Allosteric Modulation of Family C G-Protein-Coupled R to Therapeutic Perspectives

Pharmacological Reviews 63, 59-126 DOI: 10.1124/pr.109.002501

Citation Report

#	Article	IF	CITATIONS
1	Human sweet taste receptor mediates acid-induced sweetness of miraculin. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 16819-16824.	3.3	51
2	Progress toward Positive Allosteric Modulators of the Metabotropic Glutamate Receptor Subtype 5 (mGlu ₅). ACS Chemical Neuroscience, 2011, 2, 450-470.	1.7	56
3	Progress in Structure Based Drug Design for G Protein-Coupled Receptors. Journal of Medicinal Chemistry, 2011, 54, 4283-4311.	2.9	203
4	Activation of the GABAB Receptor Prevents Nicotine-Induced Locomotor Stimulation in Mice. Frontiers in Psychiatry, 2011, 2, 76.	1.3	16
5	Update 1 of: Computational Modeling Approaches to Structure–Function Analysis of G Protein-Coupled Receptors. Chemical Reviews, 2011, 111, PR438-PR535.	23.0	71
6	Regulation of Stability and Trafficking of Calcium-Sensing Receptors by Pharmacologic Chaperones. Advances in Pharmacology, 2011, 62, 143-173.	1.2	16
7	Interdomain movements in metabotropic glutamate receptor activation. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 15480-15485.	3.3	77
8	Allosteric and Orthosteric Sites in CC Chemokine Receptor (CCR5), a Chimeric Receptor Approach. Journal of Biological Chemistry, 2011, 286, 37543-37554.	1.6	41
9	Tripleâ€Addition Assay Protocols for Detecting and Characterizing Modulators of Sevenâ€Transmembrane Receptors. Current Protocols in Chemical Biology, 2011, 3, 119-140.	1.7	2
10	Distinct roles of metabotropic glutamate receptor dimerization in agonist activation and G-protein coupling. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 16342-16347.	3.3	152
11	Characterization of COR627 and COR628, Two Novel Positive Allosteric Modulators of the GABA _B Receptor. Journal of Pharmacology and Experimental Therapeutics, 2012, 340, 529-538.	1.3	38
12	Clinical Implications of Recent Insights into the Structural Biology of Beta2 Adrenoceptors. Current Drug Targets, 2012, 13, 1336-1346.	1.0	7
13	Functional Selectivity in GPCR Signaling: Understanding the Full Spectrum of Receptor Conformations. Mini-Reviews in Medicinal Chemistry, 2012, 12, 817-830.	1.1	24
14	Allosteric Modulators of the Calcium-Sensing Receptor: Turning News into Distinct Views. Endocrinology, 2012, 153, 1014-1015.	1.4	0
15	A Fluorescent Sensor for GABA and Synthetic GABA _B Receptor Ligands. Journal of the American Chemical Society, 2012, 134, 19026-19034.	6.6	93
16	Minireview: The Intimate Link Between Calcium Sensing Receptor Trafficking and Signaling: Implications for Disorders of Calcium Homeostasis. Molecular Endocrinology, 2012, 26, 1482-1495.	3.7	35
17	Comparison of the Effect of the <scp>GABA_B</scp> Receptor Agonist, Baclofen, and the Positive Allosteric Modulator of the <scp>GABA_B</scp> Receptor, <scp>GS</scp> 39783, on Alcohol Selfâ€Administration in 3 Different Lines of Alcoholâ€Preferring Rats. Alcoholism: Clinical and Experimental Research, 2012, 36, 1748-1766.	1.4	67
18	Allosteric Modulation of Seven Transmembrane Spanning Receptors: Theory, Practice, and Opportunities for Central Nervous System Drug Discovery. Journal of Medicinal Chemistry, 2012, 55, 1445-1464.	2.9	212

#	Article	IF	CITATIONS
19	Metabotropic glutamate receptors as therapeutic targets for schizophrenia. Neuropharmacology, 2012, 62, 1461-1472.	2.0	84
20	Allosteric modulators of rhodopsin-like G protein-coupled receptors: Opportunities in drug development. , 2012, 135, 292-315.		62
