Advances in alternative cementitious binders

Cement and Concrete Research 41, 1232-1243 DOI: 10.1016/j.cemconres.2010.11.012

Citation Report

#	Article	lF	CITATIONS
1	Hydration Degree of Alkaliâ€Activated Slags: A ²⁹ <scp><scp>Si</scp> NMR</scp> Study. Journal of the American Ceramic Society, 2011, 94, 4541-4547.	1.9	120
2	Influence of activator type on hydration kinetics, hydrate assemblage and microstructural development of alkali activated blast-furnace slags. Cement and Concrete Research, 2011, 41, 301-310.	4.6	720
3	Thermodynamics and cement science. Cement and Concrete Research, 2011, 41, 679-695.	4.6	204
4	Recent advances in the field of cement hydration and microstructure analysis. Cement and Concrete Research, 2011, 41, 666-678.	4.6	147
5	Performance of alkali-activated slag mortars exposed to acids. Journal of Sustainable Cement-Based Materials, 2012, 1, 138-151.	1.7	90
6	Cementitious Blends of Portland Cement with Calcium Sulphate, Fly Ash and Cupola Slag Materials Research Society Symposia Proceedings, 2012, 1488, 63.	0.1	4
7	Optimization of solids-to-liquid and alkali activator ratios of calcined kaolin geopolymeric powder. Construction and Building Materials, 2012, 37, 440-451.	3.2	106
8	Dilatometry of geopolymers as a means of selecting desirable fly ash sources. Journal of Non-Crystalline Solids, 2012, 358, 1930-1937.	1.5	63
9	Influence of Fly Ash and Ground Granulated Blast Furnace Slag on the Mechanical Properties and Reduction Behavior of Cold-Agglomerated Blast Furnace Briquettes. ISIJ International, 2012, 52, 1101-1108.	0.6	8
10	Types of Waste for the Production of Pozzolanic Materials $\hat{a} \in A$ Review. , 0, , .		13
11	Utilization of Coal Combustion By-Products and Green Materials for Production of Hydraulic Cement. , 0, , .		1
12	Rheological and hydration characterization of calcium sulfoaluminate cement pastes. Cement and Concrete Composites, 2012, 34, 684-691.	4.6	96
13	X-ray microtomography shows pore structure and tortuosity in alkali-activated binders. Cement and Concrete Research, 2012, 42, 855-864.	4.6	394
14	Rietveld quantitative phase analysis of Yeelimite-containing cements. Cement and Concrete Research, 2012, 42, 960-971.	4.6	184
15	Measurements and modeling of cement base materials deformation at early age: The case of sulfo-aluminous cement. Cement and Concrete Research, 2012, 42, 1055-1065.	4.6	10
16	Beneficial use of limestone filler with calcium sulphoaluminate cement. Construction and Building Materials, 2012, 26, 619-627.	3.2	165
17	Durability of alkali-activated binders: A clear advantage over Portland cement or an unproven issue?. Construction and Building Materials, 2012, 30, 400-405.	3.2	370
18	Engineering and durability properties of concretes based on alkali-activated granulated blast furnace slag/metakaolin blends. Construction and Building Materials, 2012, 33, 99-108.	3.2	304

#	Article	IF	CITATIONS
19	Compressive strength of ash-based geopolymers at early ages designed by Taguchi method. Materials & Design, 2012, 37, 443-449.	5.1	63
20	Technical and commercial progress in the adoption of geopolymer cement. Minerals Engineering, 2012, 29, 89-104.	1.8	584
21	Gel-casting of fused silica based core packing for investment casting using silica sol as a binder. Journal of the European Ceramic Society, 2013, 33, 2745-2749.	2.8	16
22	Synthesis of consolidated materials from alkaline solutions and metakaolin: existence of domains in the Al–Si–K/O ternary diagram. Journal of Sol-Gel Science and Technology, 2013, 65, 220-229.	1.1	29
23	Generalized Structural Description of Calcium–Sodium Aluminosilicate Hydrate Gels: The Cross-Linked Substituted Tobermorite Model. Langmuir, 2013, 29, 5294-5306.	1.6	383
24	Mitigation of autogenous shrinkage in alkali activated slag mortars by internal curing. Materials and Structures/Materiaux Et Constructions, 2013, 46, 1355-1367.	1.3	94
25	Microstructural changes in alkali activated fly ash/slag geopolymers with sulfate exposure. Materials and Structures/Materiaux Et Constructions, 2013, 46, 361-373.	1.3	270
26	Advanced Nanoscale Characterization of Cement Based Materials Using X-Ray Synchrotron Radiation: A Review. International Journal of Concrete Structures and Materials, 2013, 7, 95-110.	1.4	51
27	Bauxite residue in cement and cementitious applications: Current status and a possible way forward. Resources, Conservation and Recycling, 2013, 73, 53-63.	5.3	136
28	Properties of binary and ternary reactive MgO mortar blends subjected to CO2 curing. Cement and Concrete Composites, 2013, 38, 40-49.	4.6	82
29	Reactivated cementitious materials from hydrated cement paste wastes. Cement and Concrete Composites, 2013, 39, 104-114.	4.6	59
30	Effects of the concentrated NH4NO3 solution on mechanical properties and structure of the fly ash based geopolymers. Construction and Building Materials, 2013, 41, 570-579.	3.2	60
31	Strength and elastic properties of mortars with various percentages of environmentally sustainable mineral binder. Construction and Building Materials, 2013, 43, 348-361.	3.2	13
32	Mortars of alkali-activated blast furnace slag with high aggregate:binder ratios. Construction and Building Materials, 2013, 44, 607-614.	3.2	18
33	In situ synchrotron X-ray pair distribution function analysis of the early stages of gel formation in metakaolin-based geopolymers. Applied Clay Science, 2013, 73, 17-25.	2.6	82
34	Leaching of calcium sulfoaluminate cement pastes by water at regulated pH and temperature: Experimental investigation and modeling. Cement and Concrete Research, 2013, 53, 211-220.	4.6	44
35	Effect of substitution of granulated slag by air-cooled slag on the properties of alkali activated slag. Ceramics International, 2013, 39, 171-181.	2.3	35
36	Recycling the product of thermal transformation of cement-asbestos for the preparation of calcium sulfoaluminate clinker. Journal of Hazardous Materials, 2013, 260, 813-818.	6.5	32

#	Article	IF	CITATIONS
37	Binding mechanism and properties of alkali-activated fly ash/slag mortars. Construction and Building Materials, 2013, 40, 291-298.	3.2	303
38	Beneficial use of a cell coupling rheometry, conductimetry, and calorimetry to investigate the early age hydration of calcium sulfoaluminate cement. Rheologica Acta, 2013, 52, 177-187.	1.1	19
39	Alternative Binders to Ordinary Portland Cement for Radwaste Solidification and Stabilization. , 2013, , 171-191.		6
40	Multi-scale modeling and experimental investigations of geopolymeric gels at elevated temperatures. Computers and Structures, 2013, 122, 164-177.	2.4	44
41	Mechanical properties and compositional heterogeneities of fresh geopolymer pastes. Cement and Concrete Research, 2013, 48, 9-16.	4.6	98
43	Sulfoaluminate cement. , 2013, , 488-522.		51
44	A novel use of calcium aluminate cements for recycling waste foundry sand (WFS). Construction and Building Materials, 2013, 48, 218-228.	3.2	27
45	Early age hydration of calcium sulfoaluminate (synthetic ye'elimite,) in the presence of gypsum and varying amounts of calcium hydroxide. Cement and Concrete Research, 2013, 48, 105-115.	4.6	160
46	Solidification/stabilization of toxic metals in calcium aluminate cement matrices. Journal of Hazardous Materials, 2013, 260, 89-103.	6.5	78
47	Use of Slag/Sugar Cane Bagasse Ash (SCBA) Blends in the Production of Alkali-Activated Materials. Materials, 2013, 6, 3108-3127.	1.3	93
48	Effect of Activated Water Treatment Sludge on Carbonation of Mortar. Key Engineering Materials, 2013, 539, 120-123.	0.4	1
49	Multi-analytical assessment of iron and steel slag characteristics to estimate the removal of metalloids from contaminated water. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2013, 48, 887-895.	0.9	19
50	Early Strength Characteristics of Palm Oil Fuel Ash and Metakaolin Blended Geopolymer Mortar. Advanced Materials Research, 2013, 690-693, 1045-1048.	0.3	16
51	An Experiment for Effects of Different Additives on Strength of Sediment Solidification. Applied Mechanics and Materials, 0, 357-360, 1235-1240.	0.2	1
52	The potential for using geopolymer concrete in the UK. Proceedings of Institution of Civil Engineers: Construction Materials, 2013, 166, 195-203.	0.7	31
53	Material Properties of Structurally Viable Alkali-Activated Fly Ash Concrete. Journal of Materials in Civil Engineering, 2013, 25, 1456-1464.	1.3	12
54	Effects of Fly Ash/Slag Ratio and Liquid/Binder Ratio on Strength of Alkali-Activated Fly Ash/Slag Mortars. Applied Mechanics and Materials, 2013, 377, 50-54.	0.2	8
55	Statistical Study of the Effect of the Composition on the Strength of Supersulphated Cements. Materials Research Society Symposia Proceedings, 2013, 1612, 1.	0.1	Ο

ARTICLE IF CITATIONS # Lessons from a lost technology: The secrets of Roman concrete. American Mineralogist, 2013, 98, 0.9 8 56 1917-1918. Nanoscience and nanoengineering of cement-based materials., 2013, , 9-37a. 58 Alkali-activated based concrete., 2013, , 439-487. 8 Proof of concept of self-compacting clay concrete to scale-up earth construction., 2014,,. Compressive strength, microstructure and hydration products of hybrid alkaline cements. Materials 61 0.6 30 Research, 2014, 17, 829-837. Comparing study on hydration properties of various cementitious systems. Journal of Thermal Analysis and Calorimetry, 2014, 118, 1483-1492. Sulphate Resistance of Geopolymer Concrete Prepared from Blended Waste Fuel Ash. Journal of 64 1.3 76 Materials in Civil Engineering, 2014, 26, . Corrosion Behavior of Steel Reinforcement in Concrete with Recycled Aggregates, Fly Ash and Spent 1.3 Cracking Catalyst. Materials, 2014, 7, 3176-3197. The suitability of a supersulfated cement for nuclear waste immobilisation. Journal of Nuclear 66 1.3 27 Materials, 2014, 452, 457-464. Application of Isomorphic Ca-Si Rocks for the Synthesis of $\hat{1}\pm$ -C2S Hydrate. Medziagotyra, 2014, 20, . 0.1 Transport properties of ternary concrete mixtures containing natural zeolite with silica fume or fly 68 0.9 30 ash. Magazine of Concrete Research, 2014, 66, 150-158. Cementitious Binders IncorporatingÂResidues., 2014, , 219-229. Mechanical Performances of Super Sulfated Cements. Key Engineering Materials, 2014, 617, 32-35. 70 0.4 4 The Effect of Activator on the Properties of Low-Calcium Alkali-Activated Mortars. Key Engineering 0.4 Materials, 2014, 604, 169-172. CO2 emission reduction by reuse of building material waste in the Japanese cement industry. 72 8.2 129 Renewable and Sustainable Energy Reviews, 2014, 38, 796-810. Calcium Sulfoaluminate Sodalite (<scp><scp>Ca₄Al₆O₁₂SO₄</scp></scp>) Crystal Structure Evaluation and Bulk Modulus Determination. Journal of the American Ceramic Society, 2014, 97.892-898 Tribochemical and thermal activation of α-c2s hydrate as precursor for cementitious binders. Journal 74 2.015 of Thermal Analysis and Calorimetry, 2014, 118, 817-823. Strength development of alkali-activated fly ash produced with combined NaOH and Ca(OH) 2 activators. Cement and Concrete Composites, 2014, 53, 341-349.

#	Article	IF	CITATIONS
76	Chemical characterisation of metakaolin and fly ash based geopolymers during exposure to solvents used in carbon capture. International Journal of Greenhouse Gas Control, 2014, 27, 255-266.	2.3	19
77	Investigation on microstructures of cementitious composites incorporating slag. Advances in Cement Research, 2014, 26, 222-232.	0.7	51
78	Green concrete or red herring? – future of alkali-activated materials. Advances in Applied Ceramics, 2014, 113, 472-477.	0.6	56
79	Strength and drying shrinkage of reactive MgO modified alkali-activated slag paste. Construction and Building Materials, 2014, 51, 395-404.	3.2	230
80	Modification of phase evolution in alkali-activated blast furnace slag by the incorporation of fly ash. Cement and Concrete Composites, 2014, 45, 125-135.	4.6	806
81	Effect of blast furnace slag on self-healing of microcracks in cementitious materials. Cement and Concrete Research, 2014, 60, 68-82.	4.6	148
82	Anhydrite/hemihydrate-blast furnace slag cementitious composites: Strength development and reactivity. Construction and Building Materials, 2014, 65, 20-28.	3.2	40
83	Natural carbonation of aged alkali-activated slag concretes. Materials and Structures/Materiaux Et Constructions, 2014, 47, 693-707.	1.3	114
84	Durability of Alkaliâ€Activated Materials: Progress and Perspectives. Journal of the American Ceramic Society, 2014, 97, 997-1008.	1.9	320
85	MgO content of slag controls phase evolution and structural changes induced by accelerated carbonation in alkali-activated binders. Cement and Concrete Research, 2014, 57, 33-43.	4.6	334
86	Geopolymer foam concrete: An emerging material for sustainable construction. Construction and Building Materials, 2014, 56, 113-127.	3.2	594
87	Influence of starting material on the early age hydration kinetics, microstructure and composition of binding gel in alkali activated binder systems. Cement and Concrete Composites, 2014, 48, 108-117.	4.6	107
88	Alkali Activated Materials. RILEM State-of-the-Art Reports, 2014, , .	0.3	455
89	The fate of iron in blast furnace slag particles during alkali-activation. Materials Chemistry and Physics, 2014, 146, 1-5.	2.0	36
91	Hemihydrate or waste anhydrite in composite binders with blast-furnace slag: Hydration products, microstructures and dimensional stability. Construction and Building Materials, 2014, 71, 317-326.	3.2	22
92	<i>In Situ</i> Mechanical Properties of Chamotte Particulate Reinforced, Potassium Geopolymer. Journal of the American Ceramic Society, 2014, 97, 907-915.	1.9	54
93	A hydration study of various calcium sulfoaluminate cements. Cement and Concrete Composites, 2014, 53, 224-232.	4.6	199
94	Calcium sulfoaluminate (Ye'elimite) hydration in the presence of gypsum, calcite, and vaterite. Cement and Concrete Research, 2014, 65, 15-20.	4.6	176

#	Article	IF	CITATIONS
95	Activation of ground granulated blast furnace slag by using calcined dolomite. Construction and Building Materials, 2014, 68, 252-258.	3.2	45
96	Corrosion of steel bars induced by accelerated carbonation in low and high calcium fly ash geopolymer concretes. Construction and Building Materials, 2014, 61, 79-89.	3.2	148
97	A review on alkali-activated slag cements incorporated with supplementary materials. Journal of Sustainable Cement-Based Materials, 2014, 3, 61-74.	1.7	35
98	Geopolymers and Related Alkali-Activated Materials. Annual Review of Materials Research, 2014, 44, 299-327.	4.3	908
99	Hydration mechanisms of two polymorphs of synthetic ye'elimite. Cement and Concrete Research, 2014, 63, 127-136.	4.6	114
100	Improving reactivity of fly ash and properties of ensuing geopolymers through mechanical activation. Construction and Building Materials, 2014, 57, 151-162.	3.2	99
101	Lightweight screed containing cork granules: Mechanical and hygrothermal characterization. Cement and Concrete Composites, 2014, 49, 1-8.	4.6	49
102	Properties of a ternary calcium sulfoaluminate–calcium sulfate–fly ash cement. Cement and Concrete Research, 2014, 56, 75-83.	4.6	111
103	Effect of GGBFS on setting, workability and early strength properties of fly ash geopolymer concrete cured in ambient condition. Construction and Building Materials, 2014, 66, 163-171.	3.2	933
104	Influence of the processing temperature on the compressive strength of Na activated lateritic soil for building applications. Construction and Building Materials, 2014, 65, 60-66.	3.2	58
105	Characterization of mechanical and microstructural properties of palm oil fuel ash geopolymer cement paste. Construction and Building Materials, 2014, 65, 592-603.	3.2	102
107	Innovations in cement-based materials: Addressing sustainability in structural and infrastructure applications. MRS Bulletin, 2015, 40, 1102-1109.	1.7	35
108	Enhancement of selectivity toward ettringite during hydrothermal processes on fluidized bed combustion wastes for the manufacture of preformed building components. RSC Advances, 2015, 5, 101887-101893.	1.7	5
109	Properties of compressed concrete paving units made produced using desulfurization slag. Environmental Progress and Sustainable Energy, 2015, 34, 1365-1371.	1.3	4
110	The Effect of Alkaline Material Particle Size on Adjustment Ability of Buffer Capacity. Medziagotyra, 2015, 21, .	0.1	2
111	Grand Challenges in Structural Materials. Frontiers in Materials, 2015, 2, .	1.2	21
112	Quantitative assessment of parameters that affect strength development in alkali activated fly ash binders. Construction and Building Materials, 2015, 93, 869-876.	3.2	25
113	Influence of fineness on hydration kinetics of supersulfated cement. Thermochimica Acta, 2015, 605, 37-42.	1.2	60

ARTICLE IF CITATIONS Stoichiometrically controlled C–(A)–S–H/N–A–S–H gel blends via alkali-activation of synthetic 0.6 28 114 precursors. Advances in Applied Ceramics, 2015, 114, 372-377. Early Age Properties of Low-calcium Fly Ash Geopolymer Concrete Suitable for Ambient Curing. 1.2 134 Procedia Engineering, 2015, 125, 601-607. Application of alkali-activated slag concrete in railway sleepers. Materials & Design, 2015, 69, 89-95. 79 116 5.1Identification of the hydrate gel phases present in phosphate-modified calcium aluminate binders. Cement and Concrete Research, 2015, 70, 21-28. Microstructure of amorphous aluminum hydroxide in belite-calcium sulfoaluminate cement. Cement 118 4.6 96 and Concrete Research, 2015, 71, 1-6. Mechanical strength and Young's modulus of alkali-activated cement-based binders., 2015, , 171-215. 120 Introduction to Handbook of Alkali-activated Cements, Mortars and Concretes., 2015, , 1-16. 129 Performance characteristics of concrete based on a ternary calcium sulfoaluminate–anhydrite–fly 121 4.6 ash cement. Cement and Concrete Composites, 2015, 55, 196-204. Photocatalytic NOx abatement by calcium aluminate cements modified with TiO2: Improved NO2 122 4.6 55 conversion. Cement and Concrete Research, 2015, 70, 67-76. Comparison of alkali–silica reactions in alkali-activated slag and Portland cement mortars. Materials 1.3 and Structures/Materiaux Et Constructions, 2015, 48, 743-751. Microstructural characterization of alkali-activation of six Korean Class F fly ashes with different geopolymeric reactivity and their zeolitic precursors with various mixture designs. KSCE Journal of 124 0.9 6 Čivil Engineering, 2015, 19, 1775-1786. The environmental credentials of hydraulic lime-pozzolan concretes. Journal of Cleaner Production, 4.6 50 2015, 93, 26-37. Microstructural verification of the strength performance of ternary blended cement systems with 126 3.2 69 high volumes of fly ash and GGBFS. Construction and Building Materials, 2015, 95, 96-107. Contribution of limestone to the hydration of calcium sulfoaluminate cement. Cement and Concrete 127 4.6 Composites, 2015, 62, 204-211. The role of brucite, ground granulated blastfurnace slag, and magnesium silicates in the carbonation 128 3.2 101 and performance of MgO cements. Construction and Building Materials, 2015, 94, 629-643. A review of alternative approaches to the reduction of CO2 emissions associated with the 129 400 manufacture of the binder phase in concrete. Cement and Concrete Research, 2015, 78, 126-142. Influence of curing temperature on the process of hydration of supersulfated cements at early age. 130 4.6 67 Cement and Concrete Research, 2015, 77, 69-75. Effect of sulfur on the ion concentration of pore solution and the hydration of calcium aluminate 19 cement. Cement and Concrete Composites, 2015, 62, 76-81.

