Primary motor cortex underlies multi-joint integration

Nature 478, 387-390 DOI: 10.1038/nature10436

Citation Report

#	Article	IF	CITATIONS
1	Computational Mechanisms of Sensorimotor Control. Neuron, 2011, 72, 425-442.	3.8	563
2	Are We Ready for a Natural History of Motor Learning?. Neuron, 2011, 72, 469-476.	3.8	154
3	Sensing with the Motor Cortex. Neuron, 2011, 72, 477-487.	3.8	148
4	Plant Cytokinesis: Circles within Circles. Current Biology, 2011, 21, R926-R927.	1.8	3
5	Feedback Modulation: A Window into Cortical Function. Current Biology, 2011, 21, R924-R926.	1.8	9
6	Parietal Cortex Signals Come Unstuck in Time. PLoS Biology, 2012, 10, e1001414.	2.6	6
7	Learning with Slight Forgetting Optimizes Sensorimotor Transformation in Redundant Motor Systems. PLoS Computational Biology, 2012, 8, e1002590.	1.5	20
8	Visuomotor feedback gains upregulate during the learning of novel dynamics. Journal of Neurophysiology, 2012, 108, 467-478.	0.9	110
9	Adaptation Paths to Novel Motor Tasks Are Shaped by Prior Structure Learning. Journal of Neuroscience, 2012, 32, 9898-9908.	1.7	14
10	Body schema as a link between motor control and cognitive function. , 2012, , .		0
11	Preparing to Reach: Selecting an Adaptive Long-Latency Feedback Controller. Journal of Neuroscience, 2012, 32, 9537-9545.	1.7	72
12	On-line coordination in complex goal-directed movements: A matter of interactions between several loops. Brain Research Bulletin, 2012, 89, 57-64.	1.4	19
13	The computational and neural basis of voluntary motor control and planning. Trends in Cognitive Sciences, 2012, 16, 541-549.	4.0	292
14	Fast corrective responses are evoked by perturbations approaching the natural variability of posture and movement tasks. Journal of Neurophysiology, 2012, 107, 2821-2832.	0.9	54
15	Influence of the behavioral goal and environmental obstacles on rapid feedback responses. Journal of Neurophysiology, 2012, 108, 999-1009.	0.9	146
16	Optimal feedback control and the long-latency stretch response. Experimental Brain Research, 2012, 218, 341-359.	0.7	240
17	Instruction-dependent modulation of the long-latency stretch reflex is associated with indicators of startle. Experimental Brain Research, 2013, 230, 59-69.	0.7	41
18	Reflections on agranular architecture: predictive coding in the motor cortex. Trends in Neurosciences 2013 36 706-716	4.2	185

TION RE

	CITATION	CITATION REPORT	
#	Article	IF	CITATIONS
19	Somatosensory responses in a human motor cortex. Journal of Neurophysiology, 2013, 109, 2192-2204.	0.9	22
20	Bilateral impairments in task-dependent modulation of the long-latency stretch reflex following stroke. Clinical Neurophysiology, 2013, 124, 1373-1380.	0.7	27
21	Functional organization of human sensorimotor cortex for speech articulation. Nature, 2013, 495, 327-332.	13.7	544
22	DEVISING A ROBOTIC ARM MANIPULANDUM FOR NORMAL AND ALTERED REACHING MOVEMENTS TO INVESTIGATE BRAIN MECHANISMS OF MOTOR CONTROL. Instrumentation Science and Technology, 2013, 41, 251-273.	0.9	8
23	The Temporal Evolution of Feedback Gains Rapidly Update to Task Demands. Journal of Neuroscience, 2013, 33, 10898-10909.	1.7	105
24	Predictions not commands: active inference in the motor system. Brain Structure and Function, 2013, 218, 611-643.	1.2	557
25	Signal-Dependent Noise Induces Muscle Co-Contraction to Achieve Required Movement Accuracy: A Simulation Study with an Optimal Control. Current Bioinformatics, 2013, 8, 16-24.	0.7	3
26	Priors Engaged in Long-Latency Responses to Mechanical Perturbations Suggest a Rapid Update in State Estimation. PLoS Computational Biology, 2013, 9, e1003177.	1.5	69
27	Acceleration dependence and task-specific modulation of short- and medium-latency reflexes in the ankle extensors. Physiological Reports, 2013, 1, e00051.	0.7	26
28	Rapid Feedback Responses Correlate with Reach Adaptation and Properties of Novel Upper Limb Loads. Journal of Neuroscience, 2013, 33, 15903-15914.	1.7	106
29	Corticospinal excitability is enhanced after visuomotor adaptation and depends on learning rather than performance or error. Journal of Neurophysiology, 2013, 109, 1097-1106.	0.9	34
30	Rapid feedback corrections during a bimanual postural task. Journal of Neurophysiology, 2013, 109, 147-161.	0.9	62
31	Influence of environmental stability on the regulation of end-point impedance during the maintenance of arm posture. Journal of Neurophysiology, 2013, 109, 1045-1054.	0.9	27
32	Long-latency muscle activity reflects continuous, delayed sensorimotor feedback of task-level and not joint-level error. Journal of Neurophysiology, 2013, 110, 1278-1290.	0.9	57
33	Responses of somatosensory area 2 neurons to actively and passively generated limb movements. Journal of Neurophysiology, 2013, 109, 1505-1513.	0.9	118
34	Feedback responses rapidly scale with the urgency to correct for external perturbations. Journal of Neurophysiology, 2013, 110, 1323-1332.	0.9	57
35	Cerebellar damage diminishes long-latency responses to multijoint perturbations. Journal of Neurophysiology, 2013, 109, 2228-2241.	0.9	37
36	Timing of Muscle Response to a Sudden Leg Perturbation: Comparison between Adolescents and Adults with Down Syndrome. PLoS ONE, 2013, 8, e81053.	1.1	13

