Photoluminescence from Chemically Exfoliated MoS<su

Nano Letters 11, 5111-5116 DOI: 10.1021/nl201874w

Citation Report

#	Article	IF	CITATIONS
16	Magnetic properties of MoS2: Existence of ferromagnetism. Applied Physics Letters, 2012, 101, .	1.5	249
17	Die Trittbrettfahrer des Graphens. Nachrichten Aus Der Chemie, 2012, 60, 422-425.	0.0	1
18	Raman spectroscopy of the interlayer shear mode in few-layer MoS2 flakes. Applied Physics Letters, 2012, 101, .	1.5	175
19	Two-Dimensional Transition Metal Dichalcogenide Alloys: Stability and Electronic Properties. Journal of Physical Chemistry Letters, 2012, 3, 3652-3656.	2.1	290
20	Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nature Nanotechnology, 2012, 7, 699-712.	15.6	13,346
21	Large excitonic effects in monolayers of molybdenum and tungsten dichalcogenides. Physical Review B, 2012, 86, .	1.1	1,250
22	Effects of confinement and environment on the electronic structure and exciton binding energy of MoS <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:msub><mml:mrow></mml:mrow><mml:mn>2</mml:mn></mml:msub></mml:math> from first principles. Physical Review B, 2012, 86, .	1.1	539
23	High quality 2D crystals made by anodic bonding: a general technique for layered materials. Nanotechnology, 2012, 23, 505709.	1.3	41
24	MoS ₂ Nanosheets for Topâ€Gate Nonvolatile Memory Transistor Channel. Small, 2012, 8, 3111-3115.	5.2	219
25	Robust optical emission polarization in MoS <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mrow /><mml:mn>2</mml:mn></mml:mrow </mml:msub>monolayers through selective valley excitation. Physical Review B. 2012. 86</mml:math 	1.1	385
26	Titanium sulphene: two-dimensional confinement of electrons and phonons giving rise to improved thermoelectric performance. Physical Chemistry Chemical Physics, 2012, 14, 15641.	1.3	23
27	Semiconductor-metal transition in semiconducting bilayer sheets of transition-metal dichalcogenides. Physical Review B, 2012, 86, .	1.1	259
28	Wafer-scale MoS2 thin layers prepared by MoO3 sulfurization. Nanoscale, 2012, 4, 6637.	2.8	621
29	Amorphous Molybdenum Sulfide Catalysts for Electrochemical Hydrogen Production: Insights into the Origin of their Catalytic Activity. ACS Catalysis, 2012, 2, 1916-1923.	5.5	1,007
30	Engineering the surface structure of MoS2 toÂpreferentially expose active edge sites forAelectrocatalysis. Nature Materials, 2012, 11, 963-969.	13.3	2,896
31	Low-temperature photocarrier dynamics in single-layer MoS ₂ flakes. Proceedings of SPIE, 2012, , .	0.8	2
32	Preparation of MoS ₂ â€Polyvinylpyrrolidone Nanocomposites for Flexible Nonvolatile Rewritable Memory Devices with Reduced Graphene Oxide Electrodes. Small, 2012, 8, 3517-3522.	5.2	393
33	Optical and photocatalytic properties of two-dimensional MoS2. European Physical Journal B, 2012, 85, 1.	0.6	121

ATION REDO

#	Article	IF	CITATIONS
34	Well-Defined Colloidal 2-D Layered Transition-Metal Chalcogenide Nanocrystals via Generalized Synthetic Protocols. Journal of the American Chemical Society, 2012, 134, 18233-18236.	6.6	224
35	Two-Dimensional Transition Metal Dichalcogenides under Electron Irradiation: Defect Production and Doping. Physical Review Letters, 2012, 109, 035503.	2.9	960
36	Molybdenum disulphide/titanium dioxide nanocomposite-poly 3-hexylthiophene bulk heterojunction solar cell. Applied Physics Letters, 2012, 100, .	1.5	137
37	Production and processing of graphene and 2d crystals. Materials Today, 2012, 15, 564-589.	8.3	866
38	Thermally Driven Crossover from Indirect toward Direct Bandgap in 2D Semiconductors: MoSe ₂ versus MoS ₂ . Nano Letters, 2012, 12, 5576-5580.	4.5	1,206
39	Quantitative Raman Spectrum and Reliable Thickness Identification for Atomic Layers on Insulating Substrates. ACS Nano, 2012, 6, 7381-7388.	7.3	322
40	MoS <inf>2</inf> / TiO <inf>2</inf> nanoparticle composite bulk heterojunction solar cell. , 2012, , .		1
41	Highly Flexible MoS ₂ Thin-Film Transistors with Ion Gel Dielectrics. Nano Letters, 2012, 12, 4013-4017.	4.5	746
43	Fabrication of Flexible MoS ₂ Thinâ€Film Transistor Arrays for Practical Gasâ€Sensing Applications. Small, 2012, 8, 2994-2999.	5.2	817
44	Coherent Atomic and Electronic Heterostructures of Single-Layer MoS ₂ . ACS Nano, 2012, 6, 7311-7317.	7.3	806
45	Ultrafast and spatially resolved studies of charge carriers in atomically thin molybdenum disulfide. Physical Review B, 2012, 86, .	1.1	215
46	van der Waals Epitaxy of MoS ₂ Layers Using Graphene As Growth Templates. Nano Letters, 2012, 12, 2784-2791.	4.5	888
47	Laser-Thinning of MoS ₂ : On Demand Generation of a Single-Layer Semiconductor. Nano Letters, 2012, 12, 3187-3192.	4.5	567
48	MoS ₂ Nanosheet Phototransistors with Thickness-Modulated Optical Energy Gap. Nano Letters, 2012, 12, 3695-3700.	4.5	1,221
49	Synthesis of Largeâ€Area MoS ₂ Atomic Layers with Chemical Vapor Deposition. Advanced Materials, 2012, 24, 2320-2325.	11.1	2,956
50	Preparation of High Concentration Dispersions of Exfoliated MoS ₂ with Increased Flake Size. Chemistry of Materials, 2012, 24, 2414-2421.	3.2	504
51	Growth of Large-Area and Highly Crystalline MoS ₂ Thin Layers on Insulating Substrates. Nano Letters, 2012, 12, 1538-1544.	4.5	1,749
53	Photoelectrochemical properties of chemically exfoliated MoS2. Journal of Materials Chemistry A, 2013, 1, 8935.	5.2	137

.

#	Article	IF	Citations
54	Fabrication of stretchable MoS2 thin-film transistors using elastic ion-gel gate dielectrics. Applied Physics Letters, 2013, 103, .	1.5	96
55	Epitaxial Monolayer MoS ₂ on Mica with Novel Photoluminescence. Nano Letters, 2013, 13, 3870-3877.	4.5	512
56	Chemical Unzipping of WS ₂ Nanotubes. ACS Nano, 2013, 7, 7311-7317.	7.3	50
57	A Solutionâ€Processed Hole Extraction Layer Made from Ultrathin MoS ₂ Nanosheets for Efficient Organic Solar Cells. Advanced Energy Materials, 2013, 3, 1262-1268.	10.2	231
58	Layer-by-layer thinning of MoS ₂ by thermal annealing. Nanoscale, 2013, 5, 8904-8908.	2.8	110
59	Growth of aligned Mo6S6 nanowires on Cu(111). Surface Science, 2013, 611, 1-4.	0.8	20
60	Room Temperature Electrodeposition of Molybdenum Sulfide for Catalytic and Photoluminescence Applications. ACS Nano, 2013, 7, 8199-8205.	7.3	92
61	Improved dispersant-free liquid exfoliation down to the graphene-like state of solvent-free mechanochemically delaminated bulk MoS2. Journal of Materials Chemistry C, 2013, 1, 6411.	2.7	50
62	Layer Thinning and Etching of Mechanically Exfoliated MoS ₂ Nanosheets by Thermal Annealing in Air. Small, 2013, 9, 3314-3319.	5.2	229
63	Phonon thermal conductivity of monolayer MoS ₂ sheet and nanoribbons. Applied Physics Letters, 2013, 103, 133113.	1.5	167
64	A new (2 × 1) dimerized structure of monolayer 1T-molybdenum disulfide, studied from first principles calculations. Journal of Chemical Physics, 2013, 139, 174702.	1.2	73
65	Single‣ayer MoS ₂ Mechanical Resonators. Advanced Materials, 2013, 25, 6719-6723.	11.1	201
66	Ultrafast Saturable Absorption of Two-Dimensional MoS ₂ Nanosheets. ACS Nano, 2013, 7, 9260-9267.	7.3	905
67	Electrochemical Control of Photoluminescence in Two-Dimensional MoS ₂ Nanoflakes. ACS Nano, 2013, 7, 10083-10093.	7.3	282
68	Direct imprinting of MoS2 flakes on a patterned gate for nanosheet transistors. Journal of Materials Chemistry C, 2013, 1, 7803.	2.7	50
69	Graphene Analogues of Inorganic Layered Materials. Angewandte Chemie - International Edition, 2013, 52, 13162-13185.	7.2	441
70	MoS2 nanosheet functionalized with Cu nanoparticles and its application for glucose detection. Materials Research Bulletin, 2013, 48, 4544-4547.	2.7	104
71	Highly efficient gate-tunable photocurrent generation in vertical heterostructures of layered materials. Nature Nanotechnology, 2013, 8, 952-958.	15.6	1,017

#	Article	IF	CITATIONS
72	Atomic structure and edge magnetism in MoS2+x parallelogram shaped platelets. Physical Chemistry Chemical Physics, 2013, 15, 13077.	1.3	3
73	Laminar MoS2 membranes for molecule separation. Chemical Communications, 2013, 49, 10718.	2.2	274
74	Layer-Controlled, Wafer-Scale, and Conformal Synthesis of Tungsten Disulfide Nanosheets Using Atomic Layer Deposition. ACS Nano, 2013, 7, 11333-11340.	7.3	324
75	Conducting MoS ₂ Nanosheets as Catalysts for Hydrogen Evolution Reaction. Nano Letters, 2013, 13, 6222-6227.	4.5	1,948
76	Nonblinking, Intense Two-Dimensional Light Emitter: Monolayer WS ₂ Triangles. ACS Nano, 2013, 7, 10985-10994.	7.3	281
77	Highly Effective Visibleâ€Lightâ€Induced H ₂ Generation by Singleâ€Layer 1Tâ€MoS ₂ an a Nanocomposite of Fewâ€Layer 2Hâ€MoS ₂ with Heavily Nitrogenated Graphene. Angewandte Chemie - International Edition, 2013, 52, 13057-13061.	d 7.2	438
78	Electrochemical tuning of vertically aligned MoS ₂ nanofilms and its application in improving hydrogen evolution reaction. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 19701-19706.	3.3	894
79	Liquid Exfoliation of Layered Materials. Science, 2013, 340, .	6.0	3,109
80	Photo-Excited Charge Collection Spectroscopy. SpringerBriefs in Physics, 2013, , .	0.2	4
81	Graphene/MoS2 organic glasses: Fabrication and enhanced reverse saturable absorption properties. Optical Materials, 2013, 35, 2352-2356.	1.7	31
82	Comparative study on MoS2 and WS2 for electrocatalytic water splitting. International Journal of Hydrogen Energy, 2013, 38, 12302-12309.	3.8	193
83	Preferential Scattering by Interfacial Charged Defects for Enhanced Thermoelectric Performance in Few-layered n-type Bi2Te3. Scientific Reports, 2013, 3, 3212.	1.6	107
84	Remarkable magnetism and ferromagnetic coupling in semi-sulfuretted transition-metal dichalcogenides. Physical Chemistry Chemical Physics, 2013, 15, 14202.	1.3	12
85	On Monolayer \${m MoS}_{2}\$ Field-Effect Transistors at the Scaling Limit. IEEE Transactions on Electron Devices, 2013, 60, 4133-4139.	1.6	142
86	Ferromagnetism in exfoliated tungsten disulfide nanosheets. Nanoscale Research Letters, 2013, 8, 430.	3.1	97
87	Structure, Mechanical, and Tribological Properties of MoS2/a-C:H Composite Films. Tribology Letters, 2013, 52, 371-380.	1.2	33
88	Lattice dynamics in mono- and few-layer sheets of WS2 and WSe2. Nanoscale, 2013, 5, 9677.	2.8	724
89	Solution-Processed MoS _{<i>x</i>} as an Efficient Anode Buffer Layer in Organic Solar Cells. ACS Applied Materials & Interfaces, 2013, 5, 8823-8827.	4.0	48

#	Article	IF	CITATIONS
90	From point to extended defects in two-dimensional MoS <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mrow /><mml:mn>2</mml:mn></mml:mrow </mml:msub>: Evolution of atomic structure under electron irradiation. Physical Review B, 2013, 88, .</mml:math 	1.1	408
91	The Intrinsic Ferromagnetism in a MnO ₂ Monolayer. Journal of Physical Chemistry Letters, 2013, 4, 3382-3386.	2.1	171
92	Electric Stress-Induced Threshold Voltage Instability of Multilayer MoS ₂ Field Effect Transistors. ACS Nano, 2013, 7, 7751-7758.	7.3	190
93	Optoelectronic properties of graphene thin films deposited by a Langmuir–Blodgett assembly. Nanoscale, 2013, 5, 12365.	2.8	44
94	Predicting Dislocations and Grain Boundaries in Two-Dimensional Metal-Disulfides from the First Principles. Nano Letters, 2013, 13, 253-258.	4.5	310
95	High Performance Multilayer MoS ₂ Transistors with Scandium Contacts. Nano Letters, 2013, 13, 100-105.	4.5	2,058
96	Nanosheet thickness-modulated MoS ₂ dielectric property evidenced by field-effect transistor performance. Nanoscale, 2013, 5, 548-551.	2.8	83
97	Graphene-Like Two-Dimensional Materials. Chemical Reviews, 2013, 113, 3766-3798.	23.0	3,761
98	Nanostructured metal chalcogenides: synthesis, modification, and applications in energy conversion and storage devices. Chemical Society Reviews, 2013, 42, 2986.	18.7	1,393
99	Memory Devices Using a Mixture of MoS ₂ and Graphene Oxide as the Active Layer. Small, 2013, 9, 727-731.	5.2	144
100	Large and Tunable Photothermoelectric Effect in Single-Layer MoS ₂ . Nano Letters, 2013, 13, 358-363.	4.5	566
101	Ultrathin V ₂ O ₅ nanosheet cathodes: realizing ultrafast reversible lithium storage. Nanoscale, 2013, 5, 556-560.	2.8	236
102	Extraordinary Room-Temperature Photoluminescence in Triangular WS ₂ Monolayers. Nano Letters, 2013, 13, 3447-3454.	4.5	1,375
103	Electrical control of optical properties of monolayer MoS2. Solid State Communications, 2013, 155, 49-52.	0.9	182
104	High on/off ratio field effect transistors based on exfoliated crystalline SnS ₂ nano-membranes. Nanotechnology, 2013, 24, 025202.	1.3	120
105	Synthesis of graphene–conjugated polymer nanocomposites for electronic device applications. Nanoscale, 2013, 5, 1440.	2.8	80
106	Strongly luminescent monolayered MoS2 prepared by effective ultrasound exfoliation. Nanoscale, 2013, 5, 3387.	2.8	231
107	Metal dichalcogenide nanosheets: preparation, properties and applications. Chemical Society Reviews, 2013, 42, 1934.	18.7	1,809

#	Article	IF	CITATIONS
108	Synthesis of Few‣ayer MoS ₂ Nanosheetâ€Coated TiO ₂ Nanobelt Heterostructures for Enhanced Photocatalytic Activities. Small, 2013, 9, 140-147.	5.2	1,166
109	Electrical tuning of valley magnetic moment through symmetry control in bilayer MoS2. Nature Physics, 2013, 9, 149-153.	6.5	540
110	Thermally induced microstructure and morphology transformations in molybdenum disulfide–octadecyltrimethylammonim layered nanocomposite. Materials Chemistry and Physics, 2013, 141, 35-41.	2.0	4
111	Monolayer Mos <mml:math inline"="" xmins:mml="http://www.w3.org/1998/Math/MathML
display="><mml:msub><mml:mrow></mml:mrow><mml:mn>2</mml:mn></mml:msub></mml:math> : Trigonal warping, the <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mi> ("/mml:mi > ("mml:math>valley, and spin-orbit coupling effects. Physical Blueshift of the<mml:math inline"="" xmlns:mml="http://www.w3.org/1998/Math/MathML</td><td>1.1</td><td>357</td></tr><tr><td>112</td><td>display="><mml:mi>A</mml:mi></mml:math>-exciton peak in folded monolayer<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mn>1</mml:mn><mml:mi>H</mml:mi></mml:mrow></mml:math </mml:mi></mml:math> -MoS <mm xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mrow>-MoS<mm< td=""><td>l:math</td><td>37</td></mm<></mml:mrow></mml:msub></mm 	l:math	37
113	/> <mml:mn>2</mml:mn> . Physical Review B, 2013, 88, . Optical manipulation of the exciton charge state in single-layer tungsten disulfide. Physical Review B, 2013, 88, .	1.1	174
114	Chemically exfoliated single-layer <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mtext>MoS</mml:mtext> Stability, lattice dynamics, and catalytic adsorption from first principles. Physical Review B, 2013, 88, .</mml:msub></mml:mrow></mml:math 	⊲m ml:mn:	> 24 ¢mml:mr
115	Interlayer Breathing and Shear Modes in Few-Trilayer MoS ₂ and WSe ₂ . Nano Letters, 2013, 13, 1007-1015.	4.5	576
116	Vapor–Solid Growth of High Optical Quality MoS ₂ Monolayers with Near-Unity Valley Polarization. ACS Nano, 2013, 7, 2768-2772.	7.3	389
117	Threeâ€Dimensional Hierarchical Architectures Constructed by Graphene/MoS ₂ Nanoflake Arrays and Their Rapid Charging/Discharging Properties as Lithiumâ€Ion Battery Anodes. Chemistry - A European Journal, 2013, 19, 5818-5823.	1.7	141
118	The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nature Chemistry, 2013, 5, 263-275.	6.6	8,051
119	Chemically Exfoliated MoS ₂ as Nearâ€Infrared Photothermal Agents. Angewandte Chemie - International Edition, 2013, 52, 4160-4164.	7.2	575
120	Hydrogen-Incorporated TiS ₂ Ultrathin Nanosheets with Ultrahigh Conductivity for Stamp-Transferrable Electrodes. Journal of the American Chemical Society, 2013, 135, 5144-5151.	6.6	273
121	Ligand Conjugation of Chemically Exfoliated MoS ₂ . Journal of the American Chemical Society, 2013, 135, 4584-4587.	6.6	509
122	Synthesis of MoS ₂ and MoSe ₂ Films with Vertically Aligned Layers. Nano Letters, 2013, 13, 1341-1347.	4.5	2,036
123	Controlled Synthesis of Highly Crystalline MoS ₂ Flakes by Chemical Vapor Deposition. Journal of the American Chemical Society, 2013, 135, 5304-5307.	6.6	655
124	Investigation of MoS ₂ and Graphene Nanosheets by Magnetic Force Microscopy. ACS Nano, 2013, 7, 2842-2849.	7.3	117
125	Solution-phase epitaxial growth of noble metal nanostructures on dispersible single-layer molybdenum disulfide nanosheets. Nature Communications, 2013, 4, 1444.	5.8	756

#	Article	IF	CITATIONS
126	Enhanced Electrocatalytic Properties of Transition-Metal Dichalcogenides Sheets by Spontaneous Gold Nanoparticle Decoration. Journal of Physical Chemistry Letters, 2013, 4, 1227-1232.	2.1	315
127	Preparation, characterization and photoelectrochemical property of ultrathin MoS2 nanosheets via hydrothermal intercalation and exfoliation route. Journal of Alloys and Compounds, 2013, 571, 37-42.	2.8	88
128	Layer-by-Layer Thinning of MoS ₂ by Plasma. ACS Nano, 2013, 7, 4202-4209.	7.3	387
129	Ferromagnetism in freestanding MoS2 nanosheets. Nanoscale Research Letters, 2013, 8, 129.	3.1	180
130	Twoâ€Dimensional Molybdenum Trioxide and Dichalcogenides. Advanced Functional Materials, 2013, 23, 3952-3970.	7.8	443
131	Seeing Twoâ€Dimensional Sheets on Arbitrary Substrates by Fluorescence Quenching Microscopy. Small, 2013, 9, 3253-3258.	5.2	11
132	Two-dimensional semiconductors: recent progress and future perspectives. Journal of Materials Chemistry C, 2013, 1, 2952.	2.7	317
133	Intercalation and delamination of layered carbides and carbonitrides. Nature Communications, 2013, 4, 1716.	5.8	2,095
134	Few-Layer MoS ₂ with High Broadband Photogain and Fast Optical Switching for Use in Harsh Environments. ACS Nano, 2013, 7, 3905-3911.	7.3	584
135	Highly Efficient Electrocatalytic Hydrogen Production by MoS <i>_x</i> Grown on Grapheneâ€Protected 3D Ni Foams. Advanced Materials, 2013, 25, 756-760.	11.1	693
136	Controllable synthesis of silver cyanamide as a new semiconductor photocatalyst under visible-light irradiation. Journal of Materials Chemistry A, 2013, 1, 7942.	5.2	40
137	Bridging the Gap Between Bulk and Nanostructured Photoelectrodes: The Impact of Surface States on the Electrocatalytic and Photoelectrochemical Properties of MoS ₂ . Journal of Physical Chemistry C, 2013, 117, 9713-9722.	1.5	86
138	Graphene-analogous low-dimensional materials. Progress in Materials Science, 2013, 58, 1244-1315.	16.0	684
139	Oriented Molecular Attachments Through Sol–Gel Chemistry for Synthesis of Ultrathin Hydrated Vanadium Pentoxide Nanosheets and Their Applications. Small, 2013, 9, 716-721.	5.2	67
140	Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide. Nature Materials, 2013, 12, 554-561. Materials, 2013, 12, 554-561.	13.3	1,896
141	display="inline"> <mml:msub><mml:mrow /><mml:mn>2</mml:mn></mml:mrow </mml:msub> /Ti <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mrow /><mml:mn>2</mml:mn></mml:mrow </mml:msub>C and MoS<mml:math< td=""><td>1.1</td><td>166</td></mml:math<></mml:math 	1.1	166
142	Efficient work-function engineering of solution-processed MoS2 thin-films for novel hole and electron transport layers leading to high-performance polymer solar cells. Journal of Materials Chemistry C, 2013, 1, 3777.	2.7	173
143	Selective Decoration of Au Nanoparticles on Monolayer MoS2 Single Crystals. Scientific Reports, 2013, 3, 1839.	1.6	380

#	Article	IF	CITATIONS
144	Novel hetero-layered materials with tunable direct band gaps by sandwiching different metal diselenides. Scientific Reports, 2013, 3, 1549.	1.6	437
145	Highâ€Gain Phototransistors Based on a CVD MoS ₂ Monolayer. Advanced Materials, 2013, 25, 3456-3461.	11.1	891
146	Sensing Behavior of Atomically Thin-Layered MoS ₂ Transistors. ACS Nano, 2013, 7, 4879-4891.	7.3	1,158
147	Measuring the lateral size of liquid-exfoliated nanosheets with dynamic light scattering. Nanotechnology, 2013, 24, 265703.	1.3	214
148	Identification of individual and few layers of WS2 using Raman Spectroscopy. Scientific Reports, 2013, 3, .	1.6	1,185
149	MoS ₂ Transistors Fabricated <i>via</i> Plasma-Assisted Nanoprinting of Few-Layer MoS ₂ Flakes into Large-Area Arrays. ACS Nano, 2013, 7, 5870-5881.	7.3	114
150	Plasmonic enhancement of photocurrent in MoS2 field-effect-transistor. Applied Physics Letters, 2013, 102, .	1.5	201
151	Large-scale synthesis of NbS2 nanosheets with controlled orientation on graphene by ambient pressure CVD. Nanoscale, 2013, 5, 5773.	2.8	103
152	MoSe ₂ and WSe ₂ Nanofilms with Vertically Aligned Molecular Layers on Curved and Rough Surfaces. Nano Letters, 2013, 13, 3426-3433.	4.5	653
153	Bonding Charge Density and Ultimate Strength of Monolayer Transition Metal Dichalcogenides. Journal of Physical Chemistry C, 2013, 117, 15842-15848.	1.5	133
154	Large area single crystal (0001) oriented MoS2. Applied Physics Letters, 2013, 102, .	1.5	200
155	Enhanced catalytic activity in strained chemically exfoliated WS2 nanosheets for hydrogen evolution. Nature Materials, 2013, 12, 850-855.	13.3	2,326
156	Two-Dimensional Crystals: Managing Light for Optoelectronics. ACS Nano, 2013, 7, 5660-5665.	7.3	398
157	Nanoscale Multilayer Transition-Metal Dichalcogenide Heterostructures: Band Gap Modulation by Interfacial Strain and Spontaneous Polarization. Journal of Physical Chemistry Letters, 2013, 4, 1730-1736.	2.1	142
158	Controlled Synthesis and Transfer of Large-Area WS ₂ Sheets: From Single Layer to Few Layers. ACS Nano, 2013, 7, 5235-5242.	7.3	534
159	Electronic structures and magnetic properties of MoS2 nanostructures: atomic defects, nanoholes, nanodots and antidots. Physical Chemistry Chemical Physics, 2013, 15, 10385.	1.3	104
160	Second harmonic microscopy of monolayer MoS <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mrow /><mml:mn>2</mml:mn></mml:mrow </mml:msub>. Physical Review B, 2013, 87, .</mml:math 	1.1	539
161	Controlling magnetism of MoS2 sheets by embedding transition-metal atoms and applying strain. Physical Chemistry Chemical Physics, 2013, 15, 18464.	1.3	89

#	Article	IF	CITATIONS
162	Synthesis and Characterization of Patronite Form of Vanadium Sulfide on Graphitic Layer. Journal of the American Chemical Society, 2013, 135, 8720-8725.	6.6	300
163	Optical investigation of the natural electron doping in thin MoS2 films deposited on dielectric substrates. Scientific Reports, 2013, 3, 3489.	1.6	144
164	ELECTRONIC AND OPTICAL PROPERTIES OF TWO-DIMENSIONAL MoS2, WS2, AND Mo0.5 W0.5S2 FROM FIRST-PRINCIPLES. , 2013, , .		0
166	Characterization of metal contacts for two-dimensional MoS2 nanoflakes. Applied Physics Letters, 2013, 103, .	1.5	144
167	Charge Dynamics and Electronic Structures of Monolayer MoS ₂ Films Grown by Chemical Vapor Deposition. Applied Physics Express, 2013, 6, 125801.	1.1	73
168	Chemically exfoliated large-area two-dimensional flakes of molybdenum disulfide for device applications. APL Materials, 2013, 1, .	2.2	21
170	Optical generation of valley polarization in atomically thin semiconductors. , 2013, , .		1
171	Preparation, Applications of Two-Dimensional Graphene-like Molybdenum Disulfide. Integrated Ferroelectrics, 2014, 158, 26-42.	0.3	20
172	Electronic and transport properties of V-shaped defect zigzag MoS 2 nanoribbons. Chinese Physics B, 2014, 23, 047307.	0.7	11
173	The electronic structure and optical properties of Mn and B, C, N co-doped MoS2 monolayers. Nanoscale Research Letters, 2014, 9, 554.	3.1	39
174	Optical identification of MoS_2/graphene heterostructure on SiO_2/Si substrate. Optics Express, 2014, 22, 15969.	1.7	22
175	Non-covalent doping of graphitic carbon nitride with ultrathin graphene oxide and molybdenum disulfide nanosheets: An effective binary heterojunction photocatalyst under visible light irradiation. Journal of Colloid and Interface Science, 2014, 431, 42-49.	5.0	74
177	Tunable Q-switched fiber laser based on saturable edge-state absorption in few-layer molybdenum disulfide (MoS_2). Optics Express, 2014, 22, 31113.	1.7	310
178	Excitons in a mirror: Formation of "optical bilayers―using MoS2 monolayers on gold substrates. Applied Physics Letters, 2014, 104, .	1.5	31
179	Selective gas sensing with MoS <inf>2</inf> thin film transistors. , 2014, , .		3
180	Toward epitaxially grown two-dimensional crystal hetero-structures: Single and double MoS2/graphene hetero-structures by chemical vapor depositions. Applied Physics Letters, 2014, 105, .	1.5	41
181	Electron spin relaxation due to D'yakonov-Perel' and Elliot-Yafet mechanisms in monolayer <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>MoS</mml:mi><mml:mn>2Role of intravalley and intervalley processes. Physical Review B, 2014, 89, .</mml:mn></mml:msub></mml:math 	:m m.ı <td>ll:m69ub></td>	ll:m 69 ub>
182	Scalable synthesis of layer-controlled WS2 and MoS2 sheets by sulfurization of thin metal films.	1.5	107

Applied Physics Letters, 2014, 105, .

#	Article	IF	CITATIONS
183	Coherent optical responses and their application in biomolecule mass sensing based on a monolayer MoS_2 nanoresonator. Journal of the Optical Society of America B: Optical Physics, 2014, 31, 1684.	0.9	15
184	Optical properties of large-area ultrathin MoS2 films: Evolution from a single layer to multilayers. Journal of Applied Physics, 2014, 116, .	1.1	66
185	Second-order resonant Raman scattering in single-layer tungsten disulfide <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi mathvariant="normal">WS<mml:mn>2</mml:mn></mml:mi </mml:msub>. Physical Review B, 2014, 89, .</mml:math 	1.1	65
186	Synthesis of MoS2 nano-petal forest supported on carbon nanotubes for enhanced field emission performance. Journal of Applied Physics, 2014, 116, 114305.	1.1	14
187	Contact research strategy for emerging molybdenum disulfide and other two-dimensional field-effect transistors. APL Materials, 2014, 2, .	2.2	44
188	Chemically Exfoliated MoS ₂ Nanosheets as an Efficient Catalyst for Reduction Reactions in the Aqueous Phase. ACS Applied Materials & Interfaces, 2014, 6, 21702-21710.	4.0	126
189	Spin transport properties of partially edge-hydrogenated MoS2 nanoribbon heterostructure. Journal of Applied Physics, 2014, 115, .	1.1	26
190	Synthesis of Platinum Nanoparticles by using Molybdenum Disulfide as a Template and its Application to Enzymeâ€iike Catalysis. ChemCatChem, 2014, 6, 1873-1876.	1.8	30
191	High intrinsic mobility and ultrafast carrier dynamics in multilayer metal-dichalcogenide <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow><mml:mi mathvariant="normal">MoS</mml:mi </mml:mrow><mml:mn>2</mml:mn></mml:msub>. Physical Review B, 2014, 90, .</mml:math 	1.1	70
192	Investigation of the optical properties of MoS ₂ thin films using spectroscopic ellipsometry. Applied Physics Letters, 2014, 104, 103114.	1.5	255
193	Harmonic generation in 2D layered materials. , 2014, , .		0
194	Tunable Electronic and Dielectric Properties of Molybdenum Disulfide. Lecture Notes in Nanoscale Science and Technology, 2014, , 53-76.	0.4	7
195	Two-dimensional MoS\$_{2}\$ as a new material for electronic devices. Turkish Journal of Physics, 2014, 38, 478-496.	0.5	20
196	Threeâ€Dimensional Molybdenum Sulfide Sponges for Electrocatalytic Water Splitting. Small, 2014, 10, 895-900.	5.2	82
197	2â€Dimensional Transition Metal Dichalcogenides with Tunable Direct Band Gaps: MoS _{2(1–x)} Se _{2x} Monolayers. Advanced Materials, 2014, 26, 1399-1404.	11.1	334
198	PEGylated WS ₂ Nanosheets as a Multifunctional Theranostic Agent for in vivo Dualâ€Modal CT/Photoacoustic Imaging Guided Photothermal Therapy. Advanced Materials, 2014, 26, 1886-1893.	11.1	1,002
199	Enhanced Photocatalytic Hydrogen Evolution over Hierarchical Composites of ZnIn ₂ S ₄ Nanosheets Grown on MoS ₂ Slices. Chemistry - an Asian Journal, 2014, 9, 1291-1297.	1.7	57
200	A generic solvent exchange method to disperse MoS2 in organic solvents to ease the solution process. Chemical Communications, 2014, 50, 3934.	2.2	68

#	Article	IF	CITATIONS
201	Folded MoS2 layers with reduced interlayer coupling. Nano Research, 2014, 7, 572-578.	5.8	71
202	Au Nanoparticleâ€Modified MoS ₂ Nanosheetâ€Based Photoelectrochemical Cells for Water Splitting. Small, 2014, 10, 3537-3543.	5.2	265
203	Synthesis and Optical Properties of Largeâ€Area Singleâ€Crystalline 2D Semiconductor WS ₂ Monolayer from Chemical Vapor Deposition. Advanced Optical Materials, 2014, 2, 131-136.	3.6	513
204	Synthesis, Properties, and Applications of 2-D Materials: A Comprehensive Review. Critical Reviews in Solid State and Materials Sciences, 2014, 39, 231-252.	6.8	143
205	Supercapacitor Electrodes Obtained by Directly Bonding 2D MoS ₂ on Reduced Graphene Oxide. Advanced Energy Materials, 2014, 4, 1301380.	10.2	426
206	Few-Layer MoS ₂ : A Promising Layered Semiconductor. ACS Nano, 2014, 8, 4074-4099.	7.3	1,181
207	Production of aqueous dispersions of inorganic graphene analogues by exfoliation and stabilization with non-ionic surfactants. RSC Advances, 2014, 4, 14115-14127.	1.7	101
208	Intrinsic electron spin relaxation due to the D'yakonov–Perel' mechanism in monolayer MoS2. Physics Letters, Section A: General, Atomic and Solid State Physics, 2014, 378, 1336-1340.	0.9	28
209	Controlled synthesis of transition metal dichalcogenide thin films for electronic applications. Applied Surface Science, 2014, 297, 139-146.	3.1	144
210	Trilayered MoS\$_{f 2}\$ Metal –Semiconductor–Metal Photodetectors: Photogain and Radiation Resistance. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20, 30-35.	1.9	40
211	Pressure-induced semiconducting to metallic transition in multilayered molybdenum disulphide. Nature Communications, 2014, 5, 3731.	5.8	495
212	Chemical Vapor Deposition Growth of Crystalline Monolayer MoSe ₂ . ACS Nano, 2014, 8, 5125-5131.	7.3	694
213	All Two-Dimensional, Flexible, Transparent, and Thinnest Thin Film Transistor. Nano Letters, 2014, 14, 2861-2866.	4.5	328
214	Pre-lithiation of onion-like carbon/MoS ₂ nano-urchin anodes for high-performance rechargeable lithium ion batteries. Nanoscale, 2014, 6, 8884-8890.	2.8	93
215	Macroscopic Properties of Restacked, Redox‣iquid Exfoliated Graphite and Graphite Mimics Produced in Bulk Quantities. Advanced Functional Materials, 2014, 24, 4969-4977.	7.8	4
216	Electrochemical Tuning of MoS ₂ Nanoparticles on Three-Dimensional Substrate for Efficient Hydrogen Evolution. ACS Nano, 2014, 8, 4940-4947.	7.3	566
217	Investigation of molybdenum carbide nano-rod as an efficient and durable electrocatalyst for hydrogen evolution in acidic and alkaline media. Applied Catalysis B: Environmental, 2014, 154-155, 232-237.	10.8	183
218	Lighting Up Two-Dimensional Lanthanide Phosphonates: Tunable Structure–Property Relationships toward Visible and Near-Infrared Emitters. Journal of Physical Chemistry C, 2014, 118, 10291-10301.	1.5	13

	CITATION REI	PORT	
#	Article	IF	CITATIONS
219	Effective Liquid-Phase Exfoliation and Sodium Ion Battery Application of MoS ₂ Nanosheets. ACS Applied Materials & Interfaces, 2014, 6, 7084-7089.	4.0	443
220	Ultrafast Molecule Separation through Layered WS ₂ Nanosheet Membranes. ACS Nano, 2014, 8, 6304-6311.	7.3	276
221	Large-Area Synthesis of Highly Crystalline WSe ₂ Monolayers and Device Applications. ACS Nano, 2014, 8, 923-930.	7.3	885
222	Vapor-phase growth and characterization of Mo _{1â^²x} W _x S ₂ (0 ≤ â‰)¤T	j ETQq1 1 2.8	0.784314 125
223	Two-Dimensional Nanosheets and Layered Hybrids of MoS ₂ and WS ₂ through Exfoliation of Ammoniated MS ₂ (M = Mo,W). Journal of Physical Chemistry C, 2014, 118, 1386-1396.	1.5	218
224	Electrochemical Characterization of Liquid Phase Exfoliated Two-Dimensional Layers of Molybdenum Disulfide. ACS Applied Materials & Interfaces, 2014, 6, 2125-2130.	4.0	121
225	General synthesis of noble metal (Au, Ag, Pd, Pt) nanocrystal modified MoS ₂ nanosheets and the enhanced catalytic activity of Pd–MoS ₂ for methanol oxidation. Nanoscale, 2014, 6, 5762-5769.	2.8	311
226	Liquidâ€phase exfoliation of ultrathin layered transition metal dichalcogenide nanosheets composed of solidâ€solution Mo _{1â^'<i>x</i>} W _{<i>x</i>} S ₂ . Physica Status Solidi (A) Applications and Materials Science, 2014, 211, 901-904.	0.8	7
227	Modulating the atomic and electronic structures through alloying and heterostructure of single-layer MoS ₂ . Journal of Materials Chemistry A, 2014, 2, 2101-2109.	5.2	92
228	Ferromagnetism in MnX2 (X = S, Se) monolayers. Physical Chemistry Chemical Physics, 2014, 16, 4990.	1.3	199
229	From core–shell MoS _x /ZnS to open fullerene-like MoS ₂ nanoparticles. Journal of Materials Chemistry A, 2014, 2, 3325-3331.	5.2	25
230	Enhancing the photocurrent and photoluminescence of single crystal monolayer MoS ₂ with resonant plasmonic nanoshells. Applied Physics Letters, 2014, 104, 031112.	1.5	208
231	Emerging Device Applications for Semiconducting Two-Dimensional Transition Metal Dichalcogenides. ACS Nano, 2014, 8, 1102-1120.	7.3	2,307
232	Mono-, Few-, and Multiple Layers of Copper Antimony Sulfide (CuSbS ₂): A Ternary Layered Sulfide. Journal of the American Chemical Society, 2014, 136, 1587-1598.	6.6	129
233	MoS2–reduced graphene oxide composites synthesized via a microwave-assisted method for visible-light photocatalytic degradation of methylene blue. RSC Advances, 2014, 4, 9647.	1.7	126
234	Ion-Driven Photoluminescence Modulation of Quasi-Two-Dimensional MoS ₂ Nanoflakes for Applications in Biological Systems. Nano Letters, 2014, 14, 857-863.	4.5	245
235	Structures and Phase Transition of a MoS ₂ Monolayer. Journal of Physical Chemistry C, 2014, 118, 1515-1522.	1.5	432
236	High yield exfoliation of two-dimensional chalcogenides using sodium naphthalenide. Nature Communications, 2014, 5, 2995.	5.8	655

ARTICLE IF CITATIONS Exploration of Nanostructured Functional Materials Based on Hybridization of Inorganic 2D 237 1.5 115 Nanosheets. Journal of Physical Chemistry C, 2014, 118, 3847-3863. MoS2. Lecture Notes in Nanoscale Science and Technology, 2014, , . 0.4 Recent advances in layered transition metal dichalcogenides for hydrogen evolution reaction. 239 5.2258 Journal of Materials Chemistry A, 2014, 2, 5979-5985. Constructing metallic nanoroads on a MoS₂monolayer via hydrogenation. Nanoscale, 240 2014, 6, 169<u>1-1697.</u> A novel aptameric nanobiosensor based on the self-assembled DNA–MoS₂nanosheet 241 2.9 149 architecture for biomolecule detection. Journal of Materials Chemistry B, 2014, 2, 625-628. Origin of the Phase Transition in Lithiated Molybdenum Disulfide. ACS Nano, 2014, 8, 11447-11453. 7.3 Effect of strain on electronic and thermoelectric properties of few layers to bulk MoS₂. 243 1.3 101 Nanotechnology, 2014, 25, 465701. Synthesis of Strongly Fluorescent Molybdenum Disulfide Nanosheets for Cell-Targeted Labeling. ACS 244 4.0 Applied Materials & amp; Interfaces, 2014, 6, 19888-19894. Molybdenum disulfide (MoS₂) nanoflakes as inherently electroactive labels for DNA 245 2.8 98 hybridization detection. Nanoscale, 2014, 6, 11971-11975. Plasma-assisted printing and doping processes for manufacturing few-layer 246 MoS<inf>2</inf>-based electronic and optoelectronic devices., 2014, , . Metallic 1T phase source/drain electrodes for field effect transistors from chemical vapor deposited 247 2.2 155 MoS2. APL Materials, 2014, 2, . Thickness sorting of two-dimensional transition metal dichalcogenides via copolymer-assisted density 248 5.8 126 gradient ultracentrifugation. Nature Communications, 2014, 5, 5478. Gate-bias stress-dependent photoconductive characteristics of multi-layer MoS₂ 249 1.3 42 field-effect transistors. Nanotechnology, 2014, 25, 155201. 1-, 1.5-, and 2-μm Fiber Lasers Q-Switched by a Broadband Few-Layer MoS₂ Saturable Absorber. Journal of Lightwave Technology, 2014, 32, 4679-4686. 2.7 Monolayer MoS₂ Films Supported by 3D Nanoporous Metals for Highâ€Efficiency 251 11.1 299 Electrocatalytic Hydrogen Production. Advanced Materials, 2014, 26, 8023-8028. Precise Tuning of the Charge Transfer Kinetics and Catalytic Properties of MoS₂ Materials via Electrochemical Methods. Chemistry - A European Journal, 2014, 20, 17426-17432. Edgeâ€Oriented MoS₂ Nanoporous Films as Flexible Electrodes for Hydrogen Evolution 253 11.1 552 Reactions and Supercapacitor Devices. Advanced Materials, 2014, 26, 8163-8168. Three-dimensional hierarchical MoS₂ nanoflake array/carbon cloth as high-performance 254 171 flexible lithium-ion battery anodes. Journal of Materials Chemistry A, 2014, 2, 4551-4557.

#	Article	IF	CITATIONS
255	Spontaneous exfoliation and tailoring of MoS ₂ in mixed solvents. Chemical Communications, 2014, 50, 15936-15939.	2.2	113
256	Novel micro-rings of molybdenum disulfide (MoS2). Nanoscale, 2014, 6, 14652-14656.	2.8	21
257	Layer-controlled synthesis of graphene-like MoS2 from single source organometallic precursor for Li-ion batteries. RSC Advances, 2014, 4, 16716.	1.7	28
258	Confocal absorption spectral imaging of MoS ₂ : optical transitions depending on the atomic thickness of intrinsic and chemically doped MoS ₂ . Nanoscale, 2014, 6, 13028-13035.	2.8	319
259	Site-specific catalytic activity in exfoliated MoS ₂ single-layer polytypes for hydrogen evolution: basal plane and edges. Journal of Materials Chemistry A, 2014, 2, 20545-20551.	5.2	150
260	Top and back gate molybdenum disulfide transistors coupled for logic and photo-inverter operation. Journal of Materials Chemistry C, 2014, 2, 8023-8028.	2.7	26
261	PEC-assisted Synthesis of Homogeneous Carbon Nanotubes-MoS2-Carbon as a Counter Electrode for Dye-sensitized Solar Cells. Electrochimica Acta, 2014, 144, 119-126.	2.6	41
262	Photoluminescence Quenching in Single-Layer MoS ₂ via Oxygen Plasma Treatment. Journal of Physical Chemistry C, 2014, 118, 21258-21263.	1.5	228
263	Highly concentrated MoS ₂ nanosheets in water achieved by thioglycolic acid as stabilizer and used as biomarkers. RSC Advances, 2014, 4, 42936-42941.	1.7	66
264	Monolayer MoSe ₂ Grown by Chemical Vapor Deposition for Fast Photodetection. ACS Nano, 2014, 8, 8582-8590.	7.3	515
265	Electron spin diffusion in monolayer <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>MoS</mml:mi><mml:mn>2Physical Review B, 2014, 89, .</mml:mn></mml:msub></mml:math 	:m b.1 <td>ıl:msub></td>	ıl:msub>
266	Engineering crystalline structures of two-dimensional MoS ₂ sheets for high-performance organic solar cells. Journal of Materials Chemistry A, 2014, 2, 7727-7733.	5.2	142
267	Effects of ultrasonic cavitation intensity on the efficient liquid-exfoliation of MoS ₂ nanosheets. RSC Advances, 2014, 4, 50981-50987.	1.7	62
268	Saturable absorption and the changeover from saturable absorption to reverse saturable absorption of MoS ₂ nanoflake array films. Journal of Materials Chemistry C, 2014, 2, 6319-6325.	2.7	85
269	Controlling sulphur precursor addition for large single crystal domains of WS ₂ . Nanoscale, 2014, 6, 12096-12103.	2.8	149
270	Strain and structure heterogeneity in MoS2 atomic layers grown by chemical vapour deposition. Nature Communications, 2014, 5, 5246.	5.8	453
271	Plasma Modified MoS ₂ Nanoflakes for Surface Enhanced Raman Scattering. Small, 2014, 10, 1090-1095.	5.2	129
272	Facile fabrication and enhanced visible light photocatalytic activity of few-layer MoS ₂ coupled BiOBr microspheres. Dalton Transactions, 2014, 43, 15429-15438.	1.6	133

#	Article	IF	Citations
273	MoS ₂ nanoparticles and h-BN nanosheets from direct exfoliation of bulk powder: one-step synthesis method. Materials Research Express, 2014, 1, 035038.	0.8	17
274	Stable charge storing in two-dimensional MoS ₂ nanoflake floating gates for multilevel organic flash memory. Nanoscale, 2014, 6, 12315-12323.	2.8	64
275	MoS ₂ exhibits stronger toxicity with increased exfoliation. Nanoscale, 2014, 6, 14412-14418.	2.8	162
277	Vertically aligned MoS ₂ /MoO _x heterojunction nanosheets for enhanced visible-light photocatalytic activity and photostability. CrystEngComm, 2014, 16, 9025-9032.	1.3	58
278	Chemically exfoliated ReS ₂ nanosheets. Nanoscale, 2014, 6, 12458-12462.	2.8	160
279	Impact of intrinsic atomic defects on the electronic structure of MoS ₂ monolayers. Nanotechnology, 2014, 25, 375703.	1.3	244
280	MoS ₂ nanosheet/Mo ₂ C-embedded N-doped carbon nanotubes: synthesis and electrocatalytic hydrogen evolution performance. Journal of Materials Chemistry A, 2014, 2, 18715-18719.	5.2	109
281	Two-dimensional layered semiconductor/graphene heterostructures for solar photovoltaic applications. Nanoscale, 2014, 6, 12682-12689.	2.8	105
282	Photocarrier relaxation pathway in two-dimensional semiconducting transition metal dichalcogenides. Nature Communications, 2014, 5, 4543.	5.8	372
283	Third-Harmonic Generation in Ultrathin Films of MoS ₂ . ACS Applied Materials & Interfaces, 2014, 6, 314-318.	4.0	161
284	Improving the stability and optical properties of germanane via one-step covalent methyl-termination. Nature Communications, 2014, 5, 3389.	5.8	201
285	Synthesis of wafer-scale uniform molybdenum disulfide films with control over the layer number using a gas phase sulfur precursor. Nanoscale, 2014, 6, 2821.	2.8	166
286	Seeing diabetes: visual detection of glucose based on the intrinsic peroxidase-like activity of MoS ₂ nanosheets. Nanoscale, 2014, 6, 11856-11862.	2.8	341
287	Ultra-stable two-dimensional MoS ₂ solution for highly efficient organic solar cells. RSC Advances, 2014, 4, 32744-32748.	1.7	61
288	High-performance hydrogen evolution electrocatalysis by layer-controlled MoS ₂ nanosheets. RSC Advances, 2014, 4, 34733-34738.	1.7	58
289	Broadband ultrafast nonlinear absorption and nonlinear refraction of layered molybdenum dichalcogenide semiconductors. Nanoscale, 2014, 6, 10530-10535.	2.8	328
290	Au nanoparticles on ultrathin MoS ₂ sheets for plasmonic organic solar cells. Journal of Materials Chemistry A, 2014, 2, 14798-14806.	5.2	110
291	Plasma assisted synthesis of WS2 for gas sensing applications. Chemical Physics Letters, 2014, 615, 6-10.	1.2	150

#	Article	IF	Citations
292	Phase-engineered low-resistance contacts for ultrathin MoS2 transistors. Nature Materials, 2014, 13, 1128-1134.	13.3	1,463
293	Role of Metal Contacts in High-Performance Phototransistors Based on WSe ₂ Monolayers. ACS Nano, 2014, 8, 8653-8661.	7.3	380
294	Inkjet Printing of MoS ₂ . Advanced Functional Materials, 2014, 24, 6524-6531.	7.8	210
295	Extraordinary attributes of 2-dimensional MoS2 nanosheets. Chemical Physics Letters, 2014, 609, 172-183.	1.2	141
296	Growth Mechanism of Pulsed Laser Fabricated Few-Layer MoS ₂ on Metal Substrates. ACS Applied Materials & Interfaces, 2014, 6, 15966-15971.	4.0	74
297	Dual Role of Blue Luminescent MoS ₂ Quantum Dots in Fluorescence Resonance Energy Transfer Phenomenon. Small, 2014, 10, 3858-3862.	5.2	179
298	Photoanode Current of Large–Area MoS ₂ Ultrathin Nanosheets with Vertically Mesh–Shaped Structure on Indium Tin Oxide. ACS Applied Materials & Interfaces, 2014, 6, 5983-5987.	4.0	79
299	Surface Energy Engineering for Tunable Wettability through Controlled Synthesis of MoS ₂ . Nano Letters, 2014, 14, 4314-4321.	4.5	258
300	Edge and confinement effects allow in situ measurement of size and thickness of liquid-exfoliated nanosheets. Nature Communications, 2014, 5, 4576.	5.8	432
301	Plasmonic Hot Electron Induced Structural Phase Transition in a MoS ₂ Monolayer. Advanced Materials, 2014, 26, 6467-6471.	11.1	516
302	Structure and electronic properties of transition metal dichalcogenide MX2 (MÂ=ÂMo, W, Nb; XÂ=ÂS, Se) monolayers with grain boundaries. Materials Chemistry and Physics, 2014, 147, 1068-1073.	2.0	26
303	Pulsed laser fabricated few-layer MoS 2 on silver. Chemical Physics Letters, 2014, 610-611, 284-287.	1.2	24
304	A novel three dimensional semimetallic MoS2. Journal of Applied Physics, 2014, 115, .	1.1	6
305	Universal ac conduction in large area atomic layers of CVD-grown MoS <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow /><mml:mn>2</mml:mn></mml:mrow </mml:msub>. Physical Review B, 2014, 89, .</mml:math 	1.1	27
306	Large-Area Single-Layer MoSe ₂ and Its van der Waals Heterostructures. ACS Nano, 2014, 8, 6655-6662.	7.3	206
307	Atomic layer deposition of a MoS ₂ film. Nanoscale, 2014, 6, 10584-10588.	2.8	335
308	An atlas of two-dimensional materials. Chemical Society Reviews, 2014, 43, 6537-6554.	18.7	1,159
309	Highly active hydrogen evolution catalysis from metallic WS ₂ nanosheets. Energy and Environmental Science, 2014, 7, 2608-2613.	15.6	660

#	Article	IF	CITATIONS
310	Redox Control and High Conductivity of Nickel Bis(dithiolene) Complex π-Nanosheet: A Potential Organic Two-Dimensional Topological Insulator. Journal of the American Chemical Society, 2014, 136, 14357-14360.	6.6	395
311	Amorphous carbon supported MoS ₂ nanosheets as effective catalysts for electrocatalytic hydrogen evolution. Nanoscale, 2014, 6, 10680.	2.8	155
312	Functional Polyelectrolyte Nanospaced MoS ₂ Multilayers for Enhanced Photoluminescence. Nano Letters, 2014, 14, 6456-6462.	4.5	65
313	Indirect–direct bandgap transition and gap width tuning in bilayer MoS 2 superlattices. Chemical Physics Letters, 2014, 613, 74-79.	1.2	22
314	Scalable high-mobility MoS ₂ thin films fabricated by an atmospheric pressure chemical vapor deposition process at ambient temperature. Nanoscale, 2014, 6, 12792-12797.	2.8	73
315	Multiflake Thin Film Electronic Devices of Solution Processed 2D MoS ₂ Enabled by Sonopolymer Assisted Exfoliation and Surface Modification. Chemistry of Materials, 2014, 26, 5892-5899.	3.2	92
316	Towards large area and continuous MoS ₂ atomic layers via vapor-phase growth: thermal vapor sulfurization. Nanotechnology, 2014, 25, 405702.	1.3	54
317	Active guests in the MoS ₂ /MoSe ₂ host lattice: efficient hydrogen evolution using few-layer alloys of MoS _{2(1â^'x)} Se _{2x} . Nanoscale, 2014, 6, 12856-12863.	2.8	199
318	Lateral epitaxial growth of two-dimensional layered semiconductor heterojunctions. Nature Nanotechnology, 2014, 9, 1024-1030.	15.6	1,056
319	Effect of Percolation on the Capacitance of Supercapacitor Electrodes Prepared from Composites of Manganese Dioxide Nanoplatelets and Carbon Nanotubes. ACS Nano, 2014, 8, 9567-9579.	7.3	89
320	Tuning electronic and optical properties of MoS ₂ monolayer via molecular charge transfer. Journal of Materials Chemistry A, 2014, 2, 16892-16897.	5.2	145
321	A novel strategy to prepare a Pt–SnO ₂ nanocomposite as a highly efficient counter electrode for dye-sensitized solar cells. Journal of Materials Chemistry A, 2014, 2, 17253-17257.	5.2	30
322	Efficient Hydrogen Evolution by Mechanically Strained MoS ₂ Nanosheets. Langmuir, 2014, 30, 9866-9873.	1.6	108
323	One-Dimensional Molybdenum Thiochlorides and Their Use in High Surface Area MoS _{<i>x</i>} Chalcogels. Chemistry of Materials, 2014, 26, 5151-5160.	3.2	31
324	Molybdenum Disulfide Quantum Dots as a Photoluminescence Sensing Platform for 2,4,6-Trinitrophenol Detection. Analytical Chemistry, 2014, 86, 7463-7470.	3.2	365
325	Preparation and characterization of few-layer MoS ₂ nanosheets and their good nonlinear optical responses in the PMMA matrix. Nanoscale, 2014, 6, 9713-9719.	2.8	98
326	Surface effects on electronic transport of 2D chalcogenide thin films and nanostructures. Nano Convergence, 2014, 1, 18.	6.3	24
327	A direct comparison of CVD-grown and exfoliated MoS ₂ using optical spectroscopy. Semiconductor Science and Technology, 2014, 29, 064008.	1.0	96

#	Article	IF	Citations
328	Nanostructured metal sulfides for energy storage. Nanoscale, 2014, 6, 9889-9924.	2.8	888
329	Solution processing of graphene, topological insulators and other 2d crystals for ultrafast photonics. Optical Materials Express, 2014, 4, 63.	1.6	187
330	The energy-band alignment at molybdenum disulphide and high- <i>k</i> dielectrics interfaces. Applied Physics Letters, 2014, 104, .	1.5	53
331	Postgrowth Tuning of the Bandgap of Single-Layer Molybdenum Disulfide Films by Sulfur/Selenium Exchange. ACS Nano, 2014, 8, 4672-4677.	7.3	101
332	Flexible and stretchable thin-film transistors based on molybdenum disulphide. Physical Chemistry Chemical Physics, 2014, 16, 14996.	1.3	56
333	Molybdenum Disulfide Nanoflake–Zinc Oxide Nanowire Hybrid Photoinverter. ACS Nano, 2014, 8, 5174-5181.	7.3	21
334	Ultrasound exfoliation of inorganic analogues of graphene. Nanoscale Research Letters, 2014, 9, 167.	3.1	58
335	Theory of excitonic second-harmonic generation in monolayer <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi mathvariant="normal">MoS<mml:mn>2</mml:mn></mml:mi </mml:msub>. Physical Review B. 2014. 89</mml:math 	1.1	121
336	Antibacterial activity of two-dimensional MoS ₂ sheets. Nanoscale, 2014, 6, 10126-10133.	2.8	310
337	Photoelectron Spectroscopic Imaging and Device Applications of Large-Area Patternable Single-Layer MoS ₂ Synthesized by Chemical Vapor Deposition. ACS Nano, 2014, 8, 4961-4968.	7.3	117
338	Photo-catalytic degradation of methyl orange under visible light by MoS2 nanosheets produced by H2SiO3 exfoliation. Journal of Molecular Catalysis A, 2014, 395, 322-328.	4.8	32
339	High Performance Field-Effect Transistor Based on Multilayer Tungsten Disulfide. ACS Nano, 2014, 8, 10396-10402.	7.3	142
340	Preparation of MoS ₂ –MoO ₃ Hybrid Nanomaterials for Lightâ€Emitting Diodes. Angewandte Chemie - International Edition, 2014, 53, 12560-12565.	7.2	133
341	Molybdenum disulfide/pyrolytic carbon hybrid electrodes for scalable hydrogen evolution. Nanoscale, 2014, 6, 8185.	2.8	48
342	Continuous ultra-thin MoS2 films grown by low-temperature physical vapor deposition. Applied Physics Letters, 2014, 104, .	1.5	178
343	CVD-grown monolayered MoS ₂ as an effective photosensor operating at low-voltage. 2D Materials, 2014, 1, 011004.	2.0	195
344	Photoinduced Separation of Strongly Interacting 2-D Layered TiS ₂ Nanodiscs in Solution. Journal of Physical Chemistry C, 2014, 118, 12568-12573.	1.5	14
345	Electronic and vibrational properties of defective transition metal dichalcogenide Haeckelites: new 2D semi-metallic systems. 2D Materials, 2014, 1, 011003.	2.0	35

#	Article	IF	CITATIONS
346	Hydrothermal exfoliated molybdenum disulfide nanosheets as anode material for lithium ion batteries. Journal of Energy Chemistry, 2014, 23, 207-212.	7.1	36
347	Heterostructural bilayers of graphene and molybdenum disulfide: Configuration types, band opening and enhanced light response. Superlattices and Microstructures, 2014, 68, 56-65.	1.4	7
348	Influence of Excited Carriers on the Optical and Electronic Properties of MoS ₂ . Nano Letters, 2014, 14, 3743-3748.	4.5	213
349	Preparation and Applications of Mechanically Exfoliated Single-Layer and Multilayer MoS ₂ and WSe ₂ Nanosheets. Accounts of Chemical Research, 2014, 47, 1067-1075.	7.6	1,374
350	MoS ₂ Quantum Dot-Interspersed Exfoliated MoS ₂ Nanosheets. ACS Nano, 2014, 8, 5297-5303.	7.3	630
351	Large-Area Atomically Thin MoS ₂ Nanosheets Prepared Using Electrochemical Exfoliation. ACS Nano, 2014, 8, 6902-6910.	7.3	400
352	Improved Photoelectrical Properties of MoS ₂ Films after Laser Micromachining. ACS Nano, 2014, 8, 6334-6343.	7.3	112
353	Probing substrate-dependent long-range surface structure of single-layer and multilayer <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>Mo</mml:mi><mml:msub><mml:mi mathvariant="normal">S<mml:mn>2</mml:mn></mml:mi </mml:msub>by low-energy electron microscopy and microprobe diffraction. Physical Review B, 2014, 89</mml:math 	1.1	16
354	High-Throughput Synthesis of Single-Layer MoS ₂ Nanosheets as a Near-Infrared Photothermal-Triggered Drug Delivery for Effective Cancer Therapy. ACS Nano, 2014, 8, 6922-6933.	7.3	813
355	Graphene-like layered metal dichalcogenide/graphene composites: synthesis and applications in energy storage and conversion. Materials Today, 2014, 17, 184-193.	8.3	143
356	MoS ₂ nanosheet channel and guanine DNA-base charge injection layer for high performance memory transistors. Journal of Materials Chemistry C, 2014, 2, 5411-5416.	2.7	22
357	Low-frequency 1/ <i>f</i> noise in MoS2 transistors: Relative contributions of the channel and contacts. Applied Physics Letters, 2014, 104, .	1.5	104
358	Solutionâ€Processed 2D Niobium Diselenide Nanosheets as Efficient Holeâ€Transport Layers in Organic Solar Cells. ChemSusChem, 2014, 7, 416-420.	3.6	37
359	Analysis of electron beam damage of exfoliated MoS2 sheets and quantitative HAADF-STEM imaging. Ultramicroscopy, 2014, 146, 33-38.	0.8	63
360	Synthesis of bilayer MoS2 nanosheets by a facile hydrothermal method and their methyl orange adsorption capacity. Materials Research Bulletin, 2014, 55, 221-228.	2.7	85
361	TEOS-assisted synthesis of porous MoS2 with ultra-small exfoliated sheets and applications in dye-sensitized solar cells. Applied Surface Science, 2014, 313, 498-503.	3.1	41
362	Nanostructure sensitization of transition metal oxides for visible-light photocatalysis. Beilstein Journal of Nanotechnology, 2014, 5, 696-710.	1.5	92
363	Phase-engineered transition-metal dichalcogenides for energy and electronics. MRS Bulletin, 2015, 40, 585-591.	1.7	71

#	Article	IF	CITATIONS
364	Synthesis and structure of two-dimensional transition-metal dichalcogenides. MRS Bulletin, 2015, 40, 566-576.	1.7	43
365	Chemistry of Boron Nitride Nanosheets. , 2015, , 386-427.		2
366	Eco-friendly synthesis of metal dichalcogenides nanosheets and their environmental remediation potential driven by visible light. Scientific Reports, 2015, 5, 15718.	1.6	100
367	Properties of two-dimensional graphene-like materials. Nanomaterials and Energy, 2015, 4, 18-29.	0.1	5
368	Hole spin relaxation in bilayer <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>WSe</mml:mi><mml:mn>2Physical Review B, 2015, 92, .</mml:mn></mml:msub></mml:math 	m t.1 <td>nl:msub></td>	nl: m sub>
369	Hydrogenation-induced atomic stripes on the <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mn>2</mml:mn>2Hmathvariant="normal">MoS<mml:mn>2</mml:mn>surface. Physical Review B. 2015, 92</mml:mrow></mml:math 	i> 1.1	nrow> <mml:r< td=""></mml:r<>
370	Electrical Tuning of Exciton Binding Energies in Monolayer <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi>WS</mml:mi></mml:mrow><mml:mrow><mm Physical Review Letters, 2015, 115, 126802.</mm </mml:mrow></mml:msub></mml:mrow></mml:math 	ıl:mn>2 </td <td>mmi:mn></td>	mmi:mn>
371	Observation of excitonic resonances in the second harmonic spectrum of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mi> MoS </mml:mi> <mml:mn> 2 Physical Review B, 2015, 92, .</mml:mn></mml:msub></mml:math 	m a. a <td>າl:ໝ8ub><!--ຫຼາ</td--></td>	າ l:ໝ8 ub> ຫຼາ</td
372	Layer- and strain-dependent optoelectronic properties of hexagonal AlN. Physical Review B, 2015, 92, .	1.1	53
373	Exfoliation of large-area transition metal chalcogenide single layers. Scientific Reports, 2015, 5, 14714.	1.6	232
374	High-efficiency exfoliation of layered materials into 2D nanosheets in switchable CO2/Surfactant/H2O system. Scientific Reports, 2015, 5, 16764.	1.6	55
375	Defect-Mediated Lithium Adsorption and Diffusion on Monolayer Molybdenum Disulfide. Scientific Reports, 2015, 5, 18712.	1.6	83
376	Ultrathin MoS2 Nanosheets with Superior Extreme Pressure Property as Boundary Lubricants. Scientific Reports, 2015, 5, 12869.	1.6	140
377	Collective electronic behaviors of laterally heterostructured armchair MoS2-NbS2 nanoribbons. Journal of Applied Physics, 2015, 118, .	1.1	11
378	Versatile MoS2 Nanosheets in ITO-Free and Semi-transparent Polymer Power-generating Glass. Scientific Reports, 2015, 5, 12161.	1.6	19
379	Temperature dependent piezoreflectance study of Mo1â^'xWxSe2 layered crystals. Journal of Applied Physics, 2015, 118, .	1.1	6
380	Structural, mechanical and electronic properties of in-plane 1T/2H phase interface of MoS2 heterostructures. AIP Advances, 2015, 5, .	0.6	37
381	Multifunctional Architectures Constructing of PANI Nanoneedle Arrays on MoS ₂ Thin Nanosheets for Highâ€Energy Supercapacitors. Small, 2015, 11, 4123-4129.	5.2	164

#	Article	IF	CITATIONS
382	Nanomanufacturing of 2D Transition Metal Dichalcogenide Materials Using Self-Assembled DNA Nanotubes. Small, 2015, 11, 5520-5527.	5.2	29
383	Metallic 1Tâ€WS ₂ for Selective Impedimetric Vapor Sensing. Advanced Functional Materials, 2015, 25, 5611-5616.	7.8	122
384	Sizeâ€Dependent Optical Absorption of Layered MoS ₂ and DNA Oligonucleotides Induced Dispersion Behavior for Labelâ€Free Detection of Singleâ€Nucleotide Polymorphism. Advanced Functional Materials, 2015, 25, 3541-3550.	7.8	123
385	Peculiar Role of the Metallic States on the Nanoâ€ <scp>M</scp> o <scp>S</scp> ₂ Ceramic Particle Surface in Antimicrobial and Antifungal Activity. International Journal of Applied Ceramic Technology, 2015, 12, 885-890.	1.1	18
386	Electronic, Structural, and Electrochemical Modulation of Electrostatic Self-Assembled 1T-MoS ₂ Nanosheets via Topotactic Structural Conversion. E-Journal of Surface Science and Nanotechnology, 2015, 13, 1-7.	0.1	0
387	A Review of Phosphideâ€Based Materials for Electrocatalytic Hydrogen Evolution. Advanced Energy Materials, 2015, 5, 1500985.	10.2	707
388	Differences in the Toxicological Potential of 2D versus Aggregated Molybdenum Disulfide in the Lung. Small, 2015, 11, 5079-5087.	5.2	105
389	Phase stability of transition metal dichalcogenide by competing ligand field stabilization and charge density wave. 2D Materials, 2015, 2, 035019.	2.0	29
390	Gram-Scale Aqueous Synthesis of Stable Few-Layered 1T-MoS ₂ : Applications for Visible-Light-Driven Photocatalytic Hydrogen Evolution. Small, 2015, 11, 5556-5564.	5.2	508
391	Vertically Aligned WS ₂ Nanosheets for Water Splitting. Advanced Functional Materials, 2015, 25, 6199-6204.	7.8	108
392	Dryingâ€Mediated Selfâ€Assembled Growth of Transition Metal Dichalcogenide Wires and their Heterostructures. Advanced Materials, 2015, 27, 4142-4149.	11.1	30
393	Highâ€Performance Platinumâ€Free Dyeâ€Sensitized Solar Cells with Molybdenum Disulfide Films as Counter Electrodes. ChemPhysChem, 2015, 16, 3959-3965.	1.0	27
394	Transitional Metal/Chalcogen Dependant Interactions of Hairpin DNA with Transition Metal Dichalcogenides, MX ₂ . ChemPhysChem, 2015, 16, 2304-2306.	1.0	14
395	Tunable Fabrication of Molybdenum Disulfide Quantum Dots for Intracellular MicroRNA Detection and Multiphoton Bioimaging. Small, 2015, 11, 4158-4164.	5.2	178
396	Mechanistic Insight into the Stability of HfO ₂ oated MoS ₂ Nanosheet Anodes for Sodium Ion Batteries. Small, 2015, 11, 4341-4350.	5.2	78
397	Van der Waals p–n Junction Based on an Organic–Inorganic Heterostructure. Advanced Functional Materials, 2015, 25, 5865-5871.	7.8	98
398	Solidâ€state reaction as a mechanism of 1 <scp>T</scp> ↔ 2 <scp>H</scp> transformation in <scp>M</scp> o <scp>S</scp> ₂ monolayers. Journal of Computational Chemistry, 2015, 36, 2131-2134.	1.5	12
399	Toxicity of exfoliated-MoS ₂ and annealed exfoliated-MoS ₂ towards planktonic cells, biofilms, and mammalian cells in the presence of electron donor. Environmental Science: Nano, 2015, 2, 370-379.	2.2	70

#	Article	IF	CITATIONS
400	Scalable large nanosheets of transition metal disulphides through exfoliation of amine intercalated MS ₂ [M = Mo, W] in organic solvents. RSC Advances, 2015, 5, 51176-51182.	1.7	28
401	Optical Absorption of Armchair MoS ₂ Nanoribbons: Enhanced Correlation Effects in the Reduced Dimension. Journal of Physical Chemistry C, 2015, 119, 13901-13906.	1.5	20
402	Enhancing sodium-ion battery performance with interlayer-expanded MoS2–PEO nanocomposites. Nano Energy, 2015, 15, 453-461.	8.2	269
403	Charge Mediated Semiconducting-to-Metallic Phase Transition in Molybdenum Disulfide Monolayer and Hydrogen Evolution Reaction in New 1T′ Phase. Journal of Physical Chemistry C, 2015, 119, 13124-13128.	1.5	295
404	Room-temperature ferromagnetism in Co doped MoS ₂ sheets. Physical Chemistry Chemical Physics, 2015, 17, 15822-15828.	1.3	73
405	Electronic and magnetic properties of Mn-doped monolayer WS2. Solid State Communications, 2015, 215-216, 1-4.	0.9	10
406	Effect of WO3 precursor and sulfurization process on WS2 crystals growth by atmospheric pressure CVD. Materials Letters, 2015, 156, 156-160.	1.3	41
407	MoS2 Surface Structure Tailoring via Carbonaceous Promoter. Scientific Reports, 2015, 5, 10378.	1.6	28
408	Simultaneous self-exfoliation and autonomous motion of MoS ₂ particles in water. Chemical Communications, 2015, 51, 9899-9902.	2.2	13
409	Electrocatalytic Hydrogen Evolution Reaction on Edges of a Few Layer Molybdenum Disulfide Nanodots. ACS Applied Materials & Interfaces, 2015, 7, 14113-14122.	4.0	295
410	Two step growth phenomena of molybdenum disulfide–tungsten disulfide heterostructures. Chemical Communications, 2015, 51, 11213-11216.	2.2	21
411	Energy landscape and band-structure tuning in realistic <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>MoS</mml:mi><mml Physical Review B, 2015, 91, .</mml </mml:msub></mml:mrow></mml:math 	:mubı≱2 <td>າເກ4:7nn></td>	າເກ 4:7 nn>
412	Effects of substrate type and material-substrate bonding on high-temperature behavior of monolayer WS2. Nano Research, 2015, 8, 2686-2697.	5.8	103
413	Colloidal Synthesis of Single-Layer MSe ₂ (M = Mo, W) Nanosheets via Anisotropic Solution-Phase Growth Approach. Journal of the American Chemical Society, 2015, 137, 7266-7269.	6.6	147
414	Fabrication of novel heterostructured few layered WS2-Bi2WO6/Bi3.84W0.16O6.24 composites with enhanced photocatalytic performance. Applied Catalysis B: Environmental, 2015, 179, 220-228.	10.8	78
415	Layered ternary sulfide CuSbS ₂ nanoplates for flexible solid-state supercapacitors. Journal of Materials Chemistry A, 2015, 3, 13263-13274.	5.2	100
416	Few layered MoS ₂ lithography with an AFM tip: description of the technique and nanospectroscopy investigations. Nanoscale, 2015, 7, 11453-11459.	2.8	23
417	Solution processed MoS2-PVA composite for sub-bandgap mode-locking of a wideband tunable ultrafast Er:fiber laser. Nano Research, 2015, 8, 1522-1534.	5.8	256

#	Article	IF	CITATIONS
418	Two-dimensional transition metal dichalcogenide nanomaterials for solar water splitting. Electronic Materials Letters, 2015, 11, 323-335.	1.0	93
419	Enhancement of electrochemical and catalytic properties of MoS2 through ball-milling. Electrochemistry Communications, 2015, 54, 36-40.	2.3	51
420	The Dilute Magnetic Properties of Monolayer MoS ₂ Doped with Transition Metal Fe and VA Atoms. Key Engineering Materials, 2015, 645-646, 15-20.	0.4	1
421	Facile Hydrothermal Synthesis of VS ₂ /Graphene Nanocomposites with Superior High-Rate Capability as Lithium-Ion Battery Cathodes. ACS Applied Materials & Interfaces, 2015, 7, 13044-13052.	4.0	210
422	Emerging Energy Applications of Two-Dimensional Layered Materials. Canadian Chemical Transactions, 0, , 118-157.	0.2	11
423	Fe ₃ O ₄ @MoS ₂ Core–Shell Composites: Preparation, Characterization, and Catalytic Application. Journal of Physical Chemistry C, 2015, 119, 13658-13664.	1.5	137
424	Facile and efficient exfoliation of inorganic layered materials using liquid alkali metal alloys. Chemical Communications, 2015, 51, 10961-10964.	2.2	40
425	Monolayer PtSe ₂ , a New Semiconducting Transition-Metal-Dichalcogenide, Epitaxially Grown by Direct Selenization of Pt. Nano Letters, 2015, 15, 4013-4018.	4.5	560
426	Functionalized graphene and other two-dimensional materials for photovoltaic devices: device design and processing. Chemical Society Reviews, 2015, 44, 5638-5679.	18.7	283
427	Structural defects in pristine and Mn-doped monolayer WS2: A first-principles study. Superlattices and Microstructures, 2015, 85, 339-347.	1.4	32
428	Graphene and graphene-like 2D materials for optical biosensing and bioimaging: a review. 2D Materials, 2015, 2, 032004.	2.0	148
429	Monolayer MoS ₂ quantum dots as catalysts for efficient hydrogen evolution. RSC Advances, 2015, 5, 97696-97701.	1.7	71
430	An in situ polymerization approach for functionalized MoS ₂ /nylon-6 nanocomposites with enhanced mechanical properties and thermal stability. Journal of Materials Chemistry A, 2015, 3, 24112-24120.	5.2	75
431	Plasmonics enhanced average broadband absorption of monolayer MoS2. , 2015, , .		1
432	Patterning two-dimensional free-standing surfaces with mesoporous conducting polymers. Nature Communications, 2015, 6, 8817.	5.8	193
433	Analytical analysis of the contact resistance (R <inf>c</inf>) of metal-MoS <inf>2</inf> interface. , 2015, , .		0
434	Application of Inorganic Layered Materials in Electrochemical Sensors. Chinese Journal of Analytical Chemistry, 2015, 43, 1648-1655.	0.9	10
435	Facile fabrication of wafer-scale MoS ₂ neat films with enhanced third-order nonlinear optical performance. Nanoscale, 2015, 7, 2978-2986.	2.8	58

