Type VI secretion delivers bacteriolytic effectors to targ

Nature 475, 343-347 DOI: 10.1038/nature10244

Citation Report

#	Article	IF	CITATIONS
1	Molecular syringes scratch the surface. Nature, 2011, 475, 301-303.	13.7	14
3	Contact killing by Pseudomonas. Nature Reviews Microbiology, 2011, 9, 632-632.	13.6	1
4	Separate inputs modulate phosphorylationâ€dependent and â€independent type VI secretion activation. Molecular Microbiology, 2011, 82, 1277-1290.	1.2	96
5	Comparative genomics of the type VI secretion systems of Pantoea and Erwinia species reveals the presence of putative effector islands that may be translocated by the VgrG and Hcp proteins. BMC Genomics, 2011, 12, 576.	1.2	118
6	VasH Is a Transcriptional Regulator of the Type VI Secretion System Functional in Endemic and Pandemic Vibrio cholerae. Journal of Bacteriology, 2011, 193, 6471-6482.	1.0	61
7	Structure–function analysis of HsiF, a gp25-like component of the type VI secretion system, in Pseudomonas aeruginosa. Microbiology (United Kingdom), 2011, 157, 3292-3305.	0.7	52
8	A multi-messenger story. Nature, 2011, 475, 303-304.	13.7	0
9	Towards a Structural Comprehension of Bacterial Type VI Secretion Systems: Characterization of the TssJ-TssM Complex of an Escherichia coli Pathovar. PLoS Pathogens, 2011, 7, e1002386.	2.1	132
10	Acid-Induced Type VI Secretion System Is Regulated by ExoR-ChvG/ChvI Signaling Cascade in Agrobacterium tumefaciens. PLoS Pathogens, 2012, 8, e1002938.	2.1	92
11	Structural Basis for Type VI Secretion Effector Recognition by a Cognate Immunity Protein. PLoS Pathogens, 2012, 8, e1002613.	2.1	58
12	Specialized Peptidoglycan Hydrolases Sculpt the Intra-bacterial Niche of Predatory Bdellovibrio and Increase Population Fitness. PLoS Pathogens, 2012, 8, e1002524.	2.1	70
13	Crystal Structure of the VgrG1 Actin Cross-linking Domain of the Vibrio cholerae Type VI Secretion System. Journal of Biological Chemistry, 2012, 287, 38190-38199.	1.6	60
14	Characterization of the RpoN regulon reveals differential regulation of T6SS and new flagellar operons in Vibrio cholerae O37 strain V52. Nucleic Acids Research, 2012, 40, 7766-7775.	6.5	101
15	Structural insight into how <i>Pseudomonas aeruginosa</i> peptidoglycanhydrolase Tse1 and its immunity protein Tsi1 function. Biochemical Journal, 2012, 448, 201-211.	1.7	22
16	Indole Production Promotes Escherichia coli Mixed-Culture Growth with Pseudomonas aeruginosa by Inhibiting Quorum Signaling. Applied and Environmental Microbiology, 2012, 78, 411-419.	1.4	105
17	Type VI Secretion System-Associated Gene Clusters Contribute to Pathogenesis of Salmonella enterica Serovar Typhimurium. Infection and Immunity, 2012, 80, 1996-2007.	1.0	95
18	Structural Characterization and Oligomerization of the TssL Protein, a Component Shared by Bacterial Type VI and Type IVb Secretion Systems. Journal of Biological Chemistry, 2012, 287, 14157-14168.	1.6	91
19	Structural Insights into the Pseudomonas aeruginosa Type VI Virulence Effector Tse1 Bacteriolysis and Self-protection Mechanisms. Journal of Biological Chemistry, 2012, 287, 26911-26920.	1.6	43

TATION PEDO

#	Article	IF	CITATIONS
20	New secreted toxins and immunity proteins encoded within the <scp>T</scp> ype <scp>VI</scp> secretion system gene cluster of <i><scp>S</scp>erratia marcescens</i> . Molecular Microbiology, 2012, 86, 921-936.	1.2	121
21	Beyond growth: novel functions for bacterial cell wall hydrolases. Trends in Microbiology, 2012, 20, 540-547.	3.5	53
22	The archetype <i><scp>P</scp>seudomonas aeruginosa</i> proteins <scp><scp>TssB</scp></scp> and <scp><scp>Tagl</scp></scp> form a novel subcomplex in the bacterial type <scp>VI</scp> secretion system. Molecular Microbiology, 2012, 86, 437-456.	1.2	22
23	Transcriptional Response of Mucoid Pseudomonas aeruginosa to Human Respiratory Mucus. MBio, 2012, 3, e00410-12.	1.8	41
24	Quantitative single-cell characterization of bacterial interactions reveals type VI secretion is a double-edged sword. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 19804-19809.	3.3	92
25	Crystal structure of type VI effector Tse1 from <i>Pseudomonas aeruginosa</i> . FEBS Letters, 2012, 586, 3193-3199.	1.3	23
26	The Second Type VI Secretion System of Pseudomonas aeruginosa Strain PAO1 Is Regulated by Quorum Sensing and Fur and Modulates Internalization in Epithelial Cells. Journal of Biological Chemistry, 2012, 287, 27095-27105.	1.6	191
27	Type 6 Secretion Dynamics Within and Between Bacterial Cells. Science, 2012, 337, 815-815.	6.0	215
28	Hcp2, a Secreted Protein of the Phytopathogen Pseudomonas syringae pv. Tomato DC3000, Is Required for Fitness for Competition against Bacteria and Yeasts. Journal of Bacteriology, 2012, 194, 4810-4822.	1.0	76
29	From the regulation of peptidoglycan synthesis to bacterial growth and morphology. Nature Reviews Microbiology, 2012, 10, 123-136.	13.6	1,062
30	Phagemid Vectors for Phage Display: Properties, Characteristics and Construction. Journal of Molecular Biology, 2012, 417, 129-143.	2.0	125
31	Crystal Structure of Pseudomonas aeruginosa Tsi2 Reveals a Stably Folded Superhelical Antitoxin. Journal of Molecular Biology, 2012, 417, 351-361.	2.0	11
32	Structure of a Peptidoglycan Amidase Effector Targeted to Gram-Negative Bacteria by the Type VI Secretion System. Cell Reports, 2012, 1, 656-664.	2.9	90
33	A Widespread Bacterial Type VI Secretion Effector Superfamily Identified Using a Heuristic Approach. Cell Host and Microbe, 2012, 11, 538-549.	5.1	260
34	Structure and Regulation of the Type VI Secretion System. Annual Review of Microbiology, 2012, 66, 453-472.	2.9	329
35	Polymorphic toxin systems: Comprehensive characterization of trafficking modes, processing, mechanisms of action, immunity and ecology using comparative genomics. Biology Direct, 2012, 7, 18.	1.9	440
36	Bacterial growth <i>does</i> require peptidoglycan hydrolases. Molecular Microbiology, 2012, 86, 1031-1035.	1.2	71
37	Guards of the great wall: bacterial lysozyme inhibitors. Trends in Microbiology, 2012, 20, 501-510.	3.5	90

#	Article	IF	CITATIONS
38	Proteins involved in <i>Francisella tularensis</i> survival and replication inside macrophages. Future Microbiology, 2012, 7, 1255-1268.	1.0	7
39	Bacterial outer membrane evolution via sporulation?. Nature Chemical Biology, 2012, 8, 14-18.	3.9	22
40	Comparative Genomics of Plant-Associated Pseudomonas spp.: Insights into Diversity and Inheritance of Traits Involved in Multitrophic Interactions. PLoS Genetics, 2012, 8, e1002784.	1.5	578
41	Biocommunication of Fungi. , 2012, , .		22
42	DotU and VgrG, Core Components of Type VI Secretion Systems, Are Essential for Francisella LVS Pathogenicity. PLoS ONE, 2012, 7, e34639.	1.1	66
43	Structural Insights into the Effector – Immunity System Tse1/Tsi1 from Pseudomonas aeruginosa. PLoS ONE, 2012, 7, e40453.	1.1	46
44	Campylobacter jejuni Type VI Secretion System: Roles in Adaptation to Deoxycholic Acid, Host Cell Adherence, Invasion, and In Vivo Colonization. PLoS ONE, 2012, 7, e42842.	1.1	132
45	Gene flow and biological conflict systems in the origin and evolution of eukaryotes. Frontiers in Cellular and Infection Microbiology, 2012, 2, 89.	1.8	67
46	A Phage-Guided Route to Discovery of Bioactive Rare Actinomycetes. , 0, , .		0
47	The Microbial Olympics. Nature Reviews Microbiology, 2012, 10, 583-588.	13.6	15
47 48	The Microbial Olympics. Nature Reviews Microbiology, 2012, 10, 583-588. The Câ€tail anchored TssL subunit, an essential protein of the enteroaggregative <i>Escherichia coli</i> Sciâ€l Type VI secretion system, is inserted by YidC. MicrobiologyOpen, 2012, 1, 71-82.	13.6 1.2	15 74
	The Câ€ŧail anchored TssL subunit, an essential protein of the enteroaggregative <i>Escherichia coli</i>		
48	The Câ€ŧail anchored TssL subunit, an essential protein of the enteroaggregative <i>Escherichia coli</i> Sci″ Type VI secretion system, is inserted by YidC. MicrobiologyOpen, 2012, 1, 71-82.	1.2	74
48 49	The Câ€ŧail anchored TssL subunit, an essential protein of the enteroaggregative <i>Escherichia coli</i> Sci″ Type VI secretion system, is inserted by YidC. MicrobiologyOpen, 2012, 1, 71-82.Type VI secretion requires a dynamic contractile phage tail-like structure. Nature, 2012, 483, 182-186.Interspecies communication in the gut, from bacterial delivery to hostâ€cell response. Journal of	1.2 13.7	74 579
48 49 50	The Câ€ŧail anchored TssL subunit, an essential protein of the enteroaggregative <i>Escherichia coli</i> Sci″ Type VI secretion system, is inserted by YidC. MicrobiologyOpen, 2012, 1, 71-82. Type VI secretion requires a dynamic contractile phage tail-like structure. Nature, 2012, 483, 182-186. Interspecies communication in the gut, from bacterial delivery to hostâ€cell response. Journal of Physiology, 2012, 590, 433-440. Structural biology of type VI secretion systems. Philosophical Transactions of the Royal Society B:	1.2 13.7 1.3	74 579 15
48 49 50 51	The Câ€tail anchored TssL subunit, an essential protein of the enteroaggregative <i>Escherichia coli</i> Sciâ€l Type VI secretion system, is inserted by YidC. MicrobiologyOpen, 2012, 1, 71-82. Type VI secretion requires a dynamic contractile phage tail-like structure. Nature, 2012, 483, 182-186. Interspecies communication in the gut, from bacterial delivery to hostâ€cell response. Journal of Physiology, 2012, 590, 433-440. Structural biology of type VI secretion systems. Philosophical Transactions of the Royal Society B: Biological Sciences, 2012, 367, 1102-1111. A RelAâ€dependent twoâ€tiered regulated proteolysis cascade controls synthesis of a contactâ€dependent	1.2 13.7 1.3 1.8	74 579 15 191
48 49 50 51 52	The Câ€tail anchored TssL subunit, an essential protein of the enteroaggregative <i>Escherichia coli</i> Sci″ Type VI secretion system, is inserted by YidC. MicrobiologyOpen, 2012, 1, 71-82. Type VI secretion requires a dynamic contractile phage tail-like structure. Nature, 2012, 483, 182-186. Interspecies communication in the gut, from bacterial delivery to hostâ€cell response. Journal of Physiology, 2012, 590, 433-440. Structural biology of type VI secretion systems. Philosophical Transactions of the Royal Society B: Biological Sciences, 2012, 367, 1102-1111. A RelAâ€dependent twoâ€tiered regulated proteolysis cascade controls synthesis of a contactâ€dependent intercellular signal in <i>Myxococcus xanthus</i> . Molecular Microbiology, 2012, 84, 260-275. Comparative genomic analysis of Salmonella enterica subsp. enterica serovar Weltevreden foodborne	1.2 13.7 1.3 1.8 1.2	 74 579 15 191 24