#	Article	IF	CITATIONS
37	Common muscle synergies for balance and walking. Frontiers in Computational Neuroscience, 2013, 7, 48.	1.2	224
38	Primary motor cortex of the parkinsonian monkey: altered neuronal responses to muscle stretch. Frontiers in Systems Neuroscience, 2013, 7, 98.	1.2	17
39	Mini-max feedback control as a computational theory of sensorimotor control in the presence of structural uncertainty. Frontiers in Computational Neuroscience, 2014, 8, 119.	1.2	11
40	Primary motor cortex and fast feedback responses to mechanical perturbations: a primer on what we know now and some suggestions on what we should find out next. Frontiers in Integrative Neuroscience, 2014, 8, 72.	1.0	19
41	Bottlenecks to clinical translation of direct brain-computer interfaces. Frontiers in Systems Neuroscience, 2014, 8, 226.	1.2	13
42	Fast feedback control involves two independent processes utilizing knowledge of limb dynamics. Journal of Neurophysiology, 2014, 111, 1631-1645.	0.9	43
43	Internal and External Feedback Circuits for Skilled Forelimb Movement. Cold Spring Harbor Symposia on Quantitative Biology, 2014, 79, 81-92.	2.0	27
44	Withdrawal reflexes in the upper limb adapt to arm posture and stimulus location. Muscle and Nerve, 2014, 49, 716-723.	1.0	7
45	Rapid Online Selection between Multiple Motor Plans. Journal of Neuroscience, 2014, 34, 1769-1780.	1.7	130
46	Optimal Feedback Control for Predicting Dynamic Stiffness During Arm Movement. IEEE Transactions on Industrial Electronics, 2014, 61, 1044-1052.	5.2	37
47	Motor maps and the cortical control of movement. Current Opinion in Neurobiology, 2014, 24, 88-94.	2.0	18
48	Speed of processing in the primary motor cortex: A continuous theta burst stimulation study. Behavioural Brain Research, 2014, 261, 177-184.	1.2	6
49	Feedback gain indicates the preferred direction in optimal feedback control theory. , 2014, , .		1
50	Stability analysis of human stance control from the system theoretic point of view. , 2014, , .		7
51	Interactions between voluntary head control and neck proprioceptive reflexes in cervical dystonia. Parkinsonism and Related Disorders, 2014, 20, 1165-1170.	1.1	12
52	Human Muscle Spindle Sensitivity Reflects the Balance of Activity between Antagonistic Muscles. Journal of Neuroscience, 2014, 34, 13644-13655.	1.7	54
53	Goal-Dependent Modulation of Fast Feedback Responses in Primary Motor Cortex. Journal of Neuroscience, 2014, 34, 4608-4617.	1.7	85
54	Using voluntary motor commands to inhibit involuntary arm movements. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20141139.	1.2	17

