Hydrogen bonding at the water surface revealed by isot

Nature 474, 192-195 DOI: 10.1038/nature10173

Citation Report

#	Article	IF	CITATIONS
2	Computational probe of cavitation events in protein systems. Physical Chemistry Chemical Physics, 2011, 13, 19902.	1.3	9
3	Ultrafast vibrational energy transfer at the water/air interface revealed by two-dimensional surface vibrational spectroscopy. Nature Chemistry, 2011, 3, 888-893.	6.6	177
4	Hydrogen-Bonded Order in Mercury-Supported Monolayers of End-Functionalized Alkanes. Journal of Physical Chemistry C, 2011, 115, 25451-25463.	1.5	4
5	Vibrational spectroscopy of water in hydrated lipid multi-bilayers. I. Infrared spectra and ultrafast pump-probe observables. Journal of Chemical Physics, 2011, 135, 075101.	1.2	50
6	Water's wafer-thin surface. Nature, 2011, 474, 168-169.	13.7	16
7	Structures at the Atomic Level of Cobalt, Zinc and Lead Niobates (with an Appendix: Atomic structure) Tj ETQq1	1 0.78431 0.1	4 rgBT /Ove
8	Partial Dissociation and Hydration Quantitatively Explain the Properties of Aqueous Electrolyte Solutions and hence Empirical Activity Concepts are Unnecessary. Nature Precedings, 0, , .	0.1	2
9	Interpretation of the water surface vibrational sum-frequency spectrum. Journal of Chemical Physics, 2011, 135, 044701.	1.2	118
10	Unified Molecular View of the Air/Water Interface Based on Experimental and Theoretical χ ⁽²⁾ Spectra of an Isotopically Diluted Water Surface. Journal of the American Chemical Society, 2011, 133, 16875-16880.	6.6	245
11	Hydrogen bonded structure and dynamics of liquid-vapor interface of water-ammonia mixture: An <i>ab initio</i> molecular dynamics study. Journal of Chemical Physics, 2011, 135, 114510.	1.2	38
12	Time-averaging approximation in the interaction picture: Absorption line shapes for coupled chromophores with application to liquid water. Journal of Chemical Physics, 2011, 135, 154114.	1.2	13
13	Flies race to a safe place. Nature, 2011, 474, 169-170.	13.7	3
14	Ultrafast Reorientation of Dangling OH Groups at the Air-Water Interface Using Femtosecond Vibrational Spectroscopy. Physical Review Letters, 2011, 107, 116102.	2.9	84
15	Structural Dynamics of a Catalytic Monolayer Probed by Ultrafast 2D IR Vibrational Echoes. Science, 2011, 334, 634-639.	6.0	117
16	Re-examining the properties of the aqueous vapor–liquid interface using dispersion corrected density functional theory. Journal of Chemical Physics, 2011, 135, 124712.	1.2	82
17	Chiral Vibrational Structures of Proteins at Interfaces Probed by Sum Frequency Generation Spectroscopy. International Journal of Molecular Sciences, 2011, 12, 9404-9425.	1.8	62
18	Vibrational spectrum at a water surface: a hybrid quantum mechanics/molecular mechanics molecular dynamics approach. Journal of Physics Condensed Matter, 2012, 24, 124107.	0.7	24
19	Ultrafast vibrational dynamics of water at a charged interface revealed by two-dimensional heterodyne-detected vibrational sum frequency generation. Journal of Chemical Physics, 2012, 137, 094706.	1.2	110

#	Article	IF	CITATIONS
20	Ultrafast Vibrational Dynamics of a Charged Aqueous Interface by Femtosecond Time-Resolved Heterodyne-Detected Vibrational Sum Frequency Generation. Bulletin of the Chemical Society of Japan, 2012, 85, 758-760.	2.0	54
21	Water structural transformation at molecular hydrophobic interfaces. Nature, 2012, 491, 582-585.	13.7	466
22	Nuclear Quantum Effects Affect Bond Orientation of Water at the Water-Vapor Interface. Physical Review Letters, 2012, 109, 226101.	2.9	79
23	BrÃֻnsted basicity of the air–water interface. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 18679-18683.	3.3	159
24	Vibrational Spectroscopy of Water at Interfaces. Accounts of Chemical Research, 2012, 45, 93-100.	7.6	123
25	Ultrafast torsional dynamics in nanoconfined water pool: Comparison between neutral and charged reverse micelles. Journal of Photochemistry and Photobiology A: Chemistry, 2012, 248, 42-49.	2.0	23
26	Long-range hydrogen-bond structure in aqueous solutions and the vapor-water interface. Journal of Chemical Physics, 2012, 137, 034508.	1.2	34
27	Intramolecular vibrational coupling in water molecules revealed by compatible multiple nonlinear vibrational spectroscopic measurements. Analyst, The, 2012, 137, 4981.	1.7	9
28	The hidden force opposing ice compression. Chemical Science, 2012, 3, 1455.	3.7	80
29	Spectroscopy and Dynamics of the Multiple Free OH Species at an Aqueous/Hydrophobic Interface. Journal of Physical Chemistry C, 2012, 116, 21734-21741.	1.5	15
30	Relative Phase Change of Nearby Resonances in Temporally Delayed Sum Frequency Spectra. Journal of Physical Chemistry Letters, 2012, 3, 3493-3497.	2.1	23
31	Bisulfate Dehydration at Air/Solution Interfaces Probed by Vibrational Sum Frequency Generation Spectroscopy. Journal of Physical Chemistry C, 2012, 116, 13161-13168.	1.5	15
32	Effect of Dehydration on the Interfacial Water Structure at a Charged Polymer Surface: Negligible ‡ ⁽³⁾ Contribution to Sum Frequency Generation Signal. Langmuir, 2012, 28, 1374-1380.	1.6	25
33	Near-Interfacial Halogen Atom Exchange in Collisions of Cl ₂ with 2.7 M NaBr–Glycerol. Journal of Physical Chemistry B, 2012, 116, 12306-12318.	1.2	10
34	Simulated Structure and Nonlinear Vibrational Spectra of Water Next to Hydrophobic and Hydrophilic Solid Surfaces. Journal of Physical Chemistry C, 2012, 116, 22867-22877.	1.5	32
35	Mechanisms of Sum Frequency Generation from Liquid Benzene: Symmetry Breaking at Interface and Bulk Contribution. Journal of Physical Chemistry C, 2012, 116, 13169-13182.	1.5	43
36	Structuring of Interfacial Water on Silica Surface in Cyclohexane Studied by Surface Forces Measurement and Sum Frequency Generation Vibrational Spectroscopy. Langmuir, 2012, 28, 14284-14290.	1.6	11
37	Theoretical Study of Raman Spectra of Methanol in Aqueous Solutions: Non-Coincident Effect of the CO Stretch. Journal of Physical Chemistry B, 2012, 116, 4543-4551.	1.2	9