	CITATION	N REPORT	
#	Article	IF	CITATIONS
132	The hybridizations of coal fly ash and wood ash for the fabrication of low alkalinity geopolymer load bearing block cured at ambient temperature. Construction and Building Materials, 2015, 88, 41-55.	3.2	43
134	Split tensile strength of slag-based geopolymer composites reinforced with steel fibers: Application of Taguchi method in evaluating the effect of production parameters and their optimum condition. Ceramics International, 2015, 41, 10697-10701.	2.3	25
135	Hydration Process and Compressive Strength of Slag-CFBC Fly Ash Materials without Portland Cement. Journal of Materials in Civil Engineering, 2015, 27, .	1.3	21
136	Influence of sodium borate on the early age hydration of calcium sulfoaluminate cement. Cement and Concrete Research, 2015, 70, 83-93.	4.6	74
137	Calcium Looping Spent Sorbent as a Limestone Replacement in the Manufacture of Portland and Calcium Sulfoaluminate Cements. Environmental Science & Technology, 2015, 49, 6865-6871.	4.6	36
138	Structural and durability properties of hydraulic lime–pozzolan concretes. Cement and Concrete Composites, 2015, 62, 212-223.	4.6	23
139	Hydrogen-rich water revealed benefits in controlling the physical and mechanical performances of cement mortar. Construction and Building Materials, 2015, 100, 31-39.	3.2	12
140	Compatibility of Superplasticizers with Limestone-Metakaolin Blended Cementitious System. RILEM Bookseries, 2015, , 427-434.	0.2	17
141	Effectiveness of carbonated lime as a raw material in producing a CO2-stored cementitious material by the hydrothermal method. Construction and Building Materials, 2015, 95, 556-565.	3.2	13
142	Effects of Different Reactive MgOs on the Hydration of MgO-Activated GCBS Paste. Journal of Materials in Civil Engineering, 2015, 27, .	1.3	58
144	Effective properties of a fly ash geopolymer: Synergistic application of X-ray synchrotron tomography, nanoindentation, and homogenization models. Cement and Concrete Research, 2015, 78, 252-262.	4.6	107
145	Effects of carbonation treatment on the properties of hydrated fly ash-MgO-Portland cement blends. Construction and Building Materials, 2015, 96, 147-154.	3.2	69
146	Durability of Blended PFA and POFA Geopolymer Concrete. Applied Mechanics and Materials, 2015, 754-755, 359-363.	0.2	0
147	Hydration of ordinary Portland cement and calcium sulfoaluminate cement blends. Cement and Concrete Composites, 2015, 56, 106-114.	4.6	182
148	Hydration stage identification and phase transformation of calcium sulfoaluminate cement at early age. Construction and Building Materials, 2015, 75, 11-18.	3.2	140
149	The Role of Al in Cross‣inking of Alkaliâ€Activated Slag Cements. Journal of the American Ceramic Society, 2015, 98, 996-1004.	1.9	181
150	Oneâ€Part Geopolymers Based on Thermally Treated Red Mud/NaOH Blends. Journal of the American Ceramic Society, 2015, 98, 5-11.	1.9	184
151	Properties of Ground Perlite Geopolymer Mortars. Journal of Materials in Civil Engineering, 2015, 27, .	1.3	35

#	Article	IF	CITATIONS
152	Influence of slag composition on the hydration of alkali-activated slags. Journal of Sustainable Cement-Based Materials, 2015, 4, 85-100.	1.7	53
153	Use of OPC to improve setting and early strength properties of low calcium fly ash geopolymer concrete cured at room temperature. Cement and Concrete Composites, 2015, 55, 205-214.	4.6	318
154	Microstructural and strength improvements through the use of Na2CO3 in a cementless Ca(OH)2-activated Class F fly ash system. Cement and Concrete Research, 2015, 67, 215-225.	4.6	119
155	Effect of calcium sulfate source on the hydration of calcium sulfoaluminate eco-cement. Cement and Concrete Composites, 2015, 55, 53-61.	4.6	165
156	Synthesis, characterization and mechanisms of one-part geopolymeric cement by calcining low-quality kaolin with alkali. Materials and Structures/Materiaux Et Constructions, 2015, 48, 699-708.	1.3	76
157	Physical–mechanical and microstructural properties of alkali-activated fly ash–blast furnace slag blends. Ceramics International, 2015, 41, 1421-1435.	2.3	190
158	Role of carbonates in the chemical evolution of sodium carbonate-activated slag binders. Materials and Structures/Materiaux Et Constructions, 2015, 48, 517-529.	1.3	186
159	Microstructural Changes Induced by CO2 Exposure in Alkali-Activated Slag/Metakaolin Pastes. Frontiers in Materials, 2016, 3, .	1.2	18
160	Contrastive Numerical Investigations on Thermo-Structural Behaviors in Mass Concrete with Various Cements. Materials, 2016, 9, 378.	1.3	5
161	Some Issues of Shrinkage-Reducing Admixtures Application in Alkali-Activated Slag Systems. Materials, 2016, 9, 462.	1.3	46
162	Quantitative Analysis of Phase Assemblage and Chemical Shrinkage of Alkali-Activated Slag. Journal of Advanced Concrete Technology, 2016, 14, 245-260.	0.8	72
163	ICSC Problems and Perspectives of high-calcium fly ash from heat power plants in the composition of "green―building materials. E3S Web of Conferences, 2016, 6, 01014.	0.2	3
164	Optimizing and Characterizing Geopolymers from Ternary Blend of Philippine Coal Fly Ash, Coal Bottom Ash and Rice Hull Ash. Materials, 2016, 9, 580.	1.3	44
165	Strength Properties of Slag/Fly Ash Blends Activated with Sodium Metasilicate and Sodium Hydroxide + Silica Fume. Periodica Polytechnica: Civil Engineering, 2016, 60, 223-228.	0.6	11
166	Production and hydration of calcium sulfoaluminate-belite cements derived from aluminium anodising sludge. Construction and Building Materials, 2016, 122, 373-383.	3.2	91
167	Management and valorisation of wastes through use in producing alkaliâ€activated cement materials. Journal of Chemical Technology and Biotechnology, 2016, 91, 2365-2388.	1.6	121
168	Industrial energy use and carbon emissions reduction: a UK perspective. Wiley Interdisciplinary Reviews: Energy and Environment, 2016, 5, 684-714.	1.9	53
169	Recent developments on inorganic polymers synthesis and applications. Ceramics International, 2016, 42, 15142-15159.	2.3	119

#	Article	IF	CITATIONS
170	Production of belite calcium sulfoaluminate cement using sulfur as a fuel and as a source of clinker sulfur trioxide: pilot kiln trial. Advances in Cement Research, 2016, 28, 643-653.	0.7	42
171	Calcium Silicate Phases Explained by High-Temperature-Resistant Phosphate Probe Molecules. Langmuir, 2016, 32, 13577-13584.	1.6	13
172	Innovative concretes for low-carbon constructions: a review. International Journal of Low-Carbon Technologies, 2016, , .	1.2	10
173	Effect of Rapid Hardening Cement and Setting Accelerator on the Freeze-Thaw Durability of Fly Ash Concrete. Key Engineering Materials, 0, 711, 343-350.	0.4	1
174	In-situ and continuous monitoring of pore evolution of calcium sulfoaluminate cement at early age by electrical impedance measurement. Construction and Building Materials, 2016, 117, 8-19.	3.2	34
175	Mechanical and durability performance of sustainable structural concretes: An experimental study. Cement and Concrete Composites, 2016, 71, 85-96.	4.6	80
176	Hydration properties of ladle furnace slag powder rapidly cooled by air. Construction and Building Materials, 2016, 113, 682-690.	3.2	40
177	Effect of retarders on the early hydration of calcium-sulpho-aluminate (CSA) type cements. Cement and Concrete Research, 2016, 84, 62-75.	4.6	130
178	Influence of the long term curing temperature on the hydration of alkaline binders of blast furnace slag-metakaolin. Construction and Building Materials, 2016, 113, 917-926.	3.2	51
179	Application design of concrete canvas (CC) in soil reinforced structure. Geotextiles and Geomembranes, 2016, 44, 557-567.	2.3	26
180	Synthesis of stoichiometrically controlled reactive aluminosilicate and calcium-aluminosilicate powders. Powder Technology, 2016, 297, 17-33.	2.1	40
181	Experimental study on the synthesis and characterization of aplite rock-based geopolymers. Journal of Sustainable Cement-Based Materials, 2016, 5, 233-246.	1.7	29
182	Low-CO ₂ Cements from Fluidized Bed Process Wastes and Other Industrial By-Products. Combustion Science and Technology, 2016, 188, 492-503.	1.2	27
183	A Review on the Durability of Alkali-Activated Fly Ash/Slag Systems: Advances, Issues, and Perspectives. Industrial & Engineering Chemistry Research, 2016, 55, 5439-5453.	1.8	149
184	Performance of blended metakaolin/blastfurnace slag alkali-activated mortars. Cement and Concrete Composites, 2016, 71, 42-52.	4.6	100
185	Cementitious properties and microstructure of an innovative slag eco-binder. Materials and Structures/Materiaux Et Constructions, 2016, 49, 2009-2024.	1.3	21
186	Physical and chemical properties of concrete using GGBFS-KR slag-gypsum binder. Construction and Building Materials, 2016, 123, 436-443.	3.2	35
187	Effect of MgO content of synthetic slag on the formation of Mg-Al LDHs and sulfate resistance of slag-fly ash-clinker binder. Construction and Building Materials, 2016, 125, 766-774.	3.2	24

#	Article	IF	CITATIONS
188	Improving the mechanical properties of rapid air cooled ladle furnace slag powder by gypsum. Construction and Building Materials, 2016, 127, 93-101.	3.2	25
189	Phase evolution of C-(N)-A-S-H/N-A-S-H gel blends investigated via alkali-activation of synthetic calcium aluminosilicate precursors. Cement and Concrete Research, 2016, 89, 120-135.	4.6	256
190	Mutual activation of blast furnace slag and a high-calcium fly ash rich in free lime and sulfates. Construction and Building Materials, 2016, 126, 466-475.	3.2	10
191	Hydration characteristics of cement-free binder using Kambara reactor slag. Magazine of Concrete Research, 2016, 68, 1143-1154.	0.9	3
192	A review of alternatives traditional cementitious binders for engineering improvement of soils. International Journal of Geotechnical Engineering, 0, , 1-11.	1.1	17
193	A Study on Mechanical Properties of Porous Concrete Using Cementless Binder. International Journal of Concrete Structures and Materials, 2016, 10, 527-537.	1.4	23
194	Behavior of calcium aluminate cement (CAC) in the presence of hexavalent chromium. Cement and Concrete Composites, 2016, 73, 114-122.	4.6	31
195	Decarbonising the energy intensive basic materials industry through electrification – Implications for future EU electricity demand. Energy, 2016, 115, 1623-1631.	4.5	180
196	Synthesis and characterization of mortars with circulating fluidized bed combustion fly ash and ground granulated blast-furnace slag. Construction and Building Materials, 2016, 123, 565-573.	3.2	40
197	Fly ash-slag interaction during alkaline activation: Influence of activators on phase assemblage and microstructure formation. Construction and Building Materials, 2016, 122, 594-606.	3.2	73
198	Stability of ettringite in CSA cement at elevated temperatures. Advances in Cement Research, 2016, 28, 251-261.	0.7	46
199	Alkali-activated slag cements produced with a blended sodium carbonate/sodium silicate activator. Advances in Cement Research, 2016, 28, 262-273.	0.7	78
200	Effects of superplasticizers and retarders on the fluidity and strength of sulphoaluminate cement. Construction and Building Materials, 2016, 126, 44-54.	3.2	91
201	A reaction range for hydration of calcium sulfoaluminate with calcium sulfate and calcium hydroxide: theory and experimental validation. Advances in Cement Research, 2016, 28, 664-674.	0.7	12
202	Influence of alternative fuels on trace element content of ordinary portland cement. Fuel, 2016, 184, 481-489.	3.4	36
204	Shrinkage mechanisms of alkali-activated slag. Cement and Concrete Research, 2016, 88, 126-135.	4.6	276
205	Evaluation of GHG emissions from the production of magnesia refractory raw materials in Dashiqiao, China. Journal of Cleaner Production, 2016, 135, 214-222.	4.6	19
206	Technology Updating Decisions for Improving the Environmental Performance of an Operating Supply Chain: A Multiobjective Optimization Model for the Cement Industry. Industrial & Engineering Chemistry Research, 2016, 55, 12287-12300.	1.8	3

#	Article	IF	CITATIONS
207	Usability of Geopolymers for Oil Well Cementing Applications: Reaction Mechanisms, Pumpability, and Properties. , 2016, , .		11
208	Improving the performance of reactive MgO cement-based concrete mixes. Construction and Building Materials, 2016, 126, 747-758.	3.2	95
209	The Manufacture of the Grinding Wheels Based on the Ca–K Geopolymer Matrix. Materials and Manufacturing Processes, 2016, 31, 667-672.	2.7	9
210	Self-Compacted Clay based Concrete (SCCC): proof-of-concept. Journal of Cleaner Production, 2016, 117, 160-168.	4.6	55
211	Restrained Shrinkage Cracking and Dry Shrinkage of Rapid-Set Prepackaged Cementitious Materials. Journal of Materials in Civil Engineering, 2016, 28, .	1.3	8
212	Magnesia-Based Cements: A Journey of 150 Years, and Cements for the Future?. Chemical Reviews, 2016, 116, 4170-4204.	23.0	564
213	Optimizing Ternary-blended Geopolymers with Multi-response Surface Analysis. Waste and Biomass Valorization, 2016, 7, 929-939.	1.8	30
214	Phase evolution of Na ₂ O–Al ₂ O ₃ –SiO ₂ –H ₂ O gels in synthetic aluminosilicate binders. Dalton Transactions, 2016, 45, 5521-5535.	1.6	74
215	Dynamical behaviors of structural, constrained and free water in calcium- and magnesium-silicate-hydrate gels. Journal of Colloid and Interface Science, 2016, 469, 157-163.	5.0	15
216	Investigation on the Effectiveness of Aqueous Carbonated Lime in Producing an Alternative Cementitious Material. International Journal of Concrete Structures and Materials, 2016, 10, 15-28.	1.4	5
217	The role of activating solution concentration on alkali–silica reaction in alkali-activated fly ash concrete. Cement and Concrete Research, 2016, 83, 124-130.	4.6	76
218	Engineering properties and durability of high-strength self-compacting concrete with no-cement SFC binder. Construction and Building Materials, 2016, 106, 670-677.	3.2	29
219	Effects of Activator Properties and Ferrochrome Slag Aggregates on the Properties of alkali-activated Blast Furnace Slag Mortars. Arabian Journal for Science and Engineering, 2016, 41, 1561-1571.	1.1	19
220	Chemical activation of hybrid binders based on siliceous fly ash and Portland cement. Cement and Concrete Composites, 2016, 66, 10-23.	4.6	99
221	Influence of calcium aluminate cement (CAC) on alkaline activation of red clay brick waste (RCBW). Cement and Concrete Composites, 2016, 65, 177-185.	4.6	60
222	Pozzolanic reactivity of a calcined interstratified illite/smectite (70/30) clay. Cement and Concrete Research, 2016, 79, 101-111.	4.6	77
223	Why more sustainable cements failed so far? Disruptive innovations and their barriers in a basic industry. Environmental Innovation and Societal Transitions, 2016, 19, 15-30.	2.5	38
224	Hydration and early-age expansion of calcium sulfoaluminate cement-based binders: experiments and thermodynamic modeling. Journal of Sustainable Cement-Based Materials, 2016, 5, 259-267.	1.7	18

	CITATION REL	0.00	1
#	Article	IF	CITATIONS
225	Improvement of mechanical properties of concrete canvas by anhydrite-modified calcium sulfoaluminate cement. Journal of Composite Materials, 2016, 50, 1937-1950.	1.2	31
226	Cement industry greenhouse gas emissions – management options and abatement cost. Journal of Cleaner Production, 2016, 112, 4041-4052.	4.6	356
227	Ag/AgCl ion-selective electrodes in neutral and alkaline environments containing interfering ions. Materials and Structures/Materiaux Et Constructions, 2016, 49, 2637-2651.	1.3	42
228	Impact of rapid-hardening cements on mechanical properties of cement bitumen emulsion asphalt. Materials and Structures/Materiaux Et Constructions, 2016, 49, 487-498.	1.3	65
229	Long-term durability of rock-based geopolymers aged at downhole conditions for oil well cementing operations. Journal of Sustainable Cement-Based Materials, 2017, 6, 217-230.	1.7	36
230	Compositional characteristics and experimental burning of selected Lower Palaeozoic limestones from the Prague Basin (Barrandian area, Czech Republic) suitable for the production of natural hydraulic lime. Bulletin of Engineering Geology and the Environment, 2017, 76, 21-37.	1.6	3
231	Impact of reactive SiO2/Al2O3 ratio in precursor on durability of porous alkali activated materials. Ceramics International, 2017, 43, 5471-5477.	2.3	39
232	Micro-mechanical properties of calcium sulfoaluminate cement and the correlation with microstructures. Cement and Concrete Composites, 2017, 80, 10-16.	4.6	64
233	Effect of borax on rheology of calcium sulphoaluminate cement paste in the presence of polycarboxylate superplasticizer. Construction and Building Materials, 2017, 139, 277-285.	3.2	61
234	Influence of nano-SiO2 addition on properties of sulphoaluminate cement based material. Journal Wuhan University of Technology, Materials Science Edition, 2017, 32, 106-112.	0.4	11
235	Phase Compatibility in the System CaO–SiO ₂ –Al ₂ O ₃ –SO ₃ –Fe ₂ O _{3< and the Effect of Partial Pressure on the Phase Stability. Industrial & Engineering Chemistry Research, 2017, 56, 2341-2349.}	:/sub> 1.8	22
236	Bond strength between concrete substrate and metakaolin geopolymer repair mortar: Effect of curing regime and PVA fiber reinforcement. Cement and Concrete Composites, 2017, 80, 307-316.	4.6	100
237	Aluminum-induced dreierketten chain cross-links increase the mechanical properties of nanocrystalline calcium aluminosilicate hydrate. Scientific Reports, 2017, 7, 44032.	1.6	122
238	Water absorption and water/fertilizer retention performance of vermiculite modified sulphoaluminate cementitious materials. Construction and Building Materials, 2017, 137, 224-233.	3.2	27
239	Matrix design for waterproof Engineered Cementitious Composites (ECCs). Construction and Building Materials, 2017, 139, 438-446.	3.2	79
240	Influence of fly ash on the hydration of calcium sulfoaluminate cement. Cement and Concrete Research, 2017, 95, 152-163.	4.6	142
241	Drying and carbonation shrinkage of cement paste containing alkalis. Materials and Structures/Materiaux Et Constructions, 2017, 50, 1.	1.3	43
242	Multi-sized fillers to improve strength and flowability of concrete. Advances in Cement Research, 2017, 29, 112-124.	0.7	30