#	Article	IF	CITATIONS
56	Killing of Escherichia coli by Myxococcus xanthus in Aqueous Environments Requires Exopolysaccharide-Dependent Physical Contact. Microbial Ecology, 2013, 66, 630-638.	1.4	20
57	Genomic analysis of the biocontrol strain <i><scp>P</scp>seudomonas fluorescens</i> â€ <scp>Pf</scp> 29 <scp>Arp</scp> with evidence of <scp>T</scp> 3 <scp>SS</scp> and <scp>T</scp> 6 <scp>SS</scp> gene expression on plant roots. Environmental Microbiology Reports, 2013. 5. 393-403.	1.0	62
58	Genome sequence reveals that Pseudomonas fluorescens F113 possesses a large and diverse array of systems for rhizosphere function and host interaction. BMC Genomics, 2013, 14, 54.	1.2	78
59	A functional VipA-VipB interaction is required for the type VI secretion system activity of Vibrio cholerae O1 strain A1552. BMC Microbiology, 2013, 13, 96.	1.3	27
60	Colonization strategies of Pseudomonas fluorescens Pf0-1: activation of soil-specific genes important for diverse and specific environments. BMC Microbiology, 2013, 13, 92.	1.3	30
61	The Francisella tularensis LVS ΔpdpCmutant exhibits a unique phenotype during intracellular infection. BMC Microbiology, 2013, 13, 20.	1.3	24
62	Bacterial Type 6 Secreted Phospholipases Play Family Feud. Cell Host and Microbe, 2013, 13, 507-508.	5.1	0
63	Impacts of Labile Organic Carbon Concentration on Organic and Inorganic Nitrogen Utilization by a Stream Biofilm Bacterial Community. Applied and Environmental Microbiology, 2013, 79, 7130-7141.	1.4	33
64	Genes Required for and Effects of Alginate Overproduction Induced by Growth of Pseudomonas aeruginosa on Pseudomonas Isolation Agar Supplemented with Ammonium Metavanadate. Journal of Bacteriology, 2013, 195, 4020-4036.	1.0	10
65	Roles of the Gacâ€Rsm pathway in the regulation of phenazine biosynthesis in P seudomonas chlororaphis 30â€84. MicrobiologyOpen, 2013, 2, 505-524.	1.2	77
66	Peptidoglycan hydrolases, bacterial shape, and pathogenesis. Current Opinion in Microbiology, 2013, 16, 767-778.	2.3	54
67	Imaging Type VI Secretion-Mediated Bacterial Killing. Cell Reports, 2013, 3, 36-41.	2.9	124
68	Deâ€ <i><scp>O</scp></i> â€acetylation of peptidoglycan regulates glycan chain extension and affects <i>in vivo</i> survival of <i><scp>N</scp>eisseria meningitidis</i> . Molecular Microbiology, 2013, 87, 1100-1112.	1.2	33
69	Cenetic diversity and features analysis of type VI secretion systems loci in avian pathogenic Escherichia coli by wide genomic scanning. Infection, Genetics and Evolution, 2013, 20, 454-464.	1.0	29
70	Deadly syringes: type VI secretion system activities in pathogenicity and interbacterial competition. Current Opinion in Microbiology, 2013, 16, 52-58.	2.3	92
71	<scp><scp>ClpV</scp></scp> recycles <scp><scp>VipA</scp></scp> <scp>VipB</scp> tubules and prevents nonâ€productive tubule formation to ensure efficient type <scp>VI</scp> protein secretion. Molecular Microbiology, 2013, 87, 1013-1028.	1.2	132
72	Tit-for-Tat: Type VI Secretion System Counterattack during Bacterial Cell-Cell Interactions. Cell, 2013, 152, 884-894.	13.5	486
73	Tn-Seq Analysis of Vibrio cholerae Intestinal Colonization Reveals a Role for T6SS-Mediated Antibacterial Activity in the Host. Cell Host and Microbe, 2013, 14, 652-663.	5.1	226

#	Article	IF	CITATIONS
74	Haemolysin Coregulated Protein Is an Exported Receptor and Chaperone of Type VI Secretion Substrates. Molecular Cell, 2013, 51, 584-593.	4.5	239
75	Gaming the competition in microbial cell–cell interactions. EMBO Journal, 2013, 32, 778-780.	3.5	3
76	The physiology of bacterial cell division. Annals of the New York Academy of Sciences, 2013, 1277, 8-28.	1.8	281
77	A Visual Assay to Monitor T6SS-mediated Bacterial Competition. Journal of Visualized Experiments, 2013, , e50103.	0.2	35
78	Preparing synthetic biology for the world. Frontiers in Microbiology, 2013, 4, 5.	1.5	111
79	Diverse type VI secretion phospholipases are functionally plastic antibacterial effectors. Nature, 2013, 496, 508-512.	13.7	357
80	The Type VI secretion system – a widespread and versatile cell targeting system. Research in Microbiology, 2013, 164, 640-654.	1.0	177
81	Connection of toxin–antitoxin modules to inoculation eschar and arthropod vertical transmission in Rickettsiales. Comparative Immunology, Microbiology and Infectious Diseases, 2013, 36, 199-209.	0.7	15
83	Intercellular communication by related bacterial protein toxins: colicins, contact-dependent inhibitors, and proteins exported by the type VI secretion system. FEMS Microbiology Letters, 2013, 345, 13-21.	0.7	21
84	Identification, Structure, and Function of a Novel Type VI Secretion Peptidoglycan Glycoside Hydrolase Effector-Immunity Pair. Journal of Biological Chemistry, 2013, 288, 26616-26624.	1.6	110
85	Type VI secretion system regulation as a consequence of evolutionary pressure. Journal of Medical Microbiology, 2013, 62, 663-676.	0.7	69
86	Genome Sequence of a Strain of the Human Pathogenic Bacterium Pseudomonas alcaligenes That Caused Bloodstream Infection. Genome Announcements, 2013, 1, .	0.8	38
87	Unique Features of a Pseudomonas aeruginosa α2-Macroglobulin Homolog. MBio, 2013, 4, .	1.8	24
88	Two Independent Pathways for Self-Recognition in Proteus mirabilis Are Linked by Type VI-Dependent Export. MBio, 2013, 4, .	1.8	111
89	Comparative Genomics of Recent Shiga Toxin-Producing Escherichia coli O104:H4: Short-Term Evolution of an Emerging Pathogen. MBio, 2013, 4, e00452-12.	1.8	68
90	Structural insights into the inhibition of typeÂVI effector Tae3 by its immunity protein Tai3. Biochemical Journal, 2013, 454, 59-68.	1.7	26
91	Multicellular Bacteria Deploy the Type VI Secretion System to Preemptively Strike Neighboring Cells. PLoS Pathogens, 2013, 9, e1003608.	2.1	109
92	Structural Determinants for Activity and Specificity of the Bacterial Toxin LlpA. PLoS Pathogens, 2013, 9, e1003199.	2.1	33

#	Article	IF	CITATIONS
93	Dual Expression Profile of Type VI Secretion System Immunity Genes Protects Pandemic Vibrio cholerae. PLoS Pathogens, 2013, 9, e1003752.	2.1	149
94	Identification of a Functional Type VI Secretion System in Campylobacter jejuni Conferring Capsule Polysaccharide Sensitive Cytotoxicity. PLoS Pathogens, 2013, 9, e1003393.	2.1	88
95	Xenocin Export by the Flagellar Type III Pathway in Xenorhabdus nematophila. Journal of Bacteriology, 2013, 195, 1400-1410.	1.0	12
96	Expression, purification and preliminary crystallographic analysis of the T6SS effector protein Tse3 from <i>Pseudomonas aeruginosa</i> . Acta Crystallographica Section F: Structural Biology Communications, 2013, 69, 524-527.	0.7	4
97	Acinetobacter baumannii Utilizes a Type VI Secretion System for Bacterial Competition. PLoS ONE, 2013, 8, e59388.	1.1	162
98	The HsiB1C1 (TssB-TssC) Complex of the Pseudomonas aeruginosa Type VI Secretion System Forms a Bacteriophage Tail Sheathlike Structure. Journal of Biological Chemistry, 2013, 288, 7536-7548.	1.6	77
99	Complex structure of type VI peptidoglycan muramidase effector and a cognate immunity protein. Acta Crystallographica Section D: Biological Crystallography, 2013, 69, 1889-1900.	2.5	18
100	Loss of Culturability of Salmonella enterica subsp. enterica Serovar Typhimurium upon Cell-Cell Contact with Human Fecal Bacteria. Applied and Environmental Microbiology, 2013, 79, 3257-3263.	1.4	13
101	Structure of the Type VI Effector-Immunity Complex (Tae4-Tai4) Provides Novel Insights into the Inhibition Mechanism of the Effector by Its Immunity Protein*. Journal of Biological Chemistry, 2013, 288, 5928-5939.	1.6	65
102	Lytic Activity of the Vibrio cholerae Type VI Secretion Toxin VgrG-3 Is Inhibited by the Antitoxin TsaB. Journal of Biological Chemistry, 2013, 288, 7618-7625.	1.6	157
103	Distribution and diversity of bacterial secretion systems across metagenomic datasets. Environmental Microbiology Reports, 2013, 5, 117-126.	1.0	54
104	Peptidoglycan at its peaks: how chromatographic analyses can reveal bacterial cell wall structure and assembly. Molecular Microbiology, 2013, 89, 1-13.	1.2	104
105	Hcp and VgrG1 are secreted components of theHelicobacter hepaticustype VI secretion system and VgrG1 increases the bacterial colitogenic potential. Cellular Microbiology, 2013, 15, 992-1011.	1.1	28
106	Structural Insights on the Bacteriolytic and Self-protection Mechanism of Muramidase Effector Tse3 in Pseudomonas aeruginosa. Journal of Biological Chemistry, 2013, 288, 30607-30613.	1.6	25
107	Identification of T6SS-dependent effector and immunity proteins by Tn-seq in <i>Vibrio cholerae</i> . Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 2623-2628.	3.3	260
108	PelA Deacetylase Activity Is Required for Pel Polysaccharide Synthesis in Pseudomonas aeruginosa. Journal of Bacteriology, 2013, 195, 2329-2339.	1.0	90
109	Promoter Swapping Unveils the Role of the Citrobacter rodentium CTS1 Type VI Secretion System in Interbacterial Competition. Applied and Environmental Microbiology, 2013, 79, 32-38.	1.4	56
110	Rediscovery of the Microbial World in Microbial Ecology. Microbes and Environments, 2013, 28, 281-284.	0.7	2