#	Article	IF	CITATIONS
38	Electron density shift description of non-bonding intramolecular interactions. Computational and Theoretical Chemistry, 2012, 991, 124-133.	1.1	43
39	Comment on "Physicochemical controls on adsorbed water film thickness in unsaturated geological media―by Tetsu K. Tokunaga. Water Resources Research, 2012, 48, .	1.7	5
40	Temperature dependence of the lateral hydrogen bonded clusters of molecules at the free water surface. Journal of Molecular Liquids, 2012, 176, 33-38.	2.3	9
41	Charge Transfer between Water Molecules As the Possible Origin of the Observed Charging at the Surface of Pure Water. Journal of Physical Chemistry Letters, 2012, 3, 107-111.	2.1	101
42	Interpretation of IR and Raman Line Shapes for H ₂ O and D ₂ O Ice Ih. Journal of Physical Chemistry B, 2012, 116, 13821-13830.	1.2	92
43	Origin of Vibrational Spectroscopic Response at Ice Surface. Journal of Physical Chemistry Letters, 2012, 3, 3001-3006.	2.1	52
44	On the Role of Fresnel Factors in Sum-Frequency Generation Spectroscopy of Metal–Water and Metal-Oxide–Water Interfaces. Journal of Physical Chemistry C, 2012, 116, 23351-23361.	1.5	65
45	Vibrational Sum-Frequency Spectrum of the Water Bend at the Air/Water Interface. Journal of Physical Chemistry Letters, 2012, 3, 3348-3352.	2.1	77
46	Molecular dynamics simulations of oxidized vapor-grown carbon nanofiber surface interactions with vinyl ester resin monomers. Carbon, 2012, 50, 748-760.	5.4	40
47	A first principles simulation study of fluctuations of hydrogen bonds and vibrational frequencies of water at liquid–vapor interface. Chemical Physics, 2012, 392, 96-104.	0.9	39
48	How Many Molecular Layers of Polar Solvent Molecules Control Chemistry? The Concept of Compensating Dipoles. Chemistry - A European Journal, 2013, 19, 13511-13521.	1.7	13
49	The nature of free O-H stretching in water adsorbed on carbon nanosystems. Journal of Chemical Physics, 2013, 139, 064704.	1.2	8
50	Electrolyte Solutions and Specific Ion Effects on Interfaces. Journal of Chemical Education, 2013, 90, 1018-1023.	1.1	13
51	A Surface-Specific Isotope Effect in Mixtures of Light and Heavy Water. Journal of Physical Chemistry C, 2013, 117, 2944-2951.	1.5	55
52	Motion and Interaction of Aspirin Crystals at Aqueous–Air Interfaces. Journal of Physical Chemistry B, 2013, 117, 13572-13577.	1.2	28
53	The Free OD at the Air/D ₂ O Interface Is Structurally and Dynamically Heterogeneous. Journal of Physical Chemistry B, 2013, 117, 11753-11764.	1.2	13
54	Real-Time Observation of the Destruction of Hydration Shells under Electrochemical Force. Journal of the American Chemical Society, 2013, 135, 15033-15039.	6.6	43
55	Mechanism of vibrational energy dissipation of free OH groups at the air–water interface. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 18780-18785.	3.3	77

#	Article	IF	CITATIONS
56	Impact of Salt Purity on Interfacial Water Organization Revealed by Conventional and Heterodyne-Detected Vibrational Sum Frequency Generation Spectroscopy. Journal of Physical Chemistry C, 2013, 117, 19577-19585.	1.5	38
57	Hydrogen Bonding and OH-Stretch Spectroscopy in Water: Hexamer (Cage), Liquid Surface, Liquid, and Ice. Journal of Physical Chemistry Letters, 2013, 4, 12-17.	2.1	87
58	Selfâ€Assembled Vesicles with Functionalized Membranes. Chemistry - A European Journal, 2013, 19, 438-448.	1.7	30
59	Role of the fluidity of a liquid phase in determining the surface properties of the opposite phase at the liquid–liquid interface. Journal of Molecular Liquids, 2013, 186, 7.	2.3	1
60	Comment on "Averaging theory for description of environmental problems: What have we learned?― by William G. Gray, Cass T. Miller, and Bernhard A. Schrefler. Advances in Water Resources, 2013, 52, 328-330.	1.7	10
61	Structure and Dynamics of Interfacial Water Studied by Heterodyne-Detected Vibrational Sum-Frequency Generation. Annual Review of Physical Chemistry, 2013, 64, 579-603.	4.8	264
62	Theoretical Study of Doubly Resonant Sum-Frequency Vibrational Spectroscopy for 1,1′-Bi-2-naphthol Molecules on Water Surface. Journal of Physical Chemistry C, 2013, 117, 11117-11123.	1.5	18
63	Water Bending Mode at the Water–Vapor Interface Probed by Sum-Frequency Generation Spectroscopy: A Combined Molecular Dynamics Simulation and Experimental Study. Journal of Physical Chemistry Letters, 2013, 4, 1872-1877.	2.1	100
64	Vibrational Spectra of a Mechanosensitive Channel. Journal of Physical Chemistry Letters, 2013, 4, 448-452.	2.1	22
65	C–H Stretch for Probing Kinetics of Self-Assembly into Macromolecular Chiral Structures at Interfaces by Chiral Sum Frequency Generation Spectroscopy. Langmuir, 2013, 29, 4077-4083.	1.6	35
66	Water Structure Next to Ordered and Disordered Hydrophobic Silane Monolayers: A Vibrational Sum Frequency Spectroscopy Study. Journal of Physical Chemistry C, 2013, 117, 1780-1790.	1.5	82
67	Experimental Correlation Between Interfacial Water Structure and Mineral Reactivity. Journal of Physical Chemistry Letters, 2013, 4, 1977-1982.	2.1	89
68	Surface Prevalence of Perchlorate Anions at the Air/Aqueous Interface. Journal of Physical Chemistry Letters, 2013, 4, 4231-4236.	2.1	20
69	Lipid Compositions Modulate Fluidity and Stability of Bilayers: Characterization by Surface Pressure and Sum Frequency Generation Spectroscopy. Langmuir, 2013, 29, 15022-15031.	1.6	43
70	Vibrational Sum Frequency Generation by the Quadrupolar Mechanism at the Nonpolar Benzene/Air Interface. Journal of Physical Chemistry Letters, 2013, 4, 1654-1658.	2.1	47
71	Communication: Ultrafast vibrational dynamics of hydrogen bond network terminated at the air/water interface: A two-dimensional heterodyne-detected vibrational sum frequency generation study. Journal of Chemical Physics, 2013, 139, 161101.	1.2	68
72	Layer with reduced viscosity at water-oil interfaces probed by fluorescence correlation spectroscopy. Physical Review E, 2013, 87, 012403.	0.8	14
73	Slow hydrogen-bond switching dynamics at the water surface revealed by theoretical two-dimensional sum-frequency spectroscopy. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 1992-1998.	3.3	88

#	Article	IF	CITATIONS
74	- Vibrational Echo Chemical Exchange Spectroscopy. , 2013, , 14-47.		5
75	On the role of interfacial hydrogen bonds in "on-water―catalysis. Journal of Chemical Physics, 2014, 141, 22D528.	1.2	26
76	Sum frequency spectroscopy of the hydrophobic nanodroplet/water interface: Absence of hydroxyl ion and dangling OH bond signatures. Chemical Physics Letters, 2014, 615, 124-131.	1.2	49
77	Changes in the hydrogen-bonding strength of internal water molecules and cysteine residues in the conductive state of channelrhodopsin-1. Journal of Chemical Physics, 2014, 141, 22D507.	1.2	39
78	Sum-frequency generation echo and grating from interface. Journal of Chemical Physics, 2014, 141, 144103.	1.2	2
79	Hydrogen bonded structure, polarity, molecular motion and frequency fluctuations at liquid-vapor interface of a water-methanol mixture: An ab initio molecular dynamics study. Journal of Chemical Physics, 2014, 141, 134703.	1.2	10
80	Re-Evaluating the Surface Tension Analysis of Polyelectrolyte-Surfactant Mixtures Using Phase-Sensitive Sum Frequency Generation Spectroscopy. Journal of the American Chemical Society, 2014, 136, 15114-15117.	6.6	63
81	Interfacial water in the vicinity of a positively charged interface studied by steady-state and time-resolved heterodyne-detected vibrational sum frequency generation. Journal of Chemical Physics, 2014, 141, 18C527.	1.2	30
82	An <i>ab initio</i> molecular dynamics study of the liquid-vapor interface of an aqueous NaCl solution: Inhomogeneous density, polarity, hydrogen bonds, and frequency fluctuations of interfacial molecules. Journal of Chemical Physics, 2014, 141, 194705.	1.2	10
83	Skin Supersolidity of Water and Ice. Springer Series in Chemical Physics, 2014, , 747-756.	0.2	0
84	Counterion Effect on Interfacial Water at Charged Interfaces and Its Relevance to the Hofmeister Series. Journal of the American Chemical Society, 2014, 136, 6155-6158.	6.6	159
85	Resonant vibrational energy transfer in ice Ih. Journal of Chemical Physics, 2014, 140, 244503.	1.2	8
86	Theoretical study of sum-frequency vibrational spectroscopy on limonene surface. Journal of Chemical Physics, 2014, 140, 104702.	1.2	8
87	Molecular dynamics simulations and microscopic analysis of the damping performance of hindered phenol AO-60/nitrile-butadiene rubber composites. RSC Advances, 2014, 4, 6719.	1.7	49
88	Ion-Specific Long-Range Correlations on Interfacial Water Driven by Hydrogen Bond Fluctuations. Journal of Physical Chemistry B, 2014, 118, 1861-1866.	1.2	10
89	Excited-State Dynamics of an Environment-Sensitive Push–Pull Diketopyrrolopyrrole: Major Differences between the Bulk Solution Phase and the Dodecane/Water Interface. Journal of Physical Chemistry B, 2014, 118, 9952-9963.	1.2	37
90	Theoretical vibrational sum-frequency generation spectroscopy of water near lipid and surfactant monolayer interfaces. Journal of Chemical Physics, 2014, 141, 18C502.	1.2	57
91	Diffusion of isolated surface-active molecules at the air/water interface. Colloid and Polymer Science, 2014, 292, 1817-1823.	1.0	4