#	Article	IF	CITATIONS
55	Toward More Versatile and Intuitive Cortical Brain–Machine Interfaces. Current Biology, 2014, 24, R885-R897.	1.8	70
56	Feedback throttled down for smooth moves. Nature, 2014, 509, 38-39.	13.7	3
57	Perturbation-evoked responses in primary motor cortex are modulated by behavioral context. Journal of Neurophysiology, 2014, 112, 2985-3000.	0.9	51
58	Fractionation of the visuomotor feedback response to directions of movement and perturbation. Journal of Neurophysiology, 2014, 112, 2218-2233.	0.9	29
59	Processing reafferent and exafferent visual information for action and perception. Journal of Vision, 2015, 15, 11.	0.1	9
60	Context-dependent inhibition of unloaded muscles during the long-latency epoch. Journal of Neurophysiology, 2015, 113, 192-202.	0.9	16
61	Deafferented controllers: a fundamental failure mechanism in cortical neuroprosthetic systems. Frontiers in Behavioral Neuroscience, 2015, 9, 186.	1.0	4
62	Long-latency reflexes account for limb biomechanics through several supraspinal pathways. Frontiers in Integrative Neuroscience, 2014, 8, 99.	1.0	59
63	Interactions between stretch and startle reflexes produce task-appropriate rapid postural reactions. Frontiers in Integrative Neuroscience, 2015, 9, 2.	1.0	25
64	Neurons in red nucleus and primary motor cortex exhibit similar responses to mechanical perturbations applied to the upper-limb during posture. Frontiers in Integrative Neuroscience, 2015, 9, 29.	1.0	23
65	NeuroControl of movement: system identification approach for clinical benefit. Frontiers in Integrative Neuroscience, 2015, 9, 48.	1.0	15
66	Preparatory Body State before Reacting to an Opponent: Short-Term Joint Torque Fluctuation in Real-Time Competitive Sports. PLoS ONE, 2015, 10, e0128571.	1.1	10
67	Motor Cortex. , 2015, , 965-970.		0
68	Goal-dependent modulation of the long-latency stretch response at the shoulder, elbow, and wrist. Journal of Neurophysiology, 2015, 114, 3242-3254.	0.9	36
69	Voluntary reaction time and long-latency reflex modulation. Journal of Neurophysiology, 2015, 114, 3386-3399.	0.9	29
70	Temporal evolution of both premotor and motor cortical tuning properties reflect changes in limb biomechanics. Journal of Neurophysiology, 2015, 113, 2812-2823.	0.9	16
71	Skilled forelimb movements and internal copy motor circuits. Current Opinion in Neurobiology, 2015, 33, 16-24.	2.0	33
72	Revealing humans' sensorimotor functions with electrical cortical stimulation. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370, 20140207.	1.8	26

#	Article	IF	CITATIONS
73	A perspective on multisensory integration and rapid perturbation responses. Vision Research, 2015, 110, 215-222.	0.7	66
74	Arm dominance affects feedforward strategy more than feedback sensitivity during a postural task. Experimental Brain Research, 2015, 233, 2001-2011.	0.7	20
75	Impaired corrective responses to postural perturbations of the arm in individuals with subacute stroke. Journal of NeuroEngineering and Rehabilitation, 2015, 12, 7.	2.4	24
76	Perceptual inference. Neuroscience and Biobehavioral Reviews, 2015, 55, 375-392.	2.9	31
77	Feedback control during voluntary motor actions. Current Opinion in Neurobiology, 2015, 33, 85-94.	2.0	110
78	System identification of brain-machine interface control using a cursor jump perturbation. , 2015, , .		5
79	Cortical and corticospinal output modulations during reaching movements with varying directions and magnitudes of interaction torques. Neuroscience, 2015, 311, 268-283.	1.1	0
80	Learning feedback and feedforward control in a mirror-reversed visual environment. Journal of Neurophysiology, 2015, 114, 2187-2193.	0.9	34
81	Increased long-latency reflex activity as a sufficient explanation for childhood hypertonic dystonia: a neuromorphic emulation study. Journal of Neural Engineering, 2015, 12, 036010.	1.8	8
82	Degraded EEG decoding of wrist movements in absence of kinaesthetic feedback. Human Brain Mapping, 2015, 36, 643-654.	1.9	26
83	Evidence for sustained cortical involvement in peripheral stretch reflex during the full long latency reflex period. Neuroscience Letters, 2015, 584, 214-218.	1.0	8
84	Visually-guided correction of hand reaching movements: The neurophysiological bases in the cerebral cortex. Vision Research, 2015, 110, 244-256.	0.7	54
85	Surgical suture inspired wire microelectrodes implant for enhancing functional electrical stimulation. Microsystem Technologies, 2015, 21, 611-617.	1.2	0
86	Perturbation Predictability Can Influence the Long-Latency Stretch Response. PLoS ONE, 2016, 11, e0163854.	1.1	12
87	The Dynamics of Voluntary Force Production in Afferented Muscle Influence Involuntary Tremor. Frontiers in Computational Neuroscience, 2016, 10, 86.	1.2	15
88	Intracortical Brain-Machine Interfaces Advance Sensorimotor Neuroscience. Frontiers in Neuroscience, 2016, 10, 291.	1.4	22
89	A Functional Taxonomy of Bottom-Up Sensory Feedback Processing for Motor Actions. Trends in Neurosciences, 2016, 39, 512-526.	4.2	189
90	Changes in muscle spindle firing in response to length changes of neighboring muscles. Journal of Neurophysiology, 2016, 115, 3146-3155.	0.9	15