21	G protein-coupled receptors for energy metabolites as new therapeutic targets. Nature Reviews Drug Discovery, 2012, 11, 603-619.	21.5	209
22	Structure and ligand recognition of class C GPCRs. Acta Pharmacologica Sinica, 2012, 33, 312-323.	2.8	86
23	Fragment Screening of GPCRs Using Biophysical Methods: Identification of Ligands of the Adenosine A _{2A} Receptor with Novel Biological Activity. ACS Chemical Biology, 2012, 7, 2064-2073.	1.6	77
24	Pharmacological modulation of NMDA receptor activity and the advent of negative and positive allosteric modulators. Neurochemistry International, 2012, 61, 581-592.	1.9	77
25	What model organisms and interactomics can reveal about the genetics of human obesity. Cellular and Molecular Life Sciences, 2012, 69, 3819-3834.	2.4	45
26	mGluR2 Activators and mGluR5 Blockers Advancing in the Clinic for Major CNS Disorders. Annual Reports in Medicinal Chemistry, 2012, , 71-88.	0.5	4
27	Radioligand Binding Assays and Their Analysis. Methods in Molecular Biology, 2012, 897, 31-77.	0.4	86
28	Receptor Binding Techniques. Methods in Molecular Biology, 2012, , .	0.4	3
29	Discovery of 3-Cyclopropylmethyl-7-(4-phenylpiperidin-1-yl)-8-trifluoromethyl[1,2,4]triazolo[4,3- <i>a</i>]pyridine (JNJ-42153605): A Positive Allosteric Modulator of the Metabotropic Glutamate 2 Receptor. Journal of Medicinal Chemistry, 2012, 55, 8770-8789.	2.9	71
32	Bioinformatics and variability in drug response: a protein structural perspective. Journal of the Royal Society Interface, 2012, 9, 1409-1437.	1.5	66
33	Non-Caloric Sweeteners, Sweetness Modulators, and Sweetener Enhancers. Annual Review of Food Science and Technology, 2012, 3, 353-380.	5.1	162
34	Behind the curtain: cellular mechanisms for allosteric modulation of calciumâ€sensing receptors. British Journal of Pharmacology, 2012, 165, 1670-1677.	2.7	22
35	Recent Structural Advances of β1 and β2 Adrenoceptors Yield Keys for Ligand Recognition and Drug Design. Journal of Medicinal Chemistry, 2013, 56, 8207-8223.	2.9	26
36	Reduction of alcohol intake by the positive allosteric modulator of the GABAB receptor, rac-BHFF, in alcohol-preferring rats. Alcohol, 2013, 47, 69-73.	0.8	31
37	A Simple Method to Detect Allostery in GPCR Dimers. Methods in Cell Biology, 2013, 117, 165-179.	0.5	7
38	Glutamate Acts as a Partial Inverse Agonist to Metabotropic Glutamate Receptor with a Single Amino Acid Mutation in the Transmembrane Domain. Journal of Biological Chemistry, 2013, 288, 9593-9601.	1.6	12

#	Article	IF	CITATIONS
39	The Concise Guide to PHARMACOLOGY 2013/14: G Protein oupled Receptors. British Journal of Pharmacology, 2013, 170, 1459-1581.	2.7	528
40	Molecular signatures of G-protein-coupled receptors. Nature, 2013, 494, 185-194.	13.7	1,298
41	Differential modulation of retinal ganglion cell light responses by orthosteric and allosteric metabotropic glutamate receptor 8 compounds. Neuropharmacology, 2013, 67, 88-94.	2.0	2
42	Allosteric modulation of Class C GPCRs: a novel approach for the treatment of CNS disorders. Drug Discovery Today: Technologies, 2013, 10, e269-e276.	4.0	38
43	Group III and subtype 4 metabotropic glutamate receptor agonists: Discovery and pathophysiological applications in Parkinson's disease. Neuropharmacology, 2013, 66, 53-64.	2.0	66
44	Tertiary and quaternary effects in the allosteric regulation of animal hemoglobins. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2013, 1834, 1860-1872.	1.1	6
45	Neuroprotective mode of action of resveratrol in central nervous system. PharmaNutrition, 2013, 1, 90-97.	0.8	3