#	Article	IF	CITATIONS
92	Theoretical Studies of Structures and Vibrational Sum Frequency Generation Spectra at Aqueous Interfaces. Chemical Reviews, 2014, 114, 8447-8470.	23.0	132
93	Molecular-Level Surface Structure from Nonlinear Vibrational Spectroscopy Combined with Simulations. Journal of Physical Chemistry B, 2014, 118, 5617-5636.	1.2	37
94	Orientational Time Correlation Functions for Vibrational Sum-Frequency Generation. 2. Propionitrile. Journal of Physical Chemistry B, 2014, 118, 8406-8419.	1.2	6
95	Reprint of "Role of the fluidity of a liquid phase in determining the surface properties of the opposite phase― Journal of Molecular Liquids, 2014, 189, 122-128.	2.3	2

96 4. 電極界é¢ã«ãŠãʿã,‹ã,₿,ªãƒ³ã®æ°´å'Œæ®»å´©åŁŠéŽç∵‹ã®æ™,é−"å^†è§£èµﷺå^†å...‰è¦³å⁻Ÿ. Electrochemistrø,&014, 82, 771-776

97	Ultrafast Vibrational Dynamics of Water Interfaces Revealed by Time-Resolved Heterodyne-Detected Vibrational Sum Frequency Generation Spectroscopy. Hyomen Kagaku, 2014, 35, 662-667.	0.0	0
99	Toward <i>ab initio</i> molecular dynamics modeling for sum-frequency generation spectra; an efficient algorithm based on surface-specific velocity-velocity correlation function. Journal of Chemical Physics, 2015, 143, 124702.	1.2	100
100	Assessing the accuracy of some popular DFT methods for computing harmonic vibrational frequencies of water clusters. Journal of Chemical Physics, 2015, 143, 214103.	1.2	49
101	Mixed quantum/classical approach to OH-stretch inelastic incoherent neutron scattering spectroscopy for ambient and supercooled liquid water and ice Ih. Journal of Chemical Physics, 2015, 143, 014503.	1.2	3
102	Strong Isotope Effect in the Vibrational Response of the Hydration Shells of Hydrophobic Ions. Journal of Physical Chemistry C, 2015, 119, 27363-27369.	1.5	4
103	Solvation of halogen ions in aqueous solutions at 500 K–600 K under 100 atm. Chinese Physics B, 2015, 24, 123601.	0.7	1
104	Microstructure and Dynamic Properties Analyses of Hindered Phenol AOâ€80/Nitrileâ€Butadiene Rubber/Poly(vinyl chloride): A Molecular Simulation and Experimental Study. Macromolecular Theory and Simulations, 2015, 24, 41-51.	0.6	25
106	Molecular Structure and Dynamics of Water at the Water–Air Interface Studied with Surfaceâ€&pecific Vibrational Spectroscopy. Angewandte Chemie - International Edition, 2015, 54, 5560-5576.	7.2	132
107	Infrared and Raman Spectroscopy of Liquid Water through "First-Principles―Many-Body Molecular Dynamics. Journal of Chemical Theory and Computation, 2015, 11, 1145-1154.	2.3	182
108	On Surface Order and Disorder of α-Pinene-Derived Secondary Organic Material. Journal of Physical Chemistry A, 2015, 119, 4609-4617.	1.1	27
109	Structure of Aqueous Water Films on Textured â ^{°°} OH-Terminated Self-Assembled Monolayers. Langmuir, 2015, 31, 2382-2389.	1.6	8
110	Properties of pure water and sodium chloride solutions at high temperatures and pressures: a simulation study. Molecular Simulation, 2015, 41, 1488-1494.	0.9	7
111	Dynamic spreading of a nanosized droplet on a solid in an electric field. Physical Chemistry Chemical Physics, 2015, 17, 5543-5546.	1.3	22

#	Article	IF	CITATIONS
112	Heterodyne-Detected Achiral and Chiral Vibrational Sum Frequency Generation of Proteins at Air/Water Interface. Journal of Physical Chemistry C, 2015, 119, 9947-9954.	1.5	62
113	Role of Interfacial Water in Protein Adsorption onto Polymer Brushes as Studied by SFG Spectroscopy and QCM. Journal of Physical Chemistry C, 2015, 119, 17193-17201.	1.5	84
114	Structure and Dynamics of the Instantaneous Water/Vapor Interface Revisited by Path-Integral and Ab Initio Molecular Dynamics Simulations. Journal of Physical Chemistry B, 2015, 119, 10079-10086.	1.2	61
115	Terahertz dynamics of water before and after water shedding from reverse micelles. Journal of Molecular Liquids, 2015, 210, 37-43.	2.3	9
116	Probing the Surface Hydration of Nonfouling Zwitterionic and PEG Materials in Contact with Proteins. ACS Applied Materials & amp; Interfaces, 2015, 7, 16881-16888.	4.0	223
117	Characterization of the Local Structure in Liquid Water by Various Order Parameters. Journal of Physical Chemistry B, 2015, 119, 8406-8418.	1.2	153
118	Probing the Surface Hydration of Nonfouling Zwitterionic and Poly(ethylene glycol) Materials with Isotopic Dilution Spectroscopy. Journal of Physical Chemistry C, 2015, 119, 8775-8780.	1.5	69
119	Beyond Local Group Modes in Vibrational Sum Frequency Generation. Journal of Physical Chemistry A, 2015, 119, 3407-3414.	1.1	18
120	Molecular interactions between gold nanoparticles and model cell membranes. Physical Chemistry Chemical Physics, 2015, 17, 9873-9884.	1.3	31
121	Proton Transport in Imidazoles: Unraveling the Role of Supramolecular Structure. Journal of Physical Chemistry Letters, 2015, 6, 3961-3965.	2.1	21
122	Lipid Carbonyl Groups Terminate the Hydrogen Bond Network of Membrane-Bound Water. Journal of Physical Chemistry Letters, 2015, 6, 4499-4503.	2.1	74
123	Ion aggregation in high salt solutions. III. Computational vibrational spectroscopy of HDO in aqueous salt solutions. Journal of Chemical Physics, 2015, 142, 204102.	1.2	18
124	Development of single-channel heterodyne-detected sum frequency generation spectroscopy and its application to the water/vapor interface. Journal of Chemical Physics, 2015, 143, 034202.	1.2	107
125	The surface roughness, but not the water molecular orientation varies with temperature at the water–air interface. Physical Chemistry Chemical Physics, 2015, 17, 23559-23564.	1.3	60
126	Theoretical investigation of quadrupole contributions to surface sum-frequency vibrational spectroscopy. Physical Chemistry Chemical Physics, 2015, 17, 9068-9073.	1.3	9
127	Hydrogen-bond relaxation dynamics: Resolving mysteries of water ice. Coordination Chemistry Reviews, 2015, 285, 109-165.	9.5	136
128	Theoretical Sum Frequency Generation Spectroscopy of Peptides. Journal of Physical Chemistry B, 2015, 119, 8969-8983.	1.2	25
129	Three-gradient regular solution model for simple liquids wetting complex surface topologies. Beilstein Journal of Nanotechnology, 2016, 7, 1377-1396.	1.5	1