		EPORT	
#	Article	IF	CITATIONS
436	Controllable Schottky Barriers between MoS2 and Permalloy. Scientific Reports, 2014, 4, 6928.	1.6	68
437	Plasmon Resonances of Highly Doped Two-Dimensional MoS ₂ . Nano Letters, 2015, 15, 883-890.	4.5	167
438	Electronic, magnetic, optical, and edge-reactivity properties of semiconducting and metallic WS 2 nanoribbons. 2D Materials, 2015, 2, 015002.	2.0	24
439	Spatially Resolved Photoexcited Charge-Carrier Dynamics in Phase-Engineered Monolayer MoS ₂ . ACS Nano, 2015, 9, 840-849.	7.3	58
440	Advances in MoS2-Based Field Effect Transistors (FETs). Nano-Micro Letters, 2015, 7, 203-218.	14.4	143
441	Electrochemical studies of spherically clustered MoS2 nanostructures for electrode applications. Journal of Alloys and Compounds, 2015, 634, 104-108.	2.8	77
442	Highly crystalline MoS2 thin films grown by pulsed laser deposition. Applied Physics Letters, 2015, 106,	1.5	117
443	Prediction of structural and metal-to-semiconductor phase transitions in nanoscale <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>MoS</mml:mi><mml:mn>2xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>WS</mml:mi><mml:mn>2and other transition metal dichalcogenide zigzag ribbons. Physical Review B. 2015. 91.</mml:mn></mml:msub></mml:mn></mml:msub></mml:math 	l:mŋ>:mn> <td>nl:msub>l:msub></td>	nl:msub>l:msub>
444	A green route to fabricate MoS ₂ nanosheets in water–ethanol–CO ₂ . Chemical Communications, 2015, 51, 6726-6729.	2.2	70
445	Structural and optical properties of MoS2 layers grown by successive two-step chemical vapor deposition method. Thin Solid Films, 2015, 587, 47-51.	0.8	16
446	Structural and electronic modification of MoS ₂ nanosheets using S-doped carbon for efficient electrocatalysis of the hydrogen evolution reaction. Chemical Communications, 2015, 51, 5052-5055.	2.2	63
447	Role of Chemical Potential in Flake Shape and Edge Properties of Monolayer MoS ₂ . Journal of Physical Chemistry C, 2015, 119, 4294-4301.	1.5	178
448	Bandgap tunability at single-layer molybdenum disulphide grain boundaries. Nature Communications, 2015, 6, 6298.	5.8	358
449	Thin Films of Molybdenum Disulfide Doped with Chromium by Aerosol-Assisted Chemical Vapor Deposition (AACVD). Chemistry of Materials, 2015, 27, 1367-1374.	3.2	78
450	In Situ Thermal Decomposition of Exfoliated Two-Dimensional Black Phosphorus. Journal of Physical Chemistry Letters, 2015, 6, 773-778.	2.1	209
451	Novel Molybdenum Carbide–Tungsten Carbide Composite Nanowires and Their Electrochemical Activation for Efficient and Stable Hydrogen Evolution. Advanced Functional Materials, 2015, 25, 1520-1526.	7.8	325
452	Two-Dimensional MoS ₂ Nanosheet-Coated Bi ₂ S ₃ Discoids: Synthesis, Formation Mechanism, and Photocatalytic Application. Langmuir, 2015, 31, 4314-4322.	1.6	178
453	Large-area synthesis of monolayer WSe ₂ on a SiO ₂ /Si substrate and its device applications. Nanoscale, 2015, 7, 4193-4198.	2.8	128

#	Article	IF	CITATIONS
454	Two solvent grinding sonication method for the synthesis of two-dimensional tungsten disulphide flakes. Chemical Communications, 2015, 51, 3770-3773.	2.2	58
455	Effect of defects on the electronic properties of WS2armchair nanoribbon. Journal of Semiconductors, 2015, 36, 013003.	2.0	3
456	Plasmonic hot electron enhanced MoS ₂ photocatalysis in hydrogen evolution. Nanoscale, 2015, 7, 4482-4488.	2.8	169
457	How to get between the sheets: a review of recent works on the electrochemical exfoliation of graphene materials from bulk graphite. Nanoscale, 2015, 7, 6944-6956.	2.8	320
458	Functionalization of Liquidâ€Exfoliated Twoâ€Dimensional 2Hâ€MoS ₂ . Angewandte Chemie - International Edition, 2015, 54, 2638-2642.	7.2	219
459	Nonlinear absorption, nonlinear scattering, and optical limiting properties of MoS ₂ –ZnO composite-based organic glasses. Physical Chemistry Chemical Physics, 2015, 17, 6036-6043.	1.3	44
460	In-plane and cross-plane thermal conductivities of molybdenum disulfide. Nanotechnology, 2015, 26, 065703.	1.3	67
461	Vacancy-Induced Ferromagnetism of MoS ₂ Nanosheets. Journal of the American Chemical Society, 2015, 137, 2622-2627.	6.6	659
462	Stabilizing MoS ₂ Nanosheets through SnO ₂ Nanocrystal Decoration for Highâ€Performance Gas Sensing in Air. Small, 2015, 11, 2305-2313.	5.2	333
463	Oneâ€Pot, Facile, and Versatile Synthesis of Monolayer MoS ₂ /WS ₂ Quantum Dots as Bioimaging Probes and Efficient Electrocatalysts for Hydrogen Evolution Reaction. Advanced Functional Materials, 2015, 25, 1127-1136.	7.8	738
464	Microlandscaping of Au Nanoparticles on Few-Layer MoS ₂ Films for Chemical Sensing. Small, 2015, 11, 1792-1800.	5.2	113
465	Synthesis and properties of molybdenum disulphide: from bulk to atomic layers. RSC Advances, 2015, 5, 7495-7514.	1.7	288
466	Enhancement of magnetism by structural phase transition in MoS2. Applied Physics Letters, 2015, 106, .	1.5	102
467	Fewâ€Layer MoS ₂ –Organic Thinâ€Film Hybrid Complementary Inverter Pixel Fabricated on a Glass Substrate. Small, 2015, 11, 2132-2138.	5.2	28
468	Optical, Vibrational, and Structural Properties of MoS ₂ Nanoparticles Obtained by Exfoliation and Fragmentation via Ultrasound Cavitation in Isopropyl Alcohol. Journal of Physical Chemistry C, 2015, 119, 3791-3801.	1.5	97
469	Exfoliated MoS ₂ supported Au–Pd bimetallic nanoparticles with core–shell structures and superior peroxidase-like activities. RSC Advances, 2015, 5, 10352-10357.	1.7	53
470	Functionalization of Liquidâ€Exfoliated Twoâ€Dimensional 2Hâ€MoS ₂ . Angewandte Chemie, 2015, 127, 2676-2680.	1.6	35
471	Controlling the Metal to Semiconductor Transition of MoS ₂ and WS ₂ in Solution. Journal of the American Chemical Society, 2015, 137, 1742-1745.	6.6	155

#	Article	IF	CITATIONS
472	Electrochemical synthesis of luminescent MoS ₂ quantum dots. Chemical Communications, 2015, 51, 6293-6296.	2.2	204
473	Tandem intercalation strategy for single-layer nanosheets as an effective alternative to conventional exfoliation processes. Nature Communications, 2015, 6, 5763.	5.8	137
474	MoS 2 and semiconductors in the flatland. Materials Today, 2015, 18, 20-30.	8.3	179
475	Selective chemical vapor sensing with few-layer MoS2 thin-film transistors: Comparison with graphene devices. Applied Physics Letters, 2015, 106, .	1.5	112
476	Direct Bandgap Transition in Many‣ayer MoS ₂ by Plasmaâ€Induced Layer Decoupling. Advanced Materials, 2015, 27, 1573-1578.	11.1	102
477	Atomic layer deposition of MoS ₂ thin films. Materials Research Express, 2015, 2, 035006.	0.8	67
478	Large-area synthesis of monolayer WS ₂ and its ambient-sensitive photo-detecting performance. Nanoscale, 2015, 7, 5974-5980.	2.8	211
479	Development of quasi-two-dimensional Nb2O5 nanoflakes with thickness-depended electro-chemical properties. Functional Materials Letters, 2015, 08, 1550007.	0.7	5
480	Nanocellulose as green dispersant for two-dimensional energy materials. Nano Energy, 2015, 13, 346-354.	8.2	270
481	Efficient charge separation on 3D architectures of TiO ₂ mesocrystals packed with a chemically exfoliated MoS ₂ shell in synergetic hydrogen evolution. Chemical Communications, 2015, 51, 7187-7190.	2.2	76
482	Measuring the Refractive Index of Highly Crystalline Monolayer MoS2 with High Confidence. Scientific Reports, 2015, 5, 8440.	1.6	146
483	Unveiling Surface Redox Charge Storage of Interacting Two-Dimensional Heteronanosheets in Hierarchical Architectures. Nano Letters, 2015, 15, 2269-2277.	4.5	80
484	Pd coated MoS 2 nanoflowers for highly efficient hydrogen evolution reaction under irradiation. Journal of Power Sources, 2015, 284, 68-76.	4.0	73
485	Drastic Layerâ€Numberâ€Dependent Activity Enhancement in Photocatalytic H ₂ Evolution over <i>n</i> MoS ₂ /CdS (<i>n</i> ≥ 1) Under Visible Light. Advanced Energy Materials, 2015, 5, 1402279.	10.2	239
486	Atomic Scale Microstructure and Properties of Se-Deficient Two-Dimensional MoSe ₂ . ACS Nano, 2015, 9, 3274-3283.	7.3	213
487	Phonon and Raman scattering of two-dimensional transition metal dichalcogenides from monolayer, multilayer to bulk material. Chemical Society Reviews, 2015, 44, 2757-2785.	18.7	1,034
488	Tuning the photoluminescence and ultrasensitive trace detection properties of few-layer MoS2 by decoration with gold nanoparticles. RSC Advances, 2015, 5, 24188-24193.	1.7	52
489	A Facile and Universal Topâ€Down Method for Preparation of Monodisperse Transitionâ€Metal Dichalcogenide Nanodots. Angewandte Chemie - International Edition, 2015, 54, 5425-5428.	7.2	185

#	Article	IF	CITATIONS
490	Electronic transport properties of transition metal dichalcogenide field-effect devices: surface and interface effects. Chemical Society Reviews, 2015, 44, 7715-7736.	18.7	353
491	Reductive hybridization route with exfoliated graphene oxide and MoS2 nanosheets to efficient electrode materials. Electrochimica Acta, 2015, 176, 188-196.	2.6	15
492	Band alignment of atomic layer deposited high-k Al2O3/multilayer MoS2 interface determined by X-ray photoelectron spectroscopy. Journal of Alloys and Compounds, 2015, 650, 502-507.	2.8	21
493	[001] preferentially-oriented 2D tungsten disulfide nanosheets as anode materials for superior lithium storage. Journal of Materials Chemistry A, 2015, 3, 17811-17819.	5.2	61
494	Water-exfoliated MoS2 catalyst with enhanced photoelectrochemical activities. Catalysis Communications, 2015, 70, 53-57.	1.6	14
495	MoS2-hybridized TiO2 nanosheets with exposed {001} facets to enhance the visible-light photocatalytic activity. Materials Letters, 2015, 160, 286-290.	1.3	21
496	Effective p-type N-doped WS2 monolayer. Journal of Alloys and Compounds, 2015, 649, 357-361.	2.8	33
497	The role of MoS ₂ as an interfacial layer in graphene/silicon solar cells. Physical Chemistry Chemical Physics, 2015, 17, 8182-8186.	1.3	59
498	Au and Ti induced charge redistributions on monolayer WS ₂ . Chinese Physics B, 2015, 24, 077301.	0.7	1
499	Stabilization of 1T-MoS2 Sheets by Imidazolium Molecules in Self-Assembling Hetero-layered Nanocrystals. Langmuir, 2015, 31, 8953-8960.	1.6	34
500	On Valence-Band Splitting in Layered MoS ₂ . ACS Nano, 2015, 9, 8514-8519.	7.3	65
501	In Situ and Simultaneous Synthesis of a Novel Graphene-Based Catalyst for Deep Hydrodesulfurization of Naphtha. Catalysis Letters, 2015, 145, 1660-1672.	1.4	21
502	Manipulating the Thermal Conductivity of Monolayer MoS ₂ via Lattice Defect and Strain Engineering. Journal of Physical Chemistry C, 2015, 119, 16358-16365.	1.5	161
503	Exfoliated semiconducting pure 2H-MoS ₂ and 2H-WS ₂ assisted by chlorosulfonic acid. Chemical Communications, 2015, 51, 12950-12953.	2.2	127
504	Perpendicularly oriented few-layer MoSe ₂ on SnO ₂ nanotubes for efficient hydrogen evolution reaction. Journal of Materials Chemistry A, 2015, 3, 16263-16271.	5.2	105
505	Giant enhancement of light emission from nanoscale Bi2Se3. Applied Physics Letters, 2015, 106, 243107.	1.5	18
506	One-pot solution-phase preparation of a MoS2/graphene oxide hybrid. Carbon, 2015, 94, 568-576.	5.4	40
507	3D arrays of molybdenum sulphide nanosheets on Mo meshes: Efficient electrocatalysts for hydrogen evolution reaction. Electrochimica Acta, 2015, 174, 653-659.	2.6	33

#	Article	IF	CITATIONS
508	Spin-Valve Effect in NiFe/MoS ₂ /NiFe Junctions. Nano Letters, 2015, 15, 5261-5267.	4.5	135
509	Edge effects in second-harmonic generation in nanoscale layers of transition-metal dichalcogenides. Semiconductors, 2015, 49, 791-796.	0.2	8
510	MoS2 nanosheet-based fluorescent biosensor for protein detection via terminal protection of small-molecule-linked DNA and exonuclease III-aided DNA recycling amplification. Biosensors and Bioelectronics, 2015, 74, 227-232.	5.3	67
511	Controlled engineering of WS2 nanosheets–CdS nanoparticle heterojunction with enhanced photoelectrochemical activity. Solar Energy Materials and Solar Cells, 2015, 141, 260-269.	3.0	55
512	Defect- and S-rich ultrathin MoS ₂ nanosheet embedded N-doped carbon nanofibers for efficient hydrogen evolution. Journal of Materials Chemistry A, 2015, 3, 15927-15934.	5.2	124
513	Quantum spin Hall effect in two-dimensional transition-metal dichalcogenide haeckelites. Physical Review B, 2015, 91, .	1.1	80
514	The remarkable activity and stability of a dye-sensitized single molecular layer MoS ₂ ensemble for photocatalytic hydrogen production. Chemical Communications, 2015, 51, 13496-13499.	2.2	43
515	Probing the biocompatibility of MoS ₂ nanosheets by cytotoxicity assay and electrical impedance spectroscopy. Nanotechnology, 2015, 26, 315102.	1.3	92
516	Characterization of MoS ₂ –Graphene Composites for High-Performance Coin Cell Supercapacitors. ACS Applied Materials & Interfaces, 2015, 7, 17388-17398.	4.0	388
517	The Integration of Sub-10 nm Gate Oxide on MoS2 with Ultra Low Leakage and Enhanced Mobility. Scientific Reports, 2015, 5, 11921.	1.6	69
518	Strain engineering in semiconducting two-dimensional crystals. Journal of Physics Condensed Matter, 2015, 27, 313201.	0.7	381
519	Controllable synthesis of molybdenum tungsten disulfide alloy for vertically composition-controlled multilayer. Nature Communications, 2015, 6, 7817.	5.8	188
520	High accuracy determination of the thermal properties of supported 2D materials. Scientific Reports, 2015, 5, 12422.	1.6	72
521	Magnetic properties of two nearest Cu-doped monolayer WS 2 : A first-principles study. Solid State Communications, 2015, 217, 66-69.	0.9	29
522	The Role of Valence Electron Concentration in Tuning the Structure, Stability, and Electronic Properties of Mo ₆ S _{9–<i>x</i>} I _{<i>x</i>} Nanowires. Journal of Physical Chemistry C, 2015, 119, 13979-13985.	1.5	8
523	Layer dependence and gas molecule absorption property in MoS2 Schottky diode with asymmetric metal contacts. Scientific Reports, 2015, 5, 10440.	1.6	49
524	Facile synthesis of a Ag/MoS ₂ nanocomposite photocatalyst for enhanced visible-light driven hydrogen gas evolution. Catalysis Science and Technology, 2015, 5, 4133-4143.	2.1	95
525	Facile preparation of 3D MoS ₂ /MoSe ₂ nanosheet–graphene networks as efficient electrocatalysts for the hydrogen evolution reaction. Journal of Materials Chemistry A, 2015, 3, 16337-16347.	5.2	146

		CITATION REPORT		
#	Article		IF	Citations
526	Synthesis, properties and applications of 2D non-graphene materials. Nanotechnology,	2015, 26, 292001.	1.3	101
527	Direct and Scalable Deposition of Atomically Thin Low-Noise MoS ₂ Memb Apertures. ACS Nano, 2015, 9, 7352-7359.	ranes on	7.3	79
528	One pot hydrothermal synthesis of graphene like MoS ₂ nanosheets for ap performance lithium ion batteries. RSC Advances, 2015, 5, 57666-57670.	plication in high	1.7	35
529	Optimizing Hybridization of 1T and 2H Phases in MoS ₂ Monolayers to Imp of Supercapacitors. Materials Research Letters, 2015, 3, 177-183.	rove Capacitances	4.1	149
530	Two-dimensional MoS2: Properties, preparation, and applications. Journal of Materiomi	cs, 2015, 1, 33-44.	2.8	597
531	Photocurrent generation with two-dimensional van der Waals semiconductors. Chemic Reviews, 2015, 44, 3691-3718.	al Society	18.7	802
533	2-Dimensional MoS2 nanosheets as transparent and highly electrocatalytic counter ele dye-sensitized solar cells: Effect of thermal treatments. Journal of Industrial and Engine Chemistry, 2015, 29, 71-77.	ctrode in ering	2.9	35
534	An optical spectroscopic study on two-dimensional group-VI transition metal dichalcog Chemical Society Reviews, 2015, 44, 2629-2642.	enides.	18.7	159
535	Highly anisotropic and robust excitons in monolayer black phosphorus. Nature Nanoted 10, 517-521.	chnology, 2015,	15.6	1,204
536	Pressure confinement effect in MoS ₂ monolayers. Nanoscale, 2015, 7, 907	75-9082.	2.8	56
537	Surface oxidation energetics and kinetics on MoS2 monolayer. Journal of Applied Physi	cs, 2015, 117, .	1.1	202
538	MoS ₂ Nanosheet–Pd Nanoparticle Composite for Highly Sensitive Roor Detection of Hydrogen. Advanced Science, 2015, 2, 1500004.	n Temperature	5.6	123
539	Free-standing molybdenum disulfide/graphene composite paper as a binder- and carbor lithium-ion batteries. Journal of Power Sources, 2015, 288, 76-81.	n-free anode for	4.0	59
540	Two-dimensional gold nanostructures with high activity for selective oxidation of carbo bonds. Nature Communications, 2015, 6, 6957.	n–hydrogen	5.8	133
541	Bandgap Widening of Phase Quilted, 2D MoS ₂ by Oxidative Intercalation. Materials, 2015, 27, 3152-3158.	Advanced	11.1	76
542	Metal-atom-induced charge redistributions and their effects on the electrical contacts t WS ₂ monolayers. Physica Status Solidi (B): Basic Research, 2015, 252, 17		0.7	2
543	Catalytic and Charge Transfer Properties of Transition Metal Dichalcogenides Arising fro Electrochemical Pretreatment. ACS Nano, 2015, 9, 5164-5179.	om	7.3	184
544	Giant magnetoresistance in zigzag MoS ₂ nanoribbons. Physical Chemistry Physics, 2015, 17, 10074-10079.	/ Chemical	1.3	10

		CITATION REPORT		
#	Article		IF	CITATIONS
545	Phase engineering of transition metal dichalcogenides. Chemical Society Reviews, 2015	5, 44, 2702-2712.	18.7	915
546	One-step hydrothermal synthesis of monolayer MoS ₂ quantum dots for hi electrocatalytic hydrogen evolution. Journal of Materials Chemistry A, 2015, 3, 10693-1	ghly efficient .0697.	5.2	320
547	Recent Advancement on the Optical Properties of Two-Dimensional Molybdenum Disul Films. Photonics, 2015, 2, 288-307.	fide (MoS2) Thin	0.9	174
548	Basal-Plane Functionalization of Chemically Exfoliated Molybdenum Disulfide by Diazor Nano, 2015, 9, 6018-6030.	iium Salts. ACS	7.3	293
549	Suppressing band gap of MoS2 by the incorporation of four- and eight-membered rings Nanoparticle Research, 2015, 17, 1.	. Journal of	0.8	4
550	Electronic and magnetic properties of MoS2 nanoribbons with sulfur line vacancy defec Surface Science, 2015, 346, 470-476.	ts. Applied	3.1	25
551	Controlled van der Waals Epitaxy of Monolayer MoS ₂ Triangular Domains ACS Applied Materials & Interfaces, 2015, 7, 5265-5273.	on Graphene.	4.0	120
552	Solvent Exfoliation of Electronic-Grade, Two-Dimensional Black Phosphorus. ACS Nano, 3596-3604.	2015, 9,	7.3	655
553	Growth and Optical Properties of High-Quality Monolayer WS ₂ on Graphit 2015, 9, 4056-4063.	.e. ACS Nano,	7.3	162
554	Acoustic–Excitonic Coupling for Dynamic Photoluminescence Manipulation of Quasi MoS ₂ Nanoflakes. Advanced Optical Materials, 2015, 3, 888-894.	<i>â€</i> 2D	3.6	39
555	Metallic 1T phase MoS2 nanosheets as supercapacitor electrode materials. Nature Nan 2015, 10, 313-318.	otechnology,	15.6	2,278
556	Few-layer MoS_2 saturable absorbers for short-pulse laser technology: current status a perspectives [Invited]. Photonics Research, 2015, 3, A30.	nd future	3.4	185
557	Bandgap opening in few-layered monoclinic MoTe2. Nature Physics, 2015, 11, 482-486		6.5	800
558	Stabilization and Band-Gap Tuning of the 1T-MoS ₂ Monolayer by Covalent Functionalization. Chemistry of Materials, 2015, 27, 3743-3748.		3.2	297
559	Two-dimensional semiconductors for ultrafast photonic applications. Proceedings of SF	યE, 2015, , .	0.8	2
560	Large Frequency Change with Thickness in Interlayer Breathing Mode—Significant Interlater Interactions in Few Layer Black Phosphorus. Nano Letters, 2015, 15, 3931-3938.	erlayer	4.5	100
561	Protein Induces Layer-by-Layer Exfoliation of Transition Metal Dichalcogenides. Journal o American Chemical Society, 2015, 137, 6152-6155.	of the	6.6	365
562	Nanosheets of MoS ₂ â€oleylamine as hybrid filler for selfâ€lubricating poly Thermal, tribological, and mechanical properties. Polymer Composites, 2015, 36, 1124-	mer composites: 1134.	2.3	45

#	Article	IF	CITATIONS
563	Preparation of 2D MoS ₂ /Graphene Heterostructure through a Monolayer Intercalation Method and its Application as an Optical Modulator in Pulsed Laser Generation. Advanced Optical Materials, 2015, 3, 937-942.	3.6	62
564	Observation of Excitonic Rydberg States in Monolayer MoS ₂ and WS ₂ by Photoluminescence Excitation Spectroscopy. Nano Letters, 2015, 15, 2992-2997.	4.5	327
565	2H → 1T phase transition and hydrogen evolution activity of MoS ₂ , MoSe ₂ , WS ₂ and WSe ₂ strongly depends on the MX ₂ composition. Chemical Communications, 2015, 51, 8450-8453.	2.2	565
566	Role of hydrogen in the chemical vapor deposition growth of MoS ₂ atomic layers. Nanoscale, 2015, 7, 8398-8404.	2.8	62
567	MoS ₂ /Si Heterojunction with Vertically Standing Layered Structure for Ultrafast, Highâ€Detectivity, Selfâ€Driven Visible–Near Infrared Photodetectors. Advanced Functional Materials, 2015, 25, 2910-2919.	7.8	554
568	Transition Metal Dichalcogenide Growth via Close Proximity Precursor Supply. Scientific Reports, 2014, 4, 7374.	1.6	72
569	Effect of interfacial coupling on photocatalytic performance of large scale MoS2/TiO2 hetero-thin films. Applied Physics Letters, 2015, 106, 081602.	1.5	47
570	Tuning the Electrical Transport Properties of Multilayered Molybdenum Disulfide Nanosheets by Intercalating Phosphorus. Journal of Physical Chemistry C, 2015, 119, 9560-9567.	1.5	40
571	Electrochemistry of Nanostructured Layered Transition-Metal Dichalcogenides. Chemical Reviews, 2015, 115, 11941-11966.	23.0	719
572	Large-scale two-dimensional MoS_2 photodetectors by magnetron sputtering. Optics Express, 2015, 23, 13580.	1.7	93
573	Versatile preparation of ultrathin MoS_2 nanosheets with reverse saturable absorption response. Optical Materials Express, 2015, 5, 1807.	1.6	46
574	Tuning nonlinear optical absorption properties of WS ₂ nanosheets. Nanoscale, 2015, 7, 17771-17777.	2.8	57
575	Recent advances in energy transfer in bulk and nanoscale luminescent materials: from spectroscopy to applications. Chemical Society Reviews, 2015, 44, 8714-8746.	18.7	166
576	Catalytic Activity in Lithium-Treated Core–Shell MoO _{<i>x</i>} /MoS ₂ Nanowires. Journal of Physical Chemistry C, 2015, 119, 22908-22914.	1.5	30
577	Synthesis and Application of Monolayer Semiconductors (June 2015). IEEE Journal of Quantum Electronics, 2015, 51, 1-10.	1.0	13
578	Synthesis of Large-Area Highly Crystalline Monolayer Molybdenum Disulfide with Tunable Grain Size in a H ₂ Atmosphere. ACS Applied Materials & Interfaces, 2015, 7, 22587-22593.	4.0	47
579	Dynamic self-diffraction in MoS_2 nanoflake solutions. Optics Express, 2015, 23, 5875.	1.7	40
580	Parabolic opening in atomic layer deposited TiO_2 nanobeam operating in visible wavelengths. Optics Express, 2015, 23, 14973.	1.7	5

#	Article	IF	CITATIONS
581	Complex electrical permittivity of the monolayer molybdenum disulfide (MoS_2) in near UV and visible. Optical Materials Express, 2015, 5, 447.	1.6	104
582	In site preparation of Pd(II)–MoS2 complex: A new high-efficiency catalyst for alkenylation of heteroaromatics by direct CH bond activation. Applied Catalysis A: General, 2015, 508, 80-85.	2.2	22
583	Efficient exfoliation of molybdenum disulphide nanosheets by a highâ€pressure homogeniser. Micro and Nano Letters, 2015, 10, 589-591.	0.6	10
584	Two dimensional atomically thin MoS ₂ nanosheets and their sensing applications. Nanoscale, 2015, 7, 19358-19376.	2.8	217
585	Emerging energy applications of two-dimensionalÂlayered transition metal dichalcogenides. Nano Energy, 2015, 18, 293-305.	8.2	236
586	Measurement of Lateral and Interfacial Thermal Conductivity of Single- and Bilayer MoS ₂ and MoSe ₂ Using Refined Optothermal Raman Technique. ACS Applied Materials & Interfaces, 2015, 7, 25923-25929.	4.0	275
587	Enhanced hydrogen evolution catalysis in MoS ₂ nanosheets by incorporation of a metal phase. Journal of Materials Chemistry A, 2015, 3, 24414-24421.	5.2	88
588	Kitchenâ€Inspired Nanochemistry: Dispersion, Exfoliation, and Hybridization of Functional MoS ₂ Nanosheets Using Culinary Hydrocolloids. ChemNanoMat, 2015, 1, 167-177.	1.5	35
589	MoS2–GO nanocomposites synthesized via a hydrothermal hydrogel method for solar light photocatalytic degradation of methylene blue. Applied Surface Science, 2015, 357, 1606-1612.	3.1	112
590	Nanoprobe characterization of MoS ₂ nanosheets fabricated by Li-intercalation. Japanese Journal of Applied Physics, 2015, 54, 08LB07.	0.8	6
591	Hydrothermal synthesis of 2D MoS ₂ nanosheets for electrocatalytic hydrogen evolution reaction. RSC Advances, 2015, 5, 89389-89396.	1.7	110
592	Strain control of the electronic structures, magnetic states, and magnetic anisotropy of Fe doped single-layer MoS2. Computational Materials Science, 2015, 110, 102-108.	1.4	51
593	Two-Dimensional Transition Metal Dichalcogenide Monolayers as Promising Sodium Ion Battery Anodes. Journal of Physical Chemistry C, 2015, 119, 26374-26380.	1.5	279
594	Recent advances in transition-metal dichalcogenide based nanomaterials for water splitting. Nanoscale, 2015, 7, 19764-19788.	2.8	327
595	Effect of structural defects on electronic and magnetic properties of pristine and Mn-doped MoS2 monolayer. Solid State Communications, 2015, 220, 31-35.	0.9	41
596	Ultrafast Intrinsic Photoresponse and Direct Evidence of Sub-gap States in Liquid Phase Exfoliated MoS2Thin Films. Scientific Reports, 2015, 5, 11272.	1.6	57
597	Photoluminescence of two-dimensional GaTe and GaSe films. 2D Materials, 2015, 2, 035010.	2.0	76
598	Electrical and Optical Characterization of MoS ₂ with Sulfur Vacancy Passivation by Treatment with Alkanethiol Molecules. ACS Nano, 2015, 9, 8044-8053.	7.3	185

#	Article	IF	CITATIONS
599	Controlled MoS ₂ layer etching using CF ₄ plasma. Nanotechnology, 2015, 26, 355706.	1.3	51
600	Hydrothermal synthesis and tribological properties of MoSe ₂ nanoflowers. Micro and Nano Letters, 2015, 10, 339-342.	0.6	25
601	Highâ€Power Supercapacitive Properties of Graphene Oxide Hybrid Films with Highly Conductive Molybdenum Disulfide Nanosheets. ChemElectroChem, 2015, 2, 1938-1946.	1.7	28
602	Functional Nanomaterial Devices. , 2015, , 155-193.		Ο
603	Controlled synthesis and optical properties of polycrystalline molybdenum disulfide atomic layers grown by chemical vapor deposition. Journal of Alloys and Compounds, 2015, 653, 369-378.	2.8	20
604	Understanding catalysis in a multiphasic two-dimensional transition metal dichalcogenide. Nature Communications, 2015, 6, 8311.	5.8	260
605	Chemically exfoliated WS2 nanosheets efficiently inhibit amyloid β-peptide aggregation and can be used for photothermal treatment of Alzheimer's disease. Nano Research, 2015, 8, 3216-3227.	5.8	82
606	Liquid exfoliation of solvent-stabilized few-layer black phosphorus for applications beyond electronics. Nature Communications, 2015, 6, 8563.	5.8	921
607	Photocurrent Response in Multiwalled Carbon Nanotube Core–Molybdenum Disulfide Shell Heterostructures. Journal of Physical Chemistry C, 2015, 119, 24588-24596.	1.5	20
608	Ultrathin membranes of single-layered MoS ₂ nanosheets for high-permeance hydrogen separation. Nanoscale, 2015, 7, 17649-17652.	2.8	130
609	Semiconductor–Insulator–Semiconductor Diode Consisting of Monolayer MoS ₂ , h-BN, and GaN Heterostructure. ACS Nano, 2015, 9, 10032-10038.	7.3	88
610	A CNT@MoSe ₂ hybrid catalyst for efficient and stable hydrogen evolution. Nanoscale, 2015, 7, 18595-18602.	2.8	162
611	Influence of Defects on the Charge Density Wave of ([SnSe] _{1+δ}) ₁ (VSe ₂) ₁ Ferecrystals. ACS Nano, 2015, 9, 8440-8448.	7.3	25
612	Two-dimensional nanosheets of MoS ₂ : a promising material with high dielectric properties and microwave absorption performance. Nanoscale, 2015, 7, 15734-15740.	2.8	335
613	Efficient Excitonic Photoluminescence in Direct and Indirect Band Gap Monolayer MoS ₂ . Nano Letters, 2015, 15, 6841-6847.	4.5	171
614	Fast and Efficient Preparation of Exfoliated 2H MoS ₂ Nanosheets by Sonication-Assisted Lithium Intercalation and Infrared Laser-Induced 1T to 2H Phase Reversion. Nano Letters, 2015, 15, 5956-5960.	4.5	603
615	Colloidal synthesis of MoS ₂ quantum dots: size-dependent tunable photoluminescence and bioimaging. New Journal of Chemistry, 2015, 39, 8492-8497.	1.4	170
616	Exploring the potential of exfoliated ternary ultrathin Ti ₄ AlN ₃ nanosheets for fabricating hybrid patterned polymer brushes. RSC Advances, 2015, 5, 70339-70344.	1.7	30

#	Article	IF	CITATIONS
617	Impurities and Electronic Property Variations of Natural MoS ₂ Crystal Surfaces. ACS Nano, 2015, 9, 9124-9133.	7.3	240
618	Active Light Control of the MoS ₂ Monolayer Exciton Binding Energy. ACS Nano, 2015, 9, 10158-10164.	7.3	190
619	Functional inks of graphene, metal dichalcogenides and black phosphorus for photonics and (opto)electronics. Proceedings of SPIE, 2015, , .	0.8	27
620	Two-step synthesis of luminescent MoS ₂ –ZnS hybrid quantum dots. Nanoscale, 2015, 7, 16763-16772.	2.8	54
621	Two-dimensional transition metal dichalcogenides: Clusters, ribbons, sheets and more. Nano Today, 2015, 10, 559-592.	6.2	107
622	Li Intercalation in MoS ₂ : In Situ Observation of Its Dynamics and Tuning Optical and Electrical Properties. Nano Letters, 2015, 15, 6777-6784.	4.5	312
623	Substrate interactions with suspended and supported monolayer <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>Mo</mml:mi><mml:msub><mml:m mathvariant="normal">S<mml:mn>2</mml:mn></mml:m></mml:msub></mml:mrow></mml:math> : Angle-resolved photoemission spectroscopy. Physical Review B, 2015, 91, .	i 1.1	56
624	Flexible transition metal dichalcogenide nanosheets for band-selective photodetection. Nature Communications, 2015, 6, 8063.	5.8	192
625	Metal–insulator crossover in multilayered MoS ₂ . Nanoscale, 2015, 7, 15127-15133.	2.8	17
626	The electronic and optical properties of MoS _{2(1â^xx)} Se _{2x} and MoS _{2(1â^xx)} Te _{2x} monolayers. Physical Chemistry Chemical Physics, 2015, 17, 26166-26174.	1.3	60
627	Tuning the Schottky barrier height of the Pd–MoS ₂ contact by different strains. Physical Chemistry Chemical Physics, 2015, 17, 27088-27093.	1.3	40
628	Synthesis, properties and potential applications of two-dimensional transition metal dichalcogenides. Nano Convergence, 2015, 2, .	6.3	143
629	Organic Electronics Materials and Devices. , 2015, , .		35
630	A Facile Way to Fabricate High-Performance Solution-Processed n-MoS2/p-MoS2 Bilayer Photodetectors. Nanoscale Research Letters, 2015, 10, 454.	3.1	17
631	Luminescent monolayer MoS2 quantum dots produced by multi-exfoliation based on lithium intercalation. Applied Surface Science, 2015, 359, 130-136.	3.1	120
632	Spectroscopic Signatures of AA′ and AB Stacking of Chemical Vapor Deposited Bilayer MoS ₂ . ACS Nano, 2015, 9, 12246-12254.	7.3	117
633	Formation of mono/bi-layer iron phosphate and nucleation of LiFePO 4 nano-crystals from amorphous 2D sheets in charge/discharge process for cathode in high-performance Li-ion batteries. Nano Energy, 2015, 18, 187-195.	8.2	30
634	Growth of Polypyrrole Ultrathin Films on MoS ₂ Monolayers as Highâ€Performance Supercapacitor Electrodes. Advanced Materials, 2015, 27, 1117-1123.	11.1	691

#	Article	IF	CITATIONS
635	Novel PtO decorated MWCNTs as a highly efficient counter electrode for dye-sensitized solar cells. RSC Advances, 2015, 5, 8307-8310.	1.7	5
636	Growth of wafer-scale MoS ₂ monolayer by magnetron sputtering. Nanoscale, 2015, 7, 2497-2503.	2.8	225
637	Electronic Structure and Optical Signatures of Semiconducting Transition Metal Dichalcogenide Nanosheets. Accounts of Chemical Research, 2015, 48, 91-99.	7.6	149
638	A novel single-layered MoS ₂ nanosheet based microfluidic biosensor for ultrasensitive detection of DNA. Nanoscale, 2015, 7, 2245-2249.	2.8	100
639	Stabilities and electronic properties of monolayer MoS ₂ with one or two sulfur line vacancy defects. Physical Chemistry Chemical Physics, 2015, 17, 3813-3819.	1.3	37
640	Band Engineering for Novel Twoâ€Ðimensional Atomic Layers. Small, 2015, 11, 1868-1884.	5.2	96
641	Inorganic Graphene Analogs. Annual Review of Materials Research, 2015, 45, 29-62.	4.3	40
642	Strong light–matter coupling in two-dimensional atomic crystals. Nature Photonics, 2015, 9, 30-34.	15.6	865
643	The Interface between Gd and Monolayer MoS2: A First-Principles Study. Scientific Reports, 2014, 4, 7368.	1.6	20
644	Pressure-Dependent Optical and Vibrational Properties of Monolayer Molybdenum Disulfide. Nano Letters, 2015, 15, 346-353.	4.5	284
645	Elasticity of MoS ₂ Sheets by Mechanical Deformation Observed by in Situ Electron Microscopy. Journal of Physical Chemistry C, 2015, 119, 710-715.	1.5	59
646	Mechanics of freelyâ€suspended ultrathin layered materials. Annalen Der Physik, 2015, 527, 27-44.	0.9	145
647	Three-Dimensional Multilayer Assemblies of MoS ₂ /Reduced Graphene Oxide for High-Performance Lithium Ion Batteries. Particle and Particle Systems Characterization, 2015, 32, 489-497.	1.2	36
648	From two-dimensional materials to heterostructures. Progress in Surface Science, 2015, 90, 21-45.	3.8	123
649	Investigation of Two-Solvent Grinding-Assisted Liquid Phase Exfoliation of Layered MoS ₂ . Chemistry of Materials, 2015, 27, 53-59.	3.2	194
650	A density functional theory study of the tunable structure, magnetism and metal-insulator phase transition in VS2 monolayers induced by in-plane biaxial strain. Nano Research, 2015, 8, 1348-1356.	5.8	116
651	New First Order Raman-active Modes in Few Layered Transition Metal Dichalcogenides. Scientific Reports, 2014, 4, 4215.	1.6	367
652	Ultrahigh-Gain Photodetectors Based on Atomically Thin Graphene-MoS2 Heterostructures. Scientific Reports, 2014, 4, 3826.	1.6	771

#	Article	IF	CITATIONS
653	Pt-free solar driven photoelectrochemical hydrogen fuel generation using 1T MoS ₂ co-catalyst assembled CdS QDs/TiO ₂ photoelectrode. Chemical Communications, 2015, 51, 522-525.	2.2	60
654	Facile deposition of Ag3PO4 on graphene-like MoS2 nanosheets for highly efficient photocatalysis. Materials Research Bulletin, 2015, 62, 24-29.	2.7	41
655	TiO2-based solar cells sensitized by chemical-bath-deposited few-layer MoS2. Journal of Power Sources, 2015, 275, 943-949.	4.0	27
656	Innovative preparation of MoS2–graphene heterostructures based on alginate containing (NH4)2MoS4 and their photocatalytic activity for H2 generation. Carbon, 2015, 81, 587-596.	5.4	45
657	Covalent functionalization of monolayered transition metal dichalcogenides by phase engineering. Nature Chemistry, 2015, 7, 45-49.	6.6	637
658	Exfoliated transition metal dichalcogenides (MoS2, MoSe2, WS2, WSe2): An electrochemical impedance spectroscopic investigation. Electrochemistry Communications, 2015, 50, 39-42.	2.3	62
659	Tuning the Luminescence of Phosphors: Beyond Conventional Chemical Method. Advanced Optical Materials, 2015, 3, 431-462.	3.6	129
660	A novel aptamer-functionalized MoS2 nanosheet fluorescent biosensor for sensitive detection of prostate specific antigen. Analytical and Bioanalytical Chemistry, 2015, 407, 369-377.	1.9	207
661	Chemically exfoliated metallic MoS2 nanosheets: A promising supporting co-catalyst for enhancing the photocatalytic performance of TiO2 nanocrystals. Nano Research, 2015, 8, 175-183.	5.8	331
662	Layer-modulated synthesis of uniform tungsten disulfide nanosheet using gas-phase precursors. Nanoscale, 2015, 7, 1308-1313.	2.8	86
663	Recent advances in controlled synthesis of two-dimensional transition metal dichalcogenides via vapour deposition techniques. Chemical Society Reviews, 2015, 44, 2744-2756.	18.7	709
664	Large variations in both dark- and photoconductivity in nanosheet networks as nanomaterial is varied from MoS ₂ to WTe ₂ . Nanoscale, 2015, 7, 198-208.	2.8	76
665	Regulating the Electrical Behaviors of 2D Inorganic Nanomaterials for Energy Applications. Small, 2015, 11, 654-666.	5.2	50
666	Chemical vapour deposition of group-VIB metal dichalcogenide monolayers: engineered substrates from amorphous to single crystalline. Chemical Society Reviews, 2015, 44, 2587-2602.	18.7	334
667	Ternary MoS2/SiO2/graphene hybrids for high-performance lithium storage. Carbon, 2015, 81, 203-209.	5.4	53
668	Photoluminescence quenching of graphene oxide by metal ions in aqueous media. Carbon, 2015, 82, 24-30.	5.4	26
669	Lithium Intercalation Compound Dramatically Influences the Electrochemical Properties of Exfoliated MoS ₂ . Small, 2015, 11, 605-612.	5.2	250
670	Heterojunction Hybrid Devices from Vapor Phase Grown MoS2. Scientific Reports, 2014, 4, 5458.	1.6	80

	CITATION RE	PORT	
#	Article	IF	CITATIONS
671	Photoluminescence quenching in gold - MoS2 hybrid nanoflakes. Scientific Reports, 2014, 4, 5575.	1.6	217
672	Extraordinary Second Harmonic Generation in Tungsten Disulfide Monolayers. Scientific Reports, 2014, 4, 5530.	1.6	262
673	Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. Nanoscale, 2015, 7, 4598-4810.	2.8	2,452
674	Synthesis Strategies about 2D Materials. , 0, , .		11
675	Properties of single-layer MoS ₂ film fabricated by combination of sputtering deposition and post deposition sulfurization annealing using (t-C ₄ H ₉) ₂ S ₂ . Japanese Journal of Applied Physics, 2016, 55, 06GF01.	0.8	16
676	Improving crystalline quality of sputtering-deposited MoS ₂ thin film by postdeposition sulfurization annealing using (t-C ₄ H ₉) ₂ S ₂ . Japanese Journal of Applied Physics, 2016, 55, 04EJ07.	0.8	26
677	Two-Dimensional Semiconductor Optoelectronics Based on van der Waals Heterostructures. Nanomaterials, 2016, 6, 193.	1.9	107
678	Twoâ€Dimensional Transition Metal Dichalcogenides for Electrocatalytic Energy Conversion Applications. , 0, , .		2
679	Electrical Transport Properties of Polymorphic MoS ₂ . ACS Nano, 2016, 10, 7500-7506.	7.3	82
680	Facile synthesis of optical pH-sensitive molybdenum disulfide quantum dots. Nanoscale, 2016, 8, 15152-15157.	2.8	38
681	Engineering Chemically Exfoliated Largeâ€Area Twoâ€Dimensional MoS ₂ Nanolayers with Porphyrins for Improved Light Harvesting. ChemPhysChem, 2016, 17, 2854-2862.	1.0	32
682	Two-dimensional materials for novel liquid separation membranes. Nanotechnology, 2016, 27, 332001.	1.3	45
683	Synthesis of Twoâ€Dimensional Materials for Capacitive Energy Storage. Advanced Materials, 2016, 28, 6104-6135.	11.1	548
684	2D Layered Materials of Rareâ€Earth Erâ€Doped MoS ₂ with NIRâ€toâ€NIR Down―and Upâ€Conve Photoluminescence. Advanced Materials, 2016, 28, 7472-7477.	rsion 11.1	180
685	Lösungsprozessierte MoS ₂ â€Nanoplätchen: Herstellung, Hybridisierung und Anwendungen. Angewandte Chemie, 2016, 128, 8960-8984.	1.6	52
686	Controlled Sulfurization Process for the Synthesis of Large Area MoS ₂ Films and MoS ₂ /WS ₂ Heterostructures. Advanced Materials Interfaces, 2016, 3, 1500635.	1.9	61
687	Preparation of Singleâ€Layer MoS ₂ <i>_x</i> Se _{2(1â€} <i>_x</i> _x Mo <i>_x</i> Mo <i>_x</i> Mo <i>_x</i> Mo <i>_x</i> Mo <i>_x</i> Mo <i>_x</i>	5.2	126
688	Structural Phase Transition Effect on Resistive Switching Behavior of MoS ₂ â€Polyvinylpyrrolidone Nanocomposites Films for Flexible Memory Devices. Small, 2016, 12, 2077-2084.	5.2	98

CIT		Report
	IAH	NEPUKI

#	Article	IF	CITATIONS
689	Phase Engineering of 2D Tin Sulfides. Small, 2016, 12, 2998-3004.	5.2	51
690	Near-infrared light triggered superior photocatalytic activity from MoS ₂ –NaYF ₄ :Yb ³⁺ /Er ³⁺ nanocomposites. Dalton Transactions, 2016, 45, 12384-12392.	1.6	32
691	Optical spectrum and excitons in bulk and monolayer MX2 (M=Zr, Hf; X=S, Se). Physica Status Solidi (B): Basic Research, 2016, 253, 705-711.	0.7	32
692	Hydrazineâ€Assisted Liquid Exfoliation of MoS ₂ for Catalytic Hydrodeoxygenation of 4â€Methylphenol. Chemistry - A European Journal, 2016, 22, 2910-2914.	1.7	52
693	Covalent Modification of MoS ₂ with Poly(<i>N</i> â€vinylcarbazole) for Solid‣tate Broadband Optical Limiters. Chemistry - A European Journal, 2016, 22, 4500-4507.	1.7	35
694	Recent Strategies for Improving the Catalytic Activity of 2D TMD Nanosheets Toward the Hydrogen Evolution Reaction. Advanced Materials, 2016, 28, 6197-6206.	11.1	769
695	Controllable Growth Orientation of SnS ₂ Flakes for Lowâ€Noise, Highâ€Photoswitching Ratio, and Ultrafast Phototransistors. Advanced Optical Materials, 2016, 4, 419-426.	3.6	41
696	Transition Metal Disulfides as Nobleâ€Metalâ€Alternative Coâ€Catalysts for Solar Hydrogen Production. Advanced Energy Materials, 2016, 6, 1502555.	10.2	279
697	Functionalization of Twoâ€Dimensional MoS ₂ : On the Reaction Between MoS ₂ and Organic Thiols. Angewandte Chemie - International Edition, 2016, 55, 5803-5808.	7.2	219
698	Surfactantâ€aided exfoliation of molybdenum disulfide for ultrafast pulse generation through edgeâ€state saturable absorption. Physica Status Solidi (B): Basic Research, 2016, 253, 911-917.	0.7	29
699	High oncentration Aqueous Dispersions of Nanoscale 2D Materials Using Nonionic, Biocompatible Block Copolymers. Small, 2016, 12, 294-300.	5.2	47
700	Distinct photoluminescence and Raman spectroscopy signatures for identifying highly crystalline WS ₂ monolayers produced by different growth methods. Journal of Materials Research, 2016, 31, 931-944.	1.2	95
701	Active Control of Plasmon–Exciton Coupling in MoS ₂ –Ag Hybrid Nanostructures. Advanced Optical Materials, 2016, 4, 1463-1469.	3.6	69
702	MoS ₂ /TiO ₂ Edgeâ€On Heterostructure for Efficient Photocatalytic Hydrogen Evolution. Advanced Energy Materials, 2016, 6, 1600464.	10.2	264
703	Solutionâ€Processed Twoâ€Dimensional MoS ₂ Nanosheets: Preparation, Hybridization, and Applications. Angewandte Chemie - International Edition, 2016, 55, 8816-8838.	7.2	557
704	Synthesis of MoS 2 nanoparticles using MoO 3 nanobelts as precursor via a PVP-assisted hydrothermal method. Materials Letters, 2016, 182, 347-350.	1.3	29
705	Mechanically-induced reverse phase transformation of MoS ₂ from stable 2H to metastable 1T and its memristive behavior. RSC Advances, 2016, 6, 65691-65697.	1.7	63
706	CdS Nanowires Decorated with Ultrathin MoS ₂ Nanosheets as an Efficient Photocatalyst for Hydrogen Evolution. ChemSusChem, 2016, 9, 624-630.	3.6	223

#	Article	IF	CITATIONS
707	Atomically Thin MoS ₂ : A Versatile Nongraphene 2D Material. Advanced Functional Materials, 2016, 26, 2046-2069.	7.8	220
708	Recent Advances in Controlling Syntheses and Energy Related Applications of MX ₂ and MX ₂ /Graphene Heterostructures. Advanced Energy Materials, 2016, 6, 1600459.	10.2	43
709	High pressure Raman study of layered Mo _{0.5} W _{0.5} S ₂ ternary compound. 2D Materials, 2016, 3, 025003.	2.0	20
710	Gate-tunable and thickness-dependent electronic and thermoelectric transport in few-layer MoS2. Journal of Applied Physics, 2016, 120, .	1.1	66
711	Exfoliation of Quasi-Stratified Bi ₂ S ₃ Crystals into Micron-Scale Ultrathin Corrugated Nanosheets. Chemistry of Materials, 2016, 28, 8942-8950.	3.2	31
712	Visible-Light-Responsive Chalcogenide Photocatalyst Ba ₂ ZnSe ₃ : Crystal and Electronic Structure, Thermal, Optical, and Photocatalytic Activity. Inorganic Chemistry, 2016, 55, 12783-12790.	1.9	40
713	Photoreflectance study of the near-band-edge transitions of chemical vapor deposition-grown mono- and few-layer MoS2 films. Journal of Applied Physics, 2016, 119, .	1.1	13
714	Ballistic thermal transport in monolayer transition-metal dichalcogenides: Role of atomic mass. Applied Physics Letters, 2016, 108, .	1.5	16
715	Effects of electrolyte gating on photoluminescence spectra of large-area WSe2monolayer films. Japanese Journal of Applied Physics, 2016, 55, 06GB02.	0.8	9
716	Impact of reduced graphene oxide on MoS2 grown by sulfurization of sputtered MoO3 and Mo precursor films. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2016, 34, .	0.9	11
717	Atomic-layer soft plasma etching of MoS2. Scientific Reports, 2016, 6, 19945.	1.6	93
718	2D materials advances: from large scale synthesis and controlled heterostructures to improved characterization techniques, defects and applications. 2D Materials, 2016, 3, 042001.	2.0	408
719	Electron beam-formed ferromagnetic defects on MoS2 surface along 1 T phase transition. Scientific Reports, 2016, 6, 38730.	1.6	29
720	Protein-induced ultrathin molybdenum disulfide (MoS ₂) flakes for a water-based lubricating system. RSC Advances, 2016, 6, 113315-113321.	1.7	26
721	First-principle study of hydrogenation on monolayer MoS2. AIP Advances, 2016, 6, .	0.6	34
722	Electrolytic phototransistor based on graphene-MoS2 van der Waals p-n heterojunction with tunable photoresponse. Applied Physics Letters, 2016, 109, .	1.5	41
723	Self-Limiting Layer Synthesis of Transition Metal Dichalcogenides. Scientific Reports, 2016, 6, 18754.	1.6	74
724	Microwave irradiation induced band gap tuning of MoS2-TiO2 nanocomposites. AIP Conference Proceedings, 2016, , .	0.3	1

#	Article	IF	CITATIONS
725	Atomic layer deposition of two dimensional MoS2 on 150 mm substrates. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2016, 34, .	0.9	71
726	Determination of band offsets at GaN/single-layer MoS2 heterojunction. Applied Physics Letters, 2016, 109, .	1.5	64
727	Energy band alignment of high-k oxide heterostructures at MoS2/Al2O3 and MoS2/ZrO2 interfaces. Journal of Applied Physics, 2016, 120, .	1.1	19
728	Steady-state photoluminescent excitation characterization of semiconductor carrier recombination. Review of Scientific Instruments, 2016, 87, 013104.	0.6	5
729	Monolayer-molybdenum-disulfide-based nano-optomechanical transistor and tunable nonlinear responses. Journal of Semiconductors, 2016, 37, 114004.	2.0	1
730	An effective approach to synthesize monolayer tungsten disulphide crystals using tungsten halide precursor. Applied Physics Letters, 2016, 108, .	1.5	19
731	Composition dependent Fermi level shifting of Au decorated MoS2 nanosheets. Applied Physics Letters, 2016, 108, .	1.5	35
732	Excitation intensity dependent photoluminescence of annealed two-dimensional MoS2 grown by chemical vapor deposition. Journal of Applied Physics, 2016, 119, 214301.	1.1	18
733	Perspective: Highly ordered MoS2 thin films grown by multi-step chemical vapor deposition process. APL Materials, 2016, 4, .	2.2	28
734	Low-temperature growth of layered molybdenum disulphide with controlled clusters. Scientific Reports, 2016, 6, 21854.	1.6	59
735	Controlled Exfoliation of MoS ₂ Crystals into Trilayer Nanosheets. Journal of the American Chemical Society, 2016, 138, 5143-5149.	6.6	207
736	Resonant Light-Induced Heating in Hybrid Cavity-Coupled 2D Transition-Metal Dichalcogenides. ACS Photonics, 2016, 3, 700-707.	3.2	27
737	Comparison of hydrogen sulfide gas and sulfur powder for synthesis of molybdenum disulfide nanosheets. Current Applied Physics, 2016, 16, 691-695.	1.1	15
738	A MoS2 coating strategy to improve the comprehensive electrochemical performance of LiVPO4F. Journal of Power Sources, 2016, 315, 294-301.	4.0	83
739	Pressure evolution of the potential barriers of phase transition of MoS ₂ , MoSe ₂ and MoTe ₂ . Physical Chemistry Chemical Physics, 2016, 18, 12080-12085.	1.3	38
740	Preparation and characterization of a covalent edge-functionalized lipoic acid–MoS ₂ conjugate. RSC Advances, 2016, 6, 36248-36255.	1.7	26
741	Solvo-thermal microwave-powered two-dimensional material exfoliation. Chemical Communications, 2016, 52, 5757-5760.	2.2	33
742	Microstructure and photoluminescence of MoS 2 decorated ZnO nanorods. Chinese Journal of Physics, 2016, 54, 51-59.	2.0	17

#	Article	IF	CITATIONS
743	Electronic and magnetic properties of X-doped (X=Ni, Pd, Pt) WS2 monolayer. Journal of Magnetism and Magnetic Materials, 2016, 414, 45-48.	1.0	28
744	Enhanced quantum efficiency from a mosaic of two dimensional MoS ₂ formed onto aminosilane functionalised substrates. Nanoscale, 2016, 8, 12258-12266.	2.8	18
745	Tuning the activity of nanoplatelet MoS2-based catalyst for efficient hydrogen evolution via electrochemical decoration with Pt nanoparticles. Applied Surface Science, 2016, 385, 56-62.	3.1	23
746	Assemblies of covalently cross-linked nanosheets of MoS ₂ and of MoS ₂ –RGO: synthesis and novel properties. Journal of Materials Chemistry A, 2016, 4, 8989-8994.	5.2	46
747	Structural, optical and compositional stability of MoS ₂ multi-layer flakes under high dose electron beam irradiation. 2D Materials, 2016, 3, 025024.	2.0	19
748	Metallic 1T phase MoS2 nanosheets for high-performance thermoelectric energy harvesting. Nano Energy, 2016, 26, 172-179.	8.2	178
749	Facile Synthesis of Water-Soluble WS ₂ Quantum Dots for Turn-On Fluorescent Measurement of Lipoic Acid. Journal of Physical Chemistry C, 2016, 120, 12170-12177.	1.5	109
750	Magnetic Properties of Restacked 2D Spin 1/2 honeycomb RuCl ₃ Nanosheets. Nano Letters, 2016, 16, 3578-3584.	4.5	89
751	Hybrid two-dimensional materials in rechargeable battery applications and their microscopic mechanisms. Chemical Society Reviews, 2016, 45, 4042-4073.	18.7	194
752	Dual-Target Electrochemical Biosensing Based on DNA Structural Switching on Gold Nanoparticle-Decorated MoS ₂ Nanosheets. ACS Applied Materials & Interfaces, 2016, 8, 6826-6833.	4.0	155
753	One-Step Synthesis of Water-Soluble MoS ₂ Quantum Dots via a Hydrothermal Method as a Fluorescent Probe for Hyaluronidase Detection. ACS Applied Materials & Interfaces, 2016, 8, 11272-11279.	4.0	258
754	High-concentration dispersions of exfoliated MoS2 sheets stabilized by freeze-dried silk fibroin powder. Nano Research, 2016, 9, 1709-1722.	5.8	31
755	Tetrathiafulvalene-containing polymers for simultaneous non-covalent modification and electronic modulation of MoS ₂ nanomaterials. Chemical Science, 2016, 7, 4698-4705.	3.7	34
756	Wafer-scale monolayer MoS ₂ grown by chemical vapor deposition using a reaction of MoO ₃ and H ₂ S. Journal of Physics Condensed Matter, 2016, 28, 184002.	0.7	39
757	Thiol click chemistry on gold-decorated MoS ₂ : elastomer composites and structural phase transitions. Nanoscale, 2016, 8, 10016-10020.	2.8	3
758	Mechanically delaminated few layered MoS2 nanosheets based high performance wire type solid-state symmetric supercapacitors. Journal of Power Sources, 2016, 321, 112-119.	4.0	182
759	Heating-up Synthesis of MoS2 Nanosheets and Their Electrical Bistability Performance. Nanoscale Research Letters, 2016, 11, 171.	3.1	20
760	Coherent Lattice Vibrations in Mono- and Few-Layer WSe ₂ . ACS Nano, 2016, 10, 5560-5566.	7.3	62

#	Article	IF	CITATIONS
761	Photochemical Reaction in Monolayer MoS ₂ <i>via</i> Correlated Photoluminescence, Raman Spectroscopy, and Atomic Force Microscopy. ACS Nano, 2016, 10, 5230-5236.	7.3	101
762	Optoelectronic devices based on two-dimensional transition metal dichalcogenides. Nano Research, 2016, 9, 1543-1560.	5.8	186
763	Broadband Absorption Engineering to Enhance Light Absorption in Monolayer MoS ₂ . ACS Photonics, 2016, 3, 853-862.	3.2	119
764	Synthesis of Molybdenum Disulfide Nanowire Arrays Using a Block Copolymer Template. Chemistry of Materials, 2016, 28, 4017-4023.	3.2	28
765	Electro-response of MoS ₂ Nanosheets-Based Smart Fluid with Tailorable Electrical Conductivity. ACS Applied Materials & Interfaces, 2016, 8, 24221-24229.	4.0	46
766	Abnormal high-temperature luminescence enhancement observed in monolayer MoS ₂ flakes: thermo-driven transition from negatively charged trions to neutral excitons. Journal of Materials Chemistry C, 2016, 4, 9187-9196.	2.7	15
767	In-Plane Heterojunctions Enable Multiphasic Two-Dimensional (2D) MoS ₂ Nanosheets As Efficient Photocatalysts for Hydrogen Evolution from Water Reduction. ACS Catalysis, 2016, 6, 6723-6729.	5.5	116
768	Luminescent transition metal dichalcogenide nanosheets through one-step liquid phase exfoliation. 2D Materials, 2016, 3, 035014.	2.0	42
769	Atomically-thin layered films for device applications based upon 2D TMDC materials. Thin Solid Films, 2016, 616, 482-501.	0.8	104
770	MoS ₂ as a co atalyst for photocatalytic hydrogen production from water. Energy Science and Engineering, 2016, 4, 285-304.	1.9	205
771	Synthesis of 2Dâ€Mesoporousâ€Carbon/MoS ₂ Heterostructures with Wellâ€Defined Interfaces for Highâ€Performance Lithiumâ€Ion Batteries. Advanced Materials, 2016, 28, 9385-9390.	11.1	253
772	Tuning the structure of MoO ₃ nanoplates via MoS ₂ oxidation. Philosophical Magazine Letters, 2016, 96, 347-354.	0.5	13
773	Tunable Conductivity and Half Metallic Ferromagnetism in Monolayer Platinum Diselenide: A First-Principles Study. Journal of Physical Chemistry C, 2016, 120, 25030-25036.	1.5	38
774	Nanocarved MoS ₂ –MoO ₂ Hybrids Fabricated Using <i>in Situ</i> Grown MoS ₂ as Nanomasks. ACS Nano, 2016, 10, 9509-9515.	7.3	52
775	Strain-dependent electronic and magnetic of Co-doped monolayer of WSe 2. Physica E: Low-Dimensional Systems and Nanostructures, 2016, 84, 505-510.	1.3	12
776	Targeted Synthesis of 2H―and 1Tâ€Phase MoS ₂ Monolayers for Catalytic Hydrogen Evolution. Advanced Materials, 2016, 28, 10033-10041.	11.1	534
777	Electrohydrodynamic printing for scalable MoS ₂ flake coating: application to gas sensing device. Nanotechnology, 2016, 27, 435501.	1.3	20
778	High-Yield Preparation and Electrochemical Properties of Few-Layer MoS2 Nanosheets by Exfoliating Natural Molybdenite Powders Directly via a Coupled Ultrasonication-Milling Process. Nanoscale Research Letters, 2016, 11, 409.	3.1	32

		CITATION REPORT		
#	Article		IF	CITATIONS
779	Photodetectors based on two dimensional materials. Journal of Semiconductors, 2016,	37, 091001.	2.0	29
780	Controlled electronic and magnetic properties of WSe2 monolayers by doping transition Superlattices and Microstructures, 2016, 100, 252-257.	n-metal atoms.	1.4	16
781	Colloidal Single-Layer Quantum Dots with Lateral Confinement Effects on 2D Exciton. Jo American Chemical Society, 2016, 138, 13253-13259.	ournal of the	6.6	49
782	The synthesis and the photocatalytic degradation property of the nano-MoS _{2Materials Letters, 2016, 09, 1650065.}	ıb>. Functional	0.7	9
783	MoS ₂ Nanosheet Loaded with TiO ₂ Nanoparticles: An Efficient for Hydrogen Evolution Reaction. Journal of the Electrochemical Society, 2016, 163, H10		1.3	23
784	Tuning two-dimensional nanomaterials by intercalation: materials, properties and applica Chemical Society Reviews, 2016, 45, 6742-6765.	ations.	18.7	363
785	Impact of Covalent Functionalization on the Aqueous Processability, Catalytic Activity, a Biocompatibility of Chemically Exfoliated MoS ₂ Nanosheets. ACS Applied N Interfaces, 2016, 8, 27974-27986.		4.0	73
786	Exciton and trion dynamics in atomically thin <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>MoSexmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>WSeEffect of localization. Physical Review B, 2016, 94, .</mml:mi></mml:msub></mml:mi></mml:msub></mml:math 	ıml:mi> <mml:mn>2ml:mi><mml:mn>2<td>ıl:mŋ> :mn > <td>ml;msub><!--<br-->1l:msub></td></td></mml:mn></mml:mn>	ıl:mŋ> :mn > <td>ml;msub><!--<br-->1l:msub></td>	ml;msub> <br 1l:msub>
787	Self-sacrificial template method of Mo 3 O 10 (C 6 H 8 N) 2 •2H 2 O to fabricate MoS MoO 2 nanobelts as efficient electrocatalysts for hydrogen evolution reaction. Electroch 2016, 216, 397-404.		2.6	26
788	Layered crystalline ZnIn ₂ S ₄ nanosheets: CVD synthesis and photo-electrochemical properties. Nanoscale, 2016, 8, 18197-18203.		2.8	42
789	Transition metal dichalcogenides based saturable absorbers for pulsed laser technology. Materials, 2016, 60, 601-617.	. Optical	1.7	70
790	From 3D to 2D: Fabrication Methods. Springer Series in Materials Science, 2016, , 79-10)7.	0.4	2
791	Luminescence of 2D TMDC. Springer Series in Materials Science, 2016, , 295-320.		0.4	0
792	Molybdenum Disulfide oated Lithium Vanadium Fluorophosphate Anode: Experiment Firstâ€Principles Calculations. ChemSusChem, 2016, 9, 2122-2128.	ts and	3.6	25
793	Nanocomposites of 2D-MoS ₂ nanosheets with the metal–organic framew Transactions, 2016, 45, 13810-13816.	vork, ZIF-8. Dalton	1.6	35
794	One-step solvothermal synthesis of carbon doped TiO2–MoS2 heterostructure compo improved visible light catalytic activity. New Journal of Chemistry, 2016, 40, 8123-8130.	osites with ·	1.4	22
795	MoS2/Ag nanohybrid: A novel matrix with synergistic effect for small molecule drugs and negative-ion matrix-assisted laser desorption/ionization time-of-flight mass spectrometry Chimica Acta, 2016, 937, 87-95.	alysis by y. Analytica	2.6	48
796	Improving performance of MoS ₂ -based electrochemical sensors by decorat metallic nanoparticles on the surface of MoS ₂ nanosheet. RSC Advances, 2 76614-76620.	ting noble 2016, 6,	1.7	43

# 797	ARTICLE Carbon dot-assisted hydrothermal synthesis of flower-like MoS ₂ nanospheres constructed by few-layered multiphase MoS ₂ nanosheets for supercapacitors. RSC	IF 1.7	Citations 37
798	Advances, 2016, 6, 77999-78007. Two-dimensional inorganic analogues of graphene: transition metal dichalcogenides. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2016, 374, 20150318.	1.6	62
799	Atomic‣ayered MoS ₂ as a Tunable Optical Platform. Advanced Optical Materials, 2016, 4, 1429-1456.	3.6	54
800	Multilevel resistive switching nonvolatile memory based on MoS ₂ nanosheet-embedded graphene oxide. 2D Materials, 2016, 3, 034002.	2.0	69
801	Exfoliation of WS ₂ in the semiconducting phase using a group of lithium halides: a new method of Li intercalation. Dalton Transactions, 2016, 45, 14979-14987.	1.6	55
802	Structure, Delamination and Luminescence of Layered Dysprosium Hydroxides and the Generation of White Light with 2D Crystals. ChemistrySelect, 2016, 1, 17-22.	0.7	5
803	Defect assisted coupling of a MoS ₂ /TiO ₂ interface and tuning of its electronic structure. Nanotechnology, 2016, 27, 355203.	1.3	24
804	Reductive exfoliation of substoichiometric MoS ₂ bilayers using hydrazine salts. Nanoscale, 2016, 8, 15252-15261.	2.8	24
805	Few-layer thick WS2 nanosheets produced by intercalation/exfoliation route. Journal of Materials Science, 2016, 51, 10160-10165.	1.7	28
806	Structure and Physico-Chemical Properties of Single Layer and Few-Layer TMDCs. Springer Series in Materials Science, 2016, , 109-163.	0.4	0
807	Electronic Band Structure of 2D TMDCs. Springer Series in Materials Science, 2016, , 165-226.	0.4	1
808	Contact and Support Considerations in the Hydrogen Evolution Reaction Activity of Petaled MoS ₂ Electrodes. ACS Applied Materials & Interfaces, 2016, 8, 25185-25192.	4.0	27
809	Controllable synthesis of graphitic C ₃ N ₄ /ultrathin MoS ₂ nanosheet hybrid nanostructures with enhanced photocatalytic performance. Dalton Transactions, 2016, 45, 15406-15414.	1.6	104
810	Colloidal Synthesis of Uniform‣ized Molybdenum Disulfide Nanosheets for Wafer‣cale Flexible Nonvolatile Memory. Advanced Materials, 2016, 28, 9326-9332.	11.1	151
811	Lowâ€Dimensional Transition Metal Dichalcogenide Nanostructures Based Sensors. Advanced Functional Materials, 2016, 26, 7034-7056.	7.8	208
812	Liquid-exfoliation of layered MoS2 for enhancing photocatalytic activity of TiO2/g-C3N4 photocatalyst and DFT study. Applied Surface Science, 2016, 389, 496-506.	3.1	116
813	Sensitive fluorescence detection of mercury(<scp>ii</scp>) in aqueous solution by the fluorescence quenching effect of MoS ₂ with DNA functionalized carbon dots. Analyst, The, 2016, 141, 6344-6352.	1.7	85
814	Computational Insight into the Covalent Organic–Inorganic Interface. Chemistry of Materials, 2016, 28, 5976-5988.	3.2	22

# 815	ARTICLE Electronic band gaps and exciton binding energies in monolayer <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi mathvariant="normal">M<mml:msub><mml:mi mathvariant="normal">o<mml:mi>x</mml:mi></mml:mi </mml:msub><mml:msub><mml:msub><mml:mi< th=""><th>lF 1.1</th><th>CITATIONS</th></mml:mi<></mml:msub></mml:msub></mml:mi </mml:mrow></mml:math 	lF 1.1	CITATIONS
	mathvariant="normal">0	x <td>i></td>	i>
816	Multipoint Measurements and Histogram Analysis of Optical Contrast. ECS Journal of Solid State Science and Technology, 2016, 5, Q3012-Q3015.	0.9	12
817	Nonlinear optical responses in two-dimensional transition metal dichalcogenide multilayer: WS_2, WSe_2, MoS_2 and Mo _05 W_05 S_2. Optics Express, 2016, 24, 20685.	1.7	113
818	Synthesis, properties and applications of 2D layered M ^{III} X ^{VI} (M = Ga, In; X = S,) Tj ETQq1	1 0.7843 2.8	14 rgBT /0 142
819	Sulfur-Depleted Monolayered Molybdenum Disulfide Nanocrystals for Superelectrochemical Hydrogen Evolution Reaction. ACS Nano, 2016, 10, 8929-8937.	7.3	140
820	Photothermally Controllable Cytosolic Drug Delivery Based On Core–Shell MoS ₂ -Porous Silica Nanoplates. Chemistry of Materials, 2016, 28, 6417-6424.	3.2	74
821	Multibit MoS ₂ Photoelectronic Memory with Ultrahigh Sensitivity. Advanced Materials, 2016, 28, 9196-9202.	11.1	145
822	Optical Gain in MoS ₂ <i>via</i> Coupling with Nanostructured Substrate: Fabry–Perot Interference and Plasmonic Excitation. ACS Nano, 2016, 10, 8192-8198.	7.3	69
823	Prevention of Transition Metal Dichalcogenide Photodegradation by Encapsulation with h-BN Layers. ACS Nano, 2016, 10, 8973-8979.	7.3	70
824	Pulsed laser deposition assisted grown continuous monolayer MoSe ₂ . CrystEngComm, 2016, 18, 6992-6996.	1.3	27
825	Excitation dependent bidirectional electron transfer in phthalocyanine-functionalised MoS ₂ nanosheets. Nanoscale, 2016, 8, 16276-16283.	2.8	62
826	Synthesis of PVP-functionalized ultra-small MoS ₂ nanoparticles with intrinsic peroxidase-like activity for H ₂ O ₂ and glucose detection. RSC Advances, 2016, 6, 81174-81183.	1.7	57
827	Preparation and thermoelectric properties of MoS2/Bi2Te3 nanocomposites. Ceramics International, 2016, 42, 17972-17977.	2.3	21
828	Topological aspects of nonlinear excitonic processes in noncentrosymmetric crystals. Physical Review B, 2016, 94, .	1.1	51
829	Microwave-assisted 1T to 2H phase reversion of MoS ₂ in solution: a fast route to processable dispersions of 2H-MoS ₂ nanosheets and nanocomposites. Nanotechnology, 2016, 27, 385604.	1.3	36
830	Generation of MoS2 quantum dots by laser ablation of MoS2 particles in suspension and their photocatalytic activity for H2 generation. Journal of Nanoparticle Research, 2016, 18, 1.	0.8	19
831	Enhanced field emission properties of molybdenum disulphide few layer nanosheets synthesized by hydrothermal method. Applied Surface Science, 2016, 389, 1017-1022.	3.1	126
832	Mechanistic Understanding of Excitation-Correlated Nonlinear Optical Properties in MoS ₂ Nanosheets and Nanodots: The Role of Exciton Resonance. ACS Photonics, 2016, 3, 2434-2444.	3.2	44

