Mesenchymal Stem Cells: Mechanisms of Inflammation

Annual Review of Pathology: Mechanisms of Disease 6, 457-478

DOI: 10.1146/annurev-pathol-011110-130230

Citation Report

#	Article	IF	CITATIONS
1	Mesenchymal stem cells for the treatment of systemic lupus erythematosus: is the cure for connective tissue diseases within connective tissue?. Stem Cell Research and Therapy, 2011, 2, 23.	2.4	35
2	Mesenchymal stromal cells for cardiovascular disease. Journal of Cardiovascular Disease Research (discontinued), 2011, 2, 3-13.	0.1	31
3	Anti-Inflammatory and Immunomodulatory Activities of Stem Cells. Veterinary Clinics of North America Equine Practice, 2011, 27, 351-362.	0.3	53
4	Stem-cell therapy in an experimental model of pulmonary hypertension and right heart failure: Role of paracrine and neurohormonal milieu in the remodeling process. Journal of Heart and Lung Transplantation, 2011, 30, 1281-1293.	0.3	46
5	The MSC: An Injury Drugstore. Cell Stem Cell, 2011, 9, 11-15.	5.2	1,412
6	The emergence of amnion epithelial stem cells for the treatment of Multiple Sclerosis. Inflammation and Regeneration, 2011, 31, 256-271.	1.5	25
7	Immunogenicity and Immune-Modulating Properties of Human Stem Cells. , 0, , .		3
8	Inflammatory Regulation of Valvular Remodeling: The Good(?), the Bad, and the Ugly. International Journal of Inflammation, 2011, 2011, 1-13.	0.9	41
9	Mesenchymal Stem Cells: Immunology and Therapeutic Benefits. , 0, , .		4
10	In vivo effect of bone marrow-derived mesenchymal stem cells in a rat kidney transplantation model with prolonged cold ischemia. Transplant International, 2011, 24, 1112-1123.	0.8	55
11	Ex vivo gene transfer and correction for cell-based therapies. Nature Reviews Genetics, 2011, 12, 301-315.	7.7	340
13	Promising cellular therapeutics for prevention or management of graft-versus-host disease (a) Tj ETQq1 1 0.78431	14.gBT/0	verlock 10 T
14	Death and inflammation following somatic cell transplantation. Seminars in Immunopathology, 2011, 33, 535-550.	2.8	46
15	A Comparison of Stem Cells for Therapeutic Use. Stem Cell Reviews and Reports, 2011, 7, 782-796.	5.6	24
16	Development of a New Biomechanically Defined Single Impact Rabbit Cartilage Trauma Model for <i>In Vivo</i> Studies. Journal of Investigative Surgery, 2012, 25, 235-241.	0.6	9
17	Double Allogenic Mesenchymal Stem Cells Transplantations Could Not Enhance Therapeutic Effect Compared with Single Transplantation in Systemic Lupus Erythematosus. Clinical and Developmental Immunology, 2012, 2012, 1-7.	3.3	40
18	What's New in Orthopaedic Research. Journal of Bone and Joint Surgery - Series A, 2012, 94, 2289-2295.	1.4	4
19	Anti-Inflammatory Mesenchymal Stem Cells (<i>MSC2</i>) Attenuate Symptoms of Painful Diabetic Peripheral Neuropathy. Stem Cells Translational Medicine, 2012, 1, 557-565.	1.6	68

#	Article	IF	CITATIONS
20	Mesenchymal stem cells. Current Opinion in Organ Transplantation, 2012, 17, 55-62.	0.8	47
21	Cell transplantation as an initiator of endogenous stem cell-based tissue repair. Current Opinion in Organ Transplantation, 2012, 17, 670-674.	0.8	29
22	Basic principles of multipotent stem cells. , 2012, , 100-117.		1
23	The potential of mesenchymal stromal cells as a novel cellular therapy for multiple sclerosis. Immunotherapy, 2012, 4, 529-547.	1.0	49
24	Early intervention with gene-modified mesenchymal stem cells overexpressing interleukin-4 enhances anti-inflammatory responses and functional recovery in experimental autoimmune demyelination. Cell Adhesion and Migration, 2012, 6, 179-189.	1.1	65
25	Human Pluripotent Stem Cellâ€Derived Mesenchymal Stem Cells Prevent Allergic Airway Inflammation in Mice. Stem Cells, 2012, 30, 2692-2699.	1.4	170
26	Periocular and Intra-Articular Injection of Canine Adipose-Derived Mesenchymal Stem Cells: An In Vivo Imaging and Migration Study. Journal of Ocular Pharmacology and Therapeutics, 2012, 28, 307-317.	0.6	49
27	Tissue inhibitor of metalloproteinase-1 (TIMP-1) regulates mesenchymal stem cells through let-7f microRNA and Wnt/ \hat{l}^2 -catenin signaling. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E309-16.	3.3	119
28	Human mesenchymal stem cells overexpressing therapeutic genes: From basic science to clinical applications for articular cartilage repair. Bio-Medical Materials and Engineering, 2012, 22, 197-208.	0.4	19
29	Potential of Mesenchymal Stem Cell Applications in Plastic and Reconstructive Surgery. Advances in Biochemical Engineering/Biotechnology, 2012, 130, 55-67.	0.6	3
30	The Role of Mesenchymal Stem Cells in the Regenerative Wound Healing Phenotype. Advances in Wound Care, 2012, $1,159-165$.	2.6	67
31	Characterization of Autologous Mesenchymal Stem Cell-Derived Neural Progenitors as a Feasible Source of Stem Cells for Central Nervous System Applications in Multiple Sclerosis. Stem Cells Translational Medicine, 2012, 1, 536-547.	1.6	64
32	Detrimental effects of rat mesenchymal stromal cell pre-treatment in a model of acute kidney rejection. Frontiers in Immunology, 2012, 3, 202.	2.2	45
33	Tolerogenic therapies in transplantation. Frontiers in Immunology, 2012, 3, 198.	2.2	58
34	New Cell-Based Therapy Paradigm: Induction of Bone Marrow-Derived Multipotent Mesenchymal Stromal Cells into Pro-Inflammatory MSC1 and Anti-inflammatory MSC2 Phenotypes. Advances in Biochemical Engineering/Biotechnology, 2012, 130, 163-197.	0.6	20
35	Mesenchymal Stem Cell 1 (MSC1)-Based Therapy Attenuates Tumor Growth Whereas MSC2-Treatment Promotes Tumor Growth and Metastasis. PLoS ONE, 2012, 7, e45590.	1.1	166
36	Immune Effects of Mesenchymal Stromal Cells in Experimental Stroke. Journal of Cerebral Blood Flow and Metabolism, 2012, 32, 1578-1588.	2.4	43
37	Effects of two mesenchymal cell populations on hepatocytes and lymphocytes. Liver Transplantation, 2012, 18, 1384-1394.	1.3	11

#	Article	IF	Citations
38	Mesenchymal stromal cells: Are they all good for the liver?. Liver Transplantation, 2012, 18, 1274-1276.	1.3	0
39	Concise Review: Role of Mesenchymal Stem Cells in Wound Repair. Stem Cells Translational Medicine, 2012, 1, 142-149.	1.6	620
40	Kidney Protection and Regeneration Following Acute Injury: Progress Through Stem Cell Therapy. American Journal of Kidney Diseases, 2012, 60, 1012-1022.	2.1	121
41	Mesenchymal Stem/Stromal Cells (MSCs): Role as Guardians of Inflammation. Molecular Therapy, 2012, 20, 14-20.	3.7	702
42	The extracellular matrix: A dynamic niche in cancer progression. Journal of Cell Biology, 2012, 196, 395-406.	2.3	2,547
43	The immunomodulatory capacity of mesenchymal stem cells. Trends in Molecular Medicine, 2012, 18, 128-134.	3.5	308
44	Human Mesenchymal Stem Cell Transfusion Is Safe and Improves Liver Function in Acute-on-Chronic Liver Failure Patients. Stem Cells Translational Medicine, 2012, 1, 725-731.	1.6	287
45	The Developing <i>Xenopus</i> Limb as a Model for Studies on the Balance between Inflammation and Regeneration. Anatomical Record, 2012, 295, 1552-1561.	0.8	75
46	A quantitative proteomic and transcriptomic comparison of human mesenchymal stem cells from bone marrow and umbilical cord vein. Proteomics, 2012, 12, 2607-2617.	1.3	28
47	Perivascular mesenchymal stem cells in the adult human brain: a future target for neuroregeneration?. Clinical and Translational Medicine, 2012, 1, 30.	1.7	41
48	Tissue-Engineered Airway: A Regenerative Solution. Clinical Pharmacology and Therapeutics, 2012, 91, 81-93.	2.3	90
49	Therapeutic Applications of Mesenchymal Stromal Cells: Paracrine Effects and Potential Improvements. Tissue Engineering - Part B: Reviews, 2012, 18, 101-115.	2.5	258
50	Mesenchymal stem cells as therapeutic agents of inflammatory and autoimmune diseases. Current Opinion in Biotechnology, 2012, 23, 978-983.	3.3	48
51	Human mesenchymal stromal cells could deliver erythropoietin and migrate to the basal layer of hair shaft when subcutaneously implanted in a murine model. Tissue and Cell, 2012, 44, 249-256.	1.0	9
52	Mesenchymal stem cells secrete factors that inhibit inflammatory processes in short-term osteoarthritic synovium and cartilage explant culture. Osteoarthritis and Cartilage, 2012, 20, 1186-1196.	0.6	191
53	Chromosomal characterization of cryopreserved mesenchymal stem cells from the human subendothelium umbilical cord vein. Regenerative Medicine, 2012, 7, 147-157.	0.8	20
54	Human Mesenchymal Stem Cell Transdifferentiation to Neural Cells: Role of Tumor Necrosis Factor Alpha. Stem Cells and Cancer Stem Cells, 2012, , 71-78.	0.1	1
55	Stem Cell Educator Therapy and Induction of Immune Balance. Current Diabetes Reports, 2012, 12, 517-523.	1.7	33

#	Article	IF	Citations
56	Evaluation of Senescence in Mesenchymal Stem Cells Isolated from Equine Bone Marrow, Adipose Tissue, and Umbilical Cord Tissue. Stem Cells and Development, 2012, 21, 273-283.	1.1	143
57	Intravenous Mesenchymal Stem Cells Prevented Rejection of Allogeneic Corneal Transplants by Aborting the Early Inflammatory Response. Molecular Therapy, 2012, 20, 2143-2152.	3.7	155
58	Platelet lysate from whole blood-derived pooled platelet concentrates and apheresis-derived platelet concentrates for the isolation and expansion of human bone marrow mesenchymal stromal cells: production process, content and identification of active components. Cytotherapy, 2012, 14, 540-554.	0.3	246
59	Characterization of the Conditioned Medium from Amniotic Membrane Cells: Prostaglandins as Key Effectors of Its Immunomodulatory Activity. PLoS ONE, 2012, 7, e46956.	1.1	110
60	The Role of Mesenchymal Stem Cells in the Tumor Microenvironment. , 0, , .		2
61	Enhanced Homing Permeability and Retention of Bone Marrow Stromal Cells by Noninvasive Pulsed Focused Ultrasound. Stem Cells, 2012, 30, 1216-1227.	1.4	70
62	Emerging roles for multipotent, bone marrow–derived stromal cells in host defense. Blood, 2012, 119, 1801-1809.	0.6	98
63	Human umbilical cord mesenchymal stem cells improve liver function and ascites in decompensated liver cirrhosis patients. Journal of Gastroenterology and Hepatology (Australia), 2012, 27, 112-120.	1.4	294
64	Immunopathogenesis and prognostic immune markers of chronic hepatitis B virus infection. Journal of Gastroenterology and Hepatology (Australia), 2012, 27, 223-230.	1.4	56
65	Will we ever use stem cells for the treatment of SUI?: ICIâ€RS 2011. Neurourology and Urodynamics, 2012, 31, 386-389.	0.8	24
66	Extracellular GC-rich DNA activates TLR9- and NF-kB-dependent signaling pathways in human adipose-derived mesenchymal stem cells (haMSCs). Expert Opinion on Biological Therapy, 2012, 12, S99-S111.	1.4	26
67	Stem Cells in Dental Pulp of Deciduous Teeth. Tissue Engineering - Part B: Reviews, 2012, 18, 129-138.	2.5	129
68	Same or Not the Same? Comparison of Adipose Tissue-Derived Versus Bone Marrow-Derived Mesenchymal Stem and Stromal Cells. Stem Cells and Development, 2012, 21, 2724-2752.	1.1	693
69	Mesenchymal Stem/Stromal Cells Induce the Generation of Novel IL-10–Dependent Regulatory Dendritic Cells by SOCS3 Activation. Journal of Immunology, 2012, 189, 1182-1192.	0.4	75
70	In situ guided tissue regeneration in musculoskeletal diseases and aging. Cell and Tissue Research, 2012, 347, 725-735.	1.5	24
71	The bone marrow at the crossroads of blood and immunity. Nature Reviews Immunology, 2012, 12, 49-60.	10.6	268
72	Transplantation of hypoxia preconditioned bone marrow mesenchymal stem cells enhances angiogenesis and neurogenesis after cerebral ischemia in rats. Neurobiology of Disease, 2012, 46, 635-645.	2.1	322
73	Age related changes of the extracellular matrix and stem cell maintenance. Preventive Medicine, 2012, 54, S50-S56.	1.6	94

#	ARTICLE	IF	Citations
74	Autologous stromal vascular fraction therapy for rheumatoid arthritis: rationale and clinical safety. International Archive of Medicine, 2012, 5, 5.	1.2	26
75	The role of immunosuppression of mesenchymal stem cells in tissue repair and tumor growth. Cell and Bioscience, 2012, 2, 8.	2.1	78
76	Engineered extracellular matrix components do not alter the immunomodulatory properties of mesenchymal stromal cells <i>in vitro</i> . Journal of Tissue Engineering and Regenerative Medicine, 2013, 7, 921-924.	1.3	4
77	The role of human umbilical cord tissue-derived mesenchymal stromal cells (UCX $\hat{A}^{@}$) in the treatment of inflammatory arthritis. Journal of Translational Medicine, 2013, 11, 18.	1.8	46
78	Infusion of freshly isolated autologous bone marrow derived mononuclear cells prevents endotoxin-induced lung injury in an ex-vivo perfused swine model. Stem Cell Research and Therapy, 2013, 4, 26.	2.4	34
79	Comparison of the therapeutic effects of human and mouse adipose-derived stem cells in a murine model of lipopolysaccharide-induced acute lung injury. Stem Cell Research and Therapy, 2013, 4, 13.	2.4	49
80	Stem cell attraction via SDFâ€1α expressing fat tissue grafts. Journal of Biomedical Materials Research - Part A, 2013, 101A, 2067-2074.	2.1	7
81	The secretome of mesenchymal stem cells: Potential implications forÂneuroregeneration. Biochimie, 2013, 95, 2246-2256.	1.3	100
82	In Vivo Implanted Bone Marrow-Derived Mesenchymal Stem Cells Trigger a Cascade of Cellular Events Leading to the Formation of an Ectopic Bone Regenerative Niche. Stem Cells and Development, 2013, 22, 3178-3191.	1.1	60
83	Expanded allogeneic adipose-derived stem cells (eASCs) for the treatment of complex perianal fistula in Crohn's disease: results from a multicenter phase I/IIa clinical trial. International Journal of Colorectal Disease, 2013, 28, 313-323.	1.0	302
84	A comparison of the behavioral and anatomical outcomes in sub-acute and chronic spinal cord injury models following treatment with human mesenchymal precursor cell transplantation and recombinant decorin. Experimental Neurology, 2013, 248, 343-359.	2.0	27
85	Hematopoetic and mesenchymal stem cell transplantation in the treatment of refractory systemic lupus erythematosus — Where are we now?. Clinical Immunology, 2013, 148, 328-334.	1.4	23
86	Stem Cells and Healing: Impact on Inflammation. Advances in Wound Care, 2013, 2, 369-378.	2.6	96
87	The Matrikine Tenascin-C Protects Multipotential Stromal Cells/Mesenchymal Stem Cells from Death Cytokines Such as FasL. Tissue Engineering - Part A, 2013, 19, 1972-1983.	1.6	45
88	Fat grafting and stem cell enhanced fat grafting to the breast under oncological aspects – Recommendations for patient selection. Breast, 2013, 22, 579-584.	0.9	50
89	The potential use of mesenchymal stem cells in hematopoietic stem cell transplantation. Experimental and Molecular Medicine, 2013, 45, e2-e2.	3.2	89
90	Identical effects of VEGF and serum-deprivation on phenotype and function of adipose-derived stromal cells from healthy donors and patients with ischemic heart disease. Journal of Translational Medicine, 2013, 11, 219.	1.8	26
91	Effect of umbilical cord mesenchymal stem cells on treatment of severe acute pancreatitis in rats. Cytotherapy, 2013, 15, 154-162.	0.3	38