#	Article	IF	CITATIONS
130	Frequency comb SFG: a new approach to multiplex detection. Optics Express, 2016, 24, 19863.	1.7	9
131	Homogeneous and inhomogeneous broadenings and the Voigt line shapes in the phase-resolved and intensity sum-frequency generation vibrational spectroscopy. Journal of Chemical Physics, 2016, 144, 034704.	1.2	22
132	Communication: Vibrational sum-frequency spectrum of the air-water interface, revisited. Journal of Chemical Physics, 2016, 145, 031103.	1.2	58
133	IR spectra of water droplets in no man's land and the location of the liquid-liquid critical point. Journal of Chemical Physics, 2016, 145, 124509.	1.2	22
134	Orientational Dynamics of Water at an Extended Hydrophobic Interface. Journal of the American Chemical Society, 2016, 138, 5551-5560.	6.6	42
135	Dynamics of the Water Molecules at the Intrinsic Liquid Surface As Seen from Molecular Dynamics Simulation and Identification of Truly Interfacial Molecules Analysis. Journal of Physical Chemistry C, 2016, 120, 8578-8588.	1.5	21
136	A single-atom heat engine. Science, 2016, 352, 325-329.	6.0	533
137	Nuclear quantum effects of hydrogen bonds probed by tip-enhanced inelastic electron tunneling. Science, 2016, 352, 321-325.	6.0	130
138	Vibrational Spectroscopy and Dynamics of Water. Chemical Reviews, 2016, 116, 7590-7607.	23.0	300
139	Efficient Spectral Diffusion at the Air/Water Interface Revealed by Femtosecond Time-Resolved Heterodyne-Detected Vibrational Sum Frequency Generation Spectroscopy. Journal of Physical Chemistry Letters, 2016, 7, 1811-1815.	2.1	45
140	Extending the Capabilities of Heterodyne-Detected Sum-Frequency Generation Spectroscopy: Probing Any Interface in Any Polarization Combination. Journal of Physical Chemistry C, 2016, 120, 8175-8184.	1.5	68
141	Nanoparticle Ecotoxicology. , 2016, , 343-450.		18
142	Structural Changes to Lipid Bilayers and Their Surrounding Water upon Interaction with Functionalized Gold Nanoparticles. Journal of Physical Chemistry C, 2016, 120, 21399-21409.	1.5	19
143	Water Orientation at Ceramide/Water Interfaces Studied by Heterodyne-Detected Vibrational Sum Frequency Generation Spectroscopy and Molecular Dynamics Simulation. Journal of Physical Chemistry C, 2016, 120, 23692-23697.	1.5	12
144	Molecular Dynamics Simulations of SFG Librational Modes Spectra of Water at the Water–Air Interface. Journal of Physical Chemistry C, 2016, 120, 18665-18673.	1.5	34
145	Reorganization of hydrogen bond network makes strong polyelectrolyte brushes pH-responsive. Science Advances, 2016, 2, e1600579.	4.7	43
146	Both Inter- and Intramolecular Coupling of O–H Groups Determine the Vibrational Response of the Water/Air Interface. Journal of Physical Chemistry Letters, 2016, 7, 4591-4595.	2.1	101
147	Solvenshaut - Ā¤ĀŸere und innere Oberfl¤hen von Fl¼ssigkeiten. Nachrichten Aus Der Chemie, 2016, 64, 1065-1070.	0.0	2

D

#	Article	IF	CITATIONS
148	Expressions for the Evaporation and Condensation Coefficients in the Hertz-Knudsen Relation. Chemical Reviews, 2016, 116, 7727-7767.	23.0	278
149	Bend Vibration of Surface Water Investigated by Heterodyne-Detected Sum Frequency Generation and Theoretical Study: Dominant Role of Quadrupole. Journal of Physical Chemistry Letters, 2016, 7, 2597-2601.	2.1	53
150	Vibrational Sum Frequency Generation Spectroscopy of Fullerene at Dielectric Interfaces. Journal of Physical Chemistry C, 2016, 120, 1666-1672.	1.5	16
151	Influence of strong and weak hydrogen bonds in ices on stimulated Raman scattering. Optics Letters, 2016, 41, 1297.	1.7	28
152	Molecular Modeling of Water Interfaces: From Molecular Spectroscopy to Thermodynamics. Journal of Physical Chemistry B, 2016, 120, 3785-3796.	1.2	39
153	Molecular level studies on interfacial hydration of zwitterionic and other antifouling polymers in situ. Acta Biomaterialia, 2016, 40, 6-15.	4.1	155
154	Revisiting the Thermodynamics of Water Surfaces and the Effects of Surfactant Head Group. Journal of Physical Chemistry B, 2016, 120, 2257-2261.	1.2	21
155	Miscellaneous Issues. Springer Series in Chemical Physics, 2016, , 419-453.	0.2	0
156	Wonders of Water. Springer Series in Chemical Physics, 2016, , 1-24.	0.2	1
157	Dissecting the Molecular Structure of the Air/Water Interface from Quantum Simulations of the Sum-Frequency Generation Spectrum. Journal of the American Chemical Society, 2016, 138, 3912-3919.	6.6	153
158	Hydrogen-bonding and vibrational coupling of water in a hydrophobic hydration shell as observed by Raman-MCR and isotopic dilution spectroscopy. Physical Chemistry Chemical Physics, 2016, 18, 2767-2775.	1.3	39
159	Sieving hydrogen isotopes through two-dimensional crystals. Science, 2016, 351, 68-70.	6.0	247
160	On the Assignment of the Vibrational Spectrum of the Water Bend at the Air/Water Interface. Journal of Physical Chemistry Letters, 2017, 8, 801-804.	2.1	39
161	Molecular conformation of DPPC phospholipid Langmuir and Langmuir–Blodgett monolayers studied by heterodyne-detected vibrational sum frequency generation spectroscopy. Physical Chemistry Chemical Physics, 2017, 19, 2060-2066.	1.3	36
162	Origin of hydrophobicity and enhanced water hydrogen bond strength near purely hydrophobic solutes. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 322-327.	3.3	169
163	Sum Frequency Generation Spectra from Velocity–Velocity Correlation Functions. Journal of Physical Chemistry Letters, 2017, 8, 1310-1314.	2.1	37
164	Heterocyclic structures applied as efficient molecular probes for the investigation of chemically important interactions in the liquid phase. Chemistry of Heterocyclic Compounds, 2017, 53, 2-10.	0.6	11
165	Sharp interface models for two-phase flows: Insights towards new approaches. Computer Methods in Applied Mechanics and Engineering, 2017, 322, 238-261.	3.4	10