#	ARTICLE	IF	CITATIONS
91	Long-latency reflexes of elbow and shoulder muscles suggest reciprocal excitation of flexors, reciprocal excitation of extensors, and reciprocal inhibition between flexors and extensors. Journal of Neurophysiology, 2016, 115, 2176-2190.	0.9	11
92	An examination of the startle response during upper limb stretch perturbations. Neuroscience, 2016, 337, 163-176.	1.1	6
93	Coordinating long-latency stretch responses across the shoulder, elbow, and wrist during goal-directed reaching. Journal of Neurophysiology, 2016, 116, 2236-2249.	0.9	26
94	Rapid Feedback Responses Arise From Precomputed Gains. Motor Control, 2016, 20, 171-176.	0.3	6
95	Error Detection Is Critical for Visual-Motor Corrections. Motor Control, 2016, 20, 187-194.	0.3	2
96	Spike Timing-Dependent Plasticity in the Long-Latency Stretch Reflex Following Paired Stimulation from a Wearable Electronic Device. Journal of Neuroscience, 2016, 36, 10823-10830.	1.7	27
97	Body representations in the human brain revealed by kinesthetic illusions and their essential contributions to motor control and corporeal awareness. Neuroscience Research, 2016, 104, 16-30.	1.0	88
98	Different Patterns of Cortical Inputs to Subregions of the Primary Motor Cortex Hand Representation in <i>Cebus apella</i> . Cerebral Cortex, 2016, 26, 1747-1761.	1.6	46
99	Temporal Evolution of Spatial Computations for Visuomotor Control. Journal of Neuroscience, 2016, 36, 2329-2341.	1.7	43
100	Parallel specification of competing sensorimotor control policies for alternative action options. Nature Neuroscience, 2016, 19, 320-326.	7.1	102
101	Learning to Predict and Control the Physics of Our Movements. Journal of Neuroscience, 2017, 37, 1663-1671.	1.7	45
102	Motor Cortical Visuomotor Feedback Activity Is Initially Isolated from Downstream Targets in Output-Null Neural State Space Dimensions. Neuron, 2017, 95, 195-208.e9.	3.8	90
103	Optimal feedback control to describe multiple representations of primary motor cortex neurons. Journal of Computational Neuroscience, 2017, 43, 93-106.	0.6	7
104	Perspectives on classical controversies about the motor cortex. Journal of Neurophysiology, 2017, 118, 1828-1848.	0.9	92
105	Parallel processing of internal and external feedback in the spinocerebellar system of primates. Journal of Neurophysiology, 2017, 118, 254-266.	0.9	7
106	Rapid and flexible whole body postural responses are evoked from perturbations to the upper limb during goal-directed reaching. Journal of Neurophysiology, 2017, 117, 1070-1083.	0.9	35
107	Rapid visuomotor feedback gains are tuned to the task dynamics. Journal of Neurophysiology, 2017, 118, 2711-2726.	0.9	33
108	Axonal components of nerves innervating the human arm. Annals of Neurology, 2017, 82, 396-408.	2.8	111

