Titanium oxo-clusters: precursors for a Lego-like const materials

Chemical Society Reviews 40, 1006 DOI: 10.1039/c0cs00137f

Citation Report

#	Article	IF	CITATIONS
1	Organic–inorganic hybrid materials starting from the novel nanoscaled bismuth oxido methacrylate cluster [Bi38O45(OMc)24(DMSO)9]·2DMSO·7H2O. Chemical Communications, 2011, 47, 6353.	4.1	39
2	New hybrid core–shell star-like architectures made of poly(n-butyl acrylate) grown from well-defined titanium oxo-clusters. Journal of Materials Chemistry, 2011, 21, 4470.	6.7	25
3	Extending the Family of Titanium Heterometallic–oxo–alkoxy Cages. Inorganic Chemistry, 2011, 50, 5655-5662.	4.0	49
4	Supramolecular design for polymer/titanium oxo-cluster hybrids: an open door to new organic–inorganic dynamers. Polymer Chemistry, 2011, 2, 2785.	3.9	8
5	Applications of advanced hybrid organic–inorganic nanomaterials: from laboratory to market. Chemical Society Reviews, 2011, 40, 696.	38.1	1,235
6	Nanoscale Structure Evolution in Alkoxide–Carboxylate Sol–Gel Precursor Solutions of Barium Titanate. Journal of Physical Chemistry C, 2011, 115, 20449-20459.	3.1	16
8	Titanium, zirconium, hafnium. Annual Reports on the Progress of Chemistry Section A, 2012, 108, 146.	0.8	2
9	Hybridization in Materials Science – Evolution, Current State, and Future Aspirations. European Journal of Inorganic Chemistry, 2012, 2012, 5097-5105.	2.0	78
10	Interfacial Electron Transfer into Functionalized Crystalline Polyoxotitanate Nanoclusters. Journal of the American Chemical Society, 2012, 134, 8911-8917.	13.7	72
11	Binding Modes of Carboxylate- and Acetylacetonate-Linked Chromophores to Homodisperse Polyoxotitanate Nanoclusters. Journal of the American Chemical Society, 2012, 134, 11695-11700.	13.7	129
12	Sol–gel TiO2 in self-organization process: growth, ripening and sintering. RSC Advances, 2012, 2, 2294.	3.6	44
13	Titanium–oxo–Clusters with Dicarboxylates: Single-Crystal Structure and Photochromic Effect. Inorganic Chemistry, 2012, 51, 8982-8988.	4.0	69
14	Luminescence properties of pHEMA-TiO2 gels based hybrids materials. Journal of Luminescence, 2012, 132, 1192-1199.	3.1	11
15	Nonporous Titanium–Oxo Molecular Clusters That Reversibly and Selectively Adsorb Carbon Dioxide. Inorganic Chemistry, 2013, 52, 9705-9707.	4.0	66
16	Synthesis, structure, and properties of organic–inorganic nanocomposites containing poly(titanium) Tj ETQq0	0	Overlock 10
17	Perylene carboxylate-modified titanium–oxide gel, a functional material with photoswitchable	5.5	11

	nuorescence properties. Journal of Materials Chemistry C, 2013, 1, 7975.		
18	Metal–phenanthroline fused Ti17 clusters, a single molecular source for sensitized photoconductive films. Journal of Materials Chemistry A, 2013, 1, 9862.	10.3	71
19	Structure, Dynamics, and Phase Behavior of Water in TiO ₂ Nanopores. Journal of Physical Chemistry C, 2013, 117, 3330-3342.	3.1	63

2

	CITATION R	CITATION REPORT	
#	ARTICLE	IF	CITATIONS
20	[Ti8O8(OOCCH2But)16] wheel with phenol, resorcinol and catechol. Polyhedron, 2013, 57, 70-76.	2.2	23
21	Conversion of methacrylate into 2-hydroxy-2-methylpropionate ligands in the coordination sphere of a Ag–Zr oxo cluster. Dalton Transactions, 2013, 42, 6694.	3.3	3
22	A chiral porous metallosalan-organic framework containing titanium-oxo clusters for enantioselective catalytic sulfoxidation. Chemical Science, 2013, 4, 3154.	7.4	101
23	Two novel nanoscaled bismuth oxido clusters, [Bi38O45(OMc)22(C8H7SO3)2(DMSO)6(H2O)1.5]·2.5H2O and [Bi38O45(HSal)22(OMc)2(DMSO)15(H2O)]·DMSO·2H2O. Main Group Metal Chemistry, 2013, 36, .	1.6	14
24	Influence of the Phosphonate Ligand on the Structure of Phosphonate‣ubstituted Titanium Oxo Clusters. European Journal of Inorganic Chemistry, 2013, 2013, 5790-5796.	2.0	29
25	[Ti ₈ O ₁₀ (OOC <i>R</i>) ₁₂] [<i>R</i> = CH(CH ₃) ₂ and CCl ₃] Carboxylate Titanium Oxoâ€Clusters: Potential SBUs for the Synthesis of Metalâ€Organic Frameworks. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2013, 639, 2181-2185.	1.2	7
26	Direct Observation of the Binding Mode of the Phosphonate Anchor to Nanosized Polyoxotitanate Clusters. Chemistry - A European Journal, 2013, 19, 16651-16655.	3.3	34
27	Structural Investigation of Pyridinecarboxylato Titanium(IV) Complexes: An Uncommon Monomeric Octacoordinated Complex vs. a Hexaprismatic Architecture. European Journal of Inorganic Chemistry, 2014, 2014, 357-363.	2.0	7
28	Acetic Acid Mediated Synthesis of Phosphonate-Substituted Titanium Oxo Clusters. European Journal of Inorganic Chemistry, 2014, 2014, 2038-2045.	2.0	47
29	Molecular Engineering of Functional Inorganic and Hybrid Materials. Chemistry of Materials, 2014, 26, 221-238.	6.7	147
30	A novel manganese-doped large polyoxotitanate nanocluster. Dalton Transactions, 2014, 43, 3839-3841.	3.3	31
32	Mesoscopically structured nanocrystalline metal oxide thin films. Nanoscale, 2014, 6, 14025-14043.	5.6	18
33	The Structural Conversion of Multinuclear Titanium(IV) μ-Oxo-complexes. Inorganic Chemistry, 2014, 53, 10803-10810.	4.0	26
34	A novel luminescent monolayer thin film based on postsynthetic method and functional linker. Journal of Materials Chemistry C, 2014, 2, 5526-5532.	5.5	40
35	Robust Molecular Crystals of Titanium(IV)-oxo-Carboxylate Clusters Showing Water Stability and CO ₂ Sorption Capability. Inorganic Chemistry, 2014, 53, 7288-7293.	4.0	37
36	Nano-building block based-hybrid organic–inorganic copolymers with self-healing properties. Polymer Chemistry, 2014, 5, 4474-4479.	3.9	23
37	A Squareâ€Planar Tetracoordinate Oxygen ontaining Ti ₄ O ₁₇ Cluster Stabilized by Two 1,1′â€Ferrocenedicarboxylato Ligands. Angewandte Chemie - International Edition, 2014, 53, 9193-9197.	13.8	41
38	- Titanium–Oxo Cluster with 9-Anthracenecarboxylate Antennae: A Fluorescent and Photocurrent Transfer Material. Inorganic Chemistry, 2014, 53, 7233-7240.	4.0	59