	CITATION	Report	
#	Article	IF	CITATIONS
243	Volume and surface fractal dimensions of pore structure by NAD and LT-DSC in calcium sulfoaluminate cement pastes. Construction and Building Materials, 2017, 143, 395-418.	3.2	58
244	Effect of Na2O content, SiO2/Na2O molar ratio, and curing conditions on the compressive strength of FA-based geopolymer. Construction and Building Materials, 2017, 145, 253-260.	3.2	123
245	Calcium Sulfoaluminate Cement Concrete for Precast, Prestressed Concrete Components. , 2017, , .		0
246	Mechanical Behavior and Sulfate Resistance of Alkali Activated Stabilized Clayey Soil. Geotechnical and Geological Engineering, 2017, 35, 1907-1920.	0.8	32
247	Utilization of flue gas desulfurization gypsum for producing calcium sulfoaluminate cement. Journal of Cleaner Production, 2017, 161, 803-811.	4.6	92
248	Sintering characteristics of BCSAF cement clinker with added wastes from production of manganese and magnesium metals. Advances in Cement Research, 0, , 1-9.	0.7	3
249	Acid resistance of palm oil fuel ash and metakaolin ternary blend cement mortar. Sustainable Environment Research, 2017, 27, 181-187.	2.1	13
250	Impact of quantity of anhydrite, water to binder ratio, fineness on kinetics and phase assemblage of belite-ye'elimite-ferrite cement. Cement and Concrete Research, 2017, 99, 8-17.	4.6	76
251	Properties of alkali-activated slag with addition of cation exchange material. Construction and Building Materials, 2017, 146, 321-328.	3.2	15
252	Shrinkage and strength development of alkali-activated fly ash-slag binary cements. Construction and Building Materials, 2017, 150, 808-816.	3.2	131
253	Advances in clinkering technology of calcium sulfoaluminate cement. Advances in Cement Research, 2017, 29, 405-417.	0.7	16
254	Identification of hydration stage of calcium sulfoaluminate cement at an early age with helium pycnometry. Materials and Structures/Materiaux Et Constructions, 2017, 50, 1.	1.3	9
255	A simple method for determining the total amount of physically and chemically bound water of different cements. Journal of Thermal Analysis and Calorimetry, 2017, 130, 653-660.	2.0	25
256	Comparing ion diffusion in alternative cementitious materials in real time by using non-destructive X-ray imaging. Cement and Concrete Composites, 2017, 82, 67-79.	4.6	18
257	An improved basis for characterizing the suitability of fly ash as a cement replacement agent. Journal of the American Ceramic Society, 2017, 100, 4785-4800.	1.9	48
258	Factors affecting the leaching behaviors of magnesium phosphate cementâ€stabilized/solidified Pbâ€contaminated soil, part II: Dosage and curing age. Environmental Progress and Sustainable Energy, 2017, 36, 1351-1357.	1.3	13
259	Mechanical properties and microstructural analysis of slag based cementitious binder with calcined dolomite as an activator. Construction and Building Materials, 2017, 150, 345-354.	3.2	16
260	Synthesis reaction and compressive strength behavior of loess-fly ash based geopolymers for the development of sustainable green materials. Construction and Building Materials, 2017, 141, 491-500.	3.2	28

#	Article	IF	CITATIONS
261	Sequestration of CO2 in reactive MgO cement-based mixes with enhanced hydration mechanisms. Construction and Building Materials, 2017, 143, 71-82.	3.2	91
263	Carbonation-induced volume change in alkali-activated slag. Construction and Building Materials, 2017, 144, 635-644.	3.2	39
264	Influence of curing temperatures on the hydration of calcium aluminate cement/Portland cement/calcium sulfate blends. Cement and Concrete Composites, 2017, 80, 298-306.	4.6	54
265	Mechanism of zinc oxide retardation in alkali-activated materials: an in situ X-ray pair distribution function investigation. Journal of Materials Chemistry A, 2017, 5, 11794-11804.	5.2	89
266	Carbon Utilization. Green Energy and Technology, 2017, , .	0.4	1
267	Physico-chemical mechanisms involved in the acceleration of the hydration of calcium sulfoaluminate cement by lithium ions. Cement and Concrete Research, 2017, 96, 42-51.	4.6	57
268	Carbonation of calcium sulfoaluminate mortars. Cement and Concrete Composites, 2017, 80, 123-134.	4.6	134
269	The influence of variable gypsum and water content on the strength and hydration of a belite-calcium sulphoaluminate cement. Advances in Applied Ceramics, 2017, 116, 199-206.	0.6	26
270	Constructional geomaterials: versatile earth resources in the service of humankind—introduction to the thematic set of papers on: challenges to supply and quality of geomaterials used in construction. Bulletin of Engineering Geology and the Environment, 2017, 76, 1-9.	1.6	19
271	Use of oxyfuel combustion ash for the production of blended cements: A synergetic solution toward reduction of CO 2 emissions. Fuel Processing Technology, 2017, 156, 211-220.	3.7	29
272	Synthesis and hydration of alite-calcium sulfoaluminate cement. Advances in Cement Research, 2017, 29, 101-111.	0.7	36
273	The effect of silica fume on durability of alkali activated slag concrete. Construction and Building Materials, 2017, 134, 262-268.	3.2	174
274	Understanding the drying shrinkage performance of alkali-activated slag mortars. Cement and Concrete Composites, 2017, 76, 13-24.	4.6	175
275	Effect of graphene oxide on the mechanical properties and the formation of layered double hydroxides (LDHs) in alkali-activated slag cement. Construction and Building Materials, 2017, 132, 290-295.	3.2	70
276	Performance and hydration study of ultra-fine sulfoaluminate cement-based double liquid grouting material. Construction and Building Materials, 2017, 132, 262-270.	3.2	61
277	Formulation of Mechanochemically Evolved Fly Ash Based Hybrid Inorganic–Organic Geopolymers with Multilevel Characterization. Journal of Inorganic and Organometallic Polymers and Materials, 2017, 27, 385-398.	1.9	30
278	Quantification of synthesized hydration products using synchrotron microtomography and spectral analysis. Construction and Building Materials, 2017, 157, 476-488.	3.2	9
279	Effects of the addition of inertized MSW fly ash on calcium aluminate cement mortars. Construction and Building Materials, 2017, 157, 1106-1116.	3.2	18

#	Article	IF	CITATIONS
280	Carbonation of low-alkalinity mortars: Influence on corrosion of steel and on mortar microstructure. Cement and Concrete Research, 2017, 101, 33-45.	4.6	23
281	Grinding of Class-F fly ash using planetary ball mill: A simulation study to determine the breakage kinetics by direct- and back-calculation method. South African Journal of Chemical Engineering, 2017, 24, 135-147.	1.2	12
282	Using gypsum to control hydration kinetics of CSA cements. Construction and Building Materials, 2017, 155, 154-163.	3.2	116
283	Effect of hydration kinetics on properties of compositionally similar binders. Cement and Concrete Research, 2017, 101, 13-24.	4.6	51
284	Development of strong lightweight cementitious matrix for lightweight concrete simply by increasing a water-to-binder ratio in Ca(OH)2-Na2CO3-activated fly ash system. Construction and Building Materials, 2017, 152, 444-455.	3.2	16
285	Durability of alkali-activated materials in aggressive environments: A review on recent studies. Construction and Building Materials, 2017, 152, 598-613.	3.2	225
286	Hydration evolution and compressive strength of calcium sulphoaluminate cement constantly cured over the temperature range of 0 to 80 ŰC. Cement and Concrete Research, 2017, 100, 203-213.	4.6	113
287	Influence of admixtures on rheological properties and heat of hydration of alkali aluminosilicate cement. Advances in Cement Research, 2017, 29, 397-403.	0.7	14
288	Crystallographic Analysis of Sr-Bearing Ye'elimite. Journal of Inorganic and Organometallic Polymers and Materials, 2017, 27, 1694-1702.	1.9	6
289	Filler to improve concurrent flowability and segregation performance of concrete. Australian Journal of Structural Engineering, 2017, 18, 73-85.	0.4	11
290	Influence of pumice and zeolite on compressive strength, transport properties and resistance to chloride penetration of high strength self-compacting concretes. Construction and Building Materials, 2017, 151, 292-311.	3.2	94
291	Optimization of the alkali activation conditions of ground granulated SiMn slag. Construction and Building Materials, 2017, 150, 781-791.	3.2	35
292	Influence of nucleation seeding on the performance of carbonated MgO formulations. Cement and Concrete Composites, 2017, 83, 1-9.	4.6	47
293	Stability of MgO-modified geopolymeric gel structure exposed to a CO2-rich environment. Construction and Building Materials, 2017, 151, 178-185.	3.2	18
294	Towards sustainable concrete. Nature Materials, 2017, 16, 698-699.	13.3	683
295	Effectiveness of a hydrothermally produced alternative cementitious material on the physical and mechanical performance of concrete. Journal of Cleaner Production, 2017, 142, 3269-3280.	4.6	4
296	Flexural strength and elastic modulus of ambient-cured blended low-calcium fly ash geopolymer concrete. Construction and Building Materials, 2017, 130, 22-31.	3.2	328
297	Utilisation of alkali activated glass powder in binary mixtures with Portland cement, slag, fly ash and hydrated lime. Materials and Structures/Materiaux Et Constructions, 2017, 50, 1.	1.3	43

# 298	ARTICLE Fracture properties of GGBFS-blended fly ash geopolymer concrete cured in ambient temperature. Materials and Structures/Materiaux Et Constructions, 2017, 50, 1.	IF 1.3	CITATIONS
299	Compressive Strength and Microstructure of Alkali-Activated Blast Furnace Slag/Sewage Sludge Ash (GCBS/SSA) Blends Cured at Room Temperature. Waste and Biomass Valorization, 2017, 8, 1441-1451.	1.8	32
300	Effects of micro and nanoparticles of SiO 2 on the permeability of alkali activated slag concrete. Construction and Building Materials, 2017, 131, 205-213.	3.2	115
301	Kinetic Analysis for Formation Process of Sr-Bearing Ye'elimite. Journal of Inorganic and Organometallic Polymers and Materials, 2017, 27, 1861-1869.	1.9	8
302	4. Thermodynamic modelling of cement hydration: Portland cements – blended cements – calcium sulfoaluminate cements. , 2017, , 103-144.		3
303	7. Crystallography and crystal chemistry of AFm phases related to cement chemistry. , 2017, , 191-250.		0
304	Effect of Calcium Carbonate Fineness on Calcium Sulfoaluminate-Belite Cement. Materials, 2017, 10, 900.	1.3	50
305	Acceleration of Intended Pozzolanic Reaction under Initial Thermal Treatment for Developing Cementless Fly Ash Based Mortar. Materials, 2017, 10, 225.	1.3	36
306	Synthesis of Nanoscale CaO-Al2O3-SiO2-H2O and Na2O-Al2O3-SiO2-H2O Using the Hydrothermal Method and Their Characterization. Materials, 2017, 10, 695.	1.3	20
307	Progress in the Adoption of Geopolymer Cement**This chapter is an updated version of the article: Van Deventer JSJ, Provis JL, Duxson P. Technical and commercial progress in the adoption of geopolymer cement. Miner Eng 2012;29:89–104 , 2017, , 217-262.		13
308	Alkali-Activated Cement-Based Binders (AACBs) as Durable and Cost-Competitive Low-CO2 Binder Materials. , 2017, , 195-216.		20
309	Calcium Sulfoaluminate, Geopolymeric, and Cementitious Mortars for Structural Applications. Environments - MDPI, 2017, 4, 64.	1.5	21
310	Enhancement Experiment on Cementitious Activity of Copper-Mine Tailings in a Geopolymer System. Fibers, 2017, 5, 47.	1.8	25
311	Engineering Properties and Microstructural Performance of Low Energy Super-Sulfated Cement Using Industrial Waste Anhydrite. MATEC Web of Conferences, 2017, 130, 04001.	0.1	1
312	A influência da composição quÃmica e da finura no desempenho de cimentos álcali ativados obtidos com escórias de alto forno. Revista Materia, 2017, 22, .	0.1	1
313	Building materials. , 2017, , 67-112.		3
314	Alkali-activated binder containing wastes: a study with rice husk ash and red ceramic. Ceramica, 2017, 63, 44-51.	0.3	14
315	Considerações sobre a resistência mecânica e o processo de hidratação de cimentos supersulfatados (CSS) formulados com fosfogesso. Revista Materia, 2017, 22, .	0.1	1

#	Article	IF	CITATIONS
316	Reinforcement effects of polyvinyl alcohol and polypropylene fibers on flexural behaviors of sulfoaluminate cement matrices. Cement and Concrete Composites, 2018, 88, 139-149.	4.6	57
317	Characterisation of pore structure development of alkali-activated slag cement during early hydration using electrical responses. Cement and Concrete Composites, 2018, 89, 139-149.	4.6	49
318	Reducing greenhouse gas emissions for prescribed concrete compressive strength. Construction and Building Materials, 2018, 167, 918-928.	3.2	40
319	Multi-Objective Optimization of Alkali Activator Agents for FA- and GCBFS-Based Geopolymer Lightweight Mortars. Arabian Journal for Science and Engineering, 2018, 43, 5333-5347.	1.7	11
320	Crack growth resistance in fibre reinforced alkali-activated fly ash concrete exposed to extreme temperatures. Materials and Structures/Materiaux Et Constructions, 2018, 51, 1.	1.3	13
321	Slag-Based Cements That Resist Damage Induced by Carbon Dioxide. ACS Sustainable Chemistry and Engineering, 2018, 6, 5067-5075.	3.2	39
322	Matrix hybridization using waste fuel ash and slag in alkali-activated composites and its influence on maturity of fiber-matrix bond. Journal of Cleaner Production, 2018, 177, 857-867.	4.6	23
323	Application areas of phosphogypsum in production of mineral binders and composites based on them: a review of research results. MATEC Web of Conferences, 2018, 149, 01012.	0.1	14
324	Engineering properties of lightweight geopolymer synthesized from coal bottom ash and rice husk ash. AIP Conference Proceedings, 2018, , .	0.3	11
325	Experimental study of calcium sulfoaluminate cement-based self-leveling compound exposed to various temperatures and moisture conditions: Hydration mechanism and mortar properties. Cement and Concrete Research, 2018, 108, 103-115.	4.6	38
326	Strength evaluation by using polycarboxylate superplasticizer and solidification efficiency of Cr 6+ , Pb 2+ and Cd 2+ in composite based geopolymer. Journal of Cleaner Production, 2018, 188, 807-815.	4.6	71
327	AH3 phase in the hydration product system of AFt-AFm-AH3 in calcium sulfoaluminate cements: A microstructural study. Construction and Building Materials, 2018, 167, 587-596.	3.2	67
328	Hydration mechanism of composite binders containing blast furnace ferronickel slag at different curing temperatures. Journal of Thermal Analysis and Calorimetry, 2018, 131, 2291-2301.	2.0	39
329	Mechanical behaviour of micro-fine steel fibre reinforced sulphoaluminate cement composite. Construction and Building Materials, 2018, 170, 91-100.	3.2	23
330	Nanostructural characterization of Al(OH) ₃ formed during the hydration of calcium sulfoaluminate cement. Journal of the American Ceramic Society, 2018, 101, 4262-4274.	1.9	45
331	Corrosion resistance of steel embedded in sulfoaluminate-based binders. Cement and Concrete Composites, 2018, 88, 211-219.	4.6	33
332	An experimental investigation on self-compacting alkali activated slag concrete mixes. Journal of Building Engineering, 2018, 17, 1-12.	1.6	55
333	Early-Age Strength of Alkali-Activated Municipal Slag–Fly Ash–Based Geopolymer Mortar. Journal of Materials in Civil Engineering, 2018, 30, .	1.3	20

#	Article	IF	CITATIONS
334	Thermal evolution of hydrates in carbonation-cured Portland cement. Materials and Structures/Materiaux Et Constructions, 2018, 51, 1.	1.3	28
335	Microcalorimetric study of the effect of calcium hydroxide and temperature on the alkaline activation of coal fly ash. Journal of Thermal Analysis and Calorimetry, 2018, 131, 2395-2410.	2.0	17
336	Engineering Properties and Bonding Behavior of Self-Compacting Concrete Made with No-Cement Binder. Journal of Materials in Civil Engineering, 2018, 30, .	1.3	13
337	Effect of aggressive chemicals on durability and microstructure properties of concrete containing crushed new concrete aggregate and non-traditional supplementary cementitious materials. Construction and Building Materials, 2018, 163, 482-495.	3.2	62
338	Comparing the pozzolanic activity properties of obsidian to those of fly ash and blast furnace slag. Construction and Building Materials, 2018, 164, 297-307.	3.2	57
339	Efficient method of producing clinker-free binding materials using electromagnetic vortex milling. Materials Letters, 2018, 226, 13-18.	1.3	7
340	Prediction of Compressive Strength of Geopolymers Using Multi-objective Feature Selection. Studies in Big Data, 2018, , 323-346.	0.8	0
341	Preparation and Characterization of an Eco-Friendly Binder from Alkali-Activated Aluminosilicate Solid Industrial Wastes Containing CKD and GGBS. Journal of Materials in Civil Engineering, 2018, 30, .	1.3	5
342	Early hydration of calcium sulfoaluminate cement in the presence of hydroxyethyl methyl cellulose. Journal of Thermal Analysis and Calorimetry, 2018, 134, 1429-1438.	2.0	31
343	Binder chemistry of sodium carbonate-activated CFBC fly ash. Materials and Structures/Materiaux Et Constructions, 2018, 51, 1.	1.3	22
344	Effect of nano-silica on hydration and conversion of calcium aluminate cement. Construction and Building Materials, 2018, 169, 819-825.	3.2	59
345	Evaluation of heat resisting behaviour of basalt fibre reinforced FG tiles. Construction and Building Materials, 2018, 170, 679-689.	3.2	16
346	Mechanical properties and durability performance of concretes with Limestone Calcined Clay Cement (LC3). Cement and Concrete Research, 2018, 107, 136-151.	4.6	295
347	The influence of different additives on the early-stage hydration of calcium aluminate cement. Journal of Thermal Analysis and Calorimetry, 2018, 134, 89-99.	2.0	8
348	Increasing the reaction kinetics of alkali-activated fly ash binders for stabilisation of a silty sand pavement sub-base. Road Materials and Pavement Design, 2018, 19, 201-222.	2.0	18
349	The Effect of Alkaline Solution-to-Slag Ratio on Permeability of Alkali Activated Slag Concrete. International Journal of Civil Engineering, 2018, 16, 897-904.	0.9	8
351	Hydrate Phase Assemblages in Calcium Sulfoaluminate – Metakaolin – Limestone Blends. RILEM Bookseries, 2018, , 352-357.	0.2	6
352	Hydration kinetics and morphology of cement pastes with pozzolanic volcanic ash studied via synchrotron-based techniques. Journal of Materials Science, 2018, 53, 1743-1757.	1.7	26