#	Article	IF	CITATIONS
833	Direct synthesis of ultra-thin large area transition metal dichalcogenides and their heterostructures on stretchable polymer surfaces. Journal of Materials Research, 2016, 31, 967-974.	1.2	44
834	Chemical Vapor Deposition of Monolayer Mo1â^'xWxS2 Crystals with Tunable Band Gaps. Scientific Reports, 2016, 6, 21536.	1.6	101
835	Processable 2D materials beyond graphene: MoS ₂ liquid crystals and fibres. Nanoscale, 2016, 8, 16862-16867.	2.8	40
836	Synthesis, Properties, and Stacking of Two-Dimensional Transition Metal Dichalcogenides. Semiconductors and Semimetals, 2016, 95, 189-219.	0.4	12
837	Intercalation Pseudocapacitance in Ultrathin VOPO ₄ Nanosheets: Toward High-Rate Alkali-Ion-Based Electrochemical Energy Storage. Nano Letters, 2016, 16, 742-747.	4.5	250
838	Engineering the Growth of MoS ₂ via Atomic Layer Deposition of Molybdenum Oxide Film Precursor. Advanced Electronic Materials, 2016, 2, 1600330.	2.6	41
839	Bandgap inhomogeneity of MoS2 monolayer on epitaxial graphene bilayer in van der Waals p-n junction. Carbon, 2016, 110, 396-403.	5.4	27
840	Electronic Transport along Hybrid MoS ₂ Monolayers. Journal of Physical Chemistry C, 2016, 120, 23389-23396.	1.5	14
841	Unraveling the different charge storage mechanism in T and H phases of MoS2. Electrochimica Acta, 2016, 217, 1-8.	2.6	37
842	Lattice vibrations and Raman scattering in two-dimensional layered materials beyond graphene. Nano Research, 2016, 9, 3559-3597.	5.8	93
843	Valence and oxide impurities in MoS ₂ and WS ₂ dramatically change their electrocatalytic activity towards proton reduction. Nanoscale, 2016, 8, 16752-16760.	2.8	42
844	Surface Charge Transfer Doping of Lowâ€Dimensional Nanostructures toward Highâ€Performance Nanodevices. Advanced Materials, 2016, 28, 10409-10442.	11.1	144
845	Synthesis of 1T-MoSe ₂ ultrathin nanosheets with an expanded interlayer spacing of 1.17 nm for efficient hydrogen evolution reaction. Journal of Materials Chemistry A, 2016, 4, 14949-14953.	5.2	190
846	Interfacial thermodynamics and kinetics of sorption of diclofenac on prepared high performance flower-like MoS2. Journal of Colloid and Interface Science, 2016, 481, 210-219.	5.0	27
847	Layer-modulated, wafer scale and continuous ultra-thin WS ₂ films grown by RF sputtering via post-deposition annealing. Journal of Materials Chemistry C, 2016, 4, 7846-7852.	2.7	26
848	Variation of photoluminescence of organic semiconducting-rubrene microplate depending on the thicknesses of two-dimensional MoS2 layers. Synthetic Metals, 2016, 220, 8-13.	2.1	9
849	Spin diffusion in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi>p</mml:mi> -type bilayer <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mi>WSe</mml:mi> <mml:mn>2Note the second secon</mml:mn></mml:msub></mml:math </mml:math 	1.1 mn> <td>3 Il:msub></td>	3 Il:msub>
850	Physical Review B, 2016, 93, . Colloidal preparation and electrocatalytic hydrogen production of MoS2and WS2nanosheets with controllable lateral sizes and layer numbers. Nanoscale, 2016, 8, 15262-15272.	2.8	64

#	Article	IF	CITATIONS
851	Solution-processed MoS ₂ nanotubes/reduced graphene oxide nanocomposite as an active electrocatalyst toward the hydrogen evolution reaction. RSC Advances, 2016, 6, 70740-70746.	1.7	15
852	2D Materials Beyond Graphene for Highâ€Performance Energy Storage Applications. Advanced Energy Materials, 2016, 6, 1600671.	10.2	436
853	Hydroxyl induced edge magnetism and metallicity in armchair MoS ₂ nanoribbons. Journal Physics D: Applied Physics, 2016, 49, 115303.	1.3	3
854	Controlling the work function of molybdenum disulfide by <i>in situ</i> metal deposition. Nanotechnology, 2016, 27, 344002.	1.3	12
855	An Ultrahighâ€Performance Photodetector based on a Perovskite–Transitionâ€Metalâ€Dichalcogenide Hybrid Structure . Advanced Materials, 2016, 28, 7799-7806.	11.1	242
856	Threeâ€Dimensional Molybdenum Disulfide Nanoflowers Decorated on Graphene Nanosheets for Highâ€Performance Lithiumâ€Ion Batteries. ChemElectroChem, 2016, 3, 1503-1512.	1.7	20
857	Tuning Surface Properties of Low Dimensional Materials via Strain Engineering. Small, 2016, 12, 4028-4047.	5.2	56
858	Two-Dimensional Colloidal Nanocrystals. Chemical Reviews, 2016, 116, 10934-10982.	23.0	412
859	Enhanced Catalytic Activities of Metal-Phase-Assisted 1T@2H-MoSe 2 Nanosheets for Hydrogen Evolution. Electrochimica Acta, 2016, 217, 181-186.	2.6	83
860	Controllable selenium vacancy engineering in basal planes of mechanically exfoliated WSe ₂ monolayer nanosheets for efficient electrocatalytic hydrogen evolution. Chemical Communications, 2016, 52, 14266-14269.	2.2	91
861	Synthesis and electrochemical property of few-layer molybdenum disulfide nanosheets. Japanese Journal of Applied Physics, 2016, 55, 125201.	0.8	4
862	Ultrafast Charge Transfer and Enhanced Absorption in MoS ₂ –Organic van der Waals Heterojunctions Using Plasmonic Metasurfaces. ACS Nano, 2016, 10, 9899-9908.	7.3	71
863	Origin of Structural Transformation in Mono- and Bi-Layered Molybdenum Disulfide. Scientific Reports, 2016, 6, 26666.	1.6	71
864	Large area molybdenum disulphide- epitaxial graphene vertical Van der Waals heterostructures. Scientific Reports, 2016, 6, 26656.	1.6	73
865	Facile Preparation of Single MoS ₂ Atomic Crystals with Highly Tunable Photoluminescence by Morphology and Atomic Structure. Crystal Growth and Design, 2016, 16, 7094-7101.	1.4	8
866	A New 2H-2H′/1T Cophase in Polycrystalline MoS ₂ and MoSe ₂ Thin Films. ACS Applied Materials & Interfaces, 2016, 8, 31442-31448.	4.0	33
867	MoS2 memristor with photoresistive switching. Scientific Reports, 2016, 6, 31224.	1.6	66
868	Control of Exciton Valley Coherence in Transition Metal Dichalcogenide Monolayers. Physical Review Letters, 2016, 117, 187401.	2.9	126

#	Article	IF	Citations
869	Novel near-infrared emission from crystal defects in MoS2 multilayer flakes. Nature Communications, 2016, 7, 13044.	5.8	60
870	Mass production of two-dimensional oxides by rapid heating of hydrous chlorides. Nature Communications, 2016, 7, 12543.	5.8	78
871	Interface strain in vertically stacked two-dimensional heterostructured carbon-MoS2 nanosheets controls electrochemical reactivity. Nature Communications, 2016, 7, 11796.	5.8	157
872	NIR photoresponsive drug delivery and synergistic chemo-photothermal therapy by monodispersed-MoS ₂ -nanosheets wrapped periodic mesoporous organosilicas. Journal of Materials Chemistry B, 2016, 4, 7708-7717.	2.9	44
873	Large-Scale Production of Large-Size Atomically Thin Semiconducting Molybdenum Dichalcogenide Sheets in Water and Its Application for Supercapacitor. Scientific Reports, 2016, 6, 26660.	1.6	18
874	Possibility of combining ferroelectricity and Rashba-like spin splitting in monolayers of the <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mn>1</mml:mn><mml:mi>Ttransition-metal dichalcogenides<mml:math< td=""><td>i><td>nrow></td></td></mml:math<></mml:mi></mml:mrow></mml:math 	i> <td>nrow></td>	nrow>

#	Article	IF	CITATIONS
887	Efficient hydrogen evolution in transition metal dichalcogenides via a simple one-step hydrazine reaction. Nature Communications, 2016, 7, 11857.	5.8	179
888	Large Area Fabrication of Semiconducting Phosphorene by Langmuir-Blodgett Assembly. Scientific Reports, 2016, 6, 34095.	1.6	67
889	Mapping of Low-Frequency Raman Modes in CVD-Grown Transition Metal Dichalcogenides: Layer Number, Stacking Orientation and Resonant Effects. Scientific Reports, 2016, 6, 19476.	1.6	111
890	Large-area, continuous and high electrical performances of bilayer to few layers MoS2 fabricated by RF sputtering via post-deposition annealing method. Scientific Reports, 2016, 6, 30791.	1.6	104
891	Ammonia intercalated flower-like MoS2 nanosheet film as electrocatalyst for high efficient and stable hydrogen evolution. Scientific Reports, 2016, 6, 31092.	1.6	76
892	Au@MoS ₂ Core–Shell Heterostructures with Strong Light–Matter Interactions. Nano Letters, 2016, 16, 7696-7702.	4.5	139
893	Modulating Electronic Properties of Monolayer MoS ₂ <i>via</i> Electron-Withdrawing Functional Groups of Graphene Oxide. ACS Nano, 2016, 10, 10446-10453.	7.3	41
894	Noble metal-free ultrathin MoS ₂ nanosheet-decorated CdS nanorods as an efficient photocatalyst for spectacular hydrogen evolution under solar light irradiation. Journal of Materials Chemistry A, 2016, 4, 18551-18558.	5.2	118
895	Large-scale Growth and Simultaneous Doping of Molybdenum Disulfide Nanosheets. Scientific Reports, 2016, 6, 24054.	1.6	15
896	Thickness-dependent bandgap tunable molybdenum disulfide films for optoelectronics. RSC Advances, 2016, 6, 110604-110609.	1.7	43
897	Research on Hydrothermal Decoration of TiO ₂ Nanotube Films with Nanoplatelet MoS ₂ Species. Nanomaterials and Nanotechnology, 2016, 6, 37.	1.2	4
898	Origin of Improved Optical Quality of Monolayer Molybdenum Disulfide Grown on Hexagonal Boron Nitride Substrate. Small, 2016, 12, 198-203.	5.2	22
899	Layered MoS ₂ Hollow Spheres for Highlyâ€Efficient Photothermal Therapy of Rabbit Liver Orthotopic Transplantation Tumors. Small, 2016, 12, 2046-2055.	5.2	101
900	Solutionâ€Processed Twoâ€Dimensional Metal Dichalcogenideâ€Based Nanomaterials for Energy Storage and Conversion. Advanced Materials, 2016, 28, 6167-6196.	11.1	438
901	Observation of Strong Interlayer Coupling in MoS ₂ /WS ₂ Heterostructures. Advanced Materials, 2016, 28, 1950-1956.	11.1	225
902	Highâ€Performance 2D Rhenium Disulfide (ReS ₂) Transistors and Photodetectors by Oxygen Plasma Treatment. Advanced Materials, 2016, 28, 6985-6992.	11.1	209
903	Graphene–Amorphous Transitionâ€Metal Chalcogenide (MoS _{<i>x</i>} ,) Tj ETQq0 0 0 rgBT /Overloo Evolution Reaction. ChemElectroChem, 2016, 3, 565-571.	ck 10 Tf 50 1.7	0 107 Td (W 41
904	Role of Spin–Orbit Interaction and Impurity Doping in Thermodynamic Properties of Monolayer MoS2. Journal of Electronic Materials, 2016, 45, 4958-4965.	1.0	24

#	Article	IF	CITATIONS
905	Band Alignment and Minigaps in Monolayer MoS ₂ -Graphene van der Waals Heterostructures. Nano Letters, 2016, 16, 4054-4061.	4.5	288
906	Thermoelectric performance of restacked MoS ₂ nanosheets thin-film. Nanotechnology, 2016, 27, 285703.	1.3	33
907	Chemical Dissolution Pathways of MoS ₂ Nanosheets in Biological and Environmental Media. Environmental Science & Technology, 2016, 50, 7208-7217.	4.6	207
908	Designing rGO/MoS ₂ hybrid nanostructures for photocatalytic applications. RSC Advances, 2016, 6, 59001-59008.	1.7	40
909	Ultra-broadband nonlinear saturable absorption of high-yield MoS ₂ nanosheets. Nanotechnology, 2016, 27, 305203.	1.3	37
910	Production of Ni(OH) ₂ nanosheets by liquid phase exfoliation: from optical properties to electrochemical applications. Journal of Materials Chemistry A, 2016, 4, 11046-11059.	5.2	71
911	Mechanism of Hydrogen Evolution Reaction on 1T-MoS ₂ from First Principles. ACS Catalysis, 2016, 6, 4953-4961.	5.5	678
912	Large-Scale Synthesis and Systematic Photoluminescence Properties of Monolayer MoS2 on Fused Silica. ACS Applied Materials & Interfaces, 2016, 8, 18570-18576.	4.0	26
913	Effect of sulfur concentration on structural, elastic and electronic properties of molybdenum sulfides from first-principles. International Journal of Hydrogen Energy, 2016, 41, 11033-11041.	3.8	79
914	Temperature-dependent resonance energy transfer from CdSe–ZnS core–shell quantum dots to monolayer MoS2. Nano Research, 2016, 9, 2623-2631.	5.8	13
915	Facile synthesis route for MoS2-polyvinylpyrrolidone aerogels. Materials Letters, 2016, 181, 321-324.	1.3	12
916	Atomic defect states in monolayers of MoS2 and WS2. Surface Science, 2016, 651, 215-221.	0.8	69
917	Achieving Ultrafast Hole Transfer at the Monolayer MoS ₂ and CH ₃ NH ₃ PbI ₃ Perovskite Interface by Defect Engineering. ACS Nano, 2016, 10, 6383-6391.	7.3	130
918	Monolayer transition metal disulfide: Synthesis, characterization and applications. Progress in Natural Science: Materials International, 2016, 26, 221-231.	1.8	16
919	As-prepared MoS ₂ quantum dot as a facile fluorescent probe for long-term tracing of live cells. Nanotechnology, 2016, 27, 275101.	1.3	60
920	Aromatic-Exfoliated Transition Metal Dichalcogenides: Implications for Inherent Electrochemistry and Hydrogen Evolution. ACS Catalysis, 2016, 6, 4594-4607.	5.5	80
921	Effect of MoO ₃ constituents on the growth of MoS ₂ nanosheets by chemical vapor deposition. Materials Research Express, 2016, 3, 065014.	0.8	22
922	Hybrid Flexible Resistive Random Access Memoryâ€Gated Transistor for Novel Nonvolatile Data Storage. Small, 2016, 12, 390-396.	5.2	42

	CHATION R		
# 923	ARTICLE Molybdenum disulfide quantum dots: synthesis and applications. RSC Advances, 2016, 6, 65670-65682.	lF 1.7	CITATIONS 91
924	Layer Engineering of 2D Semiconductor Junctions. Advanced Materials, 2016, 28, 5126-5132.	11.1	63
925	Mesoporous MoS ₂ as a Transition Metal Dichalcogenide Exhibiting Pseudocapacitive Li and Naâ€ion Charge Storage. Advanced Energy Materials, 2016, 6, 1501937.	10.2	395
926	Functionalization of Twoâ€Dimensional MoS ₂ : On the Reaction Between MoS ₂ and Organic Thiols. Angewandte Chemie, 2016, 128, 5897-5902.	1.6	46
927	Intercalation in two-dimensional transition metal chalcogenides. Inorganic Chemistry Frontiers, 2016, 3, 452-463.	3.0	181
928	Low-Frequency Interlayer Raman Modes to Probe Interface of Twisted Bilayer MoS ₂ . Nano Letters, 2016, 16, 1435-1444.	4.5	177
929	Cathode Based on Molybdenum Disulfide Nanoflakes for Lithium–Oxygen Batteries. ACS Nano, 2016, 10, 2167-2175.	7.3	184
930	Enhanced Photoresponse of SnSe-Nanocrystals-Decorated WS ₂ Monolayer Phototransistor. ACS Applied Materials & Interfaces, 2016, 8, 4781-4788.	4.0	91
931	Vacuum ultraviolet excitation luminescence spectroscopy of few-layered MoS ₂ . Journal of Physics Condensed Matter, 2016, 28, 015301.	0.7	13
932	Monolayer MoS ₂ –Graphene Hybrid Aerogels with Controllable Porosity for Lithium-Ion Batteries with High Reversible Capacity. ACS Applied Materials & Interfaces, 2016, 8, 2680-2687.	4.0	191
933	Strain-dependent electronic and magnetic properties of Au-doped WS2 monolayer. Solid State Communications, 2016, 230, 35-39.	0.9	10
934	Enhanced Catalytic Activities of Surfactant-Assisted Exfoliated WS ₂ Nanodots for Hydrogen Evolution. ACS Nano, 2016, 10, 2159-2166.	7.3	269
935	Ultrasensitive Mercury Ion Detection Using DNA-Functionalized Molybdenum Disulfide Nanosheet/Gold Nanoparticle Hybrid Field-Effect Transistor Device. ACS Sensors, 2016, 1, 295-302.	4.0	103
936	Fundamentals of lateral and vertical heterojunctions of atomically thin materials. Nanoscale, 2016, 8, 3870-3887.	2.8	117
937	Synthesis and characterization of MoS ₂ nanosheets. Nanotechnology, 2016, 27, 075604.	1.3	98
938	From bulk crystals to atomically thin layers of group VI-transition metal dichalcogenides vapour phase synthesis. Applied Materials Today, 2016, 3, 11-22.	2.3	70
939	Electrical Properties of Synthesized Large-Area MoS2 Field-Effect Transistors Fabricated with Inkjet-Printed Contacts. ACS Nano, 2016, 10, 2819-2826.	7.3	64
940	Intercalated 2D MoS ₂ Utilizing a Simulated Sun Assisted Process: Reducing the HER Overpotential. Journal of Physical Chemistry C, 2016, 120, 2447-2455.	1.5	61

#	Article	IF	CITATIONS
941	Precise and reversible band gap tuning in single-layer MoSe ₂ by uniaxial strain. Nanoscale, 2016, 8, 2589-2593.	2.8	159
942	Facile synthesis of large-area and highly crystalline WS2 film on dielectric surfaces for SERS. Journal of Alloys and Compounds, 2016, 666, 412-418.	2.8	37
943	Stable Monolayer Transition Metal Dichalcogenide Ordered Alloys with Tunable Electronic Properties. Journal of Physical Chemistry C, 2016, 120, 2501-2508.	1.5	51
944	Self-Driven Photodetector and Ambipolar Transistor in Atomically Thin GaTe-MoS ₂ p–n vdW Heterostructure. ACS Applied Materials & Interfaces, 2016, 8, 2533-2539.	4.0	160
945	Controlling phase transition for single-layer MTe ₂ (M = Mo and W): modulation of the potential barrier under strain. Physical Chemistry Chemical Physics, 2016, 18, 4086-4094.	1.3	105
946	Enhanced sheet conductivity of Langmuir–Blodgett assembled graphene thin films by chemical doping. 2D Materials, 2016, 3, 015002.	2.0	26
947	Carbon doped molybdenum disulfide nanosheets stabilized on graphene for the hydrogen evolution reaction with high electrocatalytic ability. Nanoscale, 2016, 8, 1676-1683.	2.8	88
948	Structural Phase Transitions by Design in Monolayer Alloys. ACS Nano, 2016, 10, 289-297.	7.3	109
949	Synthesis of WS _{2<i>x</i>} Se _{2–2<i>x</i>} Alloy Nanosheets with Composition-Tunable Electronic Properties. Nano Letters, 2016, 16, 264-269.	4.5	308
950	Effect of laser illumination on the morphology and optical property of few-layer MoS ₂ nanosheet in NMP and PMMA. Journal of Materials Chemistry C, 2016, 4, 678-683.	2.7	17
951	Anti-MoS ₂ Nanostructures: Tl ₂ S and Its Electrochemical and Electronic Properties. ACS Nano, 2016, 10, 112-123.	7.3	18
952	Low-dimensional carbon and MXene-based electrochemical capacitor electrodes. Nanotechnology, 2016, 27, 172001.	1.3	48
953	Chemically Tailoring Semiconducting Two-Dimensional Transition Metal Dichalcogenides and Black Phosphorus. ACS Nano, 2016, 10, 3900-3917.	7.3	232
954	Effects of Uniaxial and Biaxial Strain on Few-Layered Terrace Structures of MoS ₂ Grown by Vapor Transport. ACS Nano, 2016, 10, 3186-3197.	7.3	83
955	Spatially resolved optical absorption spectroscopy of single- and few-layer MoS ₂ by hyperspectral imaging. Nanotechnology, 2016, 27, 115705.	1.3	145
956	Selectable Synthesis of 2-D MoS ₂ and Its Electronic Devices: From Isolated Triangular Islands to Large-Area Continuous Thin Film. IEEE Nanotechnology Magazine, 2016, 15, 310-317.	1.1	13
957	Metal–Insulator–Semiconductor Diode Consisting of Two-Dimensional Nanomaterials. Nano Letters, 2016, 16, 1858-1862.	4.5	74
958	Molybdenum disulfide nanoflakes through Li-AHA assisted exfoliation in an aqueous medium. RSC Advances, 2016, 6, 22026-22033.	1.7	17

#	Article	IF	CITATIONS
959	Molybdenum Disulfide Nanosheets Interconnected Nitrogen-Doped Reduced Graphene Oxide Hydrogel: A High-Performance Heterostructure for Lithium-Ion Batteries. Electrochimica Acta, 2016, 193, 128-136.	2.6	38
960	Phase-driven magneto-electrical characteristics of single-layer MoS ₂ . Nanoscale, 2016, 8, 5627-5633.	2.8	26
961	Hierarchical nanotubes assembled from MoS 2 -carbon monolayer sandwiched superstructure nanosheets for high-performance sodium ion batteries. Nano Energy, 2016, 22, 27-37.	8.2	333
962	Pure and stable metallic phase molybdenum disulfide nanosheets for hydrogen evolution reaction. Nature Communications, 2016, 7, 10672.	5.8	721
963	Molybdenum disulfide nanomaterials: Structures, properties, synthesis and recent progress on hydrogen evolution reaction. Applied Materials Today, 2016, 3, 23-56.	2.3	335
964	Hydrothermal growth of few layer 2H-MoS ₂ for heterojunction photodetector and visible light induced photocatalytic applications. Journal of Materials Chemistry A, 2016, 4, 4534-4543.	5.2	125
965	Novel optical properties of MoS2 on monolayer zinc tellurium substrate. Journal of Materials Science, 2016, 51, 4580-4587.	1.7	3
966	Phase Transition of MoS ₂ Bilayer Structures. Journal of Physical Chemistry C, 2016, 120, 3776-3780.	1.5	33
967	Electronic and magnetic properties of n-type and p-doped MoS ₂ monolayers. RSC Advances, 2016, 6, 16772-16778.	1.7	54
968	One-pot synthesis of multifunctional magnetic ferrite–MoS ₂ –carbon dot nanohybrid adsorbent for efficient Pb(<scp>ii</scp>) removal. Journal of Materials Chemistry A, 2016, 4, 3893-3900.	5.2	205
969	Molybdenum sulfide/graphene-carbon nanotube nanocomposite material for electrocatalytic applications in hydrogen evolution reactions. Nano Research, 2016, 9, 837-848.	5.8	96
970	Fabrication and surface stochastic analysis of enhanced photoelectrochemical activity of a tuneable MoS ₂ –CdS thin film heterojunction. RSC Advances, 2016, 6, 16711-16719.	1.7	14
971	Excitation intensity dependence of photoluminescence from monolayers of MoS ₂ and WS ₂ /MoS ₂ heterostructures. 2D Materials, 2016, 3, 015005.	2.0	65
972	Rational synthesis of carbon shell coated polyaniline/MoS2 monolayer composites for high-performance supercapacitors. Nano Research, 2016, 9, 951-962.	5.8	101
973	Chemically exfoliated transition metal dichalcogenide nanosheet-based wearable thermoelectric generators. Energy and Environmental Science, 2016, 9, 1696-1705.	15.6	237
974	Interactions between lasers and two-dimensional transition metal dichalcogenides. Chemical Society Reviews, 2016, 45, 2494-2515.	18.7	61
975	A low temperature gas sensor based on Au-loaded MoS2 hierarchical nanostructures for detecting ammonia. Ceramics International, 2016, 42, 9327-9331.	2.3	103
976	"Non-hydrolytic―sol–gel synthesis of molybdenum sulfides. Journal of Solid State Chemistry, 2016, 242, 175-181.	1.4	8

#	Article	IF	CITATIONS
977	Periodic Modulation of the Doping Level in Striped MoS ₂ Superstructures. ACS Nano, 2016, 10, 3461-3468.	7.3	37
978	High performance MoS ₂ membranes: effects of thermally driven phase transition on CO ₂ separation efficiency. Energy and Environmental Science, 2016, 9, 1224-1228.	15.6	106
979	Biological and environmental interactions of emerging two-dimensional nanomaterials. Chemical Society Reviews, 2016, 45, 1750-1780.	18.7	216
980	Tunable electrorheological characteristics and mechanism of a series of graphene-like molybdenum disulfide coated core–shell structured polystyrene microspheres. RSC Advances, 2016, 6, 26096-26103.	1.7	13
981	Strong Circularly Polarized Photoluminescence from Multilayer MoS ₂ Through Plasma Driven Direct-Gap Transition. ACS Photonics, 2016, 3, 310-314.	3.2	12
982	Few-layer MoS ₂ -anchored graphene aerogel paper for free-standing electrode materials. Nanoscale, 2016, 8, 8042-8047.	2.8	51
983	Use of organic solvent-assisted exfoliated MoS ₂ for optimizing the thermoelectric performance of flexible PEDOT:PSS thin films. Journal of Materials Chemistry A, 2016, 4, 5265-5273.	5.2	166
984	MoS ₂ nanoflowers as high performance saturable absorbers for an all-fiber passively Q-switched erbium-doped fiber laser. Nanoscale, 2016, 8, 7704-7710.	2.8	75
985	Dynamic Structural Evolution of Metal–Metal Bonding Network in Monolayer WS ₂ . Chemistry of Materials, 2016, 28, 2308-2314.	3.2	37
986	An Electrochemical Sensor based on p-aminothiophenol/Au Nanoparticle-Decorated H TiS2 Nanosheets for Specific Detection of Picomolar Cu (II). Electrochimica Acta, 2016, 190, 480-489.	2.6	18
987	Memristive Behavior and Ideal Memristor of 1T Phase MoS ₂ Nanosheets. Nano Letters, 2016, 16, 572-576.	4.5	317
988	Facile, substrate-scale growth of mono- and few-layer homogeneous MoS ₂ films on Mo foils with enhanced catalytic activity as counter electrodes in DSSCs. Nanotechnology, 2016, 27, 045404.	1.3	38
989	Layer-by-layer thinning of two-dimensional MoS ₂ films by using a focused ion beam. Nanoscale, 2016, 8, 4107-4112.	2.8	33
990	Fast and large-area growth of uniform MoS ₂ monolayers on molybdenum foils. Nanoscale, 2016, 8, 2234-2241.	2.8	104
991	Wafer-scale, conformal and direct growth of MoS2 thin films by atomic layer deposition. Applied Surface Science, 2016, 365, 160-165.	3.1	119
992	DNA-Assisted Exfoliation of Tungsten Dichalcogenides and Their Antibacterial Effect. ACS Applied Materials & Mater	4.0	76
993	Uniform and Repeatable Cold-Wall Chemical Vapor Deposition Synthesis of Single-Layer MoS2. Crystal Growth and Design, 2016, 16, 988-995.	1.4	10
994	Designing two dimensional nanoarchitectured MoS2 sheets grown on Mo foil as a binder free electrode for supercapacitors. Electrochimica Acta, 2016, 190, 305-312.	2.6	159

#	Article	IF	CITATIONS
995	Advanced N-doped mesoporous molybdenum disulfide nanosheets and the enhanced lithium-ion storage performance. Journal of Materials Chemistry A, 2016, 4, 1440-1445.	5.2	55
996	A theoretical study on the electronic property of a new two-dimensional material molybdenum dinitride. Physics Letters, Section A: General, Atomic and Solid State Physics, 2016, 380, 768-772.	0.9	27
997	Synthesis and characterization of large-area and continuous MoS ₂ atomic layers by RF magnetron sputtering. Nanoscale, 2016, 8, 4340-4347.	2.8	74
998	A facile and one-step ethanol-thermal synthesis of MoS ₂ quantum dots for two-photon fluorescence imaging. Journal of Materials Chemistry B, 2016, 4, 27-31.	2.9	108
999	Two-Dimensional Rectangular and Honeycomb Lattices of NbN: Emergence of Piezoelectric and Photocatalytic Properties at Nanoscale. Nano Letters, 2016, 16, 126-131.	4.5	56
1000	2D layered group IIIA metal chalcogenides: synthesis, properties and applications in electronics and optoelectronics. CrystEngComm, 2016, 18, 3968-3984.	1.3	171
1001	Ultra-thin and porous MoSe ₂ nanosheets: facile preparation and enhanced electrocatalytic activity towards the hydrogen evolution reaction. Physical Chemistry Chemical Physics, 2016, 18, 70-74.	1.3	111
1002	Rapid, one-pot synthesis of luminescent MoS ₂ nanoscrolls using supercritical fluid processing. Journal of Materials Chemistry C, 2016, 4, 1165-1169.	2.7	46
1003	Comparison of lubricant oil antioxidant analysis by fluorescence spectroscopy and linear sweep voltammetry. Tribology International, 2016, 94, 279-287.	3.0	14
1004	Superconductivity in Potassium-Doped Metallic Polymorphs of MoS ₂ . Nano Letters, 2016, 16, 629-636.	4.5	129
1005	Rapid preparation of single-layer transition metal dichalcogenide nanosheets via ultrasonication enhanced lithium intercalation. Chemical Communications, 2016, 52, 529-532.	2.2	102
1006	Synthesis and lithium storage properties of MoS 2 nanoparticles prepared using supercritical ethanol. Chemical Engineering Journal, 2016, 285, 517-527.	6.6	33
1007	Interfacial thermal conductance in graphene/MoS2 heterostructures. Carbon, 2016, 96, 888-896.	5.4	116
1008	Plasmonics Enhanced Average Broadband Absorption of Monolayer MoS2. Plasmonics, 2016, 11, 285-289.	1.8	21
1009	Nano Devices and Circuit Techniques for Low-Energy Applications and Energy Harvesting. KAIST Research Series, 2016, , .	1.5	7
1010	Fabrication of blue luminescent MoS 2 quantum dots by wet grinding assisted co-solvent sonication. Journal of Luminescence, 2016, 169, 342-347.	1.5	59
1011	Electronic and magnetic properties of X-doped (XÂ=ÂTi, Zr, Hf) tungsten disulphide monolayer. Journal of Alloys and Compounds, 2016, 654, 574-579.	2.8	45
1012	Graphene and Two-Dimensional Transition Metal Dichalcogenide Materials for Energy-Related Applications. KAIST Research Series, 2016, , 253-291.	1.5	0

#	Article	IF	CITATIONS
1013	First-principles study of MoS2, phosphorene and graphene based single electron transistor for gas sensing applications. Sensors and Actuators B: Chemical, 2016, 222, 492-498.	4.0	180
1014	Recent advances in computational studies of organometallic sheets: Magnetism, adsorption and catalysis. Computational Materials Science, 2016, 112, 492-502.	1.4	29
1015	Enhanced peroxidase-like activity of MoS2/graphene oxide hybrid with light irradiation for glucose detection. Biosensors and Bioelectronics, 2017, 89, 652-658.	5.3	129
1016	Two-dimensional MoS2: A promising building block for biosensors. Biosensors and Bioelectronics, 2017, 89, 56-71.	5.3	215
1017	Graphene-like 2D nanomaterial-based biointerfaces for biosensing applications. Biosensors and Bioelectronics, 2017, 89, 43-55.	5.3	221
1018	Catalytic synergy effect of MoS ₂ /reduced graphene oxide hybrids for a highly efficient hydrogen evolution reaction. RSC Advances, 2017, 7, 5480-5487.	1.7	67
1019	Impact and Origin of Interface States in MOS Capacitor with Monolayer MoS2 and HfO2 High-k Dielectric. Scientific Reports, 2017, 7, 40669.	1.6	83
1020	Unimer-Assisted Exfoliation for Highly Concentrated Aqueous Dispersion Solutions of Single- and Few-Layered van der Waals Materials. Langmuir, 2017, 33, 1217-1226.	1.6	9
1021	One-pot synthesis of reduced graphene oxide/molybdenum disulfide heterostructures with intrinsic incommensurateness for enhanced lubricating properties. Carbon, 2017, 115, 83-94.	5.4	84
1022	Efficient hydrogen evolution electrocatalysts from LixMoS2 nanoparticles on three-dimensional substrate. International Journal of Hydrogen Energy, 2017, 42, 6482-6489.	3.8	11
1023	Solution-processable poly(N-vinylcarbazole)-covalently grafted MoS ₂ nanosheets for nonvolatile rewritable memory devices. Nanoscale, 2017, 9, 2449-2456.	2.8	44
1024	Tunable Doping in Hydrogenated Single Layered Molybdenum Disulfide. ACS Nano, 2017, 11, 1755-1761.	7.3	86
1025	Poly(ionic liquid)-Promoted Solvent-Borne Efficient Exfoliation of MoS ₂ /MoSe ₂ Nanosheets for Dual-Responsive Dispersion and Polymer Nanocomposites. Journal of Physical Chemistry C, 2017, 121, 4747-4759.	1.5	35
1026	The structure, electronic, magnetic and optical properties of the Mn doped and Mn-X (XÂ=ÂF, Cl, Br, I and) Tj ETQ 138-145.	9q1 1 0.78 2.8	4314 rgBT /(28
1027	Cracked monolayer 1T MoS ₂ with abundant active sites for enhanced electrocatalytic hydrogen evolution. Catalysis Science and Technology, 2017, 7, 718-724.	2.1	83
1028	Excellent photocatalytic performance of few-layer MoS2/graphene hybrids. Journal of Alloys and Compounds, 2017, 700, 12-17.	2.8	44
1029	Inter-Layer Coupling Induced Valence Band Edge Shift in Mono- to Few-Layer MoS2. Scientific Reports, 2017, 7, 40559.	1.6	32
1030	The microstructure and photoluminescence of ZnO–MoS ₂ core shell nano-materials. Materials Research Express, 2017, 4, 015024.	0.8	7

#	Article	IF	CITATIONS
1031	Chemical Stabilization of 1T′ Phase Transition Metal Dichalcogenides with Giant Optical Kerr Nonlinearity. Journal of the American Chemical Society, 2017, 139, 2504-2511.	6.6	171
1032	Large area growth of monolayer MoS ₂ film on quartz and its use as a saturable absorber in laser mode-locking. Semiconductor Science and Technology, 2017, 32, 025013.	1.0	19
1033	Recent advances of supercapacitors based on two-dimensional materials. Applied Materials Today, 2017, 7, 1-12.	2.3	20
1034	Photoelectrochemical immunosensing of tetrabromobisphenol A based on the enhanced effect of dodecahedral gold nanocrystals/MoS2 nanosheets. Sensors and Actuators B: Chemical, 2017, 245, 205-212.	4.0	35
1035	Supercritical CO ₂ â€Assisted Reverseâ€Micelleâ€Induced Solutionâ€Phase Fabrication of Twoâ€Dimensional Metallic 1Tâ€MoS ₂ and 1Tâ€WS ₂ . ChemNanoMat, 2017, 3, 466-47	$1^{1.5}_{.}$	43
1036	High-performance supercapacitor electrode based on a nanocomposite of polyaniline and chemically exfoliated MoS2 nanosheets. Journal of Solid State Electrochemistry, 2017, 21, 2071-2077.	1.2	18
1037	Catalytically-etched hexagonal boron nitride flakes and their surface activity. Applied Surface Science, 2017, 402, 254-260.	3.1	6
1038	Emerging Lowâ€Dimensional Materials for Nonlinear Optics and Ultrafast Photonics. Advanced Materials, 2017, 29, 1605886.	11.1	265
1039	Band Alignment at GaN/Single-Layer WSe ₂ Interface. ACS Applied Materials & Interfaces, 2017, 9, 9110-9117.	4.0	72
1040	Two dimensional MoS2/CNT hybrid ink for paper-based capacitive energy storage. Journal of Materials Science: Materials in Electronics, 2017, 28, 8452-8459.	1.1	33
1041	Highly conductive carbon black supported amorphous molybdenum disulfide for efficient hydrogen evolution reaction. Journal of Power Sources, 2017, 347, 210-219.	4.0	76
1042	Hydrogen evolution electrocatalysis with binary-nonmetal transition metal compounds. Journal of Materials Chemistry A, 2017, 5, 5995-6012.	5.2	142
1043	Plasmonics of 2D Nanomaterials: Properties and Applications. Advanced Science, 2017, 4, 1600430.	5.6	162
1044	Free-Standing Single-Molecule Thick Crystals Consisting of Linear Long-Chain Polymers. Nano Letters, 2017, 17, 1655-1659.	4.5	10
1045	Swollen Ammoniated MoS ₂ with 1T/2H Hybrid Phases for High-Rate Electrochemical Energy Storage. ACS Sustainable Chemistry and Engineering, 2017, 5, 2509-2515.	3.2	194
1046	Confinement effect of monolayer MoS ₂ quantum dots on conjugated polyimide and promotion of solar-driven photocatalytic hydrogen generation. Dalton Transactions, 2017, 46, 3877-3886.	1.6	72
1047	Solution synthesis of few-layer 2H MX ₂ (M = Mo, W; X = S, Se). Journal of Materials Chemistry C, 2017, 5, 2859-2864.	2.7	32
1048	Concurrent Synthesis of Highâ€Performance Monolayer Transition Metal Disulfides. Advanced Functional Materials, 2017, 27, 1605896.	7.8	35

#	Article	IF	CITATIONS
1049	Synthesis of MoS 2 ribbons and their branched structures by chemical vapor deposition in sulfur-enriched environment. Applied Surface Science, 2017, 409, 396-402.	3.1	26
1050	Template-Free Vapor-Phase Growth of PatrÃ ³ nite by Atomic Layer Deposition. Chemistry of Materials, 2017, 29, 2864-2873.	3.2	37
1051	Ultrafine transition metal dichalcogenide nanodots prepared by polyvinylpyrrolidone-assisted liquid phase exfoliation. Journal of Materials Chemistry B, 2017, 5, 2609-2615.	2.9	24
1052	Defect-induced Vibration Modes of <mmi:math <br="" xmins:mmi="http://www.w3.org/1998/Math/MathML">display="inline"><mmi:mrow><mmi:msup> <mmi:mrow><mmi:mi>Ar</mmi:mi> </mmi:mrow><mmi:mrow><mmi -Irradiated <mmi:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:< td=""><td>1.5</td><td>58</td></mmi:<></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:math></mmi </mmi:mrow></mmi:msup></mmi:mrow></mmi:math>	1.5	58
1053	Exfoliation of the defect-rich MoS2 nanosheets to obtain nanodots modified MoS2 thin nanosheets for electrocatalytic hydrogen evolution. Journal of Materials Science: Materials in Electronics, 2017, 28, 7413-7418.	1.1	19
1054	Nature of low dimensional structural modulations and relative phase stability in RexMo(W)1-xS2 transition metal dichalcogenide alloys. Journal of Applied Physics, 2017, 121, 105101.	1.1	15
1055	Interfacial Defect Engineering on Electronic States of Two-Dimensional AlN/MoS ₂ Heterostructure. Journal of Physical Chemistry C, 2017, 121, 6605-6613.	1.5	31
1056	A robust free-standing MoS2/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) film for supercapacitor applications. Electrochimica Acta, 2017, 235, 348-355.	2.6	84
1057	Silver wrapped MoS2 hybrid electrode materials for high-performance supercapacitor. Journal of Alloys and Compounds, 2017, 708, 763-768.	2.8	29
1058	Multidimensional Thin Film Hybrid Electrodes with MoS ₂ Multilayer for Electrocatalytic Hydrogen Evolution Reaction. ACS Applied Materials & Interfaces, 2017, 9, 8688-8695.	4.0	43
1059	Size-Tuning of WSe ₂ Flakes for High Efficiency Inverted Organic Solar Cells. ACS Nano, 2017, 11, 3517-3531.	7.3	90
1060	Determination of Crystal Axes in Semimetallic T′â€MoTe ₂ by Polarized Raman Spectroscopy. Advanced Functional Materials, 2017, 27, 1604799.	7.8	47
1061	Fabrication of a Cu ₂ O/gâ€C ₃ N ₄ /WS ₂ Tripleâ€Layer Photocathode for Photoelectrochemical Hydrogen Evolution. ChemElectroChem, 2017, 4, 1498-1502.	1.7	24
1062	Enhancement of Exciton Emission from Multilayer MoS ₂ at High Temperatures: Intervalley Transfer versus Interlayer Decoupling. Small, 2017, 13, 1700157.	5.2	19
1063	Strain effects on the behavior of isolated and paired sulfur vacancy defects in monolayer <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mi>MoS </mml:mi> <mml:mn>2 Physical Review B, 2017, 95, .</mml:mn></mml:msub></mml:math 	m a.x <td>າl:ເສຣub></td>	າ l:ເສຣ ub>
1064	Emerging Trends in Phosphorene Fabrication towards Next Generation Devices. Advanced Science, 2017, 4, 1600305.	5.6	285
1065	Electronic properties of 1Tâ€MoS ₂ nanoribbon and its homojunction nanoribbon. Physica Status Solidi (B): Basic Research, 2017, 254, 1600728.	0.7	3
1066	Engineering interfacial charge-transfer by phase transition realizing enhanced photocatalytic hydrogen evolution activity. Inorganic Chemistry Frontiers, 2017, 4, 663-667.	3.0	25

#	Article	IF	CITATIONS
1067	The indirect–direct band gap tuning in armchair MoS ₂ nanoribbon by edge passivation. Journal Physics D: Applied Physics, 2017, 50, 095102.	1.3	20
1068	Ultrathin 1T-phase MoS 2 nanosheets decorated hollow carbon microspheres as highly efficient catalysts for solar energy harvesting and storage. Journal of Power Sources, 2017, 345, 156-164.	4.0	62
1069	Centimeter-Scale Nearly Single-Crystal Monolayer MoS ₂ via Self-Limiting Vapor Deposition Epitaxy. Journal of Physical Chemistry C, 2017, 121, 4703-4707.	1.5	12
1070	Ionic Liquid-Assisted Synthesis of Nanoscale (MoS ₂) _{(sub><i>x</i>} (SnO ₂) _{1–<i>x</i>} on Reduced Graphene Oxide for the Electrocatalytic Hydrogen Evolution Reaction. ACS Applied Materials & amp; Interfaces. 2017. 9. 8065-8074.	4.0	55
1071	Few-layer MoS ₂ flakes as a hole-selective layer for solution-processed hybrid organic hydrogen-evolving photocathodes. Journal of Materials Chemistry A, 2017, 5, 4384-4396.	5.2	55
1072	MoS2 monolayer catalyst doped with isolated Co atoms for the hydrodeoxygenation reaction. Nature Chemistry, 2017, 9, 810-816.	6.6	683
1073	Pressureâ€induced Photoluminescence Adjustment and Lattice Disorder in Monolayer WSe ₂ . ChemNanoMat, 2017, 3, 238-244.	1.5	9
1074	2D Organic–Inorganic Hybrid Thin Films for Flexible UV–Visible Photodetectors. Advanced Functional Materials, 2017, 27, 1605554.	7.8	125
1076	Molecular Alignment and Electronic Structure of <i>N</i> , <i>N</i> ꀲ-Dibutyl-3,4,9,10-perylene-tetracarboxylic-diimide Molecules on MoS ₂ Surfaces. ACS Applied Materials & Interfaces, 2017, 9, 5566-5573.	4.0	19
1077	Influence of the substrate material on the optical properties of tungsten diselenide monolayers. 2D Materials, 2017, 4, 025045.	2.0	80
1078	Hierarchical nanosheet-based MoS 2 /graphene nanobelts with high electrochemical energy storage performance. Journal of Power Sources, 2017, 354, 1-9.	4.0	50
1079	Preparation of nanostructured and nanosheets of MoS2 oxide using oxidation method. Ultrasonics Sonochemistry, 2017, 39, 188-196.	3.8	36
1080	Chemical Design and Synthesis of Functionalized Probes for Imaging and Treating Tumor Hypoxia. Chemical Reviews, 2017, 117, 6160-6224.	23.0	682
1081	A 3D-printed scaffold with MoS2 nanosheets for tumor therapy and tissue regeneration. NPG Asia Materials, 2017, 9, e376-e376.	3.8	122
1082	On the chemically-assisted excitonic enhancement in environmentally-friendly solution dispersions of two-dimensional MoS ₂ and WS ₂ . Journal of Materials Chemistry C, 2017, 5, 5323-5333.	2.7	38
1083	Stabilizing the MXenes by Carbon Nanoplating for Developing Hierarchical Nanohybrids with Efficient Lithium Storage and Hydrogen Evolution Capability. Advanced Materials, 2017, 29, 1607017.	11.1	583
1084	1T-Phase MoS ₂ Nanosheets on TiO ₂ Nanorod Arrays: 3D Photoanode with Extraordinary Catalytic Performance. ACS Sustainable Chemistry and Engineering, 2017, 5, 5175-5182.	3.2	98
1085	Oneâ€Step Solution Phase Growth of Transition Metal Dichalcogenide Thin Films Directly on Solid Substrates. Advanced Materials, 2017, 29, 1700291.	11.1	39

#	Article	IF	CITATIONS
1086	lonic strength induced electrodeposition of two-dimensional layered MoS 2 nanosheets. Applied Materials Today, 2017, 8, 44-53.	2.3	29
1087	Location-specific growth and transfer of arrayed MoS ₂ monolayers with controllable size. 2D Materials, 2017, 4, 025093.	2.0	40
1088	Antibiotic-loaded MoS ₂ nanosheets to combat bacterial resistance via biofilm inhibition. Nanotechnology, 2017, 28, 225101.	1.3	34
1089	Liquid/Liquid Interfacial Synthesis of a Click Nanosheet. Chemistry - A European Journal, 2017, 23, 8443-8449.	1.7	17
1090	CO ₂ â€Assisted Solutionâ€Phase Selective Assembly of 2D WS ₂ â€WO ₃ â <h<sub>2O and 1Tâ€2H MoS₂ to Desirable Comple Heterostructures. ChemNanoMat, 2017, 3, 632-638.</h<sub>	ex1.5	16
1091	Probing the local nature of excitons and plasmons in few-layer MoS2. Npj 2D Materials and Applications, 2017, 1, .	3.9	58
1092	Triphasic 2D Materials by Vertically Stacking Laterally Heterostructured 2Hâ€∤1T′â€MoS ₂ on Graphene for Enhanced Photoresponse. Advanced Electronic Materials, 2017, 3, 1700024.	2.6	31
1093	Large Lateral Photovoltage Observed in MoS ₂ Thickness-Modulated ITO/MoS ₂ /p-Si Heterojunctions. ACS Applied Materials & Interfaces, 2017, 9, 18377-18387.	4.0	68
1094	Growth of monolayer MoS 2 films in a quasi-closed crucible encapsulated substrates by chemical vapor deposition. Chemical Physics Letters, 2017, 679, 181-184.	1.2	12
1095	Synthesis of Ni ₉ S ₈ /MoS ₂ heterocatalyst for Enhanced Hydrogen Evolution Reaction. Langmuir, 2017, 33, 5148-5153.	1.6	39
1096	A facile one-pot hydrothermal synthesis of tin sulfide-decorated reduced graphene oxide nanoribbons and its sensing application for a flavanone naringenin. Journal of Electroanalytical Chemistry, 2017, 797, 89-96.	1.9	6
1097	Facile preparation of MoS2 based polymer composites via mussel inspired chemistry and their high efficiency for removal of organic dyes. Applied Surface Science, 2017, 419, 35-44.	3.1	209
1098	Electron-Doped 1T-MoS ₂ via Interface Engineering for Enhanced Electrocatalytic Hydrogen Evolution. Chemistry of Materials, 2017, 29, 4738-4744.	3.2	270
1099	Phase evolution of lithium intercalation dynamics in 2H-MoS ₂ . Nanoscale, 2017, 9, 7533-7540.	2.8	83
1100	Probing microstructures of molybdenum disulfide quantum dots by resonant Raman scattering. Applied Physics Letters, 2017, 110, 161910.	1.5	11
1101	Assembly of MoS 2 nanosheet-TiO 2 nanorod heterostructure as sensor scaffold for photoelectrochemical biosensing. Electrochimica Acta, 2017, 242, 327-336.	2.6	77
1102	Hydrogen Evolution Reaction Activity of Graphene–MoS ₂ van der Waals Heterostructures. ACS Energy Letters, 2017, 2, 1355-1361.	8.8	141
1103	Benzyl viologen-assisted simultaneous exfoliation and n-doping of MoS ₂ nanosheets via a solution process. Journal of Materials Chemistry C, 2017, 5, 5395-5401.	2.7	12

#	Article	IF	CITATIONS
1104	MoS 2 gas sensor functionalized by Pd for the detection of hydrogen. Sensors and Actuators B: Chemical, 2017, 250, 686-691.	4.0	161
1105	Long-Range Lattice Engineering of MoTe ₂ by a 2D Electride. Nano Letters, 2017, 17, 3363-3368.	4.5	72
1106	Amorphous nickel-cobalt complexes hybridized with 1T-phase molybdenum disulfide via hydrazine-induced phase transformation for water splitting. Nature Communications, 2017, 8, 15377.	5.8	284
1107	Chalcogenide Nanosheets: Optical Signatures of Many-Body Effects and Electronic Band Structure. Nanostructure Science and Technology, 2017, , 133-162.	0.1	2
1108	Electronic and transport properties of 2H 1â^'x 1T x MoS 2 hybrid structure: A first-principle study. Physica E: Low-Dimensional Systems and Nanostructures, 2017, 91, 178-184.	1.3	7
1109	Vertical 1T-MoS ₂ nanosheets with expanded interlayer spacing edged on a graphene frame for high rate lithium-ion batteries. Nanoscale, 2017, 9, 6975-6983.	2.8	158
1110	MoS ₂ -DNA and MoS ₂ based sensors. RSC Advances, 2017, 7, 23573-23582.	1.7	45
1111	Low-temperature Synthesis of Heterostructures of Transition Metal Dichalcogenide Alloys (W _{<i>x</i>} Mo _{1–<i>x</i>} S ₂) and Graphene with Superior Catalytic Performance for Hydrogen Evolution. ACS Nano, 2017, 11, 5103-5112.	7.3	157
1112	Interplay between many body effects and Coulomb screening in the optical bandgap of atomically thin MoS ₂ . Nanoscale, 2017, 9, 10647-10652.	2.8	23
1113	Green synthesis of luminescent and defect-free bio-nanosheets of MoS ₂ : interfacing two-dimensional crystals with hydrophobins. RSC Advances, 2017, 7, 22400-22408.	1.7	31
1114	Tunable Wetting Property in Growth Mode-Controlled WS2 Thin Films. Nanoscale Research Letters, 2017, 12, 262.	3.1	10
1115	Electrosynthesis of Bifunctional WS _{3â~`<i>x</i>} /Reduced Graphene Oxide Hybrid for Hydrogen Evolution Reaction and Oxygen Reduction Reaction Electrocatalysis. Chemistry - A European Journal, 2017, 23, 8510-8519.	1.7	20
1116	Colloidal 2D nanosheets of MoS 2 and other transition metal dichalcogenides through liquid-phase exfoliation. Advances in Colloid and Interface Science, 2017, 245, 40-61.	7.0	143
1117	Solution-processed two-dimensional layered heterostructure thin-film with optimized thermoelectric performance. Physical Chemistry Chemical Physics, 2017, 19, 17560-17567.	1.3	37
1118	Large-scale fabrication of a flexible, highly conductive composite paper based on molybdenum disulfide–Pt nanoparticle–single-walled carbon nanotubes for efficient hydrogen production. Chemical Communications, 2017, 53, 380-383.	2.2	11
1119	2D Nanoelectronics. Nanoscience and Technology, 2017, , .	1.5	20
1120	External Stimuli Responsive 2D Charge Transfer Polymers. Advanced Materials Interfaces, 2017, 4, 1600769.	1.9	7
1121	Systematic study of electronic structure and band alignment of monolayer transition metal dichalcogenides in Van der Waals heterostructures. 2D Materials, 2017, 4, 015026.	2.0	160

#	Article	IF	CITATIONS
1122	Two-Dimensional Materials. Nanoscience and Technology, 2017, , 115-159.	1.5	1
1123	Photocatalysis-Based Nanoprobes Using Noble Metal–Semiconductor Heterostructure for Visible Light-Driven in Vivo Detection of Mercury. Analytical Chemistry, 2017, 89, 7649-7658.	3.2	32
1124	Structural Transformations in Two-Dimensional Transition-Metal Dichalcogenide MoS ₂ under an Electron Beam: Insights from First-Principles Calculations. Journal of Physical Chemistry Letters, 2017, 8, 3061-3067.	2.1	81
1125	Integrating metallic nanoparticles of Au and Pt with MoS ₂ –CdS hybrids for high-efficient photocatalytic hydrogen generation via plasmon-induced electron and energy transfer. RSC Advances, 2017, 7, 26097-26103.	1.7	27
1126	InGaN/GaN nanowires epitaxy on large-area MoS2 for high-performance light-emitters. RSC Advances, 2017, 7, 26665-26672.	1.7	32
1127	High-quality single-layer nanosheets of MS ₂ (M = Mo, Nb, Ta, Ti) directly exfoliated from AMS ₂ (A = Li, Na, K) crystals. Journal of Materials Chemistry C, 2017, 5, 5977-5983.	2.7	35
1128	Self-assembly and morphological control of three-dimensional macroporous architectures built of two-dimensional materials. Nano Today, 2017, 14, 100-123.	6.2	69
1129	Optical and electronic property tailoring by MoS2-polymer hybrid solar cell. Organic Electronics, 2017, 48, 138-146.	1.4	10
1130	MoS ₂ /WS ₂ Heterojunction for Photoelectrochemical Water Oxidation. ACS Catalysis, 2017, 7, 4990-4998.	5.5	189
1131	Computational Study of MoS ₂ /HfO ₂ Defective Interfaces for Nanometer-Scale Electronics. ACS Omega, 2017, 2, 2827-2834.	1.6	16
1132	Poly(4-styrenesulfonate)-induced sulfur vacancy self-healing strategy for monolayer MoS2 homojunction photodiode. Nature Communications, 2017, 8, 15881.	5.8	191
1133	Few layered MoO3 nano sheets-SWCNT composite thin film as supercapacitor electrode. AIP Conference Proceedings, 2017, , .	0.3	5
1134	Topâ€Down Integration of Molybdenum Disulfide Transistors with Waferâ€Scale Uniformity and Layer Controllability. Small, 2017, 13, 1603157.	5.2	45
1135	Phase-transformation engineering in MoS 2 on carbon cloth as flexible binder-free anode for enhancing lithium storage. Journal of Alloys and Compounds, 2017, 716, 112-118.	2.8	66
1136	Passively Q-switched Nd:YVO 4 laser with MoS 2 /GaAs saturable absorber. Optical Materials, 2017, 70, 153-157.	1.7	8
1137	One-step synthesis of water-soluble and highly fluorescent MoS2 quantum dots for detection of hydrogen peroxide and glucose. Sensors and Actuators B: Chemical, 2017, 252, 183-190.	4.0	81
1138	A DFT study and experimental evidence of the sonication-induced cleavage of molybdenum sulfide Mo ₂ S ₃ in liquids. Journal of Materials Chemistry C, 2017, 5, 6601-6610.	2.7	13
1139	Graphene and related two-dimensional materials: Structure-property relationships for electronics and optoelectronics. Applied Physics Reviews, 2017, 4, .	5.5	476

#	Article	IF	CITATIONS
1140	Identifying Excitation and Emission Rate Contributions to Plasmon-Enhanced Photoluminescence from Monolayer MoS ₂ Using a Tapered Gold Nanoantenna. ACS Photonics, 2017, 4, 1602-1606.	3.2	17
1141	Synthetic approaches to two-dimensional transition metal dichalcogenide nanosheets. Progress in Materials Science, 2017, 89, 411-478.	16.0	176
1142	Optical polarization in mono and bilayer MoS2. Current Applied Physics, 2017, 17, 1153-1157.	1.1	7
1143	A simple electrochemical route to metallic phase trilayer MoS ₂ : evaluation as electrocatalysts and supercapacitors. Journal of Materials Chemistry A, 2017, 5, 11316-11330.	5.2	119
1144	Exfoliated MoS ₂ and MoSe ₂ Nanosheets by a Supercritical Fluid Process for a Hybrid Mg–Li-Ion Battery. ACS Omega, 2017, 2, 2360-2367.	1.6	64
1145	Large-area synthesis of monolayer MoSe ₂ films on SiO ₂ /Si substrates by atmospheric pressure chemical vapor deposition. RSC Advances, 2017, 7, 27969-27973.	1.7	66
1146	Recent advances of supercapacitors based on two-dimensional materials. Applied Materials Today, 2017, 8, 104-115.	2.3	139
1147	Large-area snow-like MoSe ₂ monolayers: synthesis, growth mechanism, and efficient electrocatalyst application. Nanotechnology, 2017, 28, 275704.	1.3	26
1148	Sub-picomolar label-free detection of thrombin using electrochemical impedance spectroscopy of aptamer-functionalized MoS ₂ . Analyst, The, 2017, 142, 2770-2780.	1.7	44
1149	Electronic and transport properties of heterophase compounds based on MoS2. JETP Letters, 2017, 105, 250-254.	0.4	9
1150	A photocatalyst of sulphur depleted monolayered molybdenum sulfide nanocrystals for dye degradation and hydrogen evolution reaction. Nano Energy, 2017, 38, 544-552.	8.2	90
1151	Excitation-wavelength dependent upconverting surfactant free MoS2 nanoflakes grown by hydrothermal method. Journal of Luminescence, 2017, 192, 6-10.	1.5	17
1152	2D transition metal dichalcogenides. Nature Reviews Materials, 2017, 2, .	23.3	3,689
1153	Enhanced second and third harmonic generations of vertical and planar spiral MoS ₂ nanosheets. Nanotechnology, 2017, 28, 295301.	1.3	16
1154	Phase stability in MoTe 2 prepared by low temperature Mo tellurization using close space isothermal Te annealing. Materials Chemistry and Physics, 2017, 198, 317-323.	2.0	10
1155	Interlayer Nanoarchitectonics of Twoâ€Dimensional Transitionâ€Metal Dichalcogenides Nanosheets for Energy Storage and Conversion Applications. Advanced Energy Materials, 2017, 7, 1700571.	10.2	303
1156	A theoretical study for electronic and transport properties of covalent functionalized MoS2 monolayer. Chemical Physics, 2017, 490, 29-37.	0.9	13
1157	Tuning Contact Barrier Height between Metals and MoS ₂ Monolayer through Interface Engineering. Advanced Materials Interfaces, 2017, 4, 1700035.	1.9	19

#	Article	IF	CITATIONS
1158	WS2/Silicon Heterojunction Solar Cells: A CVD Process for the Fabrication of WS2 Films on p-Si Substrates for Photovoltaic and Spectral Responses. IEEE Nanotechnology Magazine, 2017, 11, 33-38.	0.9	21
1159	Engineering the Electronic Properties of Twoâ€Dimensional Transition Metal Dichalcogenides by Introducing Mirror Twin Boundaries. Advanced Electronic Materials, 2017, 3, 1600468.	2.6	85
1160	Stability of defects in monolayer MoS 2 and their interaction with O 2 molecule: A first-principles study. Applied Surface Science, 2017, 412, 385-393.	3.1	72
1161	Recent progress in high-mobility thin-film transistors based on multilayer 2D materials. Journal Physics D: Applied Physics, 2017, 50, 164001.	1.3	20
1162	First principles studies on electronic and transport properties of edge contact graphene-MoS2 heterostructure. Computational Materials Science, 2017, 133, 137-144.	1.4	23
1163	Direct synthesis of thickness-tunable MoS2 quantum dot thin layers: Optical, structural and electrical properties and their application to hydrogen evolution. Nano Energy, 2017, 35, 101-114.	8.2	99
1164	Pressure-induced permanent metallization with reversible structural transition in molybdenum disulfide. Applied Physics Letters, 2017, 110, .	1.5	45
1165	Light–matter interaction in transition metal dichalcogenides and their heterostructures. Journal Physics D: Applied Physics, 2017, 50, 173001.	1.3	91
1166	Dual-mode electrochemical analysis of microRNA-21 using gold nanoparticle-decorated MoS2 nanosheet. Biosensors and Bioelectronics, 2017, 94, 552-559.	5.3	169
1167	Strong effect of compressive strain on Ni-doped monolayer WSe 2. Physica E: Low-Dimensional Systems and Nanostructures, 2017, 90, 85-89.	1.3	6
1168	Microstructure and photoluminescence of MoOx decorated ZnO nanorods. Chinese Journal of Physics, 2017, 55, 268-274.	2.0	3
1169	Microcavity Laser Based on a Single Molecule Thick High Gain Layer. ACS Nano, 2017, 11, 4514-4520.	7.3	11
1170	Manipulation of local optical properties and structures in molybdenum-disulfide monolayers using electric field-assisted near-field techniques. Scientific Reports, 2017, 7, 46004.	1.6	5
1171	Negative capacitance in <i>ZnO1-xChx</i> (<i>Ch</i> = S, Se, Te): Role of localized charge recombination Journal of Applied Physics, 2017, 121, .	ⁿ 1.1	10
1172	Surfactantâ€Free Polarâ€ŧoâ€Nonpolar Phase Transfer of Exfoliated MoS ₂ Twoâ€Dimensional Colloids. ChemPlusChem, 2017, 82, 732-741.	1.3	10
1173	Oxidation suppression during hydrothermal phase reversion allows synthesis of monolayer semiconducting MoS ₂ in stable aqueous suspension. Nanoscale, 2017, 9, 5398-5403.	2.8	36
1174	Highly enhanced thermoelectric performance of WS ₂ nanosheets upon embedding PEDOT:PSS. Journal of Polymer Science, Part B: Polymer Physics, 2017, 55, 997-1004.	2.4	34
1175	Raman and Xâ€ray photoelectron spectroscopy investigation of the effect of gammaâ€ray irradiation on MoS ₂ . Micro and Nano Letters, 2017, 12, 271-274.	0.6	20

ARTICLE IF CITATIONS Functionalized Molybdenum Disulfide Nanosheets for 0D–2D Hybrid Nanostructures: Photoinduced 1176 67 2.1 Charge Transfer and Enhanced Photoresponse. Journal of Physical Chemistry Letters, 2017, 8, 1729-1738. Layer-controlled precise fabrication of ultrathin MoS₂ films by atomic layer deposition. 1.3 39 Nanotechnology, 2017, 28, 195605. Intracellular DNA and microRNA sensing based on metal-organic framework nanosheets with 1178 2.9 87 enzyme-free signal amplification. Talanta, 2017, 170, 74-80. Quantum size confinement in gallium selenide nanosheets: band gap tunability versus stability 1179 limitation. Nanotechnology, 2017, 28, 175701. Quantitative Modeling of MoS₂â€"Solvent Interfaces: Predicting Contact Angles and Exfoliation Performance using Molecular Dynamics. Journal of Physical Chemistry C, 2017, 121, 1180 1.581 9022-9031. Optically programmable encoder based on light propagation in two-dimensional regular nanoplates. Nanotechnology, 2017, 28, 145701. 1.3 Photodetectors based on junctions of two-dimensional transition metal dichalcogenides. Chinese 1182 0.7 56 Physics B, 2017, 26, 038504. Enhanced Photoluminescence of Solution-Exfoliated Transition Metal Dichalcogenides by Laser 1.6 Etching. ACS Omega, 2017, 2, 738-745. Stability, Molecular Sieving, and Ion Diffusion Selectivity of a Lamellar Membrane from 1184 4.5 144 Two-Dimensional Molybdenum Disulfide. Nano Letters, 2017, 17, 2342-2348. Recent Advances in Ultrathin Two-Dimensional Nanomaterials. Chemical Reviews, 2017, 117, 6225-6331. 3,940 Lanthanide-based metal-organic framework nanosheets with unique fluorescence quenching properties for two-color intracellular adenosine imaging in living cells. NPG Asia Materials, 2017, 9, 1186 3.8 144 e354-e354. Significantly Increased Raman Enhancement on MoX₂ (X = S, Se) Monolayers upon Phase 158 Transition. Ádvanced Functional Materials, 2017, 27, 1606694. Electrical and photovoltaic properties of residue-free MoS₂ thin films by liquid 1188 1.3 18 exfoliation method. Nanotechnology, 2017, 28, 195703. MoS₂/Celgard Separator as Efficient Polysulfide Barrier for Longâ€Life Lithium–Sulfur Batteries. Advanced Materials, 2017, 29, 1606817. 11.1 746 Identification of Whispering Gallery Mode (WGM) coupled photoluminescence and Raman modes in complex spectra of MoS 2 in Polymethyl methacrylate (PMMA) microspheres. Journal of Luminescence, 1190 1.5 8 2017, 187, 255-259. MoS2/h-BN heterostructures: controlling MoS2 crystal morphology by chemical vapor deposition. 1191 Journal of Materials Science, 2017, 52, 7028-7038. 2H-WS₂ Quantum Dots Produced by Modulating the Dimension and Phase of 1T-Nanosheets 1192 for Antibody-Free Optical Sensing of Neurotransmitters. ACS Applied Materials & amp; Interfaces, 2017, 4.0 65 9, 12316-12323. Highly thermal-stable paramagnetism by rolling up MoS₂nanosheets. Nanoscale, 2017, 9, 2.8 503-508.

