 132.	1.7	32
40	Catalytic Asymmetric Chlorination of Isoxazolinones. European Journal of Organic Chemistry, 2022, 2022, .	1.2	8
41	Access to β-Alkylated γ-Functionalized Ketones via Conjugate Additions to Arylideneisoxazol-5-ones and Mo(CO) ₆ -Mediated Reductive Cascade Reactions. ACS Omega, 2022, 7, 8808-8818.	1.6	9
42	Recent updates on development of protein-tyrosine phosphatase 1B inhibitors for treatment of diabetes, obesity and related disorders. Bioorganic Chemistry, 2022, 121, 105626.	2.0	27
43	A Convenient Green Protocol for the Synthesis of 4-Arylmethylidene-3-substituted-isoxazol-5(4H)-ones catalysed by Dimethylaminopyridine (DMAP). International Journal of Advanced Research in Science, Communication and Technology, 0, , 75-81.	0.0	0
44	Enantioenriched γ-Aminoalcohols, β-Amino Acids, β-Lactams, and Azetidines Featuring Tetrasubstituted Fluorinated Stereocenters via Palladacycle-Catalyzed Asymmetric Fluorination of Isoxazolinones. Journal of Organic Chemistry, 2022, 87, 670-682.	1.7	19
45	Synthesis, Characterization and Complex Evaluation of Antibacterial Activity and Cytotoxicity of New Arylmethylidene Ketones and Pyrimidines with Camphane Skeletons. ChemistrySelect, 2022, 7, .	0.7	0
46	Regioselective conjugate addition of isoxazol-5-ones to ethenesulfonyl fluoride. Organic and Biomolecular Chemistry, 2022, 20, 4714-4718.	1.5	4
47	Efficient and Aqoues Synthesis of 3,4-Disubstituted Isoxazol-5(4H)-one Derivatives Using Piperazine under Green Conditions. Heterocycles, 2022, 104, 1625.	0.4	10
48	Lipase Catalyzed One-Pot Synthesis of 3-Methyl-4-(Hetero) Arylmethyleneisoxazole-5(4 <i>H</i>)-Ones under Aqueous Conditions. Polycyclic Aromatic Compounds, 0, , 1-10.	1.4	2
49	Green Route for the Synthesis of 3,4-Disubstituted Isoxazol-5(4H)-ones Using GO@Fe(ClO4)3 Nanocatalyst under Solvent-Free Conditions. Russian Journal of Organic Chemistry, 2022, 58, 830-836.	0.3	5
50	One-pot multicomponent synthesis of 4-((2H-chromen-3-yl)/(2-phenyl-2H-chromen-3-yl)methylene)-3-methylisoxazol-5(4H)-ones and evaluation of their antibacterial activity. Tetrahedron, 2022, 124, 133015.	1.0	9
51	Organocatalytic enantioselective Mannich reaction of isoxazol-5(4 <i>H</i>)-ones to isatin-derived ketimines. Organic and Biomolecular Chemistry, 2022, 20, 8395-8399.	1.5	4
52	BF ₃ â< Et ₂ O Promoted Inverseâ€Electronâ€Demand Oxaâ€Dielsâ€Alder Rea Alkylidene Isoxazolâ€5â€ones with Unactivated Alkenes. Advanced Synthesis and Catalysis, 2022, 364, 3800-3804.	ction of 2.1	8
53	An Expeditious Synthesis of Ethyl-2-(4-(arylmethylene)-5-oxo-4,5-dihydroisoxazol-3- yl)acetate Derivatives. Current Organic Chemistry, 2022, 26, 1575-1584.	0.9	5
54	Urea-catalyzed multicomponent synthesis of 4-arylideneisoxazol-5(4H)-one derivatives under green conditions. Research on Chemical Intermediates, 2023, 49, 837-858.	1.3	6

#	Article	IF	CITATIONS
55	Strategies for the Enantioselective Synthesis of 2â€lsoxazolines and 2â€lsoxazolinâ€5â€ones Bearing Fully Substituted Stereocenters**. European Journal of Organic Chemistry, 2022, 2022, .	1.2	4
56	A nano-organo catalyst mediated approach towards the green synthesis of 3-methyl-4-(phenyl)methylene-isoxazole-5(4H)-one derivatives and biological evaluation of the derivatives as a potent anti-fungal and anti-tubercular agent. Sustainable Chemistry and Pharmacy, 2023. 32. 100967.	1.6	6
57	Vitamin B ₁ â€Catalyzed Multicomponent Reaction for Efficient Synthesis of an Isoxazolone Compound by Using Ultrasound in a Water and Its Selective Identification of Metal Ions. ChemistrySelect, 2023, 8, .	0.7	4