Observation of the dynamical Casimir effect in a superc

Nature 479, 376-379 DOI: 10.1038/nature10561

Citation Report

#	Article	IF	CITATIONS
1	Shaking photons out of the vacuum. Nature, 2011, 479, 303-304.	13.7	7
2	Earth's longest fossil rift-valley system. Nature, 2011, 479, 304-306.	13.7	6
3	Model for noncancellation of quantum electric field fluctuations. Physical Review A, 2011, 84, .	1.0	18
4	Coupling of an erbium spin ensemble to a superconducting resonator. Journal of Physics B: Atomic, Molecular and Optical Physics, 2012, 45, 124019.	0.6	30
5	Dynamics of atom–atom correlations in the Fermi problem. New Journal of Physics, 2012, 14, 103010.	1.2	12
6	Tangled in entanglement. Physics Essays, 2012, 25, 495-499.	0.1	4
7	On intractable tracks. Physics Essays, 2012, 25, 233-238.	0.1	10
8	Supersensitive SQUID/magnetostrictor detecting system. Quantum Electronics, 2012, 42, 1140-1146.	0.3	4
9	The dark energy paradigm. , 2012, , .		0
10	Sub-diffraction-limit semiconductor resonators operating on the fundamental magnetic resonance. Applied Physics Letters, 2012, 100, .	1.5	25
11	Quantum Magnetomechanics with Levitating Superconducting Microspheres. Physical Review Letters, 2012, 109, 147205.	2.9	87
12	Tunable single-photon heat conduction in electrical circuits. Physical Review B, 2012, 86, .	1.1	2
13	Ultrafast Quantum Gates in Circuit QED. Physical Review Letters, 2012, 108, 120501.	2.9	170
14	Casimir force due to condensed vortices in a plane. Physical Review D, 2012, 86, .	1.6	7
15	Approximate analytical results on the cavity dynamical Casimir effect in the presence of a two-level atom. Physical Review A, 2012, 85, .	1.0	30
16	Towards particle creation in a microwave cylindrical cavity. Physical Review A, 2012, 86, .	1.0	7
17	Back-reaction effects of quantum vacuum in cavity quantum electrodynamics. Physical Review A, 2012, 85, .	1.0	40
18	Nonperturbative approach to circuit quantum electrodynamics. Physical Review E, 2012, 86, 046701.	0.8	14

#	Article	IF	CITATIONS
19	When Casimir meets Kibble–Zurek. Physica Scripta, 2012, T151, 014071.	1.2	1
20	Single and Double Superconducting Coplanar Waveguide Resonators. Chinese Physics Letters, 2012, 29, 088401.	1.3	7
21	Turning point: Christopher Wilson. Nature, 2012, 482, 559-559.	13.7	0
22	QUANTUM-CIRCUIT ANALOG OF THE DYNAMICAL CASIMIR EFFECT AT FINITE TEMPERATURES. International Journal of Modern Physics Conference Series, 2012, 14, 445-449.	0.7	0
23	TIME-DEPENDENT ROBIN BOUNDARY CONDITIONS IN THE DYNAMICAL CASIMIR EFFECT. International Journal of Modern Physics Conference Series, 2012, 14, 306-315.	0.7	13
24	Modeling Quantum Field Theory. Physics Magazine, 0, 5, .	0.1	1
25	Observer-dependent entanglement. Classical and Quantum Gravity, 2012, 29, 224001.	1.5	112
26	Microwave photonics with Josephson junction arrays: Negative refraction index and entanglement through disorder. Physical Review B, 2012, 86, .	1.1	29
27	Dynamical Casimir effect in a cavity in the presence of a three-level atom. Physical Review A, 2012, 85, .	1.0	21
28	Acoustic Analog to the Dynamical Casimir Effect in a Bose-Einstein Condensate. Physical Review Letters, 2012, 109, 220401.	2.9	153
29	Quantum memory with a single two-level atom in a half cavity. Physical Review A, 2012, 85, .	1.0	16
30	Path Entanglement of Continuous-Variable Quantum Microwaves. Physical Review Letters, 2012, 109, 250502.	2.9	132
31	Coherent Control of Microwave Pulse Storage in Superconducting Circuits. Physical Review Letters, 2012, 109, 253603.	2.9	42
32	Voyage to Alpha Centauri: Entanglement degradation of cavity modes due to motion. Physical Review D, 2012, 85, .	1.6	73
33	The theory of Hawking radiation in laboratory analogues. Journal of Physics B: Atomic, Molecular and Optical Physics, 2012, 45, 163001.	0.6	73
34	The Quantum State of Inflationary Perturbations. Journal of Physics: Conference Series, 2012, 405, 012004.	0.3	15
35	Photon Production from the Vacuum Close to the Superradiant Transition: Linking the Dynamical Casimir Effect to the Kibble-Zurek Mechanism. Physical Review Letters, 2012, 108, 093603.	2.9	22
36	Cosmological inflation and the quantum measurement problem. Physical Review D, 2012, 86, .	1.6	104

#	Article	IF	CITATIONS
37	Theory of Josephson photomultipliers: Optimal working conditions and back action. Physical Review A, 2012, 86, .	1.0	27
38	Room temperature terahertz polariton emitter. Applied Physics Letters, 2012, 101, .	1.5	50
39	Observation of Entanglement between Itinerant Microwave Photons and a Superconducting Qubit. Physical Review Letters, 2012, 109, 240501.	2.9	88
40	Entangled photons from the polariton vacuum in a switchable optical cavity. Physical Review B, 2012, 85, .	1.1	39
41	Generating Entangled Microwave Radiation Over Two Transmission Lines. Physical Review Letters, 2012, 109, 183901.	2.9	211
42	<i>Colloquium</i> : Stimulating uncertainty: Amplifying the quantum vacuum with superconducting circuits. Reviews of Modern Physics, 2012, 84, 1-24.	16.4	402
43	Nonadiabatic switching of a photonic band structure: Ultrastrong light-matter coupling and slow-down of light. Physical Review B, 2012, 85, .	1.1	33
44	Extracting Past-Future Vacuum Correlations Using Circuit QED. Physical Review Letters, 2012, 109, 033602.	2.9	58
45	Generation of Nonclassical Microwave States Using an Artificial Atom in 1D Open Space. Physical Review Letters, 2012, 108, 263601.	2.9	139
46	Excitation spectrum for an inhomogeneously dipole-field-coupled superconducting qubit chain. Physical Review A, 2012, 85, .	1.0	16
47	Dynamical Casimir effect in two-atom cavity QED. Physical Review A, 2012, 85, .	1.0	30
48	Probing Mach's principle. Monthly Notices of the Royal Astronomical Society, 2012, 423, 1973-1977.	1.6	12
49	Giant Cross–Kerr Effect for Propagating Microwaves Induced by an Artificial Atom. Physical Review Letters, 2013, 111, 053601.	2.9	178
50	Nonclassical Photon Pair Production in a Voltage-Biased Josephson Junction. Physical Review Letters, 2013, 110, 267004.	2.9	46
51	Dynamical Casimir effect in dissipative media: When is the final state nonseparable?. Physical Review D, 2013, 88, .	1.6	16
52	Reflection from a moving mirror—a simple derivation using the photon model of light. European Journal of Physics, 2013, 34, L1-L4.	0.3	7
53	Circuit QED Bright Source for Chiral Entangled Light Based on Dissipation. Physical Review Letters, 2013, 111, 073602.	2.9	31
54	Quantum correlations and tomographic representation. JETP Letters, 2013, 97, 557-563.	0.4	10

#	Article	IF	CITATIONS
55	Quantum Cherenkov radiation and noncontact friction. Physical Review A, 2013, 88, .	1.0	52
56	Fidelity and purity of quantum electrical circuit states and quantum tomograms. Physica Scripta, 2013, T153, 014046.	1.2	5
57	On the Problem of Electromagnetic-Field Quantization. International Journal of Theoretical Physics, 2013, 52, 4445-4460.	0.5	8
58	Macroscopic quantum mechanics: theory and experimental concepts of optomechanics. Journal of Physics B: Atomic, Molecular and Optical Physics, 2013, 46, 104001.	0.6	195
59	Proposal for a coherent quantum memory for propagating microwave photons. New Journal of Physics, 2013, 15, 065008.	1.2	43
60	Squeezed magnons in an optical lattice: Application to simulation of the dynamical Casimir effect at finite temperature. Physical Review A, 2013, 87, .	1.0	9
61	Inhibition of the dynamical Casimir effect with Robin boundary conditions. Physical Review D, 2013, 87,	1.6	14
62	An analogue of the Berry phase for simple harmonic oscillators. Physica Scripta, 2013, 87, 038118.	1.2	5
63	High Sensitive Magnetic Nanosensors Based on Superconducting Quantum Interference Device. IEEE Transactions on Magnetics, 2013, 49, 140-143.	1.2	3
64	Dynamical Casimir effect in a Josephson metamaterial. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 4234-4238.	3.3	260
65	Relativistic Quantum Teleportation with Superconducting Circuits. Physical Review Letters, 2013, 110, 113602.	2.9	97
66	Superradiant phase transitions with three-level systems. Physical Review A, 2013, 87, .	1.0	33
67	Influence of the field-detector coupling strength on the dynamical Casimir effect. Physical Review A, 2013, 87, .	1.0	10
68	Quantum fluids of light. Reviews of Modern Physics, 2013, 85, 299-366.	16.4	1,516
69	Processing Quantum Information with Relativistic Motion of Atoms. Physical Review Letters, 2013, 110, 160501.	2.9	48
70	Tunable coupling engineering between superconducting resonators: From sidebands to effective gauge fields. Physical Review B, 2013, 87, .	1.1	106
71	Oscillator-field model of moving mirrors in quantum optomechanics. Physical Review A, 2013, 87, .	1.0	21
72	Spontaneous Conversion from Virtual to Real Photons in the Ultrastrong-Coupling Regime. Physical Review Letters, 2013, 110, 243601.	2.9	136

		CITATION REPORT		
#	Article		IF	CITATIONS
73	Nonclassical microwave radiation from the dynamical Casimir effect. Physical Review A,	2013, 87, .	1.0	72
74	Nonlocal transport properties of nanoscale conductor–microwave cavity systems. Ph 2013, 87, .	ysical Review B,	1.1	40
75	The minimum-uncertainty squeezed states for atoms and photons in a cavity. Journal of Atomic, Molecular and Optical Physics, 2013, 46, 104007.	Physics B:	0.6	18
76	Continuous intracavity monitoring of the dynamical Casimir effect. Physica Scripta, 201	3, 87, 038103.	1.2	10
77	Scalar, spinor, and photon fields under relativistic cavity motion. Physical Review D, 201	.3, 88, .	1.6	34
78	The two body photon. Proceedings of SPIE, 2013, , .		0.8	0
79	Inductively coupled superconducting half wavelength resonators as persistent current t ultracold atoms. New Journal of Physics, 2013, 15, 093024.	raps for	1.2	17
80	Breakthroughs in Photonics 2012: Breakthroughs in Microwave Quantum Photonics in Superconducting Circuits. IEEE Photonics Journal, 2013, 5, 0701406-0701406.		1.0	25
81	Investigation of nonlinear effects in Josephson parametric oscillators used in circuit qua electrodynamics. New Journal of Physics, 2013, 15, 105002.	ntum	1.2	35
82	The measurement of a single-mode thermal field with a microwave cavity parametric an Journal of Physics, 2013, 15, 013044.	ıplifier. New	1.2	5
83	Mode-mixing quantum gates and entanglement without particle creation in periodically cavities. New Journal of Physics, 2013, 15, 073052.	accelerated	1.2	23
84	Microwave quantum optics with an artificial atom in one-dimensional open space. New Physics, 2013, 15, 025011.	Journal of	1.2	80
85	Many body physics with coupled transmission line resonators. Physica Scripta, 2013, T	.53, 014042.	1.2	5
86	Squeezing with a flux-driven Josephson parametric amplifier. New Journal of Physics, 20	13, 15, 125013.	1.2	89
87	Vacuum fluctuations and generalized boundary conditions. Physical Review D, 2013, 87	',.	1.6	18
88	Relativistic Motion Generates Quantum Gates and Entanglement Resonances. Physical 2013, 111, 090504.	Review Letters,	2.9	32
89	Universal Quantum Fluctuations of a Cavity Mode Driven by a Josephson Junction. Phys Letters, 2013, 111, 247001.	ical Review	2.9	60
90	The pumpistor: A linearized model of a flux-pumped superconducting quantum interfere use as a negative-resistance parametric amplifier. Applied Physics Letters, 2013, 103, .	ence device for	1.5	18