#	Article	IF	CITATIONS
92	Implantation ofln VitroTissue Engineered Muscle Repair Constructs and Bladder Acellular Matrices Partially RestoreIn VivoSkeletal Muscle Function in a Rat Model of Volumetric Muscle Loss Injury. Tissue Engineering - Part A, 2013, 20, 131219054609007.	1.6	100
93	Competitive stem cell recruitment by multiple cytotactic cues. Lab on A Chip, 2013, 13, 1156.	3.1	13
94	mRNA-engineered mesenchymal stem cells for targeted delivery of interleukin-10 to sites of inflammation. Blood, 2013, 122, e23-e32.	0.6	169
95	Mesenchymal Stem Cell: Keystone of the Hematopoietic Stem Cell Niche and a Stepping-Stone for Regenerative Medicine. Annual Review of Immunology, 2013, 31, 285-316.	9.5	381
96	Macrophages modulate the viability and growth of human mesenchymal stem cells. Journal of Cellular Biochemistry, 2013, 114, 220-229.	1.2	211
97	Influence of age on wound healing and fibrosis. Journal of Pathology, 2013, 229, 310-322.	2.1	75
98	Genetically modified mesenchymal stem cells (MSCs) promote axonal regeneration and prevent hypersensitivity after spinal cord injury. Experimental Neurology, 2013, 248, 369-380.	2.0	61
99	Stem Cells, Cell Therapies, and Bioengineering in Lung Biology and Diseases. Comprehensive Review of the Recent Literature 2010–2012. Annals of the American Thoracic Society, 2013, 10, S45-S97.	1.5	48
100	Mesenchymal stem cells for the treatment of cartilage lesions: from preclinical findings to clinical application in orthopaedics. Knee Surgery, Sports Traumatology, Arthroscopy, 2013, 21, 1717-1729.	2.3	199
101	Distinct Immunomodulatory and Migratory Mechanisms Underpin the Therapeutic Potential of Human Mesenchymal Stem Cells in Autoimmune Demyelination. Cell Transplantation, 2013, 22, 1409-1425.	1.2	81
102	Growth, differentiation capacity, and function of mesenchymal stem cells expanded in serum-free medium developed via combinatorial screening. Experimental Cell Research, 2013, 319, 1409-1418.	1.2	45
103	Implications of multipotent mesenchymal stromal cell aging. Regenerative Medicine, 2013, 8, 211-222.	0.8	4
104	Mesenchymal stem cells for systemic therapy: Shotgun approach or magic bullets?. BioEssays, 2013, 35, 173-182.	1.2	26
105	Mesenchymal Stromal Cell Characteristics Vary Depending on Their Origin. Stem Cells and Development, 2013, 22, 2606-2618.	1.1	179
106	Cell transplantation approaches to retinal ganglion cell neuroprotection in glaucoma. Current Opinion in Pharmacology, 2013, 13, 78-82.	1.7	55
107	miR-155 Regulates Immune Modulatory Properties of Mesenchymal Stem Cells by Targeting TAK1-binding Protein 2. Journal of Biological Chemistry, 2013, 288, 11074-11079.	1.6	98
108	Adipose Mesenchymal Stromal Cell Function Is Not Affected by Methotrexate and Azathioprine. BioResearch Open Access, 2013, 2, 431-439.	2.6	10
109	In vitro assessment of mesenchymal stem cells immunosuppressive potential in multiple sclerosis patients. Immunology Letters, 2013, 149, 9-18.	1.1	16

#	Article	IF	Citations
110	Mesenchymal Stem Cells and the Treatment of Conditions and Diseases: The Less Glittering Side of a Conspicuous Stem Cell for Basic Research. Stem Cells and Development, 2013, 22, 193-203.	1.1	46
112	Unveiling Stem Cell Kinetics: Prime Time for Integrating Experimental and Computational Models. Frontiers in Oncology, 2013, 3, 291.	1.3	1
113	Mesenchymal stem cells from umbilical cord matrix, adipose tissue and bone marrow exhibit different capability to suppress peripheral blood B, natural killer and T cells. Stem Cell Research and Therapy, 2013, 4, 125.	2.4	213
114	Adipose-derived stromal/stem cells. Organogenesis, 2013, 9, 3-10.	0.4	90
115	Perspectives on the Use of Mesenchymal Stem Cells in Vascularized Composite Allotransplantation. Frontiers in Immunology, 2013, 4, 175.	2.2	32
116	Comparative Analysis of Human Mesenchymal Stem Cells from Bone Marrow, Adipose Tissue, and Umbilical Cord Blood as Sources of Cell Therapy. International Journal of Molecular Sciences, 2013, 14, 17986-18001.	1.8	504
117	Ischemia–reperfusion injury. Current Opinion in Organ Transplantation, 2013, 18, 34-43.	0.8	73
118	Abnormal Cell Responses and Role of TNF- <mml:math id="M1" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi mathvariant="bold-italic">α</mml:mi></mml:mrow></mml:math> in Impaired Diabetic Wound Healing. BioMed Research International, 2013, 2013, 1-9.	0.9	152
119	Assessment of immunosuppressive activity of human mesenchymal stem cells using murine antigen specific CD4 and CD8 T cells in vitro. Stem Cell Research and Therapy, 2013, 4, 128.	2.4	23
120	Dynamic Imaging of Marrow-Resident Granulocytes Interacting with Human Mesenchymal Stem Cells upon Systemic Lipopolysaccharide Challenge. Stem Cells International, 2013, 2013, 1-11.	1.2	13
121	Cell-material Interactions. , 2013, , 165-192.		0
122	Human marrow stromal cells reduce microglial activation to protect motor neurons in a transgenic mouse model of amyotrophic lateral sclerosis. Journal of Neuroinflammation, 2013, 10, 52.	3.1	26
123	GMP-Compliant Isolation and Expansion of Bone Marrow-Derived MSCs in the Closed, Automated Device Quantum Cell Expansion System. Cell Transplantation, 2013, 22, 1981-2000.	1.2	115
124	Multipotent stromal cells skew monocytes towards an anti-inflammatory interleukin-10-producing phenotype by production of interleukin-6. Haematologica, 2013, 98, 888-895.	1.7	139
126	Tropism of Avian Influenza A (H5N1) Virus to Mesenchymal Stem Cells and CD34+ Hematopoietic Stem Cells. PLoS ONE, 2013, 8, e81805.	1.1	24
127	Transplantation of Nonexpanded Adipose Stromal Vascular Fraction and Platelet-Rich Plasma for Articular Cartilage Injury Treatment in Mice Model. Journal of Medical Engineering, 2013, 2013, 1-7.	1.1	32
128	Resveratrol as a Natural Anti-Tumor Necrosis Factor- \hat{l}_{\pm} Molecule: Implications to Dendritic Cells and Their Crosstalk with Mesenchymal Stromal Cells. PLoS ONE, 2014, 9, e91406.	1.1	25
129	Do ABO Blood Group Antigens Hamper the Therapeutic Efficacy of Mesenchymal Stromal Cells?. PLoS ONE, 2014, 9, e85040.	1.1	61

#	Article	IF	CITATIONS
130	Surgical Sutures Filled with Adipose-Derived Stem Cells Promote Wound Healing. PLoS ONE, 2014, 9, e91169.	1.1	33
131	Opposite Effects of Bone Marrow-Derived Cells Transplantation in MPTP-rat Model of Parkinson's Disease: A Comparison Study of Mononuclear and Mesenchymal Stem Cells. International Journal of Medical Sciences, 2014, 11, 1049-1064.	1.1	31
132	Adipose-Derived Stem Cells, their Secretome, and Wound Healing. Journal of Cell Science & Therapy, 2014, 05, .	0.3	4
133	Mesenchymal Stem Cells: Current Clinical Applications and Therapeutic Potential in Liver Diseases. Journal of Bone Marrow Research, 2014, 02, .	0.2	9
134	Potential therapeutic effect of the secretome from human uterine cervical stem cells against both cancer and stromal cells compared with adipose tissue stem cells. Oncotarget, 2014, 5, 10692-10708.	0.8	75
135	Activation of Poly(ADP-Ribose) Polymerase-1 Delays Wound Healing by Regulating Keratinocyte Migration and Production of Inflammatory Mediators. Molecular Medicine, 2014, 20, 363-371.	1.9	29
136	Intravenous Transplants of Human Adipose-Derived Stem Cell Protect the Brain from Traumatic Brain Injury-Induced Neurodegeneration and Motor and Cognitive Impairments: Cell Graft Biodistribution and Soluble Factors in Young and Aged Rats. Journal of Neuroscience, 2014, 34, 313-326.	1.7	147
137	Micro/Nano-Engineering of Cells for Delivery of Therapeutics. , 2014, , 253-279.		1
138	The ability to suppress macrophage-mediated inflammation in orbital fat stem cells is controlled by miR-671-5p. Stem Cell Research and Therapy, 2014, 5, 97.	2.4	27
139	Cells derived from porcine aorta tunica media show mesenchymal stromal-like cell properties in in vitro culture. American Journal of Physiology - Cell Physiology, 2014, 306, C322-C333.	2.1	23
140	Bone marrow-derived clonal mesenchymal stem cells inhibit ovalbumin-induced atopic dermatitis. Cell Death and Disease, 2014, 5, e1345-e1345.	2.7	50
141	Hip Osteoarthritis in Dogs: A Randomized Study Using Mesenchymal Stem Cells from Adipose Tissue and Plasma Rich in Growth Factors. International Journal of Molecular Sciences, 2014, 15, 13437-13460.	1.8	87
142	Management of Fibrosis: The Mesenchymal Stromal Cells Breakthrough. Stem Cells International, 2014, 2014, 1-26.	1.2	130
143	Mesenchymal stem cells reduce pain but not degenerative changes in a mono-iodoacetate rat model of osteoarthritis. Journal of Orthopaedic Research, 2014, 32, 1167-1174.	1.2	80
144	Establishing a Bone Marrow Stromal Cell Transplant Program at the National Institutes of Health Clinical Center. Tissue Engineering - Part B: Reviews, 2014, 20, 200-205.	2.5	21
145	Longâ€ŧerm evaluation of mesenchymal stem cell therapy in a feline model of chronic allergic asthma. Clinical and Experimental Allergy, 2014, 44, 1546-1557.	1.4	72
146	Ironâ€loaded PLLA nanoparticles as highly efficient intracellular markers for visualization of mesenchymal stromal cells by MRI. Contrast Media and Molecular Imaging, 2014, 9, 109-121.	0.4	9
147	Mesenchymal stem cell-mediated suppression of hypertrophic scarring is p53 dependent in a rabbit ear model. Stem Cell Research and Therapy, 2014, 5, 136.	2.4	34

#	ARTICLE	IF	CITATIONS
148	Multifaceted neuro-regenerative activities of human dental pulp stem cells for functional recovery after spinal cord injury. Neuroscience Research, 2014, 78, 16-20.	1.0	71
149	A simple and serum-free protocol for cryopreservation of human umbilical cord as source of Wharton's jelly mesenchymal stem cells. Cryobiology, 2014, 68, 467-472.	0.3	43
150	Conditioned medium of human adipose-derived mesenchymal stem cells mediates protection in neurons following glutamate excitotoxicity by regulating energy metabolism and GAP-43 expression. Metabolic Brain Disease, 2014, 29, 193-205.	1.4	66
151	Enhanced Medial Collateral Ligament Healing Using Mesenchymal Stem Cells: Dosage Effects on Cellular Response and Cytokine Profile. Stem Cell Reviews and Reports, 2014, 10, 86-96.	5.6	31
152	Bone Tissue Engineering. , 2014, , 1733-1743.		14
153	Immunomodulation of mesenchymal stromal cells on regulatory T cells and its possible mechanism. Experimental Cell Research, 2014, 324, 65-74.	1.2	81
154	Mesenchymal stem cell oated sutures enhance collagen depositions in sutured tissues. Wound Repair and Regeneration, 2014, 22, 256-264.	1.5	19
155	Long term mesenchymal stem cell culture on a defined synthetic substrate with enzyme free passaging. Biomaterials, 2014, 35, 5998-6005.	5.7	28
156	Single cell-derived clones from human adipose stem cells present different immunomodulatory properties. Clinical and Experimental Immunology, 2014, 176, 255-265.	1.1	21
157	Differential Response of Human Adipose Tissue-Derived Mesenchymal Stem Cells, Dermal Fibroblasts, and Keratinocytes to Burn Wound Exudates: Potential Role of Skin-Specific Chemokine CCL27. Tissue Engineering - Part A, 2014, 20, 197-209.	1.6	53
158	Do Cryopreserved Mesenchymal Stromal Cells Display Impaired Immunomodulatory and Therapeutic Properties?. Stem Cells, 2014, 32, 2430-2442.	1.4	300
159	Use of mesenchymal stem cells or autologous conditioned serum to modulate the inflammatory response to spermatozoa in mares. Theriogenology, 2014, 82, 36-42.	0.9	32
160	Mesenchymal Stem/Stromal Cells Inhibit the NLRP3 Inflammasome by Decreasing Mitochondrial Reactive Oxygen Species. Stem Cells, 2014, 32, 1553-1563.	1.4	98
161	Concise Review: Spinal Cord Injuries: How Could Adult Mesenchymal and Neural Crest Stem Cells Take Up the Challenge?. Stem Cells, 2014, 32, 829-843.	1.4	59
162	Mesenchymal stem cells improve locomotor recovery in traumatic spinal cord injury: Systematic review with meta-analyses of rat models. Neurobiology of Disease, 2014, 62, 338-353.	2.1	125
163	Human Adipose-Derived Stromal/Stem Cells Induce Functional CD4+CD25+FoxP3+CD127â^' Regulatory T Cells Under Low Oxygen Culture Conditions. Stem Cells and Development, 2014, 23, 968-977.	1.1	13
164	Mesenchymal Stem Cells Differentially Modulate Effector CD8+ T Cell Subsets and Exacerbate Experimental Autoimmune Encephalomyelitis. Stem Cells, 2014, 32, 2744-2755.	1.4	51
165	The immunomodulatory effects of human mesenchymal stem cells on peripheral blood mononuclear cells in <scp>ALS</scp> patients. Journal of Neurochemistry, 2014, 131, 206-218.	2.1	58