46	mGluR2 positive allosteric modulators: a patent review (2009 – present). Expert Opinion on Therapeutic Patents, 2013, 23, 629-647.	2.4	37
47	Synthesis and Pharmacological Characterization of 2-(Acylamino)thiophene Derivatives as Metabolically Stable, Orally Effective, Positive Allosteric Modulators of the GABA _B Receptor. Journal of Medicinal Chemistry, 2013, 56, 3620-3635.	2.9	33
48	Positive allosteric modulators to peptide GPCRs: a promising class of drugs. Acta Pharmacologica Sinica, 2013, 34, 880-885.	2.8	12
49	Efficacy and Tolerability of Baclofen in Substance Use Disorders: A Systematic Review. European Addiction Research, 2013, 19, 325-345.	1.3	43
50	Neuropeptide Receptors. Colloquium Series on Neuropeptides, 2013, 2, 1-167.	1.0	3
51	Human Biology of Taste. Annals of Saudi Medicine, 2013, 33, 217-222.	0.5	48
52	Reactivation of Desensitized Formyl Peptide Receptors by Platelet Activating Factor: A Novel Receptor Cross Talk Mechanism Regulating Neutrophil Superoxide Anion Production. PLoS ONE, 2013, 8, e60169.	1.1	49
53	Allosteric Modulators for the Treatment of Schizophrenia: Targeting Glutamatergic Networks. Current Topics in Medicinal Chemistry, 2013, 13, 26-54.	1.0	74
54	The Therapeutic Potential of Allosteric Ligands for Free Fatty Acid Sensitive GPCRs. Current Topics in Medicinal Chemistry, 2013, 13, 14-25.	1.0	26
55	Pathological function of Ca ²⁺ -sensing receptor in pulmonary arterial hypertension. Journal of Smooth Muscle Research, 2014, 50, 8-17.	0.7	23
56	Inhibitors of cytosolic phospholipase A2α with carbamate structure: synthesis, biological activity, metabolic stability, and bioavailability. Medicinal Chemistry Research, 2014, 23, 5250-5262.	1.1	6

#	Article	IF	CITATIONS
57	Medicinal Chemistry of Plant Naturals as Agonists/Antagonists for Taste Receptors. Topics in Medicinal Chemistry, 2014, , 35-71.	0.4	3
58	Exploring the Active Conformation of Cyclohexane Carboxylate Positive Allosteric Modulators of the Typeâ€4 Metabotropic Glutamate Receptor. ChemMedChem, 2014, 9, 2685-2698.	1.6	1
59	Molecular dynamics simulations reveal that apoâ€HisJ can sample a closed conformation. Proteins: Structure, Function and Bioinformatics, 2014, 82, 386-398.	1.5	14
60	Structure-Based Drug Design for G Protein-Coupled Receptors. Progress in Medicinal Chemistry, 2014, 53, 1-63.	4.1	62
61	Reduction of excessive alcohol drinking by a novel GABAB receptor positive allosteric modulator ADX71441 in mice. Psychopharmacology, 2014, 231, 333-343.	1.5	40
62	Dual regulatory switch confers tighter control on HtrA2 proteolytic activity. FEBS Journal, 2014, 281, 2456-2470.	2.2	34
63	Synthesis, structural properties, and pharmacological evaluation of 2-(acylamino)thiophene-3-carboxamides and analogues thereof. RSC Advances, 2014, 4, 1782-1793.	1.7	5
64	Metabotropic glutamatergic receptors and their ligands in drug addiction. , 2014, 142, 281-305.		74
65	Therapeutic implications of peptide interactions with Gâ€proteinâ€coupled receptors in diabetic vasculopathy. Acta Physiologica, 2014, 211, 20-35.	1.8	9
66	Chemical Modulation of Mutant mGlu ₁ Receptors Derived from Deleterious <i>GRM1</i> Mutations Found in Schizophrenics. ACS Chemical Biology, 2014, 9, 2334-2346.	1.6	46
67	Opportunities and challenges in the discovery of allosteric modulators of GPCRs for treating CNS disorders. Nature Reviews Drug Discovery, 2014, 13, 692-708.	21,5	226
68	GPCR structures in drug design, emerging opportunities with new structures. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 4073-4079.	1.0	116