#	Article	IF	CITATIONS
91	Spatial modulation of critical current density in niobium based Josephson junctions induced by selective heating. Applied Physics Letters, 2013, 102, .	1.5	5
92	Parametric resonance in tunable superconducting cavities. Physical Review B, 2013, 87, .	1.1	82
93	Relativistic bands in the spectrum of created particles via the dynamical Casimir effect. Physical Review A, 2013, 88, .	1.0	7
94	Time dependence of particle creation from accelerating mirrors. Physical Review D, 2013, 88, .	1.6	48
95	From Coulomb-Blockade to Nonlinear Quantum Dynamics in a Superconducting Circuit with a Resonator. Physical Review Letters, 2013, 111, 247002.	2.9	66
96	Producing correlated photons using superconducting circuits. , 2013, , .		0
97	Dynamics of an elementary quantum system outside a radiating Schwarzschild black hole. Physical Review D, 2013, 88, .	1.6	2
98	Quantum Heating of a Nonlinear Resonator Probed by a Superconducting Qubit. Physical Review Letters, 2013, 110, 047001.	2.9	31
99	Switching on and off of ultrastrong light-matter interaction: Photon statistics of quantum vacuum radiation. Physical Review A, 2013, 88, .	1.0	59
100	Scattering approach to the dynamical Casimir effect. Physical Review D, 2013, 87, .	1.6	47
101	Examining the Existence of the Multiverse. , 2013, , .		2
102	From Josephson junction metamaterials to tunable pseudo-cavities. Superconductor Science and Technology, 2013, 26, 074006.	1.8	11
103	Quantum state characterization of a fast tunable superconducting resonator. Applied Physics Letters, 2013, 102, .	1.5	61
104	Multiple Virtual Tunneling of Dirac Fermions in Granular Graphene. Scientific Reports, 2013, 3, 3404.	1.6	4
105	Entanglement generation in relativistic cavity motion. Journal of Physics: Conference Series, 2013, 442, 012024.	0.3	2
106	Tunable electromagnetic environment for superconducting quantum bits. Scientific Reports, 2013, 3, 1987.	1.6	24
107	Dynamical Casimir effect in superradiant light scattering by Bose—Einstein condensate in an optomechanical cavity. Chinese Physics B, 2014, 23, 020315.	0.7	7
108	Dynamical Casimir–Polder potentials in non-adiabatic conditions. Physica Scripta, 2014, T160, 014032. 	1.2	3

#	Article	IF	CITATIONS
109	Quantum seismology. New Journal of Physics, 2014, 16, 105020.	1.2	21
110	Analysis of the Electromagnetic Field Quantization Process and the Photon Vector Potential. The Non-Local Photon Wave-Particle Representation and the Quantum Vacuum. , 2014, , 89-109.		0
111	Quantum gates via relativistic remote control. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2014, 739, 74-82.	1.5	6
112	Generating nonclassical states from classical radiation by subtraction measurements. New Journal of Physics, 2014, 16, 045011.	1.2	16
113	Phonon creation by gravitational waves. New Journal of Physics, 2014, 16, 085003.	1.2	71
114	Testing the effects of gravity and motion on quantum entanglement in space-based experiments. New Journal of Physics, 2014, 16, 053041.	1.2	33
115	Superconducting complementary metasurfaces for THz ultrastrong light-matter coupling. New Journal of Physics, 2014, 16, 033005.	1.2	24
116	Particle detectors and the zero mode of a quantum field. Physical Review D, 2014, 90, .	1.6	26
117	Superconductive quantum interference magnetometer with high sensitivity achieved by an induced resonance. Review of Scientific Instruments, 2014, 85, 085006.	0.6	3
118	New signatures of the dynamical Casimir effect in a superconducting circuit. Physical Review D, 2014, 90, .	1.6	15
119	Dynamical Casimir Effect Entangles Artificial Atoms. Physical Review Letters, 2014, 113, 093602.	2.9	141
120	Lamb-Shift Enhancement and Detection in Strongly Driven Superconducting Circuits. Physical Review Letters, 2014, 113, 027001.	2.9	13
121	Field theoretic description of electromagnetic boundaries. European Physical Journal C, 2014, 74, 1.	1.4	11
122	Entangled phonons in atomic Bose-Einstein condensates. Physical Review A, 2014, 90, .	1.0	33
123	Recipe for the Hamiltonian of system-environment coupling applicable to the ultrastrong-light-matter-interaction regime. Physical Review A, 2014, 89, .	1.0	34
124	Quantum entanglement due to a modulated dynamical Casimir effect. Physical Review A, 2014, 89, .	1.0	17
125	Optomechanical Rydberg-Atom Excitation via Dynamic Casimir-Polder Coupling. Physical Review Letters, 2014, 113, 023601.	2.9	31
126	Quantum entanglement in analogue Hawking radiation: When is the final state nonseparable?. Physical Review D, 2014, 89, .	1.6	44

	CITATION	Report	
#	Article	IF	CITATIONS
127	Twin paradox with macroscopic clocks in superconducting circuits. Physical Review A, 2014, 90, .	1.0	30
128	Dynamical Casimir effect in quantum-information processing. Physical Review A, 2014, 90, .	1.0	34
129	Nonequilibrium quantum fluctuations of a dispersive medium: Spontaneous emission, photon statistics, entropy generation, and stochastic motion. Physical Review A, 2014, 90, .	1.0	19
130	Extraction of genuine tripartite entanglement from the vacuum. Physical Review A, 2014, 90, .	1.0	18
131	Nanomechanical sensing of gravitational wave-induced Casimir force perturbations. International Journal of Modern Physics D, 2014, 23, 1442001.	0.9	6
132	A computer algebra package for calculation of the energy density produced via the dynamical Casimir effect in one-dimensional cavities. Computer Physics Communications, 2014, 185, 2101-2114.	3.0	6
133	Linking the Dynamical Casimir Effect to the Collective Excitation Effect at Finite Temperature. International Journal of Theoretical Physics, 2014, 53, 510-518.	0.5	3
134	Quantum metrology for relativistic quantum fields. Physical Review D, 2014, 89, .	1.6	77
135	Quantum simulation. Reviews of Modern Physics, 2014, 86, 153-185.	16.4	1,881
136	Controlling the dynamic range of a Josephson parametric amplifier. EPJ Quantum Technology, 2014, 1, .	2.9	95
137	Spontaneous nonparametric down-conversion of light. Applied Physics A: Materials Science and Processing, 2014, 115, 563-568.	1.1	6
138	Emergent Newtonian dynamics and the geometric origin of mass. Annals of Physics, 2014, 345, 141-165.	1.0	10
139	Dynamical Casimir Emission from Polariton Condensates. Physical Review Letters, 2014, 112, 036406.	2.9	25
140	Demonstration of Geometric Landau-Zener Interferometry in a Superconducting Qubit. Physical Review Letters, 2014, 112, 027001.	2.9	47
141	Vacuum-induced symmetry breaking in a superconducting quantum circuit. Physical Review A, 2014, 90,	1.0	49
142	Parametric amplification of vortex-antivortex pair generation in a Josephson junction. Physical Review B, 2014, 90, .	1.1	18
143	Optomechanical-like coupling between superconducting resonators. Physical Review A, 2014, 90, .	1.0	66
144	Dynamical Casimir effect in dissipative superconducting circuit system. Science China: Physics, Mechanics and Astronomy, 2014, 57, 2251-2258.	2.0	2

#	Article	IF	CITATIONS
145	Designing frequency-dependent relaxation rates and Lamb shifts for a giant artificial atom. Physical Review A, 2014, 90, .	1.0	127
146	Quantum circuits for amplification of Kerr nonlinearity via quadrature squeezing. Journal of Physics B: Atomic, Molecular and Optical Physics, 2014, 47, 145501.	0.6	22
147	Experimental quantum cosmology in time-dependent optical media. New Journal of Physics, 2014, 16, 075003.	1.2	26
148	On quantum tunneling in real time. New Journal of Physics, 2014, 16, 063006.	1.2	29
149	Giant vacuum forces via transmission lines. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 10485-10490.	3.3	31
150	Analytical description of nonstationary circuit QED in the dressed-states basis. Journal of Physics A: Mathematical and Theoretical, 2014, 47, 285303.	0.7	14
151	Simulation of the Majorana equation in circuit QED. Quantum Information Processing, 2014, 13, 1813-1823.	1.0	4
152	Exotic states in the dynamical Casimir effect. European Physical Journal D, 2014, 68, 1.	0.6	11
153	Spacetime effects on satellite-based quantum communications. Physical Review D, 2014, 90, .	1.6	85
154	Virtual gravitational dipoles: The key for the understanding of the Universe?. Physics of the Dark Universe, 2014, 3, 34-40.	1.8	32
155	Recent Progress in Quantum Simulation Using Superconducting Circuits. Journal of Low Temperature Physics, 2014, 175, 633-654.	0.6	62
156	Conditional evolution of vacuum state in dynamical Casimir effect. Journal of Physics: Conference Series, 2014, 541, 012105.	0.3	2
157	Waveguide QED: Power spectra and correlations of two photons scattered off multiple distant qubits and a mirror. Physical Review A, 2015, 91, .	1.0	102
158	Heisenberg scaling in Gaussian quantum metrology. Physical Review A, 2015, 92, .	1.0	29
159	Tunable photon blockade in a hybrid system consisting of an optomechanical device coupled to a two-level system. Physical Review A, 2015, 92, .	1.0	130
160	Generation of quantum steering and interferometric power in the dynamical Casimir effect. Physical Review A, 2015, 92, .	1.0	31
161	Fundamental limitation of ultrastrong coupling between light and atoms. Physical Review A, 2015, 92, .	1.0	28
	Anisotropic contribution to the van der Waals and the Casimir-Polder energies for <mml:math< td=""><td></td><td>/</td></mml:math<>		/

162 xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mtext>CO</mml:mtext> <mml:mn>2</mml:mn> </mml:msu xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mtext>CH</mml:mtext> <mml:mn>4</mml:mn> </mml:msu near surfaces and thin films. Physical Review A. 2015. 92. .

		CITATION REP	ORT	
#	Article		IF	CITATIONS
163	Quantum estimation via parametric amplification in circuit-QED arrays. Physical Review A, 20)15, 92, .	1.0	0
164	Relativistic motion with superconducting qubits. Physical Review B, 2015, 92, .		1.1	48
165	Dynamical quantum depletion in polariton condensates. Physical Review B, 2015, 92, .		1.1	4
166	Dynamical Casimir effect in a small compact manifold for the Maxwell vacuum. Physical Revi 2015, 91, .	ew D,	1.6	8
167	Interference phenomena in the dynamical Casimir effect for a single mirror with Robin condit Physical Review D, 2015, 92, .	ions.	1.6	10
168	Quantum control and long-range quantum correlations in dynamical Casimir arrays. Physical A, 2015, 92, .	Review	1.0	35
169	Mirror-field entanglement in a microscopic model for quantum optomechanics. Physical Revi 2015, 92, .	ew A,	1.0	15
170	Causality issues of particle detector models in QFT and quantum optics. Physical Review D, 2	.015, 92, .	1.6	67
171	Frequency-tunable superconducting resonators via nonlinear kinetic inductance. Applied Phy Letters, 2015, 107, .	sics	1.5	58
172	Characterization of a multimode coplanar waveguide parametric amplifier. Journal of Applied 2015, 118, .	Physics,	1.1	36
173	Motion and gravity effects in the precision of quantum clocks. Scientific Reports, 2015, 5, 10)070.	1.6	12
174	Smooth and sharp creation of a Dirichlet wall in 1+1 quantum field theory: how singular is th creation limit?. Journal of High Energy Physics, 2015, 2015, 1.	e sharp	1.6	13
175	Signatures of energy flux in particle production: a black hole birth cry and death gasp. Journa High Energy Physics, 2015, 2015, 1.	l of	1.6	31
176	Analog quantum simulation of gravitational waves in a Bose-Einstein condensate. EPJ Quant Technology, 2015, 2, .	um	2.9	11
177	Dynamical Lamb Effect: Prediction and Possibility of Experimental Detection. EPJ Web of Cor 2015, 103, 01009.	ıferences,	0.1	0
178	Regimes of photon generation in Dynamical Casimir Effect under various resonance conditio Journal of Physics: Conference Series, 2015, 643, 012093.	ns.	0.3	1
179	Analytical estimations for statistical characteristics of Casimir field detected by indirect measurement scheme. Journal of Physics: Conference Series, 2015, 661, 012046.		0.3	0
180	Cavity squeezing by a quantum conductor. New Journal of Physics, 2015, 17, 113014.		1.2	25