#	Article	IF	CITATIONS
353	Alkali-activated slag concrete: Fresh and hardened behaviour. Cement and Concrete Composites, 2018, 85, 22-31.	4.6	151
354	Susceptibility of Portland cement and blended cement concretes to plastic shrinkage cracking. Cement and Concrete Composites, 2018, 85, 44-55.	4.6	59
355	Split tensile strength of slag-based boroaluminosilicate geopolymer. Journal of the Australian Ceramic Society, 2018, 54, 65-70.	1.1	14
356	Improvement of workability and early strength of calcium sulphoaluminate cement at various temperature by chemical admixtures. Construction and Building Materials, 2018, 160, 427-439.	3.2	75
357	Carbon footprint of calcium sulfoaluminate clinker production. Journal of Cleaner Production, 2018, 172, 2278-2287.	4.6	123
358	The effect of metakaolin upon the formation of ettringite in metakaolin–lime–gypsum ternary systems. Journal of Thermal Analysis and Calorimetry, 2018, 133, 77-86.	2.0	23
359	Superabsorbent polymers as internal curing agents in alkali activated slag mortars. Construction and Building Materials, 2018, 159, 1-8.	3.2	79
360	Enhancing the performance of calcium sulfoaluminate blended cements with shrinkage reducing admixture or lightweight sand. Cement and Concrete Composites, 2018, 87, 29-43.	4.6	32
361	Superhigh strength of geopolymer with the addition of polyphosphate. Ceramics International, 2018, 44, 2578-2583.	2.3	20
362	Influence of set retarding admixtures on calcium sulfoaluminate cement hydration and property development. Cement and Concrete Research, 2018, 104, 105-113.	4.6	69
363	Effect of Alkali Activator on Preparation, and Mechanical and Thermal Properties of Iron Mine Tailing-Based Lightweight Materials. Solid State Phenomena, 0, 281, 940-945.	0.3	1
364	Fiber reinforced mortars based on free Portland-CSA binders under high stress rate. EPJ Web of Conferences, 2018, 183, 04013.	0.1	4
365	The contribution of life-cycle assessment to environmentally preferable concrete mix selection for breakwater applications. Ambiente ConstruÃdo, 2018, 18, 413-429.	0.2	5
366	Ternesite as a component of sulfobelitic cements. MATEC Web of Conferences, 2018, 149, 01011.	0.1	4
367	Selection of low impact concrete mixtures based on life-cycle assessment mixtures. Revista IBRACON De Estruturas E Materiais, 2018, 11, 1354-1380.	0.3	0
368	Outcomes of the round robin tests of RILEM TC 247-DTA on the durability of alkali-activated concrete. MATEC Web of Conferences, 2018, 199, 02024.	0.1	3
369	Effects of silicafume and fly ash on properties of alumina cement. MATEC Web of Conferences, 2018, 251, 01015.	0.1	0
370	Water-Resistant Gypsum Binding Agents and Concretes Based Thereof as Promising Materials for Building Green. IOP Conference Series: Earth and Environmental Science, 2018, 177, 012029.	0.2	3

		CITATION R	EPORT	
#	ARTICLE	018 1 21	IF	Citations
371	Mesoscale Mechanisms of Cement Hydration: BNG Model and Particle Simulations. , 24	J18, , 1-21 .		1
372	Drying shrinkage in alkali-activated binders – A critical review. Construction and Buil 2018, 190, 533-550.	ding Materials,	3.2	261
373	Development of reactive MgO-based Engineered Cementitious Composite (ECC) throu carbonation curing. Construction and Building Materials, 2018, 191, 23-31.	ıgh accelerated	3.2	82
374	Properties of alkali-activated ground granulated blast furnace slag blended with ferron Construction and Building Materials, 2018, 192, 123-132.	ickel slag.	3.2	54
375	Effect of limestone on rheological, shrinkage and mechanical properties of alkali $\hat{a} \in A$ ash grouting materials. Construction and Building Materials, 2018, 191, 1285-1292.	ctivated slag/fly	3.2	70
376	Revisiting the Effect of Slag in Reducing Heat of Hydration in Concrete in Comparison Supplementary Cementitious Materials. Materials, 2018, 11, 1847.	to Other	1.3	35
377	CSA-Treated Sand for Geotechnical Application: Microstructure Analysis and Rapid Stre Development. Journal of Materials in Civil Engineering, 2018, 30, .	ength	1.3	27
378	Microstructural comparison of the <scp>AH</scp> ₃ phase in the hydratic structural modifications of ye'elimite. Journal of the American Ceramic Society, 2019, 2	on of three 102, 2165-2175.	1.9	19
379	Evaluation of alkali-activated blast furnace ferronickel slag as a cementitious material: mechanism, engineering properties and leaching behaviors. Construction and Building 188, 860-873.	Reaction Materials, 2018,	3.2	82
380	Chemical phases and microstructural analysis of pastes based on magnesia cement. Co Building Materials, 2018, 188, 615-620.	postruction and	3.2	26
381	Hydration and rheology control of concrete for digital fabrication: Potential admixtures chemistry. Cement and Concrete Research, 2018, 112, 96-110.	s and cement	4.6	332
383	Effect of dosage of sodium carbonate on the strength and drying shrinkage of sodium based alkali-activated slag paste. Construction and Building Materials, 2018, 179, 11-2	hydroxide 4.	3.2	80
384	Optimization of heat cured fly ash/slag blend geopolymer mortars designed by "Co method: Part 1. Construction and Building Materials, 2018, 178, 393-404.	mbined Design―	3.2	29
385	Microstructural evolution of aluminum hydroxide gel during the hydration of calcium sulfoaluminate under different alkali concentrations. Construction and Building Materi 655-664.	als, 2018, 180,	3.2	26
386	Study on the preparation and properties of belite-ye'elimite-alite cement. Construc Materials, 2018, 182, 399-405.	tion and Building	3.2	17
387	Toward a sustainable materials system. Science, 2018, 360, 1396-1398.		6.0	143
388	Environmental perspectives of recycling various combustion ashes in cement productio Waste Management, 2018, 78, 401-416.	on – A review.	3.7	126
389	Influence of Different Curing Regimes on the Performance and Microstructure of Alkali Slag Concrete. Journal of Materials in Civil Engineering, 2018, 30, .	-Activated	1.3	33

#	Article	IF	CITATIONS
390	Effects of carbamide on fluidity and setting time of sulphoaluminate cement and properties of planting concrete from sulphoaluminate cement. Construction and Building Materials, 2018, 182, 290-297.	3.2	24
391	Technical and environmental characterization of hydraulic and alkaline binders. Journal of Cleaner Production, 2018, 196, 1306-1313.	4.6	10
392	Chloride-Binding Capacity of Portland Cement Paste Blended with Synthesized CA ₂ (CaO·2Al ₂ O ₃). Advances in Materials Science and Engineering, 2018, 2018, 1-11.	1.0	8
393	Role of soluble aluminum species in the activating solution for synthesis of silico-aluminophosphate geopolymers. Cement and Concrete Composites, 2018, 93, 186-195.	4.6	58
394	Effect of a Synthetic Nano-CaO-Al2O3-SiO2-H2O Gel on the Early-Stage Shrinkage Performance of Alkali-Activated Slag Mortars. Materials, 2018, 11, 1128.	1.3	17
395	Sulfoaluminate cement-based concrete. , 2018, , 355-385.		9
396	Evaluation of the preparation and fertilizer release performance of planting concrete made with recycled-concrete aggregates from demolition. Journal of Cleaner Production, 2018, 200, 54-64.	4.6	27
397	Mechanical properties of alkali activated ground SiMn slag mortars with different types of aggregates. Construction and Building Materials, 2018, 186, 79-89.	3.2	23
398	Binders alternative to Portland cement and waste management for sustainable construction—part 1. Journal of Applied Biomaterials and Functional Materials, 2018, 16, 186-202.	0.7	57
399	From Julius Caesar to Sustainable Composite Materials: A Passage through Port Caisson Technology. Sustainability, 2018, 10, 1225.	1.6	3
400	The use of calcium sulfoaluminate cement to mitigate the alkali silica reaction in mortars. Construction and Building Materials, 2018, 184, 295-303.	3.2	24
401	Relations between structural characteristics and compressive strength in volcanic ash based one–part geopolymer systems. Journal of Building Engineering, 2018, 20, 130-136.	1.6	32
402	Carbon dioxide sequestration by alkali-activated materials. , 2018, , 279-298.		3
403	A new method to create one-part non-Portland cement powder. Journal of Thermal Analysis and Calorimetry, 2018, 134, 1447-1456.	2.0	25
404	Hydration mechanisms of supersulfated cement. Journal of Thermal Analysis and Calorimetry, 2018, 134, 971-980.	2.0	49
405	Structural analysis of composite metakaolin-based geopolymer concrete. Revista IBRACON De Estruturas E Materiais, 2018, 11, 535-543.	0.3	17
406	Characterisation and hydration process of synthetic Sr-bearing ye'elimite. Advances in Cement Research, 2018, 30, 245-255.	0.7	7
407	Prediction of water evaporation and stability of cold asphalt mixtures containing different types of cement. Construction and Building Materials, 2018, 186, 751-761.	3.2	35

#	Article	IF	CITATIONS
408	Properties of quicklime(CaO)-activated Class F fly ash with the use of CaCl2. Cement and Concrete Research, 2018, 111, 147-156.	4.6	48
409	Assessment of geopolymers with Construction and Demolition Waste (CDW) aggregates as a building material. Construction and Building Materials, 2018, 181, 119-133.	3.2	65
410	Hydration characteristics and modeling of ternary system of municipal solid wastes incineration fly ash-blast furnace slag-cement. Construction and Building Materials, 2018, 180, 154-166.	3.2	58
411	Effect of shrinkage reducing admixture on early expansion and strength evolution of calcium sulfoaluminate blended cement. Cement and Concrete Composites, 2018, 92, 82-91.	4.6	21
412	Chloride binding of alkali-activated slag/fly ash cements. Construction and Building Materials, 2019, 226, 21-31.	3.2	73
413	Evaluation of sulfate and salt resistance of ferrochrome slag and blast furnace slagâ€based geopolymer concretes. Structural Concrete, 2019, 20, 1607-1621.	1.5	33
414	Self-Cleaning of Photocatalytic Mortar with Glass Aggregate and Calcium Sulfoaluminate-Belite Cement. Transportation Research Record, 2019, 2673, 704-715.	1.0	2
415	Alkali-Activated Mortar for Tunnel-Lining Structure Repair. Journal of Materials in Civil Engineering, 2019, 31, .	1.3	12
416	Hydration reaction and strength development of calcium sulfoaluminate cement-based mortar cured at cold temperatures. Construction and Building Materials, 2019, 224, 493-503.	3.2	53
417	Advances in understanding ye'elimite-rich cements. Cement and Concrete Research, 2019, 123, 105778.	4.6	91
418	Short and long-term behaviour of R.C. beams made with CSA binder. Engineering Structures, 2019, 197, 109370.	2.6	6
419	Influence of recycled concrete aggregates on alkali-activated slag mortar exposed to elevated temperatures. Journal of Building Engineering, 2019, 26, 100871.	1.6	27
420	A critical review on application of alkali activated slag as a sustainable composite binder. Case Studies in Construction Materials, 2019, 11, e00268.	0.8	82
421	Evaluation of Engineering Properties of Calcium Sulfoaluminate Cement-based Concretes Reinforced with Different Types of Fibers. Materials, 2019, 12, 2151.	1.3	18
422	Carbonation induced phase evolution in alkali-activated slag/fly ash cements: The effect of silicate modulus of activators. Construction and Building Materials, 2019, 223, 566-582.	3.2	64
423	Geopolymer, green alkali activated cementitious material: Synthesis, applications and challenges. Construction and Building Materials, 2019, 224, 930-949.	3.2	190
424	Influence of activator composition on the chloride binding capacity of alkali-activated slag. Cement and Concrete Composites, 2019, 104, 103368.	4.6	69
425	Effect of dolomite powder on the hydration and properties of calcium sulfoaluminate cements with different gypsum contents. Construction and Building Materials, 2019, 225, 302-310.	3.2	41

#	Article	IF	CITATIONS
426	Physical-mechanical properties of fly ash/GCBFS geopolymer composites with recycled aggregates. Construction and Building Materials, 2019, 226, 139-151.	3.2	130
427	The application of silica gel waste for the two-step synthesis of wollastonite in temperature range of 200–950°C. Journal of Thermal Analysis and Calorimetry, 2019, 138, 2263-2273.	2.0	10
428	The reduction of chromite ore processing residues by green tea synthesized nano zerovalent iron and its solidification/stabilization in composite geopolymer. Journal of Cleaner Production, 2019, 234, 381-391.	4.6	46
429	Metakaolin/carbon black geopolymer with enhanced electrical properties. IOP Conference Series: Materials Science and Engineering, 2019, 549, 012033.	0.3	0
430	Shelf life of alkali activated cement: Effects of storage condition and duration. Construction and Building Materials, 2019, 222, 664-672.	3.2	6
431	Effects of comb-like PCE and linear copolymers on workability and early hydration of a calcium sulfoaluminate belite cement. Cement and Concrete Research, 2019, 123, 105801.	4.6	55
432	Dissolution kinetics of calcined kaolinite and montmorillonite in alkaline conditions: Evidence for reactive Al(V) sites. Journal of the American Ceramic Society, 2019, 102, 7720-7734.	1.9	51
433	Solidification/stabilization of municipal solid waste incineration fly ash using uncalcined coal gangue–based alkali-activated cementitious materials. Environmental Science and Pollution Research, 2019, 26, 25609-25620.	2.7	53
434	Compressive strength and hydration process of ground granulated blast furnace slag-waste gypsum system managed by wet grinding. Construction and Building Materials, 2019, 228, 116777.	3.2	47
435	A study on initial setting time and the mechanical properties of AASC using the PS ball as fine aggregate. International Journal of Pavement Research and Technology, 2019, 12, 659-663.	1.3	3
436	Importance of Cation Species during Sulfate Resistance Tests for Alkali-Activated FA/GGBFS Blended Mortars. Materials, 2019, 12, 3547.	1.3	6
437	Numerical analysis and experimental validation of reinforced foamed concrete beam containing partial cement replacement. Case Studies in Construction Materials, 2019, 11, e00297.	0.8	9
438	Effect of marine sediments incorporation on the behaviour of alkali-activated GGBFS. Materials and Structures/Materiaux Et Constructions, 2019, 52, 1.	1.3	6
439	Utilization of Several Industrial Wastes as Raw Material for Calcium Sulfoaluminate Cement. Materials, 2019, 12, 3319.	1.3	22
440	Seasonal heat storage in calcium sulfoaluminate based hardened cement pastes – experiences with different prototypes. Journal of Energy Storage, 2019, 25, 100850.	3.9	8
441	Effects of polycarboxylate superplasticizers on fluidity and early hydration in sulfoaluminate cement system. Construction and Building Materials, 2019, 228, 116711.	3.2	30
442	Effect of the activator on the performance of alkali-activated slag mortars with pottery sand as fine aggregate. Construction and Building Materials, 2019, 197, 83-90.	3.2	37
443	Powder-diffraction characterization of cements. , 0, , 855-867.		4

#	Article	IF	CITATIONS
444	Dynamic Behaviors of Fly Ash–Groundâ€Granulated Blastâ€Furnace Slag–Highâ€Magnesium Nickel Slagâ€Bas Geopolymer Paste When Subjected to Impact Compressive Loadings. Advanced Engineering Materials, 2019, 21, 1900621.	sed 1.6	1
445	Mechanical and Fracture Properties of Fly Ash Geopolymer Concrete Addictive with Calcium Aluminate Cement. Materials, 2019, 12, 2982.	1.3	29
446	Predicting compressive strength and electrical resistivity of eco-friendly concrete containing natural zeolite via GEP algorithm. Construction and Building Materials, 2019, 229, 116883.	3.2	93
447	Studies on high performance alkali activated slag concrete mixes subjected to aggressive environments and sustained elevated temperatures. Construction and Building Materials, 2019, 229, 116887.	3.2	50
448	Nanoscale Ordering and Depolymerization of Calcium Silicate Hydrates in the Presence of Alkalis. Journal of Physical Chemistry C, 2019, 123, 24873-24883.	1.5	30
449	Hydration of Calcium Sulfoaluminate-Based Binder Incorporating Red Mud and Silica Fume. Applied Sciences (Switzerland), 2019, 9, 2270.	1.3	6
450	An investigation of the carbonation of alkaline activated cement made from blast furnace slag generated by charcoal. Construction and Building Materials, 2019, 226, 117-125.	3.2	17
451	Engineering Properties and Optimal Conditions of Cementless Grouting Materials. Materials, 2019, 12, 3059.	1.3	11
452	Synthesis and characterisation of calcium sulfoaluminate cements produced by different chemical gypsums. Advances in Cement Research, 2019, 31, 113-123.	0.7	26
453	Compressive strength and hydration process of wet-grinded granulated blast-furnace slag activated by sodium sulfate and sodium carbonate. Cement and Concrete Composites, 2019, 97, 387-398.	4.6	125
454	Irreversible time-dependent rheological behavior of cement slurries: Constitutive model and experiments. Journal of Rheology, 2019, 63, 247-262.	1.3	24
455	Effect of slag on the mechanical properties and bond strength of fly ash-based engineered geopolymer composites. Composites Part B: Engineering, 2019, 164, 747-757.	5.9	157
456	Dependences of dynamic compressive and tensile strengths of four alkali-activated mortars on the loading rate and curing time. Construction and Building Materials, 2019, 202, 891-903.	3.2	18
457	Strength development and prediction of calcium sulfoaluminate treated sand with optimized gypsum for replacing OPC in ground improvement. Construction and Building Materials, 2019, 202, 308-318.	3.2	27
458	Effect of Early Age-Curing Methods on Drying Shrinkage of Alkali-Activated Slag Concrete. Materials, 2019, 12, 1633.	1.3	26
459	Simulating the Fracture of Notched Mortar Beams through Extended Finite-Element Method and Peridynamics. Journal of Engineering Mechanics - ASCE, 2019, 145, 04019049.	1.6	13
460	Performance evaluation of geopolymer concrete beams under monotonic loading. Structures, 2019, 20, 560-569.	1.7	21
461	Application of thermodynamic modelling to hydrated cements. Cement and Concrete Research, 2019, 123, 105779.	4.6	123