#	Article	IF	Citations
166	Urine-derived stem cells for potential use in bladder repair. Stem Cell Research and Therapy, 2014, 5, 69.	2.4	77
167	A high-throughput polymer microarray approach for identifying defined substrates for mesenchymal stem cells. Biomaterials Science, 2014, 2, 1683-1692.	2.6	11
169	Angiogenic Effect of Mesenchymal Stem Cells as a Therapeutic Target for Enhancing Diabetic Wound Healing. International Journal of Lower Extremity Wounds, 2014, 13, 88-93.	0.6	24
170	Scalable Ex Vivo Expansion of Human Mesenchymal Stem/Stromal Cells in Microcarrier-Based Stirred Culture Systems. Methods in Molecular Biology, 2014, 1283, 147-159.	0.4	17
171	Allogeneic mesenchymal stem cell transplantation for lupus nephritis patients refractory to conventional therapy. Clinical Rheumatology, 2014, 33, 1611-1619.	1.0	91
172	Short-term follow-up of disc cell therapy in a porcine nucleotomy model with an albumin–hyaluronan hydrogel: in vivo and in vitro results of metabolic disc cell activity and implant distribution. European Spine Journal, 2014, 23, 1837-1847.	1.0	26
173	Comparison of articular cartilage repair with different hydrogel-human umbilical cord blood-derived mesenchymal stem cell composites in a rat model. Stem Cell Research and Therapy, 2014, 5, 39.	2.4	83
174	Regeneration of the dentine–pulp complex with revitalization/revascularization therapy: challenges and hopes. International Endodontic Journal, 2014, 47, 713-724.	2.3	65
175	Gastrointestinal Microbes Interact with Canine Adipose-Derived Mesenchymal Stem Cells In Vitro and Enhance Immunomodulatory Functions. Stem Cells and Development, 2014, 23, 1831-1843.	1.1	55
176	Bone marrow-derived mesenchymal stromal cells improve vascular regeneration and reduce leukocyte-endothelium activation in critical ischemic murine skin in a dose-dependent manner. Cytotherapy, 2014, 16, 1345-1360.	0.3	22
177	Mesenchymal stem cells suppress T cells by inducing apoptosis and through PD-1/B7-H1 interactions. Immunology Letters, 2014, 162, 248-255.	1.1	45
178	Therapeutic Effect of Human Amniotic Membrane–Derived Cells on Experimental Arthritis and Other Inflammatory Disorders. Arthritis and Rheumatology, 2014, 66, 327-339.	2.9	78
179	Adverse fibrosis in the aging heart depends on signaling between myeloid and mesenchymal cells; role of inflammatory fibroblasts. Journal of Molecular and Cellular Cardiology, 2014, 70, 56-63.	0.9	57
180	Mechanisms of kidney repair by human mesenchymal stromal cells after ischemia: A comprehensive view using labelâ€free <scp>MS</scp> ^E . Proteomics, 2014, 14, 1480-1493.	1.3	9
181	Adult bone marrow mesenchymal and neural crest stem cells are chemoattractive and accelerate motor recovery in a mouse model of spinal cord injury. Stem Cell Research and Therapy, 2015, 6, 211.	2.4	49
182	Biological behavior of mesenchymal stem cells on poly- $\hat{l}\mu$ -caprolactone filaments and a strategy for tissue engineering of segments of the peripheral nerves. Stem Cell Research and Therapy, 2015, 6, 128.	2.4	18
183	Human Vascular Wall Mesenchymal Stromal Cells Contribute to Abdominal Aortic Aneurysm Pathogenesis Through an Impaired Immunomodulatory Activity and Increased Levels of Matrix Metalloproteinase-9. Circulation Journal, 2015, 79, 1460-1469.	0.7	26
184	Optimization of human mesenchymal stem cell manufacturing: the effects of animal/xeno-free media. Scientific Reports, 2015, 5, 16570.	1.6	132

#	Article	IF	Citations
185	Neural and mesenchymal stem cells in animal models of Huntington's disease: past experiences and future challenges. Stem Cell Research and Therapy, 2015, 6, 232.	2.4	31
186	Q&A: Mesenchymal stem cells â€" where do they come from and is it important?. BMC Biology, 2015, 13, 99.	1.7	81
187	Harnessing Regulatory T Cells for the Treatment of Inflammatory Bowel Disease. Inflammatory Bowel Diseases, 2015, 21, 1.	0.9	36
188	Brief Report: Human Mesenchymal Stem-Like Cells Facilitate Floating Tumorigenic Cell Growth via Glutamine-Ammonium Cycle. Stem Cells, 2015, 33, 2877-2884.	1.4	6
189	Mesenchymal Stromal Cell Therapy. Transplantation, 2015, 99, 1113-1118.	0.5	12
190	Effects of VEGF and MSCs on vascular regeneration in a trauma model in rats. Wound Repair and Regeneration, 2015, 23, 262-267.	1.5	14
191	In Vitro Conditioned Bone Marrow-Derived Mesenchymal Stem Cells Promote De Novo Functional Enteric Nerve Regeneration, but Not Through Direct-Transdifferentiation. Stem Cells, 2015, 33, 3545-3557.	1.4	21
192	A new method of wound treatment: targeted therapy of skin wounds with reactive oxygen species-responsive nanoparticles containing SDF-1α. International Journal of Nanomedicine, 2015, 10, 6571.	3.3	34
193	Mesenchymal Stem Cell–Like Properties of Orbital Fibroblasts in Graves' Orbitopathy. , 2015, 56, 5743.		21
194	Molecular targets in arthritis and recent trends in nanotherapy. International Journal of Nanomedicine, 2015, 10, 5407.	3.3	29
195	Galectin-9 is Involved in Immunosuppression Mediated by Human Bone Marrow-derived Clonal Mesenchymal Stem Cells. Immune Network, 2015, 15, 241.	1.6	43
196	Dickkopf-3 Contributes to the Regulation of Anti-Tumor Immune Responses by Mesenchymal Stem Cells. Frontiers in Immunology, 2015, 6, 645.	2.2	15
197	Stem cell approaches to glaucoma. Progress in Brain Research, 2015, 220, 241-256.	0.9	20
198	Remission of Collagen-Induced Arthritis through Combination Therapy of Microfracture and Transplantation of Thermogel-Encapsulated Bone Marrow Mesenchymal Stem Cells. PLoS ONE, 2015, 10, e0120596.	1.1	22
199	Effect of Mesenchymal Precursor Cells on the Systemic Inflammatory Response and Endothelial Dysfunction in an Ovine Model of Collagen-Induced Arthritis. PLoS ONE, 2015, 10, e0124144.	1.1	25
200	Curbing Inflammation in Skin Wound Healing: A Review. International Journal of Inflammation, 2015, 2015, 1-9.	0.9	89
201	What Makes Umbilical Cord Tissue-Derived Mesenchymal Stromal Cells Superior Immunomodulators When Compared to Bone Marrow Derived Mesenchymal Stromal Cells?. Stem Cells International, 2015, 2015, 1-14.	1.2	73
202	Adult Mesenchymal Stem Cells: When, Where, and How. Stem Cells International, 2015, 2015, 1-6.	1.2	160

#	Article	IF	CITATIONS
203	<i>In Vitro $\langle l \rangle$ Evaluation of Scaffolds for the Delivery of Mesenchymal Stem Cells to Wounds. BioMed Research International, 2015, 2015, 1-14.</i>	0.9	52
204	Potential of Newborn and Adult Stem Cells for the Production of Vascular Constructs Using the Living Tissue Sheet Approach. BioMed Research International, 2015, 2015, 1-10.	0.9	9
205	Immunoregulation of Bone Marrow-Derived Mesenchymal Stem Cells on the Chronic Cigarette Smoking-Induced Lung Inflammation in Rats. BioMed Research International, 2015, 2015, 1-10.	0.9	9
206	Dental Stem Cells: Risk and Responsibilities. , 2015, , 171-175.		1
207	Towards the design of 3D multiscale instructive tissue engineering constructs: Current approaches and trends. Biotechnology Advances, 2015, 33, 842-855.	6.0	49
208	Expanded Adipose Tissue-Derived Stem Cells for Articular Cartilage Injury Treatment: A Safety and Efficacy Evaluation., 2015, , 113-123.		0
209	In Vivo Remodelling of Vascularizing Engineered Tissues. Annals of Biomedical Engineering, 2015, 43, 1189-1200.	1.3	9
210	Wharton's Jelly-Derived Mesenchymal Stromal Cells as a Promising Cellular Therapeutic Strategy for the Management of Graft-versus-Host Disease. Pharmaceuticals, 2015, 8, 196-220.	1.7	30
211	The potential of cytotherapeutics in hematologic reconstitution and in the treatment and prophylaxis of graft-versus-host disease. Chapter II: emerging transformational cytotherapies. Regenerative Medicine, 2015, 10, 345-373.	0.8	8
212	Regenerative Engineering of Cartilage Using Adipose-Derived Stem Cells. Regenerative Engineering and Translational Medicine, 2015, 1, 42-49.	1.6	47
213	Autophagy promotes apoptosis of mesenchymal stem cells under inflammatory microenvironment. Stem Cell Research and Therapy, 2015, 6, 247.	2.4	73
214	The Effect of Granulocyte Colony–Stimulating Factor on Immune-Modulatory Cytokines in the Bone Marrow Microenvironment and Mesenchymal Stem Cells of Healthy Donors. Biology of Blood and Marrow Transplantation, 2015, 21, 1888-1894.	2.0	11
215	Secreted Ectodomain of Sialic Acid-Binding Ig-Like Lectin-9 and Monocyte Chemoattractant Protein-1 Promote Recovery after Rat Spinal Cord Injury by Altering Macrophage Polarity. Journal of Neuroscience, 2015, 35, 2452-2464.	1.7	124
216	The paracrine effects of adipose-derived stem cells on neovascularization and biocompatibility of a macroencapsulation device. Acta Biomaterialia, 2015, 15, 65-76.	4.1	39
217	Immunomodulatory role of microRNAs transferred by extracellular vesicles. Biology of the Cell, 2015, 107, 61-77.	0.7	114
218	Human mesenchymal stromal cells suppress T-cell proliferation independent of heme oxygenase-1. Cytotherapy, 2015, 17, 382-391.	0.3	12
219	Anti-inflammatory and Anti-nociceptive Actions of Systemically or Locally Treated Adipose-Derived Mesenchymal Stem Cells in Experimental Inflammatory Model. Inflammation, 2015, 38, 1302-1310.	1.7	28
220	Amniotic Membrane Mesenchymal Cells-Derived Factors Skew T Cell Polarization Toward Treg and Downregulate Th1 and Th17 Cells Subsets. Stem Cell Reviews and Reports, 2015, 11, 394-407.	5.6	108

#	Article	IF	Citations
221	Different Procoagulant Activity of Therapeutic Mesenchymal Stromal Cells Derived from Bone Marrow and Placental Decidua. Stem Cells and Development, 2015, 24, 2269-2279.	1.1	104
222	Limitless starting materials for large-scale manufacture of MSCs – what does the future hold?. Pharmaceutical Bioprocessing, 2015, 3, 281-283.	0.8	1
223	Allogeneic Mesenchymal Precursor Cells in Type 2 Diabetes: A Randomized, Placebo-Controlled, Dose-Escalation Safety and Tolerability Pilot Study. Diabetes Care, 2015, 38, 1742-1749.	4.3	84
224	Systematic review and meta-analysis of efficacy of mesenchymal stem cells on locomotor recovery in animal models of traumatic brain injury. Stem Cell Research and Therapy, 2015, 6, 47.	2.4	48
225	Stem cell treatment of degenerative eye disease. Stem Cell Research, 2015, 14, 243-257.	0.3	171
226	Paracrine Effects of Mesenchymal Stem Cells-Conditioned Medium on Microglial Cytokines Expression and Nitric Oxide Production. NeuroImmunoModulation, 2015, 22, 233-242.	0.9	38
227	The potential of cytotherapeutics in hematologic reconstitution and in the treatment and prophylaxis of graft-versus-host disease. Chapter I: current practice and remaining unmet medical needs. Regenerative Medicine, 2015, 10, 331-343.	0.8	7
228	Effect of Exosomes from Mesenchymal Stem Cells onÂAngiogenesis. , 2015, , 177-205.		O
229	Safety and efficacy of allogeneic adipose tissue-derived mesenchymal stem cells for treatment of dogs with inflammatory bowel disease: Endoscopic and histological outcomes. Veterinary Journal, 2015, 206, 391-397.	0.6	40
230	Feline Foamy Virus Adversely Affects Feline Mesenchymal Stem Cell Culture and Expansion: Implications for Animal Model Development. Stem Cells and Development, 2015, 24, 814-823.	1.1	44
231	Regenerative Medicine Approaches for Treatment of Osteoarthritis. , 2015, , 235-255.		0
232	Companion animals: Translational scientist's new best friends. Science Translational Medicine, 2015, 7, 308ps21.	5.8	145
233	Cartilage Repair Using Composites of Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells and Hyaluronic Acid Hydrogel in a Minipig Model. Stem Cells Translational Medicine, 2015, 4, 1044-1051.	1.6	87
234	Concise Review: Human Dermis as an Autologous Source of Stem Cells for Tissue Engineering and Regenerative Medicine. Stem Cells Translational Medicine, 2015, 4, 1187-1198.	1.6	33
235	Cell recruitment by amnion chorion grafts promotes neovascularization. Journal of Surgical Research, 2015, 193, 953-962.	0.8	65
236	Effect of High-Dose Irradiation on Human Bone-Marrow-Derived Mesenchymal Stromal Cells. Tissue Engineering - Part C: Methods, 2015, 21, 112-122.	1.1	38
237	In Vivo Tissue-Engineered Allogenic Trachea Transplantation in Rabbits: A Preliminary Report. Stem Cell Reviews and Reports, 2015, 11, 347-356.	5.6	52
238	Repair and tissue engineering techniques for articular cartilage. Nature Reviews Rheumatology, 2015, 11, 21-34.	3.5	923