#	Article	IF	CITATIONS
39	Thermoplasticity of sol–gel-derived titanoxanes chemically modified with benzoylacetone. Journal of Sol-Gel Science and Technology, 2014, 70, 441-450.	2.4	12
40	Synthesis, structure, and photocatalytic hydrogen of three environmentally friendly titanium oxo-clusters. Inorganic Chemistry Communication, 2014, 40, 22-25.	3.9	24
41	Crystallography and Properties of Polyoxotitanate Nanoclusters. Chemical Reviews, 2014, 114, 9645-9661.	47.7	256
42	On the Question of Site‧elective Ligand Exchange in Carboxylate‧ubstituted Metal Oxo Clusters. European Journal of Inorganic Chemistry, 2015, 2015, 2889-2894.	2.0	12
44	Thermoplastic softening behavior of organically modified polyoxotitanates: Effects of the amount of water and benzoylacetone for hydrolyzing alkoxides. Journal of Applied Polymer Science, 2015, 132, .	2.6	3
46	Polyoxometalate Complexes of Anataseâ€ītanium Dioxide Cores in Water. Angewandte Chemie, 2015, 127, 12593-12598.	2.0	14
47	How Does Substitutional Doping Affect Visible Light Absorption in a Series of Homodisperse Ti ₁₁ Polyoxotitanate Nanoparticles?. Chemistry - A European Journal, 2015, 21, 11538-11544.	3.3	39
48	A Flexible Photoactive Titanium Metal–Organic Framework Based on a [Ti ^{IV} ₃ (μ ₃ â€O)(O) ₂ (COO) ₆] Cluster. Angewandte Chemie - International Edition, 2015, 54, 13912-13917.	13.8	103
49	Retention of the Cluster Core Structure during Ligand Exchange Reactions of Carboxylato‣ubstituted Metal Oxo Clusters. European Journal of Inorganic Chemistry, 2015, 2015, 2145-2151.	2.0	26
51	From a polyoxotitanium cage to TiO ₂ /C composites, a novel strategy for nanoporous materials. Journal of Materials Chemistry A, 2015, 3, 1837-1840.	10.3	10
52	History and Classification of Non-Siliceous Hybrid Materials. Springer Briefs in Molecular Science, 2015, , 7-23.	0.1	3
53	Structural and spectroscopic characterizations of tetra-nuclear niobium(V) complexes of quinolinol derivatives. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2015, 144, 192-199.	3.9	3
54	Effect of kinetic features in synthesis of hybrid copolymers based on Ti(OPri)4 and hydroxyethyl methacrylate on their structure and properties. Russian Journal of Applied Chemistry, 2015, 88, 197-207.	0.5	4
55	A tetrathiafulvalene-grafted titanium-oxo-cluster material: self-catalyzed crystal exfoliation and photocurrent response properties. Journal of Materials Chemistry C, 2015, 3, 409-415.	5.5	33
56	Organophosphonate bridged anatase mesocrystals: low temperature crystallization, thermal growth and hydrogen photo-evolution. Dalton Transactions, 2015, 44, 15544-15556.	3.3	20
57	Potent Reactivity in Solubilised Oxoâ€Titanium Polymers. European Journal of Inorganic Chemistry, 2015, 2015, 2028-2032.	2.0	2
58	Polyoxometalate Complexes of Anataseâ€Titanium Dioxide Cores in Water. Angewandte Chemie - International Edition, 2015, 54, 12416-12421.	13.8	43
59	Influence of the Ti(OiPr)4: methacrylic acid ratio on the formed oxo/alkoxo clusters. Monatshefte Für Chemie, 2015, 146, 897-902.	1.8	11

#	Article	IF	CITATIONS
60	Zinc titanium glycolate acetate hydrate and its transformation to zinc titanate microrods: synthesis, characterization and photocatalytic properties. RSC Advances, 2015, 5, 88590-88601.	3.6	16
61	Synthesis and O ₂ Reactivity of a Titanium(III) Metal–Organic Framework. Inorganic Chemistry, 2015, 54, 10096-10104.	4.0	82
62	Synthesis, structure and properties of the manganese-doped polyoxotitanate cage [Ti ₁₈ MnO ₃₀ (OEt) ₂₀ (MnPhen) ₃] (Phen =) Tj ETQq0 0 0 rgBT	/ £) øerlock	20 Tf 50 6
63	Two Ti ₁₃ -oxo-clusters showing non-compact structures, film electrode preparation and photocurrent properties. Dalton Transactions, 2015, 44, 19829-19835.	3.3	32
64	Mesoporous Organic-Inorganic Non-Siliceous Hybrid Materials. Springer Briefs in Molecular Science, 2015, , .	0.1	6
65	Fluorescence and energy transfer properties of heterometallic lanthanide-titanium oxo clusters coordinated with anthracenecarboxylate ligands. Dalton Transactions, 2015, 44, 1882-1888.	3.3	40
66	Bandgap Engineering of Titanium–Oxo Clusters: Labile Surface Sites Used for Ligand Substitution and Metal Incorporation. Angewandte Chemie, 2016, 128, 5246-5251.	2.0	34
67	A Post-Functionalizable <i>Iso</i> -Polyoxotitanate Cage Cluster. Inorganic Chemistry, 2016, 55, 7075-7078.	4.0	38
68	Titanium complexes based on pyridine containing dialcohols: Effect of a ligand. Inorganic Chemistry Communication, 2016, 67, 1-5.	3.9	10
69	Titanium oxo-clusters derivatized from the Ti ₁₀ O ₁₂ (cat) ₈ (py) ₈ complex: structural investigation and spectroscopic studies of light absorption. Dalton Transactions, 2016, 45, 8760-8769.	3.3	18
70	Counteranion-Stabilized Titanium(IV) Isopolyoxocationic Clusters Isolated from Water. Inorganic Chemistry, 2016, 55, 4704-4709.	4.0	38
71	Assessment of different basis sets and DFT functionals for the calculation of structural parameters, vibrational modes and ligand binding energies of Zr 4 O 2 (carboxylate) 12 clusters. Computational and Theoretical Chemistry, 2016, 1084, 162-168.	2.5	29
72	Azole Functionalized Polyoxo-Titanium Clusters with Sunlight-Driven Dye Degradation Applications: Synthesis, Structure, and Photocatalytic Studies. Inorganic Chemistry, 2016, 55, 10294-10301.	4.0	47
73	Effects of Substitutional Dopants on the Photoresponse of a Polyoxotitanate Cluster. Inorganic Chemistry, 2016, 55, 8493-8501.	4.0	44
74	Hot Hole Hopping in a Polyoxotitanate Cluster Terminated with Catechol Electron Donors. Journal of Physical Chemistry C, 2016, 120, 20006-20015.	3.1	14
75	Sol–Gel Chemistry of Titanium Alkoxide toward HF: Impacts of Reaction Parameters. Crystal Growth and Design, 2016, 16, 5441-5447.	3.0	9
76	Water-Soluble Pentagonal-Prismatic Titanium-Oxo Clusters. Journal of the American Chemical Society, 2016, 138, 11097-11100.	13.7	145
77	Metal Oxido Clusters of Group 13–15 Elements. Structure and Bonding, 2016, , 201-268.	1.0	10

#	Article	IF	CITATIONS
78	Chemical Stabilization and Electrochemical Destabilization of the Iron Keggin Ion in Water. Inorganic Chemistry, 2016, 55, 11078-11088.	4.0	39
79	Group 4 Metals as Secondary Building Units: Ti, Zr, and Hf-based MOFs. , 2016, , 137-170.		2
80	Two Titanium-oxo-Clusters with Malonate and Succinate Ligands: Single-Crystal Structures and Catalytic Property. Journal of Cluster Science, 2016, 27, 635-643.	3.3	11
81	A 3.6 nm Ti ₅₂ –Oxo Nanocluster with Precise Atomic Structure. Journal of the American Chemical Society, 2016, 138, 7480-7483.	13.7	193
82	Novel properties and potential applications of functional ligand-modified polyoxotitanate cages. Chemical Communications, 2016, 52, 11180-11190.	4.1	97
83	Bandgap Engineering of Titanium–Oxo Clusters: Labile Surface Sites Used for Ligand Substitution and Metal Incorporation. Angewandte Chemie - International Edition, 2016, 55, 5160-5165.	13.8	181
84	The core contribution of transmission electron microscopy to functional nanomaterials engineering. Nanoscale, 2016, 8, 1260-1279.	5.6	24
85	Small Titanium Oxo Clusters: Primary Structures of Titanium(IV) in Water. Inorganic Chemistry, 2016, 55, 3212-3214.	4.0	40
86	A Titanium–Organic Framework as an Exemplar of Combining the Chemistry of Metal– and Covalent–Organic Frameworks. Journal of the American Chemical Society, 2016, 138, 4330-4333.	13.7	260
87	Fullerene-like Polyoxotitanium Cage with High Solution Stability. Journal of the American Chemical Society, 2016, 138, 2556-2559.	13.7	183
88	A new cadmium-doped titanium–oxo cluster with stable photocatalytic H ₂ evolution properties. Dalton Transactions, 2016, 45, 4501-4503.	3.3	30
89	A novel hexanuclear titanium(<scp>iv</scp>)-oxo-iminodiacetate cluster with a Ti ₆ O ₉ core: single-crystal structure and photocatalytic activities. Dalton Transactions, 2016, 45, 7581-7588.	3.3	22
90	Interfacial charge transfer in a functionalized polyoxotitanate cluster. Inorganica Chimica Acta, 2016, 443, 279-283.	2.4	19
91	Using graphene oxide as a sacrificial support of polyoxotitanium clusters to replicate its two-dimensionality on pure titania photocatalysts. Journal of Materials Chemistry A, 2016, 4, 7200-7206.	10.3	13
92	Novel Eu-containing titania composites derived from a new Eu(<scp>iii</scp>)-doped polyoxotitanate cage. RSC Advances, 2016, 6, 57-60.	3.6	21
93	A versatile synthetic route for the preparation of titanium metal–organic frameworks. Chemical Science, 2016, 7, 1063-1069.	7.4	114
94	Breaking the Gordian Knot in the Structural Chemistry of Polyoxometalates: Copper(II)–Oxo/Hydroxo Clusters. Chemistry - A European Journal, 2017, 23, 7841-7852.	3.3	44
95	Heterometallic Lanthanide–Titanium Oxo Clusters: A New Family of Water Oxidation Catalysts. Inorganic Chemistry, 2017, 56, 1057-1060.	4.0	72