	Сітатіс	on Report	
#	Article	IF	Citations
462	Silica Fume as Precursor in the Development of Sustainable and High-Performance MK-Based Alkali-Activated Materials Reinforced With Short PVA Fibers. Frontiers in Materials, 2019, 6, .	1.2	19
463	Molecular dynamics study on calcium aluminosilicate hydrate at elevated temperatures: Structure, dynamics and mechanical properties. Materials Chemistry and Physics, 2019, 233, 276-287.	2.0	18
464	Experimental evidence on formation of ulexite in sulfoaluminate cement paste mixed with high concentration borate solution and its retarding effects. Construction and Building Materials, 2019, 215, 777-785.	3.2	20
465	Production of geopolymer mortar system containing high calcium biomass wood ash as a partial substitution to fly ash: An early age evaluation. Composites Part B: Engineering, 2019, 174, 106941.	5.9	51
466	Effects of Aluminum Sulfate and Quicklime/Fluorgypsum Ratio on the Properties of Calcium Sulfoaluminate (CSA) Cement-Based Double Liquid Grouting Materials. Materials, 2019, 12, 1222.	1.3	33
467	Alkali-activated binders based on ground granulated blast furnace slag and phosphogypsum. Construction and Building Materials, 2019, 215, 371-380.	3.2	56
468	Mitigating the autogenous shrinkage of alkali-activated slag by metakaolin. Cement and Concrete Research, 2019, 122, 30-41.	4.6	100
469	Effect of modified phosphogypsum on the hydration properties of the phosphogypsum-based supersulfated cement. Construction and Building Materials, 2019, 214, 9-16.	3.2	88
470	Preliminary investigation of artificial reef concrete with sulphoaluminate cement, marine sand and sea water. Construction and Building Materials, 2019, 211, 837-846.	3.2	33
471	Local Ca-structure variation and microstructural characteristics on one-part activated slag system with various activators. Cement and Concrete Composites, 2019, 102, 1-13.	4.6	11
472	Reactivity and Hydration Property of Synthetic Air Quenched Slag with Different Chemical Compositions. Materials, 2019, 12, 932.	1.3	12
473	Geopolymers and Other Alkali-Activated Materials. , 2019, , 779-805.		17
474	Influence of low calcium fly ash on compressive strength and hydration product of low energy super sulfated cement paste. Cement and Concrete Composites, 2019, 99, 40-48.	4.6	44
475	Engineering properties of natural pozzolan/slag based alkali-activated concrete. Construction and Building Materials, 2019, 208, 46-62.	3.2	37
476	Low clinker high performance concretes and their potential in CFRP-prestressed structural elements. Cement and Concrete Composites, 2019, 100, 130-138.	4.6	22
477	Chemical deformation of metakaolin based geopolymer. Cement and Concrete Research, 2019, 120, 108-118.	4.6	135
478	Early hydration of ye'elimite: Insights from thermodynamic modelling. Cement and Concrete Research, 2019, 120, 152-163.	4.6	26
479	Eco-efficient Cementitious System Consisting of Belite-Ye'elimite-Ferrite Cement, Limestone Filler, and Silica Fume. ACS Sustainable Chemistry and Engineering, 2019, 7, 7941-7950.	3.2	29

#	Article	IF	CITATIONS
480	Effect of coupled B/Na and B/Ba doping on hydraulic properties of belite-ye'elimite-ferrite cement. Construction and Building Materials, 2019, 208, 23-35.	3.2	26
481	Alternative Cements: Recent Developments and Future Directions. , 2019, , .		5
482	Effect of particle size distribution of metakaolin on hydration kinetics of tricalcium silicate. Journal of the American Ceramic Society, 2019, 102, 5976-5988.	1.9	22
483	Influence of Supersulfated Cement Composition on Hydration Process. Journal of Materials in Civil Engineering, 2019, 31, .	1.3	23
484	The Effect of Elevated Curing Temperatures on High Ye'elimite Calcium Sulfoaluminate Cement Mortars. Materials, 2019, 12, 1072.	1.3	33
485	Predicting the degree of reaction of supplementary cementitious materials in cementitious pastes using a pozzolanic test. Construction and Building Materials, 2019, 204, 621-630.	3.2	40
486	Shrinkage and creep of high-performance concrete based on calcium sulfoaluminate cement. Cement and Concrete Composites, 2019, 98, 61-73.	4.6	57
487	The influence of the ageing of calcium aluminate cement on the properties of mortar. Construction and Building Materials, 2019, 205, 387-397.	3.2	11
488	Effect of ettringite seed crystals on the properties of calcium sulphoaluminate cement. Construction and Building Materials, 2019, 207, 249-257.	3.2	59
489	Use of Municipal Solid Waste Incinerator (MSWI) Fly Ash in Alkali Activated Slag Cement. Minerals, Metals and Materials Series, 2019, , 401-410.	0.3	5
490	Cleaner one-part geopolymer prepared by introducing fly ash sinking spherical beads: Properties and geopolymerization mechanism. Journal of Cleaner Production, 2019, 219, 686-697.	4.6	43
491	Properties and characterization of green one-part geopolymer activated by composite activators. Journal of Cleaner Production, 2019, 220, 188-199.	4.6	147
492	Predictions of compressive strength of GPC blended with GGBFS developed at varying temperatures. Construction and Building Materials, 2019, 206, 1-9.	3.2	7
493	Durability of alumina silicate concrete based on slag/fly ash blends against corrosion. Engineering, Construction and Architectural Management, 2019, 26, 1641-1651.	1.8	6
494	Mechanical Properties of Geopolymers Synthesized from Fly Ash and Red Mud under Ambient Conditions. Crystals, 2019, 9, 572.	1.0	12
495	Shrinkage of the alkali-activated slag mortars containing alternative activator. IOP Conference Series: Materials Science and Engineering, 2019, 660, 012001.	0.3	2
496	Further studies of the hydration of MgO-hydromagnesite blends. Cement and Concrete Research, 2019, 126, 105912.	4.6	54
497	Effects of CO2 Curing on Alkali-Activated Slag Paste Cured in Different Curing Conditions. Materials, 2019, 12, 3513.	1.3	19

	CITATION REPORT	
Article	IF	CITATIONS
Micromechanical Response of Crystalline Phases in Alternate Cementitious Materials using 3-Dimensional X-ray Techniques. Scientific Reports, 2019, 9, 18456.	1.6	3
Sustainable Road Design: Promoting Recycling and Non-Conventional Materials. Sustainability, 20 6106.	19, 11, 1.6	20
Hydration and performance evolution of belite–ye'elimite–ferrite cement. Advances in Cemen Research, 2019, 31, 124-137.	t 0.7	30
Design and construction application of concrete canvas for slope protection. Powder Technology, 2019, 344, 937-946.	2.1	30
Effective use of ground waste expanded perlite as green supplementary cementitious material in eco-friendly alkali activated slag composites. Journal of Cleaner Production, 2019, 213, 406-414.	4.6	45
Modifications of basic-oxygen-furnace slag microstructure and their effect on the rheology and the strength of alkali-activated binders. Cement and Concrete Composites, 2019, 97, 143-153.	2 4.6	19
Development of a novel sulphoalumitate cement-based composite combing fine steel fibers and pl change materials for thermal energy storage. Energy and Buildings, 2019, 183, 75-85.	hase 3.1	32
Evaluation of sulfate resistance of slag contained concrete under steam curing. Construction and Building Materials, 2019, 195, 231-237.	3.2	47
Multi-fiber reinforced ettringite-based composites from industrial side streams. Journal of Cleaner Production, 2019, 211, 1065-1077.	4.6	22
Exploiting in-situ solid-state NMR spectroscopy to probe the early stages of hydration of calcium aluminate cement. Solid State Nuclear Magnetic Resonance, 2019, 99, 1-6.	1.5	25
Fracture response of metallic particulate-reinforced cementitious composites: Insights from experiments and multiscale numerical simulations. Cement and Concrete Composites, 2019, 97, 1	.54-165. 4.6	18
Comparative study of two PCE superplasticizers with varied charge density in Portland cement and sulfoaluminate cement systems. Cement and Concrete Research, 2019, 115, 43-58.	d 4.6	95
New predictive methodology for the apparent activation energy and strength of conventional and rapid hardening concretes. Cement and Concrete Research, 2019, 115, 264-273.	4.6	13
CSA and slag: towards CSA composite binders. Advances in Cement Research, 2019, 31, 147-158.	0.7	13
Effect of slag, silica fume, and metakaolin on properties and performance of alkali-activated fly ash cured at ambient temperature. Construction and Building Materials, 2019, 197, 747-756.	3.2	104
Measurement and modeling needs for microstructure and reactivity of next-generation concrete binders. Cement and Concrete Composites, 2019, 101, 24-31.	4.6	8
Shrinkage mitigation of alkali-activated slag with natural cellulose fibres. Advances in Cement Research, 2019, 31, 47-57.	0.7	10

515	Mechanical properties and microstructure of magnesia–fly ash pastes. Road Materials and Pavement Design, 2019, 20, 1243-1254.	2.0	20

#

#	Article	IF	Citations
516	Effect of limestone powder on fracture and flexural behaviour of PVA fibre-reinforced sulfoaluminate cement. Magazine of Concrete Research, 2020, 72, 1243-1259.	0.9	1
517	Green concrete: A review of recent developments. Materials Today: Proceedings, 2020, 27, 54-58.	0.9	109
518	Application of central composite design to the optimization of fly ash-based geopolymers. Construction and Building Materials, 2020, 230, 116960.	3.2	13
519	Activation of Blast Furnace Slag with Soda Production Waste. Journal of Materials in Civil Engineering, 2020, 32, .	1.3	17
520	Effect of novel superabsorbent polymer composites on the fresh and hardened properties of alkali-activated slag. Construction and Building Materials, 2020, 232, 117225.	3.2	17
521	Alkali-activated slag substituted by metakaolin and dolomite at 20 and 50°C. Cement and Concrete Composites, 2020, 105, 103442.	4.6	22
522	Application of thermodynamic modeling to predict the stable hydrate phase assemblages in ternary CSA-OPC-anhydrite systems and quantitative verification by QXRD. Cement and Concrete Research, 2020, 128, 105956.	4.6	24
523	Investigation on the microstructure-related characteristics to elucidate performance of composite cement with limestone-calcined clay combination. Cement and Concrete Research, 2020, 129, 105959.	4.6	87
524	Influence of production parameters on calcium sulfoaluminate cements. Construction and Building Materials, 2020, 239, 117866.	3.2	4
525	Degradation of carbonated reactive MgO-based concrete exposed to nitric acid. Journal of CO2 Utilization, 2020, 36, 210-219.	3.3	14
526	Investigation on modulus of elasticity of fly ash-ground granulated blast furnace slag blended geopolymer concrete. Materials Today: Proceedings, 2020, 27, 718-723.	0.9	20
527	Alkali activated cement made from blast furnace slag generated by charcoal: Resistance to attack by sodium and magnesium sulfates. Construction and Building Materials, 2020, 238, 117710.	3.2	32
528	Environmental Impacts of Alternative Cement Binders. Environmental Science & Technology, 2020, 54, 677-686.	4.6	93
529	Clean and low-alkalinity one-part geopolymeric cement: Effects of sodium sulfate on microstructure and properties. Journal of Cleaner Production, 2020, 252, 119279.	4.6	66
530	Natural radioactivity of barite concrete shields containing commonly used supplementary materials. Construction and Building Materials, 2020, 236, 117569.	3.2	12
531	Influence of the ye'elimite/anhydrite ratio on PC-CSA hybrid cements. Materials Today Communications, 2020, 22, 100778.	0.9	12
532	Laboratory production of calcium sulfoaluminate cements with high industrial waste content. Cement and Concrete Composites, 2020, 106, 103475.	4.6	29
533	Performance of reactive magnesia cement formulations containing fly ash and ground granulated blast-furnace slag. Construction and Building Materials, 2020, 232, 117275.	3.2	18

#	Article	IF	CITATIONS
534	Study of nucleation and growth processes of ettringite in diluted conditions. Cement and Concrete Research, 2020, 127, 105915.	4.6	26
535	Effect of alkalis content on calcium sulfoaluminate (CSA) cement hydration. Cement and Concrete Research, 2020, 128, 105953.	4.6	55
536	Comparative study of hydration of monocalcium aluminate and quaternary phase and the amorphous AH3 phase in their hydrates. Journal of Thermal Analysis and Calorimetry, 2020, 141, 707-716.	2.0	7
537	The influence of superabsorbent polymer on the properties of alkali-activated slag pastes. Construction and Building Materials, 2020, 236, 117525.	3.2	52
538	Reduce, Reuse, Resilient? Life-Cycle Seismic and Environmental Performance of Buildings with Alternative Concretes. Journal of Infrastructure Systems, 2020, 26, .	1.0	19
539	Autogenous and drying shrinkage of mortars based on Portland and calcium sulfoaluminate cements. Materials and Structures/Materiaux Et Constructions, 2020, 53, 1.	1.3	23
540	Carbon emissions reduction and financial effects of a cap and tax system on an operating supply chain in the cement sector. Journal of Cleaner Production, 2020, 275, 122583.	4.6	39
541	Improving properties of high-volume fly ash cement paste blended with β-hemihydrate from flue gas desulfurization gypsum. Construction and Building Materials, 2020, 261, 120494.	3.2	26
542	The Impact of the Amount of Water Used in Activation Solution and the Initial Temperature of Paste on the Rheological Behaviour and Structural Evolution of Metakaolin-Based Geopolymer Pastes. Sustainability, 2020, 12, 8216.	1.6	16
543	Novel use of calcium sulfoaluminate (CSA) cement for treating problematic soils. Construction and Building Materials, 2020, 260, 120433.	3.2	26
544	Characterization of sugarcane bagasse ash as a potential supplementary cementitious material: Comparison with coal combustion fly ash. Journal of Cleaner Production, 2020, 277, 123834.	4.6	29
545	Effect of Different Kinds of Zinc (II) on Early Hydration of Calcium Aluminate Cement. Journal Wuhan University of Technology, Materials Science Edition, 2020, 35, 925-929.	0.4	2
546	Calcium sulfoaluminate clinker hydration at different alkali concentrations. Cement and Concrete Research, 2020, 138, 106251.	4.6	31
547	Mechanical and durability properties of ground calcium carbonate-added roller-compacted concrete for pavement. Journal of Materials Research and Technology, 2020, 9, 13341-13351.	2.6	20
548	Optimisation of bio medical waste ash in GGBS based of geopolymer concrete. IOP Conference Series: Materials Science and Engineering, 2020, 872, 012163.	0.3	14
549	Performance of fibre reinforced alkali-activated composites – A review. Materialia, 2020, 12, 100782.	1.3	44
550	Green and Durable Lightweight Aggregate Concrete: The Role of Waste and Recycled Materials. Materials, 2020, 13, 3041.	1.3	18
551	Effect of Molarity and Temperature of Alkaline Activator Solution on the Rheological Properties and Structure Formation of Alkali-Activated Refractory Materials. Glass and Ceramics (English) Tj ETQq1 1 0.784314	rg BT 2/Over	rlo s k 10 Tf 50

#	Article	IF	CITATIONS
552	Carbonation and Chloride Ions' Penetration of Alkali-Activated Materials: A Review. Molecules, 2020, 25, 5074.	1.7	21
553	A Novel Class F Fly Ash-Based Geopolymer and Its Application in Coal Mine Grouting. Advances in Civil Engineering, 2020, 2020, 1-12.	0.4	4
554	Behavior of blends of CSA and Portland cements in high chloride environment. Construction and Building Materials, 2020, 262, 120852.	3.2	29
555	Experiment Research on the Mechanical Performance of Alkali-activated Slag Cementitious Material. IOP Conference Series: Materials Science and Engineering, 2020, 768, 022030.	0.3	1
556	Investigation on Performance Enhancement of Fly ash-GGBFS Based Graphene Geopolymer Concrete. Journal of Building Engineering, 2020, 32, 101659.	1.6	35
557	Shrinkage Characteristics of Alkali-Activated High-Volume Fly-Ash Pastes Incorporating Silica Fume. Journal of Materials in Civil Engineering, 2020, 32, 04020307.	1.3	7
558	Effect of calcined perlite content on elevated temperature behaviour of alkali activated slag mortars. Journal of Building Engineering, 2020, 32, 101717.	1.6	11
559	Mechanical and thermal charactristics of self-compacting concrete produced with blast furnace slag and fly ash. HBRC Journal, 2020, 16, 283-298.	0.2	1
560	A numerical approach for designing composite cements with calcined clay and limestone. Cement and Concrete Research, 2020, 138, 106232.	4.6	43
561	Effect of Internal Curing by Super Absorbent Polymer on the Autogenous Shrinkage of Alkali-Activated Slag Mortars. Materials, 2020, 13, 4318.	1.3	10
562	The influence of surface treatment on the transport properties of hardened calcium sulfoaluminate cement-based materials. Cement and Concrete Composites, 2020, 114, 103784.	4.6	14
563	Pressed recycled fly ash and carbide slag: Hydration of entirely waste-stream building components. Construction and Building Materials, 2020, 265, 120282.	3.2	8
564	Alkali cation effects on chloride binding of alkali-activated fly ash and metakaolin geopolymers. Cement and Concrete Composites, 2020, 114, 103721.	4.6	71
565	CO2 Uptake and Physicochemical Properties of Carbonation-Cured Ternary Blend Portland Cement–Metakaolin–Limestone Pastes. Materials, 2020, 13, 4656.	1.3	19
566	Performance and sustainability overview of alkali-activated self-compacting concrete. Waste Disposal & Sustainable Energy, 2020, 2, 165-175.	1.1	34
567	Influence of metakaolin on the conversion and compressive strength of quaternary phase paste. Journal of the American Ceramic Society, 2020, 103, 7213-7225.	1.9	5
568	Alkali-activated concretes based on fly ash and blast furnace slag: Compressive strength, water absorption and chloride permeability. Ingenieria E Investigacion, 2020, 40, .	0.2	2
569	Environmental impacts and decarbonization strategies in the cement and concrete industries. Nature Reviews Earth & Environment, 2020, 1, 559-573.	12.2	483

#	Article	IF	CITATIONS
570	Experimental Studies and Microstructure Analysis for Rapid-Hardening Cement Emulsified Asphalt Mortar. Journal of Construction Engineering and Management - ASCE, 2020, 146, .	2.0	11
571	Improvement of Performances of the Gypsum-Cement Fiber Reinforced Composite (GCFRC). Materials, 2020, 13, 3847.	1.3	48
572	Development of Energy-Efficient Techniques for Manufacturing and Studying Clinkerless Mineral Binders Made from Granulated Blast-Furnace Slag with a Fly Ash Admixture. Refractories and Industrial Ceramics, 2020, 61, 106-111.	0.2	1
573	Development of gypsumâ€based composites with tensile strainâ€hardening characteristics. Journal of the American Ceramic Society, 2020, 103, 7115-7126.	1.9	8
574	Sol-gel technology for the production of high-strength refractory materials based on binders. IOP Conference Series: Materials Science and Engineering, 2020, 962, 022024.	0.3	1
575	Durability performance evaluation of green geopolymer concrete. European Journal of Environmental and Civil Engineering, 2022, 26, 4297-4345.	1.0	18
576	Role of Natural Stone Wastes and Minerals in the Alkali Activation Process: A Review. Materials, 2020, 13, 2284.	1.3	16
577	Phase development and hydration kinetics of belite-calcium sulfoaluminate cements at different curing temperatures. Ceramics International, 2020, 46, 29421-29428.	2.3	43
578	Polymer cements by copolymerization of waste sulfur, oleic acid, and pozzolan cements. Sustainable Chemistry and Pharmacy, 2020, 16, 100249.	1.6	28
579	Quantitative Assessment of Alkali-Activated Materials: Environmental Impact and Property Assessments. Journal of Infrastructure Systems, 2020, 26, .	1.0	14
580	Adobe bricks reinforced with paper & pulp wastes improving thermal and mechanical properties. Construction and Building Materials, 2020, 254, 119314.	3.2	43
581	Optimization of gypsum and slag contents in blended cement containing slag. Cement and Concrete Composites, 2020, 112, 103674.	4.6	59
582	Mechanisms of autogenous shrinkage of alkali-activated slag and fly ash pastes. Cement and Concrete Research, 2020, 135, 106107.	4.6	124
583	Synthesis of kaolin-based alkali-activated cement: carbon footprint, cost and energy assessment. Journal of Materials Research and Technology, 2020, 9, 8367-8378.	2.6	37
584	Study on engineering properties of foam concrete containing waste seashell. Construction and Building Materials, 2020, 260, 119896.	3.2	37
585	The effects of (diâ€triâ€valent)â€cation partitioning and intercalant anionâ€type on the solubility of hydrotalcites. Journal of the American Ceramic Society, 2020, 103, 6025-6039.	1.9	14
586	Effect of fineness and citric acid addition on the hydration of ye'elimite. Construction and Building Materials, 2020, 258, 119686.	3.2	8
587	Effect of calcium sulfoaluminate cement prehydration on hydration and strength gain of calcium sulfoaluminate cement-ordinary portland cement mixtures. Cement and Concrete Composites, 2020, 112, 103694.	4.6	24