#	Article	IF	CITATIONS
1194	Chemical Vapor Deposition Growth of Few-Layer MoTe ₂ in the 2H, 1T′, and 1T Phases: Tunable Properties of MoTe ₂ Films. ACS Nano, 2017, 11, 900-905.	7.3	173
1195	Hot electron-driven hydrogen evolution using anisotropic gold nanostructure assembled monolayer MoS ₂ . Nanoscale, 2017, 9, 1520-1526.	2.8	55
1196	Effects of temperature and pressure on sulfurization of molybdenum nano-sheets for MoS 2 synthesis. Thin Solid Films, 2017, 641, 79-86.	0.8	53
1197	Conversion of 1T-MoSe ₂ to 2H-MoS _{2x} Se _{2â~'2x} mesoporous nanospheres for superior sodium storage performance. Nanoscale, 2017, 9, 1484-1490.	2.8	104
1198	Evolution of a high local strain in rolling up MoS ₂ sheets decorated with Ag and Au nanoparticles for surface-enhanced Raman scattering. Nanotechnology, 2017, 28, 025603.	1.3	38
1199	Aqueous Exfoliation of Transition Metal Dichalcogenides Assisted by DNA/RNA Nucleotides: Catalytically Active and Biocompatible Nanosheets Stabilized by Acid–Base Interactions. ACS Applied Materials & Interfaces, 2017, 9, 2835-2845.	4.0	33
1200	Pressure-dependent semiconductor to semimetal and Lifshitz transitions in 2H-MoTe ₂ : Raman and first-principles studies. Journal of Physics Condensed Matter, 2017, 29, 105403.	0.7	21
1201	Characterization and study of reduction and sulfurization processing in phase transition from molybdenum oxide (MoO2) to molybdenum disulfide (MoS2) chalcogenide semiconductor nanoparticles prepared by one-stage chemical reduction method. Applied Physics A: Materials Science and Processing, 2017, 123, 1.	1.1	22
1202	Phase engineering of a multiphasic 1T/2H MoS ₂ catalyst for highly efficient hydrogen evolution. Journal of Materials Chemistry A, 2017, 5, 2681-2688.	5.2	391
1203	Redox Exfoliation of Layered Transition Metal Dichalcogenides. ACS Nano, 2017, 11, 635-646.	7.3	68
1204	Fabrication of 3D Spongia-shaped polyaniline/MoS2 nanospheres composite assisted by polyvinylpyrrolidone (PVP) for high-performance supercapacitors. Synthetic Metals, 2017, 224, 36-45.	2.1	48
1205	A study on the interaction between molybdenum disulfide and rhodamine B by spectroscopic methods. Journal of Materials Science, 2017, 52, 3831-3840.	1.7	12
1206	Chemically exfoliated MoS2 for capacitive deionization of saline water. Nano Energy, 2017, 31, 590-595.	8.2	168
1207	Dualâ€Functional N Dopants in Edges and Basal Plane of MoS ₂ Nanosheets Toward Efficient and Durable Hydrogen Evolution. Advanced Energy Materials, 2017, 7, 1602086.	10.2	286
1208	Solution processing of two-dimensional black phosphorus. Chemical Communications, 2017, 53, 1445-1458.	2.2	63
1209	Electric Field Effect in Twoâ€Dimensional Transition Metal Dichalcogenides. Advanced Functional Materials, 2017, 27, 1602404.	7.8	57
1210	Layered MoS ₂ coupled MOFs-derived dual-phase TiO ₂ for enhanced photoelectrochemical performance. Journal of Materials Chemistry A, 2017, 5, 4962-4971.	5.2	72
1211	Ultrafast Interfacial Self-Assembly of 2D Transition Metal Dichalcogenides Monolayer Films and Their Vertical and In-Plane Heterostructures. ACS Applied Materials & Interfaces, 2017, 9, 1021-1028.	4.0	43

	Сітат	tion Report	
# 1212	ARTICLE Surface functionalization of molybdenum dinitride nanosheets by halogen and alkali atoms: a	IF 2.7	CITATIONS
1212	first-principles study. Journal of Materials Chemistry C, 2017, 5, 683-689. Recent Advances in Synthesis and Biomedical Applications of Twoâ€Dimensional Transition Metal	5.2	221
1210	Dichalcogenide Nanosheets. Small, 2017, 13, 1602660. Two-dimensional transition-metal dichalcogenides-based ferromagnetic van der Waals	2.8	53
1215	heterostructures. Nanoscale, 2017, 9, 17585-17592. Rational design of exfoliated 1T MoS ₂ @CNT-based bifunctional separators for lithium sulfur batteries. Journal of Materials Chemistry A, 2017, 5, 23909-23918.	5.2	111
1216	Large-area and highly crystalline MoSe ₂ for optical modulator. Nanotechnology, 2017, 28, 484001.	1.3	25
1217	meerface dipole and band bending in the hybrid <mmtmain xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>p</mml:mi><mml:mo>â^*< heterojunction <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>Mo</mml:mi><mml:msub mathvariant="normal">S<mml:mn>2</mml:mn><mml:mo>/</mml:mo>/</mml:msub </mml:mrow></mml:math </mml:mo></mml:mrow></mmtmain 	> < mml:mi ^{1.1}	57
1218	Physical Review B, 2017, 96, . MoS2 based photosensor detecting both light wavelength and intensity. Sensors and Actuators A: Physical, 2017, 266, 205-210.	2.0	0
1219	VS ₂ /Graphene Heterostructures as Promising Anode Material for Li-Ion Batteries. Journal of Physical Chemistry C, 2017, 121, 24179-24184.	1.5	73
1220	Wafer-Scale Integration of Highly Uniform and Scalable MoS ₂ Transistors. ACS Applied Materials & Interfaces, 2017, 9, 37146-37153.	4.0	32
1221	Observation of superconductivity in 1T′-MoS ₂ nanosheets. Journal of Materials Chemistry C, 2017, 5, 10855-10860.	2.7	77
1222	MoS ₂ nanosheets covalently functionalized with polyacrylonitrile: synthesis and broadband laser protection performance. Journal of Materials Chemistry C, 2017, 5, 11920-11926.	2.7	28
1223	Exciton broadening in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>WS</mml:mi><mml:mn>2 /graphene heterostructures. Physical Review B, 2017, 96, .</mml:mn></mml:msub></mml:math 	».1/mml:	ՠ ք նԵ>
1224	Low power continuous-wave nonlinear optical effects in MoS2 nanosheets synthesized by simple bath ultrasonication. Optical Materials, 2017, 73, 585-594.	1.7	29
1225	Chemical Intercalation of Topological Insulator Grid Nanostructures for Highâ€Performance Transparent Electrodes. Advanced Materials, 2017, 29, 1703424.	11.1	21
1226	Metallic and highly conducting two-dimensional atomic arrays of sulfur enabled by molybdenum disulfide nanotemplate. Npj Computational Materials, 2017, 3, .	3.5	10
1227	MoS2 nanosheet photodetectors with ultrafast response. Applied Physics Letters, 2017, 111, . Fabrication of Porous MoS ₂ with Controllable Morphology and Specific Surface Area	1.5 0.5	6
1229	for Hydrodeoxygenation. Nano, 2017, 12, 1750116. Preparation, thermal conductivity, and thermal stability of flame retardant polyethylene with exfoliated MoS2/MxOy. New Journal of Chemistry, 2017, 41, 13287-13292.	1.4	19

#	Article	IF	CITATIONS
1230	Improved light emission of MoS2 monolayers by constructing AlN/MoS2 core–shell nanowires. Journal of Materials Chemistry C, 2017, 5, 10225-10230.	2.7	9
1231	Cost-effective liquid-phase exfoliation of molybdenum disulfide by prefreezing and thermal-shock. Advanced Powder Technology, 2017, 28, 2996-3003.	2.0	3
1232	Two-dimensional and three-dimensional hybrid assemblies based on graphene oxide and other layered structures: A carbon science perspective. Carbon, 2017, 125, 437-453.	5.4	21
1233	Ultra-strong nonlinear optical processes and trigonal warping in MoS2 layers. Nature Communications, 2017, 8, 893.	5.8	177
1234	Radiative energy transfer from MoS ₂ excitons to surface plasmons. Journal of Optics (United Kingdom), 2017, 19, 124009.	1.0	7
1235	Arrays of ZnSe/MoSe ₂ Nanotubes with Electronic Modulation as Efficient Electrocatalysts for Hydrogen Evolution Reaction. Advanced Materials Interfaces, 2017, 4, 1700948.	1.9	39
1236	Inducing High Coercivity in MoS ₂ Nanosheets by Transition Element Doping. Chemistry of Materials, 2017, 29, 9066-9074.	3.2	81
1237	Temperature-dependent properties of monolayer MoS ₂ annealed in an Ar diluted S atmosphere: an experimental and first-principles study. Journal of Materials Chemistry C, 2017, 5, 11138-11143.	2.7	12
1238	Sensitized monolayer MoS ₂ phototransistors with ultrahigh responsivity. Journal of Materials Chemistry C, 2017, 5, 11614-11619.	2.7	21
1239	Tailored MoS ₂ nanorods: a simple microwave assisted synthesis. Materials Research Express, 2017, 4, 115012.	0.8	25
1240	Colloidal dispersions of molybdenum disulfide with a narrow particle size distribution. Russian Chemical Bulletin, 2017, 66, 963-968.	0.4	2
1241	Freestanding Metallic 1T MoS ₂ with Dual Ion Diffusion Paths as High Rate Anode for Sodiumâ€Ion Batteries. Advanced Functional Materials, 2017, 27, 1702998.	7.8	265
1242	Transparent Large-Area MoS ₂ Phototransistors with Inkjet-Printed Components on Flexible Platforms. ACS Nano, 2017, 11, 10273-10280.	7.3	72
1243	Edge-On MoS ₂ Thin Films by Atomic Layer Deposition for Understanding the Interplay between the Active Area and Hydrogen Evolution Reaction. Chemistry of Materials, 2017, 29, 7604-7614.	3.2	82
1244	Long-Term Stable 2H-MoS ₂ Dispersion: Critical Role of Solvent for Simultaneous Phase Restoration and Surface Functionalization of Liquid-Exfoliated MoS ₂ . ACS Omega, 2017, 2, 4678-4687.	1.6	55
1245	Probing of free and localized excitons and trions in atomically thin WSe ₂ , WS ₂ , MoSe ₂ and MoS ₂ in photoluminescence and reflectivity experiments. Nanotechnology, 2017, 28, 395702.	1.3	87
1246	Metallic molybdenum disulfide nanosheet-based electrochemical actuators. Nature, 2017, 549, 370-373.	13.7	216
1247	Type-I band alignment at MoS2/In0.15Al0.85N lattice matched heterojunction and realization of MoS2 quantum well. Applied Physics Letters, 2017, 111, .	1.5	30

#	Article	IF	CITATIONS
1248	Probing Single-Molecule Adhesion of a Stimuli Responsive Oligo(ethylene glycol) Methacrylate Copolymer on a Molecularly Smooth Hydrophobic MoS ₂ Basal Plane Surface. Langmuir, 2017, 33, 10429-10438.	1.6	9
1249	Phonon-Assisted Ultrafast Charge Transfer at van der Waals Heterostructure Interface. Nano Letters, 2017, 17, 6435-6442.	4.5	204
1250	Strain Release Induced Novel Fluorescence Variation in CVD-Grown Monolayer WS ₂ Crystals. ACS Applied Materials & Interfaces, 2017, 9, 34071-34077.	4.0	17
1251	First-principles study of the heavy metal atoms X (X=Au, Hg, Tl or Pb) doped monolayer WS 2. Superlattices and Microstructures, 2017, 112, 224-229.	1.4	5
1252	Tuning Excitonic Properties of Monolayer MoS ₂ with Microsphere Cavity by Highâ€Throughput Chemical Vapor Deposition Method. Small, 2017, 13, 1701694.	5.2	35
1253	Magnetic Co-Doped MoS ₂ Nanosheets for Efficient Catalysis of Nitroarene Reduction. ACS Omega, 2017, 2, 5891-5897.	1.6	66
1254	Encapsulation of transition metal dichalcogenides crystals with room temperature plasma deposited carbonaceous films. RSC Advances, 2017, 7, 41136-41143.	1.7	2
1255	Preparation of Monolayer MoS2 Quantum Dots using Temporally Shaped Femtosecond Laser Ablation of Bulk MoS2 Targets in Water. Scientific Reports, 2017, 7, 11182.	1.6	167
1256	A van der Waals p–n Heterojunction Based on Polymer-2D Layered MoS ₂ for Solution Processable Electronics. Journal of Physical Chemistry C, 2017, 121, 21945-21954.	1.5	22
1257	Scalable Synthesis of Highly Crystalline MoSe ₂ and Its Ambipolar Behavior. ACS Applied Materials & Interfaces, 2017, 9, 36009-36016.	4.0	52
1258	Tailoring photoelectrochemical properties of semiconducting transition metal dichalcogenide nanolayers with porphyrin functionalization. Journal of Materials Chemistry C, 2017, 5, 11233-11238.	2.7	28
1259	Two-dimensional nanomaterial-based field-effect transistors for chemical and biological sensing. Chemical Society Reviews, 2017, 46, 6872-6904.	18.7	316
1260	Functionalized 2D-MoS ₂ -Incorporated Polymer Ternary Solar Cells: Role of Nanosheet-Induced Long-Range Ordering of Polymer Chains on Charge Transport. ACS Applied Materials & Interfaces, 2017, 9, 34111-34121.	4.0	34
1261	Three-dimensional flower-like Mg(OH) ₂ @MoS ₂ nanocomposite: fabrication, characterization and high-performance sensing properties for NO _x at room temperature. New Journal of Chemistry, 2017, 41, 12071-12078.	1.4	7
1262	Tunable inverted gap in monolayer quasi-metallic MoS2 induced by strong charge-lattice coupling. Nature Communications, 2017, 8, 486.	5.8	75
1263	A Clean and Facile Synthesis Strategy of MoS2 Nanosheets Grown on Multi-Wall CNTs for Enhanced Hydrogen Evolution Reaction Performance. Scientific Reports, 2017, 7, 8825.	1.6	53
1264	Dual Functionalization of Liquidâ€Exfoliated Semiconducting 2 <i>Hâ€</i> MoS ₂ with Lanthanide Complexes Bearing Magnetic and Luminescence Properties. Advanced Functional Materials, 2017, 27, 1703646.	7.8	23
1265	Stabilization of 1T′ phase WTe2 by scalar relativistic effect. Applied Physics Letters, 2017, 110, 263104.	1.5	7

#	Article	IF	CITATIONS
1266	Progress of Largeâ€Scale Synthesis and Electronic Device Application of Twoâ€Dimensional Transition Metal Dichalcogenides. Small, 2017, 13, 1700098.	5.2	54
1267	Highly efficient hydrogen evolution reaction by strain and phase engineering in composites of Pt and MoS ₂ nano-scrolls. Physical Chemistry Chemical Physics, 2017, 19, 18356-18365.	1.3	48
1268	Polytype 1T/2H MoS2 heterostructures for efficient photoelectrocatalytic hydrogen evolution. Chemical Engineering Journal, 2017, 330, 102-108.	6.6	116
1269	Argon Plasma Induced Phase Transition in Monolayer MoS ₂ . Journal of the American Chemical Society, 2017, 139, 10216-10219.	6.6	332
1270	One-Transistor–One-Transistor (1T1T) Optoelectronic Nonvolatile MoS ₂ Memory Cell with Nondestructive Read-Out. ACS Applied Materials & Interfaces, 2017, 9, 26357-26362.	4.0	11
1271	Emerging photoluminescence from bilayer large-area 2D MoS2 films grown by pulsed laser deposition on different substrates. Journal of Applied Physics, 2017, 122, .	1.1	36
1272	Langmuir films and uniform, large area, transparent coatings of chemically exfoliated MoS ₂ single layers. Journal of Materials Chemistry C, 2017, 5, 11275-11287.	2.7	35
1273	Synthesis of MoS ₂ Quantum Dots Uniformly Dispersed on Low Dimensional MoS ₂ Nanosheets and Unravelling its Multiple Emissive States. ChemistrySelect, 2017, 2, 5942-5949.	0.7	11
1274	Enhanced Triboelectric Nanogenerators Based on MoS ₂ Monolayer Nanocomposites Acting as Electron-Acceptor Layers. ACS Nano, 2017, 11, 8356-8363.	7.3	196
1275	Ultrathin Twoâ€Dimensional Multinary Layered Metal Chalcogenide Nanomaterials. Advanced Materials, 2017, 29, 1701392.	11.1	242
1276	Recent Progress in the Preparation, Assembly, Transformation, and Applications of Layer‧tructured Nanodisks beyond Graphene. Advanced Materials, 2017, 29, 1701704.	11.1	65
1277	Single-Atom Co-Doped MoS2 Monolayers for Highly Active Biomass Hydrodeoxygenation. CheM, 2017, 2, 468-469.	5.8	22
1278	Liquid exfoliation of 2D MoS ₂ nanosheets and their utilization as a label-free electrochemical immunoassay for subclinical ketosis. Nanoscale, 2017, 9, 10886-10896.	2.8	36
1279	The mechanism of enhanced photocatalytic activity of SnO 2 through fullerene modification. Current Applied Physics, 2017, 17, 1547-1556.	1.1	14
1280	Ultrathin Singleâ€Crystalline CdTe Nanosheets Realized via Van der Waals Epitaxy. Advanced Materials, 2017, 29, 1703122.	11.1	118
1281	Electronic, magnetic properties of transition metal doped Tl 2 S: First-principles study. Applied Surface Science, 2017, 425, 393-399.	3.1	9
1282	Few-layer MoS ₂ as nitrogen protective barrier. Nanotechnology, 2017, 28, 415706.	1.3	6
1283	Charging assisted structural phase transitions in monolayer InSe. Physical Chemistry Chemical Physics, 2017, 19, 22502-22508.	1.3	6

#	Article	IF	CITATIONS
1284	Evidence for Chemical Vapor Induced 2H to 1T Phase Transition in MoX2 (X = Se, S) Transition Metal Dichalcogenide Films. Scientific Reports, 2017, 7, 3836.	1.6	47
1285	Plasmon-Enhanced Photoelectrochemical Current and Hydrogen Production of (MoS2-TiO2)/Au Hybrids. Scientific Reports, 2017, 7, 7178.	1.6	35
1286	FeS 2 -doped MoS 2 nanoflower with the dominant 1T-MoS 2 phase as an excellent electrocatalyst for high-performance hydrogen evolution. Electrochimica Acta, 2017, 249, 72-78.	2.6	54
1287	The Structure, Electronic, Magnetic and Optical Properties of the Mn-X (XÂ=ÂB, C, N and O) Co-Doped Monolayer WS2. Journal of Electronic Materials, 2017, 46, 6544-6552.	1.0	5
1288	2D–Materialsâ€Based Quantum Dots: Gateway Towards Nextâ€Generation Optical Devices. Advanced Optical Materials, 2017, 5, 1700257.	3.6	64
1289	Transition-metal doping induces the transition of electronic and magnetic properties in armchair MoS ₂ nanoribbons. Physical Chemistry Chemical Physics, 2017, 19, 24594-24604.	1.3	24
1290	A highly efficient 2D exfoliated metal dichalcogenide for the on-farm rapid monitoring of non-esterified fatty acids. Chemical Communications, 2017, 53, 10002-10005.	2.2	7
1291	Numerical study on enhanced absorption of nanospaced MoS2multilayers via guided-mode resonance. Journal Physics D: Applied Physics, 2017, 50, 39LT01.	1.3	0
1292	Characterization of Rotational Stacking Layers in Large-Area MoSe ₂ Film Grown by Molecular Beam Epitaxy and Interaction with Photon. ACS Applied Materials & Interfaces, 2017, 9, 30786-30796.	4.0	16
1293	Two-dimensional molybdenum disulfide as adsorbent for high-efficient Pb(II) removal from water. Applied Materials Today, 2017, 9, 220-228.	2.3	66
1294	6â€Mercaptopurineâ€Induced Fluorescence Quenching of Monolayer MoS ₂ Nanodots: Applications to Glutathione Sensing, Cellular Imaging, and Glutathioneâ€Stimulated Drug Delivery. Advanced Functional Materials, 2017, 27, 1702452.	7.8	69
1295	Alternately stacked metallic 1T-MoS2/polyaniline heterostructure for high-performance supercapacitors. Chemical Engineering Journal, 2017, 330, 462-469.	6.6	75
1296	Structural and electronic properties of MoS2, WS2, and WS2/MoS2 heterostructures encapsulated with hexagonal boron nitride monolayers. Journal of Applied Physics, 2017, 122, .	1.1	49
1297	Design and electrosynthesis of monolayered MoS2 and BF4â^'-doped poly(3,4-ethylenedioxythiophene) nanocomposites for enhanced supercapacitive performance. Journal of Electroanalytical Chemistry, 2017, 801, 345-353.	1.9	29
1298	Hydrogenation of monolayer molybdenum diselenide via hydrogen plasma treatment. Journal of Materials Chemistry C, 2017, 5, 11294-11300.	2.7	20
1299	First-principles investigation of MoS ₂ monolayer adsorbed on SiO ₂ (0001) Surface. Modern Physics Letters B, 2017, 31, 1750229.	1.0	8
1300	Substrate Lattice-Guided Seed Formation Controls the Orientation of 2D Transition-Metal Dichalcogenides. ACS Nano, 2017, 11, 9215-9222.	7.3	102
1301	Towards well-defined MoS ₂ nanoribbons on a large scale. Chemical Communications, 2017, 53, 9757-9760.	2.2	18

	CITATION REF	CITATION REPORT	
#	Article	IF	CITATIONS
1302	Combining 2D inorganic semiconductors and organic polymers at the frontier of the hard–soft materials interface. Journal of Materials Chemistry C, 2017, 5, 11158-11164.	2.7	13
1303	Growth of 2D Mesoporous Polyaniline with Controlled Pore Structures on Ultrathin MoS ₂ Nanosheets by Block Copolymer Self-Assembly in Solution. ACS Applied Materials Bomp: Interfaces, 2017, 9, 43975-43982.	4.0	46
1304	xmlns:mml="http://www.w3.org/1998/Math/MathML"> < mml:mrow> < mml:mn>1 < /mml:mn> < mml:msup> < mml:mi and < mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> < mml:mrow> < mml:mn>2 < /mml:mn> < mml:mi>H < /mml:mi: phases of single-layer < mml:math	> {/mml:n	nro₩>
1305	xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub><mml:mi>MoS</mml:mi><mml:mn>2Tuning the Physical and Chemical Properties of 2D InSe with Interstitial Boron Doping: A First-Principles Study. Journal of Physical Chemistry C, 2017, 121, 28312-28316.</mml:mn></mml:msub>	nn>1.5	nl:msub>11
1306	Discretely distributed 1D V ₂ O ₅ nanowires over 2D MoS ₂ nanoflakes for an enhanced broadband flexible photodetector covering the ultraviolet to near infrared region. Journal of Materials Chemistry C, 2017, 5, 12728-12736.	2.7	53
1307	Chemically extoliated <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>Mo</mml:mi><mml:msub><mml:m mathvariant="normal">S<mml:mn>2</mml:mn></mml:m </mml:msub></mml:mrow> layers: Spectroscopic evidence for the semiconducting nature of the dominant trigonal metastable</mml:math 	i 1.1	39
1308	Preparation of 2D MoSe ₂ /PEDOT:PSS composite and its thermoelectric properties. Materials Research Express, 2017, 4, 116410.	0.8	39
1309	Chemical Welding on Semimetallic TiS2 Nanosheets for High-Performance Flexible n-Type Thermoelectric Films. ACS Applied Materials & Interfaces, 2017, 9, 42430-42437.	4.0	31
1310	Highly Efficient Thin-Film Transistor via Cross-Linking of 1T Edge Functional 2H Molybdenum Disulfides. ACS Nano, 2017, 11, 12832-12839.	7.3	19
1311	Strain effects on the energy band structure and electronic states of single-layer MoTe ₂ , WTe ₂ and their heterostructures. Integrated Ferroelectrics, 2017, 182, 30-38.	0.3	5
1312	Understanding the Aqueous Stability and Filtration Capability of MoS ₂ Membranes. Nano Letters, 2017, 17, 7289-7298.	4.5	283
1313	General Strategy for Two-Dimensional Transition Metal Dichalcogenides by Ion Exchange. Chemistry of Materials, 2017, 29, 10019-10026.	3.2	18
1314	Improved photocatalytic degradation of organic dye using Ag3PO4/MoS2 nanocomposite. Frontiers of Materials Science, 2017, 11, 366-374.	1.1	20
1315	Understanding the high-electrocatalytic performance of two-dimensional MoS ₂ nanosheets and their composite materials. Journal of Materials Chemistry A, 2017, 5, 24540-24563.	5.2	183
1316	Half metallicity and pressure-induced electronic structure of monolayer FeX2 (X = S, Se). Materials Research Express, 2017, 4, 116305.	0.8	6
1317	Highly Uniform Atomic Layer-Deposited MoS ₂ @3D-Ni-Foam: A Novel Approach To Prepare an Electrode for Supercapacitors. ACS Applied Materials & Interfaces, 2017, 9, 40252-40264.	4.0	117
1318	Electron dynamics and optical properties modulation of monolayer MoS2 by femtosecond laser pulse: a simulation using time-dependent density functional theory. Applied Physics A: Materials Science and Processing, 2017, 123, 1.	1.1	2
1319	Enhanced triethylamine sensing properties by designing Au@SnO2/MoS2 nanostructure directly on alumina tubes. Sensors and Actuators B: Chemical, 2017, 253, 97-107.	4.0	97

#	Article	IF	CITATIONS
1320	Wide-Range Controllable Doping of Tungsten Diselenide (WSe ₂) based on Hydrochloric Acid Treatment. Journal of Physical Chemistry C, 2017, 121, 14367-14372.	1.5	15
1321	Heterogeneous Nanostructure Based on 1T-Phase MoS ₂ for Enhanced Electrocatalytic Hydrogen Evolution. ACS Applied Materials & Interfaces, 2017, 9, 25291-25297.	4.0	202
1322	Water-Soluble 2D Transition Metal Dichalcogenides as the Hole-Transport Layer for Highly Efficient and Stable p–i–n Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2017, 9, 25323-25331.	4.0	115
1323	Water-Assisted Synthesis of Molybdenum Disulfide Film with Single Organic Liquid Precursor. Scientific Reports, 2017, 7, 1983.	1.6	27
1324	Synthesis, structure and applications of graphene-based 2D heterostructures. Chemical Society Reviews, 2017, 46, 4572-4613.	18.7	275
1325	Arrays of ZnO/MoS2 nanocables and MoS2 nanotubes with phase engineering for bifunctional photoelectrochemical and electrochemical water splitting. Chemical Engineering Journal, 2017, 328, 474-483.	6.6	103
1326	High-performing MoS2-embedded Si photodetector. Materials Science in Semiconductor Processing, 2017, 71, 35-41.	1.9	13
1327	Transparent 1T-MoS ₂ nanofilm robustly anchored on substrate by layer-by-layer self-assembly and its ultra-high cycling stability as supercapacitors. Nanotechnology, 2017, 28, 395401.	1.3	24
1328	Cobalt hydroxide nanoflakes and their application as supercapacitors and oxygen evolution catalysts. Nanotechnology, 2017, 28, 375401.	1.3	33
1329	Excitation-dependent photoluminescence from WS2 nanostructures synthesized via top-down approach. Journal of Materials Science, 2017, 52, 11326-11336.	1.7	63
1330	Rapid Wafer-Scale Growth of Polycrystalline 2H-MoS ₂ by Pulsed Metal–Organic Chemical Vapor Deposition. Chemistry of Materials, 2017, 29, 6279-6288.	3.2	68
1331	Single Crystal, Luminescent Carbon Nitride Nanosheets Formed by Spontaneous Dissolution. Nano Letters, 2017, 17, 5891-5896.	4.5	76
1332	Self-assembled three-dimensional Pd/MoS2/reduced graphene oxide nanocatalyst: A case for homogeneous leaching mechanism. Journal of Colloid and Interface Science, 2017, 505, 983-994.	5.0	18
1333	Highly Scalable Synthesis of MoS ₂ Thin Films with Precise Thickness Control via Polymer-Assisted Deposition. Chemistry of Materials, 2017, 29, 5772-5776.	3.2	96
1334	Calorimetric Study of Alkali Metal Ion (K ⁺ , Na ⁺ , Li ⁺) Exchange in a Clay-Like MXene. Journal of Physical Chemistry C, 2017, 121, 15145-15153.	1.5	31
1335	Enhanced current rectification and self-powered photoresponse in multilayer p-MoTe ₂ /n-MoS ₂ van der Waals heterojunctions. Nanoscale, 2017, 9, 10733-10740.	2.8	75
1336	Two-Dimensional Molybdenum Disulfide as a Superb Adsorbent for Removing Hg ²⁺ from Water. ACS Sustainable Chemistry and Engineering, 2017, 5, 7410-7419.	3.2	167
1337	<i>In Situ</i> Observation and Electrochemical Study of Encapsulated Sulfur Nanoparticles by MoS ₂ Flakes. Journal of the American Chemical Society, 2017, 139, 10133-10141.	6.6	126

ARTICLE IF CITATIONS # Environmental Applications of 2D Molybdenum Disulfide (MoS₂) Nanosheets. 1338 4.6 647 Environmental Science & amp; Technology, 2017, 51, 8229-8244. Stability and Nature of Chemically Exfoliated MoS₂ in Aqueous Suspensions. Inorganic Chemistry, 2017, 56, 7620-7623. Functionalization of MoS2 with 1,2-dithiolanes: toward donor-acceptor nanohybrids for energy 1340 3.9 85 conversion. Npj 2D Materials and Applications, 2017, 1, . Uniform large-area growth of nanotemplated high-quality monolayer MoS2. Applied Physics Letters, 1341 2017, 110, 263103. Shape consistency of MoS₂flakes grown using chemical vapor deposition. Applied Physics 1342 1.1 15 Express, 2017, 10, 065201. CO 2 -assisted fabrication of novel heterostructures of h-MoO 3 /1T-MoS 2 for enhanced photoelectrocatalytic performance. Applied Surface Science, 2017, 425, 56-62. 3.1 Tuning deep dopants to shallow ones in 2D semiconductors by substrate screening: The case of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi mathvariant="normal">X</mml:mi><mml:mi 1344 1.1 18 mathvariant="normal">S</mml:mi></mml:msub></mml:math> (X = Cl, Br, I) in <mml:math xmins:mml="http://www.w3.org/1998/Math/Math/ML"><mml:msub></mml:mi>MoS</mml:mi><mml:mi>Xmlns:mml="http://www.w3.org/1998/Math/Math/ML"><mml:msub></mml:mi>MoS</mml:mi><mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></ml> 1345

#	Article	IF	CITATIONS
1356	Concurrent Growth and Formation of Electrically Contacted Monolayer Transition Metal Dichalcogenides on Bulk Metallic Patterns. Advanced Materials Interfaces, 2017, 4, 1600599.	1.9	7
1357	A theoretical study of the electrical contact between metallic and semiconducting phases in monolayer MoS ₂ . 2D Materials, 2017, 4, 015014.	2.0	21
1358	Photodetectors Based on Twoâ€Dimensional Layered Materials Beyond Graphene. Advanced Functional Materials, 2017, 27, 1603886.	7.8	534
1359	The Effect of Dilute Charged Impurity on the Electronic Heat Capacity and Magnetic Susceptibility of Ferromagnetic MoS2. Journal of Superconductivity and Novel Magnetism, 2017, 30, 943-949.	0.8	3
1360	Physics and chemistry of oxidation of twoâ€dimensional nanomaterials by molecular oxygen. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2017, 7, e1280.	6.2	47
1361	Edge passivation induced single-edge ferromagnetism of zigzag MoS2 nanoribbons. Physics Letters, Section A: General, Atomic and Solid State Physics, 2017, 381, 301-306.	0.9	15
1362	Synthesis and characterization of ZnO/ZnS/MoS2 core-shell nanowires. Journal of Crystal Growth, 2017, 459, 100-104.	0.7	20
1363	Solutionâ€Processed MoS ₂ /Organolead Trihalide Perovskite Photodetectors. Advanced Materials, 2017, 29, 1603995.	11.1	187
1364	Ionic solutions of two-dimensional materials. Nature Chemistry, 2017, 9, 244-249.	6.6	68
1365	Three-dimensional vertically aligned hybrid nanoarchitecture of two-dimensional molybdenum disulfide nanosheets anchored on directly grown one-dimensional carbon nanotubes for use as a counter electrode in dye-sensitized solar cells. Journal of Alloys and Compounds, 2017, 692, 941-949.	2.8	30
1366	Nucleation mechanism and morphology evolution of MoS ₂ flakes grown by chemical vapor deposition. Chinese Physics B, 2017, 26, 128102.	0.7	6
1367	Graphene and related 2D materials for high efficient and stable perovskite solar cells. , 2017, , .		8
1368	Reduction in Step Height Variation and Correcting Contrast Inversion in Dynamic AFM of WS2 Monolayers. Scientific Reports, 2017, 7, 17798.	1.6	14
1369	Resistive switching effect of N-doped MoS2-PVP nanocomposites films for nonvolatile memory devices. AIP Advances, 2017, 7, .	0.6	12
1370	Substrate-induced semiconductor-to-metal transition in monolayer <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mi>WS </mml:mi> <mml:mn>2 Physical Review B, 2017, 96, .</mml:mn></mml:msub></mml:math 	nn ⊵. ≰/mml	:masaub>
1372	Piezoreflectance study of Nb-doped MoS2single crystals. IOP Conference Series: Materials Science and Engineering, 2017, 237, 012041.	0.3	0
1373	Anomalous photoluminescence thermal quenching of sandwiched single layer MoS_2. Optical Materials Express, 2017, 7, 3697.	1.6	14
1374	Giant photoluminescence enhancement in monolayer WS_2 by energy transfer from CsPbBr_3 quantum dots. Optical Materials Express, 2017, 7, 1327.	1.6	30

#	Article	IF	CITATIONS
1375	Enhanced local photoluminescence of a multilayer MoS_2 nanodot stacked on monolayer MoS_2 flakes. Optical Materials Express, 2017, 7, 1365.	1.6	16
1376	Molybdenum Dichalcogenides for Environmental Chemical Sensing. Materials, 2017, 10, 1418.	1.3	25
1377	MoS2 Decorated Carbon Nanofibers as Efficient and Durable Electrocatalyst for Hydrogen Evolution Reaction. Journal of Carbon Research, 2017, 3, 33.	1.4	45
1378	Synthesis Methods of Two-Dimensional MoS2: A Brief Review. Crystals, 2017, 7, 198.	1.0	138
1379	Recent Advances in Electronic and Optoelectronic Devices Based on Two-Dimensional Transition Metal Dichalcogenides. Electronics (Switzerland), 2017, 6, 43.	1.8	68
1380	Morphologies controllable synthesis of MoS2 by hot-injection method: from quantum dots to nanosheets. Journal of Materials Science: Materials in Electronics, 2017, 28, 13633-13637.	1.1	6
1381	Highly sensitive protein detection via covalently linked aptamer to MoS ₂ and exonuclease-assisted amplification strategy. International Journal of Nanomedicine, 2017, Volume 12, 7847-7853.	3.3	22
1382	Fluorescence quenching of MoS2 nanosheets/DNA/silicon dot nanoassembly: effective and rapid detection of Hg2+ ions in aqueous solution. Environmental Science and Pollution Research, 2018, 25, 10567-10576.	2.7	24
1383	Temperature Dependence of the Dielectric Function of Monolayer MoSe2. Scientific Reports, 2018, 8, 3173.	1.6	13
1384	Hyper-Cross-linked Porous MoS ₂ –Cyclodextrin-Polymer Frameworks: Durable Removal of Aromatic Phenolic Micropollutant from Water. Analytical Chemistry, 2018, 90, 3621-3627.	3.2	30
1385	Kinetics and Atomic Mechanisms of Structural Phase Transformations in Photoexcited Monolayer TMDCs. MRS Advances, 2018, 3, 345-350.	0.5	0
1386	Electronic properties of atomically thin MoS ₂ layers grown by physical vapour deposition: band structure and energy level alignment at layer/substrate interfaces. RSC Advances, 2018, 8, 7744-7752.	1.7	22
1387	Low Frequency Raman Scattering of Two-Dimensional Materials Beyond Graphene. Springer Series in Surface Sciences, 2018, , 195-206.	0.3	0
1388	Growth of MoS ₂ –MoO ₃ Hybrid Microflowers via Controlled Vapor Transport Process for Efficient Gas Sensing at Room Temperature. Advanced Materials Interfaces, 2018, 5, 1800071.	1.9	93
1389	In vitro cytotoxicity of covalently protected layered molybdenum disulfide. Applied Materials Today, 2018, 11, 200-206.	2.3	19
1390	Annealing effect on the ferromagnetism of MoS2 nanoparticles. Journal of Alloys and Compounds, 2018, 746, 399-404.	2.8	27
1391	Effect of structural defects on electronic and magnetic properties of ZrS 2 monolayer. Superlattices and Microstructures, 2018, 116, 164-170.	1.4	14
1392	Fundamentals, progress, and future directions of nitride-based semiconductors and their composites in two-dimensional limit: A first-principles perspective to recent synthesis. Applied Physics Reviews, 2018, 5, .	5.5	71

# 1393	ARTICLE Direct and Indirect Interlayer Excitons in a van der Waals Heterostructure of hBN/WS ₂ /MoS ₂ /hBN. ACS Nano, 2018, 12, 2498-2505.	IF 7.3	Citations 96
1394	Photoconductivity of acid exfoliated and flash-light-processed MoS2 films. Scientific Reports, 2018, 8, 3296.	1.6	7
1395	Magnetism in monolayer 1T-MoS ₂ and 1T-MoS ₂ H tuned by strain. RSC Advances, 2018, 8, 8435-8441.	1.7	21
1396	Atomically thin gallium layers from solid-melt exfoliation. Science Advances, 2018, 4, e1701373.	4.7	157
1397	Noninvasive magnetic resonance/photoacoustic imaging for photothermal therapy response monitoring. Nanoscale, 2018, 10, 5864-5868.	2.8	25
1398	Direct Covalent Chemical Functionalization of Unmodified Two-Dimensional Molybdenum Disulfide. Chemistry of Materials, 2018, 30, 2112-2128.	3.2	93
1399	Coupling-Assisted Renormalization of Excitons and Vibrations in Compressed MoSe ₂ –WSe ₂ Heterostructure. Journal of Physical Chemistry C, 2018, 122, 5820-5828.	1.5	19
1400	Robust nanofabrication of monolayer MoS ₂ islands with strong photoluminescence enhancement via local anodic oxidation. 2D Materials, 2018, 5, 025018.	2.0	20
1401	Atomic layer deposition of sub-10â€⁻nm high-K gate dielectrics on top-gated MoS2 transistors without surface functionalization. Applied Surface Science, 2018, 443, 421-428.	3.1	18
1402	Enhanced photoresponse characteristics of transistors using CVD-grown MoS2/WS2 heterostructures. Applied Surface Science, 2018, 443, 31-38.	3.1	29
1403	The intrinsic interface properties of the top and edge 1T/2H <i>MoS</i> 2 contact: A first-principles study. Journal of Applied Physics, 2018, 123, .	1.1	19
1404	Novel structured transition metal dichalcogenide nanosheets. Chemical Society Reviews, 2018, 47, 3301-3338.	18.7	303
1405	Influence of initial sulfur content in precursor solution for the growth of molybdenum disulfide. Journal of Physics: Conference Series, 2018, 995, 012060.	0.3	5
1406	Synthesis and characterization of monolayer Er-doped MoS2 films by chemical vapor deposition. Scripta Materialia, 2018, 152, 64-68.	2.6	15
1407	Controlled Growth of MoS ₂ Flakes from in-Plane to Edge-Enriched 3D Network and Their Surface-Energy Studies. ACS Applied Nano Materials, 2018, 1, 2356-2367.	2.4	44
1408	Near-infrared photodetector achieved by chemically-exfoliated multilayered MoS2 flakes. Applied Surface Science, 2018, 448, 64-70.	3.1	50
1409	Cellulose acetate composite membranes tailored with exfoliated tungsten disulfide nanosheets: Permeation characteristics and antifouling ability. International Journal of Biological Macromolecules, 2018, 115, 540-546.	3.6	17
1410	Effect of solvent on the morphology of MoS2 nanosheets prepared by ultrasonication-assisted exfoliation. AIP Conference Proceedings, 2018, , .	0.3	4

#	Article	IF	CITATIONS
1411	Metastable MoS ₂ : Crystal Structure, Electronic Band Structure, Synthetic Approach and Intriguing Physical Properties. Chemistry - A European Journal, 2018, 24, 15942-15954.	1.7	133
1412	Recent progress in ultrathin two-dimensional semiconductors for photocatalysis. Materials Science and Engineering Reports, 2018, 130, 1-39.	14.8	116
1413	Grain wall boundaries in centimeter-scale continuous monolayer WS ₂ film grown by chemical vapor deposition. Nanotechnology, 2018, 29, 255705.	1.3	14
1414	Robust and Conductive Red MoSe ₂ for Stable and Fast Lithium Storage. ACS Nano, 2018, 12, 4010-4018.	7.3	57
1415	A comprehensive study on carrier mobility and artificial photosynthetic properties in group VI B transition metal dichalcogenide monolayers. Journal of Materials Chemistry A, 2018, 6, 8693-8704.	5.2	204
1416	MoS 2 -CdS heterojunction with enhanced photocatalytic activity: A first principles study. Journal of Physics and Chemistry of Solids, 2018, 120, 52-56.	1.9	27
1417	Functional inks and printing of two-dimensional materials. Chemical Society Reviews, 2018, 47, 3265-3300.	18.7	401
1418	Low-temperature plasma-enhanced atomic layer deposition of 2-D MoS ₂ : large area, thickness control and tuneable morphology. Nanoscale, 2018, 10, 8615-8627.	2.8	90
1419	MoS ₂ Quantum Dots@TiO ₂ Nanotube Arrays: An Extended-Spectrum-Driven Photocatalyst for Solar Hydrogen Evolution. ChemSusChem, 2018, 11, 1708-1721.	3.6	77
1420	Interfacial Kinetics and Ionic Diffusivity of the Electrodeposited MoS ₂ Film. ACS Applied Materials & Interfaces, 2018, 10, 13509-13518.	4.0	27
1421	Simultaneous Fabrication and Functionalization of Nanoparticles of 2D Materials with Hybrid Optical Properties. Advanced Optical Materials, 2018, 6, 1701365.	3.6	21
1422	Controlling enzyme function through immobilisation on graphene, graphene derivatives and other two dimensional nanomaterials. Journal of Materials Chemistry B, 2018, 6, 3200-3218.	2.9	49
1423	Phaseâ€Engineered PtSe ₂ â€Layered Films by a Plasmaâ€Assisted Selenization Process toward All PtSe ₂ â€Based Field Effect Transistor to Highly Sensitive, Flexible, and Wideâ€Spectrum Photoresponse Photodetectors. Small, 2018, 14, e1800032.	5.2	83
1424	Highly Efficient and Stable CO ₂ Reduction Photocatalyst with a Hierarchical Structure of Mesoporous TiO ₂ on 3D Graphene with Few-Layered MoS ₂ . ACS Sustainable Chemistry and Engineering, 2018, 6, 5718-5724.	3.2	110
1425	Atomic defects in monolayer WSe2tunneling FETs studied by systematic ab initio calculations. Applied Physics Express, 2018, 11, 054001.	1.1	8
1426	Stable 1T-phase MoS ₂ as an effective electron mediator promoting photocatalytic hydrogen production. Nanoscale, 2018, 10, 9292-9303.	2.8	60
1427	Large-scale synthesis of 2D metal dichalcogenides. Journal of Materials Chemistry C, 2018, 6, 4627-4640.	2.7	35
1428	The organic–2D transition metal dichalcogenide heterointerface. Chemical Society Reviews, 2018, 47, 3241-3264.	18.7	158

#	Article	IF	CITATIONS
1429	Tunable magnetic coupling in Mn-doped monolayer MoS ₂ under lattice strain. Journal of Physics Condensed Matter, 2018, 30, 215801.	0.7	8
1430	Synthesis of metal-phase-assisted 1T@2H-MoS2 nanosheet-coated black TiO2 spheres with visible light photocatalytic activities. Journal of Materials Science, 2018, 53, 10302-10312.	1.7	57
1431	Review of contact-resistance analysis in nano-material. Journal of Mechanical Science and Technology, 2018, 32, 539-547.	0.7	15
1432	Thermal-Undoping-Induced 2D Sheet Exfoliations in 1D Nanomaterial. Journal of Physical Chemistry C, 2018, 122, 13731-13737.	1.5	3
1433	Controlled preparation of MoS2/PbBiO2I hybrid microspheres with enhanced visible-light photocatalytic behaviour. Journal of Colloid and Interface Science, 2018, 517, 278-287.	5.0	38
1434	Tailoring ultra-thin MoS2 films via post-treatment of solid state precursor phases. Thin Solid Films, 2018, 649, 177-186.	0.8	6
1435	Ultrathin Alumina Mask-Assisted Nanopore Patterning on Monolayer MoS ₂ for Highly Catalytic Efficiency in Hydrogen Evolution Reaction. ACS Applied Materials & Interfaces, 2018, 10, 8026-8035.	4.0	55
1436	Excitons and Trions in Oneâ€Photon―and Twoâ€Photonâ€Excited MoS ₂ : A Study in Dispersions. Advanced Materials, 2018, 30, e1706702.	11.1	45
1437	The application of nanostructured transition metal sulfides as anodes for lithium ion batteries. Journal of Energy Chemistry, 2018, 27, 1536-1554.	7.1	212
1438	Mixed Phase Compositions of MoS 2 Ultra Thin Film Grown by Pulsed Laser Deposition. Materials Today: Proceedings, 2018, 5, 2241-2245.	0.9	9
1439	Enhanced room-temperature NH3 gas sensing by 2D SnS2 with sulfur vacancies synthesized by chemical exfoliation. Sensors and Actuators B: Chemical, 2018, 262, 771-779.	4.0	140
1440	Three-Dimensional Network Architecture with Hybrid Nanocarbon Composites Supporting Few-Layer MoS ₂ for Lithium and Sodium Storage. ACS Nano, 2018, 12, 1592-1602.	7.3	275
1441	Nucleic aptamer modified porous reduced graphene oxide/MoS2 based electrodes for viral detection: Application to human papillomavirus (HPV). Sensors and Actuators B: Chemical, 2018, 262, 991-1000.	4.0	82
1442	Faster Electron Injection and More Active Sites for Efficient Photocatalytic H ₂ Evolution in g ₃ N ₄ /MoS ₂ Hybrid. Small, 2018, 14, e1703277.	5.2	206
1443	Direct Observation of Semiconductor–Metal Phase Transition in Bilayer Tungsten Diselenide Induced by Potassium Surface Functionalization. ACS Nano, 2018, 12, 2070-2077.	7.3	44
1444	Tunable Nonvolatile Memory Behaviors of PCBM–MoS ₂ 2D Nanocomposites through Surface Deposition Ratio Control. ACS Applied Materials & Interfaces, 2018, 10, 6552-6559.	4.0	48
1445	Role of Interfaces in Two-Dimensional Photocatalyst for Water Splitting. ACS Catalysis, 2018, 8, 2253-2276.	5.5	773
1446	Dependence of Photocurrent Enhancements in Quantum Dot (QD)â€5ensitized MoS ₂ Devices on MoS ₂ Film Properties. Advanced Functional Materials, 2018, 28, 1706149.	7.8	20

#	Article	IF	CITATIONS
1447	Largeâ€Scale Fabrication of MoS ₂ Ribbons and Their Lightâ€Induced Electronic/Thermal Properties: Dichotomies in the Structural and Defect Engineering. Advanced Functional Materials, 2018, 28, 1704863.	7.8	25
1448	Environmental Transformations and Algal Toxicity of Single-Layer Molybdenum Disulfide Regulated by Humic Acid. Environmental Science & Technology, 2018, 52, 2638-2648.	4.6	64
1449	A vertically layered MoS ₂ /Si heterojunction for an ultrahigh and ultrafast photoresponse photodetector. Journal of Materials Chemistry C, 2018, 6, 3233-3239.	2.7	132
1450	Effect of sulphur vacancy and interlayer interaction on the electronic structure and spin splitting of bilayer MoS ₂ . Journal of Physics Condensed Matter, 2018, 30, 125302.	0.7	30
1451	Reduced Thermal Transport in the Graphene/MoS ₂ /Graphene Heterostructure: A Comparison with Freestanding Monolayers. Langmuir, 2018, 34, 3326-3335.	1.6	25
1452	MoS 2 /polyelectrolytes hybrid nanofiltration (NF) membranes with enhanced permselectivity. Journal of the Taiwan Institute of Chemical Engineers, 2018, 84, 196-202.	2.7	31
1453	Engineered MoSe ₂ â€Based Heterostructures for Efficient Electrochemical Hydrogen Evolution Reaction. Advanced Energy Materials, 2018, 8, 1703212.	10.2	152
1454	Alpha Lead Oxide (αâ€₽bO): A New 2D Material with Visible Light Sensitivity. Small, 2018, 14, e1703346.	5.2	58
1455	Defect-rich O-incorporated 1T-MoS2 nanosheets for remarkably enhanced visible-light photocatalytic H2 evolution over CdS: The impact of enriched defects. Applied Catalysis B: Environmental, 2018, 229, 227-236.	10.8	176
1456	A Facile Space-Confined Solid-Phase Sulfurization Strategy for Growth of High-Quality Ultrathin Molybdenum Disulfide Single Crystals. Nano Letters, 2018, 18, 2021-2032.	4.5	42
1457	Accurate identification of layer number for few-layer WS ₂ and WSe ₂ via spectroscopic study. Nanotechnology, 2018, 29, 124001.	1.3	52
1458	Substrate modified thermal stability of mono- and few-layer MoS ₂ . Nanoscale, 2018, 10, 3540-3546.	2.8	43
1459	Synthesizing 1T–1H Two-Phase Mo _{1–<i>x</i>} W _{<i>x</i>} S ₂ Monolayers by Chemical Vapor Deposition. ACS Nano, 2018, 12, 1571-1579.	7.3	62
1460	Controlling electronic properties of MoS ₂ /graphene oxide heterojunctions for enhancing photocatalytic performance: the role of oxygen. Physical Chemistry Chemical Physics, 2018, 20, 1974-1983.	1.3	24
1461	Semiconductor–metal structural phase transformation in MoTe ₂ monolayers by electronic excitation. Nanoscale, 2018, 10, 2742-2747.	2.8	34
1462	Optical and Excitonic Properties of Atomically Thin Transition-Metal Dichalcogenides. Annual Review of Condensed Matter Physics, 2018, 9, 379-396.	5.2	68
1463	Nanostructured MoS ₂ -Based Advanced Biosensors: A Review. ACS Applied Nano Materials, 2018, 1, 2-25.	2.4	238
1464	Langmuir–Blodgett Nanoassemblies of the MoS ₂ –Au Composite at the Air–Water Interface for Dengue Detection, ACS Applied Materials &: Interfaces, 2018, 10, 3020-3028	4.0	45

#	Article	IF	CITATIONS
1465	Self-assembled MoS ₂ /rGO nanocomposites with tunable UV-IR absorption. RSC Advances, 2018, 8, 2410-2417.	1.7	19
1466	Atomic layer deposition of molybdenum disulfide films using MoF6 and H2S. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2018, 36, .	0.9	29
1467	An ultrasensitive detection of miRNA-155 in breast cancer via direct hybridization assay using two-dimensional molybdenum disulfide field-effect transistor biosensor. Biosensors and Bioelectronics, 2018, 105, 6-13.	5.3	121
1468	Selection Role of Metal Oxides into Transition Metal Dichalcogenide Monolayers by a Direct Selenization Process. ACS Applied Materials & Interfaces, 2018, 10, 9645-9652.	4.0	17
1469	Molybdenum disulfide/graphene oxide nanocomposites show favorable lung targeting and enhanced drug loading/tumor-killing efficacy with improved biocompatibility. NPG Asia Materials, 2018, 10, e458-e458.	3.8	58
1470	Effects of Polyacrylonitrile/MoS ₂ Composite Nanofibers on the Growth Behavior of Bone Marrow Mesenchymal Stem Cells. ACS Applied Nano Materials, 2018, 1, 337-343.	2.4	52
1472	A reliable and highly efficient exfoliation method for water-dispersible MoS2 nanosheet. Journal of Colloid and Interface Science, 2018, 514, 642-647.	5.0	25
1473	Charge-Transfer-Induced p-Type Channel in MoS ₂ Flake Field Effect Transistors. ACS Applied Materials & Interfaces, 2018, 10, 4206-4212.	4.0	25
1474	Epitaxial Synthesis of Molybdenum Carbide and Formation of a Mo ₂ C/MoS ₂ Hybrid Structure <i>via</i> Chemical Conversion of Molybdenum Disulfide. ACS Nano, 2018, 12, 338-346.	7.3	148
1475	Atomic layer deposition of crystalline epitaxial MoS ₂ nanowall networks exhibiting superior performance in thin-film rechargeable Na-ion batteries. Journal of Materials Chemistry A, 2018, 6, 2302-2310.	5.2	40
1476	Exotic ferromagnetism in the two-dimensional quantum material C3N. Frontiers of Physics, 2018, 13, 1.	2.4	9
1477	Pyrolytically Modified Polyacrylonitrileâ€Covalently Grafted MoS ₂ Nanosheets for a Nonvolatile Rewritable Memory Device. Advanced Electronic Materials, 2018, 4, 1700397.	2.6	25
1478	High Yield Exfoliation of WS ₂ Crystals into 1–2 Layer Semiconducting Nanosheets and Efficient Photocatalytic Hydrogen Evolution from WS ₂ /CdS Nanorod Composites. ACS Applied Materials & Interfaces, 2018, 10, 2810-2818.	4.0	112
1479	Novel electrochemical sensing platform for ultrasensitive detection of cardiac troponin I based on aptamer-MoS2 nanoconjugates. Biosensors and Bioelectronics, 2018, 113, 142-147.	5.3	72
1480	Analysis of optical and electronic properties of MoS2 for optoelectronics and FET applications. AIP Conference Proceedings, 2018, , .	0.3	22
1481	Three-Dimensional Nanoporous Heterojunction of Monolayer MoS ₂ @rGO for Photoenhanced Hydrogen Evolution Reaction. ACS Applied Energy Materials, 2018, 1, 2183-2191.	2.5	27
1482	Phosphonate and carboxylic acid co-functionalized MoS2 sheets for efficient sorption of uranium and europium: Multiple groups for broad-spectrum adsorption. Journal of Hazardous Materials, 2018, 354, 191-197.	6.5	64
1483	Metallic Transition-Metal Dichalcogenide Nanocatalysts for Energy Conversion. CheM, 2018, 4, 1510-1537.	5.8	141

#	Article	IF	CITATIONS
1484	Novel C fibers@MoS2 nanoplates core-shell composite for efficient solar-driven photocatalytic degradation of Cr(VI) and RhB. Journal of Alloys and Compounds, 2018, 753, 378-387.	2.8	12
1485	Formation of transition metal dichalcogenides thin films with liquid phase exfoliation technique and photovoltaic applications. Solar Energy Materials and Solar Cells, 2018, 184, 9-14.	3.0	16
1486	Temperature- and Phase-Dependent Phonon Renormalization in 1T′-MoS ₂ . ACS Nano, 2018, 12, 5051-5058.	7.3	63
1487	Transition metal atom doping of the basal plane of MoS ₂ monolayer nanosheets for electrochemical hydrogen evolution. Chemical Science, 2018, 9, 4769-4776.	3.7	162
1488	Phaseâ€Engineered Typeâ€II Multimetal–Selenide Heterostructures toward Lowâ€Power Consumption, Flexible, Transparent, and Wideâ€Spectrum Photoresponse Photodetectors. Small, 2018, 14, e1704052.	5.2	32
1489	Band alignment of 2D WS2/HfO2 interfaces from x-ray photoelectron spectroscopy and first-principles calculations. Applied Physics Letters, 2018, 112, 171604.	1.5	14
1490	Low-temperature, plasma assisted, cyclic synthesis of MoS2. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2018, 36, .	0.6	6
1491	Temperature induced crossing in the optical bandgap of mono and bilayer MoS2 on SiO2. Scientific Reports, 2018, 8, 5380.	1.6	5
1492	Selfâ€Limited Epitaxial Growth of Ultrathin Nonlayered CdS Flakes for Highâ€Performance Photodetectors. Advanced Functional Materials, 2018, 28, 1800181.	7.8	86
1493	Design of superior ethanol gas sensor based on indium oxide/molybdenum disulfide nanocomposite via hydrothermal route. Applied Surface Science, 2018, 447, 49-56.	3.1	50
1494	A vacancy-driven phase transition in MoX ₂ (X: S, Se and Te) nanoscrolls. Nanoscale, 2018, 10, 7918-7926.	2.8	24
1495	Single-Molecule MoS ₂ –Polymer Interaction and Efficient Aqueous Exfoliation of MoS ₂ into Single Layer. Journal of Physical Chemistry C, 2018, 122, 8262-8269.	1.5	11
1496	Ultrahigh-Rate Supercapacitors Based on 2-Dimensional, 1T MoS _{2<i>x</i>} Se _{2(1–<i>x</i>)} for AC Line-Filtering Applications. Journal of Physical Chemistry C, 2018, 122, 14186-14194.	1.5	29
1497	Unilamellar Metallic MoS ₂ /Graphene Superlattice for Efficient Sodium Storage and Hydrogen Evolution. ACS Energy Letters, 2018, 3, 997-1005.	8.8	184
1498	Effect of lithium doping on the optical properties of monolayer MoS2. Applied Physics Letters, 2018, 112, .	1.5	23
1499	Structural and electronic properties of PdS 2 nanoribbons. Journal of Magnetism and Magnetic Materials, 2018, 458, 310-316.	1.0	10
1500	Surface plasmon-enhanced optical absorption in monolayer MoS 2 with one-dimensional Au grating. Journal of Quantitative Spectroscopy and Radiative Transfer, 2018, 211, 138-143.	1.1	15
1501	Electronic and magnetic properties of structural defects in pristine ZrSe2 monolayer. Computational Materials Science, 2018, 146, 36-41.	1.4	16

#	Article	IF	CITATIONS
1502	Electrochemical properties of a 2D-molybdenum disulfide–modified electrode and its application in SO2 detection. Journal of Electroanalytical Chemistry, 2018, 815, 220-224.	1.9	15
1503	One-step electrodeposition of high-quality amorphous molybdenum sulfide/RGO photoanode for visible-light sensitive photoelectrochemical biosensing. Sensors and Actuators B: Chemical, 2018, 266, 71-79.	4.0	33
1504	rGO/CNTs Supported Pyrolysis Derivatives of [Mo ₃ S ₁₃] ^{2–} Clusters as Promising Electrocatalysts for Enhancing Hydrogen Evolution Performances. ACS Sustainable Chemistry and Engineering, 2018, 6, 6920-6931.	3.2	17
1505	Few-layer MoS2 nanosheets-deposited on Bi2MoO6 microspheres: A Z-scheme visible-light photocatalyst with enhanced activity. Catalysis Today, 2018, 315, 67-78.	2.2	74
1506	Exfoliated MoS2 with porous graphene nanosheets for enhanced electrochemical hydrogen evolution. International Journal of Hydrogen Energy, 2018, 43, 13946-13952.	3.8	37
1507	Chemical synthesis of two-dimensional atomic crystals, heterostructures and superlattices. Chemical Society Reviews, 2018, 47, 3129-3151.	18.7	132
1508	Recent Advances in Functional Polymer Decorated Twoâ€Đimensional Transitionâ€Metal Dichalcogenides Nanomaterials for Chemoâ€Photothermal Therapy. Chemistry - A European Journal, 2018, 24, 4215-4227.	1.7	59
1509	Towards sustainable ultrafast molecular-separation membranes: From conventional polymers to emerging materials. Progress in Materials Science, 2018, 92, 258-283.	16.0	253
1510	Recent Applications of 2D Inorganic Nanosheets for Emerging Energy Storage System. Chemistry - A European Journal, 2018, 24, 4757-4773.	1.7	52
1511	Influence of temperature on morphological and optical properties of MoS2 layers as grown based on solution processed precursor. Thin Solid Films, 2018, 645, 38-44.	0.8	11
1512	Zweidimensionale Chemie jenseits von Graphen: das aufstrebende Gebiet der Funktionalisierung von MolybdÃ ¤ disulfid und schwarzem Phosphor. Angewandte Chemie, 2018, 130, 4421-4437.	1.6	24
1513	Postâ€Graphene 2D Chemistry: The Emerging Field of Molybdenum Disulfide and Black Phosphorus Functionalization. Angewandte Chemie - International Edition, 2018, 57, 4338-4354.	7.2	193
1514	Pressure-dependent large area synthesis and electronic structure of MoS 2. Materials Research Bulletin, 2018, 97, 265-271.	2.7	5
1515	Surface modification and drug delivery applications of MoS2 nanosheets with polymers through the combination of mussel inspired chemistry and SET-LRP. Journal of the Taiwan Institute of Chemical Engineers, 2018, 82, 205-213.	2.7	122
1516	Ru ^{II} Photosensitizerâ€Functionalized Twoâ€Dimensional MoS ₂ for Lightâ€Driven Hydrogen Evolution. Chemistry - A European Journal, 2018, 24, 351-355.	1.7	21
1517	Etchant-free transfer of 2D nanostructures. Nanotechnology, 2018, 29, 025602.	1.3	40
1518	Strong magnetic resonances and largely enhanced second-harmonic generation of colloidal MoS2 and ReS2@Au nanoantennas with assembled 2D nanosheets. Nanoscale, 2018, 10, 124-131.	2.8	11
1519	Quantum Dots of 1T Phase Transitional Metal Dichalcogenides Generated <i>via</i> Electrochemical Li Intercalation. ACS Nano, 2018, 12, 308-316.	7.3	110

#	Article	IF	CITATIONS
1520	Mo2S3@Ni3S2 nanowries on nickel foam as a highly-stable supercapacitor material. Journal of Alloys and Compounds, 2018, 737, 809-814.	2.8	26
1521	Tuning the activity of the inert MoS ₂ surface <i>via</i> graphene oxide support doping towards chemical functionalization and hydrogen evolution: a density functional study. Physical Chemistry Chemical Physics, 2018, 20, 1861-1871.	1.3	22
1522	Functionalized MoS2 nanosheets assembled microfluidic immunosensor for highly sensitive detection of food pathogen. Sensors and Actuators B: Chemical, 2018, 259, 1090-1098.	4.0	57
1523	Co stabilized metallic 1Td MoS2 monolayers: Bottom-up synthesis and enhanced capacitance with ultra-long cycling stability. Materials Today Energy, 2018, 7, 10-17.	2.5	28
1524	Ultrahigh, Ultrafast, and Selfâ€Powered Visibleâ€Nearâ€Infrared Optical Positionâ€5ensitive Detector Based on a CVDâ€Prepared Vertically Standing Fewâ€Layer MoS ₂ /Si Heterojunction. Advanced Science, 2018, 5, 1700502.	5.6	87
1525	Group 6 transition metal dichalcogenide nanomaterials: synthesis, applications and future perspectives. Nanoscale Horizons, 2018, 3, 90-204.	4.1	309
1526	High performance few-layer MoS ₂ transistor arrays with wafer level homogeneity integrated by atomic layer deposition. 2D Materials, 2018, 5, 015028.	2.0	30
1527	Structure Reâ€determination and Superconductivity Observation of Bulk 1T MoS ₂ . Angewandte Chemie, 2018, 130, 1246-1249.	1.6	46
1528	Structure Reâ€determination and Superconductivity Observation of Bulk 1T MoS ₂ . Angewandte Chemie - International Edition, 2018, 57, 1232-1235.	7.2	126
1529	Electronic structure of the PLD grown mixed phase MoS 2 /GaN interface and its thermal annealing effect. Current Applied Physics, 2018, 18, 170-177.	1.1	17
1530	Morphology-controlled synthesis of TiO ₂ /MoS ₂ nanocomposites with enhanced visible-light photocatalytic activity. Inorganic Chemistry Frontiers, 2018, 5, 145-152.	3.0	40
1531	Recent progress in 2D materials for flexible supercapacitors. Journal of Energy Chemistry, 2018, 27, 57-72.	7.1	179
1532	Effect of Intercalated Metals on the Electrocatalytic Activity of 1T-MoS ₂ for the Hydrogen Evolution Reaction. ACS Energy Letters, 2018, 3, 7-13.	8.8	211
1533	Preparation of MoS ₂ /TiO ₂ based nanocomposites for photocatalysis and rechargeable batteries: progress, challenges, and perspective. Nanoscale, 2018, 10, 34-68.	2.8	247
1534	Self-Healing, antibacterial and sensing nanoparticle coating and its excellent optical applications. Sensors and Actuators B: Chemical, 2018, 257, 1110-1117.	4.0	33
1535	Ultrasensitive detection of thrombin based on MoS2-aptamer biosensors by resonance light scattering technique. Sensors and Actuators B: Chemical, 2018, 258, 402-407.	4.0	17
1536	Robust electronic and mechanical properties to layer number in 2D wide-gap X(OH) ₂ (X  =  Mg, Ca). Journal Physics D: Applied Physics, 2018, 51, 015107.	1.3	7
1537	Enhanced photoelectrochemical activity in the heterostructure of vertically aligned few-layer MoS2 flakes on ZnO. Electrochimica Acta, 2018, 260, 150-156.	2.6	60

	CITATIO	ON REPORT	
# 1538	ARTICLE Thiol-modified <mml:math <br="" id="mml3" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline" overflow="scroll" altimg="si3.gif"><mml:msub><mml:mrow><mml:mi mathvariant="normal">MoS</mml:mi </mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow>nanosheets as a functional layer for electrical bistable devices. Optics Communications, 2018, 406,</mml:msub></mml:math>	lF nml:msubø <td>CITATIONS</td>	CITATIONS
1539	112-117. New Directions in Science Technology—Atomically-Thin Metal Dichalcogenides. , 2018, , 181-250.		1
1540	Tunable Excitation-Dependent Photoluminescences Using Energy Gap Regulating Photogenerated Electrons Injection Rate from Excited TiO2 Nanoparticles to MoS2 Nanosheets. Russian Journal of Applied Chemistry, 2018, 91, 2012-2021.	0.1	0
1541	Synthesis, stabilization and applications of 2-dimensional 1T metallic MoS ₂ . Journal of Materials Chemistry A, 2018, 6, 23932-23977.	5.2	250
1542	Catalytic activity for the hydrogen evolution reaction of edges in Janus monolayer MoXY (X/Y = S, Se,) Tj ET	Qq0 0 0 ₁ rgBT /O	Verlock 10 Tr
1543	Water-soluble MoS ₂ quantum dots for facile and sensitive fluorescence sensing of alkaline phosphatase activity in serum and live cells based on the inner filter effect. Nanoscale, 2018, 10, 21298-21306.	2.8	49
1544	Preparation of controllable-thickness 1T@2H-MoS ₂ thin films by pulsed laser-induced synthesis and the selective separation of the 1T phase. Journal of Materials Chemistry C, 2018, 6, 11651-11658.	2.7	11
1545	First principles study on 2H–1T′ transition in MoS ₂ with copper. Physical Chemistry Chemical Physics, 2018, 20, 26986-26994.	1.3	39
1546	Interlayer interactions in 2D WS ₂ /MoS ₂ heterostructures monolithically grown by <i>in situ</i> physical vapor deposition. Nanoscale, 2018, 10, 22927-22936.	2.8	62
1547	Influence of Oxalic Acid Concentrations on The Growth of Molybdenum Disulfide via Spin Coating Technique. Journal of Physics: Conference Series, 2018, 1083, 012060.	0.3	1
1548	Vertically Aligned Ultrathin 1T-WS2 Nanosheets Enhanced the Electrocatalytic Hydrogen Evolution. Nanoscale Research Letters, 2018, 13, 167.	3.1	57

1549	Effect of Process Temperature on Molybdenum Disulphide Layers Grown by Chemical Vapor Deposition Technique. , 2018, , .		2
1550	Aqueous Exfoliation Of Molybdenum Disulfide Using Ultrasonication. Materials Today: Proceedings, 2018, 5, 13152-13156.	0.9	2
1551	Effects of interfacial energy and annealing on the microstructure of NiTe _{2 thin films on glass substrate. International Journal of Nanotechnology, 2018, 15, 611.}	0.1	0
1552	Black phosphorus: A novel nanoplatform with potential in the field of bio-photonic nanomedicine. Journal of Innovative Optical Health Sciences, 2018, 11, .	0.5	70
1553	Few-Layered MoS ₂ Nanoparticles Loaded TiO ₂ Nanosheets with Exposed {001} Facets for Enhanced Photocatalytic Activity. Nano, 2018, 13, 1850129.	0.5	6
1554	Theoretical Insights into Interfacial Electron Transfer between Zinc Phthalocyanine and Molybdenum Disulfide. Journal of Physical Chemistry A, 2018, 122, 9587-9596.	1.1	28
	Trion-Inhibited Strong Excitonic Emission and Broadband Giant Photoresponsivity from Chemical		

	Trion-Inhibited Strong Excitonic Emission and Broadband Giant Photoresponsivity from Chemical		
1555	Vapor-Deposited Monolayer MoS ₂ Grown in Situ on TiO ₂ Nanostructure. ACS	4.0	36
	Applied Materials & Interfaces, 2018, 10, 42812-42825.		

#	Article	IF	CITATIONS
1556	Heterojunction solar cell based on n-MoS2/p-InP. Optical Materials, 2018, 86, 576-581.	1.7	32
1557	Review—Electrochemical Synthesis of 2D Layered Materials and Their Potential Application in Pesticide Detection. Journal of the Electrochemical Society, 2018, 165, B848-B861.	1.3	32
1558	Unveiling the Structure of MoS <i>_x</i> Nanocrystals Produced upon Laser Fragmentation of MoS ₂ Platelets. ACS Omega, 2018, 3, 16728-16734.	1.6	10
1559	Monolayer Attachment of Metallic MoS ₂ on Restacked Titania Nanosheets for Efficient Photocatalytic Hydrogen Generation. ACS Applied Energy Materials, 2018, 1, 6912-6918.	2.5	15
1560	Fast kinetics of multivalent intercalation chemistry enabled by solvated magnesium-ions into self-established metallic layered materials. Nature Communications, 2018, 9, 5115.	5.8	114
1561	Defect Engineering of MoS ₂ and Its Impacts on Electrocatalytic and Photocatalytic Behavior in Hydrogen Evolution Reactions. Chemistry - an Asian Journal, 2019, 14, 278-285.	1.7	39
1562	Poly(diallydimethylammonium chloride)-Induced Dispersion and Exfoliation of Tungsten Disulfide for the Sensing of Glutathione and Catalytic Hydrogenation of <i>p</i> -Nitrophenol. ACS Applied Nano Materials, 2018, 1, 6808-6817.	2.4	20
1563	Enhancement of photoluminescence efficiency in GeSe ultrathin slab by thermal treatment and annealing: experiment and first-principles molecular dynamics simulations. Scientific Reports, 2018, 8, 17671.	1.6	10
1564	Effects of morphology and crystallinity of MoS2 nanocrystals on the catalytic reduction of p-nitrophenol. Journal of Nanoparticle Research, 2018, 20, 1.	0.8	17
1565	Metallic MoS ₂ nanosheets: multifunctional electrocatalyst for the ORR, OER and Li–O ₂ batteries. Nanoscale, 2018, 10, 22549-22559.	2.8	93
1566	Effects of Multiple Stacking Faults on the Electronic and Optical Properties of Armchair MoS \$\$_{2}\$\$ 2 Nanoribbons: First-Principles Calculations. Journal of Electronic Materials, 2018, 47, 7114-7128.	1.0	0
1567	Hierarchical MoS2/Ni3S2 core-shell nanofibers for highly efficient and stable overall-water-splitting in alkaline media. Materials Today Energy, 2018, 10, 214-221.	2.5	16
1568	Sugar-Based Natural Deep Eutectic Mixtures as Green Intercalating Solvents for High-Yield Preparation of Stable MoS ₂ Nanosheets: Application to Electrocatalysis of Hydrogen Evolution Reaction. ACS Applied Energy Materials, 2018, 1, 5896-5906.	2.5	37
1569	Two-dimensional quantum dots: Fundamentals, photoluminescence mechanism and their energy and environmental applications. Materials Today Energy, 2018, 10, 222-240.	2.5	87
1570	Synthesis of 2D transition metal dichalcogenides by chemical vapor deposition with controlled layer number and morphology. Nano Convergence, 2018, 5, 26.	6.3	119
1571	Anharmonic Phonon Coupling in Single-Crystal Semiconducting and Metal-Like van der Waals In ₂ Se ₃ . Journal of Physical Chemistry C, 2018, 122, 22849-22855.	1.5	20
1572	Direct Observation of Perovskite Photodetector Performance Enhancement by Atomically Thin Interface Engineering. ACS Applied Materials & Interfaces, 2018, 10, 36493-36504.	4.0	25
1573	Facile Synthesis of Superstructured MoS ₂ and Graphitic Nanocarbon Hybrid for Efficient Hydrogen Evolution Reaction. ACS Sustainable Chemistry and Engineering, 2018, 6, 14441-14449.	3.2	41

#	Article	IF	CITATIONS
1574	MoS ₂ Quantum Dot/Graphene Hybrids for Advanced Interface Engineering of a CH ₃ NH ₃ Pbl ₃ Perovskite Solar Cell with an Efficiency of over 20%. ACS Nano, 2018, 12, 10736-10754.	7.3	201
1575	Recent Advances in Synthesis and Assembly of van der Waals Materials. Journal of the Korean Physical Society, 2018, 73, 805-816.	0.3	11
1576	Synthesis and properties of graphene and its 2D inorganic analogues with potential applications. Bulletin of Materials Science, 2018, 41, 1.	0.8	4
1577	Facile Synthesis of MoS ₂ /CuS Nanosheet Composites as an Efficient and Ultrafast Adsorbent for Water-Soluble Dyes. Journal of Chemical & Engineering Data, 2018, 63, 3966-3974.	1.0	32
1578	Template-free synthesis of uniform rose-like MoS2 hierarchitectures and their enhanced photocatalytic properties. Journal of Materials Science: Materials in Electronics, 2018, 29, 19393-19401.	1.1	1
1579	Fabrication of ternary hybrid of carbon nanotubes/graphene oxide/MoS2 and its enhancement on the tribological properties of epoxy composite coatings. Composites Part A: Applied Science and Manufacturing, 2018, 115, 157-165.	3.8	112
1580	Ultrasmall and Monolayered Tungsten Dichalcogenide Quantum Dots with Giant Spin–Valley Coupling and Purple Luminescence. ACS Omega, 2018, 3, 12188-12194.	1.6	15
1581	2D layered transition metal dichalcogenides (MoS2): Synthesis, applications and theoretical aspects. Applied Materials Today, 2018, 13, 242-270.	2.3	139
1582	Hierarchical porous reduced graphene oxide decorated with molybdenum disulfide for high-performance supercapacitors. Electrochimica Acta, 2018, 292, 639-645.	2.6	24
1583	Solution-processable 2D semiconductors for high-performance large-area electronics. Nature, 2018, 562, 254-258.	13.7	644
1584	Two-dimensional nanomaterial based sensors for heavy metal ions. Mikrochimica Acta, 2018, 185, 478.	2.5	48
1585	Intercalation of alkali metals (Li, Na, and K) in molybdenum dinitride (MoN2) and titanium dinitride (TiN2) from first-principles calculations. Computational Condensed Matter, 2018, 17, e00335.	0.9	3
1586	Surface extension of MeS2 (Me=Mo or W) nanosheets by embedding MeSx for hydrogen evolution reaction. Electrochimica Acta, 2018, 292, 136-141.	2.6	31
1587	Abrupt Thermal Shock of (NH ₄) ₂ Mo ₃ S ₁₃ Leads to Ultrafast Synthesis of Porous Ensembles of MoS ₂ Nanocrystals for High Gain Photodetectors. ACS Applied Materials & Interfaces, 2018, 10, 38193-38200.	4.0	5
1588	Surface Engineering of Chemically Exfoliated MoS ₂ in a "Click― How To Generate Versatile Multifunctional Transition Metal Dichalcogenides-Based Platforms. Chemistry of Materials, 2018, 30, 8257-8269.	3.2	29
1589	Emerging 2D Nanomaterials for Supercapacitor Applications. , 2018, , 155-183.		1
1590	Contributions of van der Waals Interactions and Hydrophobic Attraction to Molecular Adhesions on a Hydrophobic MoS ₂ Surface in Water. Langmuir, 2018, 34, 14196-14203.	1.6	13
1591	Metallic 1T-MoS2 nanosheets and their composite materials: Preparation, properties and emerging applications. Materials Today Energy, 2018, 10, 264-279.	2.5	75

#	Article	IF	CITATIONS
1592	Triggering basal plane active sites of monolayer MoS2 for the hydrogen evolution reaction by phosphorus doping. Journal of Nanoparticle Research, 2018, 20, 1.	0.8	6
1593	Impact of Synthesized MoS ₂ Wafer-Scale Quality on Fermi Level Pinning in Vertical Schottky-Barrier Heterostructures. ACS Applied Materials & Interfaces, 2018, 10, 39860-39871.	4.0	5
1594	Lithium Intercalation in Graphene–MoS ₂ Heterostructures. Journal of Physical Chemistry C, 2018, 122, 24535-24541.	1.5	41
1595	Molecular Functionalization of Twoâ€Dimensional MoS ₂ Nanosheets. Chemistry - A European Journal, 2018, 24, 18246-18257.	1.7	73
1596	2D Metal Chalcogenide Nanopatterns by Block Copolymer Lithography. Advanced Functional Materials, 2018, 28, 1804508.	7.8	41
1597	Surface Plasmon Polaritons in MoS2 Nanostructures. Brazilian Journal of Physics, 2018, 48, 604-607.	0.7	1
1598	A Pseudolayered MoS ₂ as Liâ€ion Intercalation Host with Enhanced Rate Capability and Durability. Small, 2018, 14, e1803344.	5.2	35
1599	Synthesis and investigation on synergetic effect of rGO-ZnO decorated MoS2 microflowers with enhanced photocatalytic and antibacterial activity. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 559, 43-53.	2.3	54
1600	Water confined in two-dimensions: Fundamentals and applications. Surface Science Reports, 2018, 73, 233-264.	3.8	48
1601	Atomic scale study for the structural transformation of single layered MoS ₂ . CrystEngComm, 2018, 20, 6482-6489.	1.3	9
1602	Hierarchical FeCo@MoS ₂ Nanoflowers with Strong Electromagnetic Wave Absorption and Broad Bandwidth. ACS Applied Nano Materials, 2018, 1, 5179-5187.	2.4	82
1603	Armchair MoS2 nanoribbons turned into half metals through deposition of transition-metal and Si atomic chains. Scientific Reports, 2018, 8, 13307.	1.6	5
1604	Formation and stability of water clusters at the molybdenum disulfide interface: a molecular dynamics simulation investigation. Journal of Physics Condensed Matter, 2018, 30, 415001.	0.7	6
1605	Crystal phase control in two-dimensional materials. Science China Chemistry, 2018, 61, 1227-1242.	4.2	42
1606	Wearable Thermoelectric Devices Based on Au-Decorated Two-Dimensional MoS ₂ . ACS Applied Materials & Interfaces, 2018, 10, 33316-33321.	4.0	57
1607	Influences of temperature gradient and distance on the morphologies of MoS2 domains. AIP Advances, 2018, 8, .	0.6	7
1608	Laser-assisted tunable optical nonlinearity in liquid-phase exfoliated MoS2 dispersion. Applied Physics A: Materials Science and Processing, 2018, 124, 1.	1.1	27
1609	Free-standing polylactic acid/chitosan/molybdenum disulfide films with controllable visible-light photodegradation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 558, 488-494	2.3	12

#	Article	IF	CITATIONS
1610	Mechanically interlocked 1T/2H phases of MoS2 nanosheets for solar thermal water purification. Nano Energy, 2018, 53, 949-957.	8.2	156
1611	In Pursuit of 2D Materials for Maximum Optical Response. ACS Nano, 2018, 12, 10880-10889.	7.3	50
1612	Environmental Stimuliâ€Irresponsive Longâ€Term Radical Scavenging of 2D Transition Metal Dichalcogenides through Defectâ€Mediated Hydrogen Atom Transfer in Aqueous Media. Advanced Functional Materials, 2018, 28, 1802737.	7.8	9
1613	Perspectives on Thermoelectricity in Layered and 2D Materials. Advanced Electronic Materials, 2018, 4, 1800248.	2.6	77
1614	One-Dimensional Atomic Segregation at Semiconductor–Metal Interfaces of Polymorphic Transition Metal Dichalcogenide Monolayers. Nano Letters, 2018, 18, 6157-6163.	4.5	4
1615	Lithium Electrochemical Tuning for Electrocatalysis. Advanced Materials, 2018, 30, e1800978.	11.1	51
1616	Exfoliation of crystals. Russian Chemical Reviews, 2018, 87, 882-903.	2.5	6
1617	Hybrid plasmonic nanostructures based on controlled integration of MoS2 flakes on metallic nanoholes. Nanoscale, 2018, 10, 17105-17111.	2.8	32
1618	Two-step fabrication of large-scale MoS ₂ hollow flakes. CrystEngComm, 2018, 20, 5619-5624.	1.3	6
1619	Highly selective and reversible NO ₂ gas sensor using vertically aligned MoS ₂ flake networks. Nanotechnology, 2018, 29, 464001.	1.3	79
1620	pH-Dependent Photoluminescence Properties of Monolayer Transition-Metal Dichalcogenides Immersed in an Aqueous Solution. Journal of Physical Chemistry C, 2018, 122, 13175-13181.	1.5	12
1621	Comparison of trapped charges and hysteresis behavior in hBN encapsulated single MoS ₂ flake based field effect transistors on SiO ₂ and hBN substrates. Nanotechnology, 2018, 29, 335202.	1.3	70
1622	Phonon-coupled ultrafast interlayer charge oscillation at van der Waals heterostructure interfaces. Physical Review B, 2018, 97, .	1.1	81
1623	Robust Fabrication of Quantum Dots on Few‣ayer MoS ₂ by Soft Hydrogen Plasma and Postâ€Annealing. Particle and Particle Systems Characterization, 2018, 35, 1800060.	1.2	3
1624	Gap plasmon-enhanced photoluminescence of monolayer MoS ₂ in hybrid nanostructure. Chinese Physics B, 2018, 27, 047302.	0.7	11
1625	Controllable solution-fabrication of triphasic 2H@1T-MoS2/graphene heterostructure with assistance of supercritical CO2. Surfaces and Interfaces, 2018, 12, 41-49.	1.5	9
1626	Tunable Optical and Electrical Transport Properties of Size- and Temperature-Controlled Polymorph MoS ₂ Nanocrystals. Journal of Physical Chemistry C, 2018, 122, 12502-12511.	1.5	15
1627	Dispersion and decay rate of exciton-polaritons and radiative modes in transition metal dichalcogenide monolayers. Physical Review B, 2018, 97, .	1.1	8