#	Article	IF	CITATIONS
96	Inverse coordination – An emerging new chemical concept. Oxygen and other chalcogens as coordination centers. Coordination Chemistry Reviews, 2017, 338, 1-26.	18.8	47
97	Synthesis and photocatalytic H2 evolution properties of four titanium-oxo-clusters based on a cyclohex-3-ene-1-carboxylate ligand. Dalton Transactions, 2017, 46, 10630-10634.	3.3	21
98	Anion···π Interactions and Metastability: Structural Transformations in a Silver–Pyrazine Network. European Journal of Inorganic Chemistry, 2017, 2017, 2628-2636.	2.0	4
99	Assembling Polyoxoâ€Titanium Clusters and CdS Nanoparticles to a Porous Matrix for Efficient and Tunable H ₂ â€Evolution Activities with Visible Light. Advanced Materials, 2017, 29, 1603369.	21.0	113
100	Maximizing the Photocatalytic Activity of Metal–Organic Frameworks with Aminated-Functionalized Linkers: Substoichiometric Effects in MIL-125-NH ₂ . Journal of the American Chemical Society, 2017, 139, 8222-8228.	13.7	195
101	Titanium coordination compounds: from discrete metal complexes to metal–organic frameworks. Chemical Society Reviews, 2017, 46, 3431-3452.	38.1	239
102	Connecting Titanium-Oxo Clusters by Nitrogen Heterocyclic Ligands to Produce Multiple Cluster Series with Photocatalytic H ₂ Evolution Activities. Crystal Growth and Design, 2017, 17, 3592-3595.	3.0	37
103	Titanium Oxo Cluster with Six Peripheral Ferrocene Units and Its Photocurrent Response Properties for Saccharides. Inorganic Chemistry, 2017, 56, 6451-6458.	4.0	44
104	A ferrocenecarboxylate-functionalized titanium-oxo-cluster: the ferrocene wheel as a sensitizer for photocurrent response. Dalton Transactions, 2017, 46, 8057-8064.	3.3	44
105	Titanium–Oxo Cluster Based Precise Assembly for Multidimensional Materials. Chemistry of Materials, 2017, 29, 2681-2684.	6.7	50
106	[Ti ₁₂ In ₆ O ₁₈ (OOCC ₆ H ₅) ₃₀]: a multifunctional hetero-polyoxotitanate nanocluster with high stability and visible photoactivity. Dalton Transactions, 2017, 46, 678-684.	3.3	31
107	Synthetic investigation, structural analysis and photocatalytic study of a carboxylate–phosphonate bridged Ti ₁₈ -oxo cluster. Dalton Transactions, 2017, 46, 803-807.	3.3	29
108	Construction of molecular rectangles with titanium–oxo clusters and rigid aromatic carboxylate ligands. Dalton Transactions, 2017, 46, 16000-16003.	3.3	14
109	A cluster-based mesoporous Ti-MOF with sodalite supercages. Chemical Communications, 2017, 53, 11670-11673.	4.1	74
110	Two titanium(<scp>iv</scp>)-oxo-clusters: synthesis, structures, characterization and recycling catalytic activity in the oxygenation of sulfides. Dalton Transactions, 2017, 46, 14348-14355.	3.3	11
111	Phosphonate-Stabilized Titanium-Oxo Clusters with Ferrocene Photosensitizer: Structures, Photophysical and Photoelectrochemical Properties, and DFT/TDDFT Calculations. Inorganic Chemistry, 2017, 56, 12775-12782.	4.0	45
112	Alkoxido-Derivatised Lindqvist- and Keggin-Type Polyoxometalates. Structure and Bonding, 2017, , 139-163.	1.0	0
113	Microporous Cyclic Titaniumâ€Oxo Clusters with Labile Surface Ligands. Angewandte Chemie - International Edition, 2017, 56, 16252-16256.	13.8	90

#	Article	IF	CITATIONS
114	p-Arsanilic acid stabilizing titanium-oxo clusters with various core structures and light absorption behaviours. Inorganic Chemistry Communication, 2017, 86, 14-17.	3.9	5
115	Mixed-Ligand Titanium "Oxo Clustersâ€! Structural Insights into the Formation and Binding of Organic Molecules and Transformation into Oxide Nanostructures on Hydrolysis and Thermolysis. European Journal of Inorganic Chemistry, 2017, 2017, 4117-4122.	2.0	27
116	Improving the photocatalytic H2 evolution activities of TiO2 by modulating the stabilizing ligands of the nanoscale Ti8O8-cluster precursors. International Journal of Hydrogen Energy, 2017, 42, 24737-24743.	7.1	9
117	A gigantic polyoxozirconate with visible photoactivity. Dalton Transactions, 2017, 46, 10185-10188.	3.3	10
118	Stable Heteropolyoxotitanate Nanocluster for Full Solar Spectrum Photocatalytic Hydrogen Evolution. Journal of Physical Chemistry C, 2017, 121, 18326-18332.	3.1	20
119	Microporous Cyclic Titaniumâ€Oxo Clusters with Labile Surface Ligands. Angewandte Chemie, 2017, 129, 16470-16474.	2.0	21
120	Deep eutectic-solvothermal synthesis of titanium-oxo clusters protected by π-conjugated chromophores. Chemical Communications, 2017, 53, 8078-8080.	4.1	36
121	Hybrid Grapheneâ€Polyoxometalates Nanofluids as Liquid Electrodes for Dual Energy Storage in Novel Flow Cells. Chemical Record, 2018, 18, 1076-1084.	5.8	33
122	Additive manufacturing of polymer-derived titania for one-step solar water purification. Materials Today Communications, 2018, 15, 288-293.	1.9	55
124	In Situ Selfâ€Assembled Polyoxotitanate Cages on Flexible Cellulosic Substrates: Multifunctional Coating for Hydrophobic, Antibacterial, and UVâ€Blocking Applications. Advanced Functional Materials, 2018, 28, 1800345.	14.9	45
125	Dicarboxylate Ligands Oriented Assembly of {Ti ₃ (μ ₃ -O)} Units: From Dimer to Coordination Triangles and Rectangles. Inorganic Chemistry, 2018, 57, 5642-5647.	4.0	16
126	Titanium-based metal–organic frameworks for photocatalytic applications. Coordination Chemistry Reviews, 2018, 359, 80-101.	18.8	246
127	Additive manufacturing of 3D nano-architected metals. Nature Communications, 2018, 9, 593.	12.8	372
128	Stable Metal–Organic Frameworks: Design, Synthesis, and Applications. Advanced Materials, 2018, 30, e1704303.	21.0	1,740
129	Synthetic strategies, diverse structures and tuneable properties of polyoxo-titanium clusters. Chemical Society Reviews, 2018, 47, 404-421.	38.1	272
130	Designed Cluster Assembly of Multidimensional Titanium Coordination Polymers: Syntheses, Crystal Structure and Properties. Chemistry - A European Journal, 2018, 24, 2952-2961.	3.3	42
131	Energy transfer and photoluminescence properties of lanthanide-containing polyoxotitanate cages coordinated by salicylate ligands. Dalton Transactions, 2018, 47, 5679-5686.	3.3	22
132	Synthesis, characterization and properties of titanium phosphonate clusters. Polyhedron, 2018, 147, 1-8.	2.2	13