#	Article	IF	CITATIONS
109	Compensating for intersegmental dynamics across the shoulder, elbow, and wrist joints during feedforward and feedback control. Journal of Neurophysiology, 2017, 118, 1984-1997.	0.9	25
110	Stalling for Time: It's Not the Magnitude, but the Way Neurons Fire that Matters. Neuron, 2017, 95, 6-8.	3.8	Ο
111	Reflex Circuits and Their Modulation in Motor Control: A Historical Perspective and Current View. Journal of the Indian Institute of Science, 2017, 97, 555-565.	0.9	5
112	Sensorimotor Integration During Motor Learning: Transcranial Magnetic Stimulation Studies. Noropsikiyatri Arsivi, 2017, 54, 358-363.	0.2	6
113	Interlimb Dynamic after Unilateral Focal Lesion of the Cervical Dorsal Corticospinal Tract with Endothelin-1. Frontiers in Neuroanatomy, 2017, 11, 89.	0.9	2
114	Variable impact of tizanidine on the medium latency reflex of upper and lower limbs. Experimental Brain Research, 2018, 236, 665-677.	0.7	5
115	Corticomuscular coherence reflects somatosensory feedback gains during motor adaptation. Neuroscience Research, 2018, 131, 10-18.	1.0	8
116	Rapid feedback responses are flexibly coordinated across arm muscles to support goal-directed reaching. Journal of Neurophysiology, 2018, 119, 537-547.	0.9	10
117	Feedforward and Feedback Control Share an Internal Model of the Arm's Dynamics. Journal of Neuroscience, 2018, 38, 10505-10514.	1.7	59
118	The critical stability task: quantifying sensory-motor control during ongoing movement in nonhuman primates. Journal of Neurophysiology, 2018, 120, 2164-2181.	0.9	1
119	Long-latency reflexes for inter-effector coordination reflect a continuous state feedback controller. Journal of Neurophysiology, 2018, 120, 2466-2483.	0.9	36
120	Direction-Specific Instability Poststroke Is Associated With Deficient Motor Modules for Balance Control. Neurorehabilitation and Neural Repair, 2018, 32, 655-666.	1.4	14
121	Motor Learning: A Cortical System for Adaptive Motor Control. Current Biology, 2018, 28, R793-R795.	1.8	7
122	Thermosensation: Human Parasitic Nematodes Use Heat to Hunt Hosts. Current Biology, 2018, 28, R795-R798.	1.8	2
123	Correlations Between Primary Motor Cortex Activity with Recent Past and Future Limb Motion During Unperturbed Reaching. Journal of Neuroscience, 2018, 38, 7787-7799.	1.7	12
124	Movement Repetition Facilitates Response Preparation. Cell Reports, 2018, 24, 801-808.	2.9	36
125	Structural Gray Matter Changes in the Hippocampus and the Primary Motor Cortex on An-Hour-to-One- Day Scale Can Predict Arm-Reaching Performance Improvement. Frontiers in Human Neuroscience, 2018, 12, 209.	1.0	15
126	Theta-band EEG Activity over Sensorimotor Regions is Modulated by Expected Visual Reafferent Feedback During Reach Planning. Neuroscience, 2018, 385, 47-58.	1.1	14

#	Article	IF	CITATIONS
127	Group and individual variability in speech production networks during delayed auditory feedback. Journal of the Acoustical Society of America, 2018, 143, 3009-3023.	0.5	6
128	Catching the Integration Train: A Look Into the Next 10 Years of Motor-Control and Motor-Learning Research. Kinesiology Review, 2018, 7, 130-141.	0.4	2
129	Flexible Sensorimotor Computations through Rapid Reconfiguration of Cortical Dynamics. Neuron, 2018, 98, 1005-1019.e5.	3.8	225
130	Uncertainty in when a perturbation will arrive influences the preparation and release of triggered responses. Experimental Brain Research, 2019, 237, 2353-2365.	0.7	4
131	Grasping adjustments to haptic, visual, and visuo-haptic object perturbations are contingent on the sensory modality. Journal of Neurophysiology, 2019, 122, 2614-2620.	0.9	19
132	Role of the cortex in visuomotor control of arm stability. Journal of Neurophysiology, 2019, 122, 2156-2172.	0.9	4
133	Highlights from the 29th Annual Meeting of the Society for the Neural Control of Movement. Journal of Neurophysiology, 2019, 122, 1777-1783.	0.9	7
134	Contribution of the Cerebellum to Predictive Motor Control and Its Evaluation in Ataxic Patients. Frontiers in Human Neuroscience, 2019, 13, 216.	1.0	24
135	Influence of kinesthetic motor imagery and effector specificity on the long-latency stretch response. Journal of Neurophysiology, 2019, 122, 2187-2200.	0.9	4
136	Visual Feedback Processing of the Limb Involves Two Distinct Phases. Journal of Neuroscience, 2019, 39, 6751-6765.	1.7	43
137	Large-scale changes in cortical dynamics triggered by repetitive somatosensory electrical stimulation. Journal of NeuroEngineering and Rehabilitation, 2019, 16, 59.	2.4	6
138	Internal Models in Biological Control. Annual Review of Control, Robotics, and Autonomous Systems, 2019, 2, 339-364.	7.5	137
139	A process account of the uncontrolled manifold structure of joint space variance in pointing movements. Biological Cybernetics, 2019, 113, 293-307.	0.6	21
140	Sensorimotor uncertainty modulates corticospinal excitability during skilled object manipulation. Journal of Neurophysiology, 2019, 121, 1162-1170.	0.9	22
141	Gain control in the sensorimotor system. Current Opinion in Physiology, 2019, 8, 177-187.	0.9	49
142	Spinal stretch reflexes support efficient hand control. Nature Neuroscience, 2019, 22, 529-533.	7.1	88
143	Shoulder reflexes integrate elbow information at "long-latency―delay throughout a corrective action. Journal of Neurophysiology, 2019, 121, 549-562.	0.9	8
144	Automated home cage training of mice in a hold-still center-out reach task. Journal of Neurophysiology, 2019, 121, 500-512.	0.9	28