#	Article	IF	Citations
1628	Custom-made sulfonated poly (ether sulfone) nanocomposite proton exchange membranes using exfoliated molybdenum disulfide nanosheets for DMFC applications. Polymer, 2018, 147, 48-55.	1.8	51
1629	Enhanced sulfurization reaction of molybdenum using a thermal cracker for forming two-dimensional MoS ₂ layers. Physical Chemistry Chemical Physics, 2018, 20, 16193-16201.	1.3	15
1630	Fabrication of monolayer MoS2/rGO hybrids with excellent tribological performances through a surfactant-assisted hydrothermal route. Applied Physics A: Materials Science and Processing, 2018, 124, 1.	1.1	26
1631	Bandgap engineering of Janus MoSSe monolayer implemented by Se vacancy. Computational Materials Science, 2018, 152, 20-27.	1.4	46
1632	Precise Singleâ€Step Electrophoretic Multiâ€Sized Fractionation of Liquidâ€Exfoliated Nanosheets. Advanced Functional Materials, 2018, 28, 1801622.	7.8	18
1633	A comparison of temperature dependent photoluminescence and photo-catalytic properties of different MoS2 nanostructures. Applied Surface Science, 2018, 455, 379-391.	3.1	29
1634	Electronic Interactions in Illuminated Carbon Dot/MoS ₂ Ensembles and Electrocatalytic Activity towards Hydrogen Evolution. Chemistry - A European Journal, 2018, 24, 10468-10474.	1.7	33
1635	Synergetic photocatalytic effect between 1 T@2H-MoS ₂ and plasmon resonance induced by Ag quantum dots. Nanotechnology, 2018, 29, 285402.	1.3	30
1636	A superior dye adsorbent towards the hydrogen evolution reaction combining active sites and phase-engineering of (1T/2H) MoS ₂ /î±-MoO ₃ hybrid heterostructured nanoflowers. Journal of Materials Chemistry A, 2018, 6, 15320-15329.	5.2	86
1637	Electronic Properties of Armchair \$\$hbox {MoS}_{2}\$ MoS 2 Nanoribbons with Stacking Faults: First-Principles Calculations. Journal of Electronic Materials, 2018, 47, 5498-5508.	1.0	8
1638	Semiconductor Nanomembrane Materials for High-Performance Soft Electronic Devices. Journal of the American Chemical Society, 2018, 140, 9001-9019.	6.6	34
1639	MoS2 nanosheets via electrochemical lithium-ion intercalation under ambient conditions. FlatChem, 2018, 9, 33-39.	2.8	40
1640	Recovery Improvement for Large-Area Tungsten Diselenide Gas Sensors. ACS Applied Materials & Interfaces, 2018, 10, 23910-23917.	4.0	115
1641	Increasing Light Extraction Using UV Curable SILs. Springer Theses, 2018, , 61-84.	0.0	0
1642	Molybdenum disulfide (MoS2) as a co-catalyst for photocatalytic degradation of organic contaminants: A review. Chemical Engineering Research and Design, 2018, 118, 40-58.	2.7	121
1643	Defect-rich MoS2 nanosheets vertically grown on graphene-protected Ni foams for high efficient electrocatalytic hydrogen evolution. International Journal of Hydrogen Energy, 2018, 43, 14087-14095.	3.8	25
1644	Synthesis of MoS2/YVO4 composite and its high photocatalytic performance in methyl orange degradation and H2 evolution. Solar Energy, 2018, 171, 426-434.	2.9	32
1645	A two-band spinful k.p Hamiltonian of monolayer MoS2 from a nine-band model based on group theory. Superlattices and Microstructures, 2018, 120, 812-823.	1.4	4

#	Article	IF	CITATIONS
1647	Investigation of the Growth Process of Continuous Monolayer MoS2 Films Prepared by Chemical Vapor Deposition. Journal of Electronic Materials, 2018, 47, 5509-5517.	1.0	9
1648	Electrochemical deposition of bulk MoS2 thin films for photovoltaic applications. Solar Energy Materials and Solar Cells, 2018, 186, 165-174.	3.0	45
1649	Transparent Glass with the Growth of Pyramid-Type MoS ₂ for Highly Efficient Water Disinfection under Visible-Light Irradiation. ACS Applied Materials & Interfaces, 2018, 10, 23444-23450.	4.0	48
1650	Solutionâ€Processed 3D RGO–MoS ₂ /Pyramid Si Heterojunction for Ultrahigh Detectivity and Ultraâ€Broadband Photodetection. Advanced Materials, 2018, 30, e1801729.	11.1	175
1651	Mixedâ€Phase 2Dâ€MoS ₂ as an Effective Photocatalyst for Selective Aerobic Oxidative Coupling of Amines under Visible‣ight Irradiation. Chemistry - A European Journal, 2018, 24, 13871-13878.	1.7	45
1652	Nanoplates-assembled SnS2 nanoflowers for ultrasensitive ppb-level NO2 detection. Sensors and Actuators B: Chemical, 2018, 273, 473-479.	4.0	61
1653	Thin-Layered Molybdenum Disulfide Nanoparticles as an Effective Polysulfide Mediator in Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2018, 10, 23122-23130.	4.0	39
1654	Nitrogen-Doped Silver-Nanoparticle-Decorated Transition-Metal Dichalcogenides as Surface-Enhanced Raman Scattering Substrates for Sensing Polycyclic Aromatic Hydrocarbons. ACS Applied Nano Materials, 2018, 1, 3625-3635.	2.4	20
1655	Two-dimensional materials with piezoelectric and ferroelectric functionalities. Npj 2D Materials and Applications, 2018, 2, .	3.9	258
1656	Two-dimensional light-emitting materials: preparation, properties and applications. Chemical Society Reviews, 2018, 47, 6128-6174.	18.7	167
1657	Au nanoparticles functionalized 3D-MoS2 nanoflower: An efficient SERS matrix for biomolecule sensing. Biosensors and Bioelectronics, 2018, 119, 10-17.	5.3	97
1658	Structural Evolution of Molybdenum Disulfide Prepared by Atomic Layer Deposition for Realization of Large Scale Films in Microelectronic Applications. ACS Applied Nano Materials, 2018, 1, 4028-4037.	2.4	28
1659	Scalable Exfoliation of Bulk MoS2 to Single- and Few-Layers Using Toroidal Taylor Vortices. Nanomaterials, 2018, 8, 587.	1.9	30
1660	Centimeter-Scale Periodically Corrugated Few-Layer 2D MoS ₂ with Tensile Stretch-Driven Tunable Multifunctionalities. ACS Applied Materials & Interfaces, 2018, 10, 30623-30630.	4.0	21
1661	Light absorption optimization in two-dimensional transition metal dichalcogenide van der Waals heterostructures. Journal of the Optical Society of America B: Optical Physics, 2018, 35, 1179.	0.9	52
1662	In-Plane Axially Enhanced Photocatalysis by Re ₄ Diamond Chains in Layered ReS ₂ . Journal of Physical Chemistry C, 2018, 122, 18776-18784.	1.5	14
1663	2D Group IVB Transition Metal Dichalcogenides. Advanced Functional Materials, 2018, 28, 1803305.	7.8	91
1664	CVD-Grown MoSe ₂ Nanoflowers with Dual Active Sites for Efficient Electrochemical Hydrogen Evolution Reaction. ACS Applied Materials & amp; Interfaces, 2018, 10, 27771-27779.	4.0	60

#	Article	IF	CITATIONS
1665	Investigating Laser-Induced Phase Engineering in MoS ₂ Transistors. IEEE Transactions on Electron Devices, 2018, 65, 4053-4058.	1.6	8
1666	A facile and clean process for exfoliating MoS ₂ nanosheets assisted by a surface active agent in aqueous solution. Nanotechnology, 2018, 29, 425702.	1.3	15
1667	Metallic MoS ₂ for High Performance Energy Storage and Energy Conversion. Small, 2018, 14, e1800640.	5.2	218
1668	Recent Progresses in Electrocatalysts for Water Electrolysis. Electrochemical Energy Reviews, 2018, 1, 483-530.	13.1	285
1669	Molecular chemistry approaches for tuning the properties of two-dimensional transition metal dichalcogenides. Chemical Society Reviews, 2018, 47, 6845-6888.	18.7	202
1670	Vertically trigonal WS2 layer embedded heterostructure for enhanced ultraviolet–visible photodetector. Journal of Alloys and Compounds, 2018, 768, 143-149.	2.8	28
1671	Removal and Recovery of Heavy Metal Ions by Two-dimensional MoS ₂ Nanosheets: Performance and Mechanisms. Environmental Science & Technology, 2018, 52, 9741-9748.	4.6	177
1672	Defect Dynamics in 2-D MoS ₂ Probed by Using Machine Learning, Atomistic Simulations, and High-Resolution Microscopy. ACS Nano, 2018, 12, 8006-8016.	7.3	72
1673	Thickness-Dependent Characterization of Chemically Exfoliated TiS ₂ Nanosheets. ACS Omega, 2018, 3, 8655-8662.	1.6	60
1674	Various Structures of 2D Transitionâ€Metal Dichalcogenides and Their Applications. Small Methods, 2018, 2, 1800094.	4.6	107
1675	2H/1T Phase Transition of Multilayer MoS ₂ by Electrochemical Incorporation of S Vacancies. ACS Applied Energy Materials, 2018, 1, 4754-4765.	2.5	141
1676	One-step hydrothermal synthesis of marigold flower-like nanostructured MoS2 as a counter electrode for dye-sensitized solar cells. Journal of Solid State Electrochemistry, 2018, 22, 3331-3341.	1.2	24
1677	Phase Transition of Single-Layer Molybdenum Disulfide Nanosheets under Mechanical Loading Based on Molecular Dynamics Simulations. Materials, 2018, 11, 502.	1.3	13
1678	Properties, Preparation and Applications of Low Dimensional Transition Metal Dichalcogenides. Nanomaterials, 2018, 8, 463.	1.9	38
1679	Ultrastable Inâ€Plane 1T–2H MoS ₂ Heterostructures for Enhanced Hydrogen Evolution Reaction. Advanced Energy Materials, 2018, 8, 1801345.	10.2	409
1680	Synthesis, properties, and optoelectronic applications of two-dimensional MoS ₂ and MoS ₂ -based heterostructures. Chemical Society Reviews, 2018, 47, 6101-6127.	18.7	293
1681	Field effect properties of single-layer MoS2(1â^'x)Se2x nanosheets produced by a one-step CVD process. Journal of Materials Science, 2018, 53, 14447-14455.	1.7	11
1682	Improved microwave absorbing properties by designing heterogeneous interfaces in Mo@2D-MoS2. Journal of Alloys and Compounds, 2018, 767, 1-6.	2.8	16

#	Article	IF	CITATIONS
1683	Two-Dimensional Hierarchical Semiconductor with Addressable Surfaces. Journal of the American Chemical Society, 2018, 140, 9369-9373.	6.6	22
1684	Facile fabrication of POSS-Modified MoS2/PMMA nanocomposites with enhanced thermal, mechanical and optical limiting properties. Composites Science and Technology, 2018, 165, 388-396.	3.8	21
1685	Morphology engineering of MoS2 nanostructures by controlling MoO3â^'x concentration using a quasi-closed crucible. Chemical Physics, 2018, 513, 78-82.	0.9	6
1686	Liquid Phase Acoustic Wave Exfoliation of Layered MoS ₂ : Critical Impact of Electric Field in Efficiency. Chemistry of Materials, 2018, 30, 5593-5601.	3.2	31
1687	Rapid synthesis of MoS2-PDA-Ag nanocomposites as heterogeneous catalysts and antimicrobial agents via microwave irradiation. Applied Surface Science, 2018, 459, 588-595.	3.1	170
1688	Highly stable and bio-compatible luminescent molybdenum disulfide quantum dots for imaging of alimentary canal in Drosophila. Journal of Luminescence, 2018, 202, 111-117.	1.5	18
1689	Removal of Cd (II) from water by using nano-scale molybdenum disulphide sheets as adsorbents. Journal of Molecular Liquids, 2018, 263, 526-533.	2.3	53
1690	Engineering graphene and TMDs based van der Waals heterostructures for photovoltaic and photoelectrochemical solar energy conversion. Chemical Society Reviews, 2018, 47, 4981-5037.	18.7	344
1691	Effects of contact material on complex excitonic behaviour of monolayer MoS2. Optical Materials, 2018, 84, 870-873.	1.7	4
1692	Toward the use of CVD-grown MoS ₂ nanosheets as field-emission source. Beilstein Journal of Nanotechnology, 2018, 9, 1686-1694.	1.5	26
1693	In situ growth of polyphosphazene particles on molybdenum disulfide nanosheets for flame retardant and friction application. Composites Part A: Applied Science and Manufacturing, 2018, 114, 407-417.	3.8	39
1694	Stable and scalable 1T MoS2 with low temperature-coefficient of resistance. Scientific Reports, 2018, 8, 12463.	1.6	31
1695	Exciton emissions in quasi one-dimensional layered KP15. Nanoscale, 2018, 10, 16479-16484.	2.8	3
1696	Wafer-Scale Black Arsenic–Phosphorus Thin-Film Synthesis Validated with Density Functional Perturbation Theory Predictions. ACS Applied Nano Materials, 2018, 1, 4737-4745.	2.4	42
1697	Three dimensionally-ordered 2D MoS ₂ vertical layers integrated on flexible substrates with stretch-tunable functionality and improved sensing capability. Nanoscale, 2018, 10, 17525-17533.	2.8	31
1698	Observation of intrinsic dark exciton in Janus-MoSSe heterosturcture induced by intrinsic electric field. Journal of Physics Condensed Matter, 2018, 30, 395001.	0.7	14
1699	Role of precursors' ratio for growth of two-dimensional MoS2 structure and investigation on its nonlinear optical properties. Thin Solid Films, 2018, 663, 37-43.	0.8	3
1700	Resonant energy transfer in a van der Waals stacked MoS ₂ – functionalized graphene quantum dot composite with <i>ab initio</i> validation. Nanoscale, 2018, 10, 16822-16829.	2.8	10

#	Article	IF	CITATIONS
1701	Strategies on Phase Control in Transition Metal Dichalcogenides. Advanced Functional Materials, 2018, 28, 1802473.	7.8	90
1702	MoS ₂ @polydopamine-Ag nanosheets with enhanced antibacterial activity for effective treatment of <i>Staphylococcus aureus</i> biofilms and wound infection. Nanoscale, 2018, 10, 16711-16720.	2.8	109
1703	Photocatalytic Hydrogen Generation from a Visible-Light-Responsive Metal–Organic Framework System: Stability versus Activity of Molybdenum Sulfide Cocatalysts. ACS Applied Materials & Interfaces, 2018, 10, 30035-30039.	4.0	71
1704	Strain dependent electronic and optical properties of PtS2 monolayer. Chemical Physics Letters, 2018, 709, 65-70.	1.2	53
1705	Material Genome Explorations and New Phases of Two-Dimensional MoS2, WS2, and ReS2 Monolayers. Chemistry of Materials, 2018, 30, 6242-6248.	3.2	11
1706	Tuning the catalytic activity of heterogeneous two-dimensional transition metal dichalcogenides for hydrogen evolution. Journal of Materials Chemistry A, 2018, 6, 20005-20014.	5.2	63
1707	Metal–semiconductor ternary hybrids for efficient visible-light photocatalytic hydrogen evolution. Journal of Materials Chemistry A, 2018, 6, 13225-13235.	5.2	37
1708	Monolayer Transition Metal Dichalcogenides as Light Sources. Advanced Materials, 2018, 30, e1707627.	11.1	76
1709	Preparation of 2D material dispersions and their applications. Chemical Society Reviews, 2018, 47, 6224-6266.	18.7	459
1710	Recent Development of Metallic (1T) Phase of Molybdenum Disulfide for Energy Conversion and Storage. Advanced Energy Materials, 2018, 8, 1703482.	10.2	317
1710 1711		10.2 1.6	317 15
	Storage. Advanced Energy Materials, 2018, 8, 1703482. Unexplored photoluminescence from bulk and mechanically exfoliated few layers of Bi2Te3. Scientific		
1711	Storage. Advanced Energy Materials, 2018, 8, 1703482. Unexplored photoluminescence from bulk and mechanically exfoliated few layers of Bi2Te3. Scientific Reports, 2018, 8, 9205. MoS2/C/C nanofiber with double-layer carbon coating for high cycling stability and rate capability in	1.6	15
1711 1712	 Storage. Advanced Energy Materials, 2018, 8, 1703482. Unexplored photoluminescence from bulk and mechanically exfoliated few layers of Bi2Te3. Scientific Reports, 2018, 8, 9205. MoS2/C/C nanofiber with double-layer carbon coating for high cycling stability and rate capability in lithium-ion batteries. Nano Research, 2018, 11, 5866-5878. Pseudocapacitive response of hydrothermally grown MoS2 crumpled nanosheet on carbon fiber. 	1.6 5.8	15 55
1711 1712 1713	 Storage. Advanced Energy Materials, 2018, 8, 1703482. Unexplored photoluminescence from bulk and mechanically exfoliated few layers of Bi2Te3. Scientific Reports, 2018, 8, 9205. MoS2/C/C nanofiber with double-layer carbon coating for high cycling stability and rate capability in lithium-ion batteries. Nano Research, 2018, 11, 5866-5878. Pseudocapacitive response of hydrothermally grown MoS2 crumpled nanosheet on carbon fiber. Materials Chemistry and Physics, 2018, 216, 413-420. Assessing and Mitigating the Hazard Potential of Two-Dimensional Materials. ACS Nano, 2018, 12, 	1.6 5.8 2.0	15 55 11
1711 1712 1713 1714	Storage. Advanced Energy Materials, 2018, 8, 1703482. Unexplored photoluminescence from bulk and mechanically exfoliated few layers of Bi2Te3. Scientific Reports, 2018, 8, 9205. MoS2/C/C nanofiber with double-layer carbon coating for high cycling stability and rate capability in lithium-ion batteries. Nano Research, 2018, 11, 5866-5878. Pseudocapacitive response of hydrothermally grown MoS2 crumpled nanosheet on carbon fiber. Materials Chemistry and Physics, 2018, 216, 413-420. Assessing and Mitigating the Hazard Potential of Two-Dimensional Materials. ACS Nano, 2018, 12, 6360-6377. Simple Layer-by-Layer Assembly Method for Simultaneously Enhanced Electrical Conductivity and Thermopower of PEDOT:PSS/<1> Preparation of Two-Dimensional Layered Transition Metal Chalcogenide Nanostructures. Chemical Reviews, 2018, 118, 6151-6188. Recent Advances in the Solution-Based Preparation of Two-Dimensional Layered Transition Metal Chalcogenide Nanostructures. Chemical Reviews, 2018, 118, 6151-6188.	1.6 5.8 2.0 7.3	15 55 11 78
1711 1712 1713 1714 1715	 Storage. Advanced Energy Materials, 2018, 8, 1703482. Unexplored photoluminescence from bulk and mechanically exfoliated few layers of Bi2Te3. Scientific Reports, 2018, 8, 9205. MoS2/C/C nanofiber with double-layer carbon coating for high cycling stability and rate capability in lithium-ion batteries. Nano Research, 2018, 11, 5866-5878. Pseudocapacitive response of hydrothermally grown MoS2 crumpled nanosheet on carbon fiber. Materials Chemistry and Physics, 2018, 216, 413-420. Assessing and Mitigating the Hazard Potential of Two-Dimensional Materials. ACS Nano, 2018, 12, 6360-6377. Simple Layer-by-Layer Assembly Method for Simultaneously Enhanced Electrical Conductivity and Thermopower of PEDOT:PSS/<i> Acs and Preparation of Two-Dimensional Layered Transition Metal </i>	1.6 5.8 2.0 7.3 2.5	15 55 11 78 50

#	Article	IF	CITATIONS
1719	Heterointerface effects in the electrointercalation of van der Waals heterostructures. Nature, 2018, 558, 425-429.	13.7	184
1720	Doping engineering and functionalization of two-dimensional metal chalcogenides. Nanoscale Horizons, 2019, 4, 26-51.	4.1	238
1721	Printing of Graphene and Related 2D Materials. , 2019, , .		25
1722	Structures, Properties and Applications of 2D Materials. , 2019, , 19-51.		2
1723	2D Material Production Methods. , 2019, , 53-101.		2
1724	Unconventional solution-phase epitaxial growth of organic-inorganic hybrid perovskite nanocrystals on metal sulfide nanosheets. Science China Materials, 2019, 62, 43-53.	3.5	20
1725	Engineering 2D Architectures toward Highâ€Performance Microâ€Supercapacitors. Advanced Materials, 2019, 31, e1802793.	11.1	202
1726	Conformal growth of few-layer MoS2 flakes on closely-packed TiO2 nanowires and their enhanced photoelectrochemical reactivity. Journal of Alloys and Compounds, 2019, 770, 686-691.	2.8	24
1727	Recent Progress in Twoâ€Đimensional Antimicrobial Nanomaterials. Chemistry - A European Journal, 2019, 25, 929-944.	1.7	59
1728	Selective modification of two-dimensional MoS2 nanosheets by polymer grafting. Chinese Chemical Letters, 2019, 30, 311-313.	4.8	9
1729	Phase transition and electronic structure investigation of MoS ₂ -reduced graphene oxide nanocomposite decorated with Au nanoparticles. Nanotechnology, 2019, 30, 475707.	1.3	20
1730	Wafer-Scale Sulfur Vacancy-Rich Monolayer MoS ₂ for Massive Hydrogen Production. Journal of Physical Chemistry Letters, 2019, 10, 4763-4768.	2.1	45
1731	Enhancement of friction performance enabled by a synergetic effect between graphene oxide and molybdenum disulfide. Carbon, 2019, 154, 266-276.	5.4	64
1732	Large area growth of few-layer In2Te3 films by chemical vapor deposition and its magnetoresistance properties. Scientific Reports, 2019, 9, 10951.	1.6	11
1733	Recent Progress in CVD Growth of 2D Transition Metal Dichalcogenides and Related Heterostructures. Advanced Materials, 2019, 31, e1901694.	11.1	250
1734	Photoinduced Carrier Dynamics at the Interface of Pentacene and Molybdenum Disulfide. Journal of Physical Chemistry A, 2019, 123, 7693-7703.	1.1	22
1735	Rapid wafer-scale fabrication with layer-by-layer thickness control of atomically thin MoS2 films using gas-phase chemical vapor deposition. APL Materials, 2019, 7, .	2.2	31
1736	Thickness Dependence of Optoelectronic Properties of Molybdenum Diselenide-Based Nanodevices. Journal of Electronic Materials, 2019, 48, 7025-7030.	1.0	5

#	ARTICLE Proximity exchange effects in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mi>MoSe</mml:mi> <mml:mn>2<th>IF :mn><th>CITATIONS nl:msub></th></th></mml:mn></mml:msub></mml:math 	IF :mn> <th>CITATIONS nl:msub></th>	CITATIONS nl:msub>
1737	and <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mi>WSe </mml:mi> <mml:mn>2 heterostructures with <mml:math< td=""><td></td><td></td></mml:math<></mml:mn></mml:msub></mml:math 		
1738	xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mi>CrI</mml:mi> <mml:mn>3 Nano Agâ€Decorated MoS₂ Nanosheets from 1T to 2H Phase Conversion for Photocatalytically Reducing CO₂ to Methanol. Energy Technology, 2019, 7, 1900582.</mml:mn></mml:msub>	n>1.8	nsub>25
1739	Peculiar alignment and strain of 2D WSe ₂ grown by van der Waals epitaxy on reconstructed sapphire surfaces. Nanotechnology, 2019, 30, 465601.	1.3	17
1740	Electronic properties of size-dependent MoTe 2 /WTe 2 heterostructure. Chinese Physics B, 2019, 28, 107101.	0.7	10
1741	Photothermal property in MoS ₂ nanoflakes: theoretical and experimental comparison. Materials Research Express, 0, , .	0.8	6
1742	Preparation Methods of Transition Metal Dichalcogenides. , 2019, , 29-68.		3
1743	Monitoring Hydrogen Evolution Reaction Catalyzed by MoS ₂ Quantum Dots on a Single Nanoparticle Electrode. Analytical Chemistry, 2019, 91, 10361-10365.	3.2	25
1744	Simulation of Transition Metal Dichalcogenides. , 2019, , 135-172.		3
1745	Photoemission spectroscopy study of structural defects in molybdenum disulfide (MoS ₂) grown by chemical vapor deposition (CVD). Chemical Communications, 2019, 55, 10384-10387.	2.2	82
1746	A promising and new single-atom catalyst for CO oxidation: Si-embedded MoS2 monolayer. Journal of Physics and Chemistry of Solids, 2019, 135, 109123.	1.9	14
1747	Parameterization of Molybdenum Disulfide Interacting with Water Using the Free Energy Perturbation Method. Journal of Physical Chemistry B, 2019, 123, 7243-7252.	1.2	11
1748	Electronics from solution-processed 2D semiconductors. Journal of Materials Chemistry C, 2019, 7, 12835-12861.	2.7	24
1749	The modulation of terahertz photoconductivity in CVD grown <i>n</i> -doped monolayer MoS ₂ with gas adsorption. Journal of Physics Condensed Matter, 2019, 31, 245001.	0.7	12
1750	High-Yield Preparation of Exfoliated 1T-MoS ₂ with SERS Activity. Chemistry of Materials, 2019, 31, 5725-5734.	3.2	126
1751	Adsorption of heavy metals on molybdenum disulfide in water: A critical review. Journal of Molecular Liquids, 2019, 292, 111390.	2.3	72
1752	Photocatalytic production of H2O2 and its in situ utilization over atomic-scale Au modified MoS2 nanosheets. Journal of Catalysis, 2019, 376, 198-208.	3.1	92
1753	A review on synthesis of graphene, h-BN and MoS2 for energy storage applications: Recent progress and perspectives. Nano Research, 2019, 12, 2655-2694.	5.8	283
1754	Highly fluorescent Ti ₃ C ₂ MXene quantum dots for macrophage labeling and Cu ²⁺ ion sensing. Nanoscale, 2019, 11, 14123-14133.	2.8	140

		CITATION REPORT		
#	Article		IF	CITATIONS
1755	A facile alkali metal hydroxide-assisted controlled and targeted synthesis of 1T MoS <su 11,="" 14857-1<="" 2019,="" anodes.="" battery="" for="" ion="" lithium="" nanoscale,="" nanosheets="" single-crystal="" td=""><td></td><td>2.8</td><td>30</td></su>		2.8	30
1756	Controlled one step thinning and doping of two-dimensional transition metal dichalcog Science China Materials, 2019, 62, 1837-1845.	enides.	3.5	10
1757	Growth of few layered molybdenum disulphide. AIP Conference Proceedings, 2019, , .		0.3	0
1758	Fabrication of a novel carbon quantum Dots-Modified 2D heterojunction for highly effice photocatalysis. Journal of Alloys and Compounds, 2019, 806, 761-773.	ient sunlight	2.8	24
1759	Synthesis and Properties of (BiSe) _{0.97} MoSe ₂ : A Heterostruc Both 2H-MoSe ₂ and 1T-MoSe ₂ . Chemistry of Materials, 2019	ture Containing 9, 31, 5824-5831.	3.2	14
1760	Effective indirect exchange interaction in p -doped MoS2 nanoribbons in the presence of spin-orbit interaction. Physical Review B, 2019, 100, .	of intrinsic	1.1	2
1761	Improving Electrochemical Pb ²⁺ Detection Using a Vertically Aligned 2D N Nanofilm. Analytical Chemistry, 2019, 91, 11770-11777.	1oS ₂	3.2	73
1762	Unveiling highly ambient-stable multilayered 1T-MoS ₂ towards all-solid-sta supercapacitors. Journal of Materials Chemistry A, 2019, 7, 19152-19160.	ite flexible	5.2	71
1763	Electrostatic force-driven anchoring of Ni(OH)2 nanocrystallites on single-layer MoS2 fo high-performance asymmetric hybrid supercapacitors. Electrochimica Acta, 2019, 320,)r 134591.	2.6	39
1764	Challenges and recent advancements of functionalization of two-dimensional nanostru molybdenum trioxide and dichalcogenides. Nanoscale, 2019, 11, 15709-15738.	ctured	2.8	27
1765	Two Dimensional Transition Metal Dichalcogenides. , 2019, , .			7
1766	Electronic Devices Based on Transition Metal Dichalcogenides. , 2019, , 331-355.			2
1767	MoS ₂ Membranes for Organic Solvent Nanofiltration: Stability and Struct Journal of Physical Chemistry Letters, 2019, 10, 4609-4617.	ural Control.	2.1	57
1768	Molybdenum-based two-dimensional materials: Synthesis, dispersion, exfoliation and the deposition. Journal of Colloid and Interface Science, 2019, 554, 80-90.	in film	5.0	12
1769	Fundamentals and Properties of 2D Materials in General and Sensing Applications. , 20	19, , 5-24.		7
1770	Electrochromic triphenylamine-based cobalt(<scp>ii</scp>) complex nanosheets. Journ Chemistry C, 2019, 7, 9159-9166.	al of Materials	2.7	47
1771	Self-Assembled Monolayers of Molybdenum Sulfide Clusters on Au Electrode as Hydrog Catalyst for Solar Water Splitting. Inorganics, 2019, 7, 79.	en Evolution	1.2	4
1772	On the Morphology and Optical Properties of Molybdenum Disulfide Nanostructures fr Monomolecular Layer to a Fractal-Like Substructure. Semiconductors, 2019, 53, 923-93		0.2	2

#	Article	IF	CITATIONS
1773	C ₃ N ₄ -digested 3D construction of hierarchical metallic phase MoS ₂ nanostructures. Journal of Materials Chemistry A, 2019, 7, 18388-18396.	5.2	26
1774	High yield and concentration exfoliation of defect-free 2D nanosheets via gentle water freezing-thawing approach and stabilization with PVP. Materials Research Express, 2019, 6, 1150c9.	0.8	8
1775	Interface Engineering of an RGO/MoS ₂ /Pd 2D Heterostructure for Electrocatalytic Overall Water Splitting in Alkaline Medium. ACS Applied Materials & Interfaces, 2019, 11, 42094-42103.	4.0	62
1776	Recent Progress on 2D Nobleâ€Transitionâ€Metal Dichalcogenides. Advanced Functional Materials, 2019, 29, 1904932.	7.8	186
1777	Hierarchical Flower-Like MoS ₂ Microspheres and Their Efficient Al Storage Properties. Journal of Physical Chemistry C, 2019, 123, 26794-26802.	1.5	20
1778	Qualitative Analysis of Mechanically Exfoliated MoS ₂ Nanosheets Using Spectroscopic Probes. Journal of Physical Chemistry C, 2019, 123, 27264-27271.	1.5	9
1779	Exciton-Driven Chemical Sensors Based on Excitation-Dependent Photoluminescent Two-Dimensional SnS. ACS Applied Materials & Interfaces, 2019, 11, 42462-42468.	4.0	42
1780	The Stability of Metallic MoS2 Nanosheets and Their Property Change by Annealing. Nanomaterials, 2019, 9, 1366.	1.9	23
1781	Effect of Deposition Pressure on the Microstructure and Optical Band Gap of Molybdenum Disulfide Films Prepared by Magnetron Sputtering. Coatings, 2019, 9, 570.	1.2	10
1782	Activating the MoS ₂ Basal Planes for Electrocatalytic Hydrogen Evolution by 2H/1T′ Structural Interfaces. ACS Applied Materials & Interfaces, 2019, 11, 42014-42020.	4.0	34
1783	Efficient exfoliation to MoS2 nanosheets by salt-assisted refluxing and ultrasonication with photocatalytic application. Materials Letters, 2019, 255, 126596.	1.3	22
1784	Recent advances in synthesis and biosensors of two-dimensional MoS ₂ . Nanotechnology, 2019, 30, 502004.	1.3	11
1785	Simple Te-Thermal Converting 2H to 1T@2H MoS ₂ Homojunctions with Enhanced Supercapacitor Performance. ACS Applied Energy Materials, 2019, 2, 8337-8344.	2.5	22
1786	Preparation and electrochromic properties of vanadium oxide two-dimensional materials. Materials Research Express, 2019, 6, 1150a1.	0.8	1
1787	Synthesis of V-MoS ₂ Layered Alloys as Stable Li-Ion Battery Anodes. ACS Applied Energy Materials, 2019, 2, 8625-8632.	2.5	19
1788	Growth of MoS2 nanoflakes and the photoelectric response properties of MoS2/TiO2 NRs compositions. Journal of Materials Science: Materials in Electronics, 2019, 30, 21465-21476.	1.1	4
1789	Metal Nanoclusters Modify the Band Gap and Maintain the Ultrathin Nature of Semiconducting Two-Dimensional Materials. Journal of Physical Chemistry C, 2019, 123, 29856-29865.	1.5	3
1790	Strain-tunable orbital, spin-orbit, and optical properties of monolayer transition-metal dichalcogenides. Physical Review B, 2019, 100, .	1.1	91

	СІТАТ	CITATION REPORT	
#	Article	IF	Citations
1791	How to â€ [~] train' your CVD to grow large-area 2D materials. Materials Research Express, 2019, 6, 1250	002. 0.8	11
1792	Three-Dimensional Resonant Exciton in Monolayer Tungsten Diselenide Actuated by Spin–Orbit Coupling. ACS Nano, 2019, 13, 14529-14539.	7.3	10
1793	Surface Engineering of MoS ₂ via Laserâ€Induced Exfoliation in Protic Solvents. Small, 2019, 15, e1903791.	5.2	28
1794	Thermal conductivity of molybdenum disulfide nanotube from molecular dynamics simulations. International Journal of Heat and Mass Transfer, 2019, 145, 118719.	2.5	25
1795	Influence of Mo contents on the tribological properties of CrMoN/MoS2 coatings at 25–700â€ [–] °C. Surface and Coatings Technology, 2019, 378, 125072.	2.2	11
1796	Structural, Spectroscopic, and Excitonic Dynamic Characterization in Atomically Thin Yb ³⁺ â€Doped MoS ₂ , Fabricated by Femtosecond Pulsed Laser Deposition. Advanced Optical Materials, 2019, 7, 1900753.	3.6	17
1797	Characterization of Layer Number of Two-Dimensional Transition Metal Diselenide Semiconducting Devices Using Si-Peak Analysis. Advances in Materials Science and Engineering, 2019, 2019, 1-7.	1.0	5
1798	Fabricating ferromagnetic MoS ₂ -based composite exposed to simulated sunlight for sodium storage. Nanoscale, 2019, 11, 21081-21092.	2.8	7
1799	Ultrahigh-current-density niobium disulfide catalysts for hydrogen evolution. Nature Materials, 2019, 18, 1309-1314.	13.3	280
1800	Enhanced sieving from exfoliated MoS2 membranes via covalent functionalization. Nature Materials, 2019, 18, 1112-1117.	13.3	196
1801	Layer dependent photoresponse behavior of chemical vapor deposition synthesized MoS ₂ films for broadband optical sensing. Journal Physics D: Applied Physics, 2019, 52, 475302.	1.3	9
1802	Optical characterization of MoS ₂ sputtered thin films. Journal of Physics: Conference Series, 2019, 1220, 012057.	0.3	2
1803	Ultrafast electron transfer dynamics in lateral transition-metal dichalcogenide heterostructures. Electronic Structure, 2019, 1, 034001.	1.0	9
1804	1T/2H MoS2/MoO3 hybrid assembles with glycine as highly efficient and stable electrocatalyst for water splitting. International Journal of Hydrogen Energy, 2019, 44, 24237-24245.	3.8	19
1805	Suppressed Carrier Recombination in Janus MoSSe Bilayer Stacks: A Time-Domain Ab Initio Study. Journal of Physical Chemistry Letters, 2019, 10, 5564-5570.	2.1	23
1806	Strong interactions in molybdenum disulfide heterostructures boosting the catalytic performance of water splitting: A short review. Nano Materials Science, 2019, 1, 231-245.	3.9	17
1807	In Situ Probing Molecular Intercalation in Two-Dimensional Layered Semiconductors. Nano Letters, 2019, 19, 6819-6826.	4.5	72
1808	Design and build MoS2/Au/MoS2 sandwich structure to significantly enhance the photoluminescence. AIP Advances, 2019, 9, 095305.	0.6	0

#	Article	IF	CITATIONS
1809	Electronic stripes and transport properties in borophene heterostructures. Nanoscale, 2019, 11, 17894-17903.	2.8	21
1810	Influence of sulfurization temperature on the molybdenum disulfide thin films grown by thermal vapour sulfurization. Materials Today: Proceedings, 2019, 17, 921-928.	0.9	0
1811	Influence of length and interface structure on electron transport properties of graphene-MoS2 in-plane heterojunction. Applied Surface Science, 2019, 497, 143764.	3.1	14
1812	A fantastic two-dimensional MoS2 material based on the inert basal planes activation: Electronic structure, synthesis strategies, catalytic active sites, catalytic and electronics properties. Coordination Chemistry Reviews, 2019, 399, 213020.	9.5	101
1813	Two-Dimensional Tungsten Diselenides Integrated on Paper Substrate for Highly Flexible and Sensitive Gas Sensor. , 2019, , .		9
1814	Capacitive Deionization of Saline Water by Using MoS ₂ –Graphene Hybrid Electrodes with High Volumetric Adsorption Capacity. Environmental Science & Technology, 2019, 53, 12668-12676.	4.6	162
1815	Aqueous Cathodic Exfoliation Strategy toward Solution-Processable and Phase-Preserved MoS ₂ Nanosheets for Energy Storage and Catalytic Applications. ACS Applied Materials & Interfaces, 2019, 11, 36991-37003.	4.0	43
1816	First-principles investigations of the stability and electronic properties of fluorinated Janus MoSSe monolayer. Journal of Theoretical and Computational Chemistry, 2019, 18, 1950024.	1.8	7
1817	Impacts of atmospheric vertical structures on transboundary aerosol transport from China to South Korea. Scientific Reports, 2019, 9, 13040.	1.6	43
1818	Thermodynamic Properties of Hexagonal Molybdenum Disulfide Calculated from First Principles. Powder Metallurgy and Metal Ceramics, 2019, 58, 230-236.	0.4	1
1819	Van der Waals thin-film electronics. Nature Electronics, 2019, 2, 378-388.	13.1	131
1820	A Hydrothermal-Assisted Ball Milling Approach for Scalable Production of High-Quality Functionalized MoS2 Nanosheets for Polymer Nanocomposites. Nanomaterials, 2019, 9, 1400.	1.9	18
1821	Solution-Processed PEDOT:PSS/MoS2 Nanocomposites as Efficient Hole-Transporting Layers for Organic Solar Cells. Nanomaterials, 2019, 9, 1328.	1.9	23
1822	Annealing effects on sulfur vacancies and electronic transport of MoS2 films grown by pulsed-laser deposition. Applied Physics Letters, 2019, 115, .	1.5	16
1823	Substrate Temperature Dependence of the Properties of Single-layer MoS2 Film deposited by Using Pulsed Laser Deposition. Journal of the Korean Physical Society, 2019, 75, 385-388.	0.3	0
1824	Solution processable transition metal dichalcogenides-based hybrids for photodetection. Nano Materials Science, 2019, 1, 288-298.	3.9	5
1825	Synergy of Mn and Co in Slab-Based Nanocomposites for Hybrid Supercapacitors: Impact of Restacking Process on Electrochemical Properties. ACS Applied Energy Materials, 2019, 2, 7832-7842.	2.5	16
1826	Heterojunction Photoanode of Atomic-Layer-Deposited MoS ₂ on Single-Crystalline CdS Nanorod Arrays. ACS Applied Materials & Interfaces, 2019, 11, 37586-37594.	4.0	47

#	Article	IF	CITATIONS
1827	A novel study on soft ferromagnetic nature of nano molybdenum sulphide (MoS2). Physica B: Condensed Matter, 2019, 574, 411684.	1.3	6
1828	Ex Situ and Operando XRD and XAS Analysis of MoS ₂ : A Lithiation Study of Bulk and Nanosheet Materials. ACS Applied Energy Materials, 2019, 2, 7635-7646.	2.5	42
1829	Synergistic Exfoliation of MoS2 by Ultrasound Sonication in a Supercritical Fluid Based Complex Solvent. Nanoscale Research Letters, 2019, 14, 317.	3.1	13
1830	Ethylene glycol solvent induced expansion of interplanar spacing and 2H-1T phase transformation of molybdenum disulfide nanocomposites for enhanced lithium storage capability. Journal of Alloys and Compounds, 2019, 810, 151959.	2.8	9
1831	Vertical 1T/2H-WS2 nanoflakes grown on 2D-C3N4: Multiple charge transfer channels designed for enhanced photocatalytic activity. Journal of Colloid and Interface Science, 2019, 556, 224-231.	5.0	29
1832	Fabrication of 2D heterojunction photocatalyst Co-g-C ₃ N ₄ /MoS ₂ with enhanced solar-light-driven photocatalytic activity. New Journal of Chemistry, 2019, 43, 463-473.	1.4	31
1833	Optical limiting properties of a few-layer MoS ₂ /PMMA composite under excitation of ultrafast laser pulses. Journal of Materials Chemistry C, 2019, 7, 495-502.	2.7	46
1834	Macrophage-engulfed MoS ₂ for active targeted photothermal therapy. New Journal of Chemistry, 2019, 43, 1838-1843.	1.4	11
1835	Emerging 2D materials beyond graphene for ultrashort pulse generation in fiber lasers. Nanoscale, 2019, 11, 2577-2593.	2.8	236
1836	Facile synthesis of solution-processed MoS ₂ nanosheets and their application in high-performance ultraviolet organic light-emitting diodes. Journal of Materials Chemistry C, 2019, 7, 926-936.	2.7	38
1837	MoS2-capped CuxS nanocrystals: a new heterostructured geometry of transition metal dichalcogenides for broadband optoelectronics. Materials Horizons, 2019, 6, 587-594.	6.4	18
1838	2D-MoS ₂ photocatalyzed cross dehydrogenative coupling reaction synchronized with hydrogen evolution reaction. Catalysis Science and Technology, 2019, 9, 1201-1207.	2.1	26
1839	Nonvolatile Memories Based on Graphene and Related 2D Materials. Advanced Materials, 2019, 31, e1806663.	11.1	230
1840	Template synthesis of defect-rich MoS ₂ -based assemblies as electrocatalytic platforms for hydrogen evolution reaction. Chemical Communications, 2019, 55, 2078-2081.	2.2	41
1841	Enhanced photocatalytic performance and stability of 1T MoS2 transformed from 2H MoS2 via Li intercalation. Results in Physics, 2019, 12, 2218-2224.	2.0	29
1842	Unraveling High‥ield Phaseâ€Transition Dynamics in Transition Metal Dichalcogenides on Metallic Substrates. Advanced Science, 2019, 6, 1802093.	5.6	23
1843	Mild Covalent Functionalization of Transition Metal Dichalcogenides with Maleimides: A "Click― Reaction for 2H-MoS ₂ and WS ₂ . Journal of the American Chemical Society, 2019, 141, 3767-3771.	6.6	72
1844	Defects coupling impacts on mono-layer WSe ₂ tunneling field-effect transistors. Applied Physics Express, 2019, 12, 034001.	1.1	5

#	Article	IF	CITATIONS
1845	Vertical nanosheet array of 1T phase MoS2 for efficient and stable hydrogen evolution. Applied Catalysis B: Environmental, 2019, 246, 296-302.	10.8	122
1846	MoS2-based biomaterials for cancer therapy. , 2019, , 141-161.		4
1847	Polyaniline-intercalated molybdenum disulfide composites for supercapacitors with high rate capability. Journal of Physics and Chemistry of Solids, 2019, 130, 84-92.	1.9	14
1848	Thermal Degradation of Monolayer MoS2 on SrTiO3 Supports. Journal of Physical Chemistry C, 2019, 123, 3876-3885.	1.5	17
1849	Transition-metal dichalcogenides/Mg(OH) ₂ van der Waals heterostructures as promising water-splitting photocatalysts: a first-principles study. Physical Chemistry Chemical Physics, 2019, 21, 1791-1796.	1.3	106
1850	Field Emission Characterization of MoS2 Nanoflowers. Nanomaterials, 2019, 9, 717.	1.9	40
1851	Exfoliated kaolinite nanolayers as an alternative photocatalyst with superb activity. Journal of Environmental Chemical Engineering, 2019, 7, 103174.	3.3	55
1852	Photoluminescence enhancement by stacking bi-layer MoS2 without interlayer coupling. Journal of Luminescence, 2019, 213, 388-394.	1.5	12
1853	Ultrafast Carrier Dynamics of the Exciton and Trion in MoS ₂ Monolayers Followed by Dissociation Dynamics in Au@MoS ₂ 2D Heterointerfaces. Journal of Physical Chemistry Letters, 2019, 10, 3057-3063.	2.1	41
1854	MoS2 with Organic Fragment - a New Hybrid Material for Laser Writing. Scientific Reports, 2019, 9, 7839.	1.6	3
1855	Precise Layer Control of MoTe2 by Ozone Treatment. Nanomaterials, 2019, 9, 756.	1.9	15
1856	Effect of Processing Parameters on Monolayer MoS2 Prepared by APCVD in a Quasiclosed Crucible. Journal of Electronic Materials, 2019, 48, 4947-4958.	1.0	2
1857	Engineering Two-Dimensional Materials and Their Heterostructures as High-Performance Electrocatalysts. Electrochemical Energy Reviews, 2019, 2, 373-394.	13.1	74
1858	Engineering a 3D MoS2 foam using keratin exfoliated nanosheets. Chemical Engineering Journal, 2019, 374, 254-262.	6.6	22
1859	The sonochemical functionalization of MoS ₂ by zinc phthalocyanine and its visible light-induced photocatalytic activity. New Journal of Chemistry, 2019, 43, 10118-10125.	1.4	26
1860	Electronic and magnetic properties of the transition-metal absorbed blue-phosphorus/MoS2 heterostructure: A first-principles investigation. AIP Advances, 2019, 9, 065207.	0.6	5
1861	MoS2ÂCoexisting in 1T and 2H Phases Synthesized by Common Hydrothermal Method for Hydrogen Evolution Reaction. Nanomaterials, 2019, 9, 844.	1.9	117
1862	Alkali Metal-Assisted Growth of Single-Layer Molybdenum Disulfide. Journal of the Korean Physical Society, 2019, 74, 1032-1038.	0.3	8

		CITATION REPORT		
#	Article		IF	Citations
1863	Wavelengthâ€Tunable Micro/Nanolasers. Advanced Optical Materials, 2019, 7, 19002	75.	3.6	13
1864	Nucleation engineering for atomic layer deposition of uniform sub-10 nm high-K dielec Applied Surface Science, 2019, 492, 239-244.	trics on MoTe2.	3.1	7
1865	Mass Production of Highâ€Quality Transition Metal Dichalcogenides Nanosheets via a Method. Advanced Functional Materials, 2019, 29, 1900649.	Molten Salt	7.8	59
1866	In-situ coalesced vacancies on MoSe2 mimicking noble metal: Unprecedented Tafel rea hydrogen evolution. Nano Energy, 2019, 63, 103846.	action in	8.2	41
1867	On the Synthesis of Morphology ontrolled Transition Metal Dichalcogenides via Ch Deposition for Electrochemical Hydrogen Generation. Physica Status Solidi - Rapid Res 2019, 13, 1900257.	emical Vapor earch Letters,	1.2	18
1868	Photocatalytic Behaviors of TiO ₂ Nanoblets Coated with MoS _{2for Solarâ€Driven Photocatalysis. ChemistrySelect, 2019, 4, 7260-7269.}	b> Nanosheets	0.7	13
1869	WS2 deposition on cross-linked polyacrylonitrile with synergistic transformation to yie solvent nanofiltration membranes. Journal of Membrane Science, 2019, 588, 117219.	ld organic	4.1	27
1870	Unraveling the Role of Lithium in Enhancing the Hydrogen Evolution Activity of MoS <s Intercalation versus Adsorption. ACS Energy Letters, 2019, 4, 1733-1740.</s 	ub>2:	8.8	45
1871	Energy dissipation in van der Waals 2D devices. 2D Materials, 2019, 6, 032005.		2.0	26
1872	Plasmonic improvement photoresponse of vertical-MoS2 nanostructure photodetecto nanoparticles. Applied Surface Science, 2019, 490, 165-171.	r by Au	3.1	79
1873	1T-phase MoS ₂ quantum dots as a superior co-catalyst to Pt decorated o nanorods for photocatalytic hydrogen evolution from water. Materials Chemistry From 2032-2040.	n carbon nitride tiers, 2019, 3,	3.2	45
1874	Probing the Effect of Chemical Dopant Phase on Photoluminescence of Monolayer Mo Using in Situ Raman Microspectroscopy. Journal of Physical Chemistry C, 2019, 123, 1		1.5	11
1875	Site-Selective Integration of MoS ₂ Flakes on Nanopores by Means of Elec Deposition. ACS Omega, 2019, 4, 9294-9300.	trophoretic	1.6	16
1876	Mo 6 S 3 Br 6 : An Anisotropic 2D Superatomic Semiconductor. Advanced Functional N 1902951.	Naterials, 2019, 29,	7.8	10
1877	2D Nanomaterials for Photocatalytic Hydrogen Production. ACS Energy Letters, 2019,	4, 1687-1709.	8.8	375
1878	New Insights into the Triton Xâ€100 Induced Chemical Exfoliation of MoS 2 to Derive Nanosheets. ChemistrySelect, 2019, 4, 6219-6226.	Highly Luminescent	0.7	4
1879	Hematene: a 2D magnetic material in van der Waals or non-van der Waals heterostruc Materials, 2019, 6, 045002.	tures. 2D	2.0	24
1880	On the performance of vertical MoS2 nanoflakes as a gas sensor. Vacuum, 2019, 167,	90-97.	1.6	37

#	Article	IF	CITATIONS
1881	Covalent Connection of Polyaniline with MoS ₂ Nanosheets toward Ultrahigh Rate Capability Supercapacitors. ACS Sustainable Chemistry and Engineering, 2019, 7, 11540-11549.	3.2	66
1882	1T/2H multi-phase MoS ₂ heterostructures: synthesis, characterization and thermal catalysis decomposition of dihydroxylammonium 5,5′-bistetrazole-1,1′-diolate. New Journal of Chemistry, 2019, 43, 10434-10441.	1.4	18
1883	Charge density wave and spin 1/2 insulating state in single layer 1T-NbS ₂ . 2D Materials, 2019, 6, 035041.	2.0	27
1884	Ultrasensitive Hybrid MoS ₂ –ZnCdSe Quantum Dot Photodetectors with High Gain. ACS Applied Materials & Interfaces, 2019, 11, 23667-23672.	4.0	62
1885	A Scalable, Solution-Based Approach to Tuning the Solubility and Improving the Photoluminescence of Chemically Exfoliated MoS ₂ . ACS Nano, 2019, 13, 6469-6476.	7.3	20
1886	Hydrothermal growth of MoSe2 nanoflowers for photo- and humidity sensor applications. Sensors and Actuators A: Physical, 2019, 295, 160-168.	2.0	76
1887	Chemical vapor deposition-free solution-processed synthesis method for two-dimensional MoS2 atomic layer films. Nanotechnology, 2019, 30, 385201.	1.3	10
1888	Multimechanism Synergistic Photodetectors with Ultrabroad Spectrum Response from 375 nm to 10 Âμm. Advanced Science, 2019, 6, 1901050.	5.6	52
1889	Highly defective 1T-MoS2 nanosheets on 3D reduced graphene oxide networks for supercapacitors. Carbon, 2019, 152, 697-703.	5.4	86
1890	Superior adsorption of methyl orange by h-MoS2 microspheres: Isotherm, kinetics, and thermodynamic studies. Dyes and Pigments, 2019, 170, 107591.	2.0	55
1891	Dissolved Oxygen and Visible Light Irradiation Drive the Structural Alterations and Phytotoxicity Mitigation of Single-Layer Molybdenum Disulfide. Environmental Science & Technology, 2019, 53, 7759-7769.	4.6	56
1892	Freestanding, Three-Dimensional, and Conductive MoS ₂ Hydrogel via the Mediation of Surface Charges for High-Rate Supercapacitor. ACS Applied Energy Materials, 2019, 2, 4458-4463.	2.5	33
1893	Electrically Pumped Whiteâ€Lightâ€Emitting Diodes Based on Histidineâ€Doped MoS ₂ Quantum Dots. Small, 2019, 15, e1901908.	5.2	26
1894	Robust Photodetectable Paper from Chemically Exfoliated MoS ₂ –MoO ₃ Multilayers. ACS Applied Materials & Interfaces, 2019, 11, 21445-21453.	4.0	30
1895	Charge transfer dynamics in conjugated polymer/MoS ₂ organic/2D heterojunctions. Molecular Systems Design and Engineering, 2019, 4, 929-938.	1.7	18
1896	Thermodynamically stable octahedral MoS ₂ in van der Waals hetero-bilayers. 2D Materials, 2019, 6, 041002.	2.0	9
1897	Expanding Interlayer Spacing in MoS ₂ for Realizing an Advanced Supercapacitor. ACS Energy Letters, 2019, 4, 1602-1609.	8.8	195
1898	Photochemically Induced Phase Change in Monolayer Molybdenum Disulfide. Frontiers in Chemistry, 2019, 7, 442.	1.8	8

#	Article	IF	CITATIONS
1899	Covalent chemical functionalization of semiconducting layered chalcogenide nanosheets. Molecular Systems Design and Engineering, 2019, 4, 962-973.	1.7	31
1900	Biomedical and bioactive engineered nanomaterials for targeted tumor photothermal therapy: A review. Materials Science and Engineering C, 2019, 104, 109891.	3.8	179
1901	Review: application of transition metal dichalcogenide in pulsed fiber laser system. Materials Research Express, 2019, 6, 082004.	0.8	35
1902	Growth process of molybdenum disulfide thin films grown by thermal vapour sulfurization. Journal of Materials Science: Materials in Electronics, 2019, 30, 10419-10426.	1.1	2
1903	Insights into two-dimensional MoS2 sheets for enhanced CO2 photoreduction to C1 and C2 hydrocarbon products. Materials Research Bulletin, 2019, 118, 110499.	2.7	37
1904	Tris‣tabilized MoS ₂ Nanosheets with Robust Dispersibility and Facile Surface Functionalization. Advanced Materials Interfaces, 2019, 6, 1900585.	1.9	8
1905	Encapsulation of a Monolayer WSe ₂ Phototransistor with Hydrothermally Grown ZnO Nanorods. ACS Applied Materials & Interfaces, 2019, 11, 20257-20264.	4.0	15
1906	Recent progress in MoS2 for solar energy conversion applications. Frontiers in Energy, 2019, 13, 251-268.	1.2	11
1907	The Improved Performance of Molybdenum Disulphide Thin-Film Transistors Operating at Low Voltages by Solution-Processed Fluorocarbon Encapsulation. Electronic Materials Letters, 2019, 15, 391-395.	1.0	0
1908	Chemical Stability and Transformation of Molybdenum Disulfide Nanosheets in Environmental Media. Environmental Science & Technology, 2019, 53, 6282-6291.	4.6	35
1909	Awakening Solar Hydrogen Evolution of MoS ₂ in Alkalescent Electrolyte through Doping with Co. ChemSusChem, 2019, 12, 3336-3342.	3.6	27
1910	Metallic molybdenum sulfide nanodots as platinum-alternative co-catalysts for photocatalytic hydrogen evolution. Journal of Catalysis, 2019, 374, 237-245.	3.1	37
1911	Defect-rich 2D reticulated MoS2 monolayers: Facile hydrothermal preparation and marvellous photoelectric properties. Journal of the Taiwan Institute of Chemical Engineers, 2019, 101, 221-230.	2.7	22
1912	Nonadiabatic Dynamics Simulations Reveal Distinct Effects of the Thickness of PTB7 on Interfacial Electron and Hole Transfer Dynamics in PTB7@MoS ₂ Heterostructures. Journal of Physical Chemistry Letters, 2019, 10, 2949-2956.	2.1	22
1913	Polytype control of MoS2 using chemical bath deposition. Journal of Chemical Physics, 2019, 150, 174701.	1.2	5
1914	Metallic 1T phase MoS2/MnO composites with improved cyclability for lithium-ion battery anodes. Journal of Alloys and Compounds, 2019, 796, 25-32.	2.8	22
1915	Defect engineering of molybdenum disulfide through ion irradiation to boost hydrogen evolution reaction performance. Nano Research, 2019, 12, 1613-1618.	5.8	62
1916	In Vitro Toxicity of 2D Materials. , 2019, , 165-186.		11

#	Article	IF	CITATIONS
1917	All-electrodeposited amorphous MoS @ZnO core-shell nanorod arrays for self-powered visible-light-activated photoelectrochemical tobramycin aptasensing. Biosensors and Bioelectronics, 2019, 136, 53-59.	5.3	44
1918	Thermally driven homonuclear-stacking phase of MoS ₂ through desulfurization. Nanoscale, 2019, 11, 11138-11144.	2.8	4
1919	Effects of Acetone Vapor on the Exciton Band Photoluminescence Emission from Single- and Few-Layer WS2 on Template-Stripped Gold. Sensors, 2019, 19, 1913.	2.1	3
1920	Confining Free Radicals in Close Vicinity to Contaminants Enables Ultrafast Fentonâ€like Processes in the Interspacing of MoS ₂ Membranes. Angewandte Chemie - International Edition, 2019, 58, 8134-8138.	7.2	419
1921	Strong Charge Transfer at 2H–1T Phase Boundary of MoS ₂ for Superb Highâ€Performance Energy Storage. Small, 2019, 15, e1900131.	5.2	53
1922	2D Single Crystal WSe ₂ and MoSe ₂ Nanomeshes with Quantifiable High Exposure of Layer Edges from 3D Mesoporous Silica Template. ACS Applied Materials & Interfaces, 2019, 11, 17670-17677.	4.0	28
1923	Structural, chemical, and electrical parameters of Au/MoS2/n-GaAs metal/2D/3D hybrid heterojunction. Journal of Colloid and Interface Science, 2019, 550, 48-56.	5.0	18
1924	Hierarchical MoS ₂ Hollow Architectures with Abundant Mo Vacancies for Efficient Sodium Storage. ACS Nano, 2019, 13, 5533-5540.	7.3	187
1925	Triiodide reduction activity of hydrangea molybdenum sulfide/reduced graphene oxide composite for dye-sensitized solar cells. Materials Research Bulletin, 2019, 117, 78-83.	2.7	11
1926	Solar Energy Harvesting in Type II van der Waals Heterostructures of Semiconducting Group III Monochalcogenide Monolayers. Journal of Physical Chemistry C, 2019, 123, 12666-12675.	1.5	86
1927	Recent advances of phase engineering in group VI transition metal dichalcogenides. Tungsten, 2019, 1, 46-58.	2.0	15
1928	Defect Healing in Layered Materials: A Machine Learning-Assisted Characterization of MoS ₂ Crystal Phases. Journal of Physical Chemistry Letters, 2019, 10, 2739-2744.	2.1	19
1929	Growth and optical properties of large-scale MoS2 films with different thickness. Ceramics International, 2019, 45, 15091-15096.	2.3	13
1930	Confining Free Radicals in Close Vicinity to Contaminants Enables Ultrafast Fentonâ€like Processes in the Interspacing of MoS ₂ Membranes. Angewandte Chemie, 2019, 131, 8218-8222.	1.6	23
1931	A systematic study on the growth of molybdenum disulfide with the carbon disulfide as the sulfurizing source. Ceramics International, 2019, 45, 13701-13710.	2.3	0
1932	Anaerobic Alcohol Conversion to Carbonyl Compounds over Nanoscaled Rh-Doped SrTiO ₃ under Visible Light. Journal of Physical Chemistry Letters, 2019, 10, 2075-2080.	2.1	30
1933	Aqueous Zinc-Ion Storage in MoS ₂ by Tuning the Intercalation Energy. Nano Letters, 2019, 19, 3199-3206.	4.5	362
1934	Local Modulation of Electrical Transport in 2D Layered Materials Induced by Electron Beam Irradiation. ACS Applied Electronic Materials, 2019, 1, 684-691.	2.0	20

#	Article	IF	CITATIONS
1935	Dual stimuli-responsive supramolecular boron nitride with tunable physical properties for controlled drug delivery. Nanoscale, 2019, 11, 10393-10401.	2.8	33
1936	1T MoS2 nanosheets with extraordinary sodium storage properties via thermal-driven ion intercalation assisted exfoliation of bulky MoS2. Nano Energy, 2019, 61, 361-369.	8.2	157
1937	Synthesis and characterisation of MoS2 thin films by electron beam evaporation. Thin Solid Films, 2019, 681, 78-85.	0.8	18
1938	<i>In situ</i> formation of a bifunctional interlayer enabled by a conversion reaction to initiatively prevent lithium dendrites in a garnet solid electrolyte. Energy and Environmental Science, 2019, 12, 1404-1412.	15.6	176
1939	Dependence of Photocurrent Enhancements in Hybrid Quantum Dot-MoS ₂ Devices on Quantum Dot Emission Wavelength. ACS Photonics, 2019, 6, 976-984.	3.2	9
1940	Highly Efficient Hydrogen Evolution from Seawater by Biofunctionalized Exfoliated MoS ₂ Quantum Dot Aerogel Electrocatalysts That Is Superior to Pt. ACS Applied Materials & Interfaces, 2019, 11, 14159-14165.	4.0	43
1941	Enhanced photoelectrochemical hydrogen production efficiency of MoS ₂ -Si heterojunction. Optics Express, 2019, 27, A352.	1.7	91
1942	Room-temperature infrared photodetectors with hybrid structure based on two-dimensional materials. Chinese Physics B, 2019, 28, 017302.	0.7	24
1943	Modifying the Band Gap of Semiconducting Two-Dimensional Materials by Polymer Assembly into Different Structures. Langmuir, 2019, 35, 4956-4965.	1.6	5
1944	The atomic origin of nickel-doping-induced catalytic enhancement in MoS ₂ for electrochemical hydrogen production. Nanoscale, 2019, 11, 7123-7128.	2.8	75
1945	Ultrathin MoS ₂ nanosheets for high-performance photoelectrochemical applications <i>via</i> plasmonic coupling with Au nanocrystals. Nanoscale, 2019, 11, 7813-7824.	2.8	57
1946	Engineering MoS ₂ Basal Planes for Hydrogen Evolution via Synergistic Ruthenium Doping and Nanocarbon Hybridization. Advanced Science, 2019, 6, 1900090.	5.6	148
1947	Flexible Molybdenum Disulfide (MoS ₂) Atomic Layers for Wearable Electronics and Optoelectronics. ACS Applied Materials & Interfaces, 2019, 11, 11061-11105.	4.0	277
1948	Thermal annealing effects on the electrophysical characteristics of sputtered MoS2 thin films by Hall effect measurements. Semiconductor Science and Technology, 2019, 34, 045017.	1.0	9
1949	Influence of MoS2 Nanosheet Size on Performance of Drilling Mud. Polymers, 2019, 11, 321.	2.0	15
1950	Glucoseâ€Induced Synthesis of 1Tâ€MoS ₂ /C Hybrid for Highâ€Rate Lithiumâ€Ion Batteries. Small, 2019, 15, e1805420.	5.2	138
1951	Graphene/silicon and 2D-MoS2/silicon solar cells: a review. Applied Physics A: Materials Science and Processing, 2019, 125, 1.	1.1	22
1952	Manipulation of Coherent Optical Propagation Based on Monolayer MoS2 Resonator. Photonic Sensors, 2019, 9, 317-326.	2.5	0

#	Article	IF	CITATIONS
1953	Diversity of structural and electronic properties of <i>P</i> –AuBr of different dimensions. Materials Research Express, 2019, 6, 065010.	0.8	1
1954	Fastâ€Response Inverter Arrays Built on Waferâ€Scale MoS ₂ by Atomic Layer Deposition. Physica Status Solidi - Rapid Research Letters, 2019, 13, 1900018.	1.2	16
1955	Chemically exfoliated 1T-phase transition metal dichalcogenide nanosheets for transparent antibacterial applications. 2D Materials, 2019, 6, 025025.	2.0	45
1956	Thickness-Dependent Ultrafast Photonics of SnS ₂ Nanolayers for Optimizing Fiber Lasers. ACS Applied Nano Materials, 2019, 2, 2697-2705.	2.4	48
1957	Quantum confinement in few layer SnS nanosheets. Nanotechnology, 2019, 30, 245705.	1.3	7
1958	Sensitive and anti-interference stripping voltammetry analysis of Pb(II) in water using flower-like MoS2/rGO composite with ultra-thin nanosheets. Analytica Chimica Acta, 2019, 1063, 64-74.	2.6	55
1959	Recent progress in atomic layer deposition of molybdenum disulfide: a mini review. Science China Materials, 2019, 62, 913-924.	3.5	24
1960	Nanoscale Friction on Confined Water Layers Intercalated between MoS ₂ Flakes and Silica. Journal of Physical Chemistry C, 2019, 123, 8827-8835.	1.5	36
1961	Influence of the substrate types on the molybdenum disulfide grown by thermal vapour sulfurization. Superlattices and Microstructures, 2019, 129, 69-76.	1.4	0
1962	Electronic and optical properties of layered van der Waals heterostructure based on MS ₂ (M = Mo, W) monolayers. Materials Research Express, 2019, 6, 065060.	0.8	13
1964	Strategies for Air‣table and Tunable Monolayer MoS ₂ â€Based Hybrid Photodetectors with High Performance by Regulating the Fully Inorganic Trihalide Perovskite Nanocrystals. Advanced Optical Materials, 2019, 7, 1801744.	3.6	43
1965	Lattice -Mismatch-Induced Ultrastable 1T-Phase MoS ₂ –Pd/Au for Plasmon-Enhanced Hydrogen Evolution. Nano Letters, 2019, 19, 2758-2764.	4.5	98
1966	Surface-diffusion-limited growth of atomically thin WS ₂ crystals from core–shell nuclei. Nanoscale, 2019, 11, 8706-8714.	2.8	18
1967	Characterization Techniques of Two-Dimensional Nanomaterials. , 2019, , 27-41.		2
1968	Multiphoton Excitation and Defect-Enhanced Fast Carrier Relaxation in Few-Layered MoS ₂ Crystals. Journal of Physical Chemistry C, 2019, 123, 11216-11223.	1.5	6
1969	<i>N</i> , <i>N</i> -Dimethylformamide assisted hydrothermal introduction of MoS ₂ on ultrathin g-C ₃ N ₄ layers with enhanced visible light photocatalytic hydrogen evolution activity. Sustainable Energy and Fuels, 2019, 3, 1461-1467.	2.5	21
1970	Synthesis of Au-nanoparticle-loaded 1T@2H-MoS2 nanosheets with high photocatalytic performance. Journal of Materials Science, 2019, 54, 9656-9665.	1.7	44
1971	Strain effects on phase transitions in transition metal dichalcogenides. Current Applied Physics, 2019, 19, 690-696.	1.1	7

#	Article	IF	CITATIONS
1972	Fabrication of Stacked MoS2 Bilayer with Weak Interlayer Coupling by Reduced Graphene Oxide Spacer. Scientific Reports, 2019, 9, 5900.	1.6	6
1973	Synergetic effect of BiOCI/Bi12O17Cl2 and MoS2: in situ DRIFTS investigation on photocatalytic NO oxidation pathway. Rare Metals, 2019, 38, 437-445.	3.6	26
1974	Fabrication and Properties of Molybdenum Disulfide Films for Electro-Optical Applications. International Journal of Nanoscience, 2019, 18, 1940037.	0.4	1
1975	Effects of Stone–Wales Defect on the Electronic and Optical Properties of Armchair MoS2 Nanoribbon: First-Principles Calculations. Journal of Electronic Materials, 2019, 48, 3763-3776.	1.0	7
1976	Ultrafast Carrier Dynamics in Few-Layer Colloidal Molybdenum Disulfide Probed by Broadband Transient Absorption Spectroscopy. Journal of Physical Chemistry C, 2019, 123, 10571-10577.	1.5	35
1977	Facile Synthesis of Carbon Dots@2D MoS ₂ Heterostructure with Enhanced Photocatalytic Properties. Inorganic Chemistry, 2019, 58, 5746-5752.	1.9	31
1978	Electronic properties of several two dimensional halides from ab initio calculations. Beilstein Journal of Nanotechnology, 2019, 10, 823-832.	1.5	24
1979	Ab initio investigation of the optical properties of layered MoSxSe(2â~'x) (0 ≤ ≤): By GGA and mBJ approaches. International Journal of Modern Physics B, 2019, 33, 1950062.	1.0	1
1980	Edge-terminated few-layer MoS2 nanoflakes supported on TNAs@C with enhanced electrocatalysis activity for iodine reduction reaction. Materials Today Nano, 2019, 6, 100033.	2.3	12
1981	Direct and indirect optical transitions in bulk and atomically thin MoS2 studied by photoreflectance and photoacoustic spectroscopy. Journal of Applied Physics, 2019, 125, .	1.1	17
1982	Functionalized MoS2 supported core-shell Ag@Au nanoclusters for managing electronic processes in photocatalysis. Materials Research Bulletin, 2019, 114, 112-120.	2.7	14
1983	2D–Organic Hybrid Heterostructures for Optoelectronic Applications. Advanced Materials, 2019, 31, e1803831.	11.1	86
1984	Enhancing hydrogen evolution on the basal plane of transition metal dichacolgenide van der Waals heterostructures. Npj Computational Materials, 2019, 5, .	3.5	39
1985	Progress on PEDOT:PSS/Nanocrystal Thermoelectric Composites. Advanced Electronic Materials, 2019, 5, 1800822.	2.6	70
1986	Liquid phase exfoliation of MoO ₂ nanosheets for lithium ion battery applications. Nanoscale Advances, 2019, 1, 1560-1570.	2.2	35
1987	Exfoliation of transition-metal dichalcogenides using ATP in aqueous solution. Chemical Communications, 2019, 55, 2972-2975.	2.2	15
1988	Sulfur-doped graphene/transition metal dichalcogenide heterostructured hybrids with electrocatalytic activity toward the hydrogen evolution reaction. Nanoscale Advances, 2019, 1, 1489-1496.	2.2	36
1989	PVP incorporated MoS ₂ as a Mg ion host with enhanced capacity and durability. Journal of Materials Chemistry A, 2019, 7, 4426-4430.	5.2	35

#	Article	IF	CITATIONS
1990	Structural characterization and transistor properties of thickness-controllable MoS2 thin films. Journal of Materials Science, 2019, 54, 7758-7767.	1.7	15
1991	Carbide-free one-zone sulfurization method grows thin MoS2 layers on polycrystalline CVD diamond. Scientific Reports, 2019, 9, 2001.	1.6	19
1992	Sizeâ€Dependent Quantization Effect in Optical Properties of MoS ₂ Nanostructures. ChemistrySelect, 2019, 4, 2116-2121.	0.7	11
1993	A synoptic review of MoS2: Synthesis to applications. Superlattices and Microstructures, 2019, 128, 274-297.	1.4	225
1994	Phase engineering of two-dimensional transition metal dichalcogenides. Science China Materials, 2019, 62, 759-775.	3.5	106
1995	1T-2H Cr _{<i>x</i>} -MoS ₂ Ultrathin Nanosheets for Durable and Enhanced Hydrogen Evolution Reaction. ACS Sustainable Chemistry and Engineering, 2019, 7, 7227-7232.	3.2	25
1996	Translocation, biotransformation-related degradation, and toxicity assessment of polyvinylpyrrolidone-modified 2H-phase nano-MoS ₂ . Nanoscale, 2019, 11, 4767-4780.	2.8	47
1997	Layer-by-layer MoS2:GO composite thin films for optoelectronics device applications. Applied Surface Science, 2019, 479, 1118-1123.	3.1	10
1998	MoS2 flakes stabilized with DNA/RNA nucleotides: In vitro cell response. Materials Science and Engineering C, 2019, 100, 11-22.	3.8	4
1999	Piezoresistive strain sensor based on monolayer molybdenum disulfide continuous film deposited by chemical vapor deposition. Journal of Micromechanics and Microengineering, 2019, 29, 055002.	1.5	20
2000	Mechanical characterization of phase-changed single-layer MoS ₂ sheets. 2D Materials, 2019, 6, 025024.	2.0	14
2001	Growth of Single-Layer MoS ₂ by Chemical Vapor Deposition on sapphire substrate. IOP Conference Series: Materials Science and Engineering, 2019, 592, 012044.	0.3	7
2002	TWO-PHOTON LUMINESCENCE AND SECOND HARMONIC GENERATION OF SINGLE LAYER MOLYBDENUM DISULPHIDE NANOPROBE FOR NONBLEACHING AND NONBLINKING OPTICAL BIOIMAGING. Progress in Electromagnetics Research, 2019, 166, 107-117.	1.6	9
2003	Suppression Effect of MoS2 Nanosheets for CO and CO2 Production During Combustion of Flexible Polyurethane Foams. , 2019, , .		0
2004	Position-Selective Growth of 2D WS ₂ -Based Vertical Heterostructures via a One-Step CVD Approach. Journal of Physical Chemistry C, 2019, 123, 30519-30527.	1.5	28
2005	Thermoelectric Properties of n-Type Molybdenum Disulfide (MoS2) Thin Film by Using a Simple Measurement Method. Materials, 2019, 12, 3521.	1.3	8
2006	Hydrogen evolution reaction from bare and surface-functionalized few-layered MoS2 nanosheets in acidic and alkaline electrolytes. Materials Today Chemistry, 2019, 14, 100207.	1.7	33
2007	A method for SNP detection using MoS ₂ @AuNPs and SYBR Green I in combination with enzyme digestion. New Journal of Chemistry, 2019, 43, 18571-18574.	1.4	3

#	Article	IF	CITATIONS
2008	Control of highly anisotropic electrical conductance of tellurene by strain-engineering. Nanoscale, 2019, 11, 21775-21781.	2.8	11
2009	Rich diversity of crystallographic phase formation in 2D Re <i>x</i> Mo1 – <i>x</i> S2 (<i>x </i> < 0.5) alloy. Journal of Applied Physics, 2019, 126, .	1.1	3
2010	Effect of annealing temperature on silicon-based MoSx thin film solar cells. RSC Advances, 2019, 9, 33710-33715.	1.7	2
2011	Controllable growth of continuous monolayer MoS ₂ by balancing the moles of gaseous precursors <i>via</i> argon flow. CrystEngComm, 2019, 21, 6969-6977.	1.3	5
2012	Controllable growth of Au nanostructures onto MoS ₂ nanosheets for dual-modal imaging and photothermal–radiation combined therapy. Nanoscale, 2019, 11, 22788-22795.	2.8	16
2013	Thickness-dependent photoelectric properties of MoS2/Si heterostructure solar cells. Scientific Reports, 2019, 9, 17381.	1.6	33
2014	Effect of oxygen incorporation in the photoconductivity of two-dimensional MoS2. AIP Conference Proceedings, 2019, , .	0.3	2
2015	Facile high-yield synthesis of MoS ₂ nanosheets with enhanced photocatalytic performance using ultrasound driven exfoliation technique. Materials Research Express, 2019, 6, 125079.	0.8	10
2016	Emergence of Si ₂ BN Monolayer as Efficient HER Catalyst under Co-functionalization Influence. ACS Applied Energy Materials, 2019, 2, 8441-8448.	2.5	18
2017	One-Step Hydrothermal Synthesis of P25 @ Few Layered MoS2 Nanosheets toward Enhanced Bi-catalytic Activities: Photocatalysis and Electrocatalysis. Nanomaterials, 2019, 9, 1636.	1.9	7
2018	Electrical Characterization of Tailored MoS2 Nanostructures. IOP Conference Series: Materials Science and Engineering, 2019, 577, 012163.	0.3	2
2019	Growth Mechanism of Continuous Monolayer MoS2 Prepared by Chemical Vapor Deposition. IOP Conference Series: Materials Science and Engineering, 2019, 562, 012074.	0.3	0
2020	Evolution of inter-layer coupling in artificially stacked bilayer MoS ₂ . Nanoscale Advances, 2019, 1, 4398-4405.	2.2	8
2021	Electronic properties of polymorphic two-dimensional layered chromium disulphide. Nanoscale, 2019, 11, 20123-20132.	2.8	72
2022	NO reduction over an Al-embedded MoS ₂ monolayer: a first-principles study. RSC Advances, 2019, 9, 38973-38981.	1.7	11
2023	Ambient atmosphere laser-induced local ripening of MoS ₂ nanoparticles. Journal of Materials Chemistry C, 2019, 7, 13261-13266.	2.7	2
2024	Fabrication of MoS2 Nanoflakes Supported on Carbon Nanotubes for High Performance Anode in Lithium-Ion Batteries (LIBs). Journal of Nanomaterials, 2019, 2019, 1-7.	1.5	5
2025	Photogalvanic Effect in Nitrogen-Doped Monolayer MoS2 from First Principles. Nanoscale Research Letters, 2019, 14, 380.	3.1	9