#	Article	IF	CITATIONS
133	Heterogeneous catalysts based on mesoporous metal–organic frameworks. Coordination Chemistry Reviews, 2018, 373, 199-232.	18.8	113
134	Influence of tunable pore size on photocatalytic and photoelectrochemical performances of hierarchical porous TiO2/C nanocomposites synthesized via dual-Templating. Applied Catalysis B: Environmental, 2018, 224, 341-349.	20.2	43
135	[Ti ₈ Zr ₂ O ₁₂ (COO) ₁₆] Cluster: An Ideal Inorganic Building Unit for Photoactive Metal–Organic Frameworks. ACS Central Science, 2018, 4, 105-111.	11.3	204
136	The structure and photocatalytic activity of the tetranuclear titanium(IV) oxo-complex with 4-aminobenzoate ligands. Polyhedron, 2018, 141, 110-117.	2.2	14
137	Ligand dependent assembly of trinuclear titanium-oxo units into coordination tetrahedra and capsules. Dalton Transactions, 2018, 47, 663-665.	3.3	20
138	Titanium-Oxide Host Clusters with Exchangeable Guests. Journal of the American Chemical Society, 2018, 140, 66-69.	13.7	77
139	Single-crystal-to-single-crystal desolvation in a Ti ₃₂ nanoring cluster. CrystEngComm, 2018, 20, 7062-7065.	2.6	6
140	Conjugated hybrid films based on a new polyoxotitanate monomer. Chemical Communications, 2018, 54, 14132-14135.	4.1	14
141	Syntheses, structures and photoelectrochemical properties of phosphite-stabilized titanium-oxo clusters containing 2,2′-biphenolato ligands. Inorganic Chemistry Communication, 2018, 97, 176-179.	3.9	6
142	MgTi(cat)3, a promising precursor for the preparation of Ti–MOFs?. Polyhedron, 2018, 156, 111-115.	2.2	3
143	Tetranuclear Oxo-Titanium Clusters with Different Carboxylate Aromatic Ligands: Optical Properties, DFT Calculations, and Photoactivity. Materials, 2018, 11, 1661.	2.9	16
145	TiO Phase Stabilized into Freestanding Nanofibers as Strong Polysulfide Immobilizer in Li–S Batteries: Evidence for Lewis Acid–Base Interactions. ACS Applied Materials & Interfaces, 2018, 10, 37937-37947.	8.0	53
146	Titaniumâ€Carboxylate Metalâ€Organic Framework Based on an Unprecedented Tiâ€Oxo Chain Cluster. Angewandte Chemie, 2018, 130, 15068-15072.	2.0	19
147	Liquid, glass and amorphous solid states of coordination polymers and metal–organic frameworks. Nature Reviews Materials, 2018, 3, 431-440.	48.7	314
148	Titaniumâ€Carboxylate Metalâ€Organic Framework Based on an Unprecedented Tiâ€Oxo Chain Cluster. Angewandte Chemie - International Edition, 2018, 57, 14852-14856.	13.8	122
149	Super Atomic Clusters: Design Rules and Potential for Building Blocks of Materials. Chemical Reviews, 2018, 118, 5755-5870.	47.7	426
150	Modulating the band gap and photoelectrochemical activity of dicarboxylate-stabilized titanium-oxo clusters. Inorganica Chimica Acta, 2018, 482, 16-22.	2.4	6
151	Atomically Precise Multimetallic Semiconductive Nanoclusters with Optical Limiting Effects. Angewandte Chemie, 2018, 130, 11422-11426.	2.0	20

#	Article	IF	CITATIONS
152	Hydrothermal synthesis, structures and visible light harvest of three titanium complexes. Inorganic Chemistry Communication, 2018, 93, 61-64.	3.9	7
153	Assembly of a Wheelâ€Like Eu ₂₄ Ti ₈ Cluster under the Guidance of Highâ€Resolution Electrospray Ionization Mass Spectrometry. Angewandte Chemie - International Edition, 2018, 57, 10976-10979.	13.8	85
154	Host–Guest and Photophysical Behavior of Ti ₈ L ₁₂ Cube with Encapsulated [Ti(H ₂ O) ₆] Species. Chemistry - A European Journal, 2018, 24, 14358-14362.	3.3	24
155	Two new hexanuclear titanium oxo cluster types and their structural connection to known clusters. New Journal of Chemistry, 2018, 42, 12098-12103.	2.8	16
156	Assembly of a Wheelâ€Like Eu ₂₄ Ti ₈ Cluster under the Guidance of Highâ€Resolution Electrospray Ionization Mass Spectrometry. Angewandte Chemie, 2018, 130, 11142-11145.	2.0	12
157	A Large Titanium Oxo Cluster Featuring a Well-Defined Structural Unit of Rutile. Crystal Growth and Design, 2018, 18, 4864-4868.	3.0	30
158	Keggin Structure, QuÅ•VÄdis?. Frontiers in Chemistry, 2018, 6, 346.	3.6	49
159	Synthesis, Structures, and Photocurrent Responses of Polyoxo-Titanium Clusters with Oxime Ligands: From Ti ₄ to Ti ₁₈ . Inorganic Chemistry, 2018, 57, 8850-8856.	4.0	27
160	Properties and surface morphologies of organic–inorganic hybrid thin films containing titanium phosphonate clusters. Polymer Journal, 2018, 50, 1169-1177.	2.7	8
161	Structures and photophysical performances of (fluoro)salicylate stabilized polyoxo-titanium clusters. CrystEngComm, 2018, 20, 5964-5968.	2.6	17
162	Atomically Precise Multimetallic Semiconductive Nanoclusters with Optical Limiting Effects. Angewandte Chemie - International Edition, 2018, 57, 11252-11256.	13.8	99
163	Formation of a new type of uranium(<scp>iv</scp>) poly-oxo cluster {U ₃₈ } based on a controlled release of water <i>via</i> esterification reaction. Chemical Science, 2018, 9, 5021-5032.	7.4	31
164	Synthesis of the Materials with a Switchable Wettability Based on Photosensitive Terpolymers Containing Poly(Titanium Oxide). Inorganic Materials: Applied Research, 2019, 10, 431-437.	0.5	3
165	A Series of Ti 6 Oxo Clusters Anchored with Arylamine Dyes: Effect of Dye Structures on Photocurrent Responses. Chemistry - an Asian Journal, 2019, 14, 3198-3204.	3.3	11
166	Water-Soluble Lanthanide–Titanium–Oxo Cluster, a Precursor for Biocompatible Nanomaterial. Inorganic Chemistry, 2019, 58, 14617-14625.	4.0	23
167	Functionalization of Titanium Oxide Cluster Ti ₁₇ O ₂₄ (O ^{<i>i</i>/i>} C ₃ H ₇) ₂₀ with Catechols: Structures and Ligandâ€Exchange Reactivities. Chemistry - A European Journal, 2019, 25, 14843-14849	3.3	18
168	Dynamical Analysis and Exact Solutions of a New (2+1)-Dimensional Generalized Boussinesq Model Equation for Nonlinear Rossby Waves*. Communications in Theoretical Physics, 2019, 71, 1054.	2.5	16
169	Selfâ€Assembly of a Phosphateâ€Centered Polyoxoâ€Titanium Cluster: Discovery of the Heteroatom Keggin Family. Angewandte Chemie, 2019, 131, 17420-17424.	2.0	10