#	Article	IF	CITATIONS
166	lsotope effect on water adsorption on hydrophobic carbons of different nanoporosities. Carbon, 2017, 119, 251-256.	5.4	10
167	The interfacial structure of water droplets in a hydrophobic liquid. Nature Communications, 2017, 8, 15548.	5.8	56
168	Vibrational Coupling at the Topmost Surface of Water Revealed by Heterodyne-Detected Sum Frequency Generation Spectroscopy. Journal of Physical Chemistry Letters, 2017, 8, 1396-1401.	2.1	26
169	Ultrafast Dynamics at Water Interfaces Studied by Vibrational Sum Frequency Generation Spectroscopy. Chemical Reviews, 2017, 117, 10665-10693.	23.0	153
170	How Water's Properties Are Encoded in Its Molecular Structure and Energies. Chemical Reviews, 2017, 117, 12385-12414.	23.0	284
171	The Surface of Ice Is Like Supercooled Liquid Water. Angewandte Chemie, 2017, 129, 15746-15750.	1.6	21
172	Excess Hydrogen Bond at the Ice-Vapor Interface around 200ÂK. Physical Review Letters, 2017, 119, 133003.	2.9	45
173	Solvent-Shared Ion Pairs at the Air–Solution Interface of Magnesium Chloride and Sulfate Solutions Revealed by Sum Frequency Spectroscopy and Molecular Dynamics Simulations. Journal of Physical Chemistry A, 2017, 121, 6450-6459.	1.1	26
174	Structural and Dynamic Heterogeneity of Capillary Wave Fronts at Aqueous Interfaces. Journal of Physical Chemistry B, 2017, 121, 9052-9062.	1.2	10
175	The Surface of Ice Is Like Supercooled Liquid Water. Angewandte Chemie - International Edition, 2017, 56, 15540-15544.	7.2	28
176	Exploiting Diffusion Barrier and Chemical Affinity of Metal–Organic Frameworks for Efficient Hydrogen Isotope Separation. Journal of the American Chemical Society, 2017, 139, 15135-15141.	6.6	125
177	Observation and Identification of a New OH Stretch Vibrational Band at the Surface of Ice. Journal of Physical Chemistry Letters, 2017, 8, 3656-3660.	2.1	53
178	Vibrational Sum-Frequency Spectroscopic Investigation of the Structure and Azimuthal Anisotropy of Propynyl-Terminated Si(111) Surfaces. Journal of Physical Chemistry C, 2017, 121, 16872-16878.	1.5	6
179	Hydrogen bonding and vibrational energy relaxation of interfacial water: A full DFT molecular dynamics simulation. Journal of Chemical Physics, 2017, 147, 044707.	1.2	20
180	Solvent Isotope Effect on Biomolecular Adsorption at Hydrophobic Surfaces. Journal of Physical Chemistry C, 2017, 121, 16879-16887.	1.5	4
181	Atomic-scale investigation of nuclear quantum effects of surface water: Experiments and theory. Progress in Surface Science, 2017, 92, 203-239.	3.8	29
182	Localized Intrinsic Valence Virtual Orbitals as a Tool for the Automatic Classification of Core Excited States. Journal of Chemical Theory and Computation, 2017, 13, 5984-5999.	2.3	9
183	Second-order spectral lineshapes from charged interfaces. Nature Communications, 2017, 8, 1032.	5.8	193

#	Article	IF	CITATIONS
184	Insight into Water Structure at the Surfactant Surfaces and in Microemulsion Confinement. Journal of Physical Chemistry B, 2017, 121, 7447-7454.	1.2	8
185	Complex Formations between Surfactants and Polyelectrolytes of the Same Charge on a Water Surface. Langmuir, 2017, 33, 7940-7946.	1.6	20
186	Effects of Molecular Structure and Solvent Polarity on Adsorption of Carboxylic Anchoring Dyes onto TiO ₂ Particles in Aprotic Solvents. Langmuir, 2017, 33, 7036-7042.	1.6	19
187	Increase in water evaporation rate with increase in static magnetic field perpendicular to water-air interface. Chemical Engineering and Processing: Process Intensification, 2017, 120, 195-200.	1.8	43
188	Time-dependent density functional theory study on the excited-state hydrogen-bonding characteristics of polyaniline in aqueous environment. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2017, 171, 305-310.	2.0	12
189	Exploring the rare S—HS hydrogen bond using charge density analysis in isomers of mercaptobenzoic acid. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 2017, 73, 626-633.	0.5	13
190	Sum Frequency Generation Spectra from Velocity-Velocity Correlation Functions: New Developments and Applications. , 2018, , 141-156.		0
191	Reduced Near-Resonant Vibrational Coupling at the Surfaces of Liquid Water and Ice. Journal of Physical Chemistry Letters, 2018, 9, 1290-1294.	2.1	21
192	Molecular dynamics study of structure and vibrational spectra at zwitterionoic lipid/aqueous KCl, NaCl, and CaCl2 solution interfaces. Journal of Chemical Physics, 2018, 148, 222801.	1.2	15
193	Nonlinear Optical Methods for Characterization of Molecular Structure and Surface Chemistry. Topics in Catalysis, 2018, 61, 1101-1124.	1.3	16
194	Temperature Dependence of the Air/Water Interface Revealed by Polarization Sensitive Sum-Frequency Generation Spectroscopy. Journal of Physical Chemistry B, 2018, 122, 4356-4365.	1.2	59
195	Effects of dispersion interactions on the structure, polarity, and dynamics of liquid-vapor interface of an aqueous NaCl solution: Results of first principles simulations at room temperature. Journal of Chemical Physics, 2018, 148, 024702.	1.2	4
196	Water at surfaces with tunable surface chemistries. Journal of Physics Condensed Matter, 2018, 30, 113001.	0.7	18
197	Structure and dynamics of water at water–graphene and water–hexagonal boron-nitride sheet interfaces revealed by <i>ab initio</i> sum-frequency generation spectroscopy. Physical Chemistry Chemical Physics, 2018, 20, 12979-12985.	1.3	53
198	A facile approach to fabricating ultrathin layers of reduced graphene oxide on planar solids. Carbon, 2018, 134, 62-70.	5.4	18
199	Definition of Free O–H Groups of Water at the Air–Water Interface. Journal of Chemical Theory and Computation, 2018, 14, 357-364.	2.3	46
200	Neat Water–Vapor Interface: Proton Continuum and the Nonresonant Background. Journal of Physical Chemistry Letters, 2018, 9, 6744-6749.	2.1	25
201	Orientational Distribution of Free O-H Groups of Interfacial Water is Exponential. Physical Review Letters, 2018, 121, 246101.	2.9	49

#	Article	IF	CITATIONS
202	The visualized investigation of a silicon based built-in heat pipe micropillar wick structure. Applied Thermal Engineering, 2018, 144, 1117-1125.	3.0	9
203	A simulation study of water property changes using geometrical alteration in SPC/E. Chinese Physics B, 2018, 27, 083103.	0.7	6
204	Vibrational Spectroscopy of Gas–Liquid Interfaces. , 2018, , 105-133.		8
205	lonization of Surfactants at the Air–Water Interface. , 2018, , 79-104.		4
206	Theory of Sum Frequency Generation Spectroscopy. Lecture Notes in Quantum Chemistry II, 2018, , .	0.3	81
207	Nuclear Quantum Effect of Hydrogen Bonds. Springer Theses, 2018, , 95-107.	0.0	0
208	Molecular mechanism of charge inversion revealed by polar orientation of interfacial water molecules: A heterodyne-detected vibrational sum frequency generation study. Journal of Chemical Physics, 2018, 149, 024703.	1.2	19
209	Effect of an external electric field on capillary filling of water in hydrophilic silica nanochannels. Physical Chemistry Chemical Physics, 2018, 20, 18262-18270.	1.3	19
210	High Resolution Imaging, Spectroscopy and Nuclear Quantum Effects of Interfacial Water. Springer Theses, 2018, , .	0.0	0
211	Interfacial Water Dynamics. , 2018, , 443-461.		1
212	In Situ Chemical Analysis of the Gas–Aerosol Particle Interface. Analytical Chemistry, 2018, 90, 10967-10973.	3.2	11
213	Vom Allgemeinen zum Einzelfall - Konzepte auf dem Prüfstand. Nachrichten Aus Der Chemie, 2018, 66, 601-604.	0.0	1
214	Bulk Contributions Modulate the Sum-Frequency Generation Spectra of Water on Model Sea-Spray Aerosols. CheM, 2018, 4, 1629-1644.	5.8	69
215	Structure, polarity, dynamics, and vibrational spectral diffusion of liquid–vapour interface of a water–methanol mixture from first principles simulation using dispersion corrected density functional. Indian Journal of Physics, 2018, 92, 1337-1346.	0.9	2
216	Modulation of structure and dynamics of water under alternating electric field and the role of hydrogen bonding. Molecular Physics, 2019, 117, 3282-3296.	0.8	14
217	Self-crystallization of uniformly oriented zeolitic imidazolate framework films at air–water interfaces. Dalton Transactions, 2019, 48, 11196-11199.	1.6	7
218	Re-orientation of water molecules in response to surface charge at surfactant interfaces. Journal of Chemical Physics, 2019, 151, 034703.	1.2	26
219	Unveiling Heterogeneity of Interfacial Water through the Water Bending Mode. Journal of Physical Chemistry Letters, 2019, 10, 6936-6941.	2.1	38