		15	6
# 111	ARTICLE Erregerspektrum des chronischen Ulcus cruris: Ergebnisse einer multizentrischen Untersuchung dermatologischer Wundzentren im regionalen Vergleich. JDDG - Journal of the German Society of Dermatology, 2013, 11, 1057-1064.	lF 0.4	CITATIONS
112	Bacteriological pathogen spectrum of chronic leg ulcers: Results of a multicenter trial in dermatologic wound care centers differentiated by regions. JDDG - Journal of the German Society of Dermatology, 2013, 11, 1057-1063.	0.4	36
113	Interspecies Interaction between <i>Pseudomonas aeruginosa</i> and Other Microorganisms. Microbes and Environments, 2013, 28, 13-24.	0.7	143
114	Vibrio parahaemolyticus Type VI Secretion System 1 Is Activated in Marine Conditions to Target Bacteria, and Is Differentially Regulated from System 2. PLoS ONE, 2013, 8, e61086.	1.1	185
115	Structural Insights into the Effector – Immunity System Tae4/Tai4 from Salmonella typhimurium. PLoS ONE, 2013, 8, e67362.	1.1	26
116	Divergent Control of Two Type VI Secretion Systems by RpoN in Pseudomonas aeruginosa. PLoS ONE, 2013, 8, e76030.	1.1	70
117	Burkholderia mallei and Burkholderia pseudomallei Cluster 1 Type VI Secretion System Gene Expression Is Negatively Regulated by Iron and Zinc. PLoS ONE, 2013, 8, e76767.	1.1	55
118	Dissection of the TssB-TssC Interface during Type VI Secretion Sheath Complex Formation. PLoS ONE, 2013, 8, e81074.	1.1	19
119	Subinhibitory Concentration of Kanamycin Induces the Pseudomonas aeruginosa type VI Secretion System. PLoS ONE, 2013, 8, e81132.	1.1	41
120	Expression of a Yersinia pseudotuberculosis Type VI Secretion System Is Responsive to Envelope Stresses through the OmpR Transcriptional Activator. PLoS ONE, 2013, 8, e66615.	1.1	52
121	Pathogenicity of and plant immunity to soft rot pectobacteria. Frontiers in Plant Science, 2013, 4, 191.	1.7	122
122	Murein Peptide Amidase MpaA. , 2013, , 1383-1385.		0
123	A Tale of Effectors; Their Secretory Mechanisms and Computational Discovery in Pathogenic, Non-Pathogenic and Commensal Microbes. Molecular Biology (Los Angeles, Calif), 2014, 03, .	0.0	2
124	Coevolution of the ATPase ClpV, the Sheath Proteins TssB and TssC, and the Accessory Protein TagJ/HsiE1 Distinguishes Type VI Secretion Classes. Journal of Biological Chemistry, 2014, 289, 33032-33043.	1.6	50
125	The VgrG Proteins Are "à la Carte―Delivery Systems for Bacterial Type VI Effectors. Journal of Biological Chemistry, 2014, 289, 17872-17884.	1.6	185
126	ChIP-Seq and RNA-Seq Reveal an AmrZ-Mediated Mechanism for Cyclic di-GMP Synthesis and Biofilm Development by Pseudomonas aeruginosa. PLoS Pathogens, 2014, 10, e1003984.	2.1	149
127	Transcriptional Frameshifting Rescues Citrobacter rodentium Type VI Secretion by the Production of Two Length Variants from the Prematurely Interrupted tssM Gene. PLoS Genetics, 2014, 10, e1004869.	1.5	14
128	VgrG-5 Is a Burkholderia Type VI Secretion System-Exported Protein Required for Multinucleated Giant Cell Formation and Virulence. Infection and Immunity, 2014, 82, 1445-1452.	1.0	139

#	Article	IF	CITATIONS
129	The structural basis of the Tle4–Tli4 complex reveals the self-protection mechanism of H2-T6SS in <i>Pseudomonas aeruginosa</i> . Acta Crystallographica Section D: Biological Crystallography, 2014, 70, 3233-3243.	2.5	28
130	Resident Microbiota Affect Bordetella pertussis Infectious Dose and Host Specificity. Journal of Infectious Diseases, 2014, 209, 913-921.	1.9	50
131	Structure and properties of the C-terminal β-helical domain of VgrG protein from Escherichia coli O157. Journal of Biochemistry, 2014, 155, 173-182.	0.9	28
132	Crystallization and preliminary X-ray study of TsiV3 from <i>Vibrio cholerae</i> . Acta Crystallographica Section F, Structural Biology Communications, 2014, 70, 335-338.	0.4	2
133	Structure of the type VI secretion phospholipase effector Tle1 provides insight into its hydrolysis and membrane targeting. Acta Crystallographica Section D: Biological Crystallography, 2014, 70, 2175-2185.	2.5	26
134	Purification, crystallization and preliminary X-ray crystallographic analysis of TssL fromVibrio cholerae. Acta Crystallographica Section F, Structural Biology Communications, 2014, 70, 1260-1263.	0.4	0
135	Perspectives on the microbial carbon pump with special reference to microbial respiration and ecosystem efficiency in large estuarine systems. Biogeosciences, 2014, 11, 3887-3898.	1.3	23
136	Peptidoglycan plasticity in bacteria: emerging variability of the murein sacculus and their associated biological functions. Current Opinion in Microbiology, 2014, 18, 46-53.	2.3	58
138	Genomic Features of a Bumble Bee Symbiont Reflect Its Host Environment. Applied and Environmental Microbiology, 2014, 80, 3793-3803.	1.4	53
139	Antibacterial effector/immunity systems: it's just the tip of the iceberg. Current Opinion in Microbiology, 2014, 17, 1-10.	2.3	78
140	Genetically distinct pathways guide effector export through the type <scp>VI</scp> secretion system. Molecular Microbiology, 2014, 92, 529-542.	1.2	192
141	Structural insights into the <scp>T</scp> 6 <scp>SS</scp> effector protein <scp>Tse</scp> 3 and the <scp>Tse</scp> 3a€" <scp>Tsi</scp> 3 complex from <scp><i>P</i></scp> <i>seudomonas aeruginosa</i> reveal a calciumâ€dependent membraneâ€binding mechanism. Molecular Microbiology, 2014, 92, 1092-1112.	1.2	29
142	Type VI secretion system effectors: poisons with a purpose. Nature Reviews Microbiology, 2014, 12, 137-148.	13.6	681
143	A View to a Kill: The Bacterial Type VI Secretion System. Cell Host and Microbe, 2014, 15, 9-21.	5.1	523
144	The Type VI Secretion System Spike Protein VgrG5 Mediates Membrane Fusion during Intercellular Spread by Pseudomallei Group Burkholderia Species. Infection and Immunity, 2014, 82, 1436-1444.	1.0	98
145	Homologues of insecticidal toxin complex genes within a genomic island in the marine bacteriumVibrio parahaemolyticus. FEMS Microbiology Letters, 2014, 361, 34-42.	0.7	14
146	Marker for type VI secretion system effectors. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 9271-9276.	3.3	165
147	Crystallization and preliminary X-ray analysis of two variants of the <i>Escherichia coli</i> O157 ParE2–PaaA2 toxin–antitoxin complex. Acta Crystallographica Section F, Structural Biology Communications, 2014, 70, 1284-1291.	0.4	2

#	Article	IF	CITATIONS
148	<i>BPSS1504</i> , a Cluster 1 Type VI Secretion Gene, Is Involved in Intracellular Survival and Virulence of Burkholderia pseudomallei. Infection and Immunity, 2014, 82, 2006-2015.	1.0	33
149	Synthetic microbial consortia: from systematic analysis to construction and applications. Chemical Society Reviews, 2014, 43, 6954-6981.	18.7	184
150	Agrobacterium tumefaciens Deploys a Superfamily of Type VI Secretion DNase Effectors as Weapons for Interbacterial Competition In Planta. Cell Host and Microbe, 2014, 16, 94-104.	5.1	295
151	A Type VI Secretion-Related Pathway in Bacteroidetes Mediates Interbacterial Antagonism. Cell Host and Microbe, 2014, 16, 227-236.	5.1	311
152	Extinction, coexistence, and localized patterns of a bacterial population with contact-dependent inhibition. BMC Systems Biology, 2014, 8, 23.	3.0	17
153	An <i>rhs</i> Gene Linked to the Second Type VI Secretion Cluster Is a Feature of the Pseudomonas aeruginosa Strain PA14. Journal of Bacteriology, 2014, 196, 800-810.	1.0	30
154	Two Functional Type VI Secretion Systems in Avian Pathogenic Escherichia coli Are Involved in Different Pathogenic Pathways. Infection and Immunity, 2014, 82, 3867-3879.	1.0	63
155	Cloning, purification, crystallization and preliminary X-ray studies of the putative type VI secretion immunity protein Tli5 (PA5088) fromPseudomonas aeruginosa. Acta Crystallographica Section F, Structural Biology Communications, 2014, 70, 903-905.	0.4	1
156	Comparative genomics of type VI secretion systems in strains of Pantoea ananatisfrom different environments. BMC Genomics, 2014, 15, 163.	1.2	74
157	VgrC, Tae, Tle, and beyond: the versatile arsenal of Type VI secretion effectors. Trends in Microbiology, 2014, 22, 498-507.	3.5	240
158	Structural basis for recognition of the type VI spike protein VgrG3 by a cognate immunity protein. FEBS Letters, 2014, 588, 1891-1898.	1.3	6
159	A Pseudomonas aeruginosa Type VI Secretion Phospholipase D Effector Targets Both Prokaryotic and Eukaryotic Cells. Cell Host and Microbe, 2014, 15, 600-610.	5.1	230
160	Ribosomally encoded antibacterial proteins and peptides from <i>Pseudomonas</i> . FEMS Microbiology Reviews, 2014, 38, 523-568.	3.9	188
161	The ABCs and 123s of Bacterial Secretion Systems in Plant Pathogenesis. Annual Review of Phytopathology, 2014, 52, 317-345.	3.5	77
162	Correlated cryogenic photoactivated localization microscopy and cryo-electron tomography. Nature Methods, 2014, 11, 737-739.	9.0	201
163	Molecular weaponry: diverse effectors delivered by the Type VI secretion system. Cellular Microbiology, 2015, 17, 1742-1751.	1.1	150
164	Bacterial Cell Wall: Morphology and Biochemistry. , 2015, , 221-264.		3
165	Metabolism and Pathogenicity of <i>Pseudomonas aeruginosa</i> Infections in the Lungs of Individuals with Cystic Fibrosis. Microbiology Spectrum, 2015, 3, .	1.2	26

ARTICLE IF CITATIONS # Exploring the genomic traits of fungus-feeding bacterial genus Collimonas. BMC Genomics, 2015, 16, 166 1.2 57 1103. Established Microbial Colonies Can Survive Type VI Secretion Assault. PLoS Computational Biology, 1.5 64 2015, 11, e1004520. Pseudomonas aeruginosa DesB Promotes Staphylococcus aureus Growth Inhibition in Coculture by 168 1.1 14 Controlling the Synthesis of HAQs. PLoS ONE, 2015, 10, e0134624. Type VI Secretion System Transports Zn2+ to Combat Multiple Stresses and Host Immunity. PLoS 169 Pathogens, 2015, 11, e1005020. Type VI Secretion System Toxins Horizontally Shared between Marine Bacteria. PLoS Pathogens, 2015, 11, 170 2.1 71 e1005128. Comparative Genomic Hybridization Analysis of Yersinia enterocolitica and Yersinia 171 pseudotuberculosisIdentifies Genetic Traits to Elucidate Their Different Ecologies. BioMed Research International, 2015, 2015, 1-12. 172 Mobile genetic elements and pathogenicity islands encoding bacterial toxins., 2015, , 40-76. 4 News and views on protein secretion systems., 2015, , 77-108. 174 Vibrio parahaemolyticus virulence determinants., 2015, , 230-260. 10 Pseudomonas Strains that Exert Biocontrol of Plant Pathogens., 2015, , 121-172. Two Proteins Form a Heteromeric Bacterial Self-Recognition Complex in Which Variable Subdomains 176 1.8 33 Determine Allele-Restricted Binding. MBio, 2015, 6, e00251. Composition, function, and regulation of T6SS in Pseudomonas aeruginosa. Microbiological Research, 178 2.5 108 2015, 172, 19-25. Interstrain Interactions between Bacteria Isolated from Vacuum-Packaged Refrigerated Beef. Applied 179 1.4 24 and Environmental Microbiology, 2015, 81, 2753-2761. <scp>SecReT6</scp>: a webâ€based resource for type <scp>VI</scp> secretion systems found in bacteria. 180 1.8 170 Environmental Microbiology, 2015, 17, 2196-2202. Peptidoglycan., 2015, , 105-124. Pseudomonas aeruginosa., 2015, , 753-767. 182 36 Bacterial killing via a type IV secretion system. Nature Communications, 2015, 6, 6453. 5.8