#	Article	IF	CITATIONS
170	Two Highly Stable Proton Conductive Cobalt(II)–Organic Frameworks as Impedance Sensors for Formic Acid. Chemistry - A European Journal, 2019, 25, 14108-14116.	3.3	55
171	Selfâ€Assembly of a Phosphateâ€Centered Polyoxoâ€Titanium Cluster: Discovery of the Heteroatom Keggin Family. Angewandte Chemie - International Edition, 2019, 58, 17260-17264.	13.8	71
172	Fluorescent perylene derivative functionalized titanium oxide gel for sensitive and portable ascorbic acid detection. RSC Advances, 2019, 9, 24638-24645.	3.6	3
173	One-Pot and Postsynthetic Phenol-Thermal Synthesis toward Highly Stable Titanium-Oxo Clusters. Inorganic Chemistry, 2019, 58, 13353-13359.	4.0	24
174	Trinuclear Oxo-Titanium Clusters: Synthesis, Structure, and Photocatalytic Activity. Materials, 2019, 12, 3195.	2.9	11
175	From a bulk solid to thin films of a hybrid material derived from the [Ti10O12(cat)8(py)8] oxo-cluster and poly(4-vinylpyridine). New Journal of Chemistry, 2019, 43, 1581-1588.	2.8	3
176	Acidâ€Controlled Synthesis of Carboxylateâ€Stabilized Ti ₄₄ â€Oxo Clusters: Scaling up Preparation, Exchangeable Protecting Ligands, and Photophysical Properties. Chemistry - A European Journal, 2019, 25, 10450-10455.	3.3	31
177	Activity of Atomically Precise Titania Nanoparticles in CO Oxidation. Angewandte Chemie, 2019, 131, 8086-8090.	2.0	8
178	The Sol-to-Gel Transition. SpringerBriefs in Materials, 2019, , .	0.3	13
179	Ag 10 Ti 28 â€Oxo Cluster Containing Singleâ€Atom Silver Sites: Atomic Structure and Synergistic Electronic Properties. Angewandte Chemie, 2019, 131, 11048-11051.	2.0	9
180	Photo-redox reactivity of titanium-oxo clusters: mechanistic insight into a two-electron intramolecular process, and structural characterisation of mixed-valent Ti(<scp>iii</scp>)/Ti(<scp>iv</scp>) products. Chemical Science, 2019, 10, 6886-6898.	7.4	16
181	Polyoxometalate-Based Catalysts for CO2 Conversion. Molecules, 2019, 24, 2069.	3.8	48
182	Cluster-to-cluster charge transfer in a compound with a co-crystallized dye-anchored Ti ₆ cluster and a classical Ti ₁₂ cluster. Dalton Transactions, 2019, 48, 8569-8572.	3.3	7
183	Ligand-directed assembly engineering of trapezoidal {Ti ₅ } building blocks stabilized by dimethylglyoxime. Dalton Transactions, 2019, 48, 9916-9919.	3.3	13
184	Ag ₁₀ Ti ₂₈ â€Oxo Cluster Containing Singleâ€Atom Silver Sites: Atomic Structure and Synergistic Electronic Properties. Angewandte Chemie - International Edition, 2019, 58, 10932-10935.	13.8	57
185	Structures, Photoelectrochemical and Photocatalytic Properties of Phosphite-Stabilized Titanium-Oxo Clusters Functionalized with Ferrocenecarboxylate Ligands. Journal of Cluster Science, 2019, 30, 1519-1524.	3.3	5
186	Amino-Polyalcohol-Solvothermal Synthesis of Titanium-Oxo Clusters: From Ti ₆ to Ti ₁₉ with Structural Diversity. Inorganic Chemistry, 2019, 58, 7267-7273.	4.0	13
187	In situ generated pyroglutamate bridged polyoxotitaniums with strong circular dichroism signal. Chinese Chemical Letters, 2019, 30, 1005-1008.	9.0	3

ARTICLE IF CITATIONS An ultrathin porphyrin-based metal-organic framework for efficient photocatalytic hydrogen 188 16.0 97 evolution under visible light. Nano Energy, 2019, 62, 250-258. A Titanium(IV)â€Based Metal–Organic Framework Featuring Defectâ€Rich Tiâ€O Sheets as an Oxidative Desulfurization Catalyst. Angewandte Chemie, 2019, 131, 9258-9263. Synthesis, Crystal Structures, and Photochemical Properties of a Family of Heterometallic Titanium 190 4.0 47 Oxo Clusters. Inorganic Chemistry, 2019, 58, 6312-6319. Activity of Atomically Precise Titania Nanoparticles in CO Oxidation. Angewandte Chemie -International Edition, 2019, 58, 8002-8006. A Titanium(IV)â€Based Metalâ€"Organic Framework Featuring Defectâ€Rich Tiâ€O Sheets as an Oxidative 192 13.8 99 Desulfurization Catalyst. Angewandte Chemie - International Edition, 2019, 58, 9160-9165. Alkoxides and Alkoxosynthesis., 2019, , . Data mining new energy materials from structure databases. Renewable and Sustainable Energy 194 16.4 38 Reviews, 2019, 107, 554-567. Preparation of Porous TiO₂ from an Iso-Polyoxotitanate Cluster for Rechargeable 9 3.1 Sodium-Ion Batteries with High Performance. Journal of Physical Chemistry C, 2019, 123, 7025-7032. Effects of the Ligand Structures on the Photoelectric Activities, a Model Study Based on 196 4.0 18 Titanium–Oxo Clusters Anchored with S-Heterocyclic Ligands. Inorganic Chemistry, 2019, 58, 2736-2743. Stimuli-Responsive Ti-Organic Gels and Aerogels Derived from Ti-Oxo Clusters: Hierarchical Porosity and Photocatalytic Activity. Inorganic Chemistry, 2019, 58, 15936-15941. Bio-compatible fluorescent nano TiO materials prepared from titanium-oxo-cluster precursors. 198 4.1 13 Chemical Communications, 2019, 55, 12360-12363. Water-soluble titanium-oxides: Complexes, clusters and nanocrystals. Coordination Chemistry 199 18.8 54 Reviews, 2019, 382, 85-102. Understanding photoresponsive catechol-based polyoxotitanate molecules: A combined experimental 200 2.6 1 and first principles investigation. Chemical Physics Letters, 2019, 715, 217-221. Wheelâ€Shape Heterometallic Ti₁₀M₂â€oxo Clusters (M = Ni, Co) with Effective Visible Light Absorption. Chinese Journal of Chemistry, 2019, 37, 233-236. Photocatalytical properties of organic-inorganic copolymers of poly(titanium oxide) in the 4-nitrophenol decomposition. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 369, 202 0 3.9 166-173. Isomerism in Titaniumâ€Oxo Clusters: Molecular Anatase Model with Atomic Structure and Improved Photocatalytic Activity. Angewandte Chemie, 2019, 131, 1334-1337. Isomerism in Titaniumâ€Oxo Clusters: Molecular Anatase Model with Atomic Structure and Improved 204 13.8 121 Photocatalytic Activity. Angewandte Chemie - International Edition, 2019, 58, 1320-1323. Tuning photoionization mechanisms of molecular hybrid materials for EUV lithography applications. Journal of Materials Chemistry C, 2019, 7, 33-37.

ARTICLE IF CITATIONS # 4-Chlorosalicylate-stabilized titanium-oxo clusters with structures mediated by tetrazole and their 206 2.2 9 photophysical properties. Polyhedron, 2019, 157, 177-182. Hybrid Titanium Oxide/Polymer Amphiphilic Nanomaterials with Controlled Size for Drug 14.9 Encapsulation and Delivery. Advanced Functional Materials, 2020, 30, 1806146. Novel hybrid poly(l-lactic acid) from titanium oxo-cluster via reactive extrusion polymerization. 208 5.4 7 European Polymer Journal, 2020, 122, 109238. Subâ€nanometer titaniumâ€oxo clusterâ€polymer nanocomposites for elastic, transparent UVâ€resistant films 209 4.6 and nanoâ€coatings. Polymer Composites, 2020, 41, 306-313. Synthesis, structure and magnetism of a novel Cull4TilV5 heterometallic cluster. Chinese Chemical 210 9.0 20 Letters, 2020, 31, 809-812. Recent advances in heterometallic polyoxotitanium clusters. Coordination Chemistry Reviews, 2020, 18.8 404, 213099. Solid-state structure and solution behavior of two titanium oxo-alkoxide complexes with 212 2.2 5 phenylphosphonate ligands. Polyhedron, 2020, 178, 114276. Binding Modes of Salicylic Acids to Titanium Oxide Molecular Surfaces. Chemistry - A European 3.3 24 Journal, 2020, 26, 2666-2674. 214 Toward a Rational Design of Titanium Metal-Organic Frameworks. Matter, 2020, 2, 440-450. 10.0 58 Versatile {Cp<sub>Zi} Grafted Hetero-Polyoxotungstate Clusters: Synthesis, Crystal Structure, and Photocurrent Properties. Inorganic Chemistry, 2020, 59, 1125-1136. Eu-phen Bonded Titanium Oxo-Clusters, Precursors for a Facile Preparation of High Luminescent 216 4.011 Materials and Films. Inorganic Chemistry, 2020, 59, 10422-10429. Lanthanide-titanium oxo-clusters, new precursors of multifunctional colloids for effective imaging and photodynamic therapy. Journal of Molecular Liquids, 2020, 317, 113946. Synthesis and Photocatalytic Properties of Titaniumâ€Porphyrinic Aerogels. Angewandte Chemie -218 13.8 24 International Edition, 2020, 59, 21591-21596. Synthesis and Photocatalytic Properties of Titaniumâ€Porphyrinic Aerogels. Angewandte Chemie, 2020, 132, 21775-21780. Dipyrrolyldiketonato Titanium(IV) Complexes from Monomeric to Multinuclear Architectures: 220 4.0 6 Synthesis, Stability, and Liquid-Crystal Properties. Inorganic Chemistry, 2020, 59, 12802-12816. Oxo-Titanium(IV) Complex/Polymer Compositesâ€"Synthesis, Spectroscopic Characterization and Antimicrobial Activity Test. Intérnational Journal of Molecular Sciences, 2020, 21, 9663. Ru^{II} and Ru^{III} Chloronitrile Complexes: Synthesis, Reaction Chemistry, Solid 222 State Structure, and (Spectro)Electrochemical Behavior. Zeitschrift Fur Anorganische Und 1.2 3 Allgemeine Chemie, 2020, 646, 1820-1833. Thiacalix[4]arene-Protected Titanium–Oxo Clusters: Influence of Ligand Conformation and Ti–S 223 Coordination on the Visible-Light Photocatalytic Hydrogen Production. Inorganic Chemistry, 2020, 59, 7150-7157.