#	Article	IF	CITATIONS
239	Lnk is an important modulator of insulin-like growth factor-1/Akt/peroxisome proliferator-activated receptor-gamma axis during adipogenesis of mesenchymal stem cells. Korean Journal of Physiology and Pharmacology, 2016, 20, 459.	0.6	8
240	Nature or Nurture. , 2016, , 227-240.		0
241	Mesenchymal Stem Cells Ameliorated Glucolipotoxicity in HUVECs through TSG-6. International Journal of Molecular Sciences, 2016, 17, 483.	1.8	19
242	Living cell products as wound healing biomaterials. , 2016, , 201-225.		2
243	Advances in the Use of Stem Cells in Veterinary Medicine: From Basic Research to Clinical Practice. Scientifica, 2016, 2016, 1-12.	0.6	28
244	Mesenchymal Stromal Cells as Cell-Based Therapeutics for Wound Healing. Stem Cells International, 2016, 2016, 1-6.	1.2	28
245	Hepatocytic Differentiation Potential of Human Fetal Liver Mesenchymal Stem Cells: <i>In Vitro</i> li>and <i>In Vivo</i> Evaluation. Stem Cells International, 2016, 2016, 1-12.	1.2	11
246	Comparative study of allogenic and xenogeneic mesenchymal stem cells on cisplatin-induced acute kidney injury in Sprague-Dawley rats. Stem Cell Research and Therapy, 2016, 7, 126.	2.4	40
247	Mesenchymal Stem Cell-Derived Extracellular Vesicles Promote Angiogenesis: Potencial Clinical Application. Frontiers in Physiology, 2016, 7, 24.	1.3	176
248	An overlooked tumor promoting immunoregulation by non-hematopoietic stromal cells. Immunology Letters, 2016, 176, 114-121.	1.1	5
249	Enhanced Biological Functions of Human Mesenchymal Stemâ€Cell Aggregates Incorporating Eâ€Cadherinâ€Modified PLGA Microparticles. Advanced Healthcare Materials, 2016, 5, 1949-1959.	3.9	20
250	Infusion of Human Bone Marrow-Derived Mesenchymal Stem Cells Alleviates Autoimmune Nephritis in a Lupus Model by Suppressing Follicular Helper T-Cell Development. Cell Transplantation, 2016, 25, 1-15.	1.2	66
251	The role of adult tissueâ€derived stem cells in chronic leg ulcers: a systematic review focused on tissue regeneration medicine. International Wound Journal, 2016, 13, 1289-1298.	1.3	16
252	Comparative Analysis of Human Mesenchymal Stem Cells Derived From Bone Marrow, Placenta, and Adipose Tissue as Sources of Cell Therapy. Journal of Cellular Biochemistry, 2016, 117, 1112-1125.	1.2	77
253	Gene- and Stem Cell-Based Approaches to Regulate Hypertrophic Differentiation in Articular Cartilage Disorders. Stem Cells and Development, 2016, 25, 1495-1512.	1.1	7
254	Local Inhibition of Complement Improves Mesenchymal Stem Cell Viability and Function After Administration. Molecular Therapy, 2016, 24, 1665-1674.	3.7	26
255	Imbalance Between Bone Morphogenetic Protein 2 and Noggin Induces Abnormal Osteogenic Differentiation of Mesenchymal Stem Cells in Ankylosing Spondylitis. Arthritis and Rheumatology, 2016, 68, 430-440.	2.9	91
260	In vivo human adipose-derived mesenchymal stem cell tracking after intra-articular delivery in a rat osteoarthritis model. Stem Cell Research and Therapy, 2016, 7, 160.	2.4	88

#	Article	IF	CITATIONS
261	Umbilical Cord-derived Mesenchymal Stem Cells Instruct Monocytes Towards an IL10-producing Phenotype by Secreting IL6 and HGF. Scientific Reports, 2016, 6, 37566.	1.6	113
262	Regulation of Adipose Tissue Stem Cells Angiogenic Potential by Tumor Necrosis Factorâ€Alpha. Journal of Cellular Biochemistry, 2016, 117, 180-196.	1.2	52
263	Clinical-Grade Manufacturing of Therapeutic Human Mesenchymal Stem/Stromal Cells in Microcarrier-Based Culture Systems. Methods in Molecular Biology, 2016, 1416, 375-388.	0.4	12
264	Transplantation of Human Adipose Mesenchymal Stem Cells in Non-Immunosuppressed GRMD Dogs is a Safe Procedure. Stem Cell Reviews and Reports, 2016, 12, 448-453.	5. 6	16
265	Surface modification with E-cadherin fusion protein for mesenchymal stem cell culture. Journal of Materials Chemistry B, 2016, 4, 4267-4277.	2.9	14
266	NAP-2 Secreted by Human NK Cells Can Stimulate Mesenchymal Stem/Stromal Cell Recruitment. Stem Cell Reports, 2016, 6, 466-473.	2.3	57
267	The role of lymphangiogenesis and angiogenesis in tumor metastasis. Cellular Oncology (Dordrecht), 2016, 39, 397-410.	2.1	232
268	Comparison of mesenchymal stem cells and leukocytes from Large White and Göttingen Minipigs: Clues for stem cell-based immunomodulatory therapies. Veterinary Immunology and Immunopathology, 2016, 179, 63-69.	0.5	4
269	ISN Nexus 2016 Symposia: Translational Immunology in Kidney Disease—The Berlin Roadmap. Kidney International Reports, 2016, 1, 327-339.	0.4	1
270	The efficacy of Schwann cell transplantation on motor function recovery after spinal cord injuries in animal models: A systematic review and meta-analysis. Journal of Chemical Neuroanatomy, 2016, 78, 102-111.	1.0	25
271	Allogeneic Mesenchymal Precursor Cells (MPC) in Diabetic Nephropathy: A Randomized, Placebo-controlled, Dose Escalation Study. EBioMedicine, 2016, 12, 263-269.	2.7	95
272	Emerging role of mesenchymal stem cells during tuberculosis: The fifth element in cell mediated immunity. Tuberculosis, 2016, 101, S45-S52.	0.8	19
273	Adipose-Derived Mesenchymal Stromal Cells. , 2016, , 37-55.		1
274	Amniotic mesenchymal cells from preâ€eclamptic placentae maintain immunomodulatory features as healthy controls. Journal of Cellular and Molecular Medicine, 2016, 20, 157-169.	1.6	41
275	Expanded allogeneic adipose-derived mesenchymal stem cells (Cx601) for complex perianal fistulas in Crohn's disease: a phase 3 randomised, double-blind controlled trial. Lancet, The, 2016, 388, 1281-1290.	6.3	771
276	Microcarrier Culture Systems for Stem Cell Manufacturing. , 2016, , 77-104.		10
278	Advances in Stem Cell and Cell-Based Gene Therapy Approaches for Experimental Acute Lung Injury: A Review of Preclinical Studies. Human Gene Therapy, 2016, 27, 802-812.	1.4	18
279	Regenerative medicine: looking backward 10 years further on. Regenerative Medicine, 2016, 11, 787-800.	0.8	5

#	Article	IF	CITATIONS
280	Mesenchymal Stromal Cells Protect Endothelial Cells from Cytotoxic T Lymphocyteâ€Induced Lysis. Scandinavian Journal of Immunology, 2016, 84, 158-164.	1.3	7
281	Mesenchymal Stem Cells Modulate the Functional Properties of Microglia via TGF- \hat{l}^2 Secretion. Stem Cells Translational Medicine, 2016, 5, 1538-1549.	1.6	78
282	Antifibrotic Activity of Human Placental Amnion Membrane-Derived CD34+ Mesenchymal Stem/Progenitor Cell Transplantation in Mice With Thioacetamide-Induced Liver Injury. Stem Cells Translational Medicine, 2016, 5, 1473-1484.	1.6	34
284	Mechanisms and Potentials of Stem Cells in the Treatment of Multiple Sclerosis. , 2016, , 415-442.		O
285	Cryopreserved or Fresh Mesenchymal Stromal Cells: Only a Matter of Taste or Key to Unleash the Full Clinical Potential of MSC Therapy?. Advances in Experimental Medicine and Biology, 2016, 951, 77-98.	0.8	141
286	Regulatory Effects of Urokinase on Mesenchymal Stromal Cell Migration, Proliferation, and Matrix Metalloproteinase Secretion. Bulletin of Experimental Biology and Medicine, 2016, 161, 775-778.	0.3	4
287	Inflammatory response to dextrin-based hydrogel associated with human mesenchymal stem cells, urinary bladder matrix and Bonelike $\langle \sup \hat{A}^{\otimes} \rangle$ granules in rat subcutaneous implants. Biomedical Materials (Bristol), 2016, 11, 065004.	1.7	12
288	Mesenchymal stromal cell therapy for the treatment of intestinal ischemia: Defining the optimal cell isolate for maximum therapeutic benefit. Cytotherapy, 2016, 18, 1457-1470.	0.3	14
289	Regenerative Therapies – Trachea. , 2016, , 303-318.		0
290	Will stem cells bring hope to pathological skin scar treatment?. Cytotherapy, 2016, 18, 943-956.	0.3	26
291	Mesenchymal Stromal/Stem Cells Do Not Ameliorate Experimental Autoimmune Encephalomyelitis and Are Not Detectable in the Central Nervous System of Transplanted Mice. Stem Cells and Development, 2016, 25, 1134-1148.	1.1	17
292	X-Ray Micro- and Nanodiffraction Imaging on Human Mesenchymal Stem Cells and Differentiated Cells. Biophysical Journal, 2016, 110, 680-690.	0.2	22
293	Modelling of cell–tissue interactions in skin. , 2016, , 39-54.		0
294	DMSO†and Serumâ€Free Cryopreservation of Wharton's Jelly Tissue Isolated From Human Umbilical Cord. Journal of Cellular Biochemistry, 2016, 117, 2397-2412.	1.2	46
295	Canine and Equine Mesenchymal Stem Cells Grown in Serum Free Media Have Altered Immunophenotype. Stem Cell Reviews and Reports, 2016, 12, 245-256.	5.6	47
296	Mesenchymal Stem Cells Attenuate NADPH Oxidase-Dependent High Mobility Group Box 1 Production and Inhibit Abdominal Aortic Aneurysms. Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36, 908-918.	1.1	42
297	Optimized Cryopreservation and Banking of Human Bone-Marrow Fragments and Stem Cells. Biopreservation and Biobanking, 2016, 14, 138-148.	0.5	17
298	A new strategy to tackle severe knee osteoarthritis: Combination of intra-articular and intraosseous injections of Platelet Rich Plasma. Expert Opinion on Biological Therapy, 2016, 16, 627-643.	1.4	63

#	Article	IF	CITATIONS
299	Therapeutic Efficacy of Fresh, Autologous Mesenchymal Stem Cells for Severe Refractory Gingivostomatitis in Cats. Stem Cells Translational Medicine, 2016, 5, 75-86.	1.6	88
300	Intravenous adipose-derived mesenchymal stem cell therapy for the treatment of feline asthma: a pilot study. Journal of Feline Medicine and Surgery, 2016, 18, 981-990.	0.6	40
301	Recent knowledge on the pathophysiology of septic acute kidney injury: A narrative review. Journal of Critical Care, 2016, 31, 82-89.	1.0	54
302	Cell therapy for full-thickness wounds: are fetal dermal cells a potential source?. Cell and Tissue Research, 2016, 364, 83-94.	1.5	16
303	Comparing the osteogenic potential of bone marrow and tendon-derived stromal cells to repair a critical-sized defect in the rat femur. Journal of Tissue Engineering and Regenerative Medicine, 2017, 11, 2014-2023.	1.3	11
304	Multifaceted therapeutic benefits of factors derived from stem cells from human exfoliated deciduous teeth for acute liver failure in rats. Journal of Tissue Engineering and Regenerative Medicine, 2017, 11, 1888-1896.	1.3	45
305	Decellularization of bovine small intestinal submucosa and its use for the healing of a critical-sized full-thickness skin defect, alone and in combination with stem cells, in a small rodent model. Journal of Tissue Engineering and Regenerative Medicine, 2017, 11, 1754-1765.	1.3	45
306	Knockdown of MicroRNA Let-7a Improves the Functionality of Bone Marrow-Derived Mesenchymal Stem Cells in Immunotherapy. Molecular Therapy, 2017, 25, 480-493.	3.7	38
307	Minocycline enhances the mesenchymal stromal/stem cell pro-healing phenotype in triple antimicrobial-loaded hydrogels. Acta Biomaterialia, 2017, 51, 184-196.	4.1	23
308	Small animal models to understand pathogenesis of osteoarthritis and use of stem cell in cartilage regeneration. Cell Biochemistry and Function, 2017, 35, 3-11.	1.4	4
309	Pulsed magnetic field enhances therapeutic efficiency of mesenchymal stem cells in chronic neuropathic pain model. Bioelectromagnetics, 2017, 38, 255-264.	0.9	25
310	Human mesenchymal stem cells maintain their phenotype, multipotentiality, and genetic stability when cultured using a defined xeno-free human plasma fraction. Stem Cell Research and Therapy, 2017, 8, 103.	2.4	47
311	Mesenchymal Stem Cells Direct the Immunological Fate of Macrophages. Results and Problems in Cell Differentiation, 2017, 62, 61-72.	0.2	33
312	INF- \hat{l}^3 encoding plasmid administration triggers bone loss and disrupts bone marrow microenvironment. Journal of Endocrinology, 2017, 232, 309-321.	1.2	8
313	Pathogenesis and persistence of cryptoglandular anal fistula: a systematic review. Techniques in Coloproctology, 2017, 21, 425-432.	0.8	89
314	Biomaterials and Bioactive Agents in Spinal Fusion. Tissue Engineering - Part B: Reviews, 2017, 23, 540-551.	2.5	39
315	Cell Transplantation Therapy for Glaucoma. , 2017, , 65-76.		0
316	Development of a surrogate potency assay to determine the angiogenic activity of Stempeucel®, a pooled, ex-vivo expanded, allogeneic human bone marrow mesenchymal stromal cell product. Stem Cell Research and Therapy, 2017, 8, 47.	2.4	28

#	Article	IF	CITATIONS
317	Role of mesenchymal stem cells, their derived factors, and extracellular vesicles in liver failure. Stem Cell Research and Therapy, 2017, 8, 137.	2.4	40
318	Therapeutic Efficacy of Fresh, Allogeneic Mesenchymal Stem Cells for Severe Refractory Feline Chronic Gingivostomatitis. Stem Cells Translational Medicine, 2017, 6, 1710-1722.	1.6	74
319	Periurethral muscleâ€derived mononuclear cell injection improves urethral sphincter restoration in rats. Neurourology and Urodynamics, 2017, 36, 2011-2018.	0.8	6
320	hMSCs suppress neutrophil-dominant airway inflammation in a murine model of asthma. Experimental and Molecular Medicine, 2017, 49, e288-e288.	3.2	28
321	ICOSL expression in human bone marrow-derived mesenchymal stem cells promotes induction of regulatory T cells. Scientific Reports, 2017, 7, 44486.	1.6	53
322	Sepsis-Induced Acute Kidney Injury in Equine: Current Knowledge and Future Perspectives. Journal of Equine Veterinary Science, 2017, 50, 84-95.	0.4	2
323	Stem Cells in Male Sexual Dysfunction: Are We Getting Somewhere?. Sexual Medicine Reviews, 2017, 5, 222-235.	1.5	34
324	Non-reconstructable peripheral vascular disease of the lower extremity in ten patients treated with adipose-derived stromal vascular fraction cells. Stem Cell Research, 2017, 18, 14-21.	0.3	49
325	Concise Review: Multifaceted Characterization of Human Mesenchymal Stem Cells for Use in Regenerative Medicine. Stem Cells Translational Medicine, 2017, 6, 2173-2185.	1.6	502
326	Regenerative Cells for the Management of Osteoarthritis and Joint Disorders: A Concise Literature Review. Aesthetic Surgery Journal, 2017, 37, S9-S15.	0.9	8
327	Mesenchymal stromal cells as a resource for regeneration of damaged skin. Biology Bulletin Reviews, 2017, 7, 333-343.	0.3	0
328	Mesenchymal stem cells internalize Mycobacterium tuberculosis through scavenger receptors and restrict bacterial growth through autophagy. Scientific Reports, 2017, 7, 15010.	1.6	51
329	Fibrous scaffolds potentiate the paracrine function of mesenchymal stem cells: A new dimension in cell-material interaction. Biomaterials, 2017, 141, 74-85.	5.7	189
331	Opposing activities of oncogenic MIR17HG and tumor suppressive MIR100HG clusters and their gene targets regulate replicative senescence in human adult stem cells. Npj Aging and Mechanisms of Disease, 2017, 3, 7.	4.5	18
332	The neuroprotective effects of human bone marrow mesenchymal stem cells are dose-dependent in TNBS colitis. Stem Cell Research and Therapy, 2017, 8, 87.	2.4	22
333	Single-stage cell-based cartilage repair in a rabbit model: cell tracking and inÂvivo chondrogenesis of human umbilical cord blood-derived mesenchymal stem cells and hyaluronic acid hydrogel composite. Osteoarthritis and Cartilage, 2017, 25, 570-580.	0.6	69
334	Stem Cell Extracellular Vesicles: Extended Messages of Regeneration. Annual Review of Pharmacology and Toxicology, 2017, 57, 125-154.	4.2	223
335	Humoral innate immunity at the crossroad between microbe and matrix recognition: The role of PTX3 in tissue damage. Seminars in Cell and Developmental Biology, 2017, 61, 31-40.	2.3	24