#	Article	IF	CITATIONS
2026	In-situ growth of 1T/2H-MoS2 on carbon fiber cloth and the modification of SnS2 nanoparticles: A three-dimensional heterostructure for high-performance flexible lithium-ion batteries. Chemical Engineering Journal, 2019, 356, 483-491.	6.6	103
2027	Molybdenum disulfide nanosheet decorated with silver nanoparticles for selective detection of dopamine. Colloids and Surfaces B: Biointerfaces, 2019, 176, 80-86.	2.5	38
2028	Electrochemical and optical studies of facile synthesized molybdenum disulphide (MoS2) nano structures. Journal of Alloys and Compounds, 2019, 782, 119-131.	2.8	26
2029	Facile method to synthesis hybrid phase 1T@2H MoSe2 nanostructures for rechargeable lithium ion batteries. Journal of Electroanalytical Chemistry, 2019, 833, 333-339.	1.9	39
2030	Two-dimensional materials as catalysts for solar fuels: hydrogen evolution reaction and CO ₂ reduction. Journal of Materials Chemistry A, 2019, 7, 430-454.	5.2	125
2031	Thin film nanocomposite reverse osmosis membrane modified by two dimensional laminar MoS2 with improved desalination performance and fouling-resistant characteristics. Desalination, 2019, 454, 48-58.	4.0	141
2032	Electrically-Transduced Chemical Sensors Based on Two-Dimensional Nanomaterials. Chemical Reviews, 2019, 119, 478-598.	23.0	521
2033	Defect engineered bioactive transition metals dichalcogenides quantum dots. Nature Communications, 2019, 10, 41.	5.8	168
2034	Micropatterning MoS2/Polyamide Electrospun Nanofibrous Membranes Using Femtosecond Laser Pulses. Photonics, 2019, 6, 3.	0.9	8
2035	Complete-series excitonic dipole emissions in few layer ReS2 and ReSe2 observed by polarized photoluminescence spectroscopy. Nano Energy, 2019, 56, 641-650.	8.2	49
2036	First-principle studies on electron transport properties in four-terminal MoS2 nanoribbons. Physica B: Condensed Matter, 2019, 554, 90-96.	1.3	4
2037	The effects of vanadium absorbed by WS2 monolayer on the electronic, magnetic and optical properties: A first principle study. Computational Condensed Matter, 2019, 18, e00352.	0.9	5
2038	Multicolor Lightâ€Emitting Diodes with MoS ₂ Quantum Dots. Particle and Particle Systems Characterization, 2019, 36, 1800362.	1.2	23
2039	Electrocatalysis on ultra-thin 2D electrodes: New concepts and prospects for tailoring reactivity. Current Opinion in Electrochemistry, 2019, 13, 100-106.	2.5	11
2040	Highly Stable and Antibacterial Twoâ€Dimensional Tungsten Disulfide Lamellar Membrane for Water Filtration. ChemSusChem, 2019, 12, 275-282.	3.6	38
2041	High performance photodetector based on graphene/MoS2/graphene lateral heterostrurcture with Schottky junctions. Journal of Alloys and Compounds, 2019, 779, 140-146.	2.8	68
2042	2D MoS ₂ â€Based Nanomaterials for Therapeutic, Bioimaging, and Biosensing Applications. Small, 2019, 15, e1803706.	5.2	265
2043	Layer by layer 2D MoS2/rGO hybrids: An optimized microwave absorber for high-efficient microwave absorption. Applied Surface Science, 2019, 470, 899-907.	3.1	62

#	Article	IF	Citations
2044	Friction reduction of water based lubricant with highly dispersed functional MoS2 nanosheets. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 562, 321-328.	2.3	58
2045	Highly Ambient-Stable 1T-MoS ₂ and 1T-WS ₂ by Hydrothermal Synthesis under High Magnetic Fields. ACS Nano, 2019, 13, 1694-1702.	7.3	131
2046	Electronic structure and magnetic behaviors of exfoliated MoS ₂ nanosheets. Journal of Physics Condensed Matter, 2019, 31, 135501.	0.7	13
2047	Two-dimensional heterostructures based on graphene and transition metal dichalcogenides: Synthesis, transfer and applications. Carbon, 2019, 145, 240-250.	5.4	53
2048	The synthesis and tunable optical properties of two-dimensional alloyed Mo1-W S2 monolayer with in-plane composition modulations (0≤â‰聲). Journal of Alloys and Compounds, 2019, 784, 213-219.	2.8	19
2049	New Floating Gate Memory with Excellent Retention Characteristics. Advanced Electronic Materials, 2019, 5, 1800726.	2.6	48
2050	Intense pulsed light, a promising technique to develop molybdenum sulfide catalysts for hydrogen evolution. Nanotechnology, 2019, 30, 175401.	1.3	6
2051	Thickness-dependent bandgap of transition metal dichalcogenides dominated by interlayer van der Waals interaction. Physica E: Low-Dimensional Systems and Nanostructures, 2019, 109, 11-16.	1.3	16
2052	Unraveling the Factors Affecting the Electrochemical Performance of MoS ₂ –Carbon Composite Catalysts for Hydrogen Evolution Reaction: Surface Defect and Electrical Resistance of Carbon Supports. ACS Applied Materials & Interfaces, 2019, 11, 5037-5045.	4.0	20
2053	Effects of Defects on Band Structure and Excitons in WS ₂ Revealed by Nanoscale Photoemission Spectroscopy. ACS Nano, 2019, 13, 1284-1291.	7.3	64
2054	Evolution of structural and morphological characteristics of MoS2 thin films with nitrogen doping. Indian Journal of Physics, 2019, 93, 487-494.	0.9	2
2055	Na-assisted fast growth of large single-crystal MoS ₂ on sapphire. Nanotechnology, 2019, 30, 034002.	1.3	34
2056	Microscopic observation of catalytically etched channels and pits in MoS2 flakes. Applied Surface Science, 2019, 467-468, 1053-1058.	3.1	1
2057	Recent Advances in Memory Devices with Hybrid Materials. Advanced Electronic Materials, 2019, 5, 1800519.	2.6	92
2058	One-step hydrothermal synthesis of high-percentage 1T-phase MoS2 quantum dots for remarkably enhanced visible-light-driven photocatalytic H2 evolution. Applied Catalysis B: Environmental, 2019, 243, 76-85.	10.8	137
2059	MoS2 nanosheets@N-carbon microtubes: A rational design of sheet-on-tube architecture for enhanced lithium storage performances. Electrochimica Acta, 2019, 293, 432-438.	2.6	23
2060	Facile access to shape-controlled growth of WS ₂ monolayer via environment-friendly method. 2D Materials, 2019, 6, 015007.	2.0	18
2061	Solution-processed Graphene-MoS2 heterostructure for efficient hole extraction in organic solar cells. Carbon, 2019, 142, 156-163.	5.4	34

		CITATION REPORT		
#	Article		IF	CITATIONS
2062	Electrochemical exfoliation of graphene-like two-dimensional nanomaterials. Nanoscale	e, 2019, 11, 16-33.	2.8	184
2063	Two-Level Quantum Systems in Two-Dimensional Materials for Single Photon Emission 2019, 19, 408-414.	. Nano Letters,	4.5	59
2064	2D transition metal chalcogenides and van der Waals heterostructures: Fundamental a electrochemistry. Current Opinion in Electrochemistry, 2019, 13, 119-124.	aspects of their	2.5	19
2065	Solution Processing for Lateral Transition-Metal Dichalcogenides Homojunction from P Crystal. Journal of the American Chemical Society, 2019, 141, 592-598.	olymorphic	6.6	24
2066	Layer-dependent photoresponse of 2D MoS ₂ films prepared by pulsed las Journal of Materials Chemistry C, 2019, 7, 2522-2529.	er deposition.	2.7	45
2067	A one-step method to synthesize CH ₃ NH ₃ Pbl ₃ nanohybrids for high-performance solution-processed photodetectors in the visible reg Nanotechnology, 2019, 30, 085707.		1.3	14
2068	Advanced Nearâ€Infrared Lightâ€Responsive Nanomaterials as Therapeutic Platforms f Advanced Therapeutics, 2019, 2, 1800090.	or Cancer Therapy.	1.6	27
2069	Optimizing thermoelectric performance of MoS2 films by spontaneous noble metal na decoration. Journal of Alloys and Compounds, 2019, 781, 744-750.	noparticles	2.8	34
2070	Activating MoS2 by interface engineering for efficient hydrogen evolution catalysis. Ma Research Bulletin, 2019, 112, 46-52.	aterials	2.7	25
2071	Defects engineering monolayer MoSe2 magnetic states for 2D spintronic device. Journ Compounds, 2019, 774, 160-167.	al of Alloys and	2.8	31
2072	Spatially selective reversible charge carrier density tuning in WS ₂ monola photochlorination. 2D Materials, 2019, 6, 015003.	ayers via	2.0	13
2073	Dew point measurements using montmorillonite (MTT) and molybdenum disulfide (Mo sensors. Sensors and Actuators B: Chemical, 2019, 279, 122-129.	oS2) coated QCM	4.0	15
2074	Strong photoluminescence enhancement of MoS2 monolayer via low-power Ar/O2 pla Materials Letters, 2019, 235, 129-132.	sma treatment.	1.3	9
2075	Using photoelectron spectroscopy in the integration of 2D materials for advanced dev Electron Spectroscopy and Related Phenomena, 2019, 231, 94-103.	ices. Journal of	0.8	5
2076	Trigonal (1T) and hexagonal (2H) mixed phases MoS2 thin films. Applied Surface Scien 227-231.	ce, 2019, 474,	3.1	22
2077	An exploration into potassium (K) containing MoS2 active phases and its transformatic MoS2 based materials for producing methanethiol. Catalysis Today, 2020, 339, 93-104		2.2	31
2078	Metallic MoS2 nanosphere electrode for aqueous symmetric supercapacitors with high power densities. Journal of Materials Science, 2020, 55, 713-723.	1 energy and	1.7	18
2079	Understanding ferromagnetism in Ni-doped MoS2 monolayer from first principles. Che 2020, 528, 110501.	mical Physics,	0.9	16

#	Article	IF	CITATIONS
2080	Exfoliated colloidal MoS2 nanosheet with predominantly 1T phase for electrocatalytic hydrogen production. International Journal of Hydrogen Energy, 2020, 45, 18645-18656.	3.8	13
2081	Synthesis and Optical Properties of MoS2/Graphene Nanocomposite. Journal of Electronic Materials, 2020, 49, 969-979.	1.0	10
2082	Direct–indirect bandgap transition in monolayer MoS ₂ induced by an individual Si nanoparticle. Nanotechnology, 2020, 31, 065204.	1.3	9
2083	Layered Transition Metal Dichalcogenideâ€Based Nanomaterials for Electrochemical Energy Storage. Advanced Materials, 2020, 32, e1903826.	11.1	329
2084	Preparation of polyvinyl alcohol/twoâ€dimensional transition metal dichalcogenides composites by highâ€pressure homogenization. Journal of Applied Polymer Science, 2020, 137, 48487.	1.3	4
2085	Single variable defined technology control of the optical properties in MoS ₂ films with controlled number of 2D-layers. Nanotechnology, 2020, 31, 025602.	1.3	6
2086	Twoâ€Ðimensional Electrocatalysts for Efficient Reduction of Carbon Dioxide. ChemSusChem, 2020, 13, 59-77.	3.6	31
2087	Phonon thermal transport in Janus single layer M2XY (M = Ga; X, Y = S, Se, Te): A study based on first-principles. Physica E: Low-Dimensional Systems and Nanostructures, 2020, 115, 113683.	1.3	33
2088	The optimization of hydrothermal process of MoS2 nanosheets and their good microwave absorption performances. Chinese Chemical Letters, 2020, 31, 1124-1128.	4.8	37
2089	Photoresponse of wafer-scale palladium diselenide films prepared by selenization method. Journal Physics D: Applied Physics, 2020, 53, 065102.	1.3	10
2090	Microwave Hydrothermal Synthesis of 1T@2Hâ^'MoS ₂ as an Excellent Photocatalyst. ChemCatChem, 2020, 12, 893-902.	1.8	38
2091	The spin-transport properties of single edge oxidized zigzag MoS2 nanoribbon. Physica E: Low-Dimensional Systems and Nanostructures, 2020, 116, 113783.	1.3	7
2092	Optical properties of the nanocomposite of molybdenum disulphide monolayers/cellulose nanofibrils. Cellulose, 2020, 27, 713-728.	2.4	3
2093	Improving the Fenton catalytic performance of FeOCl using an electron mediator. Journal of Hazardous Materials, 2020, 384, 121494.	6.5	67
2094	Miniaturized high-performance metallic 1T-Phase MoS2 micro-supercapacitors fabricated by temporally shaped femtosecond pulses. Nano Energy, 2020, 67, 104260.	8.2	37
2095	Selfâ€Powered Photodetectors Based on 2D Materials. Advanced Optical Materials, 2020, 8, 1900765.	3.6	245
2096	Vanadiumâ€Incorporated Metallic (1â€ī) Molybdenum Sulfide Nanoroses for Highâ€Energyâ€Density Asymmetric Supercapacitors. ChemSusChem, 2020, 13, 221-229.	3.6	7
2097	Enhanced photocatalytic hydrogen evolution under visible light irradiation by p-type MoS2/n-type Ni2P doped g-C3N4. Applied Surface Science, 2020, 504, 144448.	3.1	42

ARTICLE IF CITATIONS A modified wrinkle-free MoS₂ film transfer method for large area high mobility 2098 1.3 16 field-effect transistor. Nanotechnology, 2020, 31, 055707. One-step fabrication of ultrathin layered 1T@2H phase MoS2 with high catalytic activity based 2099 counter electrode for photovoltaic devices. Journal of Materials Science and Technology, 2020, 51, 5.6 94-101. Recent Advances in Two-dimensional Materials for Electrochemical Energy Storage and Conversion. 2100 1.3 41 Chemical Research in Chinese Universities, 2020, 36, 10-23. Structure Engineering of MoS₂ via Simultaneous Oxygen and Phosphorus Incorporation for Improved Hydrogen Evolution. Small, 2020, 16, e1905738. Tensile Strain-Controlled Photogenerated Carrier Dynamics at the van der Waals Heterostructure 2102 2.1 41 Interface. Journal of Physical Chemistry Letters, 2020, 11, 586-590. Label-free and enzyme-free detection of microRNA based on a hybridization chain reaction with hemin/G-quadruplex enzymatic catalysis-induced MoS₂ quantum dots <i>via</i> the inner 2.8 filter effect. Nanoscale, 2020, 12, 808-814. Understanding the unorthodox stabilization of liquid phase exfoliated molybdenum disulfide 2104 1.3 18 (MoS₂) in water medium. Physical Chemistry Chemical Physics, 2020, 22, 1457-1465. Effect of large work function modulation of MoS₂ by controllable chlorine doping 26 using a remote plasma. Journal of Materials Chemistry C, 2020, 8, 1846-1851. Modulating the Electronic Properties of Au–MoS₂ Interfaces Using Functionalized 2106 7 1.6 Self-Assembled Monolayers. Langmuir, 2020, 36, 682-688. On the origin of metallicity and stability of the metastable phase in chemically exfoliated MoS2. 2.3 Applied Materials Today, 2020, 19, 100544. Role of van der Waals interaction in enhancing the photon absorption capability of the 2108 1.3 5 MoS₂/2D heterostructure. Physical Chemistry Chemical Physics, 2020, 22, 2775-2782. Different phases of few-layer MoS₂ and their silver/gold nanocomposites for efficient 2109 2.1 36 hydrogen evolution reaction. Catalysis Science and Technology, 2020, 10, 154-163. Electron microscopy study of the carbon-induced 2Hâ€"3Râ€"1T phase transition of MoS₂. 2110 1.4 11 New Journal of Chemistry, 2020, 44, 1190-1193. 2D transition metal dichalcogenide nanomaterials: advances, opportunities, and challenges in 5.2 multi-functional polymer nanocomposites. Journal of Materials Chemistry A, 2020, 8, 845-883. Mitochondria-targeted TPP-MoS2 with dual enzyme activity provides efficient neuroprotection 2112 123 5.7through M1/M2 microglial polarization in an Alzheimer's disease model. Biomaterials, 2020, 232, 119752. Straightforward identification of monolayer WS2 structures by Raman spectroscopy. Materials Chemistry and Physics, 2020, 243, 122599. Growth and characterization of MoS2/n-GaN and MoS2/p-GaN vertical heterostructure with wafer 2114 0.8 3 scale homogeneity. Solid-State Electronics, 2020, 165, 107751. Selective Preparation of 1T- and 2H-Phase MoS₂ Nanosheets with Abundant Monolayer Structure and Their Applications in Energy Storage Devices. ACS Applied Energy Materials, 2020, 3, 998-1009.

#	Article	IF	CITATIONS
2116	Reductant-Activated, High-Coverage, Covalent Functionalization of 1T′-MoS ₂ . , 2020, 2, 133-139.		21
2117	Recent advances in lowâ€dimensional semiconductor nanomaterials and their applications in highâ€performance photodetectors. InformaÄnÃ-Materiály, 2020, 2, 291-317.	8.5	103
2118	Preparation of MoS2/graphene nanostructures and their supercapacitor and hydrogen evolution reaction (HER) performances. Journal Physics D: Applied Physics, 2020, 53, 065501.	1.3	7
2119	A feasible and environmentally friendly method to simultaneously synthesize MoS2 quantum dots and pore-rich monolayer MoS2 for hydrogen evolution reaction. International Journal of Hydrogen Energy, 2020, 45, 433-442.	3.8	24
2121	Investigation of the Active Phase in K-Promoted MoS ₂ Catalysts for Methanethiol Synthesis. ACS Catalysis, 2020, 10, 1838-1846.	5.5	25
2122	Preparation of Hybrid Molybdenum Disulfide/Single Wall Carbon Nanotube–n-Type Silicon Solar Cells. Applied Sciences (Switzerland), 2020, 10, 287.	1.3	1
2123	Chemical Insights into the Rapid, Light-Induced Auto-Oxidation of Molybdenum Disulfide Aqueous Dispersions. Chemistry of Materials, 2020, 32, 148-156.	3.2	11
2124	Improved corrosion resistance of acrylic coatings prepared with modified MoS2 nanosheets. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 587, 124318.	2.3	30
2125	Metal–Semiconductor Phase Twinned Hierarchical MoS ₂ Nanowires with Expanded Interlayers for Sodiumâ€Ion Batteries with Ultralong Cycle Life. Small, 2020, 16, e1906607.	5.2	74
2126	Fabricating Molybdenum Disulfide Memristors. ACS Applied Electronic Materials, 2020, 2, 346-370.	2.0	27
2127	Comparison of MoS 2 /pâ€GaN Heterostructures Fabricated via Direct Chemical Vapor Deposition and Transfer Method. Physica Status Solidi (A) Applications and Materials Science, 2020, 217, 1900722.	0.8	2
2128	Optical Properties of 2D 3R Phase Niobium Disulfide and Its Applications as a Saturable Absorber. Advanced Optical Materials, 2020, 8, 1901181.	3.6	26
2129	Engineering the novel MoSe2-Mo2C hybrid nanoarray electrodes for energy storage and water splitting applications. Applied Catalysis B: Environmental, 2020, 264, 118531.	10.8	136
2130	Pingpongâ€Energietransfer in kovalent verknüpften Porphyrinâ€MoS 2 â€Architekturen. Angewandte Chemie, 2020, 132, 4004-4009.	1.6	7
2131	Pingâ€Pong Energy Transfer in Covalently Linked Porphyrinâ€MoS ₂ Architectures. Angewandte Chemie - International Edition, 2020, 59, 3976-3981.	7.2	31
2132	Inâ€situ formation and intercalation of carbon dots induced highâ€yield 1Tâ€molybdenum disulfide as electrode materials. Energy Storage, 2020, 2, e118.	2.3	6
2133	Organic Small Molecule Covalently Functionalized Molybdenum Disulfide Hybrid Material for Optical Limiting. Bulletin of the Chemical Society of Japan, 2020, 93, 26-31.	2.0	6
2134	Electrodeposition of a Ni-P composite coating reinforced with Ti3C2Tx@TiO2/MoS2 particles. Materials Chemistry and Physics, 2020, 241, 122448.	2.0	17

#	Article	IF	CITATIONS
2135	Efficient Liquid Nitrogen Exfoliation of MoS ₂ Ultrathin Nanosheets in the Pure 2H Phase. ACS Sustainable Chemistry and Engineering, 2020, 8, 84-90.	3.2	28
2136	Optical characterization of two-dimensional semiconductors. , 2020, , 135-166.		1
2137	STM/STS and ARPES characterization—structure and electronic properties. , 2020, , 199-220.		1
2138	Intercalation pseudo-capacitance behavior of few-layered molybdenum sulfide in various electrolytes. Journal of Colloid and Interface Science, 2020, 561, 117-126.	5.0	14
2139	MXetronics: MXene-Enabled Electronic and Photonic Devices. , 2020, 2, 55-70.		156
2140	MoS2-enhanced epoxy-based plasmonic fiber-optic sensor for selective and sensitive detection of methanol. Sensors and Actuators B: Chemical, 2020, 305, 127513.	4.0	20
2142	Two-dimensional semiconductor transition metal dichalcogenides: basic properties. , 2020, , 1-23.		2
2143	Nano-layer based 1T-rich MoS2/g-C3N4 co-catalyst system for enhanced photocatalytic and photoelectrochemical activity. Applied Catalysis B: Environmental, 2020, 268, 118466.	10.8	112
2144	Atomic layer deposition for nonconventional nanomaterials and their applications. Journal of Materials Research, 2020, 35, 656-680.	1.2	9
2145	Tailoring Magnetically Active Defect Sites in MoS ₂ Nanosheets for Spintronics Applications. ACS Applied Nano Materials, 2020, 3, 576-587.	2.4	37
2146	Mn-intercalated MoSe2 under pressure: Electronic structure and vibrational characterization of a dilute magnetic semiconductor. Journal of Chemical Physics, 2020, 153, 124701.	1.2	5
2147	Surface Modification of Monolayer MoS2 by Baking for Biomedical Applications. Frontiers in Chemistry, 2020, 8, 741.	1.8	4
2148	2D-Nanolayered Tungsten and Molybdenum Disulfides: Structure, Properties, Synthesis, and Processing for Strategic Applications. , 2020, , 75-120.		2
2149	Cd-Based Metallohydrogel Composites with Graphene Oxide, MoS ₂ , MoSe ₂ , and WS ₂ for Semiconducting Schottky Barrier Diodes. ACS Applied Nano Materials, 2020, 3, 11025-11036.	2.4	24
2150	Morphology-controlled MoS ₂ by low-temperature atomic layer deposition. Nanoscale, 2020, 12, 20404-20412.	2.8	14
2151	Large-Area Electrodeposition of Few-Layer MoS ₂ on Graphene for 2D Material Heterostructures. ACS Applied Materials & Interfaces, 2020, 12, 49786-49794.	4.0	21
2152	Electronic structures of WS2 armchair nanoribbons doped with transition metals. Scientific Reports, 2020, 10, 16452.	1.6	0
2153	Aptamer-functionalized molybdenum disulfide nanosheets for tumor cell targeting and lysosomal acidic environment/NIR laser responsive drug delivery to realize synergetic chemo-photothermal therapeutic effects. International Journal of Pharmaceutics, 2020, 590, 119948.	2.6	27

#	Article	IF	CITATIONS
2154	Interaction mechanism between multi-layered MoS2 and H2O2 for self-generation of reactive oxygen species. Environmental Research, 2020, 191, 110227.	3.7	39
2155	Charge Transport in 2D MoS ₂ , WS ₂ , and MoS ₂ –WS ₂ Heterojunction-Based Field-Effect Transistors: Role of Ambipolarity. Journal of Physical Chemistry C, 2020, 124, 23368-23379.	1.5	15
2156	Controlling the Structure of MoS ₂ Membranes via Covalent Functionalization with Molecular Spacers. Nano Letters, 2020, 20, 7844-7851.	4.5	34
2157	Metallic 1T Phase Enabling MoS ₂ Nanodots as an Efficient Agent for Photoacoustic Imaging Guided Photothermal Therapy in the Nearâ€Infraredâ€II Window. Small, 2020, 16, e2004173.	5.2	150
2158	A comprehensive review on synthesis and applications of molybdenum disulfide (MoS2) material: Past and recent developments. Inorganic Chemistry Communication, 2020, 121, 108200.	1.8	155
2159	Reduced trap density and mitigating the interfacial losses by placing 2D dichalcogenide material at perovskite/HTM interface in a dopant free perovskite solar cells. Nano Energy, 2020, 77, 105292.	8.2	37
2160	Ultrathin Quasibinary Heterojunctioned ReS ₂ /MoS ₂ Film with Controlled Adhesion from a Bimetallic Co-Feeding Atomic Layer Deposition. ACS Applied Materials & Interfaces, 2020, 12, 43311-43319.	4.0	10
2161	Photoresponse of Solution-Processed Molybdenum Disulfide Nanosheet-Based Photodetectors. ACS Applied Nano Materials, 2020, 3, 10057-10066.	2.4	7
2162	Longitudinal unzipping of 2D transition metal dichalcogenides. Nature Communications, 2020, 11, 5032.	5.8	18
2163	Efficient MoWO3/VO2/MoS2/Si UV Schottky photodetectors; MoS2 optimization and monoclinic VO2 surface modifications. Scientific Reports, 2020, 10, 15926.	1.6	23
2164	Tunable electronic properties and Schottky barrier in a graphene/WSe ₂ heterostructure under out-of-plane strain and an electric field. Physical Chemistry Chemical Physics, 2020, 22, 23699-23706.	1.3	27
2165	Plasmonic-tape-attached multilayered MoS2 film for near-infrared photodetection. Scientific Reports, 2020, 10, 11340.	1.6	12
2166	Envisaging radio frequency magnetron sputtering as an efficient method for large scale deposition of homogeneous two dimensional MoS2. Applied Surface Science, 2020, 529, 147158.	3.1	29
2167	Electronic structure engineering on two-dimensional (2D) electrocatalytic materials for oxygen reduction, oxygen evolution, and hydrogen evolution reactions. Nano Energy, 2020, 77, 105080.	8.2	157
2168	Atomic adsorption of Sn on mechanically cleaved WS2 surface at room temperature. Surface Science, 2020, 701, 121685.	0.8	5
2169	Design and synthesis of two-dimensional materials and their heterostructures. , 2020, , 13-54.		1
2170	Characterizations of nanoscale two-dimensional materials and heterostructures. , 2020, , 55-90.		1
2171	Transition metal dichalcogenides as ultrasensitive and high-resolution biosensing nodes. , 2020, , 87-120.		О

ARTICLE IF CITATIONS Electrochemically Desulfurized Molybdenum Disulfide (MoS₂) and Reduced Graphene Oxide Aerogel Composites as Efficient Electrocatalysts for Hydrogen Evolution. Journal of 2172 0.9 9 Nanoscience and Nanotechnology, 2020, 20, 6191-6214. Synthesis of transition metal dichalcogenides., 2020, , 247-264. Characterization of two-dimensional materials., 2020, , 289-322. 0 2174 Xâ \in ray Powder Diffraction Study of Molybdenum Oxides Formed From the Thermal Reactions of MoS 2 , 1.0 MoS 2 / LiF , and MoS 2 /Ag in Air. Bulletin of the Korean Chemical Society, 2020, 41, 1194-1199. Synthesis of 2D MoS_{$2(1\hat{a}^{*}x)}$ Se_{2x} semiconductor alloy by chemical vapor 2176 1.7 19 déposition. RSC Advances, 2020, 10, 42172-42177. Biomimetic electro-oxidation of alkyl sulfides from exfoliated molybdenum disulfide nanosheets. 5.2 Journal of Materials Chemistry A, 2020, 8, 25053-25060. Pulse-Mediated Electronic Tuning of the MoS₂â€"Perovskite Ferroelectric Field Effect 2178 2.0 2 Transistors. ACS Applied Electronic Materials, 2020, 2, 3843-3852. Formation of Coherent 1H–1T Heterostructures in Single-Layer MoS₂ on Au(111). ACS Nano, 2179 7.3 29 2020, 14, 16939-16950. Atomic-scale evidence for highly selective electrocatalytic Na[^]N coupling on metallic MoS 2180 ₂. Proceedings of the National Academy of Sciences of the United States of America, 2020, 3.3 18 117, 31631-31638. Advancements in Therapeutics via 3D Printed Multifunctional Architectures from Dispersed 2D 5.2 Nanomaterial Inks. Small, 2020, 16, e2004900. On the Elastic Properties and Fracture Patterns of MoX2 (X = S, Se, Te) Membranes: A Reactive 2182 7 0.8 Molecular Dynamics Study. Condensed Matter, 2020, 5, 73. An Electrochemical Sensor for Determination of Sulfite (SO32-) in Water Based on Molybdenum Disulfide Flakes/Nafion Modified Electrode. International Journal of Electrochemical Science, 2020, 15, 0.5 10304-10314. Observation of room-temperature long-lived trapped exciton in WS2/RGO heterostructure. Applied 2184 1.5 7 Physics Letters, 2020, 117, 142104. Optical excitation and electron donation at the surface of MoS2. AIP Conference Proceedings, 2020, , . 2185 0.3 MoS2/graphene composites: Fabrication and electrochemical energy storage. Energy Storage 2186 9.5 85 Materials, 2020, 33, 470-502. The dependence of interfacial properties on the layer number in 1T′/2H-MoS2 van der Waals heterostructures. Physics Letters, Section A: General, Atomic and Solid State Physics, 2020, 384, 126747. Inkjet-defined site-selective (IDSS) growth for controllable production of in-plane and out-of-plane 2188 2.8 7 MoS2 device arrays. Nanoscale, 2020, 12, 16917-16927. Intercalator-assisted plasma-liquid technology: an efficient exfoliation method for few-layer 2189 two-dimensional materials. Science China Materials, 2020, 63, 2079-2085.

#	Article	IF	Citations
2190	Covalently functionalized layered MoS ₂ supported Pd nanoparticles as highly active oxygen reduction electrocatalysts. Nanoscale, 2020, 12, 18278-18288.	2.8	13
2191	Precise ångström controlling the interlayer channel of MoS2 membranes by cation intercalation. Journal of Membrane Science, 2020, 615, 118520.	4.1	35
2192	Controllable S-Vacancies of monolayered Mo–S nanocrystals for highly harvesting lithium storage. Nano Energy, 2020, 78, 105235.	8.2	41
2193	Vertically Stacked 2Hâ€1T Dualâ€Phase MoS ₂ Microstructures during Lithium Intercalation: A First Principles Study. Journal of the American Ceramic Society, 2020, 103, 6603-6614.	1.9	15
2194	Intercalation-assisted Exfoliation Strategy for Two-dimensional Materials Preparation. Chemical Research in Chinese Universities, 2020, 36, 518-524.	1.3	9
2195	Synthesis and characterization of molybdenum disulfide nanoparticles in Shewanella oneidensis MR-1 biofilms. Biointerphases, 2020, 15, 041006.	0.6	3
2196	Intercalation and hybrid heterostructure integration of two-dimensional atomic crystals with functional organic semiconductor molecules. Nano Research, 2020, 13, 2917-2924.	5.8	11
2197	Intercalation of Two-dimensional Layered Materials. Chemical Research in Chinese Universities, 2020, 36, 584-596.	1.3	21
2198	Effect of Cu concentration and dopant site on the band gap of MoS2: A DFT study. Computational Condensed Matter, 2020, 24, e00494.	0.9	21
2199	Substrate mediated electronic and excitonic reconstruction in a MoS ₂ monolayer. Journal of Materials Chemistry C, 2020, 8, 11778-11785.	2.7	9
2200	Growth of Multiorientated Polycrystalline MoS2 Using Plasma-Enhanced Chemical Vapor Deposition for Efficient Hydrogen Evolution Reactions. Nanomaterials, 2020, 10, 1465.	1.9	8
2201	Ultrafine nano 1T-MoS2 monolayers with NiOx as dual co-catalysts over TiO2 photoharvester for efficient photocatalytic hydrogen evolution. Applied Catalysis B: Environmental, 2020, 279, 119387.	10.8	56
2202	Controlled Laser-Thinning of MoS ₂ Nanolayers and Transformation to Amorphous MoO _{<i>x</i>} for 2D Monolayer Fabrication. ACS Applied Nano Materials, 2020, 3, 7490-7498.	2.4	14
2203	Large-Scale Atomically Thin Monolayer 2H-MoS ₂ Field-Effect Transistors. ACS Applied Nano Materials, 2020, 3, 7371-7376.	2.4	14
2204	Langmuir Films of Layered Nanomaterials: Edge Interactions and Cell Culture Applications. Journal of Physical Chemistry B, 2020, 124, 7184-7193.	1.2	2
2205	Tunable Optical Transition in 2H-MoS ₂ via Direct Electrochemical Engineering of Vacancy Defects and Surface S–C Bonds. ACS Applied Materials & Interfaces, 2020, 12, 40870-40878.	4.0	19
2206	Dependence of laser parameters on structural properties of pulsed laser-deposited MoS2 thin films applicable for field effect transistors. Journal of Materials Science: Materials in Electronics, 2020, 31, 21118-21127.	1.1	10
2207	S-Vacancy induced indirect-to-direct band gap transition in multilayer MoS ₂ . Physical Chemistry Chemical Physics, 2020, 22, 26005-26014.	1.3	18

#	Article	IF	CITATIONS
2208	The Characterisation of Electrodeposited MoS2 Thin Films on a Foam-Based Electrode for Hydrogen Evolution. Catalysts, 2020, 10, 1182.	1.6	7
2209	Piezoelectric Responses of Mechanically Exfoliated Two-Dimensional SnS ₂ Nanosheets. ACS Applied Materials & Interfaces, 2020, 12, 51662-51668.	4.0	45
2210	Study of linear and non-linear optical responses of MoSe2–PMMA nanocomposites. Journal of Materials Science: Materials in Electronics, 2020, 31, 19974-19988.	1.1	13
2211	2D Nanocomposite Membranes: Water Purification and Fouling Mitigation. Membranes, 2020, 10, 295.	1.4	15
2212	Highly Active Binary Exfoliated <scp>MoS₂</scp> Sheet– <scp>Cu₂O</scp> Nanocrystal Hybrids for Efficient Photocatalytic Pollutant Degradation. Bulletin of the Korean Chemical Society, 2020, 41, 1147-1152.	1.0	7
2213	Electronic properties of Janus MXY/graphene (M = Mo, W; X ≠Y = S, Se) van der Waals structures: a first-principles study. Physical Chemistry Chemical Physics, 2020, 22, 25675-25684.	1.3	16
2214	Towards defect engineering in hexagonal MoS2 nanosheets for tuning hydrogen evolution and nitrogen reduction reactions. Applied Materials Today, 2020, 21, 100812.	2.3	16
2215	Defect Engineering in Metastable Phases of Transitionâ€Metal Dichalcogenides for Electrochemical Applications. Chemistry - an Asian Journal, 2020, 15, 3961-3972.	1.7	8
2216	Scalable salt-templated directed synthesis of high-quality MoS2 nanosheets powders towards energetic and environmental applications. Nano Research, 2020, 13, 3098-3104.	5.8	24
2217	Progress and Prospects in Transition-Metal Dichalcogenide Research Beyond 2D. Chemical Reviews, 2020, 120, 12563-12591.	23.0	163
2218	Dependence of Photoresponsivity and On/Off Ratio on Quantum Dot Density in Quantum Dot Sensitized MoS2 Photodetector. Nanomaterials, 2020, 10, 1828.	1.9	13
2219	Hidden porous boron nitride as a high-efficiency membrane for hydrogen purification. Physical Chemistry Chemical Physics, 2020, 22, 22778-22784.	1.3	16
2220	Changing the Electronic Polarizability of Monolayer MoS ₂ by Peryleneâ€Based Seeding Promoters. Advanced Materials Interfaces, 2020, 7, 2000791.	1.9	13
2221	Plasmonic Ag-Decorated Few-Layer MoS2 Nanosheets Vertically Grown on Graphene for Efficient Photoelectrochemical Water Splitting. Nano-Micro Letters, 2020, 12, 172.	14.4	39
2222	Nonthermal Plasma-Enhanced Chemical Vapor Deposition of Two-Dimensional Molybdenum Disulfide. ACS Omega, 2020, 5, 21853-21861.	1.6	11
2223	Nanoconfined Waterâ€Molecule Channels for High‥ield Solar Vapor Generation under Weaker Sunlight. Advanced Materials, 2020, 32, e2001544.	11.1	94
2224	Efficient NO ₂ sensing performance of a low-cost nanostructured sensor derived from molybdenite concentrate. Green Chemistry, 2020, 22, 6981-6991.	4.6	10
2225	Influence of Size and Phase on the Biodegradation, Excretion, and Phytotoxicity Persistence of Single-Layer Molybdenum Disulfide. Environmental Science & Technology, 2020, 54, 12295-12306.	4.6	32

#	Article	IF	CITATIONS
2226	Li Intercalation Effects on Interface Resistances of Highâ€ 6 peed and Lowâ€Power WSe 2 Fieldâ€Effect Transistors. Advanced Functional Materials, 2020, 30, 2003688.	7.8	9
2227	Bioelectronicsâ€Related 2D Materials Beyond Graphene: Fundamentals, Properties, and Applications. Advanced Functional Materials, 2020, 30, 2003732.	7.8	39
2228	Highly Sensitive MicroRNA Detection by Coupling Nicking-Enhanced Rolling Circle Amplification with MoS ₂ Quantum Dots. Analytical Chemistry, 2020, 92, 13588-13594.	3.2	117
2229	MoS ₂ Nanosheet–Carbon Foam Composites for Solar Steam Generation. ACS Applied Nano Materials, 2020, 3, 9706-9714.	2.4	42
2230	Redox-active, luminescent coordination nanosheet capsules containing magnetite. Scientific Reports, 2020, 10, 13818.	1.6	9
2231	Superselective Removal of Lead from Water by Two-Dimensional MoS ₂ Nanosheets and Layer-Stacked Membranes. Environmental Science & Technology, 2020, 54, 12602-12611.	4.6	87
2232	State-of-the-Art Applications of 2D Nanomaterials in Energy Storage. ACS Symposium Series, 2020, , 253-293.	0.5	5
2233	Phase transition and thermal stability of epitaxial PtSe2 nanolayer on Pt(111). RSC Advances, 2020, 10, 30934-30943.	1.7	9
2234	Plasmonic Hybrids of MoS2 and 10-nm Nanogap Arrays for Photoluminescence Enhancement. Micromachines, 2020, 11, 1109.	1.4	7
2235	Effects of Deposition and Annealing Temperature on the Structure and Optical Band Gap of MoS2 Films. Materials, 2020, 13, 5515.	1.3	18
2236	Self-Assembled Few-Layered MoS2 on SnO2 Anode for Enhancing Lithium-Ion Storage. Nanomaterials, 2020, 10, 2558.	1.9	16
2237	Nitrogenâ€Doped Hierarchical Heterostructured Aerophobic MoS _x /Ni ₃ S ₂ Nanowires by Oneâ€pot Synthesis: System Engineering and Synergistic Effect in Electrocatalysis of Hydrogen Evolution Reaction. Energy and Environmental Materials. 2021. 4. 658-663.	7.3	24
2238	HER activity of nanosheets of 2D solid solutions of MoSe2 with MoS2 and MoTe2. Bulletin of Materials Science, 2020, 43, 1.	0.8	8
2239	First-principles study on the stability and electronic structure of monolayer GaSe with trigonal-antiprismatic structure. Physical Review B, 2020, 102, .	1.1	10
2240	High-mobility patternable MoS2 percolating nanofilms. Nano Research, 2021, 14, 2255.	5.8	27
2241	Defect-Induced <i>in Situ</i> Atomic Doping in Transition Metal Dichalcogenides via Liquid-Phase Synthesis toward Efficient Electrochemical Activity. ACS Nano, 2020, 14, 17114-17124.	7.3	26
2242	A Mini Review of the Preparation and Photocatalytic Properties of Two-Dimensional Materials. Frontiers in Chemistry, 2020, 8, 582146.	1.8	27
2243	Highly Enhanced Gas Sensing Performance Using a 1T/2H Heterophase MoS ₂ Field-Effect Transistor at Room Temperature. ACS Applied Materials & Interfaces, 2020, 12, 50610-50618.	4.0	64

#	Article	IF	CITATIONS
2244	Label-free Electrochemical Detection of CGG Repeats on Inkjet Printable 2D Layers of MoS ₂ . ACS Applied Materials & Interfaces, 2020, 12, 52156-52165.	4.0	15
2245	Peroxide-Induced Tuning of the Conductivity of Nanometer-Thick MoS ₂ Films for Solid-State Sensors. ACS Applied Nano Materials, 2020, 3, 10864-10877.	2.4	9
2246	One-step electrodeposited MoS ₂ @Ni-mesh electrode for flexible and transparent asymmetric solid-state supercapacitors. Journal of Materials Chemistry A, 2020, 8, 24040-24052.	5.2	34
2247	Machine Learning Analysis of Raman Spectra of MoS2. Nanomaterials, 2020, 10, 2223.	1.9	13
2248	Complexity of mixed allotropes of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi mathvariant="normal">MoS<mml:mn>2</mml:mn></mml:mi </mml:msub> unraveled by first-principles theory. Physical Review B, 2020, 102, .</mml:math 	1.1	5
2249	Successive layer-by-layer deposition of metal (Mo, Ag)/BN/MoS2 nanolaminate films and the electric properties of BN/MoS2 heterostructure on different metal substrates. Journal of Materials Science: Materials in Electronics, 2020, 31, 9559-9567.	1.1	3
2250	One-step growth of centimeter-scale doped multilayer MoS ₂ films by pulsed laser-induced synthesis. Journal of Materials Chemistry C, 2020, 8, 6900-6905.	2.7	6
2251	Effect of graphene grain boundaries on MoS ₂ /graphene heterostructures*. Chinese Physics B, 2020, 29, 067403.	0.7	4
2252	2D Tungsten Chalcogenides: Synthesis, Properties and Applications. Advanced Materials Interfaces, 2020, 7, 2000002.	1.9	39
2253	†Template-free' hierarchical MoS ₂ foam as a sustainable †green' scavenger of heavy meta and bacteria in point of use water purification. Nanoscale Advances, 2020, 2, 2824-2834.	lls 2.2	21
2254	Intercalation and exfoliation chemistries of transition metal dichalcogenides. Journal of Materials Chemistry A, 2020, 8, 15417-15444.	5.2	154
2255	Solution-gated transistors of two-dimensional materials for chemical and biological sensors: status and challenges. Nanoscale, 2020, 12, 11364-11394.	2.8	41
2256	Introduction of an Al Seed Layer for Facile Adsorption of MoCl ₅ during Atomic Layer Deposition of MoS ₂ . Physica Status Solidi (A) Applications and Materials Science, 2020, 217, 1901042.	0.8	6
2257	Fabrication of 2D–2D Heterojunction Catalyst with Covalent Organic Framework (COF) and MoS ₂ for Highly Efficient Photocatalytic Degradation of Organic Pollutants. Inorganic Chemistry, 2020, 59, 6942-6952.	1.9	107
2258	Enhanced Optoelectronic Performance of CVD-Grown Metal–Semiconductor NiTe ₂ /MoS ₂ Heterostructures. ACS Applied Materials & Interfaces, 2020, 12, 24093-24101.	4.0	60
2259	Conductivity Modulation of a Slit Channel in a Monolayer MoS 2 Homostructure. Physica Status Solidi - Rapid Research Letters, 2020, 14, 2000082.	1.2	0
2260	Activation strategies of water-splitting electrocatalysts. Journal of Materials Chemistry A, 2020, 8, 10096-10129.	5.2	67
2261	Synthesis and structural properties of Mo-S-N sputtered coatings. Applied Surface Science, 2020, 527, 146790.	3.1	18

#	Article	IF	CITATIONS
2262	3D Crumpled Ultrathin 1T MoS ₂ for Inkjet Printing of Mg-Ion Asymmetric Micro-supercapacitors. ACS Nano, 2020, 14, 7308-7318.	7.3	100
2263	Decoupling Molybdenum Disulfide from Its Substrate by Cesium Intercalation. Journal of Physical Chemistry C, 2020, 124, 12397-12408.	1.5	9
2264	Two-Dimensional Nanomaterials with Unconventional Phases. CheM, 2020, 6, 1237-1253.	5.8	93
2265	Hybrid phase 1T/2H-MoS ₂ with controllable 1T concentration and its promoted hydrogen evolution reaction. Nanoscale, 2020, 12, 11908-11915.	2.8	62
2266	Beneficial restacking of 2D nanomaterials for electrocatalysis: a case of MoS ₂ membranes. Chemical Communications, 2020, 56, 7005-7008.	2.2	20
2267	Direct Transformation of Crystalline MoO3 into Few-Layers MoS2. Materials, 2020, 13, 2293.	1.3	2
2268	Directing the Morphology of Chemical Vapor Depositionâ€Grown MoS ₂ on Sapphire by Crystal Plane Selection. Physica Status Solidi (A) Applications and Materials Science, 2020, 217, 2000073.	0.8	9
2269	Rationalizing and controlling the phase transformation of semi-metallic 1T′-phase and semi-conductive 2H-phase MoS2 as cocatalysts for photocatalytic hydrogen evolution. Chemical Engineering Journal, 2020, 396, 125344.	6.6	71
2270	Honeycomb spherical 1T-MoS2 as efficient counter electrodes for quantum dot sensitized solar cells. Chemical Engineering Journal, 2020, 396, 125374.	6.6	43
2271	Synthesis of preferentially oriented <002> MoS2 thin films as rectifying p–n junction. Materialia, 2020, 11, 100688.	1.3	8
2272	Enhancement of friction performance of fluorinated graphene and molybdenum disulfide coating by microdimple arrays. Carbon, 2020, 167, 122-131.	5.4	32
2273	Enhanced microwave absorption from the magnetic-dielectric interface: A hybrid rGO@Ni-doped-MoS2. Materials Research Bulletin, 2020, 130, 110943.	2.7	40
2274	Potential-controlled pulse electrochemical deposition of poly nanostructural two-dimensional molybdenum disulfide thin films as a counter electrode for dye-sensitized solar cells. Surface and Coatings Technology, 2020, 394, 125855.	2.2	9
2275	Direct synthesis of metastable phases of 2D transition metal dichalcogenides. Chemical Society Reviews, 2020, 49, 3952-3980.	18.7	142
2276	Dual-band absorption enhancement of monolayer molybdenum disulfide by a tapered metamaterial waveguide slab. Applied Physics Express, 2020, 13, 065001.	1.1	5
2277	Twoâ€Dimensional Metalâ€Containing Nanomaterials for Battery Anode Applications. ChemElectroChem, 2020, 7, 3193-3210.	1.7	2
2278	Reticulation of 2D Semiconductors by Metal–Organic Approach for Efficient Hydrogen Evolution. ACS Sustainable Chemistry and Engineering, 2020, 8, 8102-8110.	3.2	7
2279	Photothermal modulation of human stem cells using light-responsive 2D nanomaterials. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 13329-13338.	3.3	47

#	Article	IF	CITATIONS
2280	Skeleton-Structure WS2@CNT Thin-Film Hybrid Electrodes for High-Performance Quasi-Solid-State Flexible Supercapacitors. Frontiers in Chemistry, 2020, 8, 442.	1.8	27
2281	TiO2 coupled to predominantly metallic MoS2 for photocatalytic degradation of rhodamine B. Journal of Materials Science, 2020, 55, 12274-12286.	1.7	12
2282	Synthesis and Applications of Wide Bandgap 2D Layered Semiconductors Reaching the Green and Blue Wavelengths. ACS Applied Electronic Materials, 2020, 2, 1777-1814.	2.0	50
2283	A comprehensive study of phonon thermal transport in 2D IV-VI semiconductors MX (M = Ge, Sn; X = S,) Tj ETQq1	1,0.7843 0.9	14 rgBT /0
2284	Supercritical hydrothermal synthesis of MoS ₂ nanosheets with controllable layer number and phase structure. Dalton Transactions, 2020, 49, 9377-9384.	1.6	17
2285	Electronic and optical properties of vertical borophene/MoS2 heterojunctions. Materials Chemistry and Physics, 2020, 252, 123305.	2.0	9
2286	2D hexagonal SnS2 nanoplates as novel co-reaction accelerator for construction of ultrasensitive g-C3N4-based electrochemiluminescent biosensor. Sensors and Actuators B: Chemical, 2020, 319, 128298.	4.0	26
2287	2D layered noble metal dichalcogenides (Pt, Pd, Se, S) for electronics and energy applications. Materials Today Advances, 2020, 7, 100076.	2.5	55
2288	Composition- and layer-dependent bandgap of two-dimensional transition metal dichalcogenides alloys. Physica E: Low-Dimensional Systems and Nanostructures, 2020, 124, 114243.	1.3	4
2289	Covalently Functionalized MoS ₂ with Dithiolenes. , 2020, 2, 832-837.		23
2290	<i>In situ</i> Scanning Electron Microscopy Observation of MoS ₂ Nanosheets during Lithiation in Lithium Ion Batteries. ACS Applied Energy Materials, 2020, 3, 7066-7072.	2.5	20
2291	Novel Exfoliation of High-Quality 2H-MoS2 Nanoflakes for Solution-Processed Photodetector. Nanomaterials, 2020, 10, 1045.	1.9	26
2292	Pattern Stimulated CVD Growth of 2D MoS ₂ . ChemistrySelect, 2020, 5, 6709-6714.	0.7	2
2293	A comparative study of dirac 2D materials, TMDCs and 2D insulators with regard to their structures and photocatalytic/sonophotocatalytic behavior. Applied Nanoscience (Switzerland), 2020, 10, 3875-3899.	1.6	47
2294	Rapid sensing of lead metal ions in an aqueous medium by MoS2 quantum dots fluorescence turn-off. Materials Research Bulletin, 2020, 131, 110978.	2.7	58
2295	Construction of a sensitive electrochemical sensor based on 1T-MoS2 nanosheets decorated with shape-controlled gold nanostructures for the voltammetric determination of doxorubicin. Mikrochimica Acta, 2020, 187, 223.	2.5	31
2296	Large-Scale Self-Limiting Synthesis of Monolayer MoS ₂ via Proximity Evaporation from Mo Films. Crystal Growth and Design, 2020, 20, 2698-2705.	1.4	11
2297	Room-Temperature Patterning of Nanoscale MoS ₂ under an Electron Beam. ACS Applied Materials & Interfaces, 2020, 12, 16772-16781.	4.0	10

#	Article	IF	CITATIONS
2298	Hybridizing Plasmonic Materials with 2Dâ€Transition Metal Dichalcogenides toward Functional Applications. Small, 2020, 16, e1904271.	5.2	74
2299	Transition metal dichalcogenides for biomedical applications. , 2020, , 211-247.		2
2300	A Tetrakis(terpyridine) Ligand–Based Cobalt(II) Complex Nanosheet as a Stable Dualâ€ion Battery Cathode Material. Small, 2020, 16, e1905204.	5.2	30
2301	Hydrogen Generation by Solar Water Splitting Using 2D Nanomaterials. Solar Rrl, 2020, 4, 2000050.	3.1	29
2302	Ionic Liquidâ€Intercalated Metallic MoS ₂ as a Superior Electrode for Energy Storage Applications. ChemNanoMat, 2020, 6, 685-695.	1.5	38
2303	Electrochemical fabrication of reduced MoS2-based portable molecular imprinting nanoprobe for selective SERS determination of theophylline. Mikrochimica Acta, 2020, 187, 203.	2.5	18
2304	2D nanostructures beyond graphene: preparation, biocompatibility and biodegradation behaviors. Journal of Materials Chemistry B, 2020, 8, 2974-2989.	2.9	50
2305	Synthesis of Ultrathin Metal Nanowires with Chemically Exfoliated Tungsten Disulfide Nanosheets. Nano Letters, 2020, 20, 3740-3746.	4.5	15
2306	Ethanol introduced synthesis of ultrastable 1T-MoS2 for removal of Cr(VI). Journal of Hazardous Materials, 2020, 394, 122525.	6.5	79
2307	Two dimensional ferromagnetic semiconductor: monolayer CrGeS ₃ . Journal of Physics Condensed Matter, 2020, 32, 015701.	0.7	20
2308	Nanoscale Assembly of 2D Materials for Energy and Environmental Applications. Advanced Materials, 2020, 32, e1907006.	11.1	106
2309	Airâ€Stable Monolayer Cu ₂ Se Exhibits a Purely Thermal Structural Phase Transition. Advanced Materials, 2020, 32, e1908314.	11.1	26
2310	Phase engineering of nanomaterials. Nature Reviews Chemistry, 2020, 4, 243-256.	13.8	438
2311	Construction of Active Orbital via Single-Atom Cobalt Anchoring on the Surface of 1T-MoS ₂ Basal Plane toward Efficient Hydrogen Evolution. ACS Applied Energy Materials, 2020, 3, 2315-2322.	2.5	50
2312	Squeezed metallic droplet with tunable Kubo gap and charge injection in transition metal dichalcogenides. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 6362-6369.	3.3	33
2313	TMDs beyond MoS ₂ for Electrochemical Energy Storage. Chemistry - A European Journal, 2020, 26, 6320-6341.	1.7	52
2314	Defect Engineering of Twoâ€Dimensional Molybdenum Disulfide. Chemistry - A European Journal, 2020, 26, 6535-6544.	1.7	29
2315	Relating Selectivity and Separation Performance of Lamellar Two-Dimensional Molybdenum Disulfide (MoS ₂) Membranes to Nanosheet Stacking Behavior. Environmental Science & Technology, 2020, 54, 9640-9651	4.6	82

#	Article	IF	CITATIONS
2316	Photoinduced charge transfer in transition metal dichalcogenide heterojunctions – towards next generation energy technologies. Energy and Environmental Science, 2020, 13, 2684-2740.	15.6	67
2317	Tolerance against conducting filament formation in nanosheet-derived titania thin films. Nano Express, 2020, 1, 010034.	1.2	1
2318	Effects of the Intercalant and the Temperature in Hybrid-MoS2 Nanodots Fabrication and Their Photoluminescence Enhancement. Journal of the Korean Physical Society, 2020, 76, 980-984.	0.3	4
2319	Electronic devices based on solution-processed two-dimensional materials. , 2020, , 351-384.		6
2320	Photoresponse-Bias Modulation of a High-Performance MoS ₂ Photodetector with a Unique Vertically Stacked 2H-MoS ₂ /1T@2H-MoS ₂ Structure. ACS Applied Materials & Interfaces, 2020, 12, 33325-33335.	4.0	76
2321	2D MoO ₃ Nanosheets Synthesized by Exfoliation and Oxidation of MoS ₂ for High Contrast and Fast Response Time Electrochromic Devices. ACS Sustainable Chemistry and Engineering, 2020, 8, 11276-11282.	3.2	51
2322	Two-dimensional nanohybrid of MoS2 and Rose Bengal: Facile solution growth and band structure probing. Applied Surface Science, 2020, 530, 147063.	3.1	12
2323	Developed Low-Temperature Anionic 2H-MoS ₂ /Au Sensing Layer Coated Optical Fiber Gas Sensor. ACS Applied Materials & Interfaces, 2020, 12, 34283-34296.	4.0	33
2324	Photoinduced Electron Transfer in a MoS2/Anthracene Mixed-Dimensional Heterojunction in Aqueous Media. Bulletin of the Chemical Society of Japan, 2020, 93, 745-750.	2.0	7
2325	Phase Engineering of Transition Metal Dichalcogenides with Unprecedentedly High Phase Purity, Stability, and Scalability via Moltenâ€Metalâ€Assisted Intercalation. Advanced Materials, 2020, 32, e2001889.	11.1	63
2326	Surface Engineering of 1T/2H-MoS ₂ Nanoparticles by O ₂ Plasma Irradiation as a Potential Humidity Sensor for Breathing and Skin Monitoring Applications. ACS Applied Nano Materials, 2020, 3, 7835-7846.	2.4	18
2327	Ferromagnetism in two-dimensional materials via doping and defect engineering. , 2020, , 95-124.		1
2328	Direct Integration of Fewâ€Layer MoS 2 at Plasmonic Au Nanostructure by Substrateâ€Diffusion Delivered Mo. Advanced Materials Interfaces, 2020, 7, 1902093.	1.9	4
2329	Recent Advances of 2D Materials in Nonlinear Photonics and Fiber Lasers. Advanced Optical Materials, 2020, 8, 1901631.	3.6	122
2330	Electrochemical performance of a self-assembled two-dimensional heterostructure of rGO/MoS ₂ /h-BN. Nanoscale Advances, 2020, 2, 1531-1541.	2.2	5
2331	Phase-dependent gas sensitivity of MoS ₂ chemical sensors investigated with phase-locked MoS ₂ . Nanotechnology, 2020, 31, 225504.	1.3	9
2332	Advances in Piezoâ€₽hototronic Effect Enhanced Photocatalysis and Photoelectrocatalysis. Advanced Energy Materials, 2020, 10, 2000214.	10.2	333
2333	S Vacancy Engineered Electronic and Optoelectronic Properties of Ni-Doped MoS2 Monolayer: A Hybrid Functional Study. Journal of Electronic Materials, 2020, 49, 3234-3241.	1.0	5

#	Article	IF	CITATIONS
2334	Size-dependent nonlinear optical properties of atomically thin PtS2 nanosheet. Optical Materials, 2020, 101, 109694.	1.7	8
2335	Structure and Dynamics of the Electronic Heterointerfaces in MoS ₂ by First-Principles Simulations. Journal of Physical Chemistry Letters, 2020, 11, 1644-1649.	2.1	9
2336	Enhanced room temperature ferromagnetism in MoS2 by N plasma treatment. AIP Advances, 2020, 10, .	0.6	6
2337	Ultrathin lamellar MoS2 membranes for organic solvent nanofiltration. Journal of Membrane Science, 2020, 602, 117963.	4.1	47
2338	2D/2D 1Tâ€MoS ₂ /Ti ₃ C ₂ MXene Heterostructure with Excellent Supercapacitor Performance. Advanced Functional Materials, 2020, 30, 0190302.	7.8	241
2339	Co-doped 1T′/T phase dominated MoS1+XSe1+Y alloy nanosheets as bifunctional electrocatalyst for overall water splitting. Applied Surface Science, 2020, 513, 145828.	3.1	10
2340	Detonation exfoliated mechanism of graphene-like MoS2 prepared by the intercalation-detonation method and promising exfoliation for 2D materials. Applied Surface Science, 2020, 525, 145867.	3.1	10
2341	Preparation of Solidâ€Solution TiS _{2â^'<i>x</i>} Se _{<i>x</i>} Nanosheets by Liquid Phase Exfoliation. ChemistrySelect, 2020, 5, 2588-2592.	0.7	2
2342	1T/2H-MoS2 engineered by in-situ ethylene glycol intercalation for improved toluene sensing response at room temperature. Advanced Powder Technology, 2020, 31, 1868-1878.	2.0	24
2343	Simple hydrothermal approach for synthesis of fluorescent molybdenum disulfide quantum dots: Sensing of Cr3+ ion and cellular imaging. Materials Science and Engineering C, 2020, 111, 110778.	3.8	21
2344	Current Transport and Band Alignment Study of MoS ₂ /GaN and MoS ₂ /AlGaN Heterointerfaces for Broadband Photodetection Application. ACS Applied Electronic Materials, 2020, 2, 710-718.	2.0	43
2345	1T- and 2H-mixed phase MoS2 nanosheets coated on hollow mesoporous TiO2 nanospheres with enhanced photocatalytic activity. Journal of Colloid and Interface Science, 2020, 567, 10-17.	5.0	29
2346	Novel MoS ₂ –DOPO Hybrid for Effective Enhancements on Flame Retardancy and Smoke Suppression of Flexible Polyurethane Foams. ACS Omega, 2020, 5, 2734-2746.	1.6	34
2347	Boosting aqueous zinc-ion storage in MoS2 via controllable phase. Chemical Engineering Journal, 2020, 389, 124405.	6.6	122
2348	Large area, patterned growth of 2D MoS ₂ and lateral MoS ₂ –WS ₂ heterostructures for nano- and opto-electronic applications. Nanotechnology, 2020, 31, 255603.	1.3	46
2349	Giant proximity exchange and valley splitting in transition metal dichalcogenide/ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>h</mml:mi> <mml:mi>BN/(Co, Ni) heterostructures. Physical Review B, 2020, 101, .</mml:mi></mml:mrow></mml:math 	i> ₄/m ml:rr	nrœw≱> < /mm
2350	The ultrafine monolayer 1 T/2H-MoS2: Preparation, characterization and amazing photocatalytic characteristics. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 589, 124431.	2.3	26
2351	Recent Advances of Twoâ€Dimensional Nanomaterials for Electrochemical Capacitors. ChemSusChem, 2020, 13, 1093-1113.	3.6	40

# 2352	ARTICLE One-step synthesis of Co-doped 1T-MoS2 nanosheets with efficient and stable HER activity in alkaline solutions. Materials Chemistry and Physics, 2020, 244, 122642.	IF 2.0	CITATIONS
2353	Recent Progress of Two-Dimensional Thermoelectric Materials. Nano-Micro Letters, 2020, 12, 36.	14.4	218
2354	Construction of Hybrid MoS ₂ Phase Coupled with SiC Heterojunctions with Promoted Photocatalytic Activity for 4-Nitrophenol Degradation. Langmuir, 2020, 36, 1174-1182.	1.6	41
2355	Simultaneous exfoliation and colloidal formation of few-layer semiconducting MoS2 sheets in water. Chemical Communications, 2020, 56, 2035-2038.	2.2	7
2356	Recent progress and future prospects in development of advanced materials for nanofiltration. Materials Today Communications, 2020, 23, 100888.	0.9	51
2357	Heteroatom doping of two-dimensional materials: From graphene to chalcogenides. Nano Today, 2020, 30, 100829.	6.2	91
2358	Molybdenum Disulphide Heterointerfaces as Potential Materials for Solar Cells, Energy Storage, and Hydrogen Evolution. Energy Technology, 2020, 8, 1901299.	1.8	12
2359	Incorporation of active phase in porous MoS2 for enhanced hydrogen evolution reaction. Journal of Materials Science: Materials in Electronics, 2020, 31, 4121-4128.	1.1	3
2360	Facile preparation of molybdenum disulfide quantum dots using a femtosecond laser. Applied Surface Science, 2020, 511, 145507.	3.1	11
2361	Sulfur Vacancy-Rich O-Doped 1T-MoS ₂ Nanosheets for Exceptional Photocatalytic Nitrogen Fixation over CdS. ACS Applied Materials & Interfaces, 2020, 12, 7257-7269.	4.0	196
2362	Improved charge injection of edge aligned MoS ₂ /MoO ₂ hybrid nanosheets for highly robust and efficient electrocatalysis of H ₂ production. Nanoscale, 2020, 12, 5003-5013.	2.8	26
2363	Metallicity of 2H-MoS ₂ induced by Au hybridization. 2D Materials, 2020, 7, 025021.	2.0	17
2364	Transition metal dichalcogenides-based flexible gas sensors. Sensors and Actuators A: Physical, 2020, 303, 111875.	2.0	125
2365	Production and processing of graphene and related materials. 2D Materials, 2020, 7, 022001.	2.0	333
2366	Spatially Bandgap-Graded MoS2(1â^'x)Se2x Homojunctions for Self-Powered Visible–Near-Infrared Phototransistors. Nano-Micro Letters, 2020, 12, 26.	14.4	22
2367	Solution-Phase Activation and Functionalization of Colloidal WS ₂ Nanosheets with Ni Single Atoms. ACS Nano, 2020, 14, 2238-2247.	7.3	46
2368	Triple VTe2/graphene/VTe2 heterostructures as perspective magnetic tunnel junctions. Applied Surface Science, 2020, 510, 145315.	3.1	19
2369	Conversion of non-van der Waals solids to 2D transition-metal chalcogenides. Nature, 2020, 577, 492-496.	13.7	145

#	Article	IF	Citations
2370	A Pure 2Hâ€MoS ₂ Nanosheetâ€Based Memristor with Low Power Consumption and Linear Multilevel Storage for Artificial Synapse Emulator. Advanced Electronic Materials, 2020, 6, 1901342.	2.6	67
2371	Realization of 2D crystalline metal nitrides via selective atomic substitution. Science Advances, 2020, 6, eaax8784.	4.7	66
2372	Enhanced visible-light-assisted photocatalytic hydrogen generation by MoS2/g-C3N4 nanocomposites. International Journal of Hydrogen Energy, 2020, 45, 8497-8506.	3.8	37
2373	Ratiometric fluorescence detection of stringent ppGpp using Eu-MoS2 QDs test paper. Sensors and Actuators B: Chemical, 2020, 309, 127807.	4.0	21
2374	Solutionâ€Processable 2D Materials Applied in Lightâ€Emitting Diodes and Solar Cells. Advanced Materials Technologies, 2020, 5, 1900972.	3.0	40
2375	Robust stable MoS2/GO filtration membrane for effective removal of dyes and salts from water with enhanced permeability. Desalination, 2020, 480, 114328.	4.0	80
2376	Stability of 2H- and 1T-MoS ₂ in the presence of aqueous oxidants and its protection by a carbon shell. RSC Advances, 2020, 10, 9324-9334.	1.7	10
2377	Ultrafast charge transfer and vibronic coupling in a laser-excited hybrid inorganic/organic interface. Advances in Physics: X, 2020, 5, 1749883.	1.5	12
2378	H ₂ â€Directing Strategy on In Situ Synthesis of Coâ€MoS ₂ with Highly Expanded Interlayer for Elegant HER Activity and its Mechanism. Advanced Energy Materials, 2020, 10, 2000291.	10.2	82
2379	Functional hetero-interfaces in atomically thin materials. Materials Today, 2020, 37, 74-92.	8.3	21
2380	Immunological Responses Induced by Blood Protein Coronas on Two-Dimensional MoS ₂ Nanosheets. ACS Nano, 2020, 14, 5529-5542.	7.3	82
2381	Atomically thin PdSeO ₃ nanosheets: a promising 2D photocatalyst produced by quaternary ammonium intercalation and exfoliation. Chemical Communications, 2020, 56, 5504-5507.	2.2	23
2382	Two-Dimensional Transition Metal Dichalcogenides: Synthesis, Biomedical Applications and Biosafety Evaluation. Frontiers in Bioengineering and Biotechnology, 2020, 8, 236.	2.0	76
2383	Highly Sensitive Photoelectrochemical Biosensor Based on Quantum Dots Sensitizing Bi ₂ Te ₃ Nanosheets and DNA-Amplifying Strategies. ACS Applied Materials & Interfaces, 2020, 12, 22624-22629.	4.0	60
2384	Investigation of potassium-intercalated bulk <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>MoS</mml:mi><mml:mn>2transmission electron energy-loss spectroscopy. Physical Review B, 2020, 101, .</mml:mn></mml:msub></mml:math 	:m n.ı <td>าl:เธรนb></td>	าl:เธรนb>
2385	Raman Spectroscopy of Dispersive Two-Dimensional Materials: A Systematic Study on MoS ₂ Solution. Journal of Physical Chemistry C, 2020, 124, 11092-11099.	1.5	8
2386	Anisotropic Collective Charge Excitations in Quasimetallic 2D Transitionâ€Metal Dichalcogenides. Advanced Science, 2020, 7, 1902726.	5.6	6
2387	Construction of Embedded Heterostructured SrZrO ₃ /Flower-like MoS ₂ with Enhanced Dye Photodegradation under Solar-Simulated Light Illumination. ACS Omega, 2020, 5, 9576-9584.	1.6	8

ARTICLE IF CITATIONS The adsorption of NO onto an Al-doped ZnO monolayer and the effects of applied electric fields: A DFT 2388 1.1 26 study. Computational and Theoretical Chemistry, 2020, 1180, 112829. Intrinsic Capacitance of Molybdenum Disulfide. ACS Nano, 2020, 14, 5636-5648. 7.3 Atomic layer deposited 2D MoS2 atomic crystals: from material to circuit. Nano Research, 2020, 13, 2390 5.8 24 1644-1650. High performance UV photodetector based on MoS2 layers grown by pulsed laser deposition 2.8 34 technique. Journal of Alloys and Compounds, 2020, 835, 155222. Synthesis of Cysteine Modified MoS₂ Nanocomposite: A Biocompatible Electrochemical 2392 Sensor Material and its Application to the Determination of Antidiabetic Dapagliflozin. 1.59 Electroanalysis, 2020, 32, 1480-1487. Impedimetric electronic tongue based on molybdenum disulfide and graphene oxide for monitoring antibiotics in liquid media. Talanta, 2020, 217, 121039. Exceptionally Uniform and Scalable Multilayer MoS₂ Phototransistor Array Based on 2394 Large-Scale MoS₂ Grown by RF Sputtering, Electron Beam Irradiation, and Sulfurization. 4.0 60 ACS Applied Materials & amp; Interfaces, 2020, 12, 20645-20652. Thermal History-Dependent Current Relaxation in hBN/MoS₂ van der Waals Dimers. ACS 7.3 9 Nano, 2020, 14, 5909-5916. Solvothermal Synthesis of Defect-Rich Mixed 1T-2H MoS₂ Nanoflowers for Enhanced 2396 3.2 76 Hydrodesulfurization. ACS Sustainable Chemistry and Engineering, 2020, 8, 7343-7352. Nature and origin of unusual properties in chemically exfoliated 2D MoS2. APL Materials, 2020, 8, 2.2 040909. DNA-driven dynamic assembly of MoS₂nanosheets. Faraday Discussions, 2021, 227, 233-244. 2398 3 1.6 Rational design of two-dimensional nanofillers for polymer nanocomposites toward multifunctional 2399 16.0 150 applications. Progress in Materials Science, 2021, 115, 100708. Electrochemically intercalated intermediate induced exfoliation of few-layer MoS2 from molybdenite 2400 3.5 22 for long-life sodium storage. Science China Materials, 2021, 64, 115-127. Synthesis of metallic mixed 3R and 2H Nb_{1+x}S₂ nanoflakes by chemical vapor 2401 1.6 deposition. Faraday Discussions, 2021, 227, 332-340. Surface charge transfer doping for two-dimensional semiconductor-based electronic and 2402 72 5.8 optoelectronic devices. Nano Research, 2021, 14, 1682-1697. Promoting the charge separation and photoelectrocatalytic water reduction kinetics of Cu2O 2403 nanowires via decorating dual-cocatalysts. Journal of Materials Science and Technology, 2021, 62, 119-127. MoS2 – induced hollow Cu2O spheres: Synthesis and efficient catalytic performance in the reduction 2404 3.126 of 4-nitrophenol by NaBH4. Applied Surface Science, 2021, 539, 148285. Layered materials for supercapacitors and batteries: Applications and challenges. Progress in 2405 48 Materials Science, 2021, 118, 100763.