#	ARTICLE Dispersive Response of a Disordered Superconducting Quantum Metamaterial, Photonics, 2015, 2,	IF	CITATIONS
182 183	449-458. Cosmic Rays Report from the Structure of Space. Advances in Astronomy, 2015, 2015, 1-11.	0.9	8
184	Microscopic toy model for the cavity dynamical Casimir effect. Journal of Physics A: Mathematical and Theoretical, 2015, 48, 245302.	0.7	24
185	An indirect measurement protocol of intracavity mode quadratures dispersion in dynamical Casimir effect. European Physical Journal D, 2015, 69, 1.	0.6	1
186	Vacuum lightcone fluctuations in a dielectric. Annals of Physics, 2015, 361, 293-302.	1.0	11
187	Absolute stability of dynamic cavities. Optics and Spectroscopy (English Translation of Optika I) Tj ETQq1 1 0.78	4314 rgBT 0.2	/gverlock 1(
188	Hacking the universe. , 2015, , 123-139.		0
189	Parametric field excitation in a cavity with oscillating mirrors. Optics and Spectroscopy (English) Tj ETQq1 1 0.78	4314 rgB1 0.2	- /Qverlock 1
190	Multiphoton dynamics of qutrits in the ultrastrong coupling regime with a quantized photonic field. Journal of Experimental and Theoretical Physics, 2015, 121, 925-933.	0.2	1
191	Superconducting circuit boundary conditions beyond the dynamical Casimir effect. Physical Review D, 2015, 91, .	1.6	12
192	Quantum metrology and estimation of Unruh effect. Scientific Reports, 2014, 4, 7195.	1.6	35
193	Parameter estimation for an expanding universe. Nuclear Physics B, 2015, 892, 390-399.	0.9	24
194	Dynamical Casimir effect for surface plasmon polaritons. Physics Letters, Section A: General, Atomic and Solid State Physics, 2015, 379, 501-505.	0.9	7
195	Impurities as a quantum thermometer for a Bose-Einstein condensate. Scientific Reports, 2014, 4, 6436.	1.6	70
196	Relativistic Quantum Metrology: Exploiting relativity to improve quantum measurement technologies. Scientific Reports, 2014, 4, 4996.	1.6	76
197	Influence of Interaction of Two Atoms on the Dynamical Casimir Effect. International Journal of Theoretical Physics, 2015, 54, 1627-1632.	0.5	1
198	Dynamical Casimir Effect and Collective Excitation Effect at Finite Temperature Without the Rotating-Wave Approximation. International Journal of Theoretical Physics, 2015, 54, 2762-2770.	0.5	1
199	Superconducting Quantum Node for Entanglement and Storage of Microwave Radiation. Physical Review Letters, 2015, 114, 090503.	2.9	109

ARTICLE IF CITATIONS # Work and heat for two-level systems in dissipative environments: Strong driving and non-Markovian 201 1.1 43 dynamics. Physical Review B, 2015, 91, . Relativistic Quantum Metrology in Open System Dynamics. Scientific Reports, 2015, 5, 7946. 1.6 Nonadiabatic squeezed-photon generation by a Fourier-modified Janszky–Adam scheme. Physica B: 203 1.3 3 Condensed Matter, 2015, 468-469, 57-60. On the "area―of an electromagnetic field. Optics and Spectroscopy (English Translation of Optika I) Tj ETQq1 J 0.7843 J4 rgBT 204 Multifrequency modes in superconducting resonators: Bridging frequency gaps in off-resonant 205 1.0 19 couplings. Physical Review A, 2015, 91, . Stückelberg interference in a superconducting qubit under periodic latching modulation. New 1.2 Journal of Physics, 2015, 17, 043058. Prospects for observing dynamical and anti- dynamical Casimir effects in circuit QED due to fast 207 modulation of qubit parameters. Journal of Physics B: Atomic, Molecular and Optical Physics, 2015, 48, 0.6 24 165503. Dynamical Lamb effect in a tunable superconducting qubit-cavity system. Physical Review A, 2015, 91, . 1.0 208 209 Quantum discord in the dynamical Casimir effect. Physical Review A, 2015, 92, . 1.0 22 Circuit analog of quadratic optomechanics. Physical Review A, 2015, 91, . 1.0 211 Vacuum-excited surface plasmon polaritons. Physical Review A, 2015, 91, . 1.0 6 Dynamical Casimir effect and minimal temperature in quantum thermodynamics. Physical Review A, 1.0 2015,91,. Real photons from vacuum fluctuations in optomechanics: The role of polariton interactions. 213 1.0 23 Physical Review A, 2015, 91, . What does it mean for half of an empty cavity to be full?. Physical Review D, 2015, 91, . 214 1.6 215 The dark energy signature. International Journal of Modern Physics E, 2015, 24, 1550024. 0.4 1 Robust manipulation of superconducting qubits in the presence of fluctuations. Scientific Reports, 2015, 5, 7873. Dynamical Casimir effect in microwave cavities containing nonlinear crystals. Journal of Physics 217 0.7 5 Condensed Matter, 2015, 27, 214009. Multilevel superconducting circuits as two-qubit systems: Operations, state preparation, and 64 entropic inequalities. Physical Review A, 2015, 91, .

#	Article	IF	CITATIONS
219	Ancillary Qubit Spectroscopy of Vacua in Cavity and Circuit Quantum Electrodynamics. Physical Review Letters, 2015, 114, 183601.	2.9	48
220	Coexistence of three-wave, four-wave, and five-wave mixing processes in a superconducting artificial atom. Optics Letters, 2015, 40, 1133.	1.7	4
221	Tomographic discord for a system of two coupled nanoelectric circuits. Physica Scripta, 2015, 90, 055101.	1.2	14
222	Single qudit realization of the Deutsch algorithm using superconducting many-level quantum circuits. Physics Letters, Section A: General, Atomic and Solid State Physics, 2015, 379, 1409-1413.	0.9	71
223	Probing the quantum vacuum with an artificial atom in front of a mirror. Nature Physics, 2015, 11, 1045-1049.	6.5	103
224	Electron-positron annihilation and absorption models. , 2015, , .		0
225	Degenerate parametric amplification of squeezed photons: Explicit solutions, statistics, means and variances. Journal of Nonlinear Optical Physics and Materials, 2015, 24, 1550021.	1.1	4
226	Analogue model for controllable Casimir radiation in a nonlinear cavity with amplitude-modulated pumping: generation and quantum statistical properties. Journal of the Optical Society of America B: Optical Physics, 2015, 32, 1555.	0.9	22
227	Quantum Correlations of Photons and Qudit States. Journal of Russian Laser Research, 2015, 36, 503-521.	0.3	10
228	Phonon black-body radiation limit for heat dissipation in electronics. Nature Materials, 2015, 14, 187-192.	13.3	69
229	The Reality of Casimir Friction. Symmetry, 2016, 8, 29.	1.1	43
230	Time reversal and holography with spacetimeÂtransformations. Nature Physics, 2016, 12, 972-977.	6.5	169
231	Electromagnetic thermal corrections to Casimir energy. Modern Physics Letters A, 2016, 31, 1650127.	0.5	2
232	Quantum simulation of the dynamical Casimir effect with trapped ions. New Journal of Physics, 2016, 18, 043029.	1.2	6
233	Information travels in massless fields in 1+1 dimensions where energy cannot. Journal of Physics A: Mathematical and Theoretical, 2016, 49, 445402.	0.7	22
234	Scattering of nanowire surface plasmons coupled to quantum dots with azimuthal angle difference. Scientific Reports, 2016, 6, 37766.	1.6	13
235	Detecting topological phases of microwave photons in a circuit quantum electrodynamics lattice. Npj Quantum Information, 2016, 2, .	2.8	26
236	Thermal noise in BEC-phononic gravitational wave detectors. EPJ Quantum Technology, 2016, 3, .	2.9	14

#	Article	IF	CITATIONS
237	Casimir effect on graphene resonator. Journal of Applied Physics, 2016, 119, .	1.1	12
238	The generalized Doppler effect for surface waves. Europhysics Letters, 2016, 116, 44002.	0.7	Ο
239	Polariton excitation rates from time dependent dielectrics. Journal of Physics B: Atomic, Molecular and Optical Physics, 2016, 49, 235502.	0.6	1
240	Analytical comparison of the first- and second-order resonances for implementation of the dynamical Casimir effect in nonstationary circuit QED. Journal of Physics A: Mathematical and Theoretical, 2016, 49, 495304.	0.7	9
241	Two schemes for characterization and detection of the squeezed light: dynamical Casimir effect and nonlinear materials. Journal of Physics B: Atomic, Molecular and Optical Physics, 2016, 49, 065503.	0.6	3
242	Anti-Unruh phenomena. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2016, 757, 307-311.	1.5	46
243	Enhanced dynamical Casimir effect for surface and guided waves. Applied Physics A: Materials Science and Processing, 2016, 122, 1.	1.1	4
244	Microwave Quantum Photonics. Quantum Science and Technology, 2016, , 139-162.	1.5	1
245	Time dependence of adiabatic particle number. Physical Review D, 2016, 94, .	1.6	45
247	Many-body quantum electrodynamics networks: Non-equilibrium condensed matter physics with light. Comptes Rendus Physique, 2016, 17, 808-835.	0.3	82
248	Quantum simulation of traversable wormhole spacetimes in a dc-SQUID array. Physical Review D, 2016, 94, .	1.6	23
249	Nonlinear manipulation of tunable microwave amplification and attenuation in superconducting circuits. Europhysics Letters, 2016, 115, 54002.	0.7	Ο
250	Holonomic quantum computation in the ultrastrong-coupling regime of circuit QED. Physical Review A, 2016, 94, .	1.0	71
251	Nonadiabatic holonomic quantum computation with all-resonant control. Physical Review A, 2016, 94,	1.0	62
252	Coupling erbium spins to a three-dimensional superconducting cavity at zero magnetic field. Physical Review B, 2016, 94, .	1.1	25
253	Observation of the Phononic Lamb Shift with a Synthetic Vacuum. Physical Review X, 2016, 6, .	2.8	51
254	Dynamical Casimir effect in circuit QED for nonuniform trajectories. Physical Review A, 2016, 93, .	1.0	7
255	Ultrastrong optomechanics incorporating the dynamical Casimir effect. Physical Review A, 2016, 93, .	1.0	22

#	Article	IF	CITATIONS
256	Dynamical Casimir effect in superconducting circuits: A numerical approach. Physical Review A, 2016, 93, .	1.0	13
257	Dynamical Casimir-Polder interaction between a chiral molecule and a surface. Physical Review A, 2016, 93, .	1.0	20
258	Effective Landau-Zener transitions in the circuit dynamical Casimir effect with time-varying modulation frequency. Physical Review A, 2016, 93, .	1.0	23
259	Hawking spectrum for a fiber-optical analog of the event horizon. Physical Review A, 2016, 93, .	1.0	26
260	Circuit quantum electrodynamics simulator of flat band physics in a Lieb lattice. Physical Review A, 2016, 93, .	1.0	32
261	Simple, robust, and on-demand generation of single and correlated photons. Physical Review A, 2016, 93, .	1.0	10
262	Dynamical Lamb effect versus dissipation in superconducting quantum circuits. Physical Review A, 2016, 93, .	1.0	18
263	Quantum Vavilov-Cherenkov radiation from shearing two transparent dielectric plates. Physical Review B, 2016, 93, .	1.1	3
264	Entangling polaritons via dynamical Casimir effect in circuit quantum electrodynamics. Physical Review B, 2016, 93, .	1.1	43
265	Ground State Electroluminescence. Physical Review Letters, 2016, 116, 113601.	2.9	71
266	Mesoscopic Superposition States Generated by Synthetic Spin-Orbit Interaction in Fock-State Lattices. Physical Review Letters, 2016, 116, 220502.	2.9	33
267	All-optical dynamical Casimir effect in a three-dimensional terahertz photonic band gap. Physical Review B, 2016, 93, .	1.1	13
268	Aharonov-Bohm phases in a quantum LC circuit. Physical Review D, 2016, 93, .	1.6	5
269	Equivalence principle and QFT: Can a particle detector tell if we live inside a hollow shell?. Physical Review D, 2016, 94, .	1.6	13
270	Dynamical Casimir effect withl´â^'δ′mirrors. Physical Review D, 2016, 94, .	1.6	12
271	Light-Pressure Experiments by P. N. Lebedev and Modern Problems of Optomechanics and Quantum Optics. Journal of Russian Laser Research, 2016, 37, 425-433.	0.3	5
272	Coherence and multimode correlations from vacuum fluctuations in a microwave superconducting cavity. Nature Communications, 2016, 7, 12548.	5.8	44
273	Dynamical Casimir-Polder force between an excited atom and a conducting wall. Physical Review A, 2016, 94, .	1.0	15