#	Article	IF	CITATIONS
184	Against friend and foe: Type 6 effectors in plant-associated bacteria. Journal of Microbiology, 2015, 53, 201-208.	1.3	61
185	Intracellular survival of <i>Burkholderia cepacia</i> complex in phagocytic cells. Canadian Journal of Microbiology, 2015, 61, 607-615.	0.8	46
186	Within-host competitive interactions as a mechanism for the maintenance of parasite diversity. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370, 20140301.	1.8	74
187	Identification of divergent type VI secretion effectors using a conserved chaperone domain. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 9106-9111.	3.3	146
188	Comparative genomics of Roseobacter clade bacteria isolated from the accessory nidamental gland of Euprymna scolopes. Frontiers in Microbiology, 2015, 6, 123.	1.5	37
189	Biogenesis and structure of a type VI secretion membrane core complex. Nature, 2015, 523, 555-560.	13.7	241
190	A multidrug resistance plasmid contains the molecular switch for type VI secretion in <i>Acinetobacter baumannii</i> . Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 9442-9447.	3.3	170
191	H-NS Silencing of the Salmonella Pathogenicity Island 6-Encoded Type VI Secretion System Limits Salmonella enterica Serovar Typhimurium Interbacterial Killing. Infection and Immunity, 2015, 83, 2738-2750.	1.0	60
192	Transcriptome analysis of Acidovorax avenae subsp. avenae cultivated in vivo and co-culture with Burkholderia seminalis. Scientific Reports, 2015, 4, 5698.	1.6	14
193	An Interbacterial NAD(P)+ Glycohydrolase Toxin Requires Elongation Factor Tu for Delivery to Target Cells. Cell, 2015, 163, 607-619.	13.5	203
194	Tyrosine glycosylation of Rho by Yersinia toxin impairs blastomere cell behaviour in zebrafish embryos. Nature Communications, 2015, 6, 7807.	5.8	37
195	<i>Pantoea ananatis</i> Utilizes a Type VI Secretion System for Pathogenesis and Bacterial Competition. Molecular Plant-Microbe Interactions, 2015, 28, 420-431.	1.4	86
196	Evolution of Carbapenem-Resistant Acinetobacter baumannii Revealed through Whole-Genome Sequencing and Comparative Genomic Analysis. Antimicrobial Agents and Chemotherapy, 2015, 59, 1168-1176.	1.4	56
197	Crystal structure of the bacterial type VI secretion system component TssL from Vibrio cholerae. Journal of Microbiology, 2015, 53, 32-37.	1.3	14
198	Transferred interbacterial antagonism genes augment eukaryotic innate immune function. Nature, 2015, 518, 98-101.	13.7	82
199	Major Proteomic Changes Associated with Amyloid-Induced Biofilm Formation in <i>Pseudomonas aeruginosa</i> PAO1. Journal of Proteome Research, 2015, 14, 72-81.	1.8	34
200	Bacterial Secretion Systems: An Overview. , 0, , 213-239.		50
201	Mechanism and Function of Type IV Secretion During Infection of the Human Host. , 0, , 265-303.		0

#	Article	IF	Citations
202	Evolution of Bacterial Pathogens Within the Human Host. , 0, , 1-13.		2
203	The Versatile Type VI Secretion System. , 2016, , 337-356.		4
204	Francisella tularensis - Immune Cell Activator, Suppressor, or Stealthy Evader: The Evolving View from the Petri Dish. Journal of Bioterrorism & Biodefense, 2016, 7, .	0.1	3
205	The T6SSs of Pseudomonas aeruginosa Strain PAO1 and Their Effectors: Beyond Bacterial-Cell Targeting. Frontiers in Cellular and Infection Microbiology, 2016, 6, 61.	1.8	99
206	Polynucleotide Phosphorylase Regulates Multiple Virulence Factors and the Stabilities of Small RNAs RsmY/Z in Pseudomonas aeruginosa. Frontiers in Microbiology, 2016, 7, 247.	1.5	29
207	Comparison of Microbial Communities Isolated from Feces of Asymptomatic Salmonella-Shedding and Non-Salmonella Shedding Dairy Cows. Frontiers in Microbiology, 2016, 7, 691.	1.5	7
208	Chemometric Analysis of Bacterial Peptidoglycan Reveals Atypical Modifications That Empower the Cell Wall against Predatory Enzymes and Fly Innate Immunity. Journal of the American Chemical Society, 2016, 138, 9193-9204.	6.6	56
209	The Type VI Secretion System in <i>Escherichia coli</i> and Related Species. EcoSal Plus, 2016, 7, .	2.1	91
210	The Versatile Type VI Secretion System. Microbiology Spectrum, 2016, 4, .	1.2	89
211	Bacterial Secretion Systems: An Overview. Microbiology Spectrum, 2016, 4, .	1.2	752
212	Mechanism and Function of Type IV Secretion During Infection of the Human Host. Microbiology Spectrum, 2016, 4, .	1.2	57
213	Expression, secretion and bactericidal activity of type VI secretion system in Vibrio anguillarum. Archives of Microbiology, 2016, 198, 751-760.	1.0	18
214	The Pseudomonas aeruginosa Type VI Secretion PGAP1-like Effector Induces Host Autophagy by Activating Endoplasmic Reticulum Stress. Cell Reports, 2016, 16, 1502-1509.	2.9	93
215	The Self-Identity Protein IdsD Is Communicated between Cells in Swarming Proteus mirabilis Colonies. Journal of Bacteriology, 2016, 198, 3278-3286.	1.0	42
216	The outer membrane phospholipase A is essential for membrane integrity and type III secretion in <i>Shigella flexneri</i> . Open Biology, 2016, 6, 160073.	1.5	10
217	Temperature-regulated expression of type VI secretion systems in fish pathogen <i>Pseudomonas plecoglossicida</i> revealed by comparative secretome analysis. FEMS Microbiology Letters, 2016, 363, fnw261.	0.7	35
218	Structural analysis of <i>Pseudomonas aeruginosa</i> H3â€T6SS immunity proteins. FEBS Letters, 2016, 590, 2787-2796.	1.3	9
219	Structure and specificity of the Type VI secretion system ClpV-TssC interaction in enteroaggregative Escherichia coli. Scientific Reports, 2016, 6, 34405.	1.6	31

#	Article	IF	CITATIONS
220	Genetic Dissection of the Type VI Secretion System in <i>Acinetobacter</i> and Identification of a Novel Peptidoglycan Hydrolase, TagX, Required for Its Biogenesis. MBio, 2016, 7, .	1.8	110
221	Evolution of Bacterial Pathogens Within the Human Host. Microbiology Spectrum, 2016, 4, .	1.2	35
222	Cystic fibrosis lung environment and Pseudomonas aeruginosa infection. BMC Pulmonary Medicine, 2016, 16, 174.	0.8	268
223	TssA forms a gp6â€like ring attached to the type <scp>VI</scp> secretion sheath. EMBO Journal, 2016, 35, 1613-1627.	3.5	84
224	Investigating the Relatedness of Enteroinvasive Escherichia coli to Other E. coli and Shigella Isolates by Using Comparative Genomics. Infection and Immunity, 2016, 84, 2362-2371.	1.0	39
226	In Silico Comparative Analysis of Type VI Secretion Systems in Pseudomonas putida LS46. , 2016, , 257-279.		0
227	VgrG C terminus confers the type VI effector transport specificity and is required for binding with PAAR and adaptor–effector complex. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E3931-40.	3.3	180
228	Multifaceted Interfaces of Bacterial Competition. Journal of Bacteriology, 2016, 198, 2145-2155.	1.0	208
229	Chelation of Membrane-Bound Cations by Extracellular DNA Activates the Type VI Secretion System in Pseudomonas aeruginosa. Infection and Immunity, 2016, 84, 2355-2361.	1.0	29
230	MIX and match: mobile T6SS MIX-effectors enhance bacterial fitness. Mobile Genetic Elements, 2016, 6, e1123796.	1.8	8
231	The Structure of the Toxin and Type Six Secretion System Substrate Tse2 in Complex with Its Immunity Protein. Structure, 2016, 24, 277-284.	1.6	25
232	<i>Bacteroides fragilis</i> type VI secretion systems use novel effector and immunity proteins to antagonize human gut Bacteroidales species. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 3627-3632.	3.3	176
233	The structure of VgrG1 from <i>Pseudomonas aeruginosa</i> , the needle tip of the bacterial type VI secretion system. Acta Crystallographica Section D: Structural Biology, 2016, 72, 22-33.	1.1	37
234	Aim, Load, Fire: The Type VI Secretion System, a Bacterial Nanoweapon. Trends in Microbiology, 2016, 24, 51-62.	3.5	366
235	The Hcp proteins fused with diverse extended-toxin domains represent a novel pattern of antibacterial effectors in type VI secretion systems. Virulence, 2017, 8, 1189-1202.	1.8	120
236	The Secrets of Acinetobacter Secretion. Trends in Microbiology, 2017, 25, 532-545.	3.5	113
237	From Striking Out to Striking Gold: Discovering that Type VI Secretion Targets Bacteria. Cell Host and Microbe, 2017, 21, 286-289.	5.1	22
238	ZntR positively regulates T6SS4 expression in Yersinia pseudotuberculosis. Journal of Microbiology, 2017, 55, 448-456.	1.3	20

#	Article	lF	CITATIONS
239	Manganese scavenging and oxidative stress response mediated by type VI secretion system in <i>Burkholderia thailandensis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E2233-E2242.	3.3	185
240	Acute Hepatopancreatic Necrosis Disease-Causing Vibrio parahaemolyticus Strains Maintain an Antibacterial Type VI Secretion System with Versatile Effector Repertoires. Applied and Environmental Microbiology, 2017, 83, .	1.4	88
241	Microbiological features and clinical impact of the type VI secretion system (T6SS) in <i>Acinetobacter baumannii</i> isolates causing bacteremia. Virulence, 2017, 8, 1378-1389.	1.8	57
242	Global transcriptome responses including small RNAs during mixedâ€species interactions with methicillinâ€resistant <i>Staphylococcus aureus</i> and <i>Pseudomonas aeruginosa</i> . MicrobiologyOpen, 2017, 6, e00427.	1.2	33
243	Albumin Inhibits Pseudomonas aeruginosa Quorum Sensing and Alters Polymicrobial Interactions. Infection and Immunity, 2017, 85, .	1.0	56
244	Isolated Pseudomonas aeruginosa strain VIH2 and antagonistic properties against Ralstonia solanacearum. Microbial Pathogenesis, 2017, 111, 519-526.	1.3	9
245	A Transcriptional Regulatory Mechanism Finely Tunes the Firing of Type VI Secretion System in Response to Bacterial Enemies. MBio, 2017, 8, .	1.8	30
246	The intestinal microbiota: Antibiotics, colonization resistance, and enteric pathogens. Immunological Reviews, 2017, 279, 90-105.	2.8	490
247	Type VI secretion system MIXâ€effectors carry both antibacterial and antiâ€eukaryotic activities. EMBO Reports, 2017, 18, 1978-1990.	2.0	45
248	Characterization of Extracellular Polymeric Substances Produced by <i>Pseudomonas fragi</i> Under Air and Modified Atmosphere Packaging. Journal of Food Science, 2017, 82, 2151-2157.	1.5	14
249	Structural and functional insights into the periplasmic detector domain of the GacS histidine kinase controlling biofilm formation in Pseudomonas aeruginosa. Scientific Reports, 2017, 7, 11262.	1.6	15
250	Structural and SAXS analysis of Tle5–Tli5 complex reveals a novel inhibition mechanism of H2â€T6SS in <i>Pseudomonas aeruginosa</i> . Protein Science, 2017, 26, 2083-2091.	3.1	6
251	The type VI secretion system sheath assembles at the end distal from the membrane anchor. Nature Communications, 2017, 8, 16088.	5.8	49
252	Bacterial Protein Secretion Systems. Methods in Molecular Biology, 2017, , .	0.4	5
253	Quantitative Determination of Anti-bacterial Activity During Bacterial Co-culture. Methods in Molecular Biology, 2017, 1615, 517-524.	0.4	2
254	A mutagenesis-based approach identifies amino acids in the N-terminal part of <i>Francisella tularensis</i> IglE that critically control Type VI system-mediated secretion. Virulence, 2017, 8, 821-847.	1.8	18
255	The type VII secretion system of Staphylococcus aureus secretes a nuclease toxin that targets competitor bacteria. Nature Microbiology, 2017, 2, 16183.	5.9	206
256	Microbe–microbe interactions trigger Mn(II)-oxidizing gene expression. ISME Journal, 2017, 11, 67-77.	4.4	39