#	Article	IF	CITATIONS
2406	One-pot synthesis of array-like sulfur-doped carbon nitride with covalently crosslinked ultrathin MoS2 cocatalyst for drastically enhanced photocatalytic hydrogen evolution. Journal of Materials Science and Technology, 2021, 75, 59-67.	5.6	16
2407	Selfâ€Deposition of 2D Molybdenum Sulfides on Liquid Metals. Advanced Functional Materials, 2021, 31, 2005866.	7.8	41
2408	The effect of the dopant's reactivity for high-performance 2D MoS2 thin-film transistor. Nano Research, 2021, 14, 198-204.	5.8	9
2409	Selective patterning of out-of-plane piezoelectricity in MoTe2 via focused ion beam. Nano Energy, 2021, 79, 105451.	8.2	17
2410	Evaporative electrical energy generation via diffusion-driven ion-electron-coupled transport in semiconducting nanoporous channel. Nano Energy, 2021, 80, 105522.	8.2	42
2411	Anisotropic heteronanocrystals of Cu2O–2D MoS2 for efficient visible light driven photocatalysis. Applied Surface Science, 2021, 538, 148159.	3.1	19
2412	Electricity generation from phase-engineered flexible MoS2 nanosheets under moisture. Nano Energy, 2021, 81, 105630.	8.2	41
2413	Enhancement of 1Tâ€MoS ₂ Superambient Temperature Stability and Hydrogen Evolution Performance by Intercalating a Phenanthroline Monolayer. ChemNanoMat, 2021, 7, 447-456.	1.5	11
2414	Photothermal-assist enhanced high-performance self-powered photodetector with bioinspired temperature-autoregulation by passive radiative balance. Nano Energy, 2021, 79, 105435.	8.2	24
2415	Recent progress about 2D metal dichalcogenides: Synthesis and application in photodetectors. Nano Research, 2021, 14, 1819-1839.	5.8	14
2416	MXenes for Rechargeable Batteries Beyond the Lithiumâ€lon. Advanced Materials, 2021, 33, e2004039.	11.1	224
2417	Application of two-dimensional materials as anodes for rechargeable metal-ion batteries: A comprehensive perspective from density functional theory simulations. Energy Storage Materials, 2021, 35, 203-282.	9.5	84
2418	Gold nanorods modified Eu: Y2O3 dispersed PVA film as a highly sensitive plasmon-enhanced luminescence probe for excellent and fast non-enzymatic detection of H2O2 and glucose. Optik, 2021, 228, 166130.	1.4	14
2419	Photogalvanic effect in chromium-doped monolayer MoS2 from first principles. Physica E: Low-Dimensional Systems and Nanostructures, 2021, 128, 114577.	1.3	10
2420	Ultra-flexible and rollable 2D-MoS ₂ /Si heterojunction-based near-infrared photodetector <i>via</i> direct synthesis. Nanoscale, 2021, 13, 672-680.	2.8	54
2421	Preparation of MoS2 nanosheets to support Pd species for selective steerable hydrogenation of acetylene. Journal of Materials Science, 2021, 56, 2129-2137.	1.7	6
2422	Relativistic structural characterization of molybdenum and tungsten disulfide materials. International Journal of Quantum Chemistry, 2021, 121, e26492.	1.0	4
2423	Mineral Adsorbents and Characteristics. Engineering Materials, 2021, , 1-54.	0.3	0

ARTICLE

IF CITATIONS

Epitaxial growth, electronic hybridization and stability under oxidation of monolayer MoS2 on Ag(1 1) Tj ETQq0 0 0.3gBT /Overlock 10 Tf

2425	Sodium ion-intercalated nanoflower 1T–2H MoSe2–graphene nanocomposites as electrodes for all-solid-state supercapacitors. Journal of Alloys and Compounds, 2021, 853, 157116.	2.8	15
2426	Tuning the Photoâ€electrochemical Performance of Ru II â€Sensitized Twoâ€Dimensional MoS 2. Chemistry - A European Journal, 2021, 27, 984-992.	1.7	3
2427	Hybridized 1T/2H-MoS2/graphene fishnet tube for high-performance on-chip integrated micro-systems comprising supercapacitors and gas sensors. Nano Research, 2021, 14, 114-121.	5.8	28
2428	A review of strain sensors based on two-dimensional molybdenum disulfide. Journal of Materials Chemistry C, 2021, 9, 9083-9101.	2.7	23
2429	γ-Ray irradiation-induced unprecedent optical, frictional and electrostatic performances on CVD-prepared monolayer WSe ₂ . RSC Advances, 2021, 11, 22088-22094.	1.7	3
2430	Mixedâ€phase <scp> MoS ₂ </scp> decorated reduced graphene oxide hybrid composites for efficient symmetric supercapacitors. International Journal of Energy Research, 2021, 45, 9193-9209.	2.2	28
2431	Direct synthesis of 1T-phase MoS ₂ nanosheets with abundant sulfur-vacancies through (CH ₃) ₄ N ⁺ cation-intercalation for the hydrogen evolution reaction. Journal of Materials Chemistry A, 2021, 9, 13996-14003.	5.2	17
2432	Realization of Waferâ€Scale 1Tâ€MoS ₂ Film for Efficient Hydrogen Evolution Reaction. ChemSusChem, 2021, 14, 1344-1350.	3.6	21
2433	Generation of the THz radiation in Mo0.5W0.5S2 solid solution. AIP Conference Proceedings, 2021, , .	0.3	0
2434	Efficient fabrication of MoS ₂ nanocomposites by water-assisted exfoliation for nonvolatile memories. Green Chemistry, 2021, 23, 3642-3648.	4.6	18
2435	Thickness-dependent anisotropic transport of phonons and charges in few-layered PdSe ₂ . Physical Chemistry Chemical Physics, 2021, 23, 18869-18884.	1.3	17
2436	Molybdenum disulfide/carbon nanocomposite with enhanced photothermal effect for doxorubicin delivery. European Physical Journal Plus, 2021, 136, 1.	1.2	10
2437	Exfoliating large monolayers in liquids. Nature Materials, 2021, 20, 130-131.	13.3	2
2438	Optical identification of interlayer coupling of graphene/MoS2 van der Waals heterostructures. Nano Research, 2021, 14, 2241.	5.8	14
2439	Two-dimensional materials-based nanoplatforms for lung cancer management: Synthesis, properties, and targeted therapy. , 2021, , 415-429.		1
2440	Rational design of monolayer transition metal dichalcogenide@fullerene van der Waals photovoltaic heterojunctions with time-domain density functional theory simulations. Dalton Transactions, 2021, 50, 6725-6734.	1.6	4
2441	MoS ₂ flake as a van der Waals homostructure: luminescence properties and optical anisotropy. Nanoscale, 2021, 13, 17566-17575.	2.8	7

#	Article	IF	CITATIONS
2442	Synthesis of large-area monolayer and few-layer MoSe ₂ continuous films by chemical vapor deposition without hydrogen assistance and formation mechanism. Nanoscale, 2021, 13, 8922-8930.	2.8	11
2443	Low-Temperature Synthesis of Wafer-Scale MoS ₂ –WS ₂ Vertical Heterostructures by Single-Step Penetrative Plasma Sulfurization. ACS Nano, 2021, 15, 707-718.	7.3	34
2444	The contact barrier of a 1T′/2H MoS2 heterophase bilayer and its modulation by adatom and strain: a first-principles study. Physical Chemistry Chemical Physics, 2021, 23, 6791-6799.	1.3	2
2445	Critical review: hydrothermal synthesis of 1T-MoS ₂ – an important route to a promising material. Journal of Materials Chemistry A, 2021, 9, 9451-9461.	5.2	37
2446	An ion-selective crown ether covalently grafted onto chemically exfoliated MoS ₂ as a biological fluid sensor. Nanoscale, 2021, 13, 8948-8957.	2.8	14
2447	Concomitant induction to few-layer and 1T-rich two-dimensional MoS ₂ by rigid segment-containing polysulfide as a sulfur source and <i>in situ</i> intercalator. Chemical Communications, 2021, 57, 2277-2280.	2.2	6
2448	Stacking-tailoring quasiparticle energies and interlayer excitons in bilayer Janus MoSSe. New Journal of Physics, 2021, 23, 013003.	1.2	5
2449	Boosting the sodium storage of the 1T/2H MoS ₂ @SnO ₂ heterostructure <i>via</i> a fast surface redox reaction. Journal of Materials Chemistry A, 2021, 9, 463-471.	5.2	33
2450	Size-dependent phase stability in transition metal dichalcogenide nanoparticles controlled by metal substrates. Nanoscale, 2021, 13, 10167-10180.	2.8	4
2451	Mechanically rollable photodetectors enabled by centimetre-scale 2D MoS2 layer/TOCN composites. Nanoscale Advances, 2021, 3, 3028-3034.	2.2	5
2452	Synthesis and size modulation of MoS2 quantum dots by pulsed laser ablation in liquid for viable hydrogen generation. Journal of Applied Physics, 2021, 129, .	1.1	11
2453	High Response Formic Acid Gas Sensor Based on MoS ₂ Nanosheets. IEEE Nanotechnology Magazine, 2021, 20, 177-184.	1.1	16
2454	Hyaluronidase-responsive phototheranostic nanoagents for fluorescence imaging and photothermal/photodynamic therapy of methicillin-resistant <i>Staphylococcus aureus</i> infections. Biomaterials Science, 2021, 9, 4484-4495.	2.6	30
2455	Experimental determination of charge carrier dynamics in carbon nitride heterojunctions. Chemical Communications, 2021, 57, 1550-1567.	2.2	22
2456	Transition metal dichalcogenide-decorated MXenes: promising hybrid electrodes for energy storage and conversion applications. Materials Chemistry Frontiers, 2021, 5, 3298-3321.	3.2	66
2457	Strategy and Future Prospects to Develop Room-Temperature-Recoverable NO2 Gas Sensor Based on Two-Dimensional Molybdenum Disulfide. Nano-Micro Letters, 2021, 13, 38.	14.4	103
2458	The functionalization of polyacrylamide with MoS ₂ nanoflakes for use in transient photodetectors. Sustainable Energy and Fuels, 2021, 5, 1394-1405.	2.5	32
2459	Recent developments in 2D transition metal dichalcogenides: phase transition and applications of the (quasi-)metallic phases. Chemical Society Reviews, 2021, 50, 10087-10115.	18.7	135

#	Article	IF	CITATIONS
2460	Molybdenum Disulfide and Tungsten Disulfide as Novel Two-Dimensional Nanomaterials in Separation Science. Springer Series on Polymer and Composite Materials, 2021, , 193-217.	0.5	1
2461	A study on chemical exfoliation and structural and optical properties of two-dimensional layered titanium diselenide. Dalton Transactions, 2021, 50, 3894-3903.	1.6	4
2462	Synthesis of FeOCl-MoS2 with excellent adsorption performance for methyl orange. Journal of Materials Science, 2021, 56, 6704-6718.	1.7	13
2463	Preparation of a polymer nanocomposite <i>via</i> the polymerization of pyrrole : biphenyldisulfonic acid : pyrrole as a two-monomer-connected precursor on MoS ₂ for electrochemical energy storage. Nanoscale, 2021, 13, 5868-5874.	2.8	11
2464	Celebrating 20 years of Nano Letters. Nano Letters, 2021, 21, 1-2.	4.5	3
2465	One step towards the 1T/2H-MoS ₂ mixed phase: a journey from synthesis to application. Materials Chemistry Frontiers, 2021, 5, 2143-2172.	3.2	43
2466	Supercapacitors based on two-dimensional transition metal dichalcogenides and their hybrids. , 2021, , 159-191.		3
2467	A Flexible Pressure Sensor Based on Magnetron Sputtered MoS2. Sensors, 2021, 21, 1130.	2.1	19
2468	Semiconductor-less vertical transistor with ION/IOFF of 106. Nature Communications, 2021, 12, 1000.	5.8	18
2469	Tunable polarization-independent MoS ₂ -based coherent perfect absorber within visible region. Journal Physics D: Applied Physics, 2021, 54, 165104.	1.3	11
2470	Atomically Thin van der Waals Semiconductors—A Theoretical Perspective. Laser and Photonics Reviews, 2021, 15, 2000482.	4.4	10
2471	Heterointerface Effects on Lithium-Induced Phase Transitions in Intercalated MoS ₂ . ACS Applied Materials & Interfaces, 2021, 13, 10603-10611.	4.0	17
2472	2D Homojunctions for Electronics and Optoelectronics. Advanced Materials, 2021, 33, e2005303.	11.1	66
2473	INTRODUCTION TO TWO-DIMENSIONAL MATERIALS. Surface Review and Letters, 2021, 28, 2140005.	0.5	14
2474	A Facile Liquid Phase Exfoliation of Tungsten Diselenide using Dimethyl Sulfoxide as Polar Aprotic Solvent to Produce Highâ€quality Nanosheets. ChemNanoMat, 2021, 7, 328-333.	1.5	8
2475	Voltammetric Analysis of Single Nanobubble Formation on Ag and Ag@MoS ₂ Nanoelectrodes. Journal of Physical Chemistry C, 2021, 125, 3073-3080.	1.5	5
2476	Enhanced Photoelectrochemical Reaction of MoS ₂ Nanosheets Vertically Grown on TiO ₂ Nanowires. Korean Journal of Materials Research, 2021, 31, 92-96.	0.1	1
2477	2D Material Based Thinâ€Film Nanocomposite Membranes for Water Treatment. Advanced Materials Technologies, 2021, 6, 2000862.	3.0	25

#	Article	IF	CITATIONS
2478	Cell–Substrate Interactions Lead to Internalization and Localization of Layered MoS ₂ Nanosheets. ACS Applied Nano Materials, 2021, 4, 2002-2010.	2.4	5
2479	Determining Equilibrium Shapes of MoS ₂ : Modified Algorithm, Edge Reconstructions with S and O, and Temperature Effects. Journal of Physical Chemistry C, 2021, 125, 4828-4835.	1.5	3
2480	Mutually Enhanced Catalytic Activity of Doped Cobalt in Porous MoS2 for Hydrogen Evolution Reaction. Nano, 2021, 16, 2150027.	0.5	4
2481	Exploring the N ₂ Adsorption and Activation Mechanisms over the 2H/1T Mixed-Phase Ultrathin Mo _{1–<i>x</i>} W _{<i>x</i>} S ₂ Nanosheets for Boosting N ₂ Photosynthesis. ACS Applied Materials & Interfaces, 2021, 13, 7127-7134.	4.0	24
2482	S/Mo ratio and petal size controlled MoS2 nanoflowers with low temperature metal organic chemical vapor deposition and their application in solar cells. Nanotechnology, 2021, 32, 195206.	1.3	3
2483	Activating Layered Metal Oxide Nanomaterials via Structural Engineering as Biodegradable Nanoagents for Photothermal Cancer Therapy. Small, 2021, 17, e2007486.	5.2	94
2484	Two-Dimensional MoS2: Structural Properties, Synthesis Methods, and Regulation Strategies toward Oxygen Reduction. Micromachines, 2021, 12, 240.	1.4	39
2485	Facile Ion-Exchange Method for Zn Intercalated MoS ₂ As an Efficient and Stable Catalyst toward Hydrogen Evaluation Reaction. ACS Applied Energy Materials, 2021, 4, 2398-2407.	2.5	9
2486	Preparation and Laser Marking Properties of Poly(propylene)/Molybdenum Sulfide Composite Materials. ACS Omega, 2021, 6, 9129-9140.	1.6	9
2487	DNA Cleavage by Chemically Exfoliated Molybdenum Disulfide Nanosheets. Environmental Science & Technology, 2021, 55, 4037-4044.	4.6	5
2488	Experimental and Computational Investigation of Layer-Dependent Thermal Conductivities and Interfacial Thermal Conductance of One- to Three-Layer WSe ₂ . ACS Applied Materials & Interfaces, 2021, 13, 13063-13071.	4.0	33
2489	Two-step chemical vapor deposition synthesis of NiTe ₂ -MoS ₂ vertical junctions with improved MoS ₂ transistor performance. Nanotechnology, 2021, 32, 235204.	1.3	12
2490	Photodriven Transient Picosecond Topâ€Layer Semiconductor to Metal Phaseâ€Transition in pâ€Doped Molybdenum Disulfide. Advanced Materials, 2021, 33, e2006957.	11.1	11
2491	2D MoS2 Encapsulated Silicon Nanopillar Array with High-Performance Light Trapping Obtained by Direct CVD Process. Crystals, 2021, 11, 267.	1.0	3
2492	Directional charge delocalization dynamics in semiconducting 2H-MoS\$\$_{2}\$\$ and metallic 1T-Li\$\$_{mathrm{x}}\$MoS\$\$_{2}\$\$. Scientific Reports, 2021, 11, 6893.	1.6	3
2493	First-principles study of H ₂ S sensing mechanism on the Pd/VO ₂ surface. Molecular Physics, 2021, 119, e1900941.	0.8	4
2494	Garnet Electrolytes with Ultralow Interfacial Resistance by SnS ₂ Coating for Dendrite-Free all-Solid-State Batteries. ACS Applied Energy Materials, 2021, 4, 2873-2880.	2.5	13
2495	Harnessing Ionic Power from Equilibrium Electrolyte Solution via Photoinduced Active Ion Transport through vanâ€derâ€Waalsâ€Like Heterostructures. Advanced Materials, 2021, 33, e2007529.	11.1	37

#	Article	IF	CITATIONS
2496	Phase Manipulating toward Molybdenum Disulfide for Optimizing Electromagnetic Wave Absorbing in Gigahertz. Advanced Functional Materials, 2021, 31, 2011229.	7.8	141
2497	Ferromagnetic ordering in a THAB exfoliated WS ₂ nanosheet. Journal Physics D: Applied Physics, 2021, 54, 205001.	1.3	8
2498	Dipole-assisted carrier transport in bis(trifluoromethane) sulfonamide-treated O-ReS2 field-effect transistor. Nano Research, 2021, 14, 2207-2214.	5.8	2
2499	The properties and prospects of chemically exfoliated nanosheets for quantum materials in two dimensions. Applied Physics Reviews, 2021, 8, .	5.5	17
2500	Charge-carrier thermalization in bulk and monolayer CdTe from first principles. Physical Review B, 2021, 103, .	1.1	6
2501	High performance perovskite LEDs via SPR and enhanced hole injection by incorporated MoS ₂ . Journal Physics D: Applied Physics, 2021, 54, 214002.	1.3	8
2502	Inâ€Plane and Outâ€ofâ€Plane Optical Properties of Monolayer, Few‣ayer, and Thinâ€Film MoS ₂ from 190 to 1700 nm and Their Application in Photonic Device Design. Advanced Photonics Research, 2021, 2, 2000180.	1.7	35
2503	Defects induced photoluminescence and ellipsometric measurements of reactive sputtered growth MoS2 nanoworms. Optical Materials, 2021, 113, 110848.	1.7	5
2504	Atomicâ€Layerâ€Depositionâ€Based 2D Transition Metal Chalcogenides: Synthesis, Modulation, and Applications. Advanced Materials, 2021, 33, e2005907.	11.1	42
2505	MXene materials based printed flexible devices for healthcare, biomedical and energy storage applications. Materials Today, 2021, 43, 99-131.	8.3	107
2506	One-Step Hydrothermal Synthesis of Phase-Engineered MoS ₂ /MoO ₃ Electrocatalysts for Hydrogen Evolution Reaction. ACS Applied Nano Materials, 2021, 4, 2642-2656.	2.4	78
2507	Metallic Transition Metal Dichalcogenides of Group VIB: Preparation, Stabilization, and Energy Applications. Small, 2021, 17, e2005573.	5.2	19
2508	2D Materials Enabled Nextâ€Generation Integrated Optoelectronics: from Fabrication to Applications. Advanced Science, 2021, 8, e2003834.	5.6	70
2509	Intercalation as a versatile tool for fabrication, property tuning, and phase transitions in 2D materials. Npj 2D Materials and Applications, 2021, 5, .	3.9	113
2510	1D chain structure in 1T′-phase 2D transition metal dichalcogenides and their anisotropic electronic structures. Applied Physics Reviews, 2021, 8, .	5.5	9
2511	Ag Nanoparticle-Decorated MoS2 Nanosheets for Enhancing Electrochemical Performance in Lithium Storage. Nanomaterials, 2021, 11, 626.	1.9	21
2512	Cysteine-Induced Hybridization of 2D Molybdenum Disulfide Films for Efficient and Stable Hydrogen Evolution Reaction. Materials, 2021, 14, 1165.	1.3	4
2513	Exfoliation of Quasi-Two-Dimensional Nanosheets of Metal Diborides. Journal of Physical Chemistry C, 2021, 125, 6787-6799.	1.5	32

#	Article	IF	CITATIONS
2514	Photoresponse of Stacked, Multilayer MoS2 Films Assembled from Solution-Processed MoS2 Flakes. ACS Applied Nano Materials, 2021, 4, 3087-3094.	2.4	0
2515	Theoretical Study on Tuning Band Gap and Electronic Properties of Atomically Thin Nanostructured MoS ₂ /Metal Cluster Heterostructures. ACS Omega, 2021, 6, 6623-6628.	1.6	11
2516	Advances in transition metal dichalcogenide-based two-dimensional nanomaterials. Materials Today Chemistry, 2021, 19, 100399.	1.7	50
2517	MoS ₂ Nanocomposite Films with High Irradiation Tolerance and Self-Adaptive Lubrication. ACS Applied Materials & Interfaces, 2021, 13, 20435-20447.	4.0	13
2518	Molybdenum sulfideâ€based supercapacitors: From synthetic, bibliometric, and qualitative perspectives. International Journal of Energy Research, 2021, 45, 12665-12692.	2.2	19
2519	Nonlinear Optical Properties of Vertically-Aligned MoS2 Nanosheets. Journal of Electronic Materials, 2021, 50, 3645-3651.	1.0	7
2520	Influence of Nanoarchitectures on Interlayer Interactions in Layered Bi–Mo–Se Heterostructures. Journal of Physical Chemistry C, 2021, 125, 9469-9478.	1.5	4
2521	MoS2-Decorated/Integrated Carbon Fiber: Phase Engineering Well-Regulated Microwave Absorber. Nano-Micro Letters, 2021, 13, 114.	14.4	79
2522	Enhanced Triboelectric Nanogenerator Based on Tungsten Disulfide via Thiolated Ligand Conjugation. ACS Applied Materials & Interfaces, 2021, 13, 21299-21309.	4.0	25
2523	Tuning electrical and interfacial thermal properties of bilayer MoS ₂ via electrochemical intercalation. Nanotechnology, 2021, 32, 265202.	1.3	3
2524	Hybrid nanocomposites of a molybdenum disulfide (MoS2) based hydrophobic filler for a robust self-cleaning effect. Journal of Industrial and Engineering Chemistry, 2021, 96, 294-306.	2.9	5
2525	Impact of Pretreatment of the Bulk Starting Material on the Efficiency of Liquid Phase Exfoliation of WS2. Nanomaterials, 2021, 11, 1072.	1.9	6
2526	Influences of thickness and gamma-ray irradiation on the frictional and electronic properties of WSe2 nanosheets. AIP Advances, 2021, 11, .	0.6	2
2527	Facile Synthesis of 1T-MoS ₂ Nanoflowers Using Hydrothermal Method. Materials Science Forum, 0, 1028, 173-178.	0.3	5
2528	Advancing Graphitic Carbon Nitride-Based Photocatalysts toward Broadband Solar Energy Harvesting. , 2021, 3, 663-697.		63
2529	Machine Learning-Assisted Array-Based Detection of Proteins in Serum Using Functionalized MoS ₂ Nanosheets and Green Fluorescent Protein Conjugates. ACS Applied Nano Materials, 2021, 4, 3843-3851.	2.4	15
2530	Development of hybrid hydrophobic molybdenum disulfide (MoS2) nanoparticles for super water repellent self-cleaning. Progress in Organic Coatings, 2021, 153, 106161.	1.9	13
2531	Excited electron dynamics in the interface of 2H-1T hetero-phases of monolayer MoS2: time-dependent density functional theory study. Journal of the Korean Physical Society, 2021, 78, 1203-1207.	0.3	0

#	Article	IF	CITATIONS
2532	Two-dimensional nanomaterials with engineered bandgap: Synthesis, properties, applications. Nano Today, 2021, 37, 101059.	6.2	82
2533	Metal substrates-induced phase transformation of monolayer transition metal dichalcogenides for hydrogen evolution catalysis*. Chinese Physics B, 2021, 30, 116401.	0.7	3
2534	High Stability of 1T-Phase MoS _{2<i>x</i>} Se _{2(1–<i>x</i>)} Monolayers Under Ambient Conditions. Journal of Physical Chemistry C, 2021, 125, 8407-8417.	1.5	7
2535	Sensing mechanism and optical properties of H2O on the surface of Pt/VO2: First-principles study. Journal of Applied Physics, 2021, 129, 134301.	1.1	5
2536	Multi-component Zn2SnO4/MoS2/Ag/AgCl for enhancing solar-driven photoelectrocatalytic activity. Applied Surface Science, 2021, 544, 148922.	3.1	11
2537	Photoluminescence from Single-Walled MoS ₂ Nanotubes Coaxially Grown on Boron Nitride Nanotubes. ACS Nano, 2021, 15, 8418-8426.	7.3	35
2538	Z-scan investigation to evaluate the third-order nonlinear optical properties of cauliflower-like VS ₂ structures. Journal of the Optical Society of America B: Optical Physics, 2021, 38, 1586.	0.9	13
2539	Davydov Splitting, Resonance Effect and Phonon Dynamics in Chemical Vapor Deposition Grown Layered MoS ₂ . Nanotechnology, 2021, 32, 285705.	1.3	12
2540	Self-Assembly of MoS2 Monolayer Sheets by Desulfurization. Langmuir, 2021, 37, 4971-4983.	1.6	6
2541	Phase-engineering strategy of MoS2 nanosheets embedded in Bronze-TiO2 nanobelts for boosting lithium storage. Ceramics International, 2021, 47, 21610-21617.	2.3	11
2542	Effect of Carrier Gas Flow Field on Chemical Vapor Deposition of 2D MoS2 Crystal. Coatings, 2021, 11, 547.	1.2	3
2543	2D MoS2 nanoplatelets for fouling resistant membrane surface. Journal of Colloid and Interface Science, 2021, 590, 415-423.	5.0	17
2544	Bi-layer molybdenum disulfide obtains from molybdenum disulfide-melamine cyanurate superlattice with a thermal shock. Advanced Powder Technology, 2021, 32, 1594-1601.	2.0	2
2545	Photo-Detectors Based on Two Dimensional Materials. , 0, , .		0
2546	Designing high thermal conductivity of polydimethylsiloxane filled with hybrid h-BN/MoS2 via molecular dynamics simulation. Polymer, 2021, 224, 123697.	1.8	10
2547	Covalent Bisfunctionalization of Twoâ€Dimensional Molybdenum Disulfide. Angewandte Chemie, 2021, 133, 13596-13604.	1.6	2
2548	Advanced tape-exfoliated method for preparing large-area 2D monolayers: a review. 2D Materials, 2021, 8, 032002.	2.0	30
2549	Tightly-bound trion and bandgap engineering via γ-ray irradiation in the monolayer transition metal dichalcogenide WSe ₂ . Nanotechnology, 2021, 32, 305709.	1.3	4

#	Article	IF	CITATIONS
2550	Toward Wafer‧cale Production of 2D Transition Metal Chalcogenides. Advanced Electronic Materials, 2021, 7, 2100278.	2.6	16
2551	Recent Advances in Two-Dimensional MoS ₂ Nanosheets for Environmental Application. Industrial & Engineering Chemistry Research, 2021, 60, 8007-8026.	1.8	21
2552	SERS Selective Enhancement on Monolayer MoS ₂ Enabled by a Pressure-Induced Shift from Resonance to Charge Transfer. ACS Applied Materials & Interfaces, 2021, 13, 26551-26560.	4.0	23
2553	Applications of novel quantum dots derived from layered materials in cancer cell imaging. FlatChem, 2021, 27, 100246.	2.8	16
2554	Stabilizing Metastable Polymorphs of van der Waals Solid MoS ₂ on Single Crystal Oxide Substrates: Exploring the Possible Role of Surface Chemistry and Structure. Journal of Physical Chemistry C, 2021, 125, 11216-11224.	1.5	10
2555	Dye Adsorption Capacity of MoS ₂ Nanoflakes Immobilized on Poly(lactic acid) Fibrous Membranes. ACS Applied Nano Materials, 2021, 4, 4881-4894.	2.4	12
2556	Synthesis and characterization of 2D transition metal dichalcogenides: Recent progress from a vacuum surface science perspective. Surface Science Reports, 2021, 76, 100523.	3.8	50
2557	Metalâ€Assisted Efficient Nanotubular Electrocatalyst of MoS ₂ for Hydrogen Production. ChemCatChem, 2021, 13, 3237-3246.	1.8	2
2558	Pseudobrookite based heterostructures for efficient electrocatalytic hydrogen evolution. Materials Reports Energy, 2021, 1, 100020.	1.7	5
2559	2D Monolayer of the 1T' Phase of Alloyed WSSe from Colloidal Synthesis. Journal of Physical Chemistry C, 2021, 125, 11058-11065.	1.5	9
2560	Infrared Proximity Sensors Based on Photoâ€Induced Tunneling in van der Waals Integration. Advanced Functional Materials, 2021, 31, 2100966.	7.8	12
2561	Covalent Bisfunctionalization of Twoâ€Dimensional Molybdenum Disulfide. Angewandte Chemie - International Edition, 2021, 60, 13484-13492.	7.2	28
2562	High-valence Mo(VI) derived from in-situ oxidized MoS2 nanosheets enables enhanced electrochemical responses for nitrite measurements. Sensors and Actuators B: Chemical, 2021, 337, 129812.	4.0	14
2563	Recent Advancement for the Synthesis of MXene Derivatives and Their Sensing Protocol. Advanced Materials Technologies, 2021, 6, 2001197.	3.0	16
2564	Effect of Noninteracting Intercalants on Layer Exfoliation in Transition-Metal Dichalcogenides. Physical Review Applied, 2021, 15, .	1.5	3
2565	Performance improvement in p-Type WS ₂ field-effect transistors with 1T phase contacts. Nanotechnology, 2021, 32, 345202.	1.3	4
2566	Photocatalytic Generated Oxygen Species Properties by Fullerene Modified Two-Dimensional MoS ₂ and Degradation of Ammonia Under Visible Light. Korean Journal of Materials Research, 2021, 31, 353-366.	0.1	0
2567	Raman spectra of 2D MoS2 under the laser excitation with different wavelengths and variable polarization states. , 2021, , .		0

#	Article	IF	CITATIONS
2568	Boron nanosheets loaded with MoS2 porous sponges for water purification. Journal of Water Process Engineering, 2021, 41, 102048.	2.6	16
2569	Engineering two-dimensional metal oxides and chalcogenides for enhanced electro- and photocatalysis. Science Bulletin, 2021, 66, 1228-1252.	4.3	103
2570	Meritorious spatially on hierarchically Co3O4/MoS2 phase nanocomposite synergistically a high-efficient electrocatalyst for hydrogen evolution reaction performance: Recent advances & future perspectives. International Journal of Hydrogen Energy, 2021, 46, 22707-22718.	3.8	24
2571	Recent advancements of two-dimensional transition metal dichalcogenides and their applications in electrocatalysis and energy storage. Emergent Materials, 2021, 4, 951-970.	3.2	24
2572	First-Principles Calculations of Heteroanionic Monochalcogenide Alloy Nanosheets with Direction-dependent Properties for Anisotropic Optoelectronics. ACS Applied Nano Materials, 2021, 4, 5912-5920.	2.4	3
2573	Bifacial DSSC fabricated using low-temperature processed 3D flower like MoS2 - high conducting carbon composite counter electrodes. Materials Today Communications, 2021, 27, 102208.	0.9	4
2574	Tailoring of Surface Acidic Sites in Co–MoS ₂ Catalysts for Hydrodeoxygenation Reaction. Journal of Physical Chemistry Letters, 2021, 12, 5668-5674.	2.1	14
2575	Lateral Growth of MoS ₂ 2D Material Semiconductors Over an Insulator Via Electrodeposition. Advanced Electronic Materials, 2021, 7, 2100419.	2.6	6
2576	Recent Advances in Transition Metal Dichalcogenide Cathode Materials for Aqueous Rechargeable Multivalent Metal-Ion Batteries. Nanomaterials, 2021, 11, 1517.	1.9	27
2577	Davydov Splitting, Double-Resonance Raman Scattering, and Disorder-Induced Second-Order Processes in Chemical Vapor Deposited MoS ₂ Thin Films. Journal of Physical Chemistry Letters, 2021, 12, 6197-6202.	2.1	9
2578	Tetrabutylammoniumâ€Intercalated 1Tâ€MoS ₂ Nanosheets with Expanded Interlayer Spacing Vertically Coupled on 2D Delaminated MXene for Highâ€Performance Lithiumâ€Ion Capacitors. Advanced Functional Materials, 2021, 31, 2104286.	7.8	106
2579	Advances in Liquidâ€Phase and Intercalation Exfoliations of Transition Metal Dichalcogenides to Produce 2D Framework. Advanced Materials Interfaces, 2021, 8, 2002205.	1.9	43
2580	Recent Progress in the Synthesis of MoS2 Thin Films for Sensing, Photovoltaic and Plasmonic Applications: A Review. Materials, 2021, 14, 3283.	1.3	38
2581	Improved Photoelectrochemical Performance of MoS2 through Morphology-Controlled Chemical Vapor Deposition Growth on Graphene. Nanomaterials, 2021, 11, 1585.	1.9	11
2582	Oxygen Nucleation of MoS ₂ Nanosheet Thin Film Supercapacitor Electrodes for Enhanced Electrochemical Energy Storage. ChemSusChem, 2021, 14, 2882-2891.	3.6	3
2583	Impregnation of Microwave treated exfoliated MoS2 nanosheets into PMMA matrix by solution casting for reinforcing applications. IOP Conference Series: Materials Science and Engineering, 2021, 1166, 012033.	0.3	0
2584	Lattice Defect Engineering Enables Performance-Enhanced MoS ₂ Photodetection through a Paraelectric BaTiO ₃ Dielectric. ACS Nano, 2021, 15, 13370-13379.	7.3	18
2585	2D/2D g-C ₃ N ₄ /1T-MoS ₂ Nanohybrids as Schottky Heterojunction Photocatalysts for Nuclear Wastewater Pretreatment. ACS ES&T Water, 2021, 1, 2197-2205.	2.3	23

#	Article	IF	CITATIONS
2586	Structure Dependent Water Transport in Membranes Based on Two-Dimensional Materials. Industrial & Engineering Chemistry Research, 2021, 60, 10917-10959.	1.8	12
2587	Roadmap and Direction toward High-Performance MoS ₂ Hydrogen Evolution Catalysts. ACS Nano, 2021, 15, 11014-11039.	7.3	179
2588	2021 roadmap for sodium-ion batteries. JPhys Energy, 2021, 3, 031503.	2.3	125
2589	Highly Efficient and Robust MoS ₂ Nanoflake-Modified-TiN-Ceramic-Membrane Electrode for Electrocatalytic Hydrogen Evolution Reaction. ACS Applied Energy Materials, 2021, 4, 6730-6739.	2.5	17
2590	2D-MoS2 goes 3D: transferring optoelectronic properties of 2D MoS2 to a large-area thin film. Npj 2D Materials and Applications, 2021, 5, .	3.9	31
2591	MoS2 nanosheets/silver nanoparticles anchored onto textile fabric as "dip catalyst―for synergistic p-nitrophenol hydrogenation. Environmental Science and Pollution Research, 2021, 28, 64674-64686.	2.7	13
2592	Thermal Conductivity of Few-Layer PtS ₂ and PtSe ₂ Obtained from Optothermal Raman Spectroscopy. Journal of Physical Chemistry C, 2021, 125, 16129-16135.	1.5	22
2593	Differences and Similarities of Photocatalysis and Electrocatalysis in Two-Dimensional Nanomaterials: Strategies, Traps, Applications and Challenges. Nano-Micro Letters, 2021, 13, 156.	14.4	71
2594	Defect Engineering in Ultrathin SnSe Nanosheets for High-Performance Optoelectronic Applications. ACS Applied Materials & Interfaces, 2021, 13, 33226-33236.	4.0	35
2595	Advanced Materials for Energy-Water Systems: The Central Role of Water/Solid Interfaces in Adsorption, Reactivity, and Transport. Chemical Reviews, 2021, 121, 9450-9501.	23.0	43
2596	Theoretical evaluation and experimental investigation of layered 2H/1T-phase MoS2 and its reduced graphene-oxide hybrids for hydrogen evolution reactions. Journal of Alloys and Compounds, 2021, 868, 159272.	2.8	22
2597	Molybdenum disulfide monolayer electronic structure information as explored using density functional theory and quantum theory of atoms in molecules. Applied Surface Science, 2021, 555, 149545.	3.1	11
2598	Self-healable and flexible supramolecular gelatin/MoS2 hydrogels with molecular recognition properties. International Journal of Biological Macromolecules, 2021, 182, 2048-2055.	3.6	25
2599	Nitrogen-Doped Metallic MoS ₂ Derived from a Metal–Organic Framework for Aqueous Rechargeable Zinc-Ion Batteries. ACS Applied Materials & Interfaces, 2021, 13, 34495-34506.	4.0	48
2600	Black Phosphorus Nanoflakes Vertically Stacked on MoS ₂ Nanoflakes as Heterostructures for Photodetection. ACS Applied Nano Materials, 2021, 4, 6928-6935.	2.4	14
2601	MoS2-based nanocomposites: synthesis, structure, and applications in water remediation and energy storage: a review. Environmental Chemistry Letters, 2021, 19, 3645-3681.	8.3	48
2602	Recent Progress of Two-Dimensional Materials for Ultrafast Photonics. Nanomaterials, 2021, 11, 1778.	1.9	31
2603	High-yield exfoliation of 2D semiconductor monolayers and reassembly of organic/inorganic artificial superlattices. CheM, 2021, 7, 1887-1902.	5.8	36

#	Article	IF	CITATIONS
2604	3D carbon nanocones/metallic MoS2 nanosheet electrodes towards flexible supercapacitors for wearable electronics. Energy, 2021, 227, 120419.	4.5	26
2605	Molecular Functionalization of 2H-Phase MoS ₂ Nanosheets via an Electrolytic Route for Enhanced Catalytic Performance. ACS Applied Materials & Interfaces, 2021, 13, 33157-33171.	4.0	11
2606	Facile Preparation of MoS ₂ Nanocomposites for Efficient Potassiumâ€lon Batteries by Grindingâ€Promoted Intercalation Exfoliation. Small, 2021, 17, e2102263.	5.2	30
2607	Cr ³⁺ Ionâ€Induced Phase Stabilization of 1Tâ^'MoSe ₂ with Abundant Active Sites for Efficient Hydrogen Evolution Reaction. ChemNanoMat, 2021, 7, 1063-1071.	1.5	8
2608	MoS ₂ based ternary composites: review on heterogeneous materials as catalyst for photocatalytic degradation. Catalysis Reviews - Science and Engineering, 2023, 65, 620-693.	5.7	28
2609	The in-plane metal contacted 5.1 nm Janus WSSe Schottky barrier field-effect transistors. Nanotechnology, 2021, 32, 475702.	1.3	4
2610	Erythromycin dermal delivery by MoS2 nanoflakes. Journal of Pharmaceutical Investigation, 2021, 51, 691-700.	2.7	8
2611	Two-dimensional MoS ₂ 2H, 1T, and 1T [′] crystalline phases with incorporated adatoms: theoretical investigation of electronic and optical properties. Applied Optics, 2021, 60, G232.	0.9	8
2612	Phase Engineering of Transition Metal Dichalcogenides via a Thermodynamically Designed Gas–Solid Reaction. Journal of Physical Chemistry Letters, 2021, 12, 8430-8439.	2.1	0
2613	A sustainable molybdenum oxysulphide-cobalt phosphate photocatalyst for effectual solar-driven water splitting. Journal of Advanced Research, 2022, 36, 15-26.	4.4	14
2614	Covalent Patterning of 2D MoS ₂ . Chemistry - A European Journal, 2021, 27, 13117-13122.	1.7	9
2615	Up-conversion hybrid nanomaterials for light- and heat-driven applications. Progress in Materials Science, 2021, 121, 100838.	16.0	34
2616	Molybdenum impregnated g-C3N4 nanotubes as potentially active photocatalyst for renewable energy applications. Scientific Reports, 2021, 11, 16886.	1.6	32
2617	Toward fast zinc-ion storage of MoS2 by tunable pseudocapacitance. Journal of Alloys and Compounds, 2021, 871, 159541.	2.8	24
2618	Magnetic Field Controlled Interlayer Coupling in MoS 2 Field Effect Transistors. Advanced Electronic Materials, 0, , 2100548.	2.6	0
2619	Photoinduced transformation of silver ion by molybdenum disulfide nanoflakes at environmentally relevant concentrations attenuates its toxicity to freshwater algae. Journal of Hazardous Materials, 2021, 416, 126043.	6.5	7
2620	MoS2: Advanced nanofiller for reinforcing polymer matrix. Physica E: Low-Dimensional Systems and Nanostructures, 2021, 132, 114716.	1.3	33
2621	Strain induced structural phase transition in TM6X6 (TM = Mo, W; X = S, Se, Te) nanowires. Journal of Solid State Chemistry, 2021, 300, 122194.	1.4	3

#	Article	IF	CITATIONS
2622	MoS ₂ –Nanosheets-Based Catalysts for Photocatalytic CO ₂ Reduction: A Review. ACS Applied Nano Materials, 2021, 4, 8644-8667.	2.4	63
2623	Voltammetric determination of linagliptin in bulk and plasma sample using an electrochemical sensor based on L-cysteine modified 1T-MoS2 nanosheets. Microchemical Journal, 2021, 167, 106308.	2.3	7
2624	Advance Optical Properties and Emerging Applications of 2D Materials. Frontiers in Materials, 2021, 8, .	1.2	22
2625	Nature of optical excitations and bandgap of Re _x Mo _{1â^'x} S ₂ alloy at nanoscale probed from high resolution low loss electron energy loss spectroscopy. Journal of Physics Condensed Matter, 2021, 33, 455901.	0.7	0
2626	Graphene-based heterojunction for enhanced photodetectors. Chinese Physics B, 2022, 31, 038501.	0.7	10
2627	Trion Binding Energy Variation on Photoluminescence Excitation Energy and Power during Direct to Indirect Bandgap Crossover in Monolayer and Few-Layer MoS ₂ . Journal of Physical Chemistry C, 2021, 125, 17806-17819.	1.5	22
2628	In situ X-ray photoelectron spectroscopy study: effect of inert Ar sputter etching on the core-level spectra of the CVD-grown tri-layer MoS2 thin films. Journal of Materials Science: Materials in Electronics, 2022, 33, 8741-8746.	1.1	1
2629	Chromogenic Amorphous MoO _{3–<i>x</i>} Nanosheets and Their Nanostructured Films for Smart Window Applications. ACS Applied Nano Materials, 2021, 4, 8781-8788.	2.4	17
2630	Synergistic Effect of Metal Cations and Visible Light on 2D MoS ₂ Nanosheet Aggregation. Environmental Science & Technology, 2021, 55, 16379-16389.	4.6	16
2631	Review on engineering two-dimensional nanomaterials for promoting efficiency and stability of perovskite solar cells. Journal of Energy Chemistry, 2022, 68, 154-175.	7.1	11
2632	Engineering flexible and green electromagnetic interference shielding materials with high performance through modulating WS2 nanosheets on carbon fibers. Journal of Materiomics, 2022, 8, 327-334.	2.8	50
2633	Layer-structure adjustable MoS2 catalysts for the slurry-phase hydrogenation of polycyclic aromatic hydrocarbons. Journal of Energy Chemistry, 2021, 63, 294-304.	7.1	15
2634	Centimeter-Scale Few-Layer PdS ₂ : Fabrication and Physical Properties. ACS Applied Materials & Interfaces, 2021, 13, 43063-43074.	4.0	28
2635	2D MoS2: structure, mechanisms, and photocatalytic applications. Materials Today Sustainability, 2021, 13, 100073.	1.9	54
2636	Shelling with MoS2: Functional CuS@MoS2 hybrids as electrocatalysts for the oxygen reduction and hydrogen evolution reactions. Chemical Engineering Journal, 2021, 420, 129771.	6.6	35
2637	Hybrid Phase MoS ₂ as a Noble Metal-Free Photocatalyst for Conversion of Nitroaromatics to Aminoaromatics. Journal of Physical Chemistry C, 2021, 125, 20887-20895.	1.5	7
2638	The current hysteresis effect of tower-like MoS2 nanocrystalline film for field emission and memristor applications. Journal of Alloys and Compounds, 2022, 892, 162091.	2.8	2
2639	Selenization triggers deep reconstruction to produce ultrathin Î ³ -NiOOH toward the efficient water oxidation. Journal of Energy Chemistry, 2021, 63, 651-658.	7.1	13

#	Article	IF	CITATIONS
2640	Recent advances in the electrochemistry of layered post-transition metal chalcogenide nanomaterials for hydrogen evolution reaction. Journal of Energy Chemistry, 2021, 60, 451-479.	7.1	57
2641	Insights into the reinforcibility and multifarious role of WS2 in polymer matrix. Journal of Alloys and Compounds, 2021, 876, 160107.	2.8	21
2642	Recent progress on emergent two-dimensional magnets and heterostructures. Nanotechnology, 2021, 32, 472001.	1.3	25
2643	Synthesis of Molybdenum Sulfide/Tellurium Hetero-Composite by a Simple One-Pot Hydrothermal Technique for High-Performance Supercapacitor Electrode Material. Nanomaterials, 2021, 11, 2346.	1.9	8
2644	Preparation and characterization of nanocomposites of MoS2 nanoflowers and palygorskite nanofibers as lightweight microwave absorbers. Applied Clay Science, 2021, 211, 106169.	2.6	10
2645	Oxygen incorporated in 1T/2H hybrid MoS2 nanoflowers prepared from molybdenum blue solution for asymmetric supercapacitor applications. Chemical Engineering Journal, 2021, 419, 129701.	6.6	58
2646	Trap states induced hopping transport and persistent photoconductivity in WSe2/MoS2 nanocomposite thin films. Journal of Applied Physics, 2021, 130, .	1.1	7
2647	Recent progress in the synthesis of novel two-dimensional van der Waals materials. National Science Review, 2022, 9, nwab164.	4.6	50
2648	Wireless Detection of Biogenic Amines Using a Split-Ring Resonator with Silver Nanoparticles-Decorated Molybdenum Disulfide. Sensors and Actuators B: Chemical, 2021, 343, 130155.	4.0	17
2649	Two-dimensional materials for electrochromic applications. EnergyChem, 2021, 3, 100060.	10.1	21
2650	Molybdenum disulfide/reduced graphene oxide: Progress in synthesis and electro-catalytic properties for electrochemical sensing and dye sensitized solar cells. Microchemical Journal, 2021, 169, 106583.	2.3	45
2651	Modulation of the contact barrier at VS2/MoS2 interface: A first principles study. Physics Letters, Section A: General, Atomic and Solid State Physics, 2021, 413, 127604.	0.9	12
2652	Graphene-like 2H/1T-MoSe2 with superior full spectrum absorption: Morphology and phase engineering. Journal of Alloys and Compounds, 2021, 877, 160317.	2.8	12
2653	A highly responsive hybrid photodetector based on all-inorganic 2D heterojunction consisting of Cs2Pb(SCN)2Br2 and MoS2. Chemical Engineering Journal, 2021, 422, 130112.	6.6	12
2654	Impact of algal extracellular polymeric substances on the environmental fate and risk of molybdenum disulfide in aqueous media. Water Research, 2021, 205, 117708.	5.3	24
2655	D-shaped surface plasmon resonance biosensor based on <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si30.svg"> <mml:mrow> <mml:mrow> <mml:mi mathvariant="normal">MoS <mml:mrow> <mml:mrow> <mml:mi mathvariant="normal">MoS <mml:mrow> <m< td=""><td>1.4 sub> <td>10 nl:mrow></td></td></m<></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mi </mml:mrow></mml:mrow></mml:mi </mml:mrow></mml:mi </mml:mrow></mml:mi </mml:mrow></mml:mi </mml:mrow></mml:mi </mml:mrow></mml:mi </mml:mrow></mml:mi </mml:mrow></mml:mi </mml:mrow></mml:mi </mml:mrow></mml:mi </mml:mrow></mml:mi </mml:mrow></mml:mi </mml:mrow></mml:mi </mml:mrow></mml:mrow></mml:math 	1.4 sub> <td>10 nl:mrow></td>	10 nl:mrow>
2656	MoS2 based nanocomposites: An excellent material for energy and environmental applications. Journal of Environmental Chemical Engineering, 2021, 9, 105836.	3.3	54
2657	Anode Material for Lithium-Ion Batteries Based on MoS2 and Conductive Polymer Binder: Effects of Electrode Thickness. International Journal of Electrochemical Science, 2021, 16, 211023.	0.5	1

C	D-	
CITATIO		PUBL
CILATIO		

#	Article	IF	CITATIONS
2658	MoS2-based membranes in water treatment and purification. Chemical Engineering Journal, 2021, 422, 130082.	6.6	77
2659	Nitrogen-doped MoS2 QDs as fluorescent probes for sequential dual-target detection and their microfluidic logic gate operations. Microchemical Journal, 2021, 169, 106553.	2.3	13
2660	The structure, electronic, magnetic and optical properties of the Co-X (X = B, C, N, O or F) codoped single-layer WS2. Physica E: Low-Dimensional Systems and Nanostructures, 2021, 134, 114917.	1.3	4
2661	MoS2-doped spherical SnO2 for SO2 sensing under UV light at room temperature. Materials Science in Semiconductor Processing, 2021, 134, 105997.	1.9	16
2662	Water-mediated NaNO3 ultrathin flakes on highly oriented pyrolytic graphite at ambient conditions. Applied Surface Science, 2021, 565, 150576.	3.1	3
2663	The mechanistic difference of 1T-2H MoS2 homojunctions in persulfates activation: Structure-dependent oxidation pathways. Applied Catalysis B: Environmental, 2021, 297, 120460.	10.8	73
2664	A comparative study of Ag doping effects on the electronic, optical, carrier conversion, photocatalytic and electrical properties of MoS2. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2021, 273, 115442.	1.7	7
2665	Interfacial charge transfer in carbon nitride heterojunctions monitored by optical methods. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2021, 49, 100453.	5.6	26
2666	Destroying the symmetric structure to promote phase transition: Improving the SERS performance and catalytic activity of MoS2 nanoflowers. Journal of Alloys and Compounds, 2021, 886, 161268.	2.8	18
2667	Photocatalytic H2 production with simultaneous wastewater purification over flower-like 1T/2H-MoS2-decorated CNT/CNU isotype heterojunction photocatalyst. Applied Surface Science, 2021, 569, 151072.	3.1	10
2668	Construction of MoS2 hybrid membranes on ceramic hollow fibers for efficient dehydration of isopropanol solution via pervaporation. Separation and Purification Technology, 2021, 277, 119452.	3.9	18
2669	Development of novel MoS2 hydrovoltaic nanogenerators for electricity generation from moving NaCl droplet. Journal of Alloys and Compounds, 2021, 884, 161058.	2.8	14
2670	Highly active Z-scheme heterojunction photocatalyst of anatase TiO2 octahedra covered with C-MoS2 nanosheets for efficient degradation of organic pollutants under solar light. Journal of Colloid and Interface Science, 2022, 606, 337-352.	5.0	40
2671	First-principles study of pristine and metal decorated blue phosphorene for sensing toxic H2S, SO2 and NO2 molecules. Applied Physics A: Materials Science and Processing, 2021, 127, 1.	1.1	5
2672	Towards Cs-ion supercapacitors: Cs intercalation in polymorph MoS ₂ as a model 2D electrode material. Chemical Communications, 2021, 57, 3231-3234.	2.2	18
2673	Fabrication of solution-processed ambipolar electrolyte-gated field effect transistors from a MoS ₂ –polymer hybrid for multifunctional optoelectronics. Journal of Materials Chemistry C, 2021, 9, 1701-1708.	2.7	6
2674	Transition metal chalcogenide–based photocatalysts for small-molecule activation. , 2021, , 297-331.		3
2675	Inhibition of hydrogen evolution without debilitating electrochemical CO ₂ reduction <i>via</i> the local suppression of proton concentration and blocking of step-edges by pyridine functionalization on Cu electrocatalysts. Catalysis Science and Technology, 2021, 11, 4857-4865.	2.1	8

#	Article	IF	CITATIONS
2676	Selfâ€Powered Highâ€Detectivity Lateral MoS ₂ Schottky Photodetectors for Nearâ€Infrared Operation. Advanced Electronic Materials, 2021, 7, 2001138.	2.6	31
2677	Metal dichalcogenide nanomeshes: structural, electronic and magnetic properties. Physical Chemistry Chemical Physics, 2021, 23, 21183-21195.	1.3	10
2678	Liquid-phase exfoliated MoS ₂ nanosheets doped with <i>p</i> -type transition metals: a comparative analysis of photocatalytic and antimicrobial potential combined with density functional theory. Dalton Transactions, 2021, 50, 6598-6619.	1.6	46
2679	Synthesis of graphene and other two-dimensional materials. , 2021, , 1-79.		4
2680	Challenges, novel applications, and future prospects of chalcogenides and chalcogenide-based nanomaterials for photocatalysis. , 2021, , 307-337.		8
2681	MoS2 nanostructured materials for theranostics and device applications. , 2021, , 361-384.		0
2682	Investigation of <i>ab initio</i> nonadiabatic molecular dynamics of excited carriers in condensed matter systems. Wuli Xuebao/Acta Physica Sinica, 2021, 70, 177101.	0.2	3
2683	When graphene meets ionic liquids: a good match for the design of functional materials. Nanoscale, 2021, 13, 2750-2779.	2.8	34
2684	Expert development of Hetero structured TiS2–TiO2 nanocomposites and evaluation of electron acceptors effect on the photo catalytic degradation of organic Pollutants under UV-light. Journal of Materials Science: Materials in Electronics, 2021, 32, 4053-4066.	1.1	6
2685	Fast and Low-Cost Synthesis of MoS2 Nanostructures on Paper Substrates for Near-Infrared Photodetectors. Applied Sciences (Switzerland), 2021, 11, 1234.	1.3	19
2686	Methods of hexagonal boron nitride exfoliation and its functionalization: covalent and non-covalent approaches. RSC Advances, 2021, 11, 31284-31327.	1.7	41
2687	Growth of Monolayer and Multilayer MoS2 Films by Selection of Growth Mode: Two Pathways via Chemisorption and Physisorption of an Inorganic Molecular Precursor. ACS Applied Materials & Interfaces, 2021, 13, 6805-6812.	4.0	16
2688	Promoted Interfacial Charge Transport and Separation of Size-Uniform Zn, Ni-Doped CdS-1T/2H O-MoS ₂ Nanoassemblies for Efficient Visible-Light Photocatalytic Water Splitting. Crystal Growth and Design, 2021, 21, 1278-1289.	1.4	9
2689	MoS2 Thin Films Grown by Sulfurization of DC Sputtered Mo Thin Films on Si/SiO2 and C-Plane Sapphire Substrates. Journal of Electronic Materials, 2021, 50, 1452-1466.	1.0	6
2690	Insights into Vibrational and Electronic Properties of MoS2 Using Raman, Photoluminescence, and Transport Studies. Lecture Notes in Nanoscale Science and Technology, 2014, , 155-215.	0.4	9
2691	Optical Characterization, Low-Temperature Photoluminescence, and Photocarrier Dynamics in MoS2. Lecture Notes in Nanoscale Science and Technology, 2014, , 217-236.	0.4	7
2692	Gas Sensing Using Monolayer MoS2. NATO Science for Peace and Security Series A: Chemistry and Biology, 2019, , 71-95.	0.5	1
2693	MoS2- and MoO3-Based Ultrathin Layered Materials for Optoelectronic Applications. Materials Horizons, 2020, , 211-244.	0.3	2

#	Article	IF	CITATIONS
2694	Synthesis and structural characterization of MoS2 micropyramids. Journal of Materials Science, 2020, 55, 12203-12213.	1.7	16
2695	Activation of two-dimensional MoS2 nanosheets by wet-chemical sulfur vacancy engineering for the catalytic reduction of nitroarenes and organic dyes. Applied Materials Today, 2020, 20, 100678.	2.3	15
2696	Highly efficient solution exfoliation of few-layer molybdenum disulfide nanosheets for photocatalytic hydrogen evolution. Journal of Colloid and Interface Science, 2020, 577, 38-47.	5.0	11
2697	Electronic Changes in Molybdenum Dichalcogenides on Gold Surfaces. Journal of Physical Chemistry C, 2020, 124, 25361-25368.	1.5	5
2698	Vanadium-Doped Monolayer MoS ₂ with Tunable Optical Properties for Field-Effect Transistors. ACS Applied Nano Materials, 2021, 4, 769-777.	2.4	39
2699	Identification of individual and few layers of WS2 using Raman Spectroscopy. , 0, .		1
2700	Synthetic Techniques and Functionalization Approaches of 2D Transition Metal Dichalcogenides. RSC Smart Materials, 2019, , 245-282.	0.1	2
2701	Metallic 1T MoS ₂ nanosheet arrays vertically grown on activated carbon fiber cloth for enhanced Li-ion storage performance. Journal of Materials Chemistry A, 2017, 5, 14061-14069.	5.2	232
2702	1% defect enriches MoS ₂ quantum dot: catalysis and blue luminescence. Nanoscale, 2020, 12, 4352-4358.	2.8	16
2703	Defect modification engineering on a laminar MoS ₂ film for optimizing thermoelectric properties. Journal of Materials Chemistry C, 2020, 8, 1909-1914.	2.7	20
2704	Self-assembled albumin decorated MoS ₂ aggregates and photo-stimuli induced geometrical switching for enhanced theranostics applications. Materials Advances, 2020, 1, 3000-3008.	2.6	3
2705	2D van der Waals heterostructures: processing, optical properties and applications in ultrafast photonics. Materials Horizons, 2020, 7, 2903-2921.	6.4	44
2706	Raman spectroscopy of the interlayer shear mode in few-layer MoS2 flakes. , 0, .		1
2707	Vertical MoS2 on SiO2/Si and graphene: effect of surface morphology on photoelectrochemical properties. Nanotechnology, 2021, 32, 035705.	1.3	16
2708	van der Waals coefficients of the multi-layered MoS2 with alkali metals. Physica Scripta, 2020, 95, 095506.	1.2	3
2709	Thickness dependent interlayer transport in vertical MoS ₂ Josephson junctions. 2D Materials, 2016, 3, 031002.	2.0	18
2710	Harnessing the unique properties of MXenes for advanced rechargeable batteries. JPhys Energy, 2021, 3, 012005.	2.3	14
2711	Highly anisotropic two-dimensional metal in monolayer <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mi>MoOCl </mml:mi> <mml:mn>2 Physical Review B_2020_102</mml:mn></mml:msub></mml:math 	ml 1 111n> <td>nmlkmsub><!--</td--></td>	nml k msub> </td

#	Article	IF	CITATIONS
2712	Nontrivial strength of van der Waals epitaxial interaction in soft perovskites. Physical Review Materials, 2018, 2, .	0.9	40
2713	Transient thermal characterization of suspended monolayer <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>MoS</mml:mi><mml:mn>2Physical Review Materials, 2018, 2, .</mml:mn></mml:msub></mml:math 	:m o %/mn	າl:ໝsub> ຫ</td
2714	Ultrafast nonequilibrium dynamics of strongly coupled resonances in the intrinsic cavity of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi mathvariant="normal">W<mml:msub><mml:mi mathvariant="normal">S<mml:msub><mml:mi mathvariant="normal">S<mml:mn>2</mml:mn></mml:mi </mml:msub></mml:mi </mml:msub></mml:mi </mml:mrow></mml:math> nanotubes. Physical Review Research, 2019, 1, .	1.3	11
2715	Editors' Choice—Review—Conductive Forms of MoS ₂ and Their Applications in Energy Storage and Conversion. Journal of the Electrochemical Society, 2020, 167, 126517.	1.3	46
2716	Effect of Nanoribbon Width and Strain on the Electronic Properties of the WS2 Nanoribbon. Journal of Low Power Electronics, 2014, 10, 368-372.	0.6	2
2717	The Influence of Annealing Temperature on the Properties of MoS2 Nanometer Thin Film. Hans Journal of Nanotechnology, 2013, 03, 35-39.	0.1	1
2718	Plasmon-enhanced broadband absorption of MoS ₂ -based structure using Au nanoparticles. Optics Express, 2019, 27, 2305.	1.7	31
2719	Robust and efficient optical limiters based on molybdenum disulfide nanosheets embedded in solid-state heavy-metal oxide glasses. Optical Materials Express, 2020, 10, 1463.	1.6	5
2720	Lateral and vertical heterostructures in two-dimensional transition-metal dichalcogenides [Invited]. Optical Materials Express, 2019, 9, 1590.	1.6	40
2721	Nearly lattice-matched molybdenum disulfide/gallium nitride heterostructure enabling high-performance phototransistors. Photonics Research, 2019, 7, 311.	3.4	25
2722	Tunable electronic structure of two-dimensional transition metal chalcogenides for optoelectronic applications. Nanophotonics, 2020, 9, 1675-1694.	2.9	44
2723	Ellipsometry and optical spectroscopy of low-dimensional family TMDs. Semiconductor Physics, Quantum Electronics and Optoelectronics, 2017, 20, 284-296.	0.3	24
2726	Synthesis and Characterization of Highly Crystalline Vertically Aligned WSe2 Nanosheets. Applied Sciences (Switzerland), 2020, 10, 874.	1.3	31
2727	Optical Patterning of Two-Dimensional Materials. Research, 2020, 2020, 6581250.	2.8	30
2728	First-principles study on the electronic structures of Cr- and W-doped single-layer MoS2. Wuli Xuebao/Acta Physica Sinica, 2013, 62, 037103.	0.2	13
2729	Recent progress of two-dimensional layered molybdenum disulfide. Wuli Xuebao/Acta Physica Sinica, 2016, 65, 018102.	0.2	6
2730	Research progress of high-quality monolayer MoS2 films. Wuli Xuebao/Acta Physica Sinica, 2018, 67, 128103.	0.2	7
2731	Vapor Deposition Techniques for Synthesis of Two-Dimensional Transition Metal Dichalcogenides. Applied Microscopy, 2015, 45, 119-125.	0.8	7

#	Article	IF	Citations
2732	Phase Transformation of Two-Dimensional Transition Metal Dichalcogenides. Applied Microscopy, 2018, 48, 43-48.	0.8	9
2733	Construction of 1T@2H MoS ₂ heterostructures <i>in situ</i> from natural molybdenite with enhanced electrochemical performance for lithium-ion batteries. RSC Advances, 2021, 11, 33481-33489.	1.7	8
2734	Electronic Structure and Stacking Arrangement of Tungsten Disulfide at the Gold Contact. ACS Nano, 2021, 15, 18060-18070.	7.3	6
2735	Chemical Vapor Deposition Mediated Phase Engineering for 2D Transition Metal Dichalcogenides: Strategies and Applications. Small Science, 2022, 2, 2100047.	5.8	35
2736	Synthesis of emerging two-dimensional (2D) materials – Advances, challenges and prospects. FlatChem, 2021, 30, 100305.	2.8	65
2737	Interface effect of graphene oxide in MoS2 layered nanosheets for thermoelectric application. Journal of Materials Science: Materials in Electronics, 0, , 1.	1.1	1
2738	Phase engineering of transition metal compounds for boosting lithium/sodium storage. APL Materials, 2021, 9, .	2.2	3
2739	MoTe2 quantum dots-based all-optical switching. Optics Communications, 2022, 506, 127573.	1.0	7
2740	Inkjetâ€Printed MoS ₂ Transistors with Predominantly Intraflake Transport. Small Methods, 2021, 5, e2100634.	4.6	19
2741	Influence of Plasmon Resonances and Symmetry Effects on Second Harmonic Generation in WS ₂ –Plasmonic Hybrid Metasurfaces. ACS Nano, 2021, 15, 16719-16728.	7.3	11
2742	Mechanistic insight into the chemical treatments of monolayer transition metal disulfides for photoluminescence enhancement. Nature Communications, 2021, 12, 6044.	5.8	17
2743	Impurityâ€Induced Robust Trionic Effect in Layered Violet Phosphorus. Advanced Optical Materials, 2022, 10, 2101538.	3.6	22
2744	Mist chemical vapor deposition of crystalline MoS ₂ atomic layer films using sequential mist supply mode and its application in field-effect transistors. Nanotechnology, 2022, 33, 045601.	1.3	6
2745	Spin-crossover nanoparticles anchored on MoS2 layers for heterostructures with tunable strain driven by thermal or light-induced spin switching. Nature Chemistry, 2021, 13, 1101-1109.	6.6	52
2746	Electronic and Vibrational Decoupling in Chemically Exfoliated Bilayer Thin Two-Dimensional V2O5. Journal of Physical Chemistry Letters, 2021, 12, 9821-9829.	2.1	3
2747	Selective ATP Detection via Activation of MoS ₂ -Based Artificial Nanozymes Inhibited by ZIF-90 Nanoparticles. ACS Applied Nano Materials, 2021, 4, 11545-11553.	2.4	12
2748	Synthesis and characterization of Nickel sulfide and Nickel sulfide/Molybdenum disulfide nanocomposite modified ITO electrode as efficient anode for methanol electrooxidation. Applied Surface Science Advances, 2021, 6, 100187.	2.9	5
2749	Electrochemical growth of two-dimensional MoS2 nanosheets for development of femtomolar Hg(II) ion label-free biosensor. Chemical Physics Letters, 2021, 784, 139115.	1.2	3

#	Article	IF	Citations
2750	PECCS Measurements in Nanostructure FETs. SpringerBriefs in Physics, 2013, , 83-97.	0.2	0
2751	Recent progress in preparation of material and device of two-dimensional MoS2. Wuli Xuebao/Acta Physica Sinica, 2013, 62, 056801.	0.2	4
2752	Research Progress of MoS ₂ Nanosheets. Advances in Material Chemistry, 2014, 02, 49-62.	0.0	0
2753	Effects of La, Ce and Nd doping on the electronic structure of monolayer MoS2. Wuli Xuebao/Acta Physica Sinica, 2014, 63, 067301.	0.2	8
2755	First-principles study on multiphase property and phase transition of monolayer MoS2. Wuli Xuebao/Acta Physica Sinica, 2016, 65, 127101.	0.2	0
2756	Thickness dependent optical properties of MoS2 thin films probed by spectroscopic ellipsometry. , 2016, , .		0
2758	Introduction to research of atomically thin MoS2and its electrical properties. Vacuum Magazine, 2016, 3, 9-15.	0.0	0
2759	Research Progress on MoS ₂ Prepared by Chemical Vapor Deposition. Advances in Material Chemistry, 2017, 05, 1-10.	0.0	0
2760	The High Surface Ratio Micro-MoS ₂ Grain Composed of MoS ₂ Nanosheet Prepared with One-Step Hydrothermal Synthesis. Journal of Minerals and Materials Characterization and Engineering, 2018, 06, 373-381.	0.1	0
2761	Stability and electronic structure of hydrogenated two-dimensional transition metal dichalcogenides: First-principles study. Wuli Xuebao/Acta Physica Sinica, 2019, 68, 037102.	0.2	3
2762	Facile synthesis of MoS2 nanosheets-carbon nanofibers composite as catalysts for hydrogen evolution reaction. Journal of Ceramic Processing Research, 2019, 20, 148-151.	0.4	0
2763	Atomically Thin Optical Lenses and Gratings. , 2019, , 67-92.		2
2764	2D-Nanolayered Tungsten and Molybdenum Disulfides: Structure, Properties, Synthesis, and Processing for Strategic Applications. , 2020, , 1-47.		2
2765	Spectroscopic probe of atomically thin domains of CVD-grown MoSe2. AIP Conference Proceedings, 2020, , .	0.3	0
2766	Thickness-Dependent Photocatalysis of Ultra-Thin MoS2 Film for Visible-Light-Driven CO2 Reduction. Catalysts, 2021, 11, 1295.	1.6	7
2768	Structure, Stability, Properties, and Application of Atomically Thin Coinage Metal Flatland in Graphene Pore: A Density Functional Theory Calculation. Physica Status Solidi (B): Basic Research, 2022, 259, 2100489.	0.7	10
2769	Submicron-Sized Vermiculite Assisted Oregano Oil for Controlled Release and Long-Term Bacterial Inhibition. Antibiotics, 2021, 10, 1324.	1.5	1
2770	2D Materials: Molybdenum Disulfide for Electronic and Optoelectronic Devices. Women in Engineering and Science, 2020, , 49-57.	0.2	0

#	Article	IF	CITATIONS
2771	Recent Advances in Biomaterial Scaffolds for Integrative Tumor Therapy and Bone Regeneration. Advanced Therapeutics, 2021, 4, 2000212.	1.6	15
2772	Synthesis and study of structural and morphological properties of MoS2/Ag2S nanocomposites and investigating its photocatalytic properties. Iranian Journal of Crystallography and Mineralogy, 2020, 28, 1051-1062.	0.0	0
2773	Carbon dioxide and nitrogen reduction reactions using 2D transition metal dichalcogenide (TMDC) and carbide/nitride (MXene) catalysts. Energy and Environmental Science, 2021, 14, 6242-6286.	15.6	69
2774	Optical investigation on tri-layers MoS2 thin film. AIP Conference Proceedings, 2020, , .	0.3	0
2775	Monolayer PtSe2. Springer Theses, 2020, , 47-56.	0.0	0
2777	Controllable Synthesis of Two-dimensional Layered Transition Metal Chalcogenides and Their Heterostructures. RSC Smart Materials, 2020, , 241-255.	0.1	0
2778	Caveats in obtaining high-quality 2D materials and property characterization. Journal of Materials Research, 2020, 35, 855-863.	1.2	4
2779	TEMPERATURE DEPENDENT (83-483 K) RAMAN SPECTROSCOPY ANALYSIS OF CVD GROWN WS2 MONOLAYERS. EskiÅŸehir Technical University Journal of Science and Technology A - Applied Sciences and Engineering, 0, , .	0.4	0
2780	Facile fabrication of conductive MoS ₂ thin films by sonication in hot water and evaluation of their electrocatalytic performance in the hydrogen evolution reaction. Nanoscale Advances, 2021, 4, 125-137.	2.2	10
2781	High-Efficiency Photocatalytic Degradation of Tannic Acid Using TiO ₂ Heterojunction Catalysts. ACS Omega, 2021, 6, 28538-28547.	1.6	5
2782	A Facile Liquidâ€Phase, Solventâ€Đependent Exfoliation of Large Scale MoS ₂ Nanosheets and Study of Their Photoconductive Behaviour for UVâ€Photodetector Application. ChemistrySelect, 2021, 6, 11285-11292.	0.7	10
2783	Recent Advances on 2D Materials towards 3D Printing. Chemistry, 2021, 3, 1314-1343.	0.9	12
2784	Prominent antibacterial effect of sub 5 nm Cu nanoparticles/MoS ₂ composite under visible light. Nanotechnology, 2022, 33, 075706.	1.3	2
2785	Highly Efficient Electrocatalytic N ₂ Reduction to Ammonia over Metallic 1T Phase of MoS ₂ Enabled by Active Sites Separation Mechanism. Advanced Science, 2022, 9, e2103583.	5.6	31
2786	Immobilization of Molecular Assemblies on 2D Nanomaterials for Electrochemical Biosensing Applications. Gels Horizons: From Science To Smart Materials, 2021, , 435-474.	0.3	2
2787	Recent progress and strategies in photodetectors based on 2D inorganic/organic heterostructures. 2D Materials, 2021, 8, 012001.	2.0	21
2788	Asymmetric Schottky Contacts in van der Waals Metal-Semiconductor-Metal Structures Based on Two-Dimensional Janus Materials. Research, 2020, 2020, 6727524.	2.8	11
2789	Two-dimensional materials toward Terahertz optoelectronic device applications. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2022, 51, 100473.	5.6	36

#	Article	IF	CITATIONS
2790	P-Type AsP Nanosheet as an Electron Donor for Stable Solar Broad-Spectrum Hydrogen Evolution. ACS Applied Materials & Interfaces, 2021, 13, 55102-55111.	4.0	2
2791	Boosting the Optoelectronic Properties of Molybdenum Diselenide by Combining Phase Transition Engineering with Organic Cationic Dye Doping. ACS Nano, 2021, 15, 17769-17779.	7.3	10
2792	Understanding Bond Relaxation and Electronic Properties of Tâ€Type WTe ₂ /MoS ₂ Heterostructure using Binding Energy and Bond Charge Models. Physica Status Solidi - Rapid Research Letters, 2022, 16, 2100444.	1.2	4
2793	Intercalation in 2D MoS2 nanolayers by wet chemical synthesis for tuning optoelectronic properties. Applied Nanoscience (Switzerland), 2022, 12, 17-27.	1.6	3
2794	MoS2 QDs/8-Armed Poly(Ethylene Glycol) Fluorescence Sensor for Three Nitrotoluenes (TNT) Detection. Biosensors, 2021, 11, 475.	2.3	2
2795	Intercalation in two-dimensional transition metal chalcogenides: interlayer engineering and applications. Progress in Energy, 2022, 4, 022001.	4.6	2
2796	Induced 2H-Phase Formation and Low Thermal Conductivity by Reactive Spark Plasma Sintering of 1T-Phase Pristine and Co-Doped MoS ₂ Nanosheets. ACS Omega, 2021, 6, 32783-32790.	1.6	3
2797	Two-dimensional transition metal dichalcogenides and their heterostructures: Role of process parameters in top-down and bottom-up synthesis approaches. Materials Science in Semiconductor Processing, 2022, 139, 106313.	1.9	24
2798	Phase control and stabilization of 1T-MoS2 via black TiO2â^ nanotube arrays supporting for electrocatalytic hydrogen evolution. Journal of Energy Chemistry, 2022, 68, 71-77.	7.1	18
2799	Carbon nanotubes-reinforced preparation of flat MoS2 nanomaterials: Co-enhancement of acoustic exfoliation efficiency and dye removal capacity. FlatChem, 2021, 30, 100312.	2.8	7
2800	Heterointerface Control over Lithium-Induced Phase Transitions in MoS ₂ Nanosheets: Implications for Nanoscaled Energy Materials. ACS Applied Nano Materials, 2021, 4, 14105-14114.	2.4	7
2801	Alkali catalyzes methanethiol synthesis from CO and H2S. Journal of Catalysis, 2022, 405, 116-128.	3.1	8
2803	Opportunities in electrically tunable 2D materials beyond graphene: Recent progress and future outlook. Applied Physics Reviews, 2021, 8, .	5.5	26
2804	Nanomaterials in transistors. , 2021, , .		Ο
2805	Synthesis of Photocorrosionâ€Resistant VS ₄ â€MoS ₂ â€rGO Based Nanocomposite with Efficient Photoelectrochemical Waterâ€Splitting Activity. ChemNanoMat, 2022, 8, e202100429.	1.5	9
2806	Exfoliation Routes to the Production of Nanoflakes of Graphene Analogous 2D Materials and Their Applications. Indian Institute of Metals Series, 2022, , 377-443.	0.2	1
2807	Grain boundary and misorientation angle-dependent thermal transport in single-layer MoS ₂ . Nanoscale, 2022, 14, 1241-1249.	2.8	11
2808	Development of MoS2/cellulose aerogels nanocomposite with superior application capability for selective lead(II) capture. Separation and Purification Technology, 2022, 284, 120275.	3.9	18

ARTICLE IF CITATIONS Latest advance on seamless metal-semiconductor contact with ultralow Schottky barrier in 2809 6.2 21 2D-material-based devices. Nano Today, 2022, 42, 101372. Restructuring electronic structure via W doped 1T MoS2 for enhancing hydrogen evolution reaction. 3.1 Applied Surface Science, 2022, 579, 152216. Facile and controllable preparation of tellurium nanocrystals by laser irradiation. Applied Surface 2811 3.14 Science, 2022, 581, 152398. A novel interlayer-expanded tin disulfide/reduced graphene oxide nanocomposite as anode material 5.0 for high-performance sodium-ion batteries. Journal of Colloid and Interface Science, 2022, 611, 215-223. Piezo-phototronic intersubband terahertz devices based on layer-dependent van der Waals guantum 2813 8.2 6 well. Nano Energy, 2022, 94, 106912. Surfactant-Free Synthesis of Ultrafine Pt Nanoparticles on MoS₂ Nanosheets as 1.6 Bifunctional Catalysts for the Hydrodeoxygenation of Bio-Oil. Langmuir, 2020, 36, 14710-14716. Extracellular polymeric substances mediate defect generation and phytotoxicity of single-layer MoS2. 2815 6.5 13 Journal of Hazardous Materials, 2022, 429, 128361. High-Responsivity Gate-Tunable Ultraviolet–Visible Broadband Phototransistor Based on Graphene–WS´₂ Mixed-Dimensional (2D-0D) Heterostructure. ACS Applied Materials & amp; Interfaces, 2022, 14, 5775-5784. Çözücü ve Isıl İÅŸlem Sürecinin MoS2 İnce Filmlerinin Yapısal Özelliklerine Etkisinin İncelenmesi, Deu 2817 0 Muhendislik Fakultesi Fen Ve Muhendislik, 2022, 24, 81-90. Plasma-induced large-area N,Pt-doping and phase engineering of MoS₂ nanosheets for 15.6 alkaline hydrogen evolution. Energy and Environmental Science, 2022, 15, 1201-1210. Interface engineering of heterogeneous transition metal chalcogenides for electrocatalytic 2819 2.2 8 hydrogen evolution. Nanoscale Advances, 2022, 4, 865-870. Highly Permeable MoS₂ Nanosheet Porous Membrane for Organic Matter Removal. ACS 1.6 Omega, 2022, 7, 2419-2428. High-yield production of mono- or few-layer transition metal dichalcogenide nanosheets by an 2821 electrochemical lithium ion intercalation-based exfoliation method. Nature Protocols, 2022, 17, 5.5 100 358-377. Ultrathick MoS₂ Films with Exceptionally High Volumetric Capacitance. Advanced Energy 10.2 44 Materials, 2022, 12, . Thickness-dependent phase transition kinetics in lithium-intercalated MoS₂. 2D Materials, 2823 2.0 8 2022, 9, 025009. Two-Dimensional Confined Synthesis of Metastable 1T-Phase MoS₂ Nanosheets for the 2824 2.4 Hydrogen Evolution Reaction. ACS Applied Nano Materials, 2022, 5, 1377-1384. In situ Raman spectroscopy across superconducting transition of liquid-gated MoS2. Applied Physics 2825 1.50 Letters, 2022, 120, 053106. One-pot synthesis of 1T MoS₂/MWCNT hybrids for enhanced zinc-ion storage. Nano Futures, 2022, 6, 025001.