#	Article	IF	CITATIONS
588	The characteristics and formation mechanism of the dark rim in alkali-activated slag. Cement and Concrete Composites, 2020, 112, 103682.	4.6	38
589	Influence of slag on mechanical and durability properties of fly ash-based geopolymer concrete. Journal of the Korean Ceramic Society, 2020, 57, 530-545.	1.1	28
590	Internal curing by superabsorbent polymers in alkali-activated slag. Cement and Concrete Research, 2020, 135, 106123.	4.6	71
591	Properties of fresh and hardened fly ash/slag based geopolymer concrete: A review. Journal of Cleaner Production, 2020, 270, 122389.	4.6	243
592	Rheology and Mechanical Properties of Fly Ash-Based Geopolymer Mortars with Ground Granulated Blast Furnace Slag Addition. Energies, 2020, 13, 2639.	1.6	21
593	Nephrite-Bearing Mining Waste As a Promising Mineral Additive in the Production of New Cement Types. Minerals (Basel, Switzerland), 2020, 10, 394.	0.8	11
594	Enhancing ultra-early strength of sulphoaluminate cement-based materials by incorporating graphene oxide. Nanotechnology Reviews, 2020, 9, 17-27.	2.6	31
595	Chloride-Induced Steel Corrosion in Concrete Under Service Loads. , 2020, , .		5
596	Graphene nanoplatelet for enhancement the mechanical properties and durability characteristics of alkali activated binder. Construction and Building Materials, 2020, 249, 118773.	3.2	42
597	Durability of calcium sulfoaluminate cement concrete. Journal of Zhejiang University: Science A, 2020, 21, 118-128.	1.3	29
598	Expansion behavior and microstructure change of alkali-activated slag grouting material in sulfate environment. Construction and Building Materials, 2020, 260, 119909.	3.2	18
599	Go green by "cement less technology in construction industry†A review. AlP Conference Proceedings, 2020, , .	0.3	2
600	Properties of slag-based geopolymer pervious concrete for ambient curing condition. IOP Conference Series: Materials Science and Engineering, 2020, 737, 012068.	0.3	2
601	Influence of Fly Ash on Mechanical Properties and Hydration of Calcium Sulfoaluminate-Activated Supersulfated Cement. Materials, 2020, 13, 2514.	1.3	8
602	Novel low emissions supersulfated cements of pumice in concrete; mechanical and electrochemical characterization. Journal of Cleaner Production, 2020, 272, 122520.	4.6	25
603	Influence of the calcination temperature of phosphogypsum on the performance of supersulfated cements. Construction and Building Materials, 2020, 262, 119961.	3.2	40
604	The performance of calcium sulfoaluminate cement for preventing early-age frost damage. Construction and Building Materials, 2020, 254, 119322.	3.2	20
605	Development of precast geopolymer concrete via oven and microwave radiation curing with an environmental assessment. Journal of Cleaner Production, 2020, 255, 120290.	4.6	72

#	Article	IF	CITATIONS
606	Shear tests on reinforced slag-based geopolymer concrete beams with transverse reinforcement. Engineering Structures, 2020, 219, 110966.	2.6	34
607	Influence of cobinders on durability and mechanical properties of alkali-activated magnesium aluminosilicate binders from soapstone. , 2020, , 877-895.		4
608	Factors affecting the slump and strength development of geopolymer concrete. Construction and Building Materials, 2020, 261, 119945.	3.2	41
609	Self-healing in fiber-reinforced alkali-activated slag composites incorporating different additives. Construction and Building Materials, 2020, 262, 120059.	3.2	20
610	Bond performance of reinforced alkali-activated composites using water-quenched slag as alternative fine aggregates. Structures, 2020, 24, 137-150.	1.7	9
611	Utilization and performance evaluation of molasses as a retarder and plasticizer for calcium sulfoaluminate cement-based mortar. Construction and Building Materials, 2020, 243, 118201.	3.2	27
612	A new hydration kinetics model of composite cementitious materials, Part 2: Physical effect of SCMs. Journal of the American Ceramic Society, 2020, 103, 3880-3895.	1.9	14
613	Impact of varying Li2CO3 additions on the hydration of ternary CSA-OPC-anhydrite mixes. Cement and Concrete Research, 2020, 131, 106015.	4.6	17
614	Degradation mechanisms of alkali-activated binders in sulfuric acid: The role of calcium and aluminum availability. Construction and Building Materials, 2020, 246, 118477.	3.2	19
615	Immobilization of heavy metals, selenate, and sulfate from a hazardous industrial side stream by using calcium sulfoaluminate-belite cement. Journal of Cleaner Production, 2020, 258, 120560.	4.6	34
616	Calcium sulfoaluminate and alkali-activated fly ash cements as alternative to Portland cement: study on chemical, physical-mechanical, and durability properties of mortars with the same strength class. Construction and Building Materials, 2020, 246, 118436.	3.2	29
617	Enhancing alkali-activation of metakaolin-based geopolymers using dry water. Journal of Cleaner Production, 2020, 258, 120676.	4.6	16
618	Electrical tomography for characterizing transport properties in cement-based materials: A review. Construction and Building Materials, 2020, 244, 118299.	3.2	29
619	The role of limestone and calcined clay on the rheological properties of LC3. Cement and Concrete Composites, 2020, 107, 103516.	4.6	80
620	Effect of Polypropylene Fiber on Properties of Alkali-Activated Slag Mortar. Advances in Civil Engineering, 2020, 2020, 1-12.	0.4	5
621	Rheology, shrinkage and pore structure of alkali-activated slag-fly ash mortar incorporating copper slag as fine aggregate. Construction and Building Materials, 2020, 242, 118029.	3.2	41
622	Evaluation of the combination of desert sand and calcium sulfoaluminate cement for the production of concrete. Construction and Building Materials, 2020, 243, 118281.	3.2	33
623	Electrochemical responses and chloride ingress in reinforced Belite-Ye'elimite-Ferrite (BYF) cement matrix exposed to exogenous salt sources. Corrosion Science, 2020, 166, 108469.	3.0	14

#	Article	IF	CITATIONS
624	Mechanism of calcination modification of phosphogypsum and its effect on the hydration properties of phosphogypsum-based supersulfated cement. Construction and Building Materials, 2020, 243, 118226.	3.2	89
625	Microstructure and Properties of Sulfoaluminate Cement-Based Grouting Materials: Effect of Calcium Sulfate Variety. Advances in Materials Science and Engineering, 2020, 2020, 1-8.	1.0	4
626	Effects of Accelerators and Retarders in Early Strength Development of Concrete Based on Low-Temperature-Cured Ordinary Portland and Calcium Sulfoaluminate Cement Blends. Materials, 2020, 13, 1505.	1.3	13
627	Properties of silicon manganese slag as an aggregate for concrete depending on cooling conditions. Journal of Material Cycles and Waste Management, 2020, 22, 1067-1080.	1.6	7
628	Advances in alkali-activation of clay minerals. Cement and Concrete Research, 2020, 132, 106050.	4.6	201
629	Effect of NaOH content on hydration, mineralogy, porosity and strength in alkali/sulfate-activated binders from ground granulated blast furnace slag and phosphogypsum. Cement and Concrete Research, 2020, 132, 106054.	4.6	83
630	Self-cementation solidification of heavy metals in lead-zinc smelting slag through alkali-activated materials. Construction and Building Materials, 2020, 249, 118756.	3.2	53
631	Feasibility of rapid-regeneration utilization in situ for waste cement-stabilized macadam. Journal of Cleaner Production, 2020, 263, 121452.	4.6	9
632	Influence of activator solution on microstructural and mechanical properties of geopolymer concrete. Materialia, 2020, 10, 100659.	1.3	26
633	Low-Carbon Concrete Based on Binary Biomass Ash–Silica Fume Binder to Produce Eco-Friendly Paving Blocks. Materials, 2020, 13, 1534.	1.3	15
634	Drying shrinkage and permeability properties of fibre reinforced alkali-activated composites. Construction and Building Materials, 2020, 251, 119076.	3.2	28
635	Eco-friendly mortar with high-volume diatomite and fly ash: Performance and life-cycle assessment with regional variability. Journal of Cleaner Production, 2020, 261, 121224.	4.6	59
636	Effect of GGBS Addition on Reactivity and Microstructure Properties of Ambient Cured Fly Ash Based Geopolymer Concrete. Silicon, 2021, 13, 507-516.	1.8	43
637	Reactivity and hydration behavior in groundnut shell ash based pozzolanic concrete. Materials Today: Proceedings, 2021, 38, 508-513.	0.9	4
638	Impact of sodium silicate solution chemistry on product formation and jelly hardening of alkali-activated GGBS mortars. Magazine of Concrete Research, 2022, 74, 42-53.	0.9	2
639	Sustainable Metal Recovery from Secondary Resources: Screening and Kinetic Studies Using Analogue Heterotrophic Metabolites. Waste and Biomass Valorization, 2021, 12, 2703-2721.	1.8	2
640	Artificial neural network model to predict the compressive strength of eco-friendly geopolymer concrete incorporating silica fume and natural zeolite. Journal of Cleaner Production, 2021, 279, 123697.	4.6	181
641	Radiation Shielding Concrete with alternate constituents: An approach to address multiple hazards. Journal of Hazardous Materials, 2021, 404, 124201.	6.5	53

#	ARTICLE	IF	CITATIONS
642	Mechanical and microstructural characterization of geopolymers from assorted construction and demolition waste-based masonry and glass. Journal of Cleaner Production, 2021, 280, 124358.	4.6	84
643	Hydration mechanisms and durability of hybrid alkaline cements (HACs): A review. Construction and Building Materials, 2021, 266, 121039.	3.2	46
644	Optimization for the preparation of composite geopolymer using response surface methodology and its application in lead-zinc tailings solidification. Construction and Building Materials, 2021, 266, 120969.	3.2	55
645	Incorporation of zinc in calcium sulfoaluminate cement clinker. Advances in Cement Research, 2021, 33, 311-317.	0.7	7
646	Effects of SAE and SBR on properties of rapid hardening repair mortar. Journal of Building Engineering, 2021, 35, 102000.	1.6	12
647	Effect of fineness on the pozzolanic reaction kinetics of slag in composite binders: Experiment and modelling. Construction and Building Materials, 2021, 273, 121695.	3.2	18
648	A comparison of water curing and standard curing on one-part alkali-activated fly ash sinking beads and slag: Properties, microstructure and mechanisms. Construction and Building Materials, 2021, 273, 121715.	3.2	14
649	Bacteria-induced internal carbonation of reactive magnesia cement. Construction and Building Materials, 2021, 267, 121748.	3.2	20
650	Sustainable development of geopolymer binder using sodium silicate synthesized from agricultural waste. Journal of Cleaner Production, 2021, 286, 124959.	4.6	35
651	Mechanisms dominating thixotropy in limestone calcined clay cement (LC3). Cement and Concrete Research, 2021, 140, 106316.	4.6	66
652	The role of temperature and activator solution molarity on the viscosity and hard structure formation of geopolymer pastes. Construction and Building Materials, 2021, 272, 121661.	3.2	6
653	A Bayesian machine learning approach for inverse prediction of high-performance concrete ingredients with targeted performance. Construction and Building Materials, 2021, 270, 121424.	3.2	32
654	Performance of eco-friendly mortars made with alkali-activated slag and glass powder as a binder. Construction and Building Materials, 2021, 270, 121457.	3.2	25
655	The long-term failure mechanisms of alkali-activated slag mortar exposed to wet-dry cycles of sodium sulphate. Cement and Concrete Composites, 2021, 116, 103893.	4.6	26
656	Evaluation of alkalinity changes and carbonation of geopolymer concrete exposed to wetting and drying. Journal of Building Engineering, 2021, 35, 102029.	1.6	18
657	Influence of water activity on belite (β 2 S) hydration. Journal of the American Ceramic Society, 2021, 104, 1831-1840.	1.9	8
658	Effect of Na2O concentration and water/binder ratio on carbonation of alkali-activated slag/fly ash cements. Construction and Building Materials, 2021, 269, 121258.	3.2	49
659	Performance evaluation of calcium sulfoaluminate as an alternative stabilizer for treatment of weaker subgrades. Transportation Geotechnics, 2021, 27, 100462.	2.0	9

#	Article	IF	CITATIONS
660	Factors Affecting Kinetics and Gel Composition of Alkali–Silica Reaction in Alkali-Activated Slag Mortars. International Journal of Civil Engineering, 2021, 19, 453-462.	0.9	3
661	A Mathematical Correlation of Compressive Strength Among Silica, Alumina and Calcia Present in Composite Red Mud and Iron Ore Tailingbricks. Lecture Notes in Civil Engineering, 2021, , 313-327.	0.3	2
662	Development of Eco-Friendly Cement Using a Calcium Sulfoaluminate Expansive Agent Blended with Slag and Silica Fume. Applied Sciences (Switzerland), 2021, 11, 394.	1.3	10
663	Strength effect of alkali activated red mud slag cement in ambient condition. Materials Today: Proceedings, 2021, 44, 1437-1443.	0.9	8
665	Using fine aggregate matrix mortars to predict the curing behaviour of cement bitumen treated materials produced with different cements. Construction and Building Materials, 2021, 268, 121201.	3.2	13
666	Effect of Flue Gas Desulfurization Gypsum on the Properties of Calcium Sulfoaluminate Cement Blended with Ground Granulated Blast Furnace Slag. Materials, 2021, 14, 382.	1.3	18
667	Effect of curing regime on the performance and microstructure characteristics of alkali-activated slag-fly ash blended concrete. Journal of Sustainable Cement-Based Materials, 2021, 10, 289-317.	1.7	30
668	Use of Potabilized Water Sludge in the Production of Low-Energy Blended Calcium Sulfoaluminate Cements. Applied Sciences (Switzerland), 2021, 11, 1679.	1.3	4
669	Mechanical Behavior and Frost-Resistance of Alkali-Activated Cement Concrete with Blended Binder at Ambient Curing Condition. Buildings, 2021, 11, 52.	1.4	8
670	Effect of calcium hydroxide on the alkali-silica reaction of alkali-activated slag mortars activated by sodium hydroxide. Construction and Building Materials, 2021, 272, 121868.	3.2	31
671	Machine learning enables prompt prediction of hydration kinetics of multicomponent cementitious systems. Scientific Reports, 2021, 11, 3922.	1.6	23
672	Evaluation of compressive and split tensile strength of slag based aluminosilicate geopolymer reinforced by waste polymeric materials using Taguchi method. Materials Research Express, 2021, 8, 025504.	0.8	11
673	Insight Into the Strengthening Mechanism of the Al-Induced Cross-Linked Calcium Aluminosilicate Hydrate Gel: A Molecular Dynamics Study. Frontiers in Materials, 2021, 7, .	1.2	7
674	Development of low-carbon masonry grout mixtures using alkali-activated binder. Magazine of Concrete Research, 2022, 74, 154-161.	0.9	3
675	Strength Performance and Microstructure of Calcium Sulfoaluminate Cement-Stabilized Soft Soil. Sustainability, 2021, 13, 2295.	1.6	9
676	Thermal properties of calcium sulfoaluminate cement-based mortars incorporated with expanded perlite cured at cold temperatures. Construction and Building Materials, 2021, 274, 122082.	3.2	20
677	Recent advances in molecular dynamics simulation of the N-A-S-H geopolymer system: modeling, structural analysis, and dynamics. Construction and Building Materials, 2021, 276, 122196.	3.2	41
678	Effect of Alkali Concentration on Strength Development in Jointly Activated Pond Ash-GGBFS Mixtures through Geopolymeric Reactions. KSCE Journal of Civil Engineering, 2021, 25, 1600-1608.	0.9	3

#	Article	IF	CITATIONS
679	Effect of different lithological stone powders on properties of cementitious materials. Journal of Cleaner Production, 2021, 289, 125820.	4.6	15
680	Effectiveness and microstructure change of alkali-activated materials during accelerated carbonation curing. Construction and Building Materials, 2021, 274, 122063.	3.2	14
681	Sustainable utilization of ultrafine rice husk ash in alkali activated concrete: Characterization and performance evaluation. Journal of Sustainable Cement-Based Materials, 2022, 11, 100-112.	1.7	19
682	Performance and sustainability overview of sodium carbonate activated slag materials cured at ambient temperature. Resources, Environment and Sustainability, 2021, 3, 100016.	2.9	17
683	Effect of metakaolin on the autogenous shrinkage of alkali-activated slag-fly ash paste. Construction and Building Materials, 2021, 278, 122397.	3.2	27
684	Research status of super sulfate cement. Journal of Cleaner Production, 2021, 294, 126228.	4.6	48
685	Hydration characteristics assessment of a binary calcium sulfoaluminate-anhydrite cement related with environment temperature. Journal of Thermal Analysis and Calorimetry, 2022, 147, 3053-3061.	2.0	6
686	Comparative study of stabilization/solidification of dredged sediments with ordinary Portland cement and calcium sulfo-aluminate cement in the framework of valorization in road construction material. Construction and Building Materials, 2021, 279, 122447.	3.2	48
687	Influence of exposure conditions on expansion characteristics of lime-rich calcium sulfoaluminate-belite blended cement. Cement and Concrete Composites, 2021, 118, 103932.	4.6	9
688	Mechanical property and microstructure of quaternary phase paste blended with metakaolin. Cement and Concrete Composites, 2021, 118, 103934.	4.6	14
689	Research on the Micro-Pore Structures of AAFAM. Arabian Journal for Science and Engineering, 2021, 46, 10885-10900.	1.7	3
690	Performance and Durability of Rendering and Basecoat Mortars for ETICS with CSA and Portland Cement. Infrastructures, 2021, 6, 60.	1.4	3
691	Setting Time and Strength Monitoring of Alkali-Activated Cement Mixtures by Ultrasonic Testing. Materials, 2021, 14, 1889.	1.3	16
692	Crack Self-Healing in NaOH-Activated Slag-Based Composites Incorporating Calcium Hydroxide. Journal of Materials in Civil Engineering, 2021, 33, .	1.3	5
693	Fabrication of sustainable magnesium phosphate cement micromortar using design of experiments statistical modelling: Valorization of ceramic-stone-porcelain containing waste as filler. Ceramics International, 2021, 47, 10905-10917.	2.3	10
694	Waste-derived activators for alkali-activated materials: A review. Cement and Concrete Composites, 2021, 118, 103980.	4.6	62
695	Silica-modifying chemical admixtures for directed zeolitization of metakaolin-based alkali-activated materials. Cement and Concrete Research, 2021, 142, 106348.	4.6	5
696	Investigation on the performance of hydroxyethyl methyl cellulose modified cement mortars with Portland cement-calcium sulfoaluminate cement binders. Construction and Building Materials, 2021, 283, 122721.	3.2	17