#	Article	IF	CITATIONS
145	Taskâ€dependent responses to muscle vibration during reaching. European Journal of Neuroscience, 2019, 49, 1477-1490.	1.2	8
146	Specialized Somatosensory–Motor Integration Functions in Musicians. Cerebral Cortex, 2020, 30, 1148-1158.	1.6	25
147	Deep Learning Neural Encoders for Motor Cortex. IEEE Transactions on Biomedical Engineering, 2020, 67, 2145-2158.	2.5	7
148	Rapid crossed responses in an intrinsic hand muscle during perturbed bimanual movements. Journal of Neurophysiology, 2020, 123, 630-644.	0.9	4
149	Bilateral Transcranial Direct Stimulation Over the Primary Motor Cortex Alters Motor Modularity of Multiple Muscles. Journal of Motor Behavior, 2020, 52, 474-488.	0.5	1
150	Myotonic dystrophy type 1 alters muscle twitch properties, spinal reflexes, and perturbationâ€induced transâ€cortical reflexes. Muscle and Nerve, 2020, 61, 205-212.	1.0	3
151	Spatially and Temporally Distinct Encoding of Muscle and Kinematic Information in Rostral and Caudal Primary Motor Cortex. Cerebral Cortex Communications, 2020, 1, tgaa009.	0.7	5
152	Time course of changes in the long-latency feedback response parallels the fast process of short-term motor adaptation. Journal of Neurophysiology, 2020, 124, 388-399.	0.9	19
153	Structure of Population Activity in Primary Motor Cortex for Single Finger Flexion and Extension. Journal of Neuroscience, 2020, 40, 9210-9223.	1.7	13
154	Optimal Control Perspective on Parkinson's Disease: Increased Delay Between State Estimator and Controller Produces Tremor. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2020, 28, 2144-2152.	2.7	0
155	Reward-driven enhancements in motor control are robust to TMS manipulation. Experimental Brain Research, 2020, 238, 1781-1793.	0.7	10
156	Sensory information from a slipping object elicits a rapid and automatic shoulder response. Journal of Neurophysiology, 2020, 123, 1103-1112.	0.9	7
157	Spinal Circuits Mediate a Stretch Reflex Between the Upper Limbs in Humans. Neuroscience, 2020, 431, 115-127.	1.1	5
158	Generalizing movement patterns following shoulder fixation. Journal of Neurophysiology, 2020, 123, 1193-1205.	0.9	8
159	Learning New Feedforward Motor Commands Based on Feedback Responses. Current Biology, 2020, 30, 1941-1948.e3.	1.8	28
160	Distinct sensorimotor feedback loops for dynamic and static control of primate precision grip. Communications Biology, 2020, 3, 156.	2.0	20
161	Reward-Based Improvements in Motor Control Are Driven by Multiple Error-Reducing Mechanisms. Journal of Neuroscience, 2020, 40, 3604-3620.	1.7	42
162	The Role of Primary Motor Cortex: More Than Movement Execution. Journal of Motor Behavior, 2021, 53, 258-274.	0.5	57