69	TRR469, a potent A1 adenosine receptor allosteric modulator, exhibits anti-nociceptive properties in acute and neuropathic pain models in mice. Neuropharmacology, 2014, 81, 6-14.	2.0	59
71	Molecular Docking and Structure-Based Drug Design Strategies. Molecules, 2015, 20, 13384-13421.	1.7	1,255
72	Structural insights into ligand recognition and selectivity for classes A, B, and C GPCRs. European Journal of Pharmacology, 2015, 763, 196-205.	1.7	57
73	Evaluation of the Biological Activity of Compounds. , 2015, , 15-43.		10
74	Allosteric therapies for lung cancer. Cancer and Metastasis Reviews, 2015, 34, 303-312.	2.7	10
75	Insights into a defined secondary binding region on \hat{l}^2 -adrenoceptors and putative roles in ligand binding and drug design. MedChemComm, 2015, 6, 991-1002.	3.5	5

#	Article	IF	Citations
76	Activation of the γ-Aminobutyric Acid Type B (GABA _B) Receptor by Agonists and Positive Allosteric Modulators. Journal of Medicinal Chemistry, 2015, 58, 6336-6347.	2.9	30
77	Development of Novel, CNS Penetrant Positive Allosteric Modulators for the Metabotropic Glutamate Receptor Subtype 1 (mGlu ₁), Based on an <i>N</i> -(3-Chloro-4-(1,3-dioxoisoindolin-2-yl)phenyl)-3-methylfuran-2-carboxamide Scaffold, That Potentiate Wild Type and Mutant mGlu ₁ Receptors Found in Schizophrenics. Journal of	2.9	17
78	Co-operative binding assay for the characterization of mGlu4 allosteric modulators. Neuropharmacology, 2015, 97, 142-148.	2.0	10
79	Reflections on More Than 30 Years Association with Hanns. Advances in Pharmacology, 2015, 73, 1-11.	1.2	1
80	Mutation analysis and molecular modeling for the investigation of ligand-binding modes of GPR84. Journal of Biochemistry, 2015, 157, 311-320.	0.9	34
81	Group I and group II metabotropic glutamate receptor allosteric modulators as novel potential antipsychotics. Current Opinion in Pharmacology, 2015, 20, 40-45.	1.7	34
82	GABAB receptors as a therapeutic strategy in substance use disorders: Focus on positive allosteric modulators. Neuropharmacology, 2015, 88, 36-47.	2.0	76
83	Quantitative Determination of Flexible Pharmacological Mechanisms Based On Topological Variation in Mice Anti-Ischemic Modular Networks. PLoS ONE, 2016, 11, e0158379.	1.1	8
84	Group II Metabotropic Glutamate Receptors as Targets for Novel Antipsychotic Drugs. Frontiers in Pharmacology, 2016, 7, 130.	1.6	52
86	Calcilytics enhance sildenafil-induced antiproliferation in idiopathic pulmonary arterial hypertension. European Journal of Pharmacology, 2016, 784, 15-21.	1.7	17
87	The positive allosteric GABAB receptor modulator rac-BHFF enhances baclofen-mediated analgesia in neuropathic mice. Neuropharmacology, 2016, 108, 172-178.	2.0	12
88	Re-exploration of the mGlu1 PAM Ro 07-11401 scaffold: Discovery of analogs with improved CNS penetration despite steep SAR. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 2289-2292.	1.0	7
89	Positive Allosteric Modulation of the Calcium-sensing Receptor by Physiological Concentrations of Glucose. Journal of Biological Chemistry, 2016, 291, 23126-23135.	1.6	25
90	Positive allosteric modulation of A1 adenosine receptors as a novel and promising therapeutic strategy for anxiety. Neuropharmacology, 2016, 111, 283-292.	2.0	33
91	Anticonvulsant effects of structurally diverse GABA B positive allosteric modulators in the DBA/2J audiogenic seizure test: Comparison to baclofen and utility as a pharmacodynamic screening model. Neuropharmacology, 2016, 101, 358-369.	2.0	13