		CITATION REPORT		
# 220	ARTICLE In-situ Referencing Method for Heterodyne-detected Vibrational Sum Frequency Genera Measurements at Liquid/Metal Interfaces. Chemistry Letters, 2019, 48, 1387-1390.	ation	IF 0.7	Citations
221	Hydrophobic but Water-Friendly: Favorable Water–Perfluoromethyl Interactions Pror Shell Defects. Journal of the American Chemical Society, 2019, 141, 15856-15868.	note Hydration	6.6	24
222	Hydrogen bonding and molecular orientations across thin water films on sapphire. Jour Colloid and Interface Science, 2019, 555, 810-817.	nal of	5.0	12
223	Water structure at the interface of alcohol monolayers as determined by molecular dyr simulations and computational vibrational sum-frequency generation spectroscopy. Jou Chemical Physics, 2019, 150, 034701.	amics Irnal of	1.2	8
224	Hydrogen Isotope Separation in Confined Nanospaces: Carbons, Zeolites, Metal–Org and Covalent Organic Frameworks. Advanced Materials, 2019, 31, e1805293.	anic Frameworks,	11.1	98
225	Enhancing the signal strength of surface sensitive 2D IR spectroscopy. Journal of Chem 2019, 150, 024707.	ical Physics,	1.2	21
226	Structures and Dynamics of Interfacial Water. Springer Theses, 2019, , .		0.0	0
227	Orientational Distribution of Free Oâ \in "H Groups of Interfacial Water. Springer Theses,	2019, , 41-56.	0.0	0
228	Structure and Dynamics of the Ice-Air Interface. Springer Theses, 2019, , 57-78.		0.0	0
230	Definition of Free Oâ \in "H Group at the Airâ \in "Water Interface. Springer Theses, 2019, , 2	23-39.	0.0	0
231	Synthesis of monodisperse starch microparticles through molecular rearrangement of s glucans from natural waxy maize starch. Carbohydrate Polymers, 2019, 218, 261-268.	hort-chain	5.1	33
232	Hydrogen Bond Directed 2D Materials at Modulated Interfaces. , 2019, , 31-87.			1
233	Chiral Water Superstructures around Antiparallel Î ² -Sheets Observed by Chiral Vibration Frequency Generation Spectroscopy. Journal of Physical Chemistry Letters, 2019, 10, 3	nal Sum 395-3401.	2.1	33
234	Structure and Dynamics of Water at the Water–Air Interface Using First-Principles M Dynamics Simulations. II. NonLocal vs Empirical van der Waals Corrections. Journal of C Theory and Computation, 2019, 15, 3836-3843.	olecular hemical	2.3	12
235	Phase-sensitive sum frequency vibrational spectroscopic study of air/water interfaces: H diluted isotopic mixtures. Journal of Chemical Physics, 2019, 150, 144701.	120, D20, and	1.2	32
236	Formation and surface-stabilizing contributions to bare nanoemulsions created with ne surface charge. Proceedings of the National Academy of Sciences of the United States 2019, 116, 9214-9219.	gligible of America,	3.3	34
237	Contribution of Discharge Excited Atomic N, N ₂ *, and N ₂ <su Plasma/Liquid Interfacial Reaction as Suggested by Quantitative Analysis. ChemPhysCh 1467-1474.</su 	ip>+ to a em, 2019, 20,	1.0	38
238	Photon acceleration and tunable broadband harmonics generation in nonlinear time-de metasurfaces. Nature Communications, 2019, 10, 1345.	pendent	5.8	82

#	Article	IF	CITATIONS
239	Label-free, quantitative and sensitive detection of nanoparticle/membrane interactions through the optical response of water. Sensors and Actuators B: Chemical, 2019, 289, 169-174.	4.0	5
240	Control of Protein Adsorption to Cyclo Olefin Polymer by the Hofmeister Effect. Journal of Pharmaceutical Sciences, 2019, 108, 1686-1691.	1.6	6
241	Vergleichende Acetonadsorption an Wasser―und EisoberflÃ ¤ hen. Angewandte Chemie, 2019, 131, 3659-3663.	1.6	0
242	Dependence of water adsorption on the surface structure of silicon wafers aged under different environmental conditions. Physical Chemistry Chemical Physics, 2019, 21, 26041-26048.	1.3	23
243	Comparative Adsorption of Acetone on Water and Ice Surfaces. Angewandte Chemie - International Edition, 2019, 58, 3620-3624.	7.2	9
244	Water hydrogen degrees of freedom and the hydrophobic effect. Journal of Chemical Physics, 2019, 150, 014502.	1.2	9
245	Development of ultrafast broadband electronic sum frequency generation for charge dynamics at surfaces and interfaces. Journal of Chemical Physics, 2019, 150, 024708.	1.2	28
246	Imaging the air-water interface: Characterising biomimetic and natural hydrophobic surfaces using in situ atomic force microscopy. Journal of Colloid and Interface Science, 2019, 536, 363-371.	5.0	20
247	Absolute Orientations of Water Molecules at Zwitterionic Polymer Interfaces and Interfacial Dynamics after Salt Exposure. Langmuir, 2019, 35, 1327-1334.	1.6	52
248	An Experimental Method to Estimate Running Time of Evolutionary Algorithms for Continuous Optimization. IEEE Transactions on Evolutionary Computation, 2020, 24, 275-289.	7.5	12
249	Impact of intermolecular vibrational coupling effects on the sum-frequency generation spectra of the water/air interface. Molecular Physics, 2020, 118, 1620358.	0.8	22
250	Toward the inverse design of MOF membranes for efficient D2/H2 separation by combination of physics-based and data-driven modeling. Journal of Membrane Science, 2020, 598, 117675.	4.1	42
251	<i>In situ</i> observation of the potential-dependent structure of an electrolyte/electrode interface by heterodyne-detected vibrational sum frequency generation. Physical Chemistry Chemical Physics, 2020, 22, 2580-2589.	1.3	23
252	Capturing intrinsic site-dependent spectral signatures and lifetimes of isolated OH oscillators in extended water networks. Nature Chemistry, 2020, 12, 159-164.	6.6	32
253	Highly selective adsorption of D2 from hydrogen isotopes mixture in a robust metal bistriazolate framework with open metal sites. International Journal of Hydrogen Energy, 2020, 45, 21547-21554.	3.8	17
254	Stone–Wales Defects Cause High Proton Permeability and Isotope Selectivity of Single‣ayer Graphene. Advanced Materials, 2020, 32, e2002442.	11.1	32
255	Ultrafast hydrogen bond dynamics of liquid water revealed by terahertz-induced transient birefringence. Light: Science and Applications, 2020, 9, 136.	7.7	45
256	Theoretical spectroscopy of isotopically dilute water and hydrophobicity. Journal of Chemical Physics, 2020, 153, 094501.	1.2	4