#	Article	IF	Citations
336	Innovative encapsulation platform based on pancreatic extracellular matrix achieve substantial insulin delivery. Journal of Controlled Release, 2017, 257, 91-101.	4.8	75
337	Comparative Clinical Observation of Arthroscopic Microfracture in the Presence and Absence of a Stromal Vascular Fraction Injection for Osteoarthritis. Stem Cells Translational Medicine, 2017, 6, 187-195.	1.6	79
338	Bistable Epigenetic States Explain Age-Dependent Decline in Mesenchymal Stem Cell Heterogeneity. Stem Cells, 2017, 35, 694-704.	1.4	14
339	Enhancement of wound closure by modifying dual release patterns of stromal-derived cell factor-1 and a macrophage recruitment agent from gelatin hydrogels. Journal of Tissue Engineering and Regenerative Medicine, 2017, 11, 2999-3013.	1.3	21
340	Mesenchymal stem cells have antifibrotic effects on transforming growth factorâ€Î²1â€stimulated vocal fold fibroblasts. Laryngoscope, 2017, 127, E35-E41.	1.1	43
341	Extracellular Vesicles: Immunomodulatory messengers in the context of tissue repair/regeneration. European Journal of Pharmaceutical Sciences, 2017, 98, 86-95.	1.9	87
342	Human induced pluripotent stem cellâ€'derived mesenchymal stem cells alleviate atherosclerosis by modulating inflammatory responses. Molecular Medicine Reports, 2018, 17, 1461-1468.	1.1	6
343	FOXO1 has a Dual Function to Promote Normal but Inhibit Diabetic Wound Healing. Recent Clinical Techniques, Results, and Research in Wounds, 2017, , 57-67.	0.1	1
344	In-vitro characterization of canine multipotent stromal cells isolated from synovium, bone marrow, and adipose tissue: a donor-matched comparative study. Stem Cell Research and Therapy, 2017, 8, 218.	2.4	63
345	Regenerative medicine: The future?., 0,, 657-673.		O
346	Heparin improves BMSC cell therapy: Anticoagulant treatment by heparin improves the safety and therapeutic effect of bone marrow-derived mesenchymal stem cell cytotherapy. Theranostics, 2017, 7, 106-116.	4.6	106
347	Hypoxic Preconditioning Promotes the Bioactivities of Mesenchymal Stem Cells via the HIF-1α-GRP78-Akt Axis. International Journal of Molecular Sciences, 2017, 18, 1320.	1.8	100
348	Mesenchymal Stem Cells Secretory Responses: Senescence Messaging Secretome and Immunomodulation Perspective. Frontiers in Genetics, 2017, 8, 220.	1.1	88
349	Delivery of Bone Marrow-Derived Mesenchymal Stem Cells Improves Tear Production in a Mouse Model of Sjögren's Syndrome. Stem Cells International, 2017, 2017, 1-10.	1.2	38
350	Advances of Stem Cell Therapeutics in Cutaneous Wound Healing and Regeneration. Mediators of Inflammation, 2017, 2017, 1-14.	1.4	153
351	mTOR inhibition improves the immunomodulatory properties of human bone marrow mesenchymal stem cells by inducing COX-2 and PGE2. Stem Cell Research and Therapy, 2017, 8, 292.	2.4	35
352	Mesenchymal Stromal Cells for Acute Renal Injury. , 2017, , 1085-1095.		0
354	Human glioma stem-like cells induce malignant transformation of bone marrow mesenchymal stem cells by activating TERT expression. Oncotarget, 2017, 8, 104418-104429.	0.8	11

#	Article	IF	Citations
355	Extracellular vesicles and aging. Stem Cell Investigation, 2017, 4, 98-98.	1.3	54
356	Mesenchymal Stem Cell Therapy on Tendon/Ligament Healing. Journal of Cytokine Biology, 2017, 02, .	1.5	32
357	Clinical potential of mesenchymal stem/stromal cell-derived extracellular vesicles. Stem Cell Investigation, 2017, 4, 84-84.	1.3	131
358	The Paracrine Effect of Adipose-Derived Stem Cells Inhibits IL- $1\hat{l}^2$ -induced Inflammation in Chondrogenic Cells through the Wnt \hat{l}^2 -Catenin Signaling Pathway. Regenerative Engineering and Translational Medicine, 2018, 4, 35-41.	1.6	15
359	Early intervention with mesenchymal stem cells prevents nephropathy in diabetic rats by ameliorating the inflammatory microenvironment. International Journal of Molecular Medicine, 2018, 41, 2629-2639.	1.8	57
360	The effect of mesenchymal stem cells combined with plateletâ€rich plasma on skin wound healing. Journal of Cosmetic Dermatology, 2018, 17, 650-659.	0.8	26
361	Design and Applications of Cell-Selective Surfaces and Interfaces. Biomacromolecules, 2018, 19, 1746-1763.	2.6	35
362	Conditioned medium from umbilical cord mesenchymal stem cells improves nasal mucosa damage by radiation. Biotechnology Letters, 2018, 40, 999-1007.	1.1	2
363	Mesenchymal stromal cell exosomeâ€"enhanced regulatory T-cell production through an antigen-presenting cellâ€"mediated pathway. Cytotherapy, 2018, 20, 687-696.	0.3	162
364	Potential risk of clonally expanded amnion mesenchymal stem cell transplants in contused spinal cords. Restorative Neurology and Neuroscience, 2018, 36, 387-396.	0.4	0
365	Human Umbilical Cord Perivascular Cells and Human Bone Marrow Mesenchymal Stromal Cells Transplanted Intramuscularly Respond to a Distant Source of Inflammation. Stem Cells and Development, 2018, 27, 415-429.	1.1	18
366	Ex vivo allotransplantation engineering: Delivery of mesenchymal stem cells prolongs rejection-free allograft survival. American Journal of Transplantation, 2018, 18, 1657-1667.	2.6	10
367	Long-term Efficacy and Safety of Stem Cell Therapy (Cx601) for Complex Perianal Fistulas in Patients With Crohn's Disease. Gastroenterology, 2018, 154, 1334-1342.e4.	0.6	331
368	Stem cell therapy in refractory perineal Crohn's disease: longâ€term followâ€up. Colorectal Disease, 2018, 20, O68.	0.7	30
369	Endoscopic submucosal injection of adipose-derived mesenchymal stem cells ameliorates TNBS-induced colitis in rats and prevents stenosis. Stem Cell Research and Therapy, 2018, 9, 95.	2.4	13
370	Safety and Efficacy of Mesenchymal Stem CellsÂfor Radiation-Induced Xerostomia: AÂRandomized, Placebo-Controlled Phase 1/2 Trial (MESRIX). International Journal of Radiation Oncology Biology Physics, 2018, 101, 581-592.	0.4	73
371	Bone marrow-derived mesenchymal stem cells inhibit T follicular helper cell in lupus-prone mice. Lupus, 2018, 27, 49-59.	0.8	32
372	Viability, Proliferation, and Chondrogenesis of Equine Bone Marrow–Derived Mesenchymal Stromal Cells After Exposure to Varying Concentrations of Allogeneic Synovial Fluid InÂVitro. Journal of Equine Veterinary Science, 2018, 62, 1-7.	0.4	4

#	ARTICLE	IF	CITATIONS
373	The Role of Intercellular Contacts in Induction of Indolamine-2,3-Dioxygenase Synthesis in MMSC from Adipose Tissue. Cell and Tissue Biology, 2018, 12, 391-401.	0.2	2
374	Methods and Strategies for Procurement, Isolation, Characterization, and Assessment of Senescence of Human Mesenchymal Stem Cells from Adipose Tissue. Methods in Molecular Biology, 2018, 2045, 37-92.	0.4	13
375	Biotechnological Management of Angiopathic Wounds: Challenges and Perspectives. International Journal of Lower Extremity Wounds, 2018, 17, 214-217.	0.6	1
376	Role of Stem Cells in the Pathogenesis of Chronic Obstructive Pulmonary Disease and Pulmonary Emphysema. COPD: Journal of Chronic Obstructive Pulmonary Disease, 2018, 15, 536-556.	0.7	12
377	Experimental research on ADSCs-NCSS in wound repair. Experimental and Therapeutic Medicine, 2018, 16, 4429-4436.	0.8	6
378	Therapeutic Potential of Autologous Adipose-Derived Stem Cells for the Treatment of Liver Disease. International Journal of Molecular Sciences, 2018, 19, 4064.	1.8	24
379	Muse Cells and Ischemia-Reperfusion Lung Injury. Advances in Experimental Medicine and Biology, 2018, 1103, 293-303.	0.8	7
380	Human Mesenchymal Stem Cell Secretome from Bone Marrow or Adipose-Derived Tissue Sources for Treatment of Hypoxia-Induced Pulmonary Epithelial Injury. International Journal of Molecular Sciences, 2018, 19, 2996.	1.8	35
381	Cell Culture Bioprocess Technology: Biologics and Beyond. Learning Materials in Biosciences, 2018, , 1-21.	0.2	1
382	Improvement of the folliculogenesis by transplantation of bone marrow mesenchymal stromal cells in mice with induced polycystic ovary syndrome. Cytotherapy, 2018, 20, 1445-1458.	0.3	41
383	Mesenchymal Stromal/Stem Cells in Regenerative Medicine and Tissue Engineering. Stem Cells International, 2018, 2018, 1-16.	1.2	244
384	Proteomic Profiling of Native Unpassaged and Cultureâ€Expanded Mesenchymal Stromal Cells (MSC). Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2018, 93, 894-904.	1.1	27
385	Carrageenan hydrogel as a scaffold for skin-derived multipotent stromal cells delivery. Journal of Biomaterials Applications, 2018, 33, 422-434.	1.2	42
386	Medical and surgical management of perianal Crohn's disease. Annals of Gastroenterology, 2018, 31, 129-139.	0.4	22
387	Umbilical Mononuclear Cells and Fibroblast Interaction Downregulate the Expression of Cell Cycle Negative Control Genes. Cellular Reprogramming, 2018, 20, 320-327.	0.5	0
388	The Use of Human Mesenchymal Stem Cells as Therapeutic Agents for the in vivo Treatment of Immune-Related Diseases: A Systematic Review. Frontiers in Immunology, 2018, 9, 2056.	2.2	67
389	Immunosuppression by Intestinal Stromal Cells. Advances in Experimental Medicine and Biology, 2018, 1060, 115-129.	0.8	12
390	Mesenchymal Stromal Cells Directly Promote Inflammation by Canonical NLRP3 and Non-canonical Caspase-11 Inflammasomes. EBioMedicine, 2018, 32, 31-42.	2.7	21

#	Article	IF	Citations
391	Regenerative endodontics: a comprehensive review. International Endodontic Journal, 2018, 51, 1367-1388.	2.3	243
392	MSCs protect endothelial cells from inflammatory injury partially by secreting STC1. International Immunopharmacology, 2018, 61, 109-118.	1.7	10
393	Stem-Cell Therapy in Fistulizing Perianal Crohn's Disease. , 2018, , 211-219.		1
394	Suppression of T cells by mesenchymal and cardiac progenitor cells is partly mediated via extracellular vesicles. Heliyon, 2018, 4, e00642.	1.4	39
395	Cell-Based Therapies in Vascularized Composite Allotransplantation. Journal of Reconstructive Microsurgery, 2018, 34, 642-650.	1.0	5
396	Tissue Engineering of Large Full-Size Meniscus Defects by a Polyurethane Scaffold: Accelerated Regeneration by Mesenchymal Stromal Cells. Stem Cells International, 2018, 2018, 1-11.	1.2	36
397	Mesenchymal Stem Cells Form 3D Clusters Following Intraventricular Transplantation. Journal of Molecular Neuroscience, 2018, 65, 60-73.	1.1	17
398	Therapy With Mesenchymal Stem Cells in Parkinson Disease. Neurologist, 2018, 23, 141-147.	0.4	45
399	The Potentials and Caveats of Mesenchymal Stromal Cell-Based Therapies in the Preterm Infant. Stem Cells International, 2018, 2018, 1-15.	1.2	26
400	Human mesenchymal stromal cellâ€derived extracellular vesicles attenuate aortic aneurysm formation and macrophage activation <i>via</i> microRNAâ€147. FASEB Journal, 2018, 32, 6038-6050.	0.2	62
401	Stem Cell Therapy for Tendon Regeneration: Current Status and Future Directions. Advances in Experimental Medicine and Biology, 2018, 1084, 61-93.	0.8	10
402	Intravenous Infusion of Human Adipose Mesenchymal Stem Cells Modifies the Host Response to Lipopolysaccharide in Humans: A Randomized, Single-Blind, Parallel Group, Placebo Controlled Trial. Stem Cells, 2018, 36, 1778-1788.	1.4	70
403	An in Vitro and in Vivo Study of the Effect of Dexamethasone on Immunoinhibitory Function of Induced Pluripotent Stem Cell-Derived Mesenchymal Stem Cells. Cell Transplantation, 2018, 27, 1340-1351.	1.2	10
404	Approaches in Immunotherapy, Regenerative Medicine, and Bioengineering for Type 1 Diabetes. Frontiers in Immunology, 2018, 9, 1354.	2.2	19
405	Micro-fragmented fat injection reduces sepsis-induced acute inflammatory response in a mouse model. British Journal of Anaesthesia, 2018, 121, 1249-1259.	1.5	15
406	Impact of bone marrow mesenchymal stem cell immunomodulation on the osteogenic effects of laponite. Stem Cell Research and Therapy, 2018, 9, 100.	2.4	48
407	Mesenchymal stromal cell infusions for acute graft-versus-host disease: Rationale, data, and unanswered questions. Advances in Cell and Gene Therapy, 2018, 1, e14.	0.6	3
408	Bone marrow mesenchymal stromal cells attenuate liver allograft rejection may via upregulation PD-L1 expression through downregulation of miR-17-5p. Transplant Immunology, 2018, 51, 21-29.	0.6	13