#	Article	IF	CITATIONS
274	Parametric amplification of light in a cavity with a moving dielectric membrane: Landau-Zener problem for the Maxwell field. Physical Review A, 2016, 94, .	1.0	3
275	Quantum entanglement for two qubits in a nonstationary cavity. Physical Review A, 2016, 94, .	1.0	9
276	Output squeezed radiation from dispersive ultrastrong light-matter coupling. Physical Review A, 2016, 94, .	1.0	8
277	Single-shot read-out of a superconducting qubit using a Josephson parametric oscillator. Nature Communications, 2016, 7, 11417.	5.8	67
278	Reconstruction of electromagnetic field states by a probe qubit. European Physical Journal D, 2016, 70, 1.	0.6	2
279	Vacuum excitation by sudden appearance and disappearance of a Dirichlet wall in a cavity. Physical Review D, 2016, 94, .	1.6	4
280	Towards universal quantum computation through relativistic motion. Scientific Reports, 2016, 6, 18349.	1.6	20
281	Output field-quadrature measurements and squeezing in ultrastrong cavity-QED. New Journal of Physics, 2016, 18, 123005.	1.2	62
282	Excitation of the Classical Electromagnetic Field in a Cavity Containing a Thin Slab with a Time-Dependent Conductivity. Journal of Russian Laser Research, 2016, 37, 107-122.	0.3	4
283	Quantum parameter estimation in the Unruh–DeWitt detector model. Annals of Physics, 2016, 372, 110-118.	1.0	7
284	Geometric phases and quantum correlations of superconducting two-qubit system with dissipative effect. Physica C: Superconductivity and Its Applications, 2016, 520, 8-18.	0.6	2
285	Time evolution of the coherent state in a degenerate parametric amplifier. Optik, 2016, 127, 5413-5421.	1.4	0
286	Evolution of the coherent state via a new time evolution operator. Optik, 2016, 127, 3828-3833.	1.4	1
287	Constructing <i>ab initio</i> models of ultra-thin Al–AlO _x –Al barriers. Molecular Simulation, 2016, 42, 542-548.	0.9	12
288	Anti-dynamical Casimir effect with an ensemble of qubits. Physics Letters, Section A: General, Atomic and Solid State Physics, 2016, 380, 1542-1546.	0.9	11
289	Microwave Photonics on a Chip: Superconducting Circuits as Artificial Atoms for Quantum Information Processing. Lecture Notes in Physics, 2016, , 461-476.	0.3	1
290	Nano Superconducting Quantum Interference device: A powerful tool for nanoscale investigations. Physics Reports, 2016, 614, 1-69.	10.3	193
291	Principles and Methods of Quantum Information Technologies. Lecture Notes in Physics, 2016, , .	0.3	16

		CITATION R	EPORT	
#	Article		IF	CITATIONS
292	First Elements for the Foundation of a New Paradigm in Physics. World Futures, 2016,	72, 19-40.	0.8	1
293	Superconducting qubit in a nonstationary transmission line cavity: Parametric excitation pumping, and energy dissipation. Physics Letters, Section A: General, Atomic and Solid 2017, 381, 592-596.	on, periodic State Physics,	0.9	7
294	Quantum paradoxes, entanglement and their explanation on the basis of quantization Modern Physics Letters B, 2017, 31, 1750007.	of fields.	1.0	14
295	A Conceptual Study of Microelectromechanical Disk Resonators. IEEE Journal on Multis Multiphysics Computational Techniques, 2017, 2, 29-37.	scale and	1.4	15
296	Ultrastrong coupling dynamics with a transmon qubit. New Journal of Physics, 2017, 1	9,023022.	1.2	29
297	Casimir Forces and Quantum Friction from Ginzburg Radiation in Atomic Bose-Einsteir Physical Review Letters, 2017, 118, 045301.	Condensates.	2.9	36
298	Fundamental limits for cooling of linear quantum refrigerators. Physical Review E, 201	7, 95, 012146.	0.8	42
299	Quantum coherence in the dynamical Casimir effect. Physical Review A, 2017, 95, .		1.0	16
300	Qubit-flip-induced cavity mode squeezing in the strong dispersive regime of the quant Scientific Reports, 2017, 7, 45587.	um Rabi model.	1.6	7
301	On the emission of radiation by an isolated vibrating metallic mirror. Optics and Spect (English Translation of Optika I Spektroskopiya), 2017, 122, 670-674.	roscopy	0.2	1
302	Quantum circuit model for non-inertial objects: a uniformly accelerated mirror. New Jo Physics, 2017, 19, 063017.	urnal of	1.2	11
303	Quantum simulation of the Abelian-Higgs lattice gauge theory with ultracold atoms. N Physics, 2017, 19, 063038.	ew Journal of	1.2	53
304	Analysis of the Electromagnetic Field Quantization Process and the Photon Vector Pot Non-Local Photon Wave-Particle Representation and the Quantum Vacuum. , 2017, , 9	ential. 19-129.		0
305	Topological Casimir effect in a quantum LC circuit: Real-time dynamics. Physical Review	v D, 2017, 95, .	1.6	4
306	Controlling and observing nonseparability of phonons created in time-dependent 1D a condensates. Physical Review D, 2017, 95, .	tomic Bose	1.6	17
307	Quantum systems under frequency modulation. Reports on Progress in Physics, 2017,	80, 056002.	8.1	117
308	Entanglement of superconducting qubits via acceleration radiation. Scientific Reports,	2017, 7, 657.	1.6	30
309	Numerical approach to simulating interference phenomena in a cavity with two oscilla Physical Review A, 2017, 95, .	ting mirrors.	1.0	9

#	Article	IF	CITATIONS
310	Ultrafast quantum computation in ultrastrongly coupled circuit QED systems. Scientific Reports, 2017, 7, 44251.	1.6	25
311	Synthetic Unruh effect in cold atoms. Physical Review A, 2017, 95, .	1.0	56
312	Harvesting Multiqubit Entanglement from Ultrastrong Interactions in Circuit Quantum Electrodynamics. Physical Review Letters, 2017, 119, 183602.	2.9	31
313	Microwave photonics with superconducting quantum circuits. Physics Reports, 2017, 718-719, 1-102.	10.3	853
314	Amplification of the parametric dynamical Casimir effect via optimal control. Physical Review A, 2017, 96, .	1.0	12
315	Simulating superluminal physics with superconducting circuit technology. Physical Review A, 2017, 96,	1.0	11
316	Analog cosmological particle generation in a superconducting circuit. Physical Review D, 2017, 95, .	1.6	28
317	Feynman-diagrams approach to the quantum Rabi model for ultrastrong cavity QED: stimulated emission and reabsorption of virtual particles dressing a physical excitation. New Journal of Physics, 2017, 19, 053010.	1.2	49
318	Speeding up the antidynamical Casimir effect with nonstationary qutrits. Physical Review A, 2017, 96, .	1.0	6
319	Quantum properties of the radiation emitted by a conductor in the Coulomb blockade regime. Physical Review B, 2017, 95, .	1.1	10
320	Smooth and sharp creation of a pointlike source for a (<mml:math) 0="" 10="" 352="" 50="" etqq0="" overlock="" rgbt="" td="" td<="" tf="" tj=""><td>(xmlns:mi 1.6</td><td>ml="http://wv 7</td></mml:math)>	(xmlns:mi 1.6	ml="http://wv 7
321	Nondegenerate Parametric Resonance in a Tunable Superconducting Cavity. Physical Review Applied, 2017, 8, .	1.5	20
322	Tunable quantum entanglement of three qubits in a nonstationary cavity. Physical Review A, 2017, 96, .	1.0	6
323	Terahertz Light–Matter Interaction beyond Unity Coupling Strength. Nano Letters, 2017, 17, 6340-6344.	4.5	156
324	Dynamical Casimir effect in stochastic systems: Photon harvesting through noise. Physical Review A, 2017, 96, .	1.0	17
325	One-step generation of continuous-variable quadripartite cluster states in a circuit QED system. Physical Review A, 2017, 96, .	1.0	10
326	Adaptive numerical algorithms to simulate the dynamical Casimir effect in a closed cavity with different boundary conditions. Physical Review E, 2017, 96, 013307.	0.8	9
327	Postface: Heidegger's being and quantum vacuum. Progress in Biophysics and Molecular Biology, 2017, 131, 494-496.	1.4	1

#	Article	IF	CITATIONS
328	Amplified Optomechanical Transduction of Virtual Radiation Pressure. Physical Review Letters, 2017, 119, 053601.	2.9	60
329	Engineering negative stress-energy densities with quantum energy teleportation. Physical Review D, 2017, 96, .	1.6	10
330	Quantum Mechanics of the Photon. , 2017, , 173-234.		0
331	Nonequilibrium dressing in a cavity with a movable reflecting mirror. Physical Review D, 2017, 96, .	1.6	12
332	Quantum Emulation of Molecular Force Fields: A Blueprint for a Superconducting Architecture. Physical Review Applied, 2017, 8, .	1.5	6
333	Quantum channels from reflections on moving mirrors. Scientific Reports, 2017, 7, 15747.	1.6	6
334	Virtual photons in the ground state of a dissipative system. Nature Communications, 2017, 8, 1465.	5.8	75
335	Triangle Geometry for Qutrit States in the Probability Representation. Journal of Russian Laser Research, 2017, 38, 416-425.	0.3	35
336	On-Demand Microwave Generator of Shaped Single Photons. Physical Review Applied, 2017, 8, .	1.5	45
337	Parametrically driven hybrid qubit-photon systems: Dissipation-induced quantum entanglement and photon production from vacuum. Physical Review A, 2017, 96, .	1.0	11
338	On horizonless temperature with an accelerating mirror. Journal of High Energy Physics, 2017, 2017, 1.	1.6	44
339	Squeezing and quantum state engineering with Josephson travelling wave amplifiers. Npj Quantum Information, 2017, 3, .	2.8	53
340	Nonclassical Photon Number Distribution in a Superconducting Cavity under a Squeezed Drive. Physical Review Letters, 2017, 119, 023602.	2.9	33
341	Antidynamical Casimir effect as a resource for work extraction. Physical Review A, 2017, 96, .	1.0	7
342	Dynamical Casimir effect in curved spacetime. New Journal of Physics, 2017, 19, 073005.	1.2	10
343	Entanglement, coherence, and redistribution of quantum resources in double spontaneous down-conversion processes. Physical Review A, 2017, 95, .	1.0	23
344	Slicing the vacuum: New accelerating mirror solutions of the dynamical Casimir effect. Physical Review D, 2017, 96, .	1.6	27
345	Quantum entanglement, Wheeler's delayed choice experiment and its explanation on the basis of quantization of fields. Journal of Physics: Conference Series, 2017, 880, 012030.	0.3	1