#	Article	IF	CITATIONS
697	Advances in Understanding the Alkali-Activated Metallurgical Slag. Advances in Civil Engineering, 2021, 2021, 1-16.	0.4	2
698	Properties of modified engineered geopolymer composites incorporating multi-walled carbon Nanotubes(MWCNTs) and granulated blast furnace Slag(GBFS). Ceramics International, 2021, 47, 14244-14259.	2.3	24
699	Microstructural evolution and carbonation behavior of lime-slag binary binders. Cement and Concrete Composites, 2021, 119, 104000.	4.6	21
700	Effects of nanosilica on the hydration and hardening properties of slag cement. Construction and Building Materials, 2021, 282, 122705.	3.2	17
701	A review on alternative binders, admixtures and water for the production of sustainable concrete. Journal of Cleaner Production, 2021, 295, 126408.	4.6	30
702	A review on the contemporary innovations & advancements in the field of green concrete. IOP Conference Series: Earth and Environmental Science, 2021, 796, 012002.	0.2	0
703	Influence of conventional and functionalized carbon nanotubes in hybrid alkaline pastes with fly ash that contain high amounts of SO4. Construction and Building Materials, 2021, 286, 122950.	3.2	3
704	Recycling of fine-asphalt-pavement solid waste for low-shrinkage rapid hardening Portland cement concrete pavement. Construction and Building Materials, 2021, 289, 123132.	3.2	13
705	Effects of sodium gluconate on hydration reaction, setting, workability, and strength development of calcium sulfoaluminate belite cement mixtures. Journal of Sustainable Cement-Based Materials, 2022, 11, 273-285.	1.7	7
706	Effects of CaF2-CuO additives and various firing temperatures on characteristics of alite calcium sulfoaluminate clinkers. Case Studies in Construction Materials, 2021, 14, e00493.	0.8	1
707	Influence of Polyvinyl Alcohol Powder on the Mechanical Performance and Volume Stability of Sulfoaluminate–Portland Cement Composite. Crystals, 2021, 11, 692.	1.0	2
708	Effect of bio-mineralization on concrete performance: Carbonation, microhardness, gas permeability and Cl- migration. Biochemical Engineering Journal, 2021, 171, 108024.	1.8	9
709	Chemical and physical effects of high-volume limestone powder on sodium silicate-activated slag cement (AASC). Construction and Building Materials, 2021, 292, 123257.	3.2	31
710	Effect of Gypsum Content on CSAB Cement-Based Immobilization of Se and SO ₄ from Industrial Filter Sludge and Sodium–Selenium Salts. Journal of Hazardous, Toxic, and Radioactive Waste, 2021, 25, .	1.2	1
711	Experimental and Informational Modeling Study of Sustainable Self-Compacting Geopolymer Concrete. Sustainability, 2021, 13, 7444.	1.6	16
712	A comparative study on the mechanical properties, autogenous shrinkage and cracking proneness of alkali-activated concrete and ordinary Portland cement concrete. Construction and Building Materials, 2021, 292, 123418.	3.2	25
713	Clinkerless ultra-high strength concrete based on alkali-activated slag at high temperatures. Cement and Concrete Research, 2021, 145, 106465.	4.6	75
714	Exploiting advantages of empirical and optimization approaches to design alkali activated materials in a more efficient way. Construction and Building Materials, 2021, 292, 123460.	3.2	5

#	Article	IF	CITATIONS
715	Evaluation of the influence of accelerated carbonation on the microstructure and mechanical characteristics of coconut fibre-reinforced cementitious matrix. Journal of Building Engineering, 2021, 39, 102269.	1.6	9
716	MECHANICAL PROPERTIES OF MODIFIED SUPERSULFATED CEMENT MORTAR. Ceramics - Silikaty, 2021, , 255-262.	0.2	1
717	Coupling machine learning with thermodynamic modelling to develop a composition-property model for alkali-activated materials. Composites Part B: Engineering, 2021, 216, 108801.	5.9	29
718	Predicting concrete compressive strength using hybrid ensembling of surrogate machine learning models. Cement and Concrete Research, 2021, 145, 106449.	4.6	235
719	Acoustic emission behavior of polyvinyl alcohol (PVA) fiber reinforced calcium sulphoaluminate cement mortar under flexural load. Journal of Building Engineering, 2021, 40, 102734.	1.6	7
720	Landfilled coal ash for carbon dioxide capture and its potential as a geopolymer binder for hazardous waste remediation. Journal of Environmental Chemical Engineering, 2021, 9, 105385.	3.3	12
721	Synthesis and Formation Process of a Typical Doped Solid-Solution Ye'elimite (Ca3.8Na0.2Al5.6Fe0.2Si0.2SO16): Experiments and Kinetic Analysis. Applied Sciences (Switzerland), 2021, 11, 8015.	1.3	1
722	Ettringite instability analysis in the hydration process of the supersulfated cement. Journal of Thermal Analysis and Calorimetry, 2022, 147, 6631-6642.	2.0	5
723	Alkali-Activation of Synthetic Aluminosilicate Glass With Basaltic Composition. Frontiers in Chemistry, 2021, 9, 715052.	1.8	3
724	Geopolymers vs. Cement Matrix Materials: How Nanofiller Can Help a Sustainability Approach for Smart Construction Applications—A Review. Nanomaterials, 2021, 11, 2007.	1.9	27
725	Microstructure Control of AH ₃ Gel Formed in Various Calcium Sulfoaluminate Cements as a Function of pH. ACS Sustainable Chemistry and Engineering, 2021, 9, 11534-11547.	3.2	7
726	Amino acids as performance-controlling additives in carbonation-activated cementitious materials. Cement and Concrete Research, 2021, 147, 106501.	4.6	38
727	Solidification of chromium-containing sludge with attapulgite combined alkali slag. Environmental Science and Pollution Research, 2022, 29, 13580-13591.	2.7	7
728	A novel titania/graphene composite applied in reinforcing microstructural and mechanical properties of alkali-activated slag. Journal of Building Engineering, 2021, 41, 102386.	1.6	13
729	Rheology of Alkali-Activated Blended Binder Mixtures. Materials, 2021, 14, 5405.	1.3	5
730	Activator Anion Influences the Nanostructure of Alkali-Activated Slag Cements. Journal of Physical Chemistry C, 2021, 125, 20727-20739.	1.5	23
731	Roles of chlorine and sulphate in MSWIFA in GGBFS binder: Hydration, mechanical properties and stabilization considerations. Environmental Pollution, 2021, 284, 117175.	3.7	35
732	Influence of polycarboxylate superplasticizer, citric acid and their combination on the hydration and workability of calcium sulfoaluminate cement. Cement and Concrete Research, 2021, 147, 106513.	4.6	21

#	Article	IF	CITATIONS
733	An Innovative Method for Sustainable Utilization of Blast-Furnace Slag in the Cleaner Production of One-Part Hybrid Cement Mortar. Materials, 2021, 14, 5669.	1.3	7
734	Effect of superabsorbent polymers and expansive additives on the shrinkage of alkali-activated slag. Cement and Concrete Composites, 2021, 123, 104218.	4.6	36
735	Adsorption and dispersion capability of polycarboxylate-based superplasticizers: a review. Journal of Sustainable Cement-Based Materials, 2022, 11, 319-344.	1.7	9
736	An insight on the effect of sodium and silicon on microstructure and crystallography of high alumina cements. Cement and Concrete Research, 2021, 148, 106533.	4.6	6
737	Effects of cyclic seawater exposure on the mechanical performance and chloride penetration of calcium sulfoaluminate concrete. Construction and Building Materials, 2021, 303, 124139.	3.2	23
738	Rheo-viscoelastic behavior and viscosity prediction of calcium sulphoaluminate modified Portland cement pastes. Powder Technology, 2021, 391, 344-352.	2.1	4
739	Phase changes during various treatment processes for incineration bottom ash from municipal solid wastes: A review in the application-environment nexus. Environmental Pollution, 2021, 287, 117618.	3.7	15
740	Tartaric acid effects on hydration development and physico-mechanical properties of blended calcium sulphoaluminate cements. Cement and Concrete Composites, 2021, 124, 104275.	4.6	22
741	Intrinsic self-stressing and low carbon Engineered Cementitious Composites (ECC) for improved sustainability. Cement and Concrete Research, 2021, 149, 106580.	4.6	26
742	Supersulfated cements based on pumice with quicklime, anhydrite and hemihydrate: Characterization and environmental impact. Cement and Concrete Composites, 2021, 124, 104236.	4.6	28
743	The crystal structure of Na2CaAl4O8 and its hydration behaviour. Journal of Solid State Chemistry, 2021, 303, 122478.	1.4	2
744	Effect of calcium sulfoaluminate cements composition on their durability. Construction and Building Materials, 2021, 307, 124952.	3.2	15
745	Mechanical properties of high ductile alkali-activated fiber reinforced composites with different curing ages. Construction and Building Materials, 2021, 306, 124833.	3.2	27
746	Investigation of the mechanical and durability properties of sustainable high performance concrete based on calcium sulfoaluminate cement. Journal of Building Engineering, 2021, 43, 102656.	1.6	20
747	Production of Portland cement clinker from French Municipal Solid Waste Incineration Bottom Ash. Case Studies in Construction Materials, 2021, 15, e00629.	0.8	14
748	Nanostructural evolution of Al(OH)3 gel formed by the cubic and orthorhombic ye'elimite clinkers of calcium sulfoaluminate cements in an ultra-wide hydration temperature range. Cement and Concrete Research, 2021, 150, 106607.	4.6	20
749	Continuous optical in-situ pH monitoring during early hydration of cementitious materials. Cement and Concrete Research, 2021, 150, 106584.	4.6	16
750	Modification of Cement Composites with Hydrothermal Nano-SiO2. Journal of Materials in Civil Engineering, 2021, 33, 04021339.	1.3	4

#	ARTICLE Valorization of phosphogypsum in cement-based materials: Limits and potential in eco-efficient	IF	CITATIONS
751	construction. Journal of Building Engineering, 2021, 44, 102506.	1.6	30
752	Mechanical properties of porcelain waste alkali-activated mortar. Open Ceramics, 2021, 8, 100184.	1.0	1
753	Utilization of Biochar as a Multifunctional Additive in Cement-Based Materials. RILEM Bookseries, 2021, , 343-353.	0.2	2
754	Sustainable Concretes for Structural Applications. Research for Development, 2020, , 249-261.	0.2	1
755	Sustainable Recycling Technologies for Bauxite Residue (Red Mud) Utilization. , 2015, , 173-179.		1
756	Historical Aspects and Overview. RILEM State-of-the-Art Reports, 2014, , 11-57.	0.3	18
757	Binder Chemistry – High-Calcium Alkali-Activated Materials. RILEM State-of-the-Art Reports, 2014, , 59-91.	0.3	41
758	Synergic Effects of Activation Routes of Ground Granulated Blast-Furnace Slag (GGBS) Used in the Precast Industry. Lecture Notes in Civil Engineering, 2018, , 588-597.	0.3	2
759	Use of Recycled Aggregate as Alkali Activator to Enhance Strength Development in High-Volume Blast-Furnace Slag Concrete. KSCE Journal of Civil Engineering, 2020, 24, 902-912.	0.9	9
760	The potential use of lightweight cellular concrete in pavement application: a review. International Journal of Pavement Research and Technology, 2020, 13, 686-696.	1.3	15
761	Hydration kinetics and products of MgO-activated blast furnace slag. Construction and Building Materials, 2020, 249, 118700.	3.2	46
762	Natural carbonation-induced phase and molecular evolution of alkali-activated slag: Effect of activator composition and curing temperature. Construction and Building Materials, 2020, 248, 118726.	3.2	34
763	Application areas of phosphogypsum in production of mineral binders and composites based on them: a review of research results. MATEC Web of Conferences, 2018, 149, 01012.	0.1	5
764	Highâ€Resolution <scp>X</scp> â€ray Diffraction and Fluorescence Microscopy Characterization of Alkaliâ€Activated Slagâ€Metakaolin Binders. Journal of the American Ceramic Society, 2013, 96, 1951-1957.	1.9	79
765	THE PREPARATION AND COMPOSITION ANALYSIS OF ALITE-YE'ELIMITE WITH INDUSTRIAL WASTES. Ceramics - Silikaty, 2016, , 179-187.	0.2	5
766	PERFORMANCE OF SILICA-NANO-PARTICLES ON THE PHYSICOCHEMICAL, AND MICROSCOPIC CHARACTERISTICS OF BLENDED AND COMPOSITE CEMENT. Ceramics - Silikaty, 2020, , 320-337.	0.2	3
767	Interfacial Transition Zone of Alkali-Activated Slag Concrete. ACI Materials Journal, 2017, 114, .	0.3	2
768	Development of Ground-Granulated Blast-Furnace Slag-Dolomite Geopolymer Concrete. ACI Materials Journal, 2019, 116, .	0.3	13

#	Article	IF	CITATIONS
769	Effects of Vinyl Acetate-Ethylene Emulsion on Setting Time and Mechanical Properties of Alkali-Activated Cementitious Materials. ACI Materials Journal, 2020, 117, .	0.3	1
770	Influence of various additives on the early age compressive strength of sodium carbonate activated slag composites: An overview. Journal of the Mechanical Behavior of Materials, 2020, 29, 106-113.	0.7	13
771	Stabilizing Very High Moisture Content Fine Grained Soils with Calcium Sulfoaluminate Cements. Advances in Civil Engineering Materials, 2017, 6, 412-428.	0.2	4
772	Internal Curing to Mitigate Cracking in Rapid Set Repair Media. Advances in Civil Engineering Materials, 2018, 7, 660-671.	0.2	2
773	Behavior of Specialty Binders Mixed with Seawater. Advances in Civil Engineering Materials, 2019, 8, 20180107.	0.2	6
774	A Nondestructive EIS Method to Evaluate the Compressive Strength of Slag-Blended Cement Paste under Steam Curing. Journal of Testing and Evaluation, 2020, 48, 4104-4115.	0.4	3
775	Activated Class C Fly Ash Cement. , 2013, , 108-118.		2
776	Alkali-activated Binders and Concretes: The Path to Standardization. , 2013, , 185-195.		3
777	Development, Standardization, and Applications of Alkali-activated Concretes. , 2013, , 196-212.		9
778	Selected Studies of the Durability of Fly-Ash-Based Geopolymer Concretes. , 2013, , 144-164.		4
779	Alkali Activated Binders Based on Metakaolin. Environment Technology Resources Proceedings of the International Scientific and Practical Conference, 0, 1, 200.	0.0	2
780	Empirical Relationships on Mechanical Properties of Class-F Fly Ash and CGBS Based Geopolymer Concrete. Annales De Chimie: Science Des Materiaux, 2019, 43, 189-197.	0.2	14
781	Performance of a Fly Ash Geopolymeric Based Binder with Calcium Hydroxide, Portland Cement and Metakaolin as Additives. Open Civil Engineering Journal, 2018, 12, 167-186.	0.4	3
782	Phase equilibria in the system Ca4Al6O12SO4 – Ca2SiO4 – CaSO4 – H2O referring to the hydration of calcium sulfoaluminate cements. RILEM Technical Letters, 0, 1, 10-16.	0.0	74
783	Recent update on the environmental impact of geopolymers. RILEM Technical Letters, 0, 1, 17-23.	0.0	219
784	Effect of Micro Polypropylene Fibre on the Performance of Fly Ash-Based Geopolymer Concrete. Journal of Applied Engineering Sciences, 2019, 9, 97-108.	0.2	4
785	Application of a clay-slag geopolymer matrix for repairing damaged concrete: Laboratory and industrial-scale experiments. Materialpruefung/Materials Testing, 2017, 59, 929-937.	0.8	6
786	Chloride Resistance of Blended Ash Geopolymer Concrete. Journal of Civil Engineering Science and Technology, 2016, 6, 23-33.	0.5	5

#	Article	IF	CITATIONS
787	Insights on Substitution Preference of Pb Ions in Sulfoaluminate Cement Clinker Phases. Materials, 2021, 14, 44.	1.3	10
788	Fly Ash Based Geopolymer Concrete: A Review. , 2013, , .		5
789	Ceniza de cascarilla de arroz como fuente de sÃlice en sistemas cementicios de ceniza volante y escoria activados alcalinamente. Materiales De Construccion, 2013, 63, 361-375.	0.2	49
790	Effect of citric acid and the hemihydrate amount on the properties of a calcium sulphoaluminate cement. Materiales De Construccion, 2014, 64, e036.	0.2	24
791	Effect of the strontium aluminate and hemihydrate contents on the properties of a calcium sulphoaluminate based cement. Materiales De Construccion, 2014, 64, e024.	0.2	2
792	Performance at high temperature of alkali-activated slag pastes produced with silica fume and rice husk ash based activators. Materiales De Construccion, 2015, 65, e049.	0.2	60
793	Strength Development of Alkali-Activated Fly Ash Exposed to a Carbon Dioxide-Rich Environment at an Early Age. Journal of the Korean Ceramic Society, 2016, 53, 18-23.	1.1	9
794	Formulating for Innovative Self-Compacting Concrete with Low Energy Super-Sulfated Cement Used for Sustainability Development. Journal of Materials Science and Chemical Engineering, 2016, 04, 22-28.	0.2	4
795	Hydration of High-volume GGBFS Cement with Anhydrite and Sodium Sulfate. Journal of the Korea Concrete Institute, 2015, 27, 177-184.	0.1	4
796	Alternative binders for concrete: opportunities and challenges. , 2019, , .		1
796 797	Alternative binders for concrete: opportunities and challenges. , 2019, , . Investigation of fresh and hardened properties of Calcium sulfoaluminate (CSA) cement blends. Magazine of Civil Engineering, 2014, 47, 63-70.	1.9	1
	Investigation of fresh and hardened properties of Calcium sulfoaluminate (CSA) cement blends.	1.9	
797	Investigation of fresh and hardened properties of Calcium sulfoaluminate (CSA) cement blends. Magazine of Civil Engineering, 2014, 47, 63-70. Mechanical and Microstructural Characterization of Alkali-Activated Materials Based on Fly Ash and		3
797 799	Investigation of fresh and hardened properties of Calcium sulfoaluminate (CSA) cement blends. Magazine of Civil Engineering, 2014, 47, 63-70. Mechanical and Microstructural Characterization of Alkali-Activated Materials Based on Fly Ash and Slag. International Journal of Engineering and Technology, 2015, 7, 59-64. Behaviour of Bamboo Leaf Ash Blended Cement Concrete in Sulphates Environment. IOSR Journal of	0.1	3 21
797 799 800	Investigation of fresh and hardened properties of Calcium sulfoaluminate (CSA) cement blends. Magazine of Civil Engineering, 2014, 47, 63-70. Mechanical and Microstructural Characterization of Alkali-Activated Materials Based on Fly Ash and Slag. International Journal of Engineering and Technology, 2015, 7, 59-64. Behaviour of Bamboo Leaf Ash Blended Cement Concrete in Sulphates Environment. IOSR Journal of Engineering, 2014, 4, 01-08. XRD and combined SEM-EDS analysis of long-term hydration products of ye'elimite. Materials	0.1	3 21 6
797 799 800 801	Investigation of fresh and hardened properties of Calcium sulfoaluminate (CSA) cement blends. Magazine of Civil Engineering, 2014, 47, 63-70. Mechanical and Microstructural Characterization of Alkali-Activated Materials Based on Fly Ash and Slag. International Journal of Engineering and Technology, 2015, 7, 59-64. Behaviour of Bamboo Leaf Ash Blended Cement Concrete in Sulphates Environment. IOSR Journal of Engineering, 2014, 4, 01-08. XRD and combined SEM-EDS analysis of long-term hydration products of ye'elimite. Materials Chemistry and Physics, 2022, 276, 125373.	0.1 0.1 2.0	3 21 6 5
797 799 800 801 802	 Investigation of fresh and hardened properties of Calcium sulfoaluminate (CSA) cement blends. Magazine of Civil Engineering, 2014, 47, 63-70. Mechanical and Microstructural Characterization of Alkali-Activated Materials Based on Fly Ash and Slag. International Journal of Engineering and Technology, 2015, 7, 59-64. Behaviour of Bamboo Leaf Ash Blended Cement Concrete in Sulphates Environment. IOSR Journal of Engineering, 2014, 4, 01-08. XRD and combined SEM-EDS analysis of long-term hydration products of ye'elimite. Materials Chemistry and Physics, 2022, 276, 125373. Optimization of Alkali-Activated Municipal Slag Composite Performance by Substituting Varying Ratios of Fly Ash for Fine Aggregate. Materials, 2021, 14, 6299. Phosphorus Substitution Preference in Ye'elimite: Experiments and Density Functional Theory 	0.1 0.1 2.0 1.3	3 21 6 5 5