#	Article	IF	CITATIONS
409	A Method for Isolating and Characterizing Mesenchymal Stromal Cellâ€derived Extracellular Vesicles. Current Protocols in Stem Cell Biology, 2018, 46, e55.	3.0	6
411	Mesenchymal Stromal Cell Therapeutic Delivery: Translational Challenges to Clinical Application. Frontiers in Immunology, 2019, 10, 1645.	2.2	205
413	Infrapatellar fat pad-derived MSC response to inflammation and fibrosis induces an immunomodulatory phenotype involving CD10-mediated Substance P degradation. Scientific Reports, 2019, 9, 10864.	1.6	39
414	Emerging Role of Mesenchymal Stromal Cell-Derived Extracellular Vesicles in Pathogenesis of Haematological Malignancies. Stem Cells International, 2019, 2019, 1-12.	1.2	19
415	Therapeutic Strategies of Secretome of Mesenchymal Stem Cell. , 0, , .		1
416	Perianal Crohn's Disease. , 2019, , 99-118.		0
417	Advances in Stem Cell Research in Sepsis. , 2019, , 305-330.		0
418	Reduced Graphene Oxide Incorporated Acellular Dermal Composite Scaffold Enables Efficient Local Delivery of Mesenchymal Stem Cells for Accelerating Diabetic Wound Healing. ACS Biomaterials Science and Engineering, 2019, 5, 4054-4066.	2.6	34
419	Advanced nanotherapies to promote neuroregeneration in the injured newborn brain. Advanced Drug Delivery Reviews, 2019, 148, 19-37.	6.6	7
420	In a Rat Model of Acute Liver Failure, Icaritin Improved the Therapeutic Effect of Mesenchymal Stem Cells by Activation of the Hepatocyte Growth Factor/c-Met Pathway. Evidence-based Complementary and Alternative Medicine, 2019, 2019, 1-13.	0.5	8
421	Mesenchymal stromal cell conditioned media for lung disease: a systematic review and meta-analysis of preclinical studies. Respiratory Research, 2019, 20, 239.	1.4	19
422	Bone marrow-derived mesenchymal stem cells alleviate severe acute pancreatitis-induced multiple-organ injury in rats via suppression of autophagy. Experimental Cell Research, 2019, 385, 111674.	1.2	13
423	Comparing the Osteogenic Potentials and Bone Regeneration Capacities of Bone Marrow and Dental Pulp Mesenchymal Stem Cells in a Rabbit Calvarial Bone Defect Model. International Journal of Molecular Sciences, 2019, 20, 5015.	1.8	115
424	Immunomodulatory effect of mesenchymal stem cells in chemical-induced liver injury: a high-dimensional analysis. Stem Cell Research and Therapy, 2019, 10, 262.	2.4	23
425	Hurdles to Cardioprotection in the Critically III. International Journal of Molecular Sciences, 2019, 20, 3823.	1.8	6
426	Therapeutic effect of transplantation of human bone marrowâ€'derived mesenchymal stem cells on neuron regeneration in a rat model of middle cerebral artery occlusion. Molecular Medicine Reports, 2019, 20, 3065-3074.	1.1	3
427	Pre-culture of adipose-derived stem cells and heterologous acellular dermal matrix: paracrine functions promote post-implantation neovascularization and attenuate inflammatory response. Biomedical Materials (Bristol), 2019, 14, 035002.	1.7	15
428	Nucleic acid delivery to mesenchymal stem cells: a review of nonviral methods and applications. Journal of Biological Engineering, 2019, 13, 7.	2.0	76

#	ARTICLE	IF	CITATIONS
429	Mesenchymal Stromal Cell Homing: Mechanisms and Strategies for Improvement. IScience, 2019, 15, 421-438.	1.9	299
430	Stem Cell-Derived Exosomes as Nanotherapeutics for Autoimmune and Neurodegenerative Disorders. ACS Nano, 2019, 13, 6670-6688.	7.3	341
431	Circulating mesenchymal stem cells in sulfur mustard-exposed patients with long-term pulmonary complications. Toxicology Letters, 2019, 312, 188-194.	0.4	5
432	Ally to adversary: mesenchymal stem cells and their transformation in leukaemia. Cancer Cell International, 2019, 19, 139.	1.8	12
433	Dissecting Allo-Sensitization After Local Administration of Human Allogeneic Adipose Mesenchymal Stem Cells in Perianal Fistulas of Crohn's Disease Patients. Frontiers in Immunology, 2019, 10, 1244.	2.2	29
434	Human Menstrual Blood-Derived Stem Cells Inhibit the Proliferation of HeLa Cells via TGF- <i>β</i> 1-Mediated JNK/P21 Signaling Pathways. Stem Cells International, 2019, 2019, 1-18.	1.2	8
435	Stem Cells and Tissue Engineering. Success in Academic Surgery, 2019, , 181-201.	0.1	1
436	Liquid-type non-thermal atmospheric plasma ameliorates vocal fold scarring by modulating vocal fold fibroblast. Experimental Biology and Medicine, 2019, 244, 824-833.	1.1	7
437	Umbilical cord-derived mesenchymal stem cell extracts ameliorate atopic dermatitis in mice by reducing the T cell responses. Scientific Reports, 2019, 9, 6623.	1.6	28
438	Biological Treatment in Cartilage Injuries. , 2019, , 599-614.		0
439	Mussel-Inspired Nanostructures Potentiate the Immunomodulatory Properties and Angiogenesis of Mesenchymal Stem Cells. ACS Applied Materials & Samp; Interfaces, 2019, 11, 17134-17146.	4.0	50
440	Recent advances in the management of perianal fistulizing Crohn's disease: lessons for the clinic. Expert Review of Gastroenterology and Hepatology, 2019, 13, 563-577.	1.4	29
441	Constitutive and LPS-stimulated secretome of porcine Vascular Wall-Mesenchymal Stem Cells exerts effects on in vitro endothelial angiogenesis. BMC Veterinary Research, 2019, 15, 123.	0.7	9
442	Effect of mesenchymal stem cells on glial cells population in cuprizone induced demyelination model. Neuropeptides, 2019, 75, 75-84.	0.9	17
443	Mesenchymal stem cells: From regeneration to cancer. , 2019, 200, 42-54.		84
444	Current Research Approaches and Challenges in the Obesogen Field. Frontiers in Endocrinology, 2019, 10, 167.	1.5	22
445	Cell Therapy for Knee Osteoarthritis: Mesenchymal Stromal Cells. Gerontology, 2019, 65, 294-298.	1.4	20
446	Better therapeutic potential of bone marrow-derived mesenchymal stem cells compared with chorionic villi-derived mesenchymal stem cells in airway injury model. Regenerative Medicine, 2019, 14, 165-177.	0.8	8

#	Article	IF	Citations
447	Mesenchymal stem cell mediated effects on microglial phenotype in cuprizoneâ€induced demyelination model. Journal of Cellular Biochemistry, 2019, 120, 13952-13964.	1.2	26
448	Bone Marrow Mesenchymal Stromal Cell Treatment in Patients with Osteoarthritis Results in Overall Improvement in Pain and Symptoms and Reduces Synovial Inflammation. Stem Cells Translational Medicine, 2019, 8, 746-757.	1.6	141
449	Autologous adiposeâ€derived stem cell for painful leg ulcers in patients with sickle cell disease. A preliminary study. British Journal of Haematology, 2019, 186, e47-e50.	1.2	3
450	Adipose tissueâ€derived mesenchymal stem cells and keratinocytes coâ€culture on gelatin/chitosan/βâ€glycerol phosphate nanoscaffold in skin regeneration. Cell Biology International, 2019, 43, 1365-1378.	1.4	26
451	Concise Review: Canine Diabetes Mellitus as a Translational Model for Innovative Regenerative Medicine Approaches. Stem Cells Translational Medicine, 2019, 8, 450-455.	1.6	18
452	Roles of Mesenchymal Stem Cells in Tissue Regeneration and Immunomodulation. Biomolecules and Therapeutics, 2019, 27, 25-33.	1.1	84
453	Preclinical Evaluation of Long-Term Neuroprotective Effects of BDNF-Engineered Mesenchymal Stromal Cells as Intravitreal Therapy for Chronic Retinal Degeneration in Rd6 Mutant Mice. International Journal of Molecular Sciences, 2019, 20, 777.	1.8	22
454	Cell–cell contact with proinflammatory macrophages enhances the immunotherapeutic effect of mesenchymal stem cells in two abortion models. Cellular and Molecular Immunology, 2019, 16, 908-920.	4.8	131
455	Adipose Tissue-Derived Mesenchymal Stem Cell Modulates the Immune Response of Allergic Rhinitis in a Rat Model. International Journal of Molecular Sciences, 2019, 20, 873.	1.8	29
456	Autologous Mesenchymal Stem Cell Transplantation in Multiple Sclerosis: A Meta-Analysis. Stem Cells International, 2019, 2019, 1-11.	1.2	16
457	Mesenchymal Stem/Stromal Cells Derived from Dental Tissues: A Comparative In Vitro Evaluation of Their Immunoregulatory Properties Against T cells. Cells, 2019, 8, 1491.	1.8	23
458	Mesenchymal stem cells in the treatment of articular cartilage degeneration: New biological insights for an old-timer cell. Cytotherapy, 2019, 21, 1179-1197.	0.3	54
459	Stem-cell regenerative medicine as applied to the penis. Current Opinion in Urology, 2019, 29, 443-449.	0.9	8
460	<p>Efficacy and Safety of Umbilical Cord Mesenchymal Stem Cell Therapy for Rheumatoid Arthritis Patients: A Prospective Phase I/II Study</p> . Drug Design, Development and Therapy, 2019, Volume 13, 4331-4340.	2.0	78
461	Sodium Selenite Improves The Therapeutic Effect Of BMSCs Via Promoting The Proliferation And Differentiation, Thereby Promoting The Hematopoietic Factors. OncoTargets and Therapy, 2019, Volume 12, 9685-9696.	1.0	6
462	Mesenchymal Stem Cells Alleviate Moderate-to-Severe Psoriasis by Reducing the Production of Type I Interferon (IFN-I) by Plasmacytoid Dendritic Cells (pDCs). Stem Cells International, 2019, 2019, 1-13.	1.2	35
463	Mesenchymal Stem Cell Functionalization for Enhanced Therapeutic Applications. Tissue Engineering - Part B: Reviews, 2019, 25, 55-77.	2.5	71
464	Engineering of Human Mesenchymal Stem/Stromal Cells with Vascular Endothelial Growth Factor–Encoding Minicircles for Angiogenic <i>Ex Vivo</i> Gene Therapy. Human Gene Therapy, 2019, 30, 316-329.	1.4	16

#	Article	IF	CITATIONS
465	In vitro analysis of immunomodulatory effects of mesenchymal stem cell- and tumor cell -derived exosomes on recall antigen-specific responses. International Immunopharmacology, 2019, 67, 302-310.	1.7	21
466	Mechanisms of unprimed and dexamethasoneâ€primed nonviral gene delivery to human mesenchymal stem cells. Biotechnology and Bioengineering, 2019, 116, 427-443.	1.7	15
467	Membrane-Binding Adhesive Particulates Enhance the Viability and Paracrine Function of Mesenchymal Cells for Cell-Based Therapy. Biomacromolecules, 2019, 20, 1007-1017.	2.6	16
468	Comparison of Undifferentiated Versus Chondrogenic Predifferentiated Mesenchymal Stem Cells Derived From Human Umbilical Cord Blood for Cartilage Repair in a Rat Model. American Journal of Sports Medicine, 2019, 47, 451-461.	1.9	18
469	Bone Marrow-Derived Macrophages Enhance Vessel Stability in Modular Engineered Tissues. Tissue Engineering - Part A, 2019, 25, 911-923.	1.6	7
470	The mechanisms and potential of stem cell therapy for penile fibrosis. Nature Reviews Urology, 2019, 16, 79-97.	1.9	42
471	Fibroblast growth factor improves the motility of human mesenchymal stem cells expanded in a human plasma-derived xeno-free medium through $\hat{l}\pm V\hat{l}^23$ integrin. Journal of Tissue Engineering and Regenerative Medicine, 2019, 13, 36-45.	1.3	5
472	Characterization of the Kinetics and Mechanism of Degradation of Human Mesenchymal Stem Cell-Laden Poly(ethylene glycol) Hydrogels. ACS Applied Bio Materials, 2019, 2, 81-92.	2.3	22
474	Concise review: The challenges and opportunities of employing mesenchymal stromal cells in the treatment of acute pancreatitis. Biotechnology Advances, 2020, 42, 107338.	6.0	13
475	Hierarchical microchanneled scaffolds modulate multiple tissue-regenerative processes of immune-responses, angiogenesis, and stem cell homing. Biomaterials, 2020, 227, 119548.	5.7	86
476	Horses with equine recurrent uveitis have an activated CD4+ Tâ€ell phenotype that can be modulated by mesenchymal stem cells in vitro. Veterinary Ophthalmology, 2020, 23, 160-170.	0.6	27
477	The immunosuppressive mechanisms of mesenchymal stem cells are differentially regulated by platelet poor plasma and fetal bovine serum supplemented media. International Immunopharmacology, 2020, 79, 106172.	1.7	10
478	Update on mesenchymal stromal cell studies in organ transplant recipients. Current Opinion in Organ Transplantation, 2020, 25, 27-34.	0.8	4
479	Antiviral properties of placental growth factors: A novel therapeutic approach for COVID-19 treatment. Placenta, 2020, 99, 117-130.	0.7	10
480	The immunomodulatory effects of mesenchymal stromal cellâ€based therapy in human and animal models of systemic lupus erythematosus. IUBMB Life, 2020, 72, 2366-2381.	1.5	32
481	Effects of mesenchymal stem cells transplantation on multiple sclerosis patients. Neuropeptides, 2020, 84, 102095.	0.9	11
482	Mesenchymal stem cell therapy for liver fibrosis/cirrhosis. Annals of Translational Medicine, 2020, 8, 562-562.	0.7	44
483	Current Status of Medical Therapy for Inflammatory Bowel Disease: The Wealth of Medications. Digestive Diseases and Sciences, 2020, 65, 2769-2779.	1.1	12

#	Article	IF	CITATIONS
484	De novo Vessel Formation Through Cross-Talk of Blood-Derived Cells and Mesenchymal Stromal Cells in the Absence of Pre-existing Vascular Structures. Frontiers in Bioengineering and Biotechnology, 2020, 8, 602210.	2.0	7
485	A Phase I Study to Evaluate Two Doses of Wharton's Jelly-Derived Mesenchymal Stromal Cells for the Treatment of De Novo High-Risk or Steroid-Refractory Acute Graft Versus Host Disease. Stem Cell Reviews and Reports, 2020, 16, 979-991.	1.7	23
486	Cell-loaded injectable gelatin/alginate/LAPONITE® nanocomposite hydrogel promotes bone healing in a critical-size rat calvarial defect model. RSC Advances, 2020, 10, 25652-25661.	1.7	39
487	<p>Human Adipose Tissue-Derived Mesenchymal Stem Cells in Parkinson's Disease: Inhibition of T Helper 17 Cell Differentiation and Regulation of Immune Balance Towards a Regulatory T Cell Phenotype</p> . Clinical Interventions in Aging, 2020, Volume 15, 1383-1391.	1.3	22
488	Emerging Roles of Perivascular Mesenchymal Stem Cells in Synovial Joint Inflammation. Journal of NeuroImmune Pharmacology, 2020, 15, 838-851.	2.1	6
489	Could Mesenchymal Stem Cell-Derived Exosomes Be a Therapeutic Option for Critically Ill COVID-19 Patients?. Journal of Clinical Medicine, 2020, 9, 2762.	1.0	20
490	Mesenchymal Stem Cell Therapy for Osteoradionecrosis of the Mandible: a Systematic Review of Preclinical and Human Studies. Stem Cell Reviews and Reports, 2020, 16, 1208-1221.	1.7	12
491	Progenitor Cell Therapy for Sensorineural Hearing Loss in Infants. , 0, , .		0
492	Glucocorticoid Priming of Nonviral Gene Delivery to hMSCs Increases Transfection by Reducing Induced Stresses. Molecular Therapy - Methods and Clinical Development, 2020, 18, 713-722.	1.8	7
493	Human adipose mesenchymal stem cells modulate myeloid cells toward an anti-inflammatory and reparative phenotype: role of IL-6 and PGE2. Stem Cell Research and Therapy, 2020, 11, 462.	2.4	31
494	Human Adipose Tissue-Derived Stromal Cells Suppress Human, but Not Murine Lymphocyte Proliferation, via Indoleamine 2,3-Dioxygenase Activity. Cells, 2020, 9, 2419.	1.8	30
495	Soluble PTX3 of Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells Attenuates Hyperoxic Lung Injury by Activating Macrophage Polarization in Neonatal Rat Model. Stem Cells International, 2020, 2020, 1-18.	1.2	14
496	Role of mesenchymal stem cells in diabetic wound healing. , 2020, , 555-578.		3
497	Perspective of placenta derived mesenchymal stem cells in acute liver failure. Cell and Bioscience, 2020, 10, 71.	2.1	20
498	TGF-Î ² 1-Licensed Murine MSCs Show Superior Therapeutic Efficacy in Modulating Corneal Allograft Immune Rejection InÂVivo. Molecular Therapy, 2020, 28, 2023-2043.	3.7	38
499	Phosphatase SHP1 impedes mesenchymal stromal cell immunosuppressive capacity modulated by JAK1/STAT3 and P38 signals. Cell and Bioscience, 2020, 10, 65.	2.1	11
500	Mesenchymal stem cells offer a drug-tolerant and immune-privileged niche to Mycobacterium tuberculosis. Nature Communications, 2020, 11, 3062.	5 . 8	33
501	Infusion of human umbilical cord tissue mesenchymal stromal cells in children with autism spectrum disorder. Stem Cells Translational Medicine, 2020, 9, 1137-1146.	1.6	43