92	Molecular mechanism of sweetness sensation. Physiology and Behavior, 2016, 164, 453-463.	1.0	92
93	Practical Strategies and Concepts in GPCR Allosteric Modulator Discovery: Recent Advances with Metabotropic Glutamate Receptors. Chemical Reviews, 2016, 116, 6707-6741.	23.0	151
94	Neurobiological Insights from mGlu Receptor Allosteric Modulation. International Journal of Neuropsychopharmacology, 2016, 19, pyv133.	1.0	10

СІТАТ	ION	DEDO	DT
	10N	K F P ()	ן או

#	Article	IF	CITATIONS
95	A phase 3, multicentre, randomized, double-blind, placebo-controlled, parallel-group study to evaluate the efficacy and safety of etelcalcetide (ONO-5163/AMG 416), a novel intravenous calcimimetic, for secondary hyperparathyroidism in Japanese haemodialysis patients. Nephrology Dialysis Transplantation, 2017, 32, gfw408.	0.4	48
96	Pyrimidinyl Biphenylureas: Identification of New Lead Compounds as Allosteric Modulators of the Cannabinoid Receptor CB ₁ . Journal of Medicinal Chemistry, 2017, 60, 1089-1104.	2.9	35
97	FRET-Based Sensors Unravel Activation and Allosteric Modulation of the GABAB Receptor. Cell Chemical Biology, 2017, 24, 360-370.	2.5	30
98	The GABAB Positive Allosteric Modulator ADX71441 Attenuates Alcohol Self-Administration and Relapse to Alcohol Seeking in Rats. Neuropsychopharmacology, 2017, 42, 1789-1799.	2.8	51
99	Integration on Ligand and Structure Based Approaches in GPCRs. Topics in Medicinal Chemistry, 2017, , 101-161.	0.4	1
100	The GABAB positive allosteric modulators CGP7930 and GS39783 stimulate ERK1/2 signalling in cells lacking functional GABAB receptors. European Journal of Pharmacology, 2017, 794, 135-146.	1.7	8
101	Analgesic effect of ADX71441, a positive allosteric modulator (PAM) of GABA B receptor in a rat model of bladder pain. Neuropharmacology, 2017, 126, 1-11.	2.0	8
102	Identification of potent, nonabsorbable agonists of the calcium-sensing receptor for GI-specific administration. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 4673-4677.	1.0	7
103	Drug discovery for the treatment of substance use disorders: novel targets, repurposing, and the need for new paradigms. Current Opinion in Pharmacology, 2017, 35, 120-124.	1.7	12
104	Effects of GABA-B receptor positive modulator on ketamine-induced psychosis-relevant behaviors and hippocampal electrical activity in freely moving rats. Psychopharmacology, 2017, 234, 3129-3142.	1.5	7
105	Triazolopyridine ethers as potent, orally active mGlu2 positive allosteric modulators for treating schizophrenia. Bioorganic and Medicinal Chemistry, 2017, 25, 496-513.	1.4	11
106	Nociception modulation by supraspinal group <scp>III</scp> metabotropic glutamate receptors. Journal of Neurochemistry, 2017, 141, 507-519.	2.1	24
107	Ligand-guided homology modelling of the GABAB2 subunit of the GABAB receptor. PLoS ONE, 2017, 12, e0173889.	1.1	19
108	Allosteric Modulators. , 2017, , 276-296.		5
109	Mechanistic insights into allosteric regulation of the A2A adenosine G protein-coupled receptor by physiological cations. Nature Communications, 2018, 9, 1372.	5.8	126
110	Bidirectional variation in glutamate efflux in the medial prefrontal cortex induced by selective positive and negative allosteric mGluR5 modulators. Journal of Neurochemistry, 2018, 145, 111-124.	2.1	7
111	Activation of M2 muscarinic acetylcholine receptors by a hybrid agonist enhances cytotoxic effects in GB7 glioblastoma cancer stem cells. Neurochemistry International, 2018, 118, 52-60.	1.9	19