ARTICLE IF CITATIONS # PAARâ€Rhs proteins harbor various Câ€terminal toxins to diversify the antibacterial pathways of type VI 257 1.8 105 secretion systems. Environmental Microbiology, 2017, 19, 345-360. The Enigmatic Esx Proteins: Looking Beyond Mycobacteria. Trends in Microbiology, 2017, 25, 192-204. 3.5 109 Prediction of post translation modifications at the contact site between Anaplasma phagocytophilum 259 and human host during autophagosome induction using a bioinformatic approach. Molecular and 0.9 0 Cellular Probes, 2017, 31, 76-84. Effect of Environmental Factors on Intra-Specific Inhibitory Activity of Carnobacterium maltaromaticum. Microorganisms, 2017, 5, 59. Type VI Secretion Effectors: Methodologies and Biology. Frontiers in Cellular and Infection 261 1.8 116 Microbiology, 2017, 7, 254. Structure-Based Prototype Peptides Targeting the Pseudomonas aeruginosa Type VI Secretion System Effector as a Novel Antibacterial Strategy. Frontiers in Cellular and Infection Microbiology, 2017, 7, 1.8 411. Identification and Characterization of an Antibacterial Type VI Secretion System in the 263 Carbapenem-Resistant Strain Klebsiella pneumoniae HS11286. Frontiers in Cellular and Infection 1.8 58 Microbiology, 2017, 7, 442. Complete Genome Sequence Analysis of Enterobacter sp. SA187, a Plant Multi-Stress Tolerance 264 1.5 Promoting Endophytic Bacterium. Frontiers in Microbiology, 2017, 8, 2023. Structure of the Neisseria Adhesin Complex Protein (ACP) and its role as a novel lysozyme inhibitor. 265 2.1 23 PLoS Pathogens, 2017, 13, e1006448. Infectious polymorphic toxins delivered by outer membrane exchange discriminate kin in myxobacteria. 2.8 ELife, 2017, 6, . Crystal structure of the putative cytoplasmic protein STM0279 (Hcp2) from <i>Salmonella typhimurium </i>. Acta Crystallographica Section F, Structural Biology Communications, 2017, 73, 267 0.4 5 463-468. Diverse toxic effectors are harbored by vgrG islands for interbacterial antagonism in type VI 268 1.1 secretion system. Biochimica Et Biophysica Acta - General Subjects, 2018, 1862, 1635-1643. Three Hcp homologs with divergent extended loop regions exhibit different functions in avian 269 3.0 20 pathogenic <i>Escherichia coli</i>. Emerging Microbes and Infections, 2018, 7, 1-13. A Biofilm Matrix-Associated Protease Inhibitor Protects Pseudomonas aeruginosa from Proteolytic 270 1.8 63 Attack. MBio, 2018, 9, . Conditional toxicity and synergy drive diversity among antibacterial effectors. Nature Microbiology, 271 5.9 110 2018, 3, 440-446. Tracking Vibrio cholerae Cell-Cell Interactions during Infection Reveals Bacterial Population 5.1 Dynamics within Intestinal Microenvironments. Cell Host and Microbe, 2018, 23, 274-281.e2. Antibacterial Weapons: Targeted Destruction in the Microbiota. Trends in Microbiology, 2018, 26, 273 3.5106 329-338. New facet of non-O1/non-O139 Vibrio cholerae hemolysin A: a competitive factor in the ecological 274 1.3 niche. FEMS Microbiology Ecology, 2018, 94, .

#	Article	IF	CITATIONS
275	A Proposed Chaperone of the Bacterial Type VI Secretion System Functions To Constrain a Self-Identity Protein. Journal of Bacteriology, 2018, 200, .	1.0	24
276	Diverse NADase effector families mediate interbacterial antagonism via the type VI secretion system. Journal of Biological Chemistry, 2018, 293, 1504-1514.	1.6	100
278	The Antibacterial and Anti-Eukaryotic Type VI Secretion System MIX-Effector Repertoire in Vibrionaceae. Marine Drugs, 2018, 16, 433.	2.2	32
279	The Roles of Two Type VI Secretion Systems in Cronobacter sakazakii ATCC 12868. Frontiers in Microbiology, 2018, 9, 2499.	1.5	29
280	Type VI secretion system baseplate. Nature Microbiology, 2018, 3, 1330-1331.	5.9	1
281	Bacterial Cell Wall Precursor Phosphatase Assays Using Thin-layer Chromatography (TLC) and High Pressure Liquid Chromatography (HPLC). Bio-protocol, 2018, 8, e2761.	0.2	1
282	Biogenesis and structure of a type VI secretion baseplate. Nature Microbiology, 2018, 3, 1404-1416.	5.9	76
283	Bifunctional Immunity Proteins Protect Bacteria against FtsZ-Targeting ADP-Ribosylating Toxins. Cell, 2018, 175, 1380-1392.e14.	13.5	109
284	The Virulence Effect of CpxRA in Citrobacter rodentium Is Independent of the Auxiliary Proteins NlpE and CpxP. Frontiers in Cellular and Infection Microbiology, 2018, 8, 320.	1.8	11
285	Bacterial antagonism in host-associated microbial communities. Science, 2018, 361, .	6.0	236
286	Molecular Basis for Immunity Protein Recognition of a Type VII Secretion System Exported Antibacterial Toxin. Journal of Molecular Biology, 2018, 430, 4344-4358.	2.0	29
287	Mechanism of loading and translocation of type VI secretion system effector Tse6. Nature Microbiology, 2018, 3, 1142-1152.	5.9	88
288	Bacterial Quorum Sensing and Microbial Community Interactions. MBio, 2018, 9, .	1.8	364
289	Indigenous Pseudomonas spp. Strains from the Olive (Olea europaea L.) Rhizosphere as Effective Biocontrol Agents against Verticillium dahliae: From the Host Roots to the Bacterial Genomes. Frontiers in Microbiology, 2018, 9, 277.	1.5	79
290	Competitive Interactions Between Incompatible Mutants of the Social Bacterium Myxococcus xanthus DK1622. Frontiers in Microbiology, 2018, 9, 1200.	1.5	10
291	Microbial Interactions With Dissolved Organic Matter Drive Carbon Dynamics and Community Succession. Frontiers in Microbiology, 2018, 9, 1234.	1.5	107
292	Using Cryo-EM to Investigate Bacterial Secretion Systems. Annual Review of Microbiology, 2018, 72, 231-254.	2.9	18
293	Effector–Immunity Pairs Provide the T6SS Nanomachine its Offensive and Defensive Capabilities. Molecules, 2018, 23, 1009.	1.7	69

#	Article	IF	CITATIONS
294	The Agrobacterium Type VI Secretion System: A Contractile Nanomachine for Interbacterial Competition. Current Topics in Microbiology and Immunology, 2018, 418, 215-231.	0.7	11
295	Identification of Novel Acinetobacter baumannii Type VI Secretion System Antibacterial Effector and Immunity Pairs. Infection and Immunity, 2018, 86, .	1.0	88
296	A bipartite periplasmic receptor–diguanylate cyclase pair (XAC2383–XAC2382) in the bacterium Xanthomonas citri. Journal of Biological Chemistry, 2018, 293, 10767-10781.	1.6	2
297	Genomic insights into the broad antifungal activity, plant-probiotic properties, and their regulation, in Pseudomonas donghuensis strain SVBP6. PLoS ONE, 2018, 13, e0194088.	1.1	42
298	Physiological Heterogeneity Triggers Sibling Conflict Mediated by the Type VI Secretion System in an Aggregative Multicellular Bacterium. MBio, 2018, 9, .	1.8	33
299	Interbacterial mechanisms of colonization resistance and the strategies pathogens use to overcome them. Mucosal Immunology, 2019, 12, 1-9.	2.7	177
300	A modular effector with a DNase domain and a marker for T6SS substrates. Nature Communications, 2019, 10, 3595.	5.8	85
301	Analysis of Vibrio cholerae genomes identifies new type VI secretion system gene clusters. Genome Biology, 2019, 20, 163.	3.8	45
302	The Rich Tapestry of Bacterial Protein Translocation Systems. Protein Journal, 2019, 38, 389-408.	0.7	42
303	Baseplate Component TssK and Spatio-Temporal Assembly of T6SS in Pseudomonas aeruginosa. Frontiers in Microbiology, 2019, 10, 1615.	1.5	10
304	Delivery of the Pseudomonas aeruginosa Phospholipase Effectors PldA and PldB in a VgrG- and H2-T6SS-Dependent Manner. Frontiers in Microbiology, 2019, 10, 1718.	1.5	47
305	Structure and Activity of the Type VI Secretion System. Microbiology Spectrum, 2019, 7, .	1.2	95
306	Confirmed and Potential Roles of Bacterial T6SSs in the Intestinal Ecosystem. Frontiers in Microbiology, 2019, 10, 1484.	1.5	42
307	Systematic Identification and Analysis of Acinetobacter baumannii Type VI Secretion System Effector and Immunity Components. Frontiers in Microbiology, 2019, 10, 2440.	1.5	32
308	The Impact of Type VI Secretion System, Bacteriocins and Antibiotics on Bacterial Competition of Pectobacterium carotovorum subsp. brasiliense and the Regulation of Carbapenem Biosynthesis by Iron and the Ferric-Uptake Regulator. Frontiers in Microbiology, 2019, 10, 2379.	1.5	23
309	Type VI secretion system: a modular toolkit for bacterial dominance. Future Microbiology, 2019, 14, 1451-1463.	1.0	47
310	Burkholderia cenocepacia utilizes a type VI secretion system for bacterial competition. MicrobiologyOpen, 2019, 8, e774.	1.2	36
311	The Pseudomonas aeruginosa T6SS Delivers a Periplasmic Toxin that Disrupts Bacterial Cell Morphology. Cell Reports, 2019, 29, 187-201.e7.	2.9	82