#	Article	IF	CITATIONS
224	A Sodaliteâ€Type Silver Orthophosphate Cluster in a Globular Silver Nanocluster. Angewandte Chemie, 2020, 132, 12759-12763.	2.0	16
225	Accurate Regulating of Visible-Light Absorption in Polyoxotitanate–Calix[8]arene Systems by Ligand Modification. Inorganic Chemistry, 2020, 59, 7512-7519.	4.0	21
226	Supramolecular Co-assembly of the Ti ₈ L ₁₂ Cube with [Ti(DMF) ₆] Species and Ti ₁₂ -Oxo Cluster. Inorganic Chemistry, 2020, 59, 8291-8297.	4.0	9
227	Designable Aluminum Molecular Rings: Ring Expansion and Ligand Functionalization. Angewandte Chemie, 2020, 132, 16878-16883.	2.0	14
228	Structure and glass transition of amorphous materials composed of titanium-oxo oligomers chemically modified with benzoylacetone. RSC Advances, 2020, 10, 15665-15669.	3.6	3
229	Designable Aluminum Molecular Rings: Ring Expansion and Ligand Functionalization. Angewandte Chemie - International Edition, 2020, 59, 16735-16740.	13.8	54
230	Leadâ€Doped Titaniumâ€Oxo Clusters as Molecular Models of Perovskiteâ€Type PbTiO ₃ and Electronâ€Transport Material in Solar Cells. Chemistry - A European Journal, 2020, 26, 6894-6898.	3.3	24
231	From supramolecular to solid state chemistry: crystal engineering of luminescent materials by trapping molecular clusters in an aluminium-based host matrix. Materials Horizons, 2020, 7, 2399-2406.	12.2	17
232	Titanium phosphonate oxo-alkoxide "clusters― solution stability and facile hydrolytic transformation into nano titania. RSC Advances, 2020, 10, 6873-6883.	3.6	16
233	A Simple Drop-and-Dry Approach to Grass-Like Multifunctional Nanocoating on Flexible Cotton Fabrics Using In Situ-Generated Coating Solution Comprising Titanium-Oxo Clusters and Silver Nanoparticles. ACS Applied Materials & Interfaces, 2020, 12, 12093-12100.	8.0	19
234	Synergistic ligand effect for the construction of titanium–oxo clusters with planar chirality and high solution stability. Dalton Transactions, 2020, 49, 4030-4033.	3.3	9
235	Preparation, structural characterization and cytotoxicity of hydrolytically stable Ti(IV) citrate complexes. Inorganica Chimica Acta, 2020, 503, 119429.	2.4	3
236	Unprecedented porosity transformation of hierarchically porous TiO2 derived from Ti-Oxo clusters. Microporous and Mesoporous Materials, 2020, 300, 110153.	4.4	7
237	Effects of organic ammonium cations on the isolation of {Ti4} cyclic clusters from water: an 170 NMR study. Dalton Transactions, 2020, 49, 5957-5964.	3.3	5
238	A Sodaliteâ€Type Silver Orthophosphate Cluster in a Globular Silver Nanocluster. Angewandte Chemie - International Edition, 2020, 59, 12659-12663.	13.8	36
239	Recent advances in titanium metal–organic frameworks and their derived materials: Features, fabrication, and photocatalytic applications. Chemical Engineering Journal, 2020, 395, 125080.	12.7	93
240	Surface-Enhanced Raman Scattering of Phenols and Catechols by a Molecular Analogue of Titanium Dioxide. Analytical Chemistry, 2020, 92, 5929-5936.	6.5	24
241	Titanium oxo/alkoxyl clusters anchored with photoactive ligands. Coordination Chemistry Reviews, 2021, 430, 213664.	18.8	42

#	Article	IF	CITATIONS
242	Aerobic oxidation of toluene and benzyl alcohol to benzaldehyde using a visible light-responsive titanium-oxide cluster. Chemical Engineering Journal, 2021, 404, 126433.	12.7	21
243	Designable Al ₃₂ â€Oxo Clusters with Hydrotalciteâ€like Structures: Snapshots of Boundary Hydrolysis and Optical Limiting. Angewandte Chemie - International Edition, 2021, 60, 4849-4854.	13.8	39
244	A cocrystallization of polyoxotitanium cages with lanthanide clusters. Journal of Solid State Chemistry, 2021, 294, 121852.	2.9	4
245	Designable Al ₃₂ â€Oxo Clusters with Hydrotalciteâ€like Structures: Snapshots of Boundary Hydrolysis and Optical Limiting. Angewandte Chemie, 2021, 133, 4899-4904.	2.0	3
246	Supramolecular Chemistry of Titanium Oxide Clusters. Chemistry - A European Journal, 2021, 27, 4270-4282.	3.3	17
247	Solvothermal synthesis and structural characterization of three polyoxotitanium-organic acid clusters. RSC Advances, 2021, 11, 25068-25078.	3.6	1
248	Titanium-based metal-organic frameworks for photocatalytic applications. , 2021, , 37-63.		2
249	Co-crystal of Ti4Ni2 and Ti8Ni4 clusters with enhanced photochemical properties. CrystEngComm, 2021, 23, 4402-4407.	2.6	7
250	Accurate assembly of ferrocene-functionalized {Ti22Fc4} clusters with photocatalytic amine oxidation activity. Chemical Communications, 2021, 57, 2792-2795.	4.1	19
251	Inverse Coordination Complexes: Oxygen as Coordination Center. , 2021, , 66-120.		2
252	Processing–Structure–Performance Relationships of Microporous Metal–Organic Polymers for Size-Selective Separations. ACS Applied Materials & Interfaces, 2021, 13, 3521-3527.	8.0	1
253	Rational assembly of metal-oxo clusters into molecular materials <i>via</i> a "wheel mounting― mode. Inorganic Chemistry Frontiers, 2021, 8, 4102-4106.	6.0	0
254	Tartrate-stabilized titanium–oxo clusters containing sulfonate chromophore ligands: synthesis, crystal structures and photochemical properties. New Journal of Chemistry, 2021, 45, 10930-10939.	2.8	2
255	Calixarene-Protected Titanium-Oxo Clusters and Their Photocurrent Responses and Photocatalytic Performances. Inorganic Chemistry, 2021, 60, 5034-5041.	4.0	20
256	Ferrocene-Functionalized Polyoxo-Titanium Cluster for CO ₂ Photoreduction. ACS Catalysis, 2021, 11, 4510-4519.	11.2	57
257	Perspectives on titanium-based metal–organic frameworks. JPhys Energy, 2021, 3, 021003.	5.3	11
258	Threefold Collaborative Stabilization of Ag ₁₄ â€Nanorods by Hydrophobic Ti ₁₆ â€Oxo Clusters and Alkynes: Designable Assembly and Solidâ€6tate Opticalâ€Limiting Application. Angewandte Chemie, 2021, 133, 13059-13064.	2.0	7
260	Synthesis and Applications of Stable Iron-Based Metal–Organic Framework Materials. Crystal Growth and Design, 2021, 21, 3100-3122.	3.0	34