#	Article	IF	CITATIONS
2827	A simple sensing platform based on a 1T@2H-MoS ₂ /cMWCNTs composite modified electrode for ultrasensitive detection of illegal Sudan I dye in food samples. Analytical Methods, 2022, 14, 549-559.	1.3	3
2828	One order enhancement of charge carrier relaxation rate by tuning structural and optical properties in annealed cobalt doped MoS ₂ nanosheets. New Journal of Chemistry, 2022, 46, 1877-1895.	1.4	1
2829	Flexible 2D Materials beyond Graphene: Synthesis, Properties, and Applications. Small, 2022, 18, e2105383.	5.2	55
2830	Chalcogen···Chalcogen Bonding in Molybdenum Disulfide, Molybdenum Diselenide and Molybdenum Ditelluride Dimers as Prototypes for a Basic Understanding of the Local Interfacial Chemical Bonding Environment in 2D Layered Transition Metal Dichalcogenides. Inorganics, 2022, 10, 11.	1.2	8
2831	Flatten the Liâ€ion Activation in Perfectly Latticeâ€Matched MXene and 1Tâ€MoS 2 Heterostructures via Chemical Functionalization. Advanced Materials Interfaces, 0, , 2101838.	1.9	5
2832	Construction of a sensitive electrochemical sensor based on hybrid 1ÂT/2H MoS2 nanoflowers anchoring on rGO nanosheets for the voltammetric determination of acetaminophen. Microchemical Journal, 2022, 175, 107129.	2.3	6
2833	Optical and electrical tunability in vertically aligned MoS2 thin films prepared by DC sputtering: Role of film thickness. Vacuum, 2022, 198, 110903.	1.6	8
2834	Functionalized 3D H-SnS2-APTES-PTCA complexes with 3D hollow SnS2 as effective co-reaction accelerator for label-free electrochemiluminescence immunosensor. Sensors and Actuators B: Chemical, 2022, 357, 131439.	4.0	8
2835	The role of sodium dodecyl sulfate mediated hydrothermal synthesis of MoS2 nanosheets for photocatalytic dye degradation and dye-sensitized solar cell application. Chemosphere, 2022, 294, 133725.	4.2	25
2836	Mutual modulation <i>via</i> charge transfer and unpaired electrons of catalytic sites for the superior intrinsic activity of N ₂ reduction: from high-throughput computation assisted with a machine learning perspective. Journal of Materials Chemistry A, 2022, 10, 5470-5478.	5.2	26
2837	Activating and modifying the basal planes of MoS2 for superior NO2 sensing at room temperature. Sensors and Actuators B: Chemical, 2022, 359, 131539.	4.0	15
2838	Fabrication of a Microcavity Prepared by Remote Epitaxy over Monolayer Molybdenum Disulfide. ACS Nano, 2022, 16, 2399-2406.	7.3	13
2839	Impact of Molybdenum Dichalcogenides on the Active and Holeâ€Transport Layers for Perovskite Solar Cells, Xâ€Ray Detectors, and Photodetectors. Small, 2022, 18, e2104216.	5.2	22
2840	Investigation of New 2D Half Metallic Ferromagnetic Materials. Spin, 2022, 12, .	0.6	2
2841	An Effective Route for the Growth of Multilayer MoS2 by Combining Chemical Vapor Deposition and Wet Chemistry. Advances in Condensed Matter Physics, 2022, 2022, 1-7.	0.4	3
2842	Electronic structure and optical properties of non-metallic modified graphene: a first-principles study. Communications in Theoretical Physics, 2022, 74, 035501.	1.1	4
2843	Spectroscopic, structural, and strain-dependent analysis of suspended bulk WSe2 sheets. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2022, 40, 022202.	0.6	2
2844	Enhancement in the sensitivity and selectivity of Cu functionalized MoS2 nanoworm thin films for nitrogen dioxide gas sensor. Materials Research Bulletin, 2022, 150, 111784.	2.7	25

#	Article	IF	CITATIONS
2845	Effect of intravalley and intervalley electron-hole exchange on the nonlinear optical response of monolayer <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mi>MoSe</mml:mi> <mml:mn>2<td>ıl:mn><td>nl:msub></td></td></mml:mn></mml:msub></mml:math>	ıl:mn> <td>nl:msub></td>	nl:msub>
2847	Plasmonic hot-electron assisted phase transformation in 2D-MoS ₂ for the hydrogen evolution reaction: current status and future prospects. Journal of Materials Chemistry A, 2022, 10, 8626-8655.	5.2	24
2848	Fast and efficient electrochemical thinning of ultra-large supported and free-standing MoS ₂ layers on gold surfaces. Nanoscale, 2022, 14, 6811-6821.	2.8	2
2849	A combined experimental and DFT study on the catalysis performance of a Co-doped MoS ₂ monolayer for hydrodesulfurization reaction. New Journal of Chemistry, 2022, 46, 5065-5077.	1.4	2
2850	Emerging investigator series: correlating phase composition and geometric structure to the colloidal stability of 2D MoS ₂ nanomaterials. Environmental Science: Nano, 2022, 9, 1605-1616.	2.2	3
2851	Toward layered MoS ₂ anode for harvesting superior lithium storage. RSC Advances, 2022, 12, 9917-9922.	1.7	0
2852	Promoting Photoelectrochemical Performance Through the Modulation of MoS ₂ Morphology. Korean Journal of Materials Research, 2022, 32, 30-35.	0.1	0
2853	Signal enhancement strategies. , 2022, , 123-168.		0
2854	A review of electronic band structure and low temperature transport based on molybdenum disulfide. Wuli Xuebao/Acta Physica Sinica, 2022, .	0.2	0
2855	Defects in transition metal dichalcogenides. , 2022, , 89-117.		1
2856	Single-layer membranes for organic solvent nanofiltration: a molecular dynamics simulation and comparative experimental study. RSC Advances, 2022, 12, 7189-7198.	1.7	7
2857	Detection and screening of basic amino acids using the luminescence switching of a WS ₂ nanosheet–Ag ₂ O nanoparticle composite. Sensors & Diagnostics, 2022, 1, 485-495.	1.9	3
2858	Layer by Layer Deposition of 1T′â€MoS ₂ for the Hydrogen Evolution Reaction. ChemistrySelect, 2022, 7, .	0.7	1
2859	Tunable metal contacts at layered black-arsenic/metal interface forming during metal deposition for device fabrication. Communications Materials, 2022, 3, .	2.9	1
2860	Au-Implanted TiSe ₂ Nanocrystals with Defect-Controlled Ferromagnetic Ordering: Implications for Spintronic Devices. ACS Applied Nano Materials, 2022, 5, 4072-4081.	2.4	4
2861	Strain modulating electronic band gaps and SQ efficiencies of semiconductor 2D PdQ2 (Q = S, Se) monolayer. Scientific Reports, 2022, 12, 2964.	1.6	19
2862	Highly Enhanced Photoluminescence of Monolayer MoS ₂ in Plasmonic Hybrids with Double-Layer Stacked Ag Nanoparticles. ACS Applied Materials & Interfaces, 2022, 14, 12495-12503.	4.0	18
2863	Enhanced thermoelectric properties of 2H–MoS2 thin film by tuning post sulfurization temperature. Ceramics International, 2022, 48, 18944-18948.	2.3	7

		CITATION RE	EPORT	
#	Article		IF	CITATIONS
2864	2D Materials for Wearable Energy Harvesting. Advanced Materials Technologies, 2022	, 7, .	3.0	16
2865	Black Si Photocathode with a Conformal and Amorphous MoS <i>_x</i> Ca Grown Using Atomic Layer Deposition for Photoelectrochemical Hydrogen Evolution. A Materials & amp; Interfaces, 2022, 14, 14137-14145.		4.0	4
2866	Metallic phase enabling MoS2 nanosheets as an efficient sonosensitizer for photother sonodynamic antibacterial therapy. Journal of Nanobiotechnology, 2022, 20, 136.	mal-enhanced	4.2	38
2867	Host–Guest Intercalation Chemistry for the Synthesis and Modification of Twoâ€Din Transition Metal Dichalcogenides. Advanced Materials, 2022, 34, e2200425.	nensional	11.1	14
2868	Versatile band structure and electron—phonon coupling in layered PtSe2 with strong interaction. Nano Research, 2022, 15, 6613-6619.	; interlayer	5.8	8
2869	Investigation of visible light photocatalytic degradation of organic dyes by MoS2 nano synthesized by different routes. Bulletin of Materials Science, 2022, 45, 1.	sheets	0.8	8
2870	In-situ STS studies and first principles calculations on bare and Sn adsorbed UHV exfoli WS ₂ layers. IOP Conference Series: Materials Science and Engineering, 20	ated 022, 1221, 012046.	0.3	2
2871	Ionic Liquid Crystals Confining Ultrathin MoS ₂ Nanosheets: A High-Conce Stable Aqueous Dispersion. ACS Sustainable Chemistry and Engineering, 2022, 10, 418		3.2	27
2872	High Performance Semiconducting Nanosheets <i>via</i> a Scalable Powder-Based Ele Exfoliation Technique. ACS Nano, 2022, 16, 5719-5730.	ctrochemical	7.3	20
2873	Exfoliation of MoS ₂ Nanosheets Enabled by a Redox-Potential-Matched C Lithiation Reaction. Nano Letters, 2022, 22, 2956-2963.	hemical	4.5	35
2874	Dimensionality-dependent MoS2 toward efficient photocatalytic hydrogen evolution: f to modifications in doping, surface and heterojunction engineering. Materials Today Na 100191.		2.3	15
2875	Facile synthesis of molybdenum disulfide adorned heteroatom-doped porous carbon fo storage applications. Journal of Nanostructure in Chemistry, 2023, 13, 545-561.	or energy	5.3	5
2876	Controlling the Hierarchical Structures of Molybdenum Disulfide Nanomaterials via Sel Supramolecular Polymers in Water. Chemistry of Materials, 2022, 34, 3333-3345.	f-Assembly of	3.2	2
2877	Hybrid MoS _{2+<i>x</i>} Nanosheet/Nanocarbon Heterostructures for Lithin ACS Applied Nano Materials, 2022, 5, 5103-5118.	um-Ion Batteries.	2.4	7
2878	Electron Doping of Semiconducting MoS ₂ Nanosheets by Silver or Gold N Langmuir, 2022, 38, 4378-4388.	lanoclusters.	1.6	3
2879	Tuning the Chemical and Mechanical Properties of Conductive MoS ₂ Thir Modification with Aryl Diazonium Salts. Langmuir, 2022, 38, 3666-3675.	Films by Surface	1.6	4
2880	Broadband, Ultra-High-Responsive Monolayer MoS ₂ /SnS ₂ Q Mixed-Dimensional Photodetector. ACS Applied Materials & Interfaces, 2022, 14,		4.0	40
2881	Computational Investigation of Orderly Doped Transition Metal Dichalcogenides: Impli Nanoscale Optoelectronic Devices. ACS Applied Nano Materials, 2022, 5, 3824-3831.	cations for	2.4	5

#	Article	IF	CITATIONS
2882	Direct Synthesis of Stable 1Tâ€MoS ₂ Doped with Ni Single Atoms for Water Splitting in Alkaline Media. Small, 2022, 18, e2107238.	5.2	58
2883	SLM-processed MoS2/Mo2S3 nanocomposite for energy conversion/storage applications. Scientific Reports, 2022, 12, 5030.	1.6	9
2884	Theoretical study of M ₆ X ₂ and M ₆ XX′ structure (M = Au, Ag;) Tj ET properties under biaxial strain. Chinese Physics B, 2022, 31, 097101.	Qq0 0 0 r 0.7	gBT /Overloc 2
2885	Multifunctional Logicâ€inâ€Memory Cell Based on Waferâ€Scale MoS ₂ Thin Films Prepared by Atomic Layer Deposition. Physica Status Solidi - Rapid Research Letters, 2022, 16, .	1.2	4
2886	Highly ordered mesoporous 1T' MoTe2/m-SiO2 composite as efficient microwave absorber. Microporous and Mesoporous Materials, 2022, , 111894.	2.2	3
2887	Effect of substrate and substrate temperature on the deposition of MoS2 by radio frequency magnetron sputtering. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2022, 40, .	0.9	3
2888	Ultra-High Responsivity and Enhanced Trap Assisted Charge Transfer by utilizing Ti3C2TX(MXene) as a Transport Layer for ReS2 based Flexible Broadband Photodetector: A better Alternative to Graphene. FlatChem, 2022, 33, 100363.	2.8	18
2889	Covalent treatment of carbon fibre with functionalized MoS2 nanosheets using thiol-ene click chemistry: The improvement of interface in multiscale epoxy composites. Composites Part B: Engineering, 2022, 236, 109821.	5.9	7
2890	Interface transition from Ohmic to Schottky contact in Ti3X2/MoS2 (X= B, C, N): Insights from first-principles. Surfaces and Interfaces, 2022, 30, 101823.	1.5	4
2891	Recent advances in membrane-enabled water desalination by 2D frameworks: Graphene and beyond. Desalination, 2022, 531, 115684.	4.0	50
2892	Improved efficiency of organic solar cell using MoS2 doped poly(3,4-ethylenedioxythiophene)(PEDOT) as hole transport layer. Applied Surface Science, 2022, 590, 153042.	3.1	8
2893	2D-Mo3S4 phase as promising contact for MoS2. Applied Surface Science, 2022, 589, 152971.	3.1	6
2894	Dual roles of MoS2 nanosheets in advanced oxidation Processes: Activating permonosulfate and quenching radicals. Chemical Engineering Journal, 2022, 440, 135866.	6.6	24
2895	Ultrafast interfacial charge evolution of the Type-II cadmium Sulfide/Molybdenum disulfide heterostructure for photocatalytic hydrogen production. Journal of Colloid and Interface Science, 2022, 619, 246-256.	5.0	23
2896	Investigation of the Photophysical Properties of the HgI2@mSiO2 Nanocomposite. Physics of the Solid State, 2021, 63, 1311-1316.	0.2	0
2897	The Effect of Compressive and Tensile Strains on the Electron Structure of Phosphorene. Physics of the Solid State, 2021, 63, 1690-1694.	0.2	0
2898	Enhanced Li Adsorption in Singleâ€Walled Blue Phosphorus Nanotubes by B, C, N, and Siâ€Doping. Physica Status Solidi (B): Basic Research, 2022, 259, .	0.7	1
2899	Characterization of Vertically Aligned MoS ₂ Thin Film on Mo Electrode for Hydrogen Evolution Catalyst. Nihon Enerugi Gakkaishi/Journal of the Japan Institute of Energy, 2021, 100, 283-287.	0.2	2

#	Article	IF	CITATIONS
2900	Progressions in cathodic catalysts for oxygen reduction and hydrogen evolution in bioelectrochemical systems: Molybdenum as the next-generation catalyst. Catalysis Reviews - Science and Engineering, 2023, 65, 986-1078.	5.7	3
2901	Growth of MoS ₂ –Nb-doped MoS ₂ lateral homojunctions: A monolayer <i>p</i> – <i>n</i> diode by substitutional doping. APL Materials, 2021, 9, 121115.	2.2	5
2902	Halide Perovskite Nanocrystalâ€Enabled Stabilization of Transition Metal Dichalcogenide Nanosheets. Small, 2022, 18, e2106035.	5.2	7
2903	Oxygenic Enrichment in Hybrid Ruthenium Sulfide Nanoclusters for an Optimized Photothermal Effect. ACS Applied Materials & Interfaces, 2021, 13, 60351-60361.	4.0	19
2904	Surface Functionalization for Magnetic Property Tuning of Nonmagnetic 2D Materials. Advanced Materials Interfaces, 2022, 9, .	1.9	12
2905	Improving Fracture Toughness of Tetrafunctional Epoxy with Functionalized 2D Molybdenum Disulfide Nanosheets. Polymers, 2021, 13, 4440.	2.0	9
2907	Spectral properties of polycrystalline MoS ₂ films grown by RF magnetron sputtering. Journal of Applied Physics, 2021, 130, 224302.	1.1	1
2908	Sonocatalytic Degradation of Methylene Blue by MoS2-RGO Nanocomposites. Russian Journal of Physical Chemistry A, 2021, 95, 2530-2537.	0.1	4
2909	Synthesis and Photoluminescence Properties of MoS ₂ /Graphene Heterostructure by Liquid-Phase Exfoliation. ACS Omega, 2022, 7, 629-637.	1.6	9
2910	Oxide Scale Sublimation Chemical Vapor Deposition for Controllable Growth of Monolayer MoS ₂ Crystals. Small Methods, 2022, 6, e2101107.	4.6	7
2911	Charge transport mechanisms in inkjet-printed thin-film transistors based on two-dimensional materials. Nature Electronics, 2021, 4, 893-905.	13.1	52
2912	Plasmonic Photonic Crystal Mirror for Long-Lived Interlayer Exciton Generation. ACS Photonics, 2021, 8, 3619-3626.	3.2	5
2913	Creating Edge Sites within the Basal Plane of a MoS ₂ Catalyst for Substantially Enhanced Hydrodeoxygenation Activity. ACS Catalysis, 2022, 12, 8-17.	5.5	50
2914	Achieving ultra-dispersed 1T-Co-MoS ₂ @HMCS <i>via</i> space-confined engineering for highly efficient hydrogen evolution in the universal pH range. Inorganic Chemistry Frontiers, 2022, 9, 2617-2627.	3.0	5
2915	Unconventional optical properties of 2D janus SMoSe induced by structural asymmetry. 2D Materials, 0, , .	2.0	1
2916	Modifications of optical, structural, chemical and morphological properties of molybdenum disulfide (MoS2) sputtered thin films under high dose gamma radiation. Radiation Physics and Chemistry, 2022, 197, 110144.	1.4	6
2917	Sustainable Synthesis of N/S-Doped Porous Carbon from Waste-Biomass as Electroactive Material for Energy Harvesting. Catalysts, 2022, 12, 436.	1.6	13
2918	Isopropanol solvent-treated MoS2 nanosheets from liquid phase exfoliation and their applications to solution-processed anode buffer layer of organic light-emitting diode. Journal of Materials Science: Materials in Electronics, 2022, 33, 12137-12146.	1.1	3

#	Article	IF	CITATIONS
2919	Tip-Enhanced Raman Spectroscopy and Tip-Enhanced Photoluminescence of MoS ₂ Flakes Decorated with Gold Nanoparticles. Journal of Physical Chemistry C, 0, , .	1.5	7
2920	Remote Plasma-Induced Synthesis of Self-Assembled MoS2/Carbon Nanowall Nanocomposites and Their Application as High-Performance Active Materials for Supercapacitors. Nanomaterials, 2022, 12, 1338.	1.9	4
2921	Improved Ordering of Quasi-Two-Dimensional MoS ₂ via an Amorphous-to-Crystal Transition Initiated from Amorphous Sulfur-Rich MoS _{2+<i>x</i>} . Crystal Growth and Design, 2022, 22, 3072-3079.	1.4	7
2922	Density Functional Theoryâ€Based Calculations for 2D Hexagonal Lanthanide Metals. Advanced Theory and Simulations, 0, , 2200057.	1.3	5
2923	Novel Electrochemical Sensor for the Determination of Bisphenol A Using a Molybdenum(IV) Sulfide Quantum Dots Polysodium Styrene Sulfonate Functionalized Reduced Graphene Oxide Modified Glassy Carbon Electrode (GCE) by Differential Pulse Voltammetry (DPV). Analytical Letters, 2022, 55, 2604-2620.	1.0	2
2924	Impact of sulfhydryl ligands on the transformation of silver ions by molybdenum disulfide and their combined toxicity to freshwater algae. Journal of Hazardous Materials, 2022, 435, 128953.	6.5	5
2925	Highly efficient removal and sequestration of Cr(VI) in confined MoS2 interlayer Nanochannels: Performance and mechanism. Separation and Purification Technology, 2022, 293, 121104.	3.9	4
2928	Structural, Thermodynamic, and Transport Properties of the Small-Gap Two-Dimensional Metal–Organic Kagomé Materials Cu ₃ (hexaiminobenzene) ₂ and Ni ₃ (hexaiminobenzene) ₂ . Inorganic Chemistry, 2022, 61, 6480-6487.	1.9	4
2929	Recent trends in covalent functionalization of 2D materials. Physical Chemistry Chemical Physics, 2022, 24, 10684-10711.	1.3	20
2930	Tuning phase compositions of MoS ₂ nanomaterials for enhanced heavy metal removal: performance and mechanism. Physical Chemistry Chemical Physics, 2022, 24, 13305-13316.	1.3	6
2931	Regulating the electronic and magnetic properties of 1T′-ReS ₂ by fabricating nanoribbons and transition-metal doping: a theoretical study. Nanoscale, 2022, 14, 8454-8462.	2.8	16
2932	Lateral layered semiconductor multijunctions for novel electronic devices. Chemical Society Reviews, 2022, 51, 4000-4022.	18.7	12
2933	Significant pressure-induced enhancement of photoelectric properties of WS ₂ in the near-infrared region. Materials Research Letters, 2022, 10, 547-555.	4.1	8
2934	Sulfur Vacancy-Rich MoS ₂ -Catalyzed Hydrodeoxygenation of Lactic Acid to Biopropionic Acid. ACS Sustainable Chemistry and Engineering, 2022, 10, 5463-5475.	3.2	18
2935	Hexagonal boron phosphide and boron arsenide van der Waals heterostructure as high-efficiency solar cell. Chinese Physics B, 2022, 31, 097301.	0.7	2
2936	Single-Atom Tailoring of Two-Dimensional Atomic Crystals Enables Highly Efficient Detection and Pattern Recognition of Chemical Vapors. ACS Sensors, 2022, 7, 1533-1543.	4.0	16
2937	Theory of Excitons in Atomically Thin Semiconductors: Tight-Binding Approach. Nanomaterials, 2022, 12, 1582.	1.9	7
2938	Selective production of 2-(tert-butyl)-3-methylphenol from depolymerization of enzymatic hydrolysis lignin with MoS2 catalyst. Catalysis Today, 2023, 408, 194-203.	2.2	4

#	Article	IF	CITATIONS
2939	Revisiting Solution-Based Processing of van der Waals Layered Materials for Electronics. ACS Materials Au, 2022, 2, 382-393.	2.6	9
2940	A Gapped Phase in Semimetallic T _d â€WTe ₂ Induced by Lithium Intercalation. Advanced Materials, 2022, 34, e2200861.	11.1	7
2941	Boosting the photovoltaic performance of MoS2/Si heterojunction solar cells with thiourea-doped MoS2 films. , 2022, 167, 207241.		5
2942	Morphotaxy of Layered van der Waals Materials. ACS Nano, 2022, 16, 7144-7167.	7.3	8
2943	Metallic Phase Transition Metal Dichalcogenide Quantum Dots as Promising Bio-Imaging Materials. Nanomaterials, 2022, 12, 1645.	1.9	7
2944	2,5-Diformylfuran production by photocatalytic selective oxidation of 5-hydroxymethylfurfural in water using MoS2/CdIn2S4 flower-like heterojunctions. Chinese Journal of Chemical Engineering, 2023, 54, 180-191.	1.7	15
2945	Hybridization of iron phthalocyanine and MoS2 for high-efficiency and durable oxygen reduction reaction. Journal of Energy Chemistry, 2022, 71, 528-538.	7.1	10
2946	Mitigation Effects and Associated Mechanisms of Environmentally Relevant Thiols on the Phytotoxicity of Molybdenum Disulfide Nanosheets. Environmental Science & Technology, 2022, 56, 9556-9568.	4.6	9
2947	Twoâ€Dimensional Materials and their Heteroâ€Superlattices for Photocatalytic Hydrogen Evolution Reaction. ChemNanoMat, 2022, 8, .	1.5	3
2949	False luminescence of molybdenum disulfide quantum dots from carbon dots. Chemical Communications, 2022, 58, 7180-7183.	2.2	2
2950	Li+ additive accelerated structural transformation of MoS2 cathodes for performance-enhancing rechargeable Mg2+ batteries. Materials Today Energy, 2022, 27, 101047.	2.5	5
2951	MoS2 as a Co-Catalyst for Photocatalytic Hydrogen Production: A Mini Review. Molecules, 2022, 27, 3289.	1.7	24
2952	Effect of manganese incorporation on the excitonic recombination dynamics in monolayer MoS ₂ . Journal of Applied Physics, 2022, 131, 205306.	1.1	0
2953	Synthesis, Characterization, and Typical Application of Nitrogenâ€Doped MoS ₂ Nanosheets Based on Pulsed Laser Ablation in Liquid Nitrogen. Physica Status Solidi (A) Applications and Materials Science, 2022, 219, .	0.8	1
2954	Nano-bio interactions of 2D molybdenum disulfide. Advanced Drug Delivery Reviews, 2022, 187, 114361.	6.6	30
2955	A Review on MX2 (MÂ=ÂMo, W and XÂ=ÂS, Se) layered material for opto-electronic devices. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2022, 13, 023001.	0.7	5
2956	Recent advances in molybdenum disulfide-based advanced oxidation processes. , 2022, , .		3
2957	Wafer-scale solution-processed 2D material analog resistive memory array for memory-based computing. Nature Communications, 2022, 13, .	5.8	60

#	Article	IF	CITATIONS
2958	Chemically exfoliated inorganic nanosheets for nanoelectronics. Applied Physics Reviews, 2022, 9, .	5.5	15
2959	Boosting the performance of single-atom catalysts via external electric field polarization. Nature Communications, 2022, 13, .	5.8	52
2960	Functionalization of 2D MoS2 Nanosheets with Various Metal and Metal Oxide Nanostructures: Their Properties and Application in Electrochemical Sensors. Biosensors, 2022, 12, 386.	2.3	18
2961	MoS2 quantum dots as fluorescent probe for methotrexate detection. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2022, 279, 121443.	2.0	5
2963	Site-selective growth of two-dimensional materials: strategies and applications. Nanoscale, 2022, 14, 9946-9962.	2.8	2
2964	Engineering van der Waals Materials for Advanced Metaphotonics. Chemical Reviews, 2022, 122, 15204-15355.	23.0	33
2965	MoS2 nanosheet loaded Fe2O3 @ carbon cloth flexible composite electrode material for quasi-solid asymmetric supercapacitors. Journal of Electroanalytical Chemistry, 2022, 919, 116556.	1.9	7
2966	Colloidal MoS2 quantum dots for high-performance low power resistive memory devices with excellent temperature stability. Applied Physics Letters, 2022, 120, .	1.5	8
2967	A Brief Review of the Chemical Structure and Raman Spectrum of Mono- and Multilayer Molybdenum- and Tungsten-Based Transition Metal Dichalcogenides. Journal of Electronic Materials, 2022, 51, 4808-4815.	1.0	1
2968	1D van der Waals Nb ₂ Pd ₃ Se ₈ â€Based nâ€Type Fieldâ€Effect Transistors Prepared by Liquid Phase Exfoliation. Advanced Materials Interfaces, 0, , 2200620.	1.9	1
2969	Solvent-assisted exfoliation for high-quality molybdenum disulfide nanoflakes and relevant field-effect transistors. Journal of Materials Science, 2022, 57, 11215-11225.	1.7	2
2970	Allâ€Solidâ€State Li–S Batteries Enhanced by Interface StabilizationÂand Reaction Kinetics Promotion through 2D Transition Metal Sulfides. Advanced Materials Interfaces, 2022, 9, .	1.9	10
2971	2D Material and Perovskite Heterostructure for Optoelectronic Applications. Nanomaterials, 2022, 12, 2100.	1.9	13
2972	Recent Development of Morphologyâ€Controlled Hybrid Nanomaterials for Triboelectric Nanogenerator: A Review. Chemical Record, 2022, 22, .	2.9	12
2973	Ether-Induced Phase Transition toward Stabilized Layered Structure of MoS ₂ with Extraordinary Sodium Storage Performance. , 2022, 4, 1341-1349.		11
2974	Fast electrochemical reduction behavior and kinetics of nanoflower-like MoS2-modified titanium plate cathode to oxidized mercury. Journal of Environmental Chemical Engineering, 2022, 10, 108107.	3.3	3
2975	Insights into <scp> MoS ₂ </scp> and its composites for dyeâ€sensitized solar cells. International Journal of Energy Research, 0, , .	2.2	1
2976	Defectâ€Rich Molybdenum Sulfide Quantum Dots for Amplified Photoluminescence and Photonicsâ€Driven Reactive Oxygen Species Generation. Advanced Materials, 2022, 34, .	11.1	23

#	Article	IF	CITATIONS
2977	van der Waals epitaxy of transition metal dichalcogenides <i>via</i> molecular beam epitaxy: looking back and moving forward. Materials Advances, 2022, 3, 6142-6156.	2.6	13
2978	Theoretical Advances in Understanding and Designing the Active Sites for Hydrogen Evolution Reaction. ACS Catalysis, 2022, 12, 8404-8433.	5.5	72
2979	Interfacial properties of 2D WS2 on SiO2 substrate from X-ray photoelectron spectroscopy and first-principles calculations. Frontiers of Physics, 2022, 17, .	2.4	3
2980	Large and Uniform Single Crystals of MoS ₂ Monolayers for ppb-Level NO ₂ Sensing. ACS Applied Nano Materials, 2022, 5, 9415-9426.	2.4	44
2981	Two-dimensional diamonds from sp2-to-sp3 phase transitions. Nature Reviews Materials, 2022, 7, 814-832.	23.3	28
2982	Boosting Highly Active Exposed Mo Atoms by Fine-Tuning S-Vacancies of MoS ₂ -Based Materials for Efficient Hydrogen Evolution. ACS Applied Materials & Interfaces, 2022, 14, 30746-30759.	4.0	14
2983	Synthesis of 1T WSe ₂ on an Oxygen-Containing Substrate Using a Single Precursor. ACS Nano, 2022, 16, 11059-11065.	7.3	9
2984	Atomicâ€Level Design of Active Site on Twoâ€Dimensional MoS ₂ toward Efficient Hydrogen Evolution: Experiment, Theory, and Artificial Intelligence Modelling. Advanced Functional Materials, 2022, 32, .	7.8	53
2985	Chemical insights into two-dimensional quantum materials. Matter, 2022, 5, 2168-2189.	5.0	2
2986	Single atom doping in 2D layered MoS2 from a periodic table perspective. Surface Science Reports, 2022, 77, 100567.	3.8	20
2987	Transition metal dichalcogenides (TMDCs) heterostructures: Optoelectric properties. Frontiers of Physics, 2022, 17, .	2.4	25
2988	Metal Cocatalyst Dictates Electron Transfer in Ag-Decorated MoS ₂ Nanosheets. Journal of Physical Chemistry C, 2022, 126, 11907-11914.	1.5	3
2989	2D Magnetic Heterostructures and Emergent Spintronic Devices. Advanced Electronic Materials, 2022, 8, .	2.6	16
2990	Fabrication of High-Performance Solar Cells and X-ray Detectors Using MoX ₂ @CNT Nanocomposite-Tuned Perovskite Layers. ACS Applied Materials & Interfaces, 2022, 14, 33626-33640.	4.0	7
2991	Photodetectors based on two-dimensional MoS2 and its assembled heterostructures. , 2022, 1, 100017.		25
2992	Feasible Structure Manipulation of Vanadium Selenide into VSe2 on Au(111). Nanomaterials, 2022, 12, 2518.	1.9	2
2993	Fabrication of asymmetric supercapacitors using molybdenum dichalcogenide nanoarray structures. International Journal of Energy Research, 2022, 46, 18410-18425.	2.2	11
2994	Virtual Simulation Guiding High-Risk Undergraduate Experiments about Chemical Synthesis of MoS ₂ Monolayers via a Schlenk Line. Journal of Chemical Education, 0, , .	1.1	2

# 2995	ARTICLE Molecularly imprinted sensor based on 1T/2H MoS2 and MWCNTs for voltammetric detection of acetaminophen. Sensors and Actuators A: Physical, 2022, 345, 113772.	IF 2.0	Citations
2996	From ionâ€sensitive fieldâ€effect transistor to 2D materials fieldâ€effectâ€ŧransistor biosensors. Electrochemical Science Advances, 2023, 3, .	1.2	5
2997	Strain-Engineered Piezotronic Effects in Flexible Monolayer Mos2 Continuous Thin Films. SSRN Electronic Journal, 0, , .	0.4	0
2998	CHAPTER 3. Synthesis of Two-dimensional Hybrid Materials, Unique Properties, and Challenges. , 2022, , 64-125.		0
2999	Two-dimensional Materials based Printed Photodetectors. , 2022, 2, 160-175.		0
3000	Recent Progress in Phase Regulation, Functionalization, and Biosensing Applications of Polyphase MoS ₂ . Small, 2022, 18, .	5.2	17
3001	High-Performance Broad-Band Photodetection Based on Graphene–MoS _{2<i>x</i>} Se _{2(1–<i>x</i>)} Alloy Engineered Phototransistors. ACS Applied Materials & Interfaces, 2022, 14, 34875-34883.	4.0	12
3002	A prospectus for thickness dependent electronic properties of twoâ€dimensional metals using density functional theory calculation. International Journal of Quantum Chemistry, 2022, 122, .	1.0	3
3003	Colloidal Continuous Injection Synthesis of Fluorescent MoX ₂ (X = S, Se) Nanosheets as a First Step Toward Photonic Applications. ACS Applied Nano Materials, 2022, 5, 10311-10320.	2.4	9
3004	Transition Metal Dichalcogenides (TMDs) for Photo/Electro Chemical Energy Based Applications. Energy Technology, 0, , .	1.8	1
3005	Research progress on improving the performance of MoS ₂ photodetector. Journal of Optics (United Kingdom), 2022, 24, 104003.	1.0	4
3006	Photo/Electrocatalytic Hydrogen Peroxide Production by Manganese and Iron Porphyrin/Molybdenum Disulfide Nanoensembles. Small, 2022, 18, .	5.2	6
3007	Atomic Layer Engineering of TMDs by Modulation of Top Chalcogen Atoms: For Electrical Contact and Chemical Doping. ACS Applied Electronic Materials, 2022, 4, 3794-3800.	2.0	1
3008	Direct growth of monolayer MoS ₂ on nanostructured silicon waveguides. Nanophotonics, 2022, 11, 4397-4408.	2.9	6
3009	Facile and scalable preparation of 2D-MoS2/graphene oxide composite for supercapacitor. lonics, 2022, 28, 5223-5232.	1.2	1
3010	Ammonium Hydroxide-Assisted Growth of Large-Scale Single-Crystalline Molybdenum Disulfide. Materials Science Forum, 0, 1067, 121-129.	0.3	0
3011	The nature of K-induced 2H and 1T'-MoS2 species and their phase transition behavior for the synthesis of methanethiol (CH3SH). IScience, 2022, 25, 104999.	1.9	5
3012	MoS ₂ and MoSe ₂ Nanosheets as Triggers for Glutathione Dimerization in Solution and Glutathione Oxidation in Live Cells. ACS Applied Nano Materials, 2022, 5, 10583-10595.	2.4	5

#	Article	IF	CITATIONS
3013	Intrinsic dipole-induced self-doping in Janus MXY-based (M = Mo, W; X = S; Y = Se, Te) p–n junctions. Journal Physics D: Applied Physics, 2022, 55, 435303.	1.3	7
3014	A novel 0D/2D/2D hetero-layered nitrogen-doped graphene/MoS2 architecture for catalytic hydrogen evolution reaction. Fuel, 2022, 328, 125538.	3.4	7
3015	NaCl-Assisted Chemical Vapor Deposition of Large-Domain Bilayer MoS2 on Soda-Lime Glass. Nanomaterials, 2022, 12, 2913.	1.9	2
3016	Magnetic Field Alignment and Optical Anisotropy of MoS ₂ Nanosheets Dispersed in a Liquid Crystal Polymer. Journal of Physical Chemistry Letters, 2022, 13, 7994-8001.	2.1	2
3017	Experimental Investigation of a Thermally Responsive Actuator Based on Metallic Molybdenum Disulfide: A Conceptual Analysis. Journal of Thermal Science and Engineering Applications, 2022, 14, .	0.8	0
3018	One-Step Synthesis of 1T MoS ₂ Hierarchical Nanospheres for Electrocatalytic Hydrogen Evolution. ACS Applied Energy Materials, 2022, 5, 11705-11712.	2.5	8
3019	A multifunctional nanostructured molybdenum disulphide (MoS ₂): an overview on synthesis, structural features, and potential applications. Materials Research Innovations, 2023, 27, 177-193.	1.0	6
3020	Phase Transformation of 1T′-MoS ₂ Induced by Electrochemical Prelithiation for Lithium-Ion Storage. ACS Applied Energy Materials, 2022, 5, 11292-11303.	2.5	19
3021	A review of heteroatomic doped two-dimensional materials as electrocatalysts for hydrogen evolution reaction. International Journal of Hydrogen Energy, 2022, 47, 29698-29729.	3.8	14
3022	Interface Engineering-Induced 1T-MoS2/NiS Heterostructure for Efficient Hydrogen Evolution Reaction. Catalysts, 2022, 12, 947.	1.6	10
3023	Advances in Two-Dimensional Materials for Optoelectronics Applications. Crystals, 2022, 12, 1087.	1.0	18
3024	Charge Transfer in Metallocene Intercalated Transition Metal Dichalcogenides. Journal of Physical Chemistry C, 2022, 126, 13994-14002.	1.5	4
3025	Effect of different dielectrics on performance of sub-5.1Ânm blue phosphorus Schottky barrier field-effect transistor from quantum transport simulation. Current Applied Physics, 2022, 43, 29-35.	1.1	1
3026	A universal substrate for the nanoscale investigation of two-dimensional materials. Applied Surface Science, 2022, 604, 154585.	3.1	3
3027	Probing the interfacial interactions of N719 with MoS2 using intrinsic surface enhanced Raman scattering. Applied Surface Science, 2022, 604, 154581.	3.1	3
3028	A facile approach towards Wrinkle-Free transfer of 2D-MoS2 films via hydrophilic Si3N4 substrate. Applied Surface Science, 2022, 604, 154523.	3.1	2
3029	1T–2H MoS ₂ /Ti ₃ C ₂ MXene Heterostructure with High-Rate and High-Capacity Performance for Sodium-Ion Batteries. Energy & Fuels, 2022, 36, 11234-11244.	2.5	10
3030	A comprehensive review of synthesis, structure, properties, and functionalization of MoS2; emphasis on drug delivery, photothermal therapy, and tissue engineering applications. Journal of Drug Delivery Science and Technology, 2022, 76, 103767.	1.4	22

#	Article	IF	CITATIONS
3031	Nanoarchitectured assembly and surface of two-dimensional (2D) transition metal dichalcogenides (TMDCs) for cancer therapy. Coordination Chemistry Reviews, 2022, 472, 214765.	9.5	15
3032	(1T/2H)-MoS2/CoFe2O4 heterojunctions with a unique grape bunch structure for photocatalysis of organic dyes driven by visible light. Applied Surface Science, 2022, 605, 154751.	3.1	12
3033	The role of transformation in the risks of chemically exfoliated molybdenum disulfide nanosheets to the aquatic environment. Journal of Environmental Management, 2022, 324, 116278.	3.8	4
3034	Cotton fabric functionalized with nanostructured MoS2: Efficient adsorbent for removal of Pb, Hg, Cd and Cr from water. Journal of Environmental Chemical Engineering, 2022, 10, 108583.	3.3	5
3035	Designing a 3D-MoS2 nanocomposite based on the Donnan membrane effect for superselective Pb(II) removal from water. Chemical Engineering Journal, 2023, 452, 139101.	6.6	16
3036	MoS2 nanosheets on plasma-nitrogen-doped carbon cloth for high-performance flexible supercapacitors. Journal of Colloid and Interface Science, 2023, 629, 227-237.	5.0	23
3037	Pectin-assisted one-pot synthesis of MoS ₂ nanocomposites for resistive switching memory application. Nanoscale, 2022, 14, 12129-12135.	2.8	2
3038	High-performance 2D/3D hybrid dimensional p–n heterojunction solar cell with reduced recombination rate by an interfacial layer. Journal of Materials Chemistry C, 2022, 10, 14982-14992.	2.7	5
3039	Effect of substrate temperature on structural, optical, and photoelectrochemical properties of Tl ₂ S thin films fabricated using AACVD technique. Main Group Metal Chemistry, 2022, 45, 178-189.	0.6	3
3040	Mechanical, electronic and catalytic properties of 2H-1T' MoS2 heterointerfaces. Physical Chemistry Chemical Physics, 0, , .	1.3	0
3041	A cobalt-doped WS ₂ /WO ₃ nanocomposite electrocatalyst for the hydrogen evolution reaction in acidic and alkaline media. New Journal of Chemistry, 2022, 46, 20102-20107.	1.4	9
3042	State-of-the-art advancements of atomically thin two-dimensional photocatalysts for energy conversion. Chemical Communications, 2022, 58, 9594-9613.	2.2	10
3043	Functionalized 2D materials. , 2022, , 127-155.		0
3044	Band alignment of ZnO-based nanorod arrays for enhanced visible light photocatalytic performance. RSC Advances, 2022, 12, 27189-27198.	1.7	7
3045	Highly stable 1T-MoS ₂ by magneto-hydrothermal synthesis with Ru modification for efficient hydrogen evolution reaction. Journal of Materials Chemistry A, 2022, 10, 21013-21020.	5.2	17
3046	Morphology-controlled synthesis of MoS ₂ using citric acid as a complexing agent and self-assembly inducer for high electrochemical performance. RSC Advances, 2022, 12, 28463-28472.	1.7	7
3047	Anomalous electrical conductivity change in MoS2 during the transition from the amorphous to crystalline phase. Ceramics International, 2023, 49, 2619-2625.	2.3	8
3048	Germaniumâ€based monoelemental and binary twoâ€dimensional materials: Theoretical and experimental investigations and promising applications. InformaÄnÃ-Materiály, 2022, 4, .	8.5	20

#	Article	IF	Citations
3049	Cobalt porphyrin/molybdenum disulfide nanoensembles for light-assisted electrocatalytic water oxidation and selective hydrogen peroxide production. 2D Materials, 2023, 10, 014007.	2.0	3
3050	Study of MoS2 Deposited by ALD on c-Si, Towards the Development of MoS2/c-Si Heterojunction Photovoltaics. Crystals, 2022, 12, 1363.	1.0	2
3051	Room-Temperature Deep-UV Photoluminescence from Low-Dimensional Hexagonal Boron Nitride Prepared Using a Facile Synthesis. ACS Omega, 2022, 7, 33926-33933.	1.6	2
3052	Interface Capture Effect Printing Atomicâ€Thick 2D Semiconductor Thin Films. Advanced Materials, 2022, 34, .	11.1	9
3053	The Structural Phase Effect of MoS ₂ in Controlling the Reaction Selectivity between Electrocatalytic Hydrogenation and Dimerization of Furfural. ACS Catalysis, 2022, 12, 11340-11354.	5.5	20
3054	Impact of histidine amino acid on 2D molybdenum disulfide catalytic properties for hydrogen evolution reaction. Journal of Applied Electrochemistry, 2023, 53, 85-94.	1.5	1
3055	Heterointerface effects of lithium intercalation and diffusion in van der Waals heterostructures. Physical Review Materials, 2022, 6, .	0.9	4
3056	Graphene and Beyond: Recent Advances in Two-Dimensional Materials Synthesis, Properties, and Devices. ACS Nanoscience Au, 2022, 2, 450-485.	2.0	27
3057	Inkjetâ€Printed, Largeâ€Area, Flexible Photodetector Array Based on Electrochemical Exfoliated MoS ₂ Film for Photoimaging. Advanced Engineering Materials, 2023, 25, .	1.6	12
3058	Enhanced spatial charge separation at surface & interface via GO/MoS2/Ag3PO4 ternary Z-scheme heterostructure for nitrogen photo-fixation. Applied Catalysis A: General, 2022, 646, 118850.	2.2	7
3059	Tuning Schottky Barrier of Single-Layer MoS2 Field-Effect Transistors with Graphene Electrodes. Nanomaterials, 2022, 12, 3038.	1.9	3
3060	Boosting Electrocatalytic Reduction of CO ₂ to HCOOH on Ni Single Atom Anchored WTe ₂ Monolayer. Small, 2022, 18, .	5.2	37
3061	Chemoselective Hydrogenation of Nitro Compounds by MoS ₂ via Introduction of Independent Active Hydrogen-Donating Sites. ACS Catalysis, 2022, 12, 12170-12178.	5.5	7
3062	xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si43.svg" display="inline" id="d1e253"> <mml:msub><mml:mrow /><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:mrow </mml:msub> nanoflakes based label-free electrochemical biosensor for explicit silver ion detection at sub-pico molar level.	2.3	7
3063	Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 655, 130241. Magnesium/Lithium Hybrid Batteries Based on SnS ₂ -MoS ₂ with Reversible Conversion Reactions. Energy Material Advances, 2022, 2022, .	4.7	2
3064	Green approach to synthesize various MoS2 nanoparticles via hydrothermal process. Bulletin of Materials Science, 2022, 45, .	0.8	3
3065	<scp>2Dâ€TMDs</scp> based electrode material for supercapacitor applications. International Journal of Energy Research, 2022, 46, 22336-22364.	2.2	37
3066	Robust room-temperature ferromagnetism induced by defect engineering in monolayer MoS2. Applied Surface Science, 2023, 608, 155220.	3.1	3

#	Article	IF	CITATIONS
3067	Optical characteristics of bilayer decoupling MoS ₂ grown by the CVD method. Optics Express, 2022, 30, 38492.	1.7	0
3068	The effect of Fe3O4 nanoparticles on structural, optical, and thermal properties MoS2 nanoflakes. Journal of Materials Science: Materials in Electronics, 2022, 33, 25153-25162.	1.1	3
3069	Light-driven proton transmembrane transport enabled by bio-semiconductor 2D membrane: A general peptide-induced WS2 band shifting strategy. Biosensors and Bioelectronics, 2022, 218, 114741.	5.3	5
3070	Strain-engineered piezotronic effects in flexible monolayer MoS2 continuous thin films. Nano Energy, 2022, 103, 107863.	8.2	6
3071	First-principles study on the structural properties of 2D MXene SnSiGeN ₄ and its electronic properties under the effects of strain and an external electric field. RSC Advances, 2022, 12, 29113-29123.	1.7	5
3072	Effect of quantum confinement on polarization anisotropy emission in Sn-doped CdS microcones. Materials Advances, 0, , .	2.6	0
3073	Synthesis of Transition Metal Dichalcogenides (TMDs). Topics in Applied Physics, 2022, , 155-179.	0.4	1
3074	CuS nanoparticle–decorated TiO2 nanobelts with enhanced electrocatalytic and photocatalytic properties. Journal of Nanoparticle Research, 2022, 24, .	0.8	5
3075	Recent Progress of Electrode Architecture for MXene/MoS2 Supercapacitor: Preparation Methods and Characterizations. Micromachines, 2022, 13, 1837.	1.4	12
3076	Hierarchical van der Waals Heterostructure Strategy to Form Stable Transition Metal Dichalcogenide Dispersions. ACS Applied Materials & Interfaces, 2022, 14, 50308-50317.	4.0	1
3077	Electrical Transport Properties of Few-Layer SnS2 Field-effect Transistors. Journal of Physics: Conference Series, 2022, 2356, 012017.	0.3	0
3078	Percolating Superconductivity in Air‣table Organicâ€lon Intercalated MoS ₂ . Advanced Functional Materials, 2022, 32, .	7.8	8
3079	MoS2 and MoS2 Nanocomposites for Adsorption and Photodegradation of Water Pollutants: A Review. Molecules, 2022, 27, 6782.	1.7	18
3080	Regulation of sulfur vacancies in vertical nanolamellar MoS2 for ultrathin flexible piezoresistive strain sensors. Journal of Materials Science and Technology, 2023, 141, 56-65.	5.6	6
3081	Advances in transition metal dichalcogenides-based flexible photodetectors. Journal of Materials Science: Materials in Electronics, 2022, 33, 24397-24433.	1.1	4
3082	Nanostructured MoS2 and WS2 Photoresponses under Gas Stimuli. Nanomaterials, 2022, 12, 3585.	1.9	11
3083	An overview on room-temperature chemiresistor gas sensors based on 2D materials: Research status and challenge. Composites Part B: Engineering, 2023, 248, 110378.	5.9	21
3084	Molybdenumâ€Based Nanomaterials for Photothermal Cancer Therapy. Advanced NanoBiomed Research, 2022, 2, .	1.7	26

#	Article	IF	CITATIONS
3085	Energy band alignment of 2D/3D MoS2/4H-SiC heterostructure modulated by multiple interfacial interactions. Frontiers of Physics, 2023, 18, .	2.4	3
3086	Advances in 2D Molybdenum Disulfideâ€Based Functional Materials for Supercapacitor Applications. ChemistrySelect, 2022, 7, .	0.7	3
3087	Engineered MoS2 nanostructures for improved photocatalytic applications in water treatment. Materials Today Sustainability, 2023, 21, 100264.	1.9	9
3088	The phenomenon of increasing capacitance induced by 1T/2H-MoS2 surface modification with Pt particles – Influence on composition and energy storage mechanism. Electrochimica Acta, 2022, 435, 141389.	2.6	7
3089	Electrochemical exfoliation of MoS2 nanosheets with ultrahigh stability for lead adsorption. Journal of Water Process Engineering, 2022, 50, 103212.	2.6	5
3090	Molecular modeling of thin-film nanocomposite membranes for reverse osmosis water desalination. Physical Chemistry Chemical Physics, 2022, 24, 29298-29327.	1.3	4
3091	Phase-controlled 1T/2H-MoS2 interaction with reduced TiO2 for highly stable photocatalytic CO2 reduction into CO. Journal of CO2 Utilization, 2023, 67, 102324.	3.3	9
3092	Controllable Growth of Wafer-scale Monolayer Transition Metal Dichalcogenides Ternary Alloys with Tunable Band Gap. Nanotechnology, 0, , .	1.3	0
3093	Hydrogen Ion Irradiation effect on the Luminescence of MoS ₂ Nanoflowers. Physica Status Solidi (A) Applications and Materials Science, 0, , .	0.8	0
3094	Crumpling Carbonâ€Pillared Atomicâ€Thin Dichalcogenides and CNTs into Elastic Balls as Superior Anodes for Sodium/Potassiumâ€Ion Batteries. Advanced Functional Materials, 2023, 33, .	7.8	24
3095	Unidirectional Rashba spin splitting in single layer WS _{2(1â^'x)} Se _{2x} alloy. Nanotechnology, 2023, 34, 075705.	1.3	1
3096	Efficient Preparation of Small-Sized Transition Metal Dichalcogenide Nanosheets by Polymer-Assisted Ball Milling. Molecules, 2022, 27, 7810.	1.7	0
3097	Recent advances in 2D organicâ `inorganic heterostructures for electronics and optoelectronics. SmartMat, 2023, 4, .	6.4	15
3098	Highly permeable thin film nanocomposite membrane utilizing a MoS2@NH2-UiO-66 interlayer for forward osmosis removal of Co2+, Sr2+ and Cs+ nuclide ions. Applied Surface Science, 2023, 611, 155618.	3.1	7
3099	Biomolecule capturing and sensing on 2D transition metal dichalcogenide canvas. , 2023, 2, e9120043.		14
3100	A wide-angle X-ray scattering laboratory setup for tracking phase changes of thin films in a chemical vapor deposition chamber. Review of Scientific Instruments, 2022, 93, .	0.6	3
3101	Effects of CVD growth parameters on global and local optical properties of MoS2 monolayers. Materials Chemistry and Physics, 2023, 296, 127185.	2.0	4
3102	Conversion of MoS2 to ternary alloyed MoS2â^'xSex for resistive NO2 sensors. Sensors and Actuators B: Chemical, 2023, 378, 133137.	4.0	5

#	Article	IF	CITATIONS
3103	Band alignment of 2ÂH-phase two-dimensional MoS2/graphene oxide van der Waals heterojunction. Journal of Alloys and Compounds, 2023, 936, 168244.	2.8	6
3104	Polyamide nanofiltration membrane with MoS2 interlayer on tubular ceramic substrate for desalination. Desalination, 2023, 549, 116332.	4.0	5
3105	One-step construction of Ti3C2Tx/MoS2 hierarchical 3D porous heterostructure for ultrahigh-rate supercapacitor. Journal of Colloid and Interface Science, 2023, 634, 460-468.	5.0	10
3106	Strain and thickness effects on the electronic structures of low-energy two-dimensional Cd _{<i>x</i>} Te _{<i>y</i>} phases. Physical Chemistry Chemical Physics, 2022, 24, 29772-29780.	1.3	2
3107	2D Molybdenum Compounds for Electrocatalytic Energy Conversion. Advanced Functional Materials, 2023, 33, .	7.8	12
3108	Study of structural, optical, and thermal properties in MoS2-based nanocomposites: iron and gold. European Physical Journal Plus, 2022, 137, .	1.2	1
3109	Effect of Different Solvents on Morphology and Gas-Sensitive Properties of Grinding-Assisted Liquid-Phase-Exfoliated MoS2 Nanosheets. Nanomaterials, 2022, 12, 4485.	1.9	2
3110	Real-Time Investigation of Sulfur Vacancy Generation and Passivation in Monolayer Molybdenum Disulfide <i>via in situ</i> X-ray Photoelectron Spectromicroscopy. ACS Nano, 2022, 16, 20364-20375.	7.3	11
3111	MoS ₂ Nanosheet-Based Membranes for Antibacterial Applications. ACS Applied Nano Materials, 2022, 5, 18871-18878.	2.4	3
3112	Only gold can pull this off: mechanical exfoliations of transition metal dichalcogenides beyond scotch tape. Applied Physics A: Materials Science and Processing, 2023, 129, .	1.1	7
3113	MoS2-Catalyzed Aerobic Synthesis of Tetraethylthiuram Disulfide in Batch and Continuous Flow. Synlett, 2023, 34, 488-492.	1.0	1
3114	Redispersion Behavior of 2D MoS ₂ Nanosheets: Unique Dependence on the Intervention Timing of Natural Organic Matter. Environmental Science & Technology, 2023, 57, 939-950.	4.6	3
3115	Strain Induces Ferromagnetism in a Janus Transition Metal Dichalcogenides: CrSTe-1H Monolayer. Journal of Electronic Materials, 2023, 52, 1036-1049.	1.0	3
3116	Synthesis of Ni, Co-doped MoS2 as Electrocatalyst for Oxygen Evolution Reaction. International Journal of Electrochemical Science, 2022, 17, 221280.	0.5	1
3117	Measuring the Bandgap of Ambipolar 2D Semiconductors using Multilayer Graphene Contact. Small Science, 2023, 3, .	5.8	0
3118	Molecular beam epitaxy growth and scanning tunneling microscopy study of 2D layered materials on epitaxial graphene/silicon carbide. Nanotechnology, 2023, 34, 132001.	1.3	2
3119	High Detectivity and Fast MoS ₂ Monolayer MSM Photodetector. ACS Applied Electronic Materials, 2022, 4, 5739-5746.	2.0	9
3120	Emerging 0D, 1D, 2D, and 3D nanostructures for efficient point-of-care biosensing. Biosensors and Bioelectronics: X, 2022, 12, 100284.	0.9	15

#	Article	IF	CITATIONS
3121	A review of the synthesis, properties, and applications of 2D transition metal dichalcogenides and their heterostructures. Materials Chemistry and Physics, 2023, 297, 127332.	2.0	29
3122	Interfacial engineering in two-dimensional heterojunction photocatalysts. International Journal of Hydrogen Energy, 2023, 48, 12257-12287.	3.8	16
3123	Strong manipulation of the valley splitting upon twisting and gating in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:msub> <mml:mi>MoSe</mml:mi> <mm and <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:msub> <mml:mi>WSe</mml:mi> <mml: Physical Review B, 2023, 107, .</mml: </mml:msub></mml:mrow></mml:math </mm </mml:msub></mml:mrow></mml:math 	1.1	10
3124	2D Transition Metal Dichalcogenides for Photocatalysis. Angewandte Chemie - International Edition, 2023, 62, .	7.2	65
3125	Controlled Differentiation of Human Neural Progenitor Cells on Molybdenum Disulfide/Graphene Oxide Heterojunction Scaffolds by Photostimulation. ACS Applied Materials & Interfaces, 2023, 15, 3713-3730.	4.0	8
3126	Thermal Atomic Layer Etching of MoS ₂ Using MoF ₆ and H ₂ O. Chemistry of Materials, 0, , .	3.2	2
3127	MoS2 laminate membranes with structural-phase-dependent permeation for molecular separation. Cell Reports Physical Science, 2023, 4, 101239.	2.8	5
3128	Supercapacitve performance of chemically exfoliated and CVD grown MoS2: A comparative study. Materials Today: Proceedings, 2023, , .	0.9	0
3129	2D Transition Metal Dichalcogenides for Photocatalysis. Angewandte Chemie, 2023, 135, .	1.6	3
3130	Lithiated metallic molybdenum disulfide nanosheets for high-performance lithium–sulfur batteries. Nature Energy, 2023, 8, 84-93.	19.8	131
3131	Tailoring Polymorphic Heterostructures of MoS ₂ –WS ₂ (1T/1T, 2H/2H) for Efficient Hydrogen Evolution Reaction. ACS Sustainable Chemistry and Engineering, 2023, 11, 568-577.	3.2	11
3132	Redispersion mechanisms of 2D nanosheets: combined role of intersheet contact and surface chemistry. Nanoscale, 2023, 15, 3159-3168.	2.8	1
3133	External Boosting of Free Carriers and Phonon Energy in MoS ₂ /Reduced Graphene Oxide Nanosheet-Based Composite Films: Implications for Thermal Management. ACS Applied Nano Materials, 2023, 6, 96-109.	2.4	3
3134	A few-layer covalent network of fullerenes. Nature, 2023, 613, 71-76.	13.7	60
3135	Photocatalytic degradation of Naphthol Green in aqueous solution through the reusable ZnS/MoS2/Fe3O4 magnetic nanocomposite. Surfaces and Interfaces, 2023, 36, 102613.	1.5	1
3136	Synergy of palygorskite supported polyaniline and MoS2 for improvement of Li S Battery performance. Applied Clay Science, 2023, 233, 106821.	2.6	4
3137	Basal Planeâ€Activated Boronâ€Doped MoS ₂ Nanosheets for Efficient Electrochemical Ammonia Synthesis. ChemSusChem, 2023, 16, .	3.6	1
3138	Organic interlayers boost the activity of MoS2 toward hydrogen evolution by maintaining high 1T/2H phase ratio. International Journal of Hydrogen Energy, 2023, 48, 10555-10565.	3.8	1

#	Article	IF	CITATIONS
3139	Stacked printed MoS2 and Ag electrodes using electrohydrodynamic jet printing for thin-film transistors. Scientific Reports, 2022, 12, .	1.6	2
3140	Photocatalytic property of two dimensional heterostructure MoS2/WS2 for hydrogen evolution via water splitting; a first principles calculation. International Journal of Hydrogen Energy, 2023, 48, 9371-9376.	3.8	6
3141	Antibacterial Pathways in Transition Metal-Based Nanocomposites: A Mechanistic Overview. International Journal of Nanomedicine, 0, Volume 17, 6821-6842.	3.3	13
3142	In-Situ Generation of Nitrogen-Doped MoS2 Quantum Dots Using Laser Ablation in Cryogenic Medium for Hydrogen Evolution Reaction. Energies, 2023, 16, 455.	1.6	3
3143	Sacrificial Catalyst of Carbothermal-Shock-Synthesized 1T-MoS ₂ Layers for Ultralong-Lifespan Seawater Battery. Nano Letters, 2023, 23, 344-352.	4.5	4
3144	Edge and Interface Resistances Create Distinct Trade-Offs When Optimizing the Microstructure of Printed van der Waals Thin-Film Transistors. ACS Nano, 2023, 17, 575-586.	7.3	3
3145	Optical and structural properties of 2D transition metal dichalcogenides semiconductor MoS2. Bulletin of Materials Science, 2023, 46, .	0.8	6
3146	Characterization of 2D transition metal dichalcogenides. , 2023, , 97-139.		1
3147	Electrostatic spray catalytic particle coating on carbon electrode for enhancing electrochemical reaction. International Journal of Hydrogen Energy, 2023, 48, 15796-15808.	3.8	2
3148	Molecular layer-by-layer re-stacking of MoS ₂ –In ₂ Se ₃ by electrostatic means: assembly of a new layered photocatalyst. Materials Chemistry Frontiers, 2023, 7, 937-945.	3.2	0
3149	3D printing of 2D nano-inks for multifarious applications. , 2023, , 91-124.		2
3150	Recent Advances in the Synthesis of MXene Quantum Dots. Chemical Record, 2023, 23, .	2.9	7
3151	From <scp>twoâ€dimensional</scp> materials to polymer nanocomposites with emerging multifunctional applications: A critical review. Polymer Composites, 2023, 44, 1438-1470.	2.3	14
3152	The plasticity of synaptic memristor based on 2D-MoS2 thin film prepared in large-scale by a PLD-assisted CVD method. Materials Today Communications, 2023, 35, 105511.	0.9	0
3153	An aqueous solution of fluorescent MoS2 quantum dots toward a sensitive and selective probe for Fe3+: A tri-mode spectroscopic sensing technique. Journal of Physics and Chemistry of Solids, 2023, 176, 111261.	1.9	5
3154	MoS ₂ /PDA@Cu composite as a peroxidase-mimicking enzyme with high-effect antibacterial and anticancer activity. Biomaterials Science, 2023, 11, 2898-2911.	2.6	9
3155	NiCo2S4/MoS2 Nanocomposites for Long-Life High-Performance Hybrid Supercapacitors. Nanomaterials, 2023, 13, 689.	1.9	3
3156	Ultrathin Rare-Earth-Doped MoS2 Crystalline Films Prepared with Magnetron Sputtering and Ar + H2 Post-Annealing. Crystals, 2023, 13, 308.	1.0	2

#	Article	IF	CITATIONS
3157	Electrocatalysts based on MoS ₂ and WS ₂ for hydrogen evolution reaction: An overview. , 2023, 2, .		17
3158	Dual-pathway optimization on microwave absorption characteristics of core–shell Fe3O4@C microcapsules: Composition regulation on magnetic core and MoS2 nanosheets growth on carbon shell. Chemical Engineering Journal, 2023, 461, 141867.	6.6	36
3159	Controllable synthesis by hydrothermal method and optical properties of 2D MoS2/rGO nanocomposites. Journal of Sol-Gel Science and Technology, 2023, 106, 699-714.	1.1	4
3160	Radio-frequency controlled crystalline phase transformation of MoS2 thin film fabricated by unique vapour-plasma mixing technique. Physica B: Condensed Matter, 2023, 660, 414896.	1.3	3
3161	Improved performance in MoS2 homogeneous junction field effect transistors by optimizing electrodes contact. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2023, 290, 116348.	1.7	1
3162	Recent advances in two dimensional nanomaterial-based electrochemical (bio)sensing platforms for trace-level detection of amino acids and pharmaceuticals. TrAC - Trends in Analytical Chemistry, 2023, 162, 117027.	5.8	3
3163	Multi-Interface polarization engineering constructed 1T-2H MoS2 QDs/Y-NaBi(MoO4)2 multiple heterostructure for high-efficient piezoelectric-photoelectrocatalysis PDE-5i degradation. Applied Catalysis B: Environmental, 2023, 327, 122460.	10.8	6
3164	Covalent functionalization of electrochemically exfoliated 1T-MoS2 nanosheets for high-performance supercapacitor electrode. Journal of Alloys and Compounds, 2023, 951, 169944.	2.8	6
3165	Design of an electrochemical sensing platform based on MoS2-PEDOT:PSS nanocomposite for the detection of epirubicin in biological samples. Microchemical Journal, 2023, 189, 108534.	2.3	4
3166	Graphene dispersant-assisted in situ growth of Re-doped MoS2 nanosheets on carbon cloth and their performance for hydrogen evolution reaction. Journal of Colloid and Interface Science, 2023, 641, 166-175.	5.0	8
3167	Wafer-scale controlled growth of MoS ₂ by magnetron sputtering: from in-plane to inter-connected vertically-aligned flakes. Journal of Physics Condensed Matter, 2023, 35, 124002.	0.7	4
3168	A critical review of fabrication challenges and reliability issues in top/bottom gated MoS ₂ field-effect transistors. Nanotechnology, 2023, 34, 232001.	1.3	4
3169	Surface-Enhanced Raman Spectroscopy (SERS) Chemical Enhancement in the Vibronically Coupled Langmuir Layer of Mixed Dichalcogenide 1T-MoSSe with Adsorbed R6G. Journal of Physical Chemistry C, 2023, 127, 3131-3141.	1.5	3
3170	Electronic and surface modulation of 2D MoS ₂ nanosheets for an enhancement on flexible thermoelectric property. Nanotechnology, 2023, 34, 195401.	1.3	2
3171	Dense MoS ₂ /CoS ₂ Heterointerfaces with Optimized Electronic Structure for Efficient Alkaline Hydrogen Evolution Reaction. ACS Applied Energy Materials, 2023, 6, 2479-2488.	2.5	8
3172	Interfacial coupling metallic MoS2 nanosheets with wrinkled Ti3C2TX MXene for reversible and stable sodium storage. Materials Today Energy, 2023, 33, 101256.	2.5	3
3173	Sandwiched cathodes kinetically boosted by fewâ€layered catalytic <scp>1Tâ€MoSe₂</scp> nanosheets for highâ€rate and longâ€cycling lithiumâ€sulfur batteries. EcoMat, 2023, 5, .	6.8	8
3174	Electrochemical production of two-dimensional atomic layer materials and their application for energy storage devices. Chemical Physics Reviews, 2023, 4, .	2.6	0

#	Article	IF	CITATIONS
3175	Piezocatalytic 2D WS ₂ Nanosheets for Ultrasoundâ€Triggered and Mitochondriaâ€Targeted Piezodynamic Cancer Therapy Synergized with Energy Metabolismâ€Targeted Chemotherapy. Advanced Materials, 2023, 35, .	11.1	27
3176	Synthesis of atomically thin sheets by the intercalation-based exfoliation of layered materials. , 2023, 2, 101-118.		42
3177	Modulating the HER-overpotential at the interface of nanostructured MoS2 synthesized via hydrothermal route: An in-situ mass-spectroscopy approach. International Journal of Hydrogen Energy, 2023, 48, 17852-17867.	3.8	4
3178	Flexible electronics based on one-dimensional inorganic semiconductor nanowires and two-dimensional transition metal dichalcogenides. Chinese Chemical Letters, 2023, 34, 108226.	4.8	7
3179	Photoinduced Ce–MoS2/WO3 nanocomposites with enhanced photodynamic and enzyme-like activity for rapid sterilization. Ceramics International, 2023, 49, 17424-17436.	2.3	5
3180	Untangling the intertwined: metallic to semiconducting phase transition of colloidal MoS ₂ nanoplatelets and nanosheets. Nanoscale, 2023, 15, 5679-5688.	2.8	3
3181	High-surface-area functionalized nanolaminated membranes for energy-efficient nanofiltration and desalination in forward osmosis. , 2023, 1, 187-197.		9
3182	Exfoliation procedure-dependent optical properties of solution deposited MoS2 films. Npj 2D Materials and Applications, 2023, 7, .	3.9	4
3183	Solution-Processed 2D Materials for Electronic Applications. ACS Applied Electronic Materials, 2023, 5, 1335-1346.	2.0	4
3184	Dual Catalytic and Selfâ€Assembled Growth of Twoâ€Dimensional Transition Metal Dichalcogenides Through Simultaneous Predeposition Process. Small, 2023, 19, .	5.2	3
3185	Environmentally sustainable implementations of two-dimensional nanomaterials. Frontiers in Chemistry, 0, 11, .	1.8	4
3186	Textile-based piezocatalytic platform for organics degradation under low-frequency water flow. Journal of Materials Chemistry A, 2023, 11, 7596-7604.	5.2	6
3187	Molybdenum disulfide under extreme conditions: An <i>ab initio</i> study on its melting. Journal of Applied Physics, 2023, 133, .	1.1	1
3188	2D Layered Nanomaterials as Fillers in Polymer Composite Electrolytes for Lithium Batteries. Advanced Energy Materials, 2023, 13, .	10.2	21
3189	Interfacial Coordinational Bond Triggered Photoreduction Membrane for Continuous Light-Driven Precious Metals Recovery. Nano Letters, 2023, 23, 2219-2227.	4.5	1
3190	Assembling a Photoactive 2D Puzzle: From Bulk Powder to Large-Area Films of Semiconducting Transition-Metal Dichalcogenide Nanosheets. Accounts of Materials Research, 2023, 4, 348-358.	5.9	2
3191	Physics-based bias-dependent compact modeling of 1/ <i>f</i> noise in single- to few-layer 2D-FETs. Nanoscale, 2023, 15, 6853-6863.	2.8	1
3192	<i>Ex Situ</i> Characterization of 1T/2H MoS ₂ and Their Carbon Composites for Energy Applications, a Review. ACS Nano, 2023, 17, 5163-5186.	7.3	9

#	Article	IF	Citations
3193	A facile one step hydrothermal synthesis of flower-like nanosheets of MoS2 for nanoelectronics technology. , 2023, , .		1
3194	Enlarged Interlayer Spacing of Marigold-Shaped 1T-MoS2 with Sulfur Vacancies via Oxygen-Assisted Phosphorus Embedding for Rechargeable Zinc-Ion Batteries. Nanomaterials, 2023, 13, 1185.	1.9	1
3195	An improved strategy of passive micro direct methanol fuel cell: Mass transport mechanism optimization dominated by a single hydrophilic layer. Energy, 2023, 274, 127276.	4.5	2
3196	Some Aspects of Novel Materials from Optical to THz Engineering. Progress in Optical Science and Photonics, 2023, , 59-80.	0.3	1
3197	Diversiform gas sensors based on two-dimensional nanomaterials. Nano Research, 2023, 16, 11959-11991.	5.8	9
3198	Ultrasonically compactified thick MoS2 films with reduced nanosheet size for high performance compact energy storage. Journal of Power Sources, 2023, 571, 233060.	4.0	6
3199	Advances in the Field of Two-Dimensional Crystal-Based Photodetectors. Nanomaterials, 2023, 13, 1379.	1.9	6
3200	Construction of indigenous tin incorporated nickel dichalcogenide nanosheets for high energy all solid-state hybrid supercapacitor. Composites Part B: Engineering, 2023, 260, 110747.	5.9	2
3201	pH-dependent water permeability switching and its memory in MoS2 membranes. Nature, 2023, 616, 719-723.	13.7	20
3202	Broadband MoS ₂ Square Nanotube-Based Photodetectors. ACS Applied Nano Materials, 2023, 6, 7044-7054.	2.4	3
3203	Optical Logic Gates Excited by a Gauss Vortex Interference Beam Based on Spatial Self-Phase Modulation in 2D MoS2. Nanomaterials, 2023, 13, 1423.	1.9	2
3237	A bibliometric analysis of molybdenum-based nanomaterials in the biomedical field. Tungsten, 2024, 6, 17-47.	2.0	2
3238	Two-dimensional materials (2DMs): classification, preparations, functionalization and fabrication of 2DMs-oriented electrochemical sensors. , 2023, , 45-132.		0
3259	Recent advances on liquid intercalation and exfoliation of transition metal dichalcogenides: From fundamentals to applications. Nano Research, 2024, 17, 2088-2110.	5.8	2
3263	Optical Properties of Two-Dimensional Islands of Tungsten Disulfide (WS2). , 2023, , .		0
3264	Role of Carrier Gas and its Flow Rate to Produce Uniform, Large-Sized MoS ₂ Monolayer via CVD. , 2023, , .		0
3310	High conversion continuous flow exfoliation of 2D MoS ₂ . Nanoscale Advances, 2023, 5, 6405-6409.	2.2	1
3318	Transition Metal Dichalcogenides, Conducting Polymers, and Their Nanocomposites as Supercapacitor Electrode Materials. Polymer Science - Series A, 2023, 65, 447-471.	0.4	1

#	Article	IF	CITATIONS
3321	Exploration of Molybdenum Disulfide Nanostructures Through Raman Mode Detection. Springer Proceedings in Materials, 2024, , 137-153.	0.1	0
3329	Contemporary innovations in two-dimensional transition metal dichalcogenide-based P–N junctions for optoelectronics. Nanoscale, 2023, 16, 14-43.	2.8	1
3333	From VIB- to VB-Group Transition Metal Disulfides: Structure Engineering Modulation for Superior Electromagnetic Wave Absorption. Nano-Micro Letters, 2024, 16, .	14.4	8
3339	Noble metal-free SERS: mechanisms and applications. Analyst, The, 2023, 149, 11-28.	1.7	1
3343	Progress in the preparation and physical properties of two-dimensional Cr-based chalcogenide materials and heterojunctions. Frontiers of Physics, 2024, 19, .	2.4	0
3373	Two-dimensional materials as catalysts, interfaces, and electrodes for an efficient hydrogen evolution reaction. Nanoscale, 2024, 16, 3936-3950.	2.8	0
3374	Borophene nanomaterials: synthesis and applications in biosensors. Materials Advances, 2024, 5, 1803-1816.	2.6	0
3376	Nanomaterials in nonvolatile resistive memory devices. , 2024, , 57-79.		0
3379	Characterization of emerging 2D materials after chemical functionalization. Chemical Science, 2024, 15, 3428-3445.	3.7	0
3382	Stacking engineering in layered homostructures: transitioning from 2D to 3D architectures. Physical Chemistry Chemical Physics, 2024, 26, 7988-8012.	1.3	0