112	Calcium-dependent molecular fMRI using a magnetic nanosensor. Nature Nanotechnology, 2018, 13, 473-477.	15.6	71

CITATION	DEDODT
CHAHON	REPORT

#	Article	IF	CITATIONS
113	Direct coupling of detergent purified human mGlu5 receptor to the heterotrimeric G proteins Gq and Gs. Scientific Reports, 2018, 8, 4407.	1.6	18
114	Exploring the Binding Mechanism of Metabotropic Glutamate Receptor 5 Negative Allosteric Modulators in Clinical Trials by Molecular Dynamics Simulations. ACS Chemical Neuroscience, 2018, 9, 1492-1502.	1.7	108
115	Structural biology of GABAB receptor. Neuropharmacology, 2018, 136, 68-79.	2.0	79
116	Natural product modulators of human sensations and mood: molecular mechanisms and therapeutic potential. Chemical Society Reviews, 2018, 47, 1592-1637.	18.7	28
117	Molecular and synaptic mechanisms regulating drug-associated memories: Towards a bidirectional treatment strategy. Brain Research Bulletin, 2018, 141, 58-71.	1.4	24
118	Strong G-Protein-Mediated Inhibition of Sodium Channels. Cell Reports, 2018, 23, 2770-2781.	2.9	10
120	mGluR2 positive allosteric modulators: an updated patent review (2013–2018). Expert Opinion on Therapeutic Patents, 2019, 29, 497-507.	2.4	21
121	Protein Allostery in Drug Discovery. Advances in Experimental Medicine and Biology, 2019, , .	0.8	11
122	The chemical diversity and structure-based discovery of allosteric modulators for the PIF-pocket of protein kinase PDK1. Journal of Enzyme Inhibition and Medicinal Chemistry, 2019, 34, 361-374.	2.5	19
123	A Structure-Based Drug Discovery Paradigm. International Journal of Molecular Sciences, 2019, 20, 2783.	1.8	350
124	GPCR interaction as a possible way for allosteric control between receptors. Molecular and Cellular Endocrinology, 2019, 486, 89-95.	1.6	31
125	Non-Nutritive Sweeteners and Their Implications on the Development of Metabolic Syndrome. Nutrients, 2019, 11, 644.	1.7	52
126	Shared Behavioral and Neurocircuitry Disruptions in Drug Addiction, Obesity, and Binge Eating Disorder: Focus on Group I mGluRs in the Mesolimbic Dopamine Pathway. ACS Chemical Neuroscience, 2019, 10, 2125-2143.	1.7	21
127	Ca ²⁺ allostery in PTH-receptor signaling. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 3294-3299.	3.3	42
128	Family C G-Protein-Coupled Receptors in Alzheimer's Disease and Therapeutic Implications. Frontiers in Pharmacology, 2019, 10, 1282.	1.6	20
129	CABA B receptor positive allosteric modulators with different efficacies affect neuroadaptation to and selfâ€administration of alcohol and cocaine. Addiction Biology, 2019, 24, 1191-1203.	1.4	13
130	Small Molecule Allosteric Modulators of G-Protein-Coupled Receptors: Drug–Target Interactions. Journal of Medicinal Chemistry, 2019, 62, 24-45.	2.9	114
131	The organizing principle of GABA _B receptor complexes: Physiological and pharmacological implications. Basic and Clinical Pharmacology and Toxicology, 2020, 126, 25-34.	1.2	29

#	Article	IF	CITATIONS
132	Mechanism of μ-Opioid Receptor-Magnesium Interaction and Positive Allosteric Modulation. Biophysical Journal, 2020, 118, 909-921.	0.2	24
133	Allosteric modulators targeting GPCRs. , 2020, , 195-241.		1
134	PSNCBAM-1 analogs: Structural evolutions and allosteric properties at cannabinoid CB1 receptor. European Journal of Medicinal Chemistry, 2020, 203, 112606.	2.6	1
135	Targeting Adenosine Receptors: A Potential Pharmacological Avenue for Acute and Chronic Pain. International Journal of Molecular Sciences, 2020, 21, 8710.	1.8	43