#	Article	IF	CITATIONS
346	Dynamical Casimir effect of phonon excitation in the dispersive regime of cavity optomechanics. Journal of the Optical Society of America B: Optical Physics, 2017, 34, 642.	0.9	22
347	Higherâ€Order Interactions in Quantum Optomechanics: Revisiting Theoretical Foundations. Applied Sciences (Switzerland), 2017, 7, 656.	1.3	7
348	Electromagnetic Casimir Effect in AdS Spacetime. Galaxies, 2017, 5, 102.	1.1	6
349	Influence of the Kerr nonlinearity in a single nonstationary cavity mode. Journal of the Optical Society of America B: Optical Physics, 2017, 34, 1170.	0.9	17
350	Analysis of high-harmonic generation in terms of complex Floquet spectral analysis. , 2017, , .		0
351	Dynamical Casimir Effect for Gaussian Boson Sampling. Scientific Reports, 2018, 8, 3751.	1.6	11
352	Effects of Energy Dissipation on the Parametric Excitation of a Coupled Qubit–Cavity System. Journal of Low Temperature Physics, 2018, 191, 365-372.	0.6	1
353	Nonperturbative Dynamical Casimir Effect in Optomechanical Systems: Vacuum Casimir-Rabi Splittings. Physical Review X, 2018, 8, .	2.8	57
354	Cooling a quantum oscillator: A useful analogy to understand laser cooling as a thermodynamical process. Physical Review A, 2018, 97, .	1.0	13
355	Simulation and detection of the topological properties of a modulated Rice-Mele model in a one-dimensional circuit-QED lattice. Science China: Physics, Mechanics and Astronomy, 2018, 61, 1.	2.0	17
356	Flux-tunable heat sink for quantum electric circuits. Scientific Reports, 2018, 8, 6325.	1.6	26
357	Repulsive Casimir force in Bose–Einstein Condensate. Journal of Statistical Mechanics: Theory and Experiment, 2018, 2018, 043401.	0.9	11
358	Two-photon exchange interaction from the Dicke Hamiltonian under parametric modulation. Physical Review A, 2018, 97, .	1.0	0
359	Multiplying and detecting propagating microwave photons using inelastic Cooper-pair tunneling. Physical Review A, 2018, 97, .	1.0	19
360	Coherent control and storage of a microwave pulse in a one-dimensional array of artificial atoms using the Autler-Townes effect and electromagnetically induced transparency. Physical Review A, 2018, 97, .	1.0	5
361	Quasi-superradiant soliton state of matter in quantum metamaterials. European Physical Journal B, 2018, 91, 1.	0.6	5
362	Retrieving the lost fermionic entanglement by partial measurement in noninertial frames. Annals of Physics, 2018, 390, 83-94.	1.0	15
363	Classical and quantum wave dynamics on time-dependent geometric graph. Chinese Journal of Physics, 2018, 56, 747-753.	2.0	0

ARTICLE IF CITATIONS # Analogue simulation with the use of artificial quantum coherent structures. Reviews in Physics, 2018, 364 4.4 37 3, 1-14. Gravity in the quantum lab. Advances in Physics: X, 2018, 3, 1383184. 1.5 Electronic zero-point fluctuation forces inside circuit components. Science Advances, 2018, 4, 366 4.7 2 eaaq0842. One-dimensional sections of exotic spacetimes with superconducting circuits. New Journal of 1.2 Physics, 2018, 20, 053028. Anonymous broadcasting of classical information with a continuous-variable topological quantum 368 1.0 15 code. Physical Review A, 2018, 97, . Topological Maxwell Metal Bands in a Superconducting Qutrit. Physical Review Letters, 2018, 120, 87 130503 370 Microscopic dynamical Casimir effect. Physical Review A, 2018, 97, . 1.0 25 Cavity optomechanics: Manipulating photons and phonons towards the single-photon strong coupling. Chinese Physics B, 2018, 27, 024204. 371 38 372 Can Ultrastrong Coupling Change Ground-State Chemical Reactions?. ACS Photonics, 2018, 5, 167-176. 3.2 95 Periodically modulated single-photon transport in one-dimensional waveguide. Optics 1.0 Communications, 2018, 410, 305-309. Prethermalization to thermalization crossover in a dilute Bose gas following an interaction ramp. 374 1.0 19 Physical Review A, 2018, 98, . Dissipation and thermal noise in hybrid quantum systems in the ultrastrong-coupling regime. Physical Review A, 2018, 98, . Inelastic scattering of microwave radiation in the dynamical Coulomb blockade. Physical Review B, 376 1.1 8 2018, 98, . Unruh-DeWitt detectors as mirrors: Dynamical reflectivity and Casimir effect. Physical Review D, 2018, 1.6 98,. Photodetection probability in quantum systems with arbitrarily strong light-matter interaction. 378 19 1.6 Scientific Reports, 2018, 8, 17825. Bi-squeezed states arising from pseudo-bosons. Journal of Physics A: Mathematical and Theoretical, 379 2018, 51, 455204. Analog–Digital Quantum Simulation of the Dicke Model with Superconducting Circuits. JETP Letters, 380 0.4 1 2018, 108, 748-753. Quantum radiation from a shaken two-level atom in vacuum. Physical Review A, 2018, 98, .

#	Article	IF	CITATIONS
382	Generating Multimode Entangled Microwaves with a Superconducting Parametric Cavity. Physical Review Applied, 2018, 10, .	1.5	44
383	Casimir forces and quantum friction of finite-size atoms in relativistic trajectories. Physical Review A, 2018, 98, .	1.0	4
384	Creation of entangled atomic states by an analogue of the Dynamical Casimir effect. New Journal of Physics, 2018, 20, 103017.	1.2	2
385	Microwave photon generation in a doubly tunable superconducting resonator. Journal of Physics: Conference Series, 2018, 969, 012146.	0.3	11
386	Applications of Picard and Magnus expansions to the Rabi model. European Physical Journal D, 2018, 72, 1.	0.6	5
387	Transmitting qubits through relativistic fields. Journal of Physics A: Mathematical and Theoretical, 2018, 51, 485301.	0.7	22
388	Phase and amplitude control of microwave pulse in a linear array of superconducting artificial atoms. European Physical Journal D, 2018, 72, 1.	0.6	1
389	Post Scriptum: Tendency in Understanding the Foundations of Quantum Optics, Quantum Information, and Quantum Computing Technologiesâ€. Journal of Russian Laser Research, 2018, 39, 499-504.	0.3	1
390	Dissipative quantum entanglement dynamics of two and three qubits due to the dynamical Lamb effect. Physical Review A, 2018, 98, .	1.0	7
391	Quantum probe of an on-chip broadband interferometer for quantum microwave photonics. Superconductor Science and Technology, 2018, 31, 115002.	1.8	8
392	Superconducting Qubit Systems as a Platform for Studying Effects of Nonstationary Electrodynamics in a Cavity. JETP Letters, 2018, 108, 63-70.	0.4	3
393	Algorithmic simulation of far-from-equilibrium dynamics using quantum computer. Quantum Information Processing, 2018, 17, 1.	1.0	48
394	Quantum routing of single optical photons with a superconducting flux qubit. Physical Review A, 2018, 97, .	1.0	21
395	Scalar field vacuum expectation value induced by gravitational wave background. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2018, 781, 621-625.	1.5	7
396	Two-mode squeezing operator in circuit QED. Quantum Information Processing, 2018, 17, 1.	1.0	3
397	Self-Adapted Floquet Dynamics of Ultracold Bosons in a Cavity. Physical Review Letters, 2018, 120, 263202.	2.9	8
398	On the carrier of inertia. AIP Advances, 2018, 8, 035028.	0.6	9
399	Controllable generation of photons and phonons in a coupled Bose–Einstein condensate-optomechanical cavity via the parametric dynamical Casimir effect. Annals of Physics, 2018, 396, 202-219.	1.0	33

#	Article	IF	CITATIONS
400	Quantum power boost in a nonstationary cavity-QED quantum heat engine. Journal of Physics A: Mathematical and Theoretical, 2018, 51, 365302.	0.7	9
401	On the Unruh effect, trajectories and information. Classical and Quantum Gravity, 2018, 35, 184002.	1.5	6
402	Accounting for Dissipation in the Scattering Approach to the Casimir Energy. Symmetry, 2018, 10, 37.	1.1	5
403	An autonomous single-piston engine with a quantum rotor. Quantum Science and Technology, 2018, 3, 035008.	2.6	17
404	Theory of the Josephson Junction Laser. Physical Review Letters, 2018, 121, 027004.	2.9	7
405	Quantum optics approach to radiation from atoms falling into a black hole. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 8131-8136.	3.3	48
406	Modulation of energy spectrum and control of coherent microwave transmission at single-photon level by longitudinal field in a superconducting quantum circuit. Chinese Physics B, 2018, 27, 074206.	0.7	1
407	Excitation of an Atom by a Uniformly Accelerated Mirror through Virtual Transitions. Physical Review Letters, 2018, 121, 071301.	2.9	35
408	Lie algebraic approach to a nonstationary atom-cavity system. Journal of the Optical Society of America B: Optical Physics, 2018, 35, 1979.	0.9	2
409	Dynamical Casimir effect in a double tunable superconducting circuit. Physical Review A, 2018, 98, .	1.0	13
410	Quantum coherence and geometric quantum discord. Physics Reports, 2018, 762-764, 1-100.	10.3	201
411	Eternal and evanescent black holes and accelerating mirror analogs. Physical Review D, 2018, 97, .	1.6	29
412	Roton entanglement in quenched dipolar Bose-Einstein condensates. Physical Review A, 2018, 97, .	1.0	19
413	Magnetically activated rotational vacuum friction. Physical Review A, 2019, 99, .	1.0	14
414	Simulating moving cavities in superconducting circuits. Physical Review A, 2019, 100, .	1.0	4
415	Parametric effects in circuit quantum electrodynamics. Low Temperature Physics, 2019, 45, 848-869.	0.2	28
416	Conversion of mechanical noise into correlated photon pairs: Dynamical Casimir effect from an incoherent mechanical drive. Physical Review A, 2019, 100, .	1.0	24
417	Strong Metasurface–Josephson Plasma Resonance Coupling in Superconducting La 2â^' x Sr x CuO 4. Advanced Ontical Materials, 2019, 7, 1900712	3.6	9

		CITATION R	EPORT	
#	Article		IF	Citations
418	Asymmetric quantum correlations in the dynamical Casimir effect. Scientific Reports, 202	19, 9, 9552.	1.6	3
419	Dynamical Lamb effect in a superconducting circuit. Physical Review A, 2019, 100, .		1.0	2
420	Time-dependent metric graph: Wave dynamics. AIP Conference Proceedings, 2019, , .		0.3	1
421	Generation of Photon Pairs in the Light-Matter Ultrastrong Coupling Regime: From Casin to Stimulated Raman Adiabatic Passage. Proceedings (mdpi), 2019, 12, .	ir Radiation	0.2	0
422	Single Photons by Quenching the Vacuum. Physical Review Letters, 2019, 123, 013601.		2.9	26
423	Probing photon statistics of coherent states by continuous wave mixing on a two-level sy Physical Review A, 2019, 100, .	vstem.	1.0	11
424	Enhanced Dynamic Casimir Effect in Temporally and Spatially Modulated Josephson Trans Laser and Photonics Reviews, 2019, 13, 1900164.	mission Line.	4.4	5
425	Flux-Driven Josephson Traveling-Wave Parametric Amplifier. Physical Review Applied, 201	9, 12, .	1.5	34
426	Spontaneous Emission of an Atom Near an Oscillating Mirror. Symmetry, 2019, 11, 1384		1.1	12
427	Entanglement production in the dynamical Casimir effect at parametric resonance. Physi 2019, 100, .	cal Review D,	1.6	13
428	Phonon Pair Creation by Inflating Quantum Fluctuations in an Ion Trap. Physical Review L 123, 180502.	etters, 2019,	2.9	36
429	Superposition Principle and Born's Rule in the Probability Representation of Quantun Quantum Reports, 2019, 1, 130-150.	n States.	0.6	11
430	Entangling continuous variables with a qubit array. Physical Review B, 2019, 100, .		1.1	1
431	Finite-size effect on Bose–Einstein condensate mixtures in improved Hartree–Fock a International Journal of Modern Physics B, 2019, 33, 1950114.	pproximation.	1.0	9
432	Entangling two high-Q microwave resonators assisted by a resonator terminated with SQ Journal of Physics, 2019, 21, 073025.	JUIDs. New	1.2	3
433	Vacuum radiation and frequency-mixing in linear light-matter systems. Journal of Physics Communications, 2019, 3, 065012.		0.5	4
434	Electro-optical sampling of quantum vacuum fluctuations in dispersive dielectrics. Physic 2019, 100, .	al Review A,	1.0	10
435	Optical analogue of the dynamical Casimir effect in a dispersion-oscillating fibre. Commu Physics, 2019, 2, .	nications	2.0	25