~			-		
$C1^{-}$	ΓΔΤΙ	ON	୍ବାହ	FD	OPT

#	Article	IF	CITATIONS
257	Spatially dependent H-bond dynamics at interfaces of water/biomimetic self-assembled lattice materials. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 23385-23392.	3.3	17
258	How Low Can You Go? Molecular Details of Low-Charge Nanoemulsion Surfaces. Journal of Physical Chemistry B, 2020, 124, 4234-4245.	1.2	14
259	Wrapping Up Hydrophobic Hydration: Locality Matters. Journal of Physical Chemistry Letters, 2020, 11, 4809-4816.	2.1	50
260	Interfacial Vibrational Dynamics of Ice I _h and Liquid Water. Journal of the American Chemical Society, 2020, 142, 12005-12009.	6.6	11
261	Comment on "Phase-sensitive sum frequency vibrational spectroscopic study of air/water interfaces: H2O, D2O, and diluted isotopic mixtures―[J. Chem. Phys. 150, 144701 (2019)]. Journal of Chemical Physics, 2020, 152, 237101.	1.2	21
262	Probing the intermolecular coupled vibrations in a water cluster with inelastic electron tunneling spectroscopy. Journal of Chemical Physics, 2020, 152, 234301.	1.2	2
263	Infrared Difference Spectroscopy of Proteins: From Bands to Bonds. Chemical Reviews, 2020, 120, 3466-3576.	23.0	126
264	Molecular Structure and Modeling of Water–Air and Ice–Air Interfaces Monitored by Sum-Frequency Generation. Chemical Reviews, 2020, 120, 3633-3667.	23.0	97
265	On the stability and necessary electrophoretic mobility of bare oil nanodroplets in water. Journal of Chemical Physics, 2020, 152, 241104.	1.2	18
266	Vibrational Spectroscopic Map, Vibrational Spectroscopy, and Intermolecular Interaction. Chemical Reviews, 2020, 120, 7152-7218.	23.0	205
267	Structure of water and polymer at the buried polymer/water interface unveiled using heterodyne-detected vibrational sum frequency generation. Physical Chemistry Chemical Physics, 2020, 22, 16527-16531.	1.3	8
268	Herzberg–Teller Effect Predominates in Sum-Frequency Vibrational Spectroscopy of Limonene Chiral Liquids. Journal of Physical Chemistry B, 2020, 124, 6642-6650.	1.2	1
269	Water dynamics at electrified graphene interfaces: a jump model perspective. Physical Chemistry Chemical Physics, 2020, 22, 10581-10591.	1.3	19
270	Observation of an exotic state of water in the hydrophilic nanospace of porous coordination polymers. Communications Chemistry, 2020, 3, .	2.0	12
271	Affinity of Hydrated Protons at Intrinsic Water/Vapor Interface Revealed by Ion-Induced Water Alignment. Journal of Physical Chemistry Letters, 2020, 11, 696-701.	2.1	21
272	Liquid/Vapor Interface of Dimethyl Carbonate–Methanol Binary Mixtures Investigated by Sum Frequency Generation Vibrational Spectroscopy and Molecular Dynamics Simulation. Journal of Physical Chemistry B, 2020, 124, 4211-4221.	1.2	5
273	DFT-Calculated IR Spectrum Amide I, II, and III Band Contributions of <i>N</i> -Methylacetamide Fine Components. ACS Omega, 2020, 5, 8572-8578.	1.6	297
274	Existence of weakly interacting OH bond at air/water interface. Journal of Chemical Physics, 2020, 152, 134703.	1.2	6

#	Article	IF	CITATIONS
275	Solubility Improvement of Progesterone from Solid Dispersions Prepared by Solvent Evaporation and Co-milling. Polymers, 2020, 12, 854.	2.0	22
276	Quantitative analysis of hydrogen isotopes gas mixtures by cryogenic chromatography using low loading MOFs as stationary phase. Microporous and Mesoporous Materials, 2021, 312, 110812.	2.2	13
277	Insights into heat management of hydrogen adsorption for improved hydrogen isotope separation of porous materials. Journal of Materials Science and Technology, 2021, 76, 200-206.	5.6	7
278	DNA-Induced Restructuring of Interfacial Water and the Hydrocarbon Chain of Different Forms of Fungicide at the Water Interface: Vibrational Sum Frequency Generation Study. Journal of Physical Chemistry C, 2021, 125, 3001-3008.	1.5	6
279	Progress in phase-sensitive sum frequency generation spectroscopy. Physical Chemistry Chemical Physics, 2021, 23, 18253-18267.	1.3	30
280	Development of interface-/surface-specific two-dimensional electronic spectroscopy. Review of Scientific Instruments, 2021, 92, 023104.	0.6	8
281	Assessing the Impact of Solvent Selection on Vibrational Sum-Frequency Scattering Spectroscopy Experiments. Journal of Physical Chemistry B, 2021, 125, 3216-3229.	1.2	10
282	Faster chemistry at surfaces. Nature Chemistry, 2021, 13, 296-297.	6.6	7
283	Influence of Solvent on Dyeâ€Sensitized Solar Cell Efficiency: What is so Special About Acetonitrile?. Particle and Particle Systems Characterization, 2021, 38, 2000220.	1.2	12
284	Asymmetric response of interfacial water to applied electric fields. Nature, 2021, 594, 62-65.	13.7	75
285	On the enormous enhancement in water evaporation rates obtained by employing a different polar ambient. Heat Transfer, 2021, 50, 7321.	1.7	0
286	Competition of quantum effects in <i>H</i> ₂ / <i>D</i> ₂ sieving in narrow single-wall carbon nanotubes. Molecular Physics, 2021, 119, .	0.8	3
287	Wettability of graphene and interfacial water structure. CheM, 2021, 7, 1602-1614.	5.8	33
288	Ion Pairing Mediates Molecular Organization Across Liquid/Liquid Interfaces. ACS Applied Materials & Interfaces, 2021, 13, 33734-33743.	4.0	13
289	Mechanistic Study of the Aqueous Reaction of Organic Peroxides with HSO 3 â^' on the Surface of a Water Droplet. Angewandte Chemie, 2021, 133, 20362-20365.	1.6	2
290	Real-time study of on-water chemistry: Surfactant monolayer-assisted growth of a crystalline quasi-2D polymer. CheM, 2021, 7, 2758-2770.	5.8	23
291	Two-dimensional electronic–vibrational sum frequency spectroscopy for interactions of electronic and nuclear motions at interfaces. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	8
292	Mechanistic Study of the Aqueous Reaction of Organic Peroxides with HSO ₃ ^{â^'} on the Surface of a Water Droplet. Angewandte Chemie - International Edition, 2021, 60, 2020-20203.	7.2	9

#	Article	IF	CITATIONS
293	Nonlinear rotational spectroscopy reveals many-body interactions in water molecules. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	9
294	Recent progress of vibrational spectroscopic study on the interfacial structure of biomimetic membranes. Chinese Journal of Analytical Chemistry, 2021, 49, 1-1.	0.9	0
296	Direct Observation of Bound Water on Cotton Surfaces by Atomic Force Microscopy and Atomic Force Microscopy–Infrared Spectroscopy. Journal of Physical Chemistry C, 2020, 124, 4196-4201.	1.5	24
297	Vibrational Sum Frequency Scattering in Absorptive Media: A Theoretical Case Study of Nano-objects in Water. Journal of Physical Chemistry C, 2020, 124, 23078-23085.	1.5	10
298	Optical Interference Enhances Nonlinear Spectroscopic Sensitivity: When Light Gives You Lemons, Model Lemonade. Journal of Physical Chemistry Letters, 2016, 7, 62-68.	2.1	15
299	Proton dynamics in molecular solvent clusters as an indicator for hydrogen bond network strength in confined geometries. Physical Chemistry Chemical Physics, 2020, 22, 3264-3272.	1.3	2
300	Science of Water at Nanoscale. , 2012, , 301-311.		0
301	Sum Frequency Generationï¼^SFG)Vibrational Spectroscopy. Journal of the Japan Society of Colour Material, 2014, 87, 64-71.	0.0	0
303	Theory: Hydrogen Bond Cooperativity. Springer Series in Chemical Physics, 2014, , 671-690.	0.2	0
305	Compressed Ice: Inter Electron-Pair Repulsion. Springer Series in Chemical Physics, 2014, , 691-699.	0.2	0
306	Interfaces of Condensed Pure Water. , 2014, , 59-86.		0
307	Advanced Carbon Aerogels for Energy Applications. , 2016, , 63-92.		0
309	Perfluoroalkanes remain on water surface even after volatilization: Affinity analysis of fluorinated solvent with water surface. Journal of Colloid and Interface Science, 2022, 611, 390-396.	5.0	1
310	DNA-Induced Reorganization of Water at Model Membrane Interfaces Investigated by Heterodyne-Detected Vibrational Sum Frequency Generation Spectroscopy. Journal of Physical Chemistry B, 2022, 126, 840-846.	1.2	7
311	Probing the Structure of Water at the Interface with Graphene Oxide Using Sum Frequency Generation Vibrational Spectroscopy. Journal of Physical Chemistry C, 2022, 126, 1471-1480.	1.5	12
312	Spectral Phase Measurements of Heterodyne Detection in Interfacial Broadband Electronic Spectroscopy. Journal of Physical Chemistry C, 2022, 126, 2823-2832.	1.5	9
313	Theoretical insight into the effect of polar organic molecules on heptane-water interfacial properties using molecular dynamic simulation. Journal of Petroleum Science and Engineering, 2022, 212, 110259.	2.1	10
314	Diagrammatic theory of linear and nonlinear optics for composite systems. Physical Review A, 2021, 104, .	1.0	3