#	Article	IF	CITATIONS
312	Population dynamics and transcriptomic responses of Pseudomonas aeruginosa in a complex laboratory microbial community. Npj Biofilms and Microbiomes, 2019, 5, 1.	2.9	60
313	Characterization of multiple type-VI secretion system (T6SS) VgrG proteins in the pathogenicity and antibacterial activity of porcine extra-intestinal pathogenic <i>Escherichia coli</i> . Virulence, 2019, 10, 118-132.	1.8	32
314	<i>Edwardsiella piscicida</i> : A versatile emerging pathogen of fish. Virulence, 2019, 10, 555-567.	1.8	95
315	Whole Genome Sequencing-Based Comparison of Food Isolates of Cronobacter sakazakii. Frontiers in Microbiology, 2019, 10, 1464.	1.5	28
316	Comparative genomic analysis of Pectobacterium carotovorum subsp. brasiliense SX309 provides novel insights into its genetic and phenotypic features. BMC Genomics, 2019, 20, 486.	1.2	29
317	The CpxR regulates type VI secretion system 2 expression and facilitates the interbacterial competition activity and virulence of avian pathogenic Escherichia coli. Veterinary Research, 2019, 50, 40.	1.1	15
318	The advance of assembly of exopolysaccharide Psl biosynthesis machinery inPseudomonas aeruginosa. MicrobiologyOpen, 2019, 8, e857.	1.2	15
319	Cyclic diâ€GMP inactivates T6SS and T4SS activity in <i>Agrobacterium tumefaciens</i> . Molecular Microbiology, 2019, 112, 632-648.	1.2	15
320	Pathogen Colonization Resistance in the Gut and Its Manipulation for Improved Health. American Journal of Pathology, 2019, 189, 1300-1310.	1.9	31
321	Relationship Between Quorum Sensing and Secretion Systems. Frontiers in Microbiology, 2019, 10, 1100.	1.5	176
322	Bacteria-Killing Type IV Secretion Systems. Frontiers in Microbiology, 2019, 10, 1078.	1.5	108
323	The Type VI secretion system of Rhizobium etli Mim1 has a positive effect in symbiosis. FEMS Microbiology Ecology, 2019, 95, .	1.3	35
324	The regulatory network of <scp><i>Vibrio parahaemolyticus</i></scp> type VI secretion system 1. Environmental Microbiology, 2019, 21, 2248-2260.	1.8	29
325	Structural characterization of the Imm52 family protein TsiT in Pseudomonas aeruginosa. Protein Science, 2019, 28, 971-975.	3.1	2
326	<i>In situ</i> and highâ€resolution cryo― <scp>EM</scp> structure of a bacterial type <scp>VI</scp> secretion system membrane complex. EMBO Journal, 2019, 38, .	3.5	72
327	Bidirectional contraction of a type six secretion system. Nature Communications, 2019, 10, 1565.	5.8	19
328	Polymicrobial interaction and biofilms between Staphylococcus aureus and Pseudomonas aeruginosa: an underestimated concern in food safety. Current Opinion in Food Science, 2019, 26, 57-64.	4.1	60
329	Crystal structure of the type VI immunity protein Tdi1 (Atu4351) from <i>Agrobacterium tumefaciens</i> . Acta Crystallographica Section F, Structural Biology Communications, 2019, 75, 153-158.	0.4	1

	CITATION R	EPORT	
Article		IF	CITATIONS
Structure and Activity of the Type VI Secretion System. , 0, , 329-342.			7
Self-identity barcodes encoded by six expansive polymorphic toxin families discriminate myxobacteria. Proceedings of the National Academy of Sciences of the United States c 116, 24808-24818.	e kin in f America, 2019,	3.3	21
Kin discrimination and outer membrane exchange in Myxococcus xanthus: Experimenta natural population. PLoS ONE, 2019, 14, e0224817.	al analysis of a	1.1	8
A Pseudomonas aeruginosa type VI secretion system regulated by CueR facilitates cop PLoS Pathogens, 2019, 15, e1008198.	per acquisition.	2.1	78
Transcriptome and Comparative Genomics Analyses Reveal New Functional Insights on Determinants of Pathogenesis and Interbacterial Competition in <i>Pectobacterium<i>Dickeya</i> spp. Applied and Environmental Microbiology, 2019, 85, .</i>	Key > and	1.4	61
Differential modes of crosslinking establish spatially distinct regions of peptidoglycan i Caulobacter crescentus. Molecular Microbiology, 2019, 111, 995-1008.	n	1.2	19
Enlisting commensal microbes to resist antibiotic-resistant pathogens. Journal of Exper Medicine, 2019, 216, 10-19.	imental	4.2	51
The stringent response factor, RelA, positively regulates T6SS4 expression through the pathway in Yersinia pseudotuberculosis. Microbiological Research, 2019, 220, 32-41.	RovM/RovA	2.5	8
An account of <i>in silico</i> identification tools of secreted effector proteins in bacteri challenges. Briefings in Bioinformatics, 2019, 20, 110-129.	a and future	3.2	22
Type VI secretion system is not required for virulence on rice but for inter-bacterial com Xanthomonas oryzae pv. oryzicola. Research in Microbiology, 2020, 171, 64-73.	petition in	1.0	13
Causalities of war: The connection between type VI secretion system and microbiota. C Microbiology, 2020, 22, e13153.	Cellular	1.1	45
Early development of the skin microbiome: therapeutic opportunities. Pediatric Researd 731-737.	ch, 2021, 90,	1.1	14
Genomic divergence between Dickeya zeae strain EC2 isolated from rice and previously strains, suggests a different rice foot rot strain. PLoS ONE, 2020, 15, e0240908.	y identified	1.1	5

344	Polymorphic Toxins and Their Immunity Proteins: Diversity, Evolution, and Mechanisms of Delivery. Annual Review of Microbiology, 2020, 74, 497-520.	2.9	68
345	Epidemiology and molecular characteristics of the type VI secretion system in Klebsiella pneumoniae isolated from bloodstream infections. Journal of Clinical Laboratory Analysis, 2020, 34, e23459.	0.9	9
346	Ticks Resist Skin Commensals with Immune Factor of Bacterial Origin. Cell, 2020, 183, 1562-1571.e12.	13.5	31
347	Host Adaptation Predisposes Pseudomonas aeruginosa to Type VI Secretion System-Mediated Predation by the Burkholderia cepacia Complex. Cell Host and Microbe, 2020, 28, 534-547.e3.	5.1	34

The Central Role of Interbacterial Antagonism in Bacterial Life. Current Biology, 2020, 30, R1203-R1214.

#

330

332

334

336

338

340

341

342

343

		CITATION RE	PORT	
#	Article		IF	CITATIONS
348	Identification of A Putative T6SS Immunity Islet in Salmonella Typhi. Pathogens, 2020,	9, 559.	1.2	7
349	How Food Affects Colonization Resistance Against Enteropathogenic Bacteria. Annual Microbiology, 2020, 74, 787-813.	Review of	2.9	27
350	Peptidoglycan editing provides immunity to <i>Acinetobacter baumannii</i> during ba Science Advances, 2020, 6, eabb5614.	icterial warfare.	4.7	44
351	The impaired quorum sensing response of Pseudomonas aeruginosa MexABâ€OprM ef overexpressing mutants is not due to nonâ€physiological efflux of 3â€oxoâ€C12â€HS Microbiology, 2020, 22, 5167-5188.	flux pump L. Environmental	1.8	24
352	Structural insights into Pseudomonas aeruginosa Type six secretion system exported e Journal of Structural Biology, 2020, 212, 107651.	effector 8.	1.3	3
353	Interbacterial competition and antiâ€predatory behaviour of environmental <i>Vibrio ostrains. Environmental Microbiology, 2020, 22, 4485-4504.</i>	:holerae	1.8	34
354	To resist and persist: Important factors in the pathogenesis of Bacteroides fragilis. Mic Pathogenesis, 2020, 149, 104506.	robial	1.3	36
355	Comparative Analysis of the Core Proteomes among the Pseudomonas Major Evolutio Reveals Species-Specific Adaptations for Pseudomonas aeruginosa and Pseudomonas Diversity, 2020, 12, 289.	nary Groups chlororaphis.	0.7	37
356	The Î ² -encapsulation cage of rearrangement hotspot (Rhs) effectors is required for typ Proceedings of the National Academy of Sciences of the United States of America, 202 33540-33548.	e VI secretion. 20, 117,	3.3	32
357	Identification of type VI secretion system toxic effectors using adaptors as markers. Co and Structural Biotechnology Journal, 2020, 18, 3723-3733.	omputational	1.9	10
358	Crosstalks Between Gut Microbiota and Vibrio Cholerae. Frontiers in Cellular and Infec Microbiology, 2020, 10, 582554.	tion	1.8	19
359	Characterization of the <i>Pseudomonas aeruginosa</i> T6SS PldB immunity proteins F and PA5088 explains a novel stockpiling mechanism. Acta Crystallographica Section F, Biology Communications, 2020, 76, 222-227.		0.4	3
360	Targeted Depletion of Bacteria from Mixed Populations by Programmable Adhesion wir Competitor Cells. Cell Host and Microbe, 2020, 28, 313-321.e6.	th Antagonistic	5.1	62
361	Differential Cellular Response to Translocated Toxic Effectors and Physical Penetration Secretion System. Cell Reports, 2020, 31, 107766.	by the Type VI	2.9	51
362	The Photorhabdus Virulence Cassettes RRSP-Like Effector Interacts With Cyclin-Depen Causes Mitotic Defects in Mammalian Cells. Frontiers in Microbiology, 2020, 11, 366.	dent Kinase 1 and	1.5	8
363	A Family of T6SS Antibacterial Effectors Related to I,d-Transpeptidases Targets the Pep Reports, 2020, 31, 107813.	tidoglycan. Cell	2.9	39
364	Insights on the genetic features of endometrial pathogenic Escherichia coli strains from companion animals: Improving the knowledge about pathogenesis. Infection, Genetics 2020, 85, 104453.		1.0	9
365	Manipulating the type VI secretion system spike to shuttle passenger proteins. PLoS C e0228941.	NE, 2020, 15,	1.1	18

#	Article	IF	CITATIONS
366	Contact-Dependent Interbacterial Antagonism Mediated by Protein Secretion Machines. Trends in Microbiology, 2020, 28, 387-400.	3.5	83
367	Gut Microbiota, Antibiotic Therapy and Antimicrobial Resistance: A Narrative Review. Microorganisms, 2020, 8, 269.	1.6	55
368	Envelope stress responses defend against type six secretion system attacks independently of immunity proteins. Nature Microbiology, 2020, 5, 706-714.	5.9	96
369	Uncovering the activities, biological roles, and regulation of bacterial cell wall hydrolases and tailoring enzymes. Journal of Biological Chemistry, 2020, 295, 3347-3361.	1.6	76
370	Vibrio cholerae-Symbiont Interactions Inhibit Intestinal Repair in Drosophila. Cell Reports, 2020, 30, 1088-1100.e5.	2.9	34
371	A type VI secretion system delivers a cell wall amidase to target bacterial competitors. Molecular Microbiology, 2020, 114, 308-321.	1.2	25
372	Bacterial Community Interactions During Chronic Respiratory Disease. Frontiers in Cellular and Infection Microbiology, 2020, 10, 213.	1.8	70
373	Intramolecular chaperone-mediated secretion of an Rhs effector toxin by a type VI secretion system. Nature Communications, 2020, 11, 1865.	5.8	46
374	Activity, delivery, and diversity of Type VI secretion effectors. Molecular Microbiology, 2021, 115, 383-394.	1.2	88
375	Agrobacterium tumefaciens Deploys a Versatile Antibacterial Strategy To Increase Its Competitiveness. Journal of Bacteriology, 2021, 203, .	1.0	10
376	Endogenous membrane stress induces T6SS activity in <i>Pseudomonas aeruginosa</i> . Proceedings of the United States of America, 2021, 118, .	3.3	21
377	Targeting the Achilles' Heel of Bacteria: Different Mechanisms To Break Down the Peptidoglycan Cell Wall during Bacterial Warfare. Journal of Bacteriology, 2021, 203, .	1.0	24
378	T6SS Mediated Stress Responses for Bacterial Environmental Survival and Host Adaptation. International Journal of Molecular Sciences, 2021, 22, 478.	1.8	33
379	The type VI secretion system of Xanthomonas phaseoli pv. manihotis is involved in virulence and in virur vitro motility. BMC Microbiology, 2021, 21, 14.	1.3	16
380	Characterization of the Biodiesel Degrading Acinetobacter oleivorans Strain PT8 Isolated from the Fecal Material of a Painted Turtle (Chrysemys picta). Current Microbiology, 2021, 78, 522-527.	1.0	3
381	Toxins, mutations and adaptations. ELife, 2021, 10, .	2.8	0
382	Comparative genomics of Flavobacterium columnare unveils novel insights in virulence and antimicrobial resistance mechanisms. Veterinary Research, 2021, 52, 18.	1.1	5
383	A Secreted NlpC/P60 Endopeptidase from Photobacterium damselae subsp. <i>piscicida</i> Cleaves the Peptidoglycan of Potentially Competing Bacteria. MSphere, 2021, 6, .	1.3	3