136	Structure optimization of positive allosteric modulators of GABAB receptors led to the unexpected discovery of antagonists/potential negative allosteric modulators. Bioorganic and Medicinal Chemistry Letters, 2020, 30, 127443.	1.0	0
137	The computational modeling of allosteric modulation of metabotropic glutamate receptors. Advances in Pharmacology, 2020, 88, 1-33.	1.2	1
138	Subtype-selective mechanisms of negative allosteric modulators binding to group I metabotropic glutamate receptors. Acta Pharmacologica Sinica, 2021, 42, 1354-1367.	2.8	25
139	Mechanisms of adhesion G protein–coupled receptor activation. Journal of Biological Chemistry, 2020, 295, 14065-14083.	1.6	99
140	GABAB Receptors and Pain. Current Topics in Behavioral Neurosciences, 2020, , 213-239.	0.8	12
141	G Protein-Coupled Receptors in Taste Physiology and Pharmacology. Frontiers in Pharmacology, 2020, 11, 587664.	1.6	90
142	Discovery and structure-activity relationships study of positive allosteric modulators of the M3 muscarinic acetylcholine receptor. Bioorganic and Medicinal Chemistry, 2020, 28, 115531.	1.4	7
143	Discovering Anti-Cancer Drugs via Computational Methods. Frontiers in Pharmacology, 2020, 11, 733.	1.6	148
144	Potential of Competitive Antagonists of Insect Ionotropic γ-Aminobutyric Acid Receptors as Insecticides. Journal of Agricultural and Food Chemistry, 2020, 68, 4760-4768.	2.4	11
145	Allosteric Molecular Switches in Metabotropic Glutamate Receptors. ChemMedChem, 2021, 16, 81-93.	1.6	12
146	Clutamate binding triggers monomerization of unliganded mGluR2 dimers. Archives of Biochemistry and Biophysics, 2021, 697, 108632.	1.4	3
147	COR758, a negative allosteric modulator of GABAB receptors. Neuropharmacology, 2021, 189, 108537.	2.0	6
148	Rational design of allosteric modulators: Challenges and successes. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2021, 11, e1529.	6.2	39
149	The GABAB receptor positive allosteric modulator ASP8062 reduces operant alcohol self-administration in male and female Sprague Dawley rats. Psychopharmacology, 2021, 238, 2587-2600.	1.5	10

#	Article	IF	Citations
150	Potentiation of Muscarinic M ₃ Receptor Activation through a New Allosteric Site with a Novel Positive Allosteric Modulator ASP8302. Journal of Pharmacology and Experimental Therapeutics, 2021, 379, 64-73.	1.3	6
151	A nanobody activating metabotropic glutamate receptor 4 discriminates between homo- and heterodimers. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	11
152	In Silico Approach in Drug Design and Drug Discovery: An Update. , 2021, , 245-271.		6
153	Allosteric Modulators: The New Generation of GABAB Receptor Ligands. , 2016, , 357-375.		6
154	Characteristics of Allosteric Proteins, Sites, and Modulators. Advances in Experimental Medicine and Biology, 2019, 1163, 107-139.	0.8	17
155	Class C GPCRs in the airway. Current Opinion in Pharmacology, 2020, 51, 19-28.	1.7	7
156	CHAPTER 5. Fragment Screening of G Protein-Coupled Receptors. RSC Drug Discovery Series, 2015, , 101-125.	0.2	1
158	Cinacalcet corrects biased allosteric modulation of CaSR by AHH autoantibody. JCI Insight, 2019, 4, .	2.3	10
159	Inhibition of Excessive Cell Proliferation by Calcilytics in Idiopathic Pulmonary Arterial Hypertension. PLoS ONE, 2015, 10, e0138384.	1.1	29
160	Established and In-trial GPCR Families in Clinical Trials: A Review for Target Selection. Current Drug Targets, 2019, 20, 522-539.	1.0	17
161	Fragment-Based Approaches for Allosteric Metabotropic Glutamate Receptor (mGluR) Modulators. Current Topics in Medicinal Chemistry, 2019, 19, 1768-1781.	1.0	7