#	Article	IF	CITATIONS
502	Adipose-derived stromal cells in regulation of hematopoiesis. Cellular and Molecular Biology Letters, 2020, 25, 16.	2.7	6
503	The role of ultrasound in enhancing mesenchymal stromal cell-based therapies. Stem Cells Translational Medicine, 2020, 9, 850-866.	1.6	45
504	A multicenter experience using adipose-derived mesenchymal stem cell therapy for cats with chronic, non-responsive gingivostomatitis. Stem Cell Research and Therapy, 2020, 11, 115.	2.4	28
505	Locally Delivered Umbilical Cord Mesenchymal Stromal Cells Reduce Chronic Inflammation in Long-Term Nonhealing Wounds: A Randomized Study. Stem Cells International, 2020, 2020, 1-11.	1.2	16
506	Mesenchymal Stem Cells Beyond Regenerative Medicine. Frontiers in Cell and Developmental Biology, 2020, 8, 72.	1.8	60
507	Long-term rates of change in musculoskeletal aging and body composition: findings from the Health, Aging and Body Composition Study. Calcified Tissue International, 2020, 106, 616-624.	1.5	19
508	Cutaneous wound healing: canine allogeneic ASC therapy. Stem Cell Research and Therapy, 2020, 11, 261.	2.4	21
509	The Dual Nature of Mesenchymal Stem Cells (MSCs): Yin and Yang of the Inflammatory Process. , 2020, , .		3
510	The Immunomodulatory Properties of the Human Amnion-Derived Mesenchymal Stromal/Stem Cells Are Induced by INF-Î ³ Produced by Activated Lymphomonocytes and Are Mediated by Cell-To-Cell Contact and Soluble Factors. Frontiers in Immunology, 2020, 11, 54.	2.2	70
511	Allogeneic umbilical cord-derived mesenchymal stem cell transplantation for treating chronic obstructive pulmonary disease: a pilot clinical study. Stem Cell Research and Therapy, 2020, 11, 60.	2.4	37
512	Therapeutic Mesenchymal Stromal Cells for Immunotherapy and for Gene and Drug Delivery. Molecular Therapy - Methods and Clinical Development, 2020, 16, 204-224.	1.8	56
513	Interleukinâ€4 Gene Transfection and Spheroid Formation Potentiate Therapeutic Efficacy of Mesenchymal Stem Cells for Osteoarthritis. Advanced Healthcare Materials, 2020, 9, e1901612.	3.9	28
514	The Potential of Mesenchymal Stem Cells to Treat Systemic Inflammation in Horses. Frontiers in Veterinary Science, 2019, 6, 507.	0.9	34
515	Mitochondrial transfer from MSCs to T cells induces Treg differentiation and restricts inflammatory response. EMBO Reports, 2020, 21, e48052.	2.0	129
516	Medicinal signaling cells: A potential antimicrobial drug store. Journal of Cellular Physiology, 2020, 235, 7731-7746.	2.0	18
517	Bone tissue engineering. , 2020, , 1511-1519.		0
518	3D-bioprinted functional and biomimetic hydrogel scaffolds incorporated with nanosilicates to promote bone healing in rat calvarial defect model. Materials Science and Engineering C, 2020, 112, 110905.	3.8	58
519	The Supernatant of Tonsil-Derived Mesenchymal Stem Cell Has Antiallergic Effects in Allergic Rhinitis Mouse Model. Mediators of Inflammation, 2020, 2020, 1-7.	1.4	9

#	Article	IF	Citations
520	Mesenchymal Stem Cell/Multipotent Stromal Cell Augmentation of Wound Healing. American Journal of Pathology, 2020, 190, 1370-1381.	1.9	24
521	Iron bond bovine lactoferrin for the treatment of cancers and anemia associated with cancer cachexia., 2020,, 243-254.		5
522	Advancing application of mesenchymal stem cell-based bone tissue regeneration. Bioactive Materials, 2021, 6, 666-683.	8.6	139
523	Progenitor cell therapy for acquired pediatric nervous system injury: Traumatic brain injury and acquired sensorineural hearing loss. Stem Cells Translational Medicine, 2021, 10, 164-180.	1.6	5
524	Safety and feasibility of mesenchymal stem cell therapy in patients with aqueous deficient dry eye disease. Ocular Surface, 2021, 19, 43-52.	2.2	39
525	Regenerative Medicine Perspectives in Polycystic Ovary Syndrome. Advances in Experimental Medicine and Biology, 2021, 1341, 125-141.	0.8	4
526	Injectable ROS-scavenging hydrogel with MSCs promoted the regeneration of damaged skeletal muscle. Journal of Tissue Engineering, 2021, 12, 204173142110313.	2.3	21
527	A cell-based drug delivery platform for treating central nervous system inflammation. Journal of Molecular Medicine, 2021, 99, 663-671.	1.7	8
528	Induced pluripotent stem cells in wound healing. , 2021, , 269-290.		1
529	Stem cell therapies in cerebral palsy and autism spectrum disorder. Developmental Medicine and Child Neurology, 2021, 63, 503-510.	1.1	15
530	Ex Vivo Systems to Study Chondrogenic Differentiation and Cartilage Integration. Journal of Functional Morphology and Kinesiology, 2021, 6, 6.	1.1	10
531	Immunomodulatory Properties of Mesenchymal Stromal Cells Can Vary in Genetically Modified Rats. International Journal of Molecular Sciences, 2021, 22, 1181.	1.8	2
532	Mesenchymal Stromal Cells Promote Retinal Vascular Repair by Modulating Sema3E and IL-17A in a Model of Ischemic Retinopathy. Frontiers in Cell and Developmental Biology, 2021, 9, 630645.	1.8	14
533	Pluripotency and immunomodulatory signatures of canine induced pluripotent stem cell-derived mesenchymal stromal cells are similar to harvested mesenchymal stromal cells. Scientific Reports, 2021, 11, 3486.	1.6	14
534	Assessment of fibrin-collagen co-gels for generating microvessels ex vivo using endothelial cell-lined microfluidics and multipotent stromal cell (MSC)-induced capillary morphogenesis. Biomedical Materials (Bristol), 2021, 16, 035005.	1.7	5
535	Chemokine-Induced PBMC and Subsequent MSC Migration Toward Decellularized Heart Valve Tissue. Cardiovascular Engineering and Technology, 2021, 12, 325-338.	0.7	2
536	The Chemokine Receptors Ccr5 and Cxcr6 Enhance Migration of Mesenchymal Stem Cells into the Degenerating Retina. Molecular Therapy, 2021, 29, 804-821.	3.7	9
537	Targeting mesenchymal stem cell therapy for severe pneumonia patients. World Journal of Stem Cells, 2021, 13, 139-154.	1.3	4

#	Article	IF	CITATIONS
538	Multipotent Mesenchymal Stromal Cells in Rheumatoid Arthritis and Systemic Lupus Erythematosus; From a Leading Role in Pathogenesis to Potential Therapeutic Saviors?. Frontiers in Immunology, 2021, 12, 643170.	2.2	22
539	Increased Mesenchymal Stem Cell Functionalization in Three-Dimensional Manufacturing Settings for Enhanced Therapeutic Applications. Frontiers in Bioengineering and Biotechnology, 2021, 9, 621748.	2.0	69
540	The Effect of Proinflammatory Cytokines on the Proliferation, Migration and Secretory Activity of Mesenchymal Stem/Stromal Cells (WJ-MSCs) under 5% O2 and 21% O2 Culture Conditions. Journal of Clinical Medicine, 2021, 10, 1813.	1.0	10
541	Expression of CD146 and Regenerative Cytokines by Human Placenta-Derived Mesenchymal Stromal Cells upon Expansion in Different GMP-Compliant Media. Stem Cells International, 2021, 2021, 1-10.	1.2	2
542	The Potential of Fibroblast Transdifferentiation to Neuron Using Hydrogels. Processes, 2021, 9, 632.	1.3	1
543	Neonatal hyperoxia impairs adipogenesis of bone marrow-derived mesenchymal stem cells and fat accumulation in adult mice. Free Radical Biology and Medicine, 2021, 167, 287-298.	1.3	2
544	Application Prospects of Mesenchymal Stem Cell Therapy for Bronchopulmonary Dysplasia and the Challenges Encountered. BioMed Research International, 2021, 2021, 1-9.	0.9	12
545	A Two-Stage Process for Differentiation of Wharton's Jelly-Derived Mesenchymal Stem Cells into Neuronal-like Cells. Stem Cells International, 2021, 2021, 1-17.	1.2	1
546	Mesenchymal Stromal Cells and Their Secretome: New Therapeutic Perspectives for Skeletal Muscle Regeneration. Frontiers in Bioengineering and Biotechnology, 2021, 9, 652970.	2.0	50
547	Let-7f miRNA regulates SDF-1α- and hypoxia-promoted migration of mesenchymal stem cells and attenuates mammary tumor growth upon exosomal release. Cell Death and Disease, 2021, 12, 516.	2.7	27
548	Therapeutic implications of transplanted-cell death. Nature Biomedical Engineering, 2021, 5, 379-384.	11.6	27
549	Exosomes from adipose derived mesenchymal stem cells alleviate diabetic osteoporosis in rats through suppressing NLRP3 inflammasome activation in osteoclasts. Journal of Bioscience and Bioengineering, 2021, 131, 671-678.	1.1	44
550	A Multispectral Photoacoustic Tracking Strategy for Wide-Field and Real-Time Monitoring of Macrophages in Inflammation. Analytical Chemistry, 2021, 93, 8467-8475.	3.2	11
551	Exendin-4 gene modification and microscaffold encapsulation promote self-persistence and antidiabetic activity of MSCs. Science Advances, 2021, 7, .	4.7	16
552	Mesenchymal stem cell-based bioengineered constructs enhance vaginal repair in ovariectomized rhesus monkeys. Biomaterials, 2021, 275, 120863.	5.7	11
553	Characterization and response to inflammatory stimulation of human endometrial-derived mesenchymal stem/stromal cells. Cytotherapy, 2022, 24, 124-136.	0.3	5
554	Potencial terapêutico de células-tronco mesenquimais na laminite equina. Research, Society and Development, 2021, 10, e436101018902.	0.0	1
555	Exosomes from Adipose Tissues Derived Mesenchymal Stem Cells Overexpressing MicroRNA-146a Alleviate Diabetic Osteoporosis in Rats. Cellular and Molecular Bioengineering, 2022, 15, 87-97.	1.0	13

#	Article	IF	Citations
557	Mesenchymal Stromal Cells: Potential Option for COVID-19 Treatment. Pharmaceutics, 2021, 13, 1481.	2.0	3
558	Assessment of human <scp>adiposeâ€derived</scp> stem cell on <scp>surfaceâ€modified</scp> silicone implant to reduce capsular contracture formation. Bioengineering and Translational Medicine, 2022, 7, e10260.	3.9	5
559	Future of Solid Organ Transplantation: Organ-Specific Tolerance. PoÄki, 2021, 10, 130-136.	0.1	0
560	Human Wharton's jelly-derived mesenchymal stem cells alleviate concanavalin A-induced fulminant hepatitis by repressing NF-κB signaling and glycolysis. Stem Cell Research and Therapy, 2021, 12, 496.	2.4	8
561	Chinese herb-crosslinked hydrogel bearing rBMSCs-laden polyzwitterion microgels: Self-adaptive manipulation of micromilieu and stemness maintenance for restoring infarcted myocardium. Nano Today, 2021, 41, 101306.	6.2	26
562	Regulatory T cell-exosomal miR-142-3p promotes angiogenesis and osteogenesis via TGFBR1/SMAD2 inhibition to accelerate fracture repair. Chemical Engineering Journal, 2022, 427, 131419.	6.6	11
563	Mesenchymal stem cell-mediated immunomodulation of recruited mononuclear phagocytes during acute lung injury: a high-dimensional analysis study. Theranostics, 2021, 11, 2232-2246.	4.6	17
564	Stem Cells in Wound Healing. Pancreatic Islet Biology, 2013, , 175-197.	0.1	1
565	Bone Marrow Stromal Stem Cells Transplantation in Mice with Acute Spinal Cord Injury. Methods in Molecular Biology, 2014, 1213, 257-264.	0.4	4
567	Cell Therapy for Degenerative Retinal Disease: Special Focus on Cell Fusion-Mediated Regeneration. Pancreatic Islet Biology, 2019, , 217-244.	0.1	1
568	Mesenchymal Stem Cell Treatment in Mice Models of Systemic Lupus Erythematosus. Pancreatic Islet Biology, 2016, , 25-42.	0.1	1
569	Mesenchymal Stem Cells in Wound Repair, Tissue Homeostasis, and Aging., 2015, , 287-318.		4
570	Cell therapy for cartilage defects of the hip. Muscles, Ligaments and Tendons Journal, 2016, 6, 361-366.	0.1	13
571	The role of lysophosphatidic acid receptor 1 in inflammatory response induced by lipopolysaccharide from <i>Porphyromonas gingivalis</i> in human periodontal ligament stem cells. International Journal of Oral Biology: Official Journal of the Korean Academy of Oral Biology and the UCLA Dental Research Institute, 2020, 45, 42-50.	0.1	2
572	Mucosally transplanted mesenchymal stem cells stimulate intestinal healing by promoting angiogenesis. Journal of Clinical Investigation, 2015, 125, 3606-3618.	3.9	55
573	Adult Stem Cell Survival Strategies. , 2012, , 383-404.		1
574	Simvastatin Modulates Mesenchymal Stromal Cell Proliferation and Gene Expression. PLoS ONE, 2015, 10, e0120137.	1.1	23
575	Disparate Effects of Mesenchymal Stem Cells in Experimental Autoimmune Encephalomyelitis and Cuprizone-Induced Demyelination. PLoS ONE, 2015, 10, e0139008.	1.1	20