#	Article	IF	CITATIONS
261	Deliberate Construction of Polyoxoniobates Exploiting the Carbonate Ligand. Angewandte Chemie, 2021, 133, 12569-12574.	2.0	6
263	Synthesis and Structure of a Series of Ti ₆ â€oxo Clusters Functionalized by <i>in situ</i> Esterified Dicarboxylate Ligands. Chinese Journal of Chemistry, 2021, 39, 1259-1264.	4.9	6
264	Deliberate Construction of Polyoxoniobates Exploiting the Carbonate Ligand. Angewandte Chemie - International Edition, 2021, 60, 12461-12466.	13.8	22
265	Threefold Collaborative Stabilization of Ag ₁₄ â€Nanorods by Hydrophobic Ti ₁₆ â€Oxo Clusters and Alkynes: Designable Assembly and Solidâ€State Opticalâ€Limiting Application. Angewandte Chemie - International Edition, 2021, 60, 12949-12954.	13.8	38
266	Assembly of a Titanium-Oxo Cluster and a Bismuth Iodide Cluster, a Single-Source Precursor of a p–n-Type Photocatalyst. Inorganic Chemistry, 2021, 60, 9589-9597.	4.0	15
267	Titaniumâ€Oxo Clusters with Bi―and Tridentate Organic Ligands: Gradual Evolution of the Structures from Small to Big. Chemistry - A European Journal, 2021, 27, 11239-11256.	3.3	35
268	The forgotten chemistry of group(IV) metals: A survey on the synthesis, structure, and properties of discrete Zr(IV), Hf(IV), and Ti(IV) oxo clusters. Coordination Chemistry Reviews, 2021, 438, 213886.	18.8	40
269	Odd-membered cyclic hetero-polyoxotitanate nanoclusters with high stability and photocatalytic H2 evolution activity. Chinese Journal of Catalysis, 2021, 42, 1332-1337.	14.0	5
270	Mono- and Bismetalphenanthroline-Substituted Ti ₁₂ Clusters: Structural Variance and the Effect on Electronic State and Photocurrent Property. Inorganic Chemistry, 2021, 60, 12255-12262.	4.0	10
271	Phenol-triggered supramolecular transformation of titanium–oxo cluster based coordination capsules. Chinese Chemical Letters, 2021, 32, 2415-2418.	9.0	6
272	Rare-Earth-Modified Titania Nanoparticles: Molecular Insight into Synthesis and Photochemical Properties. Inorganic Chemistry, 2021, 60, 14820-14830.	4.0	9
273	Assembly of Interlocked Superstructures with a Titanium Oxide Molecular Ring in Water. Inorganic Chemistry, 2021, 60, 14520-14524.	4.0	8
274	From isolated Ti-oxo clusters to infinite Ti-oxo chains and sheets: recent advances in photoactive Ti-based MOFs. Journal of Materials Chemistry A, 2020, 8, 15245-15270.	10.3	209
275	Recent advances in isopolyoxotungstates and their derivatives. Acta Crystallographica Section C, Structural Chemistry, 2018, 74, 1202-1221.	0.5	11
276	Synthesis, Structure and Photocatalytic Properties of Organic-Inorganic Nanocomposites Containing Poly(Titanium Oxide) and Silver Nanoparticles. Bulletin of the South Ural State University Series Chemistry, 2016, 16, 18-30.	0.2	3
277	A review of phosphorus(V)-substituted titanium-oxo clusters. Journal of Sol-Gel Science and Technology, 2021, 100, 205-223.	2.4	7
278	A Novel Porous Tiâ€ S quarate as Efficient Photocatalyst in the Overall Water Splitting Reaction under Simulated Sunlight Irradiation. Advanced Materials, 2021, 33, e2106627.	21.0	35
279	Vapor-Phase Molecular Doping in Covalent Organosiloxane Network Thin Films Via a Lewis Acid–Base Interaction for Enhanced Mechanical Properties. ACS Applied Materials & Interfaces, 2022, 14, 22719-22727.	8.0	6

#	Article	IF	CITATIONS
280	From a Sol to a Gel. SpringerBriefs in Materials, 2019, , 21-37.	0.3	1
281	Modified pyridine–triazole and 2,2′-bipyrimidine ligands generating robust titanium complexes constructed around a TiO ₄ N ₂ core. Dalton Transactions, 2021, 50, 17008-17022.	3.3	4
283	Chemistry on the Complex: Derivatization of TiO 4 N 2 â€Based Complexes and Application to Multiâ€Step Synthesis. Chemistry - A European Journal, 2021, 27, 17910.	3.3	2
284	Stepwise assembly of heterometallic aluminum oxo clusters. Journal of Solid State Chemistry, 2021, 306, 122763.	2.9	1
285	Synthesis, Structure, and Light Absorption Behaviors of Prismatic Titanium-Oxo Clusters Containing Lacunary Lindqvist-like Species. Inorganic Chemistry, 2022, 61, 1385-1390.	4.0	3
286	Gas phase ion chemistry of titanium–oxofullerene with ligated solvents. Physical Chemistry Chemical Physics, 2022, 24, 2332-2343.	2.8	2
287	Ti-Based porous materials for reactive oxygen species-mediated photocatalytic reactions. Chemical Communications, 2022, 58, 607-618.	4.1	10
288	Syntheses, structures and ligand binding modes of titanium-oxide complexes of 2-picolinate. Dalton Transactions, 2022, 51, 3706-3712.	3.3	3
289	Ferrocene-sensitized titanium-oxo clusters with effective visible light absorption and excellent photoelectrochemical activity. Inorganic Chemistry Frontiers, 2022, 9, 959-967.	6.0	5
290	Versatile post-functionalisation strategy for the formation of modular organic–inorganic polyoxometalate hybrids. Chemical Science, 2022, 13, 2891-2899.	7.4	7
291	Self-Assembly of Chiral Ferrocene-Functionalized Polyoxotitanium Clusters for Photocatalytic Selective Sulfide Oxidation. Inorganic Chemistry, 2022, 61, 2903-2910.	4.0	3
292	Colloidal Inorganic Ligand-Capped Nanocrystals: Fundamentals, Status, and Insights into Advanced Functional Nanodevices. Chemical Reviews, 2022, 122, 4091-4162.	47.7	52
293	A Convenient Procedure for Preparing BiOX–TiO ₂ Photoelectrocatalytic Electrodes from a Titanium–Oxo Compound-Modified Carbon Fiber Cloth. Inorganic Chemistry, 2022, 61, 4024-4032.	4.0	2
294	High refractive index colorless glasses composed of titanium oxo-oligomers modified with phthalate ions. Journal of Sol-Gel Science and Technology, 0, , 1.	2.4	0
295	Preparation and Visible-Light Response of Salicylate-Stabilized Heterobimetallic Pb–Ti–Oxo Clusters Initiated via Auxiliary Quaternary Ammonium Salts and a Solvent Effect. Inorganic Chemistry, 2022, 61, 5017-5024.	4.0	3
296	Preparation and research of optical coating of <scp>starâ€shaped titaniumâ€oxo clusterâ€hybrid</scp> material. Journal of Applied Polymer Science, 0, , 52326.	2.6	1
297	Synthesis, structure and functions of discrete titanium-based multinuclear architectures. Coordination Chemistry Reviews, 2022, 459, 214439.	18.8	5
298	A Cyclic Titanium-Oxo Cluster with a Tetrathiafulvalene Connector as a Precursor for Highly Efficient Adsorbent of Cationic Dyes. Inorganic Chemistry, 2022, 61, 486-495.	4.0	7

#	Article	IF	Citations
299	Metal-Directed Self-Assembly of {Ti ₈ L ₂ } Cluster-Based Coordination Polymers with Enhanced Photocatalytic Alcohol Oxidation Activity. Inorganic Chemistry, 2022, 61, 923-930.	4.0	6
300	Nonaqueous Chemistry of Group 4 Oxo Clusters and Colloidal Metal Oxide Nanocrystals. Chemical Reviews, 2022, 122, 10538-10572.	47.7	20
301	Multipurpose Organic–Inorganic Hybrid Dielectrics with Photothermal Crosslinking of Zirconium-Oxo Clusters. SSRN Electronic Journal, 0, , .	0.4	0
302	Solutionâ€Based Synthesis Routes for the Preparation of Noncentrosymmetric 0â€D Oxide Nanocrystals with Perovskite and Nonperovskite Structures. Small, 2022, 18, .	10.0	7
303	Structural diversity in transition metal-doped titanium oxo-alkoxy complexes: Potential sol-gel intermediates for doped titania nanoparticles and complex titanates. Journal of Sol-Gel Science and Technology, 0, , .	2.4	0
304	Titanium(IV) Oxo-Complex with Acetylsalicylic Acid Ligand and Its Polymer Composites: Synthesis, Structure, Spectroscopic Characterization, and Photocatalytic Activity. Materials, 2022, 15, 4408.	2.9	3
305	S-Scheme Bi-oxide/Ti-oxide Molecular Hybrid for Photocatalytic Cycloaddition of Carbon Dioxide to Epoxides. ACS Catalysis, 2022, 12, 8202-8213.	11.2	28
306	The chemistry of metal–organic frameworks with face-centered cubic topology. Coordination Chemistry Reviews, 2022, 468, 214644.	18.8	14
307	Periodic Nanoporous Inorganic Patterns Directly Made by Selfâ€Ordering of Cracks. Advanced Materials, 2022, 34, .	21.0	7
308	Ferrocene as an iconic redox marker: From solution chemistry to molecular electronic devices. Coordination Chemistry Reviews, 2022, 473, 214816.	18.8	16
309	Assembly of cyclic ferrocene-sensitized titanium-oxo clusters with excellent photoelectrochemical activity. Inorganic Chemistry Frontiers, 2022, 9, 5616-5623.	6.0	3
310	New picolinate-functionalized titanium-oxide clusters: syntheses, structures and photocatalytic H ₂ evolution. Dalton Transactions, 2022, 51, 15385-15392.	3.3	4
311	Cr–Ti Mixed Oxide Molecular Cages: Synthesis, Structure, Photoresponse, and Photocatalytic Properties. Inorganic Chemistry, 2022, 61, 14887-14898.	4.0	4
312	Multi-topic Carboxylates as Versatile Building Blocks for the Design and Synthesis of Multifunctional MOFs Based on Alkaline Earth, Main Group and Transition Metals. Comments on Inorganic Chemistry, 2023, 43, 257-304.	5.2	1
313	Cluster-derived TiO ₂ nanocrystals with multiple carbon coupling for interfacial pseudo-capacitive lithium storage. Dalton Transactions, 2022, 51, 17858-17868.	3.3	1
314	Coordination-Delayed-Hydrolysis Method for the Synthesis and Structural Modulation of Titanium-Oxo Clusters. Accounts of Chemical Research, 2022, 55, 3150-3161.	15.6	26
315	Heterometallic Mo–Ti oxo clusters with metal–metal bonds: Preparation and visible-light absorption behaviors. , 2023, 2, 9140013.		12
316	Precisely Tailoring Heterometallic Polyoxotitanium Clusters for the Efficient and Selective Photocatalytic Oxidation of Hydrocarbons. Angewandte Chemie, 2022, 134, .	2.0	2