ARTICLE IF CITATIONS An atlas of the binding specificities of transcription factors in Pseudomonas aeruginosa directs 384 2.8 21 prediction of novel regulators in virulence. ELife, 2021, 10, . Immunity proteins of dual nuclease T6SS effectors function as transcriptional repressors. EMBO Reports, 2021, 22, e51857. Delineating the key virulence factors and intraspecies divergence of <i>Vibrio harveyi</i> via 386 0.8 8 whole-genome sequencing. Canadian Journal of Microbiology, 2021, 67, 231-248. Transient Surface Hydration Impacts Biogeography and Intercellular Interactions of Nonmotile Bacteria. Applied and Environmental Microbiology, 2021, 87, . Pseudomonas fluorescens F113 type VI secretion systems mediate bacterial killing and adaption to the 389 1.6 31 rhizosphere microbiome. Scientific Reports, 2021, 11, 5772. Pseudomonas aeruginosa T6SS-mediated molybdate transport contributes to bacterial competition during anaerobiosis. Cell Reports, 2021, 35, 108957. The <i>PseudomonasÂaeruginosa PAAR2</i> cluster encodes a putative VRRâ€NUC domainâ€containing 391 2.2 8 effector. FEBS Journal, 2021, 288, 5755-5767. Characterization of Lysozyme-Like Effector TseP Reveals the Dependence of Type VI Secretion System (T6SS) Secretion on Éffectors in Aeromonas dhakensis Strain SSU. Applied and Environmental 1.4 Microbiology, 2021, 87, e0043521. Effectors of the Stenotrophomonas maltophilia Type IV Secretion System Mediate Killing of Clinical 398 1.8 8 Isolates of Pseudomonas aeruginosa. MBio, 2021, 12, e0150221. The Breadth and Molecular Basis of Hcp-Driven Type VI Secretion System Effector Delivery. MBio, 2021, 399 1.8 12, e0026221. Bioinformatic Analysis of the Campylobacter jejuni Type VI Secretion System and Effector Prediction. 400 1.5 10 Frontiers in Microbiology, 2021, 12, 694824. Bacterial Immobilization and Toxicity Induced by a Bean Plant Immune System. Journal of Proteome 1.8 Research, 2021, 20, 3664-3677. Secretory System Components as Potential Prophylactic Targets for Bacterial Pathogens. 402 1.8 1 Biomoleculés, 2021, 11, 892. Distribution of type VI secretion system (T6SS) in clinical Klebsiella pneumoniae strains from a Chinese hospital and its potential relationship with virulence and drug resistance. Microbial Pathogenesis, 2022, 162, 105085. 1.3 Ecotin and LamB in Escherichia coli influence the susceptibility to Type VI secretion-mediated interbacterial competition and killing by Vibrio cholerae. Biochimica Et Biophysica Acta - General 404 7 1.1 Subjects, 2021, 1865, 129912. <i>Lysobacter enzymogenes</i> antagonizes soilborne bacteria using the type <scp>IV</scp> secretion system. Environmental Microbiology, 2021, 23, 4673-4688. 1.8 Legumeâ€"rhizobium dance: an agricultural tool that could be improved?. Microbial Biotechnology, 407 2.023 2021, 14, 1897-1917. Formylglycine-Generating Enzyme-Like Proteins Constitute a Novel Family of Widespread Type VI Secretion System Immunity Proteins. Journal of Bacteriology, 2021, 203, e0028121.

#	Article	IF	CITATIONS
409	A New Contact Killing Toxin Permeabilizes Cells and Belongs to a Broadly Distributed Protein Family. MSphere, 2021, 6, e0031821.	1.3	5
410	The Burkholderia pseudomallei <i>hmqA-G</i> Locus Mediates Competitive Fitness against Environmental Gram-Positive Bacteria. Microbiology Spectrum, 2021, 9, e0010221.	1.2	7
411	Mutation of a Single Core Gene, <i>tssM</i> , of Type VI Secretion System of <i>Xanthomonas perforans</i> Influences Virulence, Epiphytic Survival, and Transmission During Pathogenesis on Tomato. Phytopathology, 2022, 112, 752-764.	1.1	7
413	Killing of Gram-negative and Gram-positive bacteria by a bifunctional cell wall-targeting T6SS effector. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	51
414	Bio-inspired molecular machines and their biological applications. Coordination Chemistry Reviews, 2021, 443, 214039.	9.5	19
415	Commensal inter-bacterial interactions shaping the microbiota. Current Opinion in Microbiology, 2021, 63, 158-171.	2.3	30
416	Structure and SAXS studies unveiled a novel inhibition mechanism of the Pseudomonas aeruginosa T6SS TseT-TsiT complex. International Journal of Biological Macromolecules, 2021, 188, 450-459.	3.6	4
417	Human commensal gut Proteobacteria withstand type VI secretion attacks through immunity protein-independent mechanisms. Nature Communications, 2021, 12, 5751.	5.8	34
418	Phosphorylation of Extracellular Proteins in Acinetobacter baumannii in Sessile Mode of Growth. Frontiers in Microbiology, 2021, 12, 738780.	1.5	3
419	Contact-independent killing mediated by a T6SS effector with intrinsic cell-entry properties. Nature Communications, 2021, 12, 423.	5.8	42
420	An interbacterial DNA deaminase toxin directly mutagenizes surviving target populations. ELife, 2021, 10, .	2.8	29
421	Participation of Bacterial Lipases, Sphingomyelinases, and Phospholipases in Gram-Negative Bacterial Pathogenesis. , 2020, , 181-203.		2
422	Genes from Double-Stranded RNA Viruses in the Nuclear Genomes of Fungi. , 2012, , 71-83.		2
423	Resistance to peptidoglycan-degrading enzymes. Critical Reviews in Microbiology, 2020, 46, 703-726.	2.7	22
424	Regulation of gene expression of hcp, a core gene of the type VI secretion system in Acinetobacter baumannii causing respiratory tract infection. Journal of Medical Microbiology, 2018, 67, 945-951.	0.7	7
425	Quantification of type VI secretion system activity in macrophages infected with Burkholderia cenocepacia. Microbiology (United Kingdom), 2015, 161, 2161-2173.	0.7	19
426	Diversity of secretion systems associated with virulence characteristics of the classical bordetellae. Microbiology (United Kingdom), 2015, 161, 2328-2340.	0.7	13
427	The Type VI secretion system: a versatile bacterial weapon. Microbiology (United Kingdom), 2019, 165, 503-515.	0.7	216

#	Article	IF	CITATIONS
428	PAAR proteins act as the †̃sorting hat' of the type VI secretion system. Microbiology (United Kingdom), 2019, 165, 1203-1218.	0.7	38
435	Crystal structure of the <i>Agrobacterium tumefaciens</i> type VI effector–immunity complex. Acta Crystallographica Section F, Structural Biology Communications, 2018, 74, 810-816.	0.4	3
436	Metabolism and Pathogenicity of <i>Pseudomonas aeruginosa</i> Infections in the Lungs of Individuals with Cystic Fibrosis. , 0, , 185-213.		6
437	Identification of a new effector-immunity pair of Aeromonas hydrophila type VI secretion system. Veterinary Research, 2020, 51, 71.	1.1	14
438	The rise of the Type VI secretion system. F1000prime Reports, 2013, 5, 52.	5.9	26
439	Advances in understanding Pseudomonas. F1000prime Reports, 2014, 6, 9.	5.9	44
440	Common Cell Shape Evolution of Two Nasopharyngeal Pathogens. PLoS Genetics, 2015, 11, e1005338.	1.5	26
441	The Hybrid Histidine Kinase LadS Forms a Multicomponent Signal Transduction System with the GacS/GacA Two-Component System in Pseudomonas aeruginosa. PLoS Genetics, 2016, 12, e1006032.	1.5	129
442	A Type VI Secretion System Encoding Locus Is Required for Bordetella bronchiseptica Immunomodulation and Persistence In Vivo. PLoS ONE, 2012, 7, e45892.	1.1	38
443	Genomic and Functional Analysis of the Type VI Secretion System in Acinetobacter. PLoS ONE, 2013, 8, e55142.	1.1	144
444	Insights into the Cross-Immunity Mechanism within Effector Families of Bacteria Type VI Secretion System from the Structure of StTae4-EcTai4 Complex. PLoS ONE, 2013, 8, e73782.	1.1	11
445	Comparative Genome Analysis of Enterobacter cloacae. PLoS ONE, 2013, 8, e74487.	1.1	72
446	Crystal Structure and Self-Interaction of the Type VI Secretion Tail-Tube Protein from Enteroaggregative Escherichia coli. PLoS ONE, 2014, 9, e86918.	1.1	44
447	A single point mutation in a TssB/VipA homolog disrupts sheath formation in the type VI secretion system of Proteus mirabilis. PLoS ONE, 2017, 12, e0184797.	1.1	12
448	Subtle variation within conserved effector operon gene products contributes to T6SS-mediated killing and immunity. PLoS Pathogens, 2017, 13, e1006729.	2.1	26
449	TYPE VB AND VI SECRETION SYSTEMS AS COMPETITION AGENTS OF GRAM-NEGATIVE BACTERIA. Postepy Mikrobiologii, 2019, 57, 360-373.	0.1	2
450	Three Dimensional Structure of <l>Pseudomonas aeruginosa</l> Tsi2: a Novel Species-specific Antitoxin-like Protein With Coiled Coil Conformation*. Progress in Biochemistry and Biophysics, 2012, 39, 640-646.	0.3	1
451	Characterization of Type VI Secretion System in Xanthomonas oryzae pv. oryzae and Its Role in Virulence to Rice. Plant Pathology Journal, 2020, 36, 289-296.	0.7	9

#	Article	IF	Citations
452	Kin cell lysis is a danger signal that activates antibacterial pathways of Pseudomonas aeruginosa. ELife, 2015, 4, .	2.8	113
453	Structural basis for effector transmembrane domain recognition by type VI secretion system chaperones. ELife, 2020, 9, .	2.8	26
454	Phage tail-like nanostructures affect microbial interactions between Streptomyces and fungi. Scientific Reports, 2021, 11, 20116.	1.6	9
455	Phytobacterial Type VI Secretion System - Gene Distribution, Phylogeny, Structure and Biological Functions. , 0, , .		1
457	P. aeruginosa Type VI Secretion Machinery: Another Deadly Syringe. , 2015, , 75-97.		0
463	Participation of Bacterial Lipases, Sphingomyelinases, and Phospholipases in Gram-Negative Bacterial Pathogenesis. , 2019, , 1-23.		0
464	TatC2 is Important for Growth of Acinetobacter baylyi Under Stress Conditions. Fine Focus, 2019, 5, 37-50.	0.2	0
468	Roles of Type VI Secretion System in Transport of Metal Ions. Frontiers in Microbiology, 2021, 12, 756136.	1.5	23
469	Beyond dueling: roles of the type VI secretion system in microbiome modulation, pathogenesis and stress resistance. Stress Biology, 2021, 1, 1.	1.5	8
470	The Two-Component System FleS/FleR Represses H1-T6SS via Cyclic di-GMP Signaling in Pseudomonas aeruginosa. Applied and Environmental Microbiology, 2022, 88, AEM0165521.	1.4	11
475	The cost of bacterial predation via type VI secretion system leads to predator extinction under environmental stress. IScience, 2021, 24, 103507.	1.9	7
476	Genomic and Metabolic Characteristics of the Pathogenicity in Pseudomonas aeruginosa. International Journal of Molecular Sciences, 2021, 22, 12892.	1.8	39
477	A binary effector module secreted by a type VI secretion system. EMBO Reports, 2022, 23, e53981.	2.0	18
478	VgrG-dependent effectors and chaperones modulate the assembly of the type VI secretion system. PLoS Pathogens, 2021, 17, e1010116.	2.1	21
479	Structure of a bacterial Rhs effector exported by the type VI secretion system. PLoS Pathogens, 2022, 18, e1010182.	2.1	24
480	Recent Advancements in Tracking Bacterial Effector Protein Translocation. Microorganisms, 2022, 10, 260.	1.6	8
481	The cyclic dinucleotide 2′3′-cGAMP induces a broad antibacterial and antiviral response in the sea anemone <i>Nematostella vectensis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	22
482	NrtR Mediated Regulation of H1-T6SS in Pseudomonas aeruginosa. Microbiology Spectrum, 2022, 10, e0185821.	1.2	3