#	Article	IF	CITATIONS
315	Charge transfer across C–Hâ‹â‹ô hydrogen bonds stabilizes oil droplets in water. Science, 2021, 374, 1366-1370.	6.0	88
316	Facile Design of Two-Dimensional Heterogeneous Fenton-Like Catalysis for Micropollutants Degradation: Metal Dependence of Reactive Oxygen Species Generation. SSRN Electronic Journal, 0, , .	0.4	0
317	Doubly Resonant Sum-Frequency Vibrational Spectroscopy of 1,1′-Bi-2-naphthol Chiral Solutions Due to the Nonadiabatic Effect. Journal of Physical Chemistry B, 2022, 126, 1558-1565.	1.2	0
318	Design Elements for Enhanced Hydrogen Isotope Separations in Barely Porous Organic Cages. ACS Omega, 2022, 7, 7963-7972.	1.6	7
319	Low-energy adsorptive separation by zeolites. National Science Review, 2022, 9, .	4.6	41
320	Photoinduced Surface Electric Fields and Surface Population Dynamics of GaP(100) Photoelectrodes. Journal of Physical Chemistry C, 2022, 126, 6531-6541.	1.5	1
321	Surface States for Photoelectrodes of Gallium Phosphide (GaP) with Surface-Specific Electronic Spectra and Phase Measurements. Journal of Physical Chemistry C, 2022, 126, 6761-6772.	1.5	7
322	Water Structure at the Hydrophobic Nanodroplet Surface Revealed by Vibrational Sum Frequency Scattering Using Isotopic Dilution. Journal of Physical Chemistry B, 2022, 126, 3186-3192.	1.2	7
324	H2o2 Activation by Two-Dimensional Metal-Organic Frameworks with Different Metal Nodes for Micropollutants Degradation: Metal Dependence of Boosting Reactive Oxygen Species Generation. SSRN Electronic Journal, 0, , .	0.4	0
325	Ultrafast vibrational dynamics of the free OD at the air/water interface: Negligible isotopic dilution effect but large isotope substitution effect. Journal of Chemical Physics, 2022, 156, .	1.2	6
326	In silico screening and experimental study of anion-pillared metal-organic frameworks for hydrogen isotope separation. Separation and Purification Technology, 2022, 295, 121286.	3.9	7
327	Unusual mechanical properties of ice VIII: Auxetic potential in a high pressure polymorph of ice. Journal of Physics and Chemistry of Solids, 2022, 169, 110755.	1.9	1
328	Polarization-Dependent Sum-Frequency Generation Spectroscopy for Ãngstrom-Scale Depth Profiling of Molecules at Interfaces. Physical Review Letters, 2022, 128, .	2.9	8
329	Sum Frequency Generation in Ambient Environments: Vibrational Spectroscopy at Solid/Gas and Solid/Liquid Interfaces. ACS Symposium Series, 0, , 119-145.	0.5	0
330	Hydrogen isotope separation using a metalâ€organic cage built from macrocycles. Angewandte Chemie, 0, , .	1.6	2
331	Structural and Dynamic Properties of Solvated Hydroxide and Hydronium Ions in Water from Ab Initio Modeling. Journal of Chemical Physics, 0, , .	1.2	8
332	Hydrogen Isotope Separation Using a Metal–Organic Cage Built from Macrocycles. Angewandte Chemie - International Edition, 2022, 61, .	7.2	14
333	Chemical Affinity of Ag-Exchanged Zeolites for Efficient Hydrogen Isotope Separation. Inorganic Chemistry, 2022, 61, 9413-9420.	1.9	9

#	ARTICLE	IF	CITATIONS
334	Thermodynamic Separation of Hydrogen Isotopes Using Hofmann-Type Metal–Organic Frameworks with High-Density Open Metal Sites. ACS Applied Materials & Interfaces, 2022, 14, 30946-30951.	4.0	15
335	Local Ice-like Structure at the Liquid Water Surface. Journal of the American Chemical Society, 2022, 144, 11178-11188.	6.6	13
336	Understanding of the interaction of biological macromolecules with lipids using vibrational sumâ€frequency generation spectroscopy. Journal of Raman Spectroscopy, 0, , .	1.2	2
337	Proton Configuration in Water Chain on Pt(533). Journal of Physical Chemistry Letters, 2022, 13, 7660-7666.	2.1	2
338	H2O2 activation by two-dimensional metal-organic frameworks with different metal nodes for micropollutants degradation: Metal dependence of boosting reactive oxygen species generation. Journal of Hazardous Materials, 2022, 440, 129757.	6.5	14
339	Selective penetration mechanism of hydrogen isotope through graphene membrane. Carbon, 2022, 200, 430-436.	5.4	3
340	Hydrogen bonding network dynamics of 1,2-propanediol-water binary solutions by Raman spectroscopy and stimulated Raman scattering. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2023, 284, 121825.	2.0	5
341	Room temperature bilayer water structures on a rutile TiO ₂ (110) surface: hydrophobic or hydrophilic?. Chemical Science, 2022, 13, 10546-10554.	3.7	11
342	Sum-frequency vibrational spectroscopy of methanol at interfaces due to Fermi resonance. Physical Chemistry Chemical Physics, 2022, 24, 27204-27211.	1.3	3
343	Experimental and Theoretical Heterodyne-Detected Sum Frequency Generation Spectroscopy of Isotopically Pure and Diluted Water Surfaces. Journal of Physical Chemistry Letters, 2022, 13, 9649-9653.	2.1	9
344	Absolute molecular structure of the polystyrene at the buried polystyrene/silica interface and its relationship to dewetting during annealing. Applied Surface Science, 2022, , 155715.	3.1	3
345	Field-Dependent Orientation and Free Energy of D ₂ O at an Electrode Surface Observed via SFG Spectroscopy. Journal of Physical Chemistry C, 2022, 126, 20831-20839.	1.5	2
346	Tailoring thermal resistance of porous materials with void filling for improved hydrogen adsorption. International Journal of Hydrogen Energy, 2023, 48, 8588-8595.	3.8	3
347	Influence of the Hydrogen-Bonding Environment on Vibrational Coupling in the Electrical Double Layer at the Silica/Aqueous Interface. Journal of Physical Chemistry C, 2022, 126, 21734-21744.	1.5	4
349	Water Complex of Imidogen. Journal of the American Chemical Society, 2023, 145, 1982-1987.	6.6	4
350	Deciphering the Properties of Nanoconfined Aqueous Solutions by Vibrational Sum Frequency Generation Spectroscopy. Journal of Physical Chemistry Letters, 2023, 14, 1208-1213.	2.1	1
351	Sum-frequency vibrational spectroscopy of centrosymmetric molecule at interfaces . Journal of Chemical Physics, 0, , .	1.2	3
352	Selective Action of Antimalarial Hydroxychloroquine on the Packing of Phospholipids and Interfacial Water Associated with Lysosomal Model Membranes: A Vibrational Sum Frequency Generation Study. Langmuir, 2023, 39, 2435-2443.	1.6	0

	CHAIION	LEPUKI	
#	Article	IF	CITATIONS
353	Voltage-Dependent FTIR and 2D Infrared Spectroscopies within the Electric Double Layer Using a Plasmonic and Conductive Electrode. Journal of Physical Chemistry B, 2023, 127, 2083-2091.	1.2	5
354	Theoretical Spectroscopy Aided Validation of the Hydration Structure of Trimethylamine <i>N</i> -Oxide (TMAO). Journal of Physical Chemistry B, 2023, 127, 2774-2783.	1.2	2
355	Momentum-dependent sum-frequency vibrational spectroscopy of bonded interface layer at charged water interfaces. Science Advances, 2023, 9, .	4.7	2
366	Ion and water adsorption to graphene and graphene oxide surfaces. Nanoscale, 2023, 15, 14319-14337.	2.8	5