		CITATION RE	PORT	
#	Article		IF	CITATIONS
436	Resonant frequency ratios for the dynamical Casimir effect. Physical Review A, 2019, 1	00, .	1.0	2
437	Probabilistic fault-tolerant universal quantum computation and sampling problems in c variables. Physical Review A, 2019, 99, .	ontinuous	1.0	12
438	Regularization versus Renormalization: Why Are Casimir Energy Differences So Often F Particles, 2019, 2, 14-31.	ìnite?.	0.5	4
439	Interaction of Mechanical Oscillators Mediated by the Exchange of Virtual Photon Pairs Review Letters, 2019, 122, 030402.	. Physical	2.9	54
440	Dynamical Casimir effect meets material science. IOP Conference Series: Materials Scie Engineering, 2019, 474, 012009.	nce and	0.3	2
441	Floquet dynamics of classical and quantum cavity fields. Annals of Physics, 2019, 405,	101-129.	1.0	11
442	From the moving piston to the dynamical Casimir effect: Explorations with shaken con Physical Review A, 2019, 99, .	densates.	1.0	12
443	Quantum Memory in the USC Regime. Springer Theses, 2019, , 65-78.		0.0	0
444	A quantum engineer's guide to superconducting qubits. Applied Physics Reviews, 2019	ð, 6, .	5.5	909
445	Subradiant states of quantum bits coupled to a one-dimensional waveguide. New Jourr 2019, 21, 025003.	nal of Physics,	1.2	90
446	Entanglement harvesting with moving mirrors. Journal of High Energy Physics, 2019, 20	019, 1.	1.6	38
447	Mechanically generating entangled photons from the vacuum: A microwave circuit-aco resonator analog of the oscillatory Unruh effect. Physical Review A, 2019, 99, .	ustic	1.0	21
448	Creating lattice gauge potentials in circuit QED: The bosonic Creutz ladder. Physical Re 99, .	view A, 2019,	1.0	29
449	Entanglement through qubit motion and the dynamical Casimir effect. Physical Review	A, 2019, 99, .	1.0	13
450	Multielectron Ground State Electroluminescence. Physical Review Letters, 2019, 122, 1	190403.	2.9	12
451	Mechanical backreaction effect of the dynamical Casimir emission. Physical Review A, 2	2019, 99, .	1.0	18
452	Quantum work distributions associated with the dynamical Casimir effect. Physical Rev	view A, 2019, 99,	1.0	9
453	Tunable Superconducting Two-Chip Lumped-Element Resonator. Physical Review Appli	ed, 2019, 11, .	1.5	3

# 454	ARTICLE Ouantum-enhanced noise radar. Applied Physics Letters, 2019, 114, .	IF 1,5	CITATIONS
455	Collective radiance effects in the ultrastrong-coupling regime. Physical Review A, 2019, 99, .	1.0	28
456	Electric field correlation measurements on the electromagnetic vacuum state. Nature, 2019, 568, 202-206.	13.7	82
457	Two-time correlators for propagating squeezed microwave fields in transients. Physical Review A, 2019, 99, .	1.0	3
458	Prospects for Searching Thermal Effects, Non-Newtonian Gravity and Axion-Like Particles: Cannex Test of the Quantum Vacuum. Symmetry, 2019, 11, 407.	1.1	24
459	Spectrum Density Factor of Photons and Its Application in the Casimir Force. Communications in Theoretical Physics, 2019, 71, 397.	1.1	0
461	Effect of forcing on vacuum radiation. Physical Review A, 2019, 99, .	1.0	2
462	Dynamic generation of multi-qubit entanglement in the ultrastrong-coupling regime. Scientific Reports, 2019, 9, 2919.	1.6	4
463	Explosive particle creation by instantaneous change of boundary conditions. Physical Review D, 2019, 99, .	1.6	2
464	Analogue Hawking radiation and quantum soliton evaporation in a superconducting circuit. European Physical Journal C, 2019, 79, 1.	1.4	17
465	Hyperbolic metamaterials: production, properties, applications, and prospects. Physics-Uspekhi, 2019, 62, 1173-1207.	0.8	22
466	Quantum fluctuations of the friction force induced by the dynamical Casimir emission. Europhysics Letters, 2019, 128, 24002.	0.7	9
467	Scalable collective Lamb shift of a 1D superconducting qubit array in front of a mirror. Scientific Reports, 2019, 9, 19175.	1.6	4
468	Analog of cosmological particle creation in electromagnetic waveguides. Physical Review D, 2019, 100,	1.6	10
469	Emission of photon pairs by mechanical stimulation of the squeezed vacuum. Physical Review A, 2019, 100, .	1.0	48
470	Photon generation via the dynamical Casimir effect in an optomechanical cavity as a closed quantum system. Physical Review A, 2019, 100, .	1.0	7
471	Unconventional cavity optomechanics: Nonlinear control of phonons in the acoustic quantum vacuum. Physical Review A, 2019, 100, .	1.0	19
472	Ideal Quantum Nondemolition Readout of a Flux Qubit without Purcell Limitations. Physical Review Applied, 2019, 12, .	1.5	23

	CITATION	Report	
#	Article	IF	CITATIONS
473	Phonon heat transfer across a vacuum through quantum fluctuations. Nature, 2019, 576, 243-247.	13.7	74
474	Carbon nanotube-based lossy transmission line filter for superconducting qubit measurements. Applied Physics Letters, 2019, 115, .	1.5	4
475	Entanglement, nonclassical properties, and geometric phase in circuit quantum electrodynamics with relativistic motion. Solid State Communications, 2019, 290, 31-36.	0.9	5
476	Ultrastrong coupling between light and matter. Nature Reviews Physics, 2019, 1, 19-40.	11.9	916
477	Decoherence of the Radiation from an Accelerated Quantum Source. Physical Review X, 2019, 9, .	2.8	8
478	The Dynamical Casimir Effect in Squeezed Vacuum State. International Journal of Theoretical Physics, 2019, 58, 22-30.	0.5	2
479	The Dynamical Behaviors of the Two-Atom and the Dynamical Casimir Effect in a Non-Stationary Cavity. International Journal of Theoretical Physics, 2019, 58, 786-798.	0.5	1
480	Timeâ€dependent photon statistics in variable media. Mathematical Methods in the Applied Sciences, 2019, 42, 5040-5051.	1.2	1
481	Approximate evolution for a system composed by two coupled Jaynes–Cummings Hamiltonians. Physica Scripta, 2020, 95, 034008.	1.2	3
482	Casimir effect in a weakly interacting Bose gas confined by a parallel plate geometry in improved Hartree–Fock approximation. Physica A: Statistical Mechanics and Its Applications, 2020, 540, 123018.	1.2	11
483	Polariton Assisted Down-Conversion of Photons via Nonadiabatic Molecular Dynamics: A Molecular Dynamical Casimir Effect. Journal of Physical Chemistry Letters, 2020, 11, 152-159.	2.1	28
484	Zel'dovich Amplification in a Superconducting Circuit. Physical Review Letters, 2020, 125, 140801.	2.9	7
485	Entanglement and Gaussian Interference Power in the Dynamical Casimir Effect. International Journal of Theoretical Physics, 2020, 59, 3574-3582.	0.5	0
486	Light–matter interactions with photonic quasiparticles. Nature Reviews Physics, 2020, 2, 538-561.	11.9	178
487	Polarized Fock States and the Dynamical Casimir Effect in Molecular Cavity Quantum Electrodynamics. Journal of Physical Chemistry Letters, 2020, 11, 9215-9223.	2.1	45
488	Ultrastrong light–matter coupling in semiconductors. Semiconductors and Semimetals, 2020, 105, 89-151.	0.4	7
489	Casimir spring and dilution in macroscopic cavity optomechanics. Nature Physics, 2020, 16, 1117-1122.	6.5	13
490	Non-adiabatic stripping of a cavity field from electrons in the deep-strong coupling regime. Nature Photonics, 2020, 14, 675-679.	15.6	33

#	Article	IF	CITATIONS
491	Chiral-Anomaly-Driven Casimir-Lifshitz Torque between Weyl Semimetals. Physical Review Letters, 2020, 125, 047402.	2.9	13
492	Analogue gravity on a superconducting chip. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2020, 378, 20190224.	1.6	12
493	Landau-Zener-Stückelberg-Majorana interferometry of a superconducting qubit in front of a mirror. Physical Review B, 2020, 102, .	1.1	20
494	The next generation of analogue gravity experiments. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2020, 378, 20190239.	1.6	34
495	Trapped-ion toolkit for studies of quantum harmonic oscillators under extreme conditions. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2020, 378, 20190230.	1.6	4
496	Dynamical Casimir effect in resonance fluorescence. Physical Review A, 2020, 102, .	1.0	3
497	Evolution of confined quantum scalar fields in curved spacetime. Part I. European Physical Journal C, 2020, 80, 1.	1.4	3
498	Decoherence of Einstein–Podolsky–Rosen steering and the teleportation fidelity in the dynamical Casimir effect. Quantum Information Processing, 2020, 19, 1.	1.0	4
499	Thermally pumped on-chip maser. Physical Review B, 2020, 102, .	1.1	5
500	Non-Abelian Aharonov-Bohm caging in photonic lattices. Physical Review A, 2020, 102, .	1.0	6
501	Relativistic bands in the discrete spectrum of created particles in an oscillating cavity. Physical Review D, 2020, 102, .	1.6	2
502	Progress Toward an All-Microwave Quantum Illumination Radar. IEEE Aerospace and Electronic Systems Magazine, 2020, 35, 58-69.	2.3	3
503	Entanglement degradation of cavity modes due to the dynamical Casimir effect. Physical Review D, 2020, 102, .	1.6	5
504	Entangling Superconducting Qubits through an Analogue Wormhole. Universe, 2020, 6, 149.	0.9	3
505	Model of time-dependent geometric graph for dynamical Casimir effect. Indian Journal of Physics, 2021, 95, 2115-2118.	0.9	1
506	Propagation of microwave photons along a synthetic dimension. Physical Review A, 2020, 101, .	1.0	9
507	Thermodynamics of relativistic quantum fields confined in cavities. Physics Letters, Section A: General, Atomic and Solid State Physics, 2020, 384, 126601.	0.9	7
508	Tidal and nonequilibrium Casimir effects in free fall. Physical Review D, 2020, 101, .	1.6	13

#	Article	IF	CITATIONS
509	Shaking photons from the vacuum: acceleration radiation from vibrating atoms. New Journal of Physics, 2020, 22, 033026.	1.2	6
510	Quantum simulation of particle creation in curved space-time. PLoS ONE, 2020, 15, e0229382.	1.1	2
511	Novel scheme for anti-dynamical Casimir effect using nonperiodic ultrastrong modulation. Physics Letters, Section A: General, Atomic and Solid State Physics, 2020, 384, 126685.	0.9	2
512	Superconducting Josephson-Based Metamaterials for Quantum-Limited Parametric Amplification: A Review. , 0, , .		3
513	Tripartite Genuine Non-Gaussian Entanglement in Three-Mode Spontaneous Parametric Down-Conversion. Physical Review Letters, 2020, 125, 020502.	2.9	28
514	Entanglement and photon statistics of two dipole–dipole coupled superconducting qubits with Kerr-like nonlinearities. Results in Physics, 2020, 16, 102978.	2.0	12
515	Digital Quantum Simulation of Linear and Nonlinear Optical Elements. Quantum Reports, 2020, 2, 208-220.	0.6	7
516	Analogue Soliton with Variable Mass in Super-Conducting Quantum Interference Devices*. Chinese Physics Letters, 2020, 37, 048501.	1.3	1
517	From cavity to circuit quantum electrodynamics. Nature Physics, 2020, 16, 243-246.	6.5	55
518	Moving mirror model for quasithermal radiation fields. Physical Review D, 2020, 101, .	1.6	36
519	Fifty Years of the Dynamical Casimir Effect. Physics, 2020, 2, 67-104.	0.5	93
520	Towards detecting traces of non-contact quantum friction in the corrections of the accumulated geometric phase. Npj Quantum Information, 2020, 6, .	2.8	25
521	On the gravitational field of a point-like body immersed in a quantum vacuum. Monthly Notices of the Royal Astronomical Society, 2020, 491, 4816-4828.	1.6	11
522	Enhanced quantum teleportation in the background of Schwarzschild spacetime by weak measurements. European Physical Journal Plus, 2020, 135, 1.	1.2	7
523	Broadband frequency translation through time refraction in an epsilon-near-zero material. Nature Communications, 2020, 11, 2180.	5.8	121
524	Observation of Broadband Entanglement in Microwave Radiation from a Single Time-Varying Boundary Condition. Physical Review Letters, 2020, 124, 140503.	2.9	23
525	Ultrastrong Jaynes-Cummings model. Physical Review A, 2020, 101, .	1.0	20
526	Ultrastrong plasmon–phonon coupling via epsilon-near-zero nanocavities. Nature Photonics, 2021, 15, 125-130.	15.6	78