#	Article	IF	CITATIONS
484	Biological Functions and Applications of Virus-Related Bacterial Nanoparticles: A Review. International Journal of Molecular Sciences, 2022, 23, 2595.	1.8	4
486	A Shaving Proteomic Approach to Unveil Surface Proteins Modulation of Multi-Drug Resistant Pseudomonas aeruginosa Strains Isolated From Cystic Fibrosis Patients. Frontiers in Medicine, 2022, 9, 818669.	1.2	2
487	Delivery of an Rhsâ€family nuclease effector reveals direct penetration of the gramâ€positive cell envelope by a type VI secretion system in <i>Acidovorax citrulli</i> . , 2022, 1, 66-78.		21
488	Genetic Diversity of Antimicrobial Resistance and Key Virulence Features in Two Extensively Drug-Resistant Acinetobacter baumannii Isolates. International Journal of Environmental Research and Public Health, 2022, 19, 2870.	1.2	4
489	Abiotic factors modulate interspecies competition mediated by the type VI secretion system effectors in <i>Vibrio cholerae</i> . ISME Journal, 2022, 16, 1765-1775.	4.4	13
490	Two Type VI Secretion DNase Effectors are Utilized for Interbacterial Competition in the Fish Pathogen Pseudomonas plecoglossicida. Frontiers in Microbiology, 2022, 13, 869278.	1.5	6
491	The Type VI Secretion Systems in Plant-Beneficial Bacteria Modulate Prokaryotic and Eukaryotic Interactions in the Rhizosphere. Frontiers in Microbiology, 2022, 13, 843092.	1.5	14
492	RpoN/Sfa2-dependent activation of the <i>Pseudomonas aeruginosa</i> H2-T6SS and its cognate arsenal of antibacterial toxins. Nucleic Acids Research, 2022, 50, 227-243.	6.5	13
493	Characterization of the spoilage heterogeneity of Aeromonas isolated from chilled chicken meat: in vitro and in situ. LWT - Food Science and Technology, 2022, 162, 113470.	2.5	12
550	Microbiota in health and diseases. Signal Transduction and Targeted Therapy, 2022, 7, 135.	7.1	494
552	Antibacterial contact-dependent proteins secreted by Gram-negative cystic fibrosis respiratory pathogens. Trends in Microbiology, 2022, 30, 986-996.	3.5	3
553	Functional and Structural Diversity of Bacterial Contact-Dependent Growth Inhibition Effectors. Frontiers in Molecular Biosciences, 2022, 9, 866854.	1.6	6
554	Bacterial protein secretion systems: Game of types. Microbiology (United Kingdom), 2022, 168, .	0.7	19
555	The Detriment of Salicylic Acid to the <i>Pseudomonas savastanoi</i> pv. <i>phaseolicola</i> Proteome. Molecular Plant-Microbe Interactions, 2022, 35, 814-824.	1.4	3
557	An antibacterial <scp>T6SS</scp> in <i>Pantoea agglomerans</i> pv. <i>betae</i> delivers a lysozymeâ€like effector to antagonize competitors. Environmental Microbiology, 2022, 24, 4787-4802.	1.8	10
558	Pseudomonas aeruginosa: pathogenesis, virulence factors, antibiotic resistance, interaction with host, technology advances and emerging therapeutics. Signal Transduction and Targeted Therapy, 2022, 7, .	7.1	239
559	Antibacterial potency of type VI amidase effector toxins is dependent on substrate topology and cellular context. ELife, 0, 11, .	2.8	3
560	Prevotella: An insight into its characteristics and associated virulence factors. Microbial Pathogenesis, 2022, 169, 105673.	1.3	17

#	Article	IF	CITATIONS
561	Virulence Factors of Pseudomonas Aeruginosa and Antivirulence Strategies to Combat Its Drug Resistance. Frontiers in Cellular and Infection Microbiology, 0, 12, .	1.8	61
563	Biology, Diagnostics, Pathogenomics and Mitigation Strategies of Jackfruit-Bronzing Bacterium Pantoea stewartii subspecies stewartii: What Do We Know So Far about This Culprit?. Horticulturae, 2022, 8, 702.	1.2	3
566	Emergence of antibiotic resistance in gut microbiota and its effect on human health. , 2022, , 211-232.		0
567	Impact of the gut microbiome on human health and diseases. , 2022, , 25-40.		0
568	Prevalence and diversity of type VI secretion systems in a model beneficial symbiosis. Frontiers in Microbiology, 0, 13, .	1.5	3
569	Heterologous Assembly of the Type VI Secretion System Empowers Laboratory Escherichia coli with Antimicrobial and Cell Penetration Capabilities. Applied and Environmental Microbiology, 0, , .	1.4	0
570	The Discovery of the Role of Outer Membrane Vesicles against Bacteria. Biomedicines, 2022, 10, 2399.	1.4	6
571	Molecular characterization of the type VI secretion system effector Tlde1a reveals a structurally altered LD-transpeptidase fold. Journal of Biological Chemistry, 2022, 298, 102556.	1.6	4
573	What Makes Pseudomonas aeruginosa a Pathogen?. Advances in Experimental Medicine and Biology, 2022, , 283-301.	0.8	4
574	Antimicrobial Weapons of Pseudomonas aeruginosa. Advances in Experimental Medicine and Biology, 2022, , 223-256.	0.8	4
575	Multiple T6SSs, Mobile Auxiliary Modules, and Effectors Revealed in a Systematic Analysis of the Vibrio parahaemolyticus Pan-Genome. MSystems, 2022, 7, .	1.7	12
576	Genome analysis of Erwinia persicina reveals implications for soft rot pathogenicity in plants. Frontiers in Microbiology, 0, 13, .	1.5	2
577	The P. aeruginosa effector Tse5 forms membrane pores disrupting the membrane potential of intoxicated bacteria. Communications Biology, 2022, 5, .	2.0	4
578	Taxonomic and functional profiling of Indian smokeless tobacco bacteriome uncovers several bacterial-derived risks to human health. World Journal of Microbiology and Biotechnology, 2023, 39, .	1.7	4
579	Effect of the Type VI Secretion System Secreted Protein Hcp on the Virulence of Aeromonas salmonicida. Microorganisms, 2022, 10, 2307.	1.6	7
580	Peptidoglycan NlpC/P60 peptidases in bacterial physiology and host interactions. Cell Chemical Biology, 2023, 30, 436-456.	2.5	5
582	Pandemic <i>Vibrio cholerae</i> acquired competitive traits from an environmental <i>Vibrio</i> species. Life Science Alliance, 2023, 6, e202201437.	1.3	3
583	A secreted effector with a dual role as a toxin and as a transcriptional factor. Nature Communications, 2022, 13, .	5.8	12

#	Article	IF	CITATIONS
584	Vibrio parahaemolyticus prey targeting requires autoproteolysis-triggered dimerization of the type VI secretion system effector RhsP. Cell Reports, 2022, 41, 111732.	2.9	5
585	Pseudomonas aeruginosa H3-T6SS Combats H2O2 Stress by Diminishing the Amount of Intracellular Unincorporated Iron in a Dps-Dependent Manner and Inhibiting the Synthesis of PQS. International Journal of Molecular Sciences, 2023, 24, 1614.	1.8	3
586	Lack of evidence that <i>Pseudomonas aeruginosa</i> <scp>AmpDh3â€₽A0808</scp> constitute a type <scp>VI</scp> secretion system effector–immunity pair. Molecular Microbiology, 0, , .	1.2	2
587	A Fur-regulated type VI secretion system contributes to oxidative stress resistance and virulence in Yersinia pseudotuberculosis. Stress Biology, 2023, 3, .	1.5	Ο
588	Gut microbiota involved in myocardial dysfunction induced by sepsis. Microbial Pathogenesis, 2023, 175, 105984.	1.3	2
589	Virulence, antimicrobial resistance, and dissemination of Campylobacter coli isolated from chicken carcasses in Brazil. Food Control, 2023, 147, 109613.	2.8	2
591	Effector protein Hcp2a of avian pathogenic Escherichia coli interacts with the endoplasmatic reticulum associated RPL23 protein of chicken DF-1 fibroblasts. Veterinary Research, 2023, 54, .	1.1	1
593	Bacterial type VI secretion system (T6SS): an evolved molecular weapon with diverse functionality. Biotechnology Letters, 2023, 45, 309-331.	1.1	11
594	A Dueling-Competent Signal-Sensing Module Guides Precise Delivery of Cargo Proteins into Target Cells by Engineered <i>Pseudomonas aeruginosa</i> . ACS Synthetic Biology, 2023, 12, 360-368.	1.9	0
595	Type VI Secretion Systems: Environmental and Intra-host Competition of Vibrio cholerae. Advances in Experimental Medicine and Biology, 2023, , 41-63.	0.8	1
596	Recruitment of heterologous substrates by bacterial secretion systems for transkingdom translocation. Frontiers in Cellular and Infection Microbiology, 0, 13, .	1.8	3
597	Agrobacterium tumefaciens: a Transformative Agent for Fundamental Insights into Host-Microbe Interactions, Genome Biology, Chemical Signaling, and Cell Biology. Journal of Bacteriology, 2023, 205,	1.0	7
598	Sporulation Activated via σ ^W Protects <i>Bacillus</i> from a Tse1 Peptidoglycan Hydrolase Type VI Secretion System Effector. Microbiology Spectrum, 2023, 11, .	1.2	4
600	The ChvG-ChvI Regulatory Network: A Conserved Global Regulatory Circuit Among the Alphaproteobacteria with Pervasive Impacts on Host Interactions and Diverse Cellular Processes. Annual Review of Microbiology, 2023, 77, .	2.9	2
601	Intracellular Phage Tail-Like Nanostructures Affect Susceptibility of Streptomyces lividans to Osmotic Stress. MSphere, 0, , .	1.3	1
602	Substrate recruitment mechanism by gram-negative type III, IV, and VI bacterial injectisomes. Trends in Microbiology, 2023, 31, 916-932.	3.5	5
603	Type 6 secretion system components hcp and vgrG support mutualistic partnership between Xenorhabdus bovienii symbiont and Steinernema jollieti host. Journal of Invertebrate Pathology, 2023, 198, 107925.	1.5	2
604	Bacterial secretion system functions: evidence of interactions and downstream implications. Microbiology (United Kingdom), 2023, 169, .	0.7	6

		CITATION REPORT	
#	Article	IF	CITATIONS
630	Measure of Peptidoglycan Degradation Activity. Methods in Molecular Biology, 2024, , 197-2	. 0.4	0
631	Quantitative Determination of Antibacterial Activity During Bacterial Coculture. Methods in Molecular Biology, 2024, , 593-600.	0.4	Ο
639	Pseudomonas aeruginosa. , 2024, , 811-825.		0
640	Bacterial cell walls: peptidoglycan. , 2024, , 45-67.		Ο