ARTICLE IF CITATIONS Shared internal models for feedforward and feedback control of arm dynamics in nonâ€human 1.2 8 primates. European Journal of Neuroscience, 2021, 53, 1605-1620. Effects of Peripheral Haptic Feedback on Intracortical Brain-Computer Interface Control and 1.8 Associated Sensory Responses in Motor Cortex. IEEE Transactions on Haptics, 2021, 14, 762-775. Neurotransmitters, Cell Types, and Circuit Mechanisms of Motor Skill Learning and Clinical 166 3 1.1 Applications. Frontiers in Neurology, 2021, 12, 616820. Functional organization of the human primary somatosensory cortex: A stereo-electroencephalography study. Clinical Neurophysiology, 2021, 132, 487-497. Noise-assisted multivariate empirical mode decomposition based causal decomposition for brain-physiological network in bivariate and multiscale time series. Journal of Neural Engineering, 168 1.8 4 2021, 18, 046018. Transient deactivation of dorsal premotor cortex or parietal area 5 impairs feedback control of the limb in macaques. Current Biology, 2021, 31, 1476-1487.e5. 1.8 37 Vestibular contributions to online reach execution are processed via mechanisms with knowledge 0.9 2 about limb biomechanics. Journal of Neurophysiology, 2021, 125, 1022-1045. Efference copy in kinesthetic perception: a copy of what is it?. Journal of Neurophysiology, 2021, 125, 1079-1094. Cuneate nucleus: the somatosensory gateway to the brain. Current Opinion in Physiology, 2021, 20, 0.9 11 206-215. Motor control: Neural correlates of optimal feedback control theory. Current Biology, 2021, 31, 1.8 R356-R358. Skin and muscle receptors shape coordinated fast feedback responses in the upper limb. Current 0.9 8 Opinion in Physiology, 2021, 20, 198-205. Online modification of goal-directed control in human reaching movements. Journal of Neurophysiology, 2021, 125, 1883-1898. Measurement of stretch-evoked brainstem function using fMRI. Scientific Reports, 2021, 11, 12544. 1.6 3 Scaling of Joint Motion and Muscle Activation for 3-Dimensional Control of Reach Extent. Journal of Motor Behavior, 2022, 54, 222-236. Rapid Feedback Responses Parallel the Urgency of Voluntary Reaching Movements. Neuroscience, 2021, 10 1.1 475, 163-184. Costs of position, velocity, and force requirements in optimal control induce triphasic muscle activation during reaching movement. Scientific Reports, 2021, 11, 16815. Neural regulation of whole limb impedance: from measurements to mechanisms. Current Opinion in 0.9 2 Physiology, 2021, 22, 100437. Anconeus motor unit firing rates during isometric and muscle shortening contraction comparing

young and very old adults. Journal of Neurophysiology, 2021, 126, 1122-1136.

CITATION REPORT

#

163

164

172

174

176

179

181

#	Article	IF	CITATIONS
187	Similar stretch reflexes and behavioral patterns are expressed by the dominant and nondominant arms during postural control. Journal of Neurophysiology, 2021, 126, 743-762.	0.9	10
188	Cortical stimulation for somatosensory feedback: translation from nonhuman primates to clinical applications. , 2021, , 413-441.		3
189	Proprioception: a sense to facilitate action. , 2021, , 41-76.		2
190	Modeling the Role of Sensory Feedback in Speech Motor Control and Learning. Journal of Speech, Language, and Hearing Research, 2019, 62, 2963-2985.	0.7	29
191	Importance of the Primary Motor Cortex in Development of Human Hand/Finger Dexterity. Cerebral Cortex Communications, 2020, 1, tgaa085.	0.7	5
203	A postural unloading task to assess fast corrective responses in the upper limb following stroke. Journal of NeuroEngineering and Rehabilitation, 2019, 16, 16.	2.4	11
204	Tuning Curves for Arm Posture Control in Motor Cortex Are Consistent with Random Connectivity. PLoS Computational Biology, 2016, 12, e1004910.	1.5	10
205	Long-Latency Feedback Coordinates Upper-Limb and Hand Muscles during Object Manipulation Tasks. ENeuro, 2016, 3, ENEURO.0129-15.2016.	0.9	17
206	A Very Fast Time Scale of Human Motor Adaptation: Within Movement Adjustments of Internal Representations during Reaching. ENeuro, 2020, 7, ENEURO.0149-19.2019.	0.9	34
207	Independent representations of ipsilateral and contralateral limbs in primary motor cortex. ELife, 2019, 8, .	2.8	44
208	Visually-updated hand state estimates modulate the proprioceptive reflex independently of motor task requirements. ELife, 2020, 9, .	2.8	10
209	Estimation of Visual Feedback Contribution to Limb Stiffness in Visuomotor Control. Lecture Notes in Computer Science, 2012, , 61-72.	1.0	1
210	Motor Control Properties induced by Bi-articular Muscles. The Japanese Journal of Rehabilitation Medicine, 2012, 49, 631-639.	0.0	2
211	Effects of Cost Structure in Optimal Control on Biological Arm Movement: A Simulation Study. Lecture Notes in Computer Science, 2013, , 241-248.	1.0	3
212	上è,¢éŧå‹•ç‴ãfãfœãffãf^KINARM ã,'ç‴ã"ãŸãfªãfãf"ãfªãf†ãf¼ã,∙ãf§ãf³. Journal of the Society of Biomechar	nism a 201	3,@7,93-99
214	Neuro-Muscular Control of Coordinated and Effective Movements: Revisiting Modular Concepts in the CNS. Journal of Bangladesh Society of Physiologists, 2015, 9, 42-47.	0.0	0
215	A Unified Model of Motor Learning. The Brain & Neural Networks, 2016, 23, 14-34.	0.1	0
220	Evaluation of rapid force development using the maximum force produced by pulse height control. Biomechanisms, 2018, 24, 27-36.	0.1	0