#	ARTICLE Particle production by a relativistic semitransparent mirror in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mow><mml:mo stratshy="false">{<mml:mo>><th>IF</th><th></th></mml:mo></mml:mo </mml:mow></mml:math 	IF	
327		JLII.QUUU	
528	Minkowski spacetime. Physical Review D, 2021, 103, . A response to criticisms on "CMB constraints cast a shadow on CSL model― European Physical Journal C, 2021, 81, 1.	1.4	6
529	Modeling Cognitive Activity of the Human Brain by the Mathematical Apparatus of Quantum Mechanics. EPJ Web of Conferences, 2021, 248, 01024.	0.1	0
530	Engineering the level structure of a giant artificial atom in waveguide quantum electrodynamics. Physical Review A, 2021, 103, .	1.0	67
531	Quantum field theory with dynamical boundary conditions and the Casimir effect: coherent states *. Journal of Physics A: Mathematical and Theoretical, 2021, 54, 105203.	0.7	2
532	Quantum correlations and non-classical properties for two superconducting qubits interacting with a quantized field in the context of deformed Heisenberg algebra. Chaos, Solitons and Fractals, 2021, 143, 110466.	2.5	12
533	Effective Quantum Oscillator of a Cavity with Oscillating Parameters. Journal of Experimental and Theoretical Physics, 2021, 132, 216-222.	0.2	1
534	Ultimate quantum limit for amplification: a single atom in front of a mirror. New Journal of Physics, 0, , .	1.2	0
535	Enhanced decoherence for a neutral particle sliding on a metallic surface in vacuum. Physical Review A, 2021, 103, .	1.0	2
536	Detectable Signature of Quantum Friction on a Sliding Particle in Vacuum. Advanced Quantum Technologies, 2021, 4, 2000155.	1.8	9
537	Graphene Plasmon Excitation with Ground-State Two-Level Quantum Emitters. Physical Review Letters, 2021, 126, 117401.	2.9	6
538	Dynamical Casimir effect in nonlinear vibrating cavities. Physical Review D, 2021, 103, .	1.6	10
539	Light and Airy: A Simple Solution for Relativistic Quantum Acceleration Radiation. Universe, 2021, 7, 60.	0.9	5
540	Nonlinear Charge- and Flux-Tunable Cavity Derived From an Embedded Cooper-Pair Transistor. Physical Review Applied, 2021, 15, .	1.5	7
541	Femtosecond Broadband Frequency Switch of Terahertz Three-Dimensional Meta-Atoms. ACS Photonics, 2021, 8, 1097-1102.	3.2	7
542	Casimir-cavity-induced conductance changes. Physical Review Research, 2021, 3, .	1.3	2
543	Motion-Induced Radiation Due to an Atom in the Presence of a Graphene Plane. Universe, 2021, 7, 158.	0.9	8
544_	Dynamical Casimir Effect in a Dissipative System. International Journal of Theoretical Physics, 2021, 60,	0.5	0

		CITATION REF	PORT	
#	Article		IF	CITATIONS
545	Recent advances in nano-opto-electro-mechanical systems. Nanophotonics, 2021, 10, 226	5-2281.	2.9	10
546	Shaping Dynamical Casimir Photons. Universe, 2021, 7, 189.		0.9	4
547	Qubit motion as a microscopic model for the dynamical Casimir effect. Physical Review A,	2021, 103, .	1.0	5
548	Heat transfer mediated by the dynamical Casimir effect in an optomechanical system. Phy 2021, 103, .	sical Review A,	1.0	Ο
549	Vector Magnetic Field Sensors: Operating Principles, Calibration, and Applications. IEEE Se Journal, 2021, 21, 12531-12544.	nsors	2.4	28
550	Space-Time Quantum Metasurfaces. Physical Review Letters, 2021, 127, 043603.		2.9	28
551	Casimir Light in Dispersive Nanophotonics. Physical Review Letters, 2021, 127, 053603.		2.9	21
552	Cosmological horizons radiate. Europhysics Letters, 2021, 135, 10002.		0.7	4
553	Effects of photon statistics in wave mixing on a single qubit. Physical Review A, 2021, 104	'y •	1.0	2
554	Theoretical proposals to measure resonator-induced modifications of the electronic grour doped quantum wells. Physical Review A, 2021, 104, .	d state in	1.0	2
555	Parity-Symmetry-Protected Multiphoton Bundle Emission. Physical Review Letters, 2021, 1	27, 073602.	2.9	25
556	Genuine tripartite entanglement in the dynamical Casimir coupled waveguides. Quantum Processing, 2021, 20, 1.	Information	1.0	0
557	Quantum-circuit black hole lasers. Scientific Reports, 2021, 11, 19137.		1.6	3
558	Microwave photonic circulator based on optomechanical-like interactions. Quantum Infor Processing, 2021, 20, 1.	mation	1.0	0
559	Exact solution of a non-stationary cavity with one intermode interaction. Journal of the Op Society of America B: Optical Physics, 2021, 38, 2873.	otical	0.9	2
560	Vacuum-induced correlations in superconducting microwave cavity under multiple pump to Conference Proceedings, 2021, , .	tones. AIP	0.3	2
561	Understanding Hawking Radiation from Simple Models of Atomic Bose-Einstein Condensa Notes in Physics, 2013, , 181-219.	tes. Lecture	0.3	5
562	Some Links Between General Relativity and Other Parts of Physics. , 2014, , 91-110.			2

#	Article	IF	CITATIONS
563	The Quantum Vacuum. Boston Studies in the Philosophy and History of Science, 2015, , 181-197.	0.4	3
564	Combined Magnetic Field Sensor with Nanosized Elements. Springer Proceedings in Physics, 2016, , 591-601.	0.1	1
565	Relativistic Quantum Clocks. Tutorials, Schools, and Workshops in the Mathematical Sciences, 2017, , 51-68.	0.3	6
566	Inertial frames and breakthrough propulsion physics. Acta Astronautica, 2017, 138, 85-94.	1.7	4
567	Listening to the quantum vacuum: a perspective on the dynamical Casimir effect. Europhysics News, 2020, 51, 18-20.	0.1	4
568	Efficient algebraic solution for a time-dependent quantum harmonic oscillator. Physica Scripta, 2020, 95, 105102.	1.2	9
569	Circuit QED: superconducting qubits coupled to microwave photons. , 2014, , 113-256.		30
570	Dissipative dynamical Casimir effect in terms of complex spectral analysis in the symplectic Floquet space. Progress of Theoretical and Experimental Physics, 2020, 2020, .	1.8	2
571	Entanglement generation in quantum thermal machines. Physical Review A, 2020, 102, .	1.0	6
572	Frequency Fluctuations in Tunable and Nonlinear Microwave Cavities. Physical Review Applied, 2020, 14, .	1.5	8
573	Nonadiabatic Holonomic Quantum Computation with Dressed-State Qubits. Physical Review Applied, 2017, 7, .	1.5	77
574	Dynamical Essence of the Basic Relations of the Special Theory of Relativity and the Origin of Fundamental Interactions: Phenomenology. International Journal of Astrophysics and Space Science, 2014, 2, 22.	0.5	4
575	Planckian Energy-Mass Source and the Dynamics of the Universe: Phenomenology. International Journal of Astrophysics and Space Science, 2014, 2, 33.	0.5	6
576	Study of the combined effects of a Kerr nonlinearity and a two-level atom upon a single nonstationary cavity mode. Journal of the Optical Society of America B: Optical Physics, 2019, 36, 1538.	0.9	2
577	Casimir force between two plasmonic metallic plates from a real frequency perspective. Journal of the Optical Society of America B: Optical Physics, 2019, 36, 2981.	0.9	5
578	Enhancement of long-distance Casimir-Polder interaction between an excited atom and a cavity made of metamaterials. Optics Express, 2019, 27, 37753.	1.7	3
579	Casimir torque and force in anisotropic saturated ferrite three-layer structure. Optics Express, 2020, 28, 7425.	1.7	3
580	Electro-optic interface for ultrasensitive intracavity electric field measurements at microwave and terahertz frequencies. Optica, 2020, 7, 498.	4.8	39

#	Article	IF	CITATIONS
581	Quantum Mechanical Explanation for Dark Energy, Cosmic Coincidence, Flatness, Age, and Size of the Universe. Open Astronomy, 2019, 28, 220-227.	0.2	4
582	Recent progress in engineering the Casimir effect– applications to nanophotonics, nanomechanics, and chemistry. Nanophotonics, 2020, 10, 523-536.	2.9	52
583	Electro-mechanical Casimir effect. Quantum - the Open Journal for Quantum Science, 0, 2, 91.	0.0	21
584	Perspective on Some Recent and Future Developments in Casimir Interactions. Applied Sciences (Switzerland), 2021, 11, 293.	1.3	11
585	The Dynamical Casimir Effect in a Dissipative Optomechanical Cavity Interacting with Photonic Crystal. Physics, 2020, 2, 34-48.	0.5	7
586	The Meaning of Mass. International Journal of Theoretical and Mathematical Physics, 2012, 2, 67-78.	0.2	17
587	Magnetic excitation of ultra-cold atoms trapped in optical lattice. Wuli Xuebao/Acta Physica Sinica, 2019, 68, 043703.	0.2	3
588	Chiral Anomaly-Enhanced Casimir Interaction between Weyl Semimetals. Chinese Physics Letters, 2021, 38, 084501.	1.3	8
589	Science and Spirituality $\hat{a} \in $ Decoding nothingness. Nature India, 0, , .	0.0	0
590	Triple-Aspect Monism and the Ontology of Quantum Particles. Open Journal of Philosophy, 2013, 03, 451-454.	0.1	0
591	Simulating dnamical Casimir effect at finite temperature with magnons in spin chain within an optical lattice. Wuli Xuebao/Acta Physica Sinica, 2013, 62, 060302.	0.2	2
592	Casimir-Like Energy as a Double Eigenvalues of Quantumly Entangled System Leading to the Missing Dark Energy Density of the Cosmos. International Journal of High Energy Physics, 2014, 1, 55.	0.3	13
593	Plasmon-enhanced emission of polarization entangled photons. , 2014, , .		0
594	Some Success Applications for Local-Realism Quantum Mechanics: Nature of Covalent-Bond Revealed and Quantitative Analysis of Mechanical Equilibrium for Several Molecules. Journal of Modern Physics, 2014, 05, 309-318.	0.3	1
595	Superconducting quantum circuits: artificial atoms coupled to 1D modes. , 2014, , 557-564.		0
597	Interactions Between Real and Virtual Space times. International Journal of Fundamental Physical Sciences, 2014, 4, 114-121.	0.3	0
598	Evaluation of the Average Energy Density of the Electromagnetic Component of the Physical Vacuum and Quantum Nature of Gravity. International Journal of Astrophysics and Space Science, 2015, 3, 60.	0.5	1
599	Re-evaluation of Fermi's theory of beta-decay. International Journal of Fundamental Physical Sciences, 2018, 8, 19-43.	0.3	0