#	Article	IF	Citations
576	Mesenchymal Stem Cells Exhibit Regulated Exocytosis in Response to Chemerin and IGF. PLoS ONE, 2015, 10, e0141331.	1.1	11
577	Th17 Pathway As a Target for Multipotent Stromal Cell Therapy in Dogs: Implications for Translational Research. PLoS ONE, 2016, 11, e0148568.	1.1	18
578	Human umbilical mesenchymal stem cells conditioned medium promote primary wound healing regeneration. Veterinary World, 2016, 9, 605-610.	0.7	30
579	Biologics in Cartilage, Bone Repair, and Regeneration. , 2014, , 1-24.		2
580	Molecular mechanisms of cardioprotective effects mediated by transplanted cardiac ckit+ cells through the activation of an inflammatory hypoxia-dependent reparative response. Oncotarget, 2018, 9, 937-957.	0.8	9
581	Transcriptional profiling of interleukin-2-primed human adipose derived mesenchymal stem cells revealed dramatic changes in stem cells response imposed by replicative senescence. Oncotarget, 2015, 6, 17938-17957.	0.8	18
582	Hypoxia Pre-Conditioned Embryonic Mesenchymal Stem Cell Secretome Reduces IL-10 Production by Peripheral Blood Mononuclear Cells. Iranian Biomedical Journal, 2017, 21, 24-31.	0.4	21
583	Mesenchymal stromal cell therapy as treatment for ischemic heart failure: the MSC-HF study. Cardiovascular Diagnosis and Therapy, 2017, 7, S69-S72.	0.7	3
584	Exosomes in Sepsis and Inflammatory Tissue Injury. Current Pharmaceutical Design, 2020, 25, 4486-4495.	0.9	28
585	Dental Mesenchymal Stem Cells in Inflamed Microenvironment: Potentials and Challenges for Regeneration. Current Stem Cell Research and Therapy, 2015, 10, 412-421.	0.6	11
586	A Brief Analysis of Mesenchymal Stem Cells as Biological Drugs for the Treatment of Acute-on-Chronic Liver Failure (ACLF): Safety and Potency. Current Stem Cell Research and Therapy, 2020, 15, 202-210.	0.6	8
587	A Co-culture Assay to Determine Efficacy of TNF- $\hat{l}\pm$ Suppression by Biomechanically Induced Human Bone Marrow Mesenchymal Stem Cells. Bio-protocol, 2017, 7, .	0.2	3
588	Cellular strategies to promote vascularisation in tissue engineering applications., 2014, 28, 51-67.		61
589	Defining mesenchymal stromal cells responsiveness to IFN^ ^gamma; as a surrogate measure of suppressive potency. Inflammation and Regeneration, 2014, 34, 168-175.	1.5	1
590	Application of adult mesenchymal stem cells in bone and vascular tissue engineering. Physiological Research, 2018, 67, 831-850.	0.4	25
591	Recurrent anal fistulae: Limited surgery supported by stem cells. World Journal of Gastroenterology, 2015, 21, 3330-3336.	1.4	54
592	Negative impact of bone-marrow-derived mesenchymal stem cells on dextran sulfate sodium-induced colitis. World Journal of Gastroenterology, 2015, 21, 2030-2039.	1.4	16
593	Antiâ€'inflammatory and antiâ€'catabolic effect of nonâ€'animal stabilized hyaluronic acid and mesenchymal stem cellâ€'conditioned medium in an osteoarthritis coculture model. Molecular Medicine Reports, 2020, 21, 2243-2250.	1.1	6

#	Article	IF	CITATIONS
594	Stem cell therapy for neonatal diseases associated with preterm birth. Journal of Clinical Neonatology, 2013, 2, 1.	0.1	27
595	A Population of Human Mesenchymal Stem Cells Specific to the Fetal Liver Development. Journal of Stem Cell Research & Therapy, 2014, 04, .	0.3	4
596	Treating Chronic Pain with Mesenchymal Stem Cells: A Therapeutic Approach Worthy of Continued Investigation. Journal of Stem Cell Research & Therapy, 2011, 01, .	0.3	7
597	Potential advantages of acute kidney injury management by mesenchymal stem cells. World Journal of Stem Cells, 2014, 6, 644.	1.3	51
598	Mesenchymal stem cells as a therapeutic tool to treat sepsis. World Journal of Stem Cells, 2015, 7, 368.	1.3	89
599	Mesenchymal stem cells: myths and reality. Swiss Medical Weekly, 2015, 145, w14229.	0.8	14
600	Hypoxia Pre-Conditioned Embryonic Mesenchymal Stem Cell Secretome Reduces IL-10 Production by Peripheral Blood Mononuclear Cells. Iranian Biomedical Journal, 2017, 21, 24-31.	0.4	14
601	Gift bags from the sentinel cells of the immune system: The diverse role of dendritic cell-derived extracellular vesicles. Journal of Leukocyte Biology, 2022, 111, 903-920.	1.5	7
602	Undertaking Regenerative Medicine Studies with Blood Stem Cells., 2012,, 1-7.		0
603	Stem Cell-based Tolerance Induction in Transplantation. Journal of Stem Cell Research & Therapy, 0, , .	0.3	0
604	Regenerative Therapies-Trachea. , 2013, , 843-859.		0
605	Immunolocalization of C D 34 Positive Progenitor Cells in Diabetic and Non Diabetic Periodontitis Patients – A Comparative Study. Journal of Clinical and Diagnostic Research JCDR, 2014, 8, ZC96-9.	0.8	1
606	Cellular Therapies in Vascularized Composite Allograft: Review., 2015,, 569-579.		0
607	Mesenchymal Stem/Stromal Cell Recruitment by Central Nervous System Tumors. , 2017, , 227-251.		0
608	Cells for Cartilage Regeneration. , 2018, , 1-67.		0
609	Differentiation Potential of Mesenchymal Stem Cells into Pancreatic \hat{l}^2 -Cells. Advances in Experimental Medicine and Biology, 2019, 1247, 135-156.	0.8	6
610	Analysis of regeneration mechanisms in auto ransplantation. I P Pavlov Russian Medical Biological Herald, 2019, 27, 393-406.	0.2	3
611	Cells for Cartilage Regeneration. , 2020, , 33-99.		1

#	Article	IF	CITATIONS
612	Mesenchymal Stem Cell and Its Properties. , 2020, , 13-26.		2
613	Immunomodulation by mesenchymal stem cells in veterinary species. Comparative Medicine, 2013, 63, 207-17.	0.4	60
614	Therapeutic effect of human umbilical cord-derived mesenchymal stem cells in rat severe acute pancreatitis. International Journal of Clinical and Experimental Pathology, 2013, 6, 2703-12.	0.5	20
615	Efficiency of systemic versus intralesional bone marrow-derived stem cells in regeneration of oral mucosa after induction of formocresol induced ulcers in dogs. Dental Research Journal, 2014, 11, 212-21.	0.2	4
616	The Healing Effect of Adipose-Derived Mesenchymal Stem Cells in Full-thickness Femoral Articular Cartilage Defects of Rabbit. International Journal of Organ Transplantation Medicine, 2015, 6, 165-75.	0.5	20
617	Mesenchymal Stem Cell Therapy on Tendon/Ligament Healing. , 2017, 2, .		9
618	Can mesenchymal stem cells be used to treat COVID-19-induced pneumonia? (Review). Biomedical Reports, 2020, 13, 62.	0.9	2
619	Cell Therapy: Types, Regulation, and Clinical Benefits. Frontiers in Medicine, 2021, 8, 756029.	1.2	61
620	Can mesenchymal stem cells be used to treat COVID‑19‑induced pneumonia? (Review). Biomedical Reports, 2020, 13, 1-1.	0.9	4
621	Innovative Platform for the Advanced Online Monitoring of Three-Dimensional Cells and Tissue Cultures. Cells, 2022, 11, 412.	1.8	3
622	<i>Prx1</i> Â+ and <i>Hic1</i> + Mesenchymal Progenitors Are Present Within the Epidural Fat and Dura Mater and Participate in Dural Injury Repair. Stem Cells Translational Medicine, 2022, 11, 200-212.	1.6	5
623	Therapeutic potential of induced pluripotent stem cell–derived extracellular vesicles. , 2022, , 393-449.		0
624	Mesenchymal stem cells, secretome and biomaterials in in-vivo animal models: Regenerative medicine application in cutaneous wound healing. Biocell, 2022, 46, 1815-1826.	0.4	4
625	Intraglandular Off-the-Shelf Allogeneic Mesenchymal Stem Cell Treatment in Patients with Radiation-Induced Xerostomia: A Safety Study (MESRIX-II). Stem Cells Translational Medicine, 2022, 11, 478-489.	1.6	16
626	Human Mesenchymal Stem Cells as a Carrier for a Cell-Mediated Drug Delivery. Frontiers in Bioengineering and Biotechnology, 2022, 10, 796111.	2.0	14
627	Protein Expression of AEBP1, MCM4, and FABP4 Differentiate Osteogenic, Adipogenic, and Mesenchymal Stromal Stem Cells. International Journal of Molecular Sciences, 2022, 23, 2568.	1.8	5
628	Small Extracellular Vesicles Derived From MSCs Have Immunomodulatory Effects to Enhance Delivery of ASO-210 for Psoriasis Treatment. Frontiers in Cell and Developmental Biology, 2022, 10, 842813.	1.8	10
629	Properties and fate of human mesenchymal stem cells upon miRNA let-7f-promoted recruitment to atherosclerotic plaques. Cardiovascular Research, 2023, 119, 155-166.	1.8	2

#	Article	IF	CITATIONS
630	Pre-conditioning Strategies for Mesenchymal Stromal/Stem Cells in Inflammatory Conditions of Livestock Species. Frontiers in Veterinary Science, 2022, 9, 806069.	0.9	6
631	Mesenchymal Stem Cell-Derived Extracellular Vesicles and Their Therapeutic Use in Central Nervous System Demyelinating Disorders. International Journal of Molecular Sciences, 2022, 23, 3829.	1.8	7
632	Rapid and robust derivation of mesenchymal stem cells from human pluripotent stem cells via temporal induction of neuralized ectoderm. Cell and Bioscience, 2022, 12, 31.	2.1	1
634	Macromolecular modulation of a 3D hydrogel construct differentially regulates human stem cell tissue-to-tissue interface. Materials Science and Engineering C, 2021, , 112611.	3.8	3
635	Stem Cell Therapies for Cerebral Palsy and Autism Spectrum Disorder—A Systematic Review. Brain Sciences, 2021, 11, 1606.	1.1	8
636	In Situ Synthesis of Natural Antioxidase Mimics for Catalytic Anti-Inflammatory Treatments: Rheumatoid Arthritis as an Example. Journal of the American Chemical Society, 2022, 144, 314-330.	6.6	46
637	Construction of a two-dimensional artificial antioxidase for nanocatalytic rheumatoid arthritis treatment. Nature Communications, 2022, 13, 1988.	5.8	59
638	Reprograming the immune niche for skin tissue regeneration – From cellular mechanisms to biomaterials applications. Advanced Drug Delivery Reviews, 2022, 185, 114298.	6.6	19
656	Mesenchymal Stromal Cell Therapy Improves Refractory Perianal Fistula in Crohn's Disease: Case Series Clinical Interventional Study Cell Journal, 2022, 24, 62-68.	0.2	2
657	Magnetic Nano-Sized SDF-1 Particles Show Promise for Application in Stem Cell-Based Repair of Damaged Tissues. Frontiers in Bioengineering and Biotechnology, 2022, 10, 831256.	2.0	1
658	Cell Based Treatment of Autoimmune Diseases in Children. Frontiers in Pediatrics, 2022, 10, .	0.9	0
659	Mesh-like electrospun membrane loaded with atorvastatin facilitates cutaneous wound healing by promoting the paracrine function of mesenchymal stem cells. Stem Cell Research and Therapy, 2022, 13, 190.	2.4	7
660	Long-term Safety of Treatment with Autologous Mesenchymal Stem Cells in Patients with Radiation-Induced Xerostomia: Primary Results of the MESRIX Phase I/II Randomized Trial. Clinical Cancer Research, 2022, 28, 2890-2897.	3.2	9
661	Editorial: Mesenchymal Stromal Cell Therapy for Regenerative Medicine. Frontiers in Cellular Neuroscience, 2022, 16, .	1.8	7
662	Regulation of Malignant Myeloid Leukemia by Mesenchymal Stem Cells. Frontiers in Cell and Developmental Biology, 0, 10 , .	1.8	8
663	Safety, immunological effects and clinical response in a phase I trial of umbilical cord mesenchymal stromal cells in patients with treatment refractory SLE. Lupus Science and Medicine, 2022, 9, e000704.	1,1	9
664	Perivascular Mesenchymal Stem/Stromal Cells, an Immune Privileged Niche for Viruses?. International Journal of Molecular Sciences, 2022, 23, 8038.	1.8	9
665	Mesenchymal Stem Cells (MSCs): A Novel Therapy for Type 2 Diabetes. Stem Cells International, 2022, 2022, 1-17.	1.2	9

#	Article	IF	CITATIONS
666	Mesenchymal Stem Cells: History, Characteristics and an Overview of Their Therapeutic Administration. Turkish Journal of Immunology, 2022, 10, 56-68.	0.1	0
667	First clinical application of cord blood mesenchymal stromal cells in children with multi-drug resistant nephrotic syndrome. Stem Cell Research and Therapy, 2022, 13, .	2.4	4
668	Immune responses in diabetic nephropathy: Pathogenic mechanisms and therapeutic target. Frontiers in Immunology, $0,13,.$	2,2	31
669	Cryopreserved allogeneic mesenchymal stem cells enhance wound repair in full thickness skin wound model and cattle clinical teat injuries. Current Research in Translational Medicine, 2022, 70, 103356.	1.2	4
670	Mesenchymal Stem Cells Therapeutic Applications in Gastrointestinal Disorders. , 2022, , 247-278.		1
671	Scaffold-based delivery of mesenchymal stromal cells to diabetic wounds. Stem Cell Research and Therapy, 2022, 13, .	2.4	11
672	Autologous Stem Cells for the Treatment of Chondral Injury and Disease. Operative Techniques in Sports Medicine, 2022, , 150963.	0.2	0
673	Is mesenchymal stem cell effective for allergic rhinitis? A protocol for a systematic review and meta-analysis. BMJ Open, 2022, 12, e062435.	0.8	O
674	Comparison of in-situ versus ex-situ delivery of polyethylenimine-BMP-2 polyplexes for rat calvarial defect repair via intraoperative bioprinting. Biofabrication, 2023, 15, 015011.	3.7	10
675	Mesenchymal stromal cell extracellular vesicles for multiple sclerosis in preclinical rodent models: A meta-analysis. Frontiers in Immunology, 0, 13, .	2.2	5
677	CD146+ Endometrial-Derived Mesenchymal Stem/Stromal Cell Subpopulation Possesses Exosomal Secretomes with Strong Immunomodulatory miRNA Attributes. Cells, 2022, 11, 4002.	1.8	10
678	Intraglandular mesenchymal stem cell treatment induces changes in the salivary proteome of irradiated patients. Communications Medicine, 2022, 2, .	1.9	3
679	Bioactive glass-elicited stem cell-derived extracellular vesicles regulate M2 macrophage polarization and angiogenesis to improve tendon regeneration and functional recovery. Biomaterials, 2023, 294, 121998.	5.7	16
680	Autologous fat graft injections for the treatment of perianal fistulas in Crohn's disease: a systematic review and singleâ€arm metaâ€analysis. ANZ Journal of Surgery, 2023, 93, 1162-1168.	0.3	1
681	Therapeutic potential of stem cell extracellular vesicles for ischemic stroke in preclinical rodent models: a meta-analysis. Stem Cell Research and Therapy, 2023, 14, .	2.4	2
682	The effects of mesenchymal stem cells on the chemotherapy of colorectal cancer. Biomedicine and Pharmacotherapy, 2023, 160, 114373.	2.5	2
683	Transplantation of Umbilical Cord-Derived Mesenchymal Stem Cells Attenuates Surgical Wound-Induced Blood-Brain Barrier Dysfunction in Mice. Stem Cells International, 2023, 2023, 1-10.	1.2	0
684	Progress of Stem Cell Research in Knee Osteoarthritis. , 0, 36, 1421-1426.		2

#	Article	IF	CITATIONS
703	Epitranscriptomic modifications in mesenchymal stem cell differentiation: advances, mechanistic insights, and beyond. Cell Death and Differentiation, 2024, 31, 9-27.	5.0	1
713	The future drug treatment of COPD. , 2024, , 233-254.		O