#	Article	IF	CITATIONS
317	Precisely Tailoring Heterometallic Polyoxotitanium Clusters for the Efficient and Selective Photocatalytic Oxidation of Hydrocarbons. Angewandte Chemie - International Edition, 2022, 61, .	13.8	23
318	Titanium(IV) Oxoacrylate Complexes with Polypyridine Ligands as Precursors of Nanomaterials with Antiwear Properties. Russian Journal of General Chemistry, 2022, 92, 1983-1994.	0.8	2
319	Use of the Advantages of Titanium in the Metal: Organic Framework. , 0, , .		0
320	Auxiliary Carboxylate-Induced Assembly of Calix[6]arene-Polyoxotitanate Hybrid Systems with Photocatalytic Activity in the Oxidation of Sulfides. Inorganic Chemistry, 2023, 62, 6047-6054.	4.0	3
321	Substituted benzoate-anchored decanuclear titanium-oxo clusters featuring an unprecedented defective double-cubane geometry. CrystEngComm, 2023, 25, 1617-1625.	2.6	0
322	Highâ€Porosity Metalâ€Organic Framework Glasses. Angewandte Chemie - International Edition, 2023, 62, .	13.8	19
323	Highâ€Porosity Metalâ€Organic Framework Glasses. Angewandte Chemie, 2023, 135, .	2.0	0
324	Highâ€Valence Metalâ€Organic Framework Materials Constructed from Metalâ€Oxo Clusters: Opportunities and Challenges. ChemPlusChem, 2023, 88, .	2.8	5
325	Photocatalytic Decomposition of Azo Dyes and Phenols Using Polymer Composites Containing Nanostructured Poly(Titanium Oxide) Doped with Gold or Silver Nanoparticles under Light Irradiation in a Wide Wavelength Range. Catalysts, 2023, 13, 423.	3.5	2
327	Photo-epoxidation of Î \pm -pinene catalyzed by a MoVI oxo-diperoxo complex modified Ti-based metal-organic framework. Molecular Catalysis, 2023, 545, 113240.	2.0	0
328	Ligand-directed structure evolution from a titanium-oxo cluster to coordination capsule and one-dimensional coordination polymer based on {Ti ₃ O} units. New Journal of Chemistry, 2023, 47, 11312-11317.	2.8	1
329	Calix[4]arene-Functionalized Titanium-Oxo Compounds for Perceiving Differences in Catalytic Reactivity Between Mono- and Multimetallic Sites. Journal of the American Chemical Society, 2023, 145, 16098-16108.	13.7	6
330	Evolution exploration and structure prediction of Keggin-type group IVB metal-oxo clusters. Chinese Chemical Letters, 2024, 35, 108805.	9.0	0
331	Ligands dependent structural diversity and optimizable CO2 chemical fixation activities of Cu-doped polyoxo-titanium clusters. Dalton Transactions, 0, , .	3.3	0
332	Sequential Aggregation of Heterometallic {M ₄ X ₄ }-Cubanes to Wheel-Shaped In ₁₀ Ni ₈ -Oxo Clusters for Optical Limiting Application. Chemistry of Materials, 2023, 35, 5845-5853.	6.7	2
333	Divalent Heterometal Doped Titanium-Oxide Cluster Polymers: Structures, Photoresponse, and Photocatalysis. Inorganic Chemistry, 2023, 62, 13476-13484.	4.0	3
334	Photoinduced Oxygen Atom Transfer to αâ€Pinene and R arvone using a Dioxoâ€Molybdenum (VI) Complex Incorporated within a Modified UiOâ€67 (Zr/Ti) MOF. European Journal of Inorganic Chemistry, 2023, 26, .	2.0	0
335	Stepwise assembly of thiacalix[4]arene-protected Ag/Ti bimetallic nanoclusters: accurate identification of catalytic Ag sites in CO ₂ electroreduction. Chemical Science, 2023, 14, 10212-10218.	7.4	2

#	Article	IF	CITATIONS
336	Biomimetic Connection of Transcutaneous Implants with Skin. Advanced Healthcare Materials, 2023, 12, .	7.6	1
337	Bi-Doped Ti-Oxide Cluster Photocatalyst with High Performance in the Selective Transformation of Benzyl Alcohols to Benzaldehydes. Crystal Growth and Design, 2023, 23, 6866-6875.	3.0	Ο
338	Ionothermal Synthesis and Photoactivity of Ti ₁₇ and <scp>Ti₁₉â€Oxo</scp> Clusters Functionalized by Sulfate and 1, <scp>10â€Phenanthroline</scp> Ligands. Chinese Journal of Chemistry, 2023, 41, 3605-3610.	4.9	2
339	Overview of the Sol–Gel Process. Springer Handbooks, 2023, , 53-69.	0.6	0
340	Design and oxidative desulfurization of Ag/Ti heterometallic clusters based on Hard–Soft Acid–Base principle. Dalton Transactions, 2023, 52, 17792-17796.	3.3	1
341	Nonclassical Nucleation and Crystallization of LiNbO ₃ Nanoparticles from the Aqueous Solvothermal Alkoxide Route. Small, 2024, 20, .	10.0	1
342	Atomically accurate site-specific ligand tailoring of highly acid- and alkali-resistant Ti(<scp>iv</scp>)-based metallamacrocycle for enhanced CO ₂ photoreduction. Chemical Science, 2023, 14, 14280-14289.	7.4	0
343	Structural Regulation and Transformation of Oxalate-Bridged Polyoxo-Titanium Nanoclusters: Intercluster Docking Strategy and Polyiodides Induced Rearrangement. Inorganic Chemistry, 0, , .	4.0	0
344	Hybrid Materials: A Metareview. Chemistry of Materials, 0, , .	6.7	1
345	All-catecholate-stabilized black titanium-oxo clusters for efficient photothermal conversion. Chemical Science, 2024, 15, 2655-2664.	7.4	1
346	Enhancing the photocatalytic performance of a rutile unit featuring a titanium-oxide cluster by Pb ²⁺ doping. Dalton Transactions, 2024, 53, 3666-3674.	3.3	0
347	Aggregation of titaniumâ€oxo clusters. Aggregate, 0, , .	9.9	0
348	Structural overview and evolution paths of lacunary polyoxometalates. Coordination Chemistry Reviews, 2024, 506, 215687.	18.8	0
349	Accurate assembly of thiophene-bridged titanium-oxo clusters with photocatalytic amine oxidation activity. RSC Advances, 2024, 14, 7924-7931.	3.6	0
350	Ligand and band engineering-induced covalent organic framework-embedded Ti32 Oxo-cluster gels-based Z-scheme heterojunction for boosting the photocatalytic degradation performance of tetracycline. Applied Surface Science, 2024, 660, 159968.	6.1	0
351	Topotactic Conversion of Titanium-Oxo Clusters to a Stable TOC-Based Metal–Organic Framework with the Selective Adsorption of Cationic Dyes. Inorganic Chemistry, 2024, 63, 5961-5971.	4.0	0