#	Article	IF	CITATIONS
600	Preparation methods and progress of experiments of quantum microwave. Wuli Xuebao/Acta Physica Sinica, 2019, 68, 070302.	0.2	2
601	How to Approach Śūnyatĕas the Quantum Reality Through Biological Consciousness?. , 2019, , 211-227.		0
602	Resolving the Vacuum Catastrophe: A Generalized Holographic Approach. Journal of High Energy Physics Gravitation and Cosmology, 2019, 05, 412-424.	0.3	3
603	Entanglement generation and simultaneity with superconducting qubits. , 2019, , .		0
604	Electrostatic and RF-properties of MEMS structures. , 2020, , 305-324.		0
605	Mutual assistance between the Schwinger mechanism and the dynamical Casimir effect. Physical Review Research, 2020, 2, .	1.3	3
606	The Repulsive Casimir-Type Forces of a Weakly Interacting Bose–Einstein Condensate Gas. Journal of Low Temperature Physics, 2022, 206, 16-31.	0.6	7
607	Evolution of confined quantum scalar fields in curved spacetime. PartÂII. European Physical Journal C, 2021, 81, 953.	1.4	4
608	Dual-Temperature Acceleration Radiation. Astronomy Reports, 2021, 65, 942-946.	0.2	3
609	Dynamical Casimir-Polder force between a two-level atom with different initial states and a dissipative cavity. Laser Physics, 2021, 31, 115203.	0.6	0
610	Quantum radiation in dielectric media with dispersion and dissipation. Physical Review D, 2020, 102, .	1.6	3
611	Motion induced by asymmetric excitation of the quantum vacuum. Physical Review D, 2020, 102, .	1.6	4
612	Dynamical Casimir effect and photon generation process in time dependent quantum graph. AIP Conference Proceedings, 2020, , .	0.3	0
613	Living and Nonliving Occasionalism. Open Philosophy, 2020, 3, 147-160.	0.2	2
614	Superconducting-circuit based Aulter-Towns splitting effect. Wuli Xuebao/Acta Physica Sinica, 2020, 69, 230302.	0.2	0
615	Modeling the information activity of the human brain based on quantum field theory and virtual particles. , 2021, , .		0
616	Time-dependent quantum harmonic oscillator: a continuous route from adiabatic to sudden changes. Journal of Physics B: Atomic, Molecular and Optical Physics, 2021, 54, 205401.	0.6	7
617	From the Bloch Sphere to Phase-Space Representations with the Gottesman–Kitaev–Preskill Encoding. Mathematics for Industry, 2021, , 79-92.	0.4	3

	CITATION RE	EPORT	
Article		IF	CITATIONS
Coherent control of microwave pulse propagation based on gain assisted electromagn induced transparency in superconducting circuits. Journal of the Optical Society of Am Optical Physics, 2020, 37, 3351.	etically erica B:	0.9	0
Digital quantum simulation of beam splitters and squeezing with IBM quantum compu Review A, 2021, 104, .	ters. Physical	1.0	1
Level attraction and idler resonance in a strongly driven Josephson cavity. Physical Rev 2021, 3, .	ew Research,	1.3	5
Statistical Physics of Evolving Systems. Entropy, 2021, 23, 1590.		1.1	1
Violation of equivalence in an accelerating atom-mirror system in the generalized unce principle framework. Physical Review D, 2021, 104, .	rtainty	1.6	12
Dynamical Casimir effect enhanced by decreasing the mirror reflectivity. Physical Revie	w D, 2022, 105, .	1.6	2
Dynamical Casimir effect and work statistics in fermionic fields. Physica A: Statistical N Its Applications, 2022, 590, 126686.	lechanics and	1.2	0
A comparison between quantum and classical noise radar sources. , 2020, , .			12

626	Influence functional for two mirrors interacting via radiation pressure. Physical Review D, 2022, 105, .	1.6	6
627	Dynamical Casimir effect via modulated Kerr or higher-order nonlinearities. Physical Review A, 2022, 105, .	1.0	3
628	Quantum Otto cycle in a superconducting cavity in the nonadiabatic regime. Physical Review A, 2022, 105, .	1.0	6
629	Non-reciprocal energy transfer through the Casimir effect. Nature Nanotechnology, 2022, 17, 148-152.	15.6	18
630	Controlling two-photon emission from superluminal and accelerating index perturbations. Nature Physics, 2022, 18, 67-74.	6.5	13
631	Realizing a rapidly switched Unruh-DeWitt detector through electro-optic sampling of the electromagnetic vacuum. Physical Review D, 2022, 105, .	1.6	12
632	Superconducting circuit architecture for digital-analog quantum computing. EPJ Quantum Technology, 2022, 9, .	2.9	5
633	Model of black hole and white hole in Minkowski spacetime. European Physical Journal C, 2021, 81, 1.	1.4	2
634	A fast push to photon pairs. Nature Physics, 2022, 18, 11-12.	6.5	0
635	Few-layer hexagonal boron nitride as a shield of brittle materials for cryogenic s-SNOM exploration of phonon polaritons. Applied Physics Letters, 2022, 120, .	1.5	2

#

618

620

622

624

#	Article	IF	CITATIONS
636	Metrological Characterization of Non-Gaussian Entangled States of Superconducting Qubits. Physical Review Letters, 2022, 128, 150501.	2.9	20
637	Observation of Two-Mode Squeezing in a Traveling Wave Parametric Amplifier. Physical Review Letters, 2022, 128, 153603.	2.9	25
639	Dynamical Casimir effects with atoms: From the emission of photon pairs to geometric phases. Europhysics Letters, 2022, 138, 30001.	0.7	2
640	Einstein-Podolsky-Rosen steering and monogamy relations in controllable dynamical Casimir arrays. Physical Review A, 2022, 105, .	1.0	0
641	Nonlinear dynamical Casimir effect at weak nonstationarity. European Physical Journal C, 2022, 82, .	1.4	5
642	Superconducting microwave resonators with non-centrosymmetric nonlinearity. Superconductor Science and Technology, 2022, 35, 065020.	1.8	0
643	Circuit quantum electrodynamics simulator of the two-dimensional Su-Schrieffer-Heeger model: higher-order topological phase transition induced by a continuously varying magnetic field. Optics Express, 2022, 30, 17054.	1.7	4
644	Effect of relativistic motion on superconducting quantum bits under decoherence. Results in Physics, 2022, 38, 105402.	2.0	0
645	A three-dimensional Josephson parametric amplifier. Applied Physics Express, 2022, 15, 062005.	1.1	2
646	Shortcut to adiabaticity in a cavity with a moving mirror. Physical Review A, 2022, 105, .	1.0	3
647	One decade of quantum optimal control in the chopped random basis. Reports on Progress in Physics, 2022, 85, 076001.	8.1	31
648	Casimir cosmology. International Journal of Modern Physics A, 0, , .	0.5	1
649	Analogue cosmological particle creation in an ultracold quantum fluid of light. Nature Communications, 2022, 13, .	5.8	32
650	Giant Atoms in a Synthetic Frequency Dimension. Physical Review Letters, 2022, 128, .	2.9	36
652	Ground state for the Klein-Gordon field in anti–de Sitter spacetime with dynamical Wentzell boundary conditions. Physical Review D, 2022, 105, .	1.6	7
653	Physical Mechanisms of Activation of Radical Reactions in Aqueous Solutions under Mechanical and Magnetic Effect: Problem of Singlet Oxygen. Physics of Wave Phenomena, 2022, 30, 174-181.	0.3	6
654	Action of Classical Fields on Quantum Systems within the Schrödinger–Robertson Uncertainty Relation. Physics of Wave Phenomena, 2022, 30, 169-173.	0.3	3
655	To make a mirrorless laser. Science, 2022, 377, 368-368.	6.0	0

	C	tation Report	
#	Article	IF	CITATIONS
658	Time-varying electromagnetic media: opinion. Optical Materials Express, 2022, 12, 3829.	1.6	18
659	Single-photon Transport in a Waveguide-cavity-emitter System. International Journal of Theoretical Physics, 2022, 61, .	0.5	0
660	The cost of building a wall for a fermion. Journal of High Energy Physics, 2022, 2022, .	1.6	0
661	Nonreciprocal and chiral single-photon scattering for giant atoms. Communications Physics, 2022, 5,	. 2.0	27
662	Broadband Continuous-Variable Entanglement Generation Using a Kerr-Free Josephson Metamaterial. Physical Review Applied, 2022, 18, .	1.5	15
663	Interplay between optomechanics and the dynamical Casimir effect. Physical Review A, 2022, 106, .	1.0	3
664	On the Physical Nature of Quantum Mechanics and Gravitation: Phenomenology. Russian Journal of Physical Chemistry A, 2022, 96, 1615-1636.	0.1	1
665	Probing Lorentz-invariance-violation-induced nonthermal Unruh effect in quasi-two-dimensional dipolar condensates. Physical Review D, 2022, 106, .	1.6	7
666	Baryon breakdown in black hole. Frontiers in Physics, 0, 10, .	1.0	3
667	Comparison of SNR gain between quantum illumination radar and classical radar. Optics Express, 2022, 30, 36167.	1.7	2
668	Quasi-local stress-tensor formalism and the Casimir effect. Modern Physics Letters A, 0, , .	0.5	0
669	Photon generation and entanglement in a double superconducting cavity. Physical Review A, 2022, 1	06, <u>1</u> .0	0
670	Bell-inequality violation by dynamical Casimir photons in a superconducting microwave circuit. Physical Review A, 2022, 106, .	1.0	0
671	Shaping the quantum vacuum with anisotropic temporal boundaries. Nanophotonics, 2023, 12, 539-	548. 2.9	6
672	The influence of magnetic vortices motion on the inverse ac Josephson effect in asymmetric arrays. Applied Physics Letters, 2022, 121, 162601.	1.5	0
673	Dark matter and dark energy denote the gravitation of the expanding universe. Frontiers in Physics, C 10, .	, 1.0	3
674	How to describe collective decay of uncoupled modes in the input–output formalism. Journal of the Optical Society of America B: Optical Physics, 2022, 39, 3128.	2 0.9	0
675	Modeling the Cognitive Activity of an Individual Based on the Mathematical Apparatus of Self-Oscillatory Quantum Mechanics. Mathematics, 2022, 10, 4215.	1.1	1

#	Article	IF	CITATIONS
676	Recent advances in quantum nanophotonics: plexcitonic and vibro-polaritonic strong coupling and its biomedical and chemical applications. Nanophotonics, 2023, 12, 413-439.	2.9	7
677	Atom As an Open Dissipative System in the Basic Environment–the Electromagnetic Component of a Physical Vacuum: Phenomenology. Russian Journal of Physical Chemistry A, 2022, 96, 2573-2590.	0.1	0
678	Fast Generation of 2 <i>N</i> â€Photon Fock States using Shortcuts to Adiabaticity and Ultrastrong Light–Matter Coupling. Annalen Der Physik, 0, , 2200348.	0.9	0
679	Chiral SQUID-metamaterial waveguide for circuit-QED. New Journal of Physics, 2022, 24, 123010.	1.2	3
680	Stochastic Particle Creation: From the Dynamical Casimir Effect to Cosmology. Entropy, 2023, 25, 151.	1.1	3
681	Virtual Excitations and Entanglement Dynamics and Polygamy in Three Ultraâ€Strongly Coupled Systems. Annalen Der Physik, 0, , 2200527.	0.9	0
682	Virtual transitions in an atom-mirror system in the presence of two scalar photons. Physical Review D, 2023, 107, .	1.6	1
683	Wave correlations and quantum noise in cosmology. Journal of Physics A: Mathematical and Theoretical, 0, , .	0.7	0
684	Critical Casimir effect: Exact results. Physics Reports, 2023, 1005, 1-130.	10.3	11
685	Propagation of Airy beams in uniformly accelerated space. Optics Communications, 2023, 537, 129445.	1.0	2
686	Coherent resonant coupling between atoms and a mechanical oscillator mediated by cavity-vacuum fluctuations. Physical Review Research, 2023, 5, .	1.3	4
687	Enhancement of particle creation in nonlinear resonant cavities. Physical Review D, 2023, 107, .	1.6	2
688	Entangled Frequency-Tunable Microwave Photons in a Superconducting Circuit. Applied Sciences (Switzerland), 2023, 13, 3688.	1.3	0
689	Transport in electron-photon systems. Frontiers of Physics, 2023, 18, .	2.4	7
690	Multipartite Entanglement in a Microwave Frequency Comb. Physical Review Letters, 2023, 130, .	2.9	3
691	Highly Sensitive Tunable Magnetometer Based on Superconducting Quantum Interference Device. Sensors, 2023, 23, 3558.	2.1	4
692	Optomechanical two-photon hopping. Physical Review Research, 2023, 5, .	1.3	2
693	The Asymmetric Dynamical Casimir Effect. Physics, 2023, 5, 398-422.	0.5	2

#	ARTICLE	IF	CITATIONS
696	Quantum Field Theory with Dynamical Boundary Conditions and the Casimir Effect. Applied and Numerical Harmonic Analysis, 2023, , 195-238.	0.1	1