#	Article	IF	CITATIONS
234	Cortical Control of Virtual Self-Motion Using Task-Specific Subspaces. Journal of Neuroscience, 2022, 42, 220-239.	1.7	10
235	Dynamic Modulation of a Learned Motor Skill for Its Recruitment. Frontiers in Computational Neuroscience, 2020, 14, 457682.	1.2	1
240	Rotational dynamics in motor cortex are consistent with a feedback controller. ELife, 2021, 10, .	2.8	34
242	Hybrid dedicated and distributed coding in PMd/M1 provides separation and interaction of bilateral arm signals. PLoS Computational Biology, 2021, 17, e1009615.	1.5	3
244	Integration of proprioceptive and visual feedback during online control of reaching. Journal of Neurophysiology, 2022, 127, 354-372.	0.9	18
247	Cortical processing of flexible and context-dependent sensorimotor sequences. Nature, 2022, 603, 464-469.	13.7	26
248	Moving in on human motor cortex. Characterizing the relationship between body parts with non-rigid population response fields. PLoS Computational Biology, 2022, 18, e1009955.	1.5	8
250	Methodology for eliciting the brainstem trigeminal-hypoglossal reflex in humans under general anesthesia. Clinical Neurophysiology, 2022, 137, 1-10.	0.7	9
251	Adaptive Feedback Control in Human Reaching Adaptation to Force Fields. Frontiers in Human Neuroscience, 2021, 15, 742608.	1.0	11
253	Motor cortex activity across movement speeds is predicted by network-level strategies for generating muscle activity. ELife, 0, 11, .	2.8	27
255	Generalization Reveals Asymmetric and Interactive Control Networks for Multi-Finger Dexterous Movements. SSRN Electronic Journal, 0, , .	0.4	0
257	Pupil diameter tracked during motor adaptation in humans. Journal of Neurophysiology, 2022, 128, 1224-1243.	0.9	5
258	Stretch reflex gain scaling at the shoulder varies with synergistic muscle activity. Journal of Neurophysiology, 2022, 128, 1244-1257.	0.9	6
259	Emergence of Distinct Neural Subspaces in Motor Cortical Dynamics during Volitional Adjustments of Ongoing Locomotion. Journal of Neuroscience, 2022, 42, 9142-9157.	1.7	3
262	Computational Approaches for Goal-Directed Movement Planning and Execution. , 2014, , .		4
263	A Neurosurgical Functional Dissection of the Middle Precentral Gyrus during Speech Production. Journal of Neuroscience, 2022, 42, 8416-8426.	1.7	25
264	Temporal dynamics of the sensorimotor convergence underlying voluntary limb movement. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	5
266	Integrated neural dynamics of sensorimotor decisions and actions. PLoS Biology, 2022, 20, e3001861.	2.6	13

#	Article	IF	CITATIONS
268	Proprioceptive and visual feedback responses in macaques exploit goal redundancy. Journal of Neuroscience, 0, , JN-RM-1332-22.	1.7	1
269	Spontaneous Behavioural Recovery Following Stroke Relates to the Integrity of Parietal and Temporal Regions. Translational Stroke Research, 2024, 15, 127-139.	2.3	1
270	Sensorimotor feedback loops are selectively sensitive to reward. ELife, 0, 12, .	2.8	6
271	Time course of recovery of different motor functions following a reproducible cortical infarction in non-human primates. Frontiers in Neurology, 0, 14, .	1.1	1
272	Generalization indicates asymmetric and interactive control networks for multi-finger dexterous movements. Cell Reports, 2023, 42, 112214.	2.9	2
273	Assistive Loading Promotes Goal-Directed Tuning of Stretch Reflex Gains. ENeuro, 2023, 10, ENEURO.0438-22.2023.	0.9	3
274	Knee movements cause changes in the firing behaviour of muscle spindles located within the monoâ€articular ankle extensor soleus in the rat. Experimental Physiology, 2024, 109, 125-134.	0.9	3
275	Rigidity in Parkinson's disease: Evidence from biomechanical and neurophysiological measures. Brain, 0, , .	3.7	1
289	Toward a neural theory of goal-directed reaching movements. , 2024, , 71-102.		0

Toward a neural theory of goal-directed reaching movements. , 2024, , 71-102. 289