162	CHAPTER 10. Glutamate Receptor Modulators as Emergent Therapeutic Agents in the Treatment of Parkinson's Disease. RSC Drug Discovery Series, 2013, , 237-265.	0.2	0
163	CHAPTER 6. Drugs that Target the Glutamate Synapse: Implications for the Glutamate Hypothesis of Schizophrenia. RSC Drug Discovery Series, 2015, , 115-140.	0.2	0
164	The Novel Positive Allosteric Modulator of the GABAB Receptor, KK-92A, Suppresses Alcohol Self-Administration and Cue-Induced Reinstatement of Alcohol Seeking in Rats. Frontiers in Cell and Developmental Biology, 2021, 9, 727576.	1.8	5
165	GABAB Receptors and Drug Addiction: Psychostimulants and Other Drugs of Abuse. Current Topics in Behavioral Neurosciences, 2020, , 119-155.	0.8	9
167	Regulation effect of lipopolysaccharide on the alternative splicing and function of sweet taste receptor T1R2. Hua Xi Kou Qiang Yi Xue Za Zhi = Huaxi Kouqiang Yixue Zazhi = West China Journal of Stomatology, 2021, 39, 469-474.	0.1	1
168	Structure-based drug designing. , 2022, , 219-231.		5
169	Probing Allosteric Modulation of Membrane Receptor in the Native State by Data Mining-Integrated Tracking Microscopy. CCS Chemistry, 2022, 4, 3150-3161.	4.6	5

#	ARTICLE	IF	CITATIONS
170	GABAB Receptor Chemistry and Pharmacology: Agonists, Antagonists, and Allosteric Modulators. Current Topics in Behavioral Neurosciences, 2021, , 81-118.	0.8	17
171	A Brief History and the Significance of the GABAB Receptor. Current Topics in Behavioral Neurosciences, 2021, , 1-17.	0.8	3
172	Novel Agents for the Pharmacological Treatment of Alcohol Use Disorder. Drugs, 2022, 82, 251-274.	4.9	56
173	Class A and C GPCR dimers in neurodegenerative diseases. Current Neuropharmacology, 2022, 20, .	1.4	2
174	SKF96365 activates calcium-sensing receptors in pulmonary arterial smooth muscle cells. Biochemical and Biophysical Research Communications, 2022, 607, 44-48.	1.0	3
175	Symmetric activation and modulation of the human calcium-sensing receptor. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	23
176	Drug Discovery for Mycobacterium tuberculosis Using Structure-Based Computer-Aided Drug Design Approach. International Journal of Molecular Sciences, 2021, 22, 13259.	1.8	30
177	Allosteric ligands control the activation of a class C GPCR heterodimer by acting at the transmembrane interface. ELife, 2021, 10, .	2.8	14
180	OUP accepted manuscript. Alcohol and Alcoholism, 2022, , .	0.9	2
181	Novel and latest computational routes for design and development of anticancer drugs for colon cancer. , 2022, , .		0
182	Endosomal parathyroid hormone receptor signaling. American Journal of Physiology - Cell Physiology, 2022, 323, C783-C790.	2.1	3
183	Analysis of Protein Sequence Identity, Binding Sites, and 3D Structures Identifies Eight Pollen Species and Ten Fruit Species with High Risk of Cross-Reactive Allergies. Genes, 2022, 13, 1464.	1.0	1
184	General Strategies for Rational Design and Discovery of Multitarget Drugs. , 2022, , 677-736.		0
185	Development of tolerance upon repeated administration with the GABA _B receptor positive allosteric modulator, COR659, on alcohol drinking in rodents. American Journal of Drug and Alcohol Abuse, 2022, 48, 662-672.	1.1	1
186	Allosteric Modulators of Adenosine Receptors. Topics in Medicinal Chemistry, 2022, , .	0.4	0
187	Zafirlukast Is a Promising Scaffold for Selectively Inhibiting TNFR1 Signaling. ACS Bio & Med Chem Au, 2023, 3, 270-282.	1.7	1
188	<i>In Vitro</i> Biology: Measuring Pharmacological Activity that Will Translate to Clinical Efficacy. , 2023, , 402-436.		0