#	Article	IF	CITATIONS
806	Experimental Optimization of GGBS Fly Ash-Based Geopolymer Concrete Paver Blocks. Lecture Notes in Civil Engineering, 2022, , 153-161.	0.3	2
807	Mechanical properties and mechanism of nano-CaCO3 enhanced sulphoaluminate cement-based reactive powder concrete. Construction and Building Materials, 2021, 309, 125099.	3.2	52
808	Potential applications of geopolymer concrete in construction: A review. Case Studies in Construction Materials, 2021, 15, e00733.	0.8	79
809	Sorptivity Ratio and Compressive Strength of Alkali-Activated Blast Furnace Slag Paste. Advances in Civil Engineering Materials, 2014, 3, 238-255.	0.2	0
810	Gaps in Material Specifications—A Manufacturer's Perspective. Advances in Civil Engineering Materials, 2015, 4, 38-61.	0.2	0
811	Alumina. , 2015, , 1-4.		0
813	Durability of Alkali-Activated Blast Furnace Slag Concrete: Chloride Ions Diffusion. Journal of the Korean Society of Safety, 2015, 30, 120-127.	0.0	4
814	Strength and Water Resistance of Low-Grade Fly Ash Incorporated Magnesia-Phosphate Cement Based Materials. , 2016, , .		0
815	Reduction of CO2 Emissions by Chemical Synthesis Processes in the Cement Industry. , 2016, , 5-12.		1
816	Proportioning mineral admixture-incorporated concretes. , 2016, , 222-239.		0
817	Use of mineral admixtures in special concretes. , 2016, , 254-281.		0
818	Znaczenie uwalniania cynku, miedzi i oÅ,owiu z żużla szybowego w kontekÅ›cie jego stosowania w drogownictwie. MateriaÅy Budowlane, 2016, 1, 57-59.	0.0	0
820	State of Knowledge on Green Concrete with Recycled Aggregates and Cement Replacement. Research for Development, 2017, , 3-27.	0.2	1
821	Effect of Particle Packing and Fly Ash on Performance of Ordinary Portland Cement/Anhydrite-Activated Ground-Granulated Blast-Furnace Slag. ACI Materials Journal, 2017, 114, .	0.3	1
822	Evaluation of Compressive Strength and Microstructure of Cement Pastes Containing Different Qualities of Metakaolin. RILEM Bookseries, 2018, , 147-154.	0.2	0
823	Effects of Impure Water Sources on the Early-Age Properties of Calcium Sulfoaluminate (CSA) Cement. Advances in Civil Engineering Materials, 2019, 8, 20180115.	0.2	1
824	Transport and Durability Properties of Alkali-Activated Natural Pozzolan/Slag Concrete. ACI Materials Journal, 2019, 116, .	0.3	4

CITATION REPORT	
-----------------	--

#	Article	IF	CITATIONS
826	AVALIAÇÃO DA UTILIZAÇÃO DE RESÃÐUOS INCORPORADOS AO CLÃNQUER PORTLAND: REVISÃO SISTEN , 0, , .	IÃTICA.	0
827	Internal Curing Using Superabsorbent Polymers for Alkali Activated Slag-Fly Ash Mixtures. RILEM Bookseries, 2020, , 239-247.	0.2	3
828	Rice Husk Ash Derived Sodium Silicate Using Hydrothermal and Convection Heating Methods. Lecture Notes in Civil Engineering, 2020, , 629-646.	0.3	2
830	Comportamento do cimento supersulfatado (CSS) obtido a partir de escórias de alto forno geradas a carvA£o vegetal e mineral e sujeito à cura térmica. Revista Materia, 2020, 25, .	0.1	0
832	Strain-Hardening Ambient-Cured Eco-Friendly Ductile Geopolymer Composites. ACI Materials Journal, 2020, 117, .	0.3	1
833	Mechanical Properties, Resistance to Fire and Durability for Sulfate Ions of Alkali activated Cement made from Blast furnace Slag- Fine Metakaolin. Egyptian Journal of Chemistry, 2020, .	0.1	0
834	Effect of the Type of Binder on Thermal and Mechanical Properties of Mortar with Doum Palm Fiber. Lecture Notes in Mechanical Engineering, 2020, , 452-459.	0.3	1
835	FREEZE-THAW RESISTANCE OF BLAST FURNACE SLAG GEOPOLYMER MORTARS. Turkish Journal of Engineering, 0, , .	0.7	0
836	Development of a fast-hardening retarding high-early-strength concrete with low-alkalinity sulphoaluminate cement and practical application. Advances in Bridge Engineering, 2020, 1, .	0.8	2
837	Influence of Alkaline ratios on strength properties of Fly ash-Ground Granulated Blast Furnace Slag Based Geopolymer Mortars. IOP Conference Series: Materials Science and Engineering, 2020, 998, 012055.	0.3	5
838	The enhancement effect of Ca-bentonite on the working performance of red mud-slag based geopolymeric grout. Materials Chemistry and Physics, 2022, 276, 125311.	2.0	11
840	Mesoscale Mechanisms of Cement Hydration: BNG Model and Particle Simulations. , 2020, , 177-197.		0
841	Bond Behavior of 0.6 in. Prestressing Strand in BSCA Cement Concrete. ACI Structural Journal, 2020, 117, .	0.3	5
842	Compressive Strength and Drying Shrinkage of Alkali-activated Fly Ash/Slag Mortars. International Journal of Structural and Civil Engineering Research, 2020, , 161-164.	0.1	0
843	Research Progress in Corrosion Mechanism of Reinforced Alkali-Activated Concrete Structures. Corrosion and Materials Degradation, 2021, 2, 641-656.	1.0	1
844	The influence of calcium sulfate content on the hydration of belite-calcium sulfoaluminate cements with different clinker phase compositions. Materials and Structures/Materiaux Et Constructions, 2021, 54, 1.	1.3	16
845	Experimental study of the effect of graphene on properties of ambient-cured slag and fly ash-based geopolymer paste and mortar. Construction and Building Materials, 2021, 313, 125403.	3.2	25
846	Ternesite as a component of sulfobelitic cements. MATEC Web of Conferences, 2018, 149, 01011.	0.1	0

#	Article	IF	CITATIONS
847	Experimental Investigation on Bond Strength Properties of Geopolymer Concrete. Lecture Notes in Civil Engineering, 2021, , 731-740.	0.3	3
848	Development of an energy-efficient technology for the production and study of clinker-free mineral binders based on blast furnace granulated slag with the addition of fly ash. Novye Ogneupory (new) Tj ETQq1 1 (0.7 84 314	rg₿JT /Overlo
849	Manufacture of rich-sulfoaluminate belite cement at low temperature from waste mixture by dry and hydrothermal processes. Construction and Building Materials, 2022, 314, 125641.	3.2	5
850	Mechanical properties and hydration process of steel slag-cement binder containing nano-SiO2. Construction and Building Materials, 2022, 314, 125660.	3.2	30
851	Effect of Degradation on Mechanical Strengths of Alkali-Activated Fines in Stabilized Construction and Demolition Waste Aggregates. Journal of Materials in Civil Engineering, 2022, 34, .	1.3	2
852	Effect of bottom ash waste on the rheology and durability of alkali activation pastes. Case Studies in Construction Materials, 2022, 16, e00790.	0.8	7
853	Application of DOE method in evaluating for split tensile strength of slag-based boroaluminosilicate geopolymers reinforced with steel fibers. Journal of the Australian Ceramic Society, 2022, 58, 135-144.	1.1	3
854	External sulfate attack: comparison of several alternative binders. Materials and Structures/Materiaux Et Constructions, 2021, 54, 1.	1.3	7
855	Hybrid Materials Based on Fly Ash, Metakaolin, and Cement for 3D Printing. Materials, 2021, 14, 6874.	1.3	27
856	The micro-structural character of limestone and its influence on the formation of phases in calcined products: natural hydraulic limes and cements. Materials and Structures/Materiaux Et Constructions, 2021, 54, 1.	1.3	4
857	Thermal Properties of Calcium Sulphoaluminate Cement as an Alternative to Ordinary Portland Cement. Materials, 2021, 14, 7011.	1.3	5
858	Influence of Steel Slag-Superfine Blast Furnace Slag Composite Mineral Admixture on the Properties of Mortar and Concrete. Advances in Civil Engineering, 2021, 2021, 1-9.	0.4	2
859	Research on Compressive and Flexural Properties of Coal Gangue-Slag Geopolymer under Wetting-Drying Cycles and Analysis of Micro-Mechanism. Polymers, 2021, 13, 4160.	2.0	2
860	Effects of Using Different Co-binders and Fibers on Mechanical and Durability Performances of Alkali-Activated Soapstone Binders (AAS). Waste and Biomass Valorization, 2022, 13, 2375-2397.	1.8	2
861	Impacts of MgO waste:GGBS formulations on the performance of a stabilised natural high sulphate bearing soil. Construction and Building Materials, 2022, 315, 125745.	3.2	9
862	A Binder Prepared by Low-Reactivity Blast Furnace Slags for Cemented Paste Backfill: Influence of Super-Fine Fly Ash and Chemical Additives. SSRN Electronic Journal, 0, , .	0.4	0
863	A review on the durability performance of alkali-activated binders subjected to chloride-bearing environment. Construction and Building Materials, 2022, 317, 125947.	3.2	3
864	Understanding the importance of carbonates on the performance of Portland metakaolin cement. Construction and Building Materials, 2022, 319, 126155.	3.2	17

#	Article	IF	CITATIONS
865	Alkali activation of blast furnace slag using a carbonate-calcium carbide residue alkaline mixture to prepare cemented paste backfill. Construction and Building Materials, 2022, 320, 126234.	3.2	29
866	Thermo-chemo-mechanical characterization, modeling, and analysis of hydration of calcium-sulfoaluminate cement paste. Construction and Building Materials, 2022, 319, 125747.	3.2	3
867	Thermal degradation of potassium-activated ternary slag-fly ash-silica fume binders. Construction and Building Materials, 2022, 320, 126304.	3.2	5
868	Influence of metakaolin and limestone on chloride binding of slag activated by mixed magnesium oxide and sodium hydroxide. Cement and Concrete Composites, 2022, 127, 104397.	4.6	23
869	Fabrication of green one-part geopolymer from silica-rich vanadium tailing via thermal activation and modification. International Journal of Minerals, Metallurgy and Materials, 2022, 29, 177-184.	2.4	15
870	Utilization of recycled aggregate in geopolymer concrete development: A case study. , 2022, , 343-354.		1
871	Belite-Calcium Sulphoaluminate Cement Prepared by Emr and Bs: Hydration Characteristics and Microstructure Evolution Behavior. SSRN Electronic Journal, 0, , .	0.4	0
872	Investigation on the influence of fine steel fiber and carbon fiber on the thermo-mechanical properties of cement-based thermal energy storage mortar. Composite Interfaces, 2022, 29, 713-727.	1.3	1
873	Recycling of arsenic-containing biohydrometallurgy waste to produce a binder for cemented paste backfill: Mix proportion optimization. Powder Technology, 2022, 398, 117155.	2.1	14
874	Effects and mechanisms of waste gypsum influencing the mechanical properties and durability of magnesium oxychloride cement. Journal of Cleaner Production, 2022, 339, 130679.	4.6	17
875	Effect of slags of different origins and the role of sulfur in slag on the hydration characteristics of cement-slag systems. Construction and Building Materials, 2022, 316, 125266.	3.2	17
876	Hydration mechanism of calcium sulfoaluminate-activated supersulfated cement. Journal of Cleaner Production, 2022, 333, 130094.	4.6	21
877	Chemistry-informed machine learning prediction of compressive strength for alkali-activated materials. Construction and Building Materials, 2022, 316, 126103.	3.2	48
878	Effect of Chemical Treatment on Silicon Manganese: Its Morphological, Elemental and Spectral Properties and Its Usage in Concrete. Silicon, 2022, 14, 8081-8096.	1.8	2
879	Effects of different curing conditions on the long-term properties of alkali activated GBPÂ+ÂCBFS mortars exposed to high temperatures. Construction and Building Materials, 2022, 321, 125732.	3.2	7
880	Recycling of waste cathode ray tube glass through fly ash-slag geopolymer mortar. Construction and Building Materials, 2022, 322, 126454.	3.2	12
881	Mechanical and chloride ions solidification performance of C4A3(\$,P) mineral as promising marine engineering material. Construction and Building Materials, 2022, 323, 126553.	3.2	2
882	Analysis of hydration products, hydration degree, and CO2 capture in "ye'elimite –H2O―system by X-ray diffraction, combined SEM-EDS, and FTIR techniques. Journal of the Taiwan Institute of Chemical Engineers, 2022, 132, 104222.	2.7	3

#	Article	IF	CITATIONS
883	Utilization of recycled fine powder as an activator in fly ash based geopolymer mortar. Construction and Building Materials, 2022, 323, 126581.	3.2	20
884	Time and spatially dependent transient competitive antagonism during the 2-D diffusion-reaction of combined chloride-sulphate attack upon concrete. Cement and Concrete Research, 2022, 154, 106724.	4.6	11
885	Pathways towards sustainable concrete. Cement and Concrete Research, 2022, 154, 106718.	4.6	69
886	A review on the porous geopolymer preparation for structural and functional materials applications. International Journal of Applied Ceramic Technology, 2022, 19, 1793-1813.	1.1	23
887	Clinkering design of sulfobelite cements using clay overburden residue from bauxite mining. Advances in Cement Research, 0, , 1-36.	0.7	1
888	Fracture response of wollastonite fiber-reinforced cementitious composites: Evaluation using micro-indentation and finite element simulation. Ceramics International, 2022, , .	2.3	4
889	Properties of Cementitious Repair Materials for Concrete Pavement. Advances in Materials Science and Engineering, 2022, 2022, 1-17.	1.0	6
890	Preparing a binder for cemented paste backfill using low-aluminum slag and hazardous oil shale residue and the heavy metals immobilization effects. Powder Technology, 2022, 399, 117167.	2.1	30
891	The impediment and promotion effects and mechanisms of lactates on the hydration of supersulfated cements - Aiming at a performance enhancement. Journal of Cleaner Production, 2022, 341, 130751.	4.6	7
892	The mechanical and structural properties of lunar regolith simulant based geopolymer under extreme temperature environment on the moon through experimental and simulation methods. Construction and Building Materials, 2022, 325, 126679.	3.2	19
893	Influence of the Type and Concentration of the Activator on the Microstructure of Alkali Activated Simn Slag Pastes. SSRN Electronic Journal, 0, , .	0.4	0
894	Alkali-Activated Red Mud and Construction and Demolition Waste-Based Components: Characterization and Environmental Assessment. Materials, 2022, 15, 1617.	1.3	17
895	Polypropylene fiber reinforced concrete improved by using silica fume and acrylic emulsion polymer. Materiales De Construccion, 2022, 72, e269.	0.2	1
896	Effect of early strength anti-cracking materials on drying shrinkage of recycled cement stabilized macadam. International Journal of Pavement Engineering, 2023, 24, .	2.2	3
897	Engineering application of organic materials with concrete: A review. Materials Today: Proceedings, 2022, 56, 581-586.	0.9	15
898	Effect of mechanical activation on reaction mechanism of one-part preparation fly ash/slag-based geopolymer. Advances in Cement Research, 2022, 34, 412-426.	0.7	3
899	Phase Analysis of Alkali-Activated Slag Hybridized with Low-Calcium and High-Calcium Fly Ash. Sustainability, 2022, 14, 3767.	1.6	2
900	Formulation of Bogue Equations from Thermodynamic Modelling for Low-Carbon Dioxide Ferrite-Belite Clinkers. , 2022, 5, .		0

#	Article	IF	CITATIONS
901	Method for quantifying the reaction degree of slag in alkaliâ€activated cements using deep learningâ€based electron microscopy image analysis. Journal of Microscopy, 2022, 286, 174-178.	0.8	2
902	Lightweight Cellular Concrete Properties and Geotechnical Applications. , 2022, , .		1
903	Development of a calcium aluminate cement from steelmaking slag by altering its mineralogical composition. Advances in Cement Research, 0, , 1-10.	0.7	1
904	The Improvement of Durability of Reinforced Concretes for Sustainable Structures: A Review on Different Approaches. Materials, 2022, 15, 2728.	1.3	15
905	Synergistic use of electrolytic manganese residue and barium slag to prepare belite- sulphoaluminate cement study. Construction and Building Materials, 2022, 326, 126672.	3.2	28
906	The Volume Stability of Alkali-Activated Electric Arc Furnace Ladle Slag Mortar and Its Performance at High Temperatures. Processes, 2022, 10, 700.	1.3	0
907	Study on the hydration product and embodied CO2 of NHL-mineral admixture system based on thermodynamic simulation and experiments. Journal of Cleaner Production, 2022, , 131641.	4.6	0
908	A binder prepared by low-reactivity blast furnace slags for cemented paste backfill: Influence of super-fine fly ash and chemical additives. Construction and Building Materials, 2022, 327, 126988.	3.2	17
909	Effect of the nanosilica source on the rheology and early-age hydration of calcium sulfoaluminate cement pastes. Construction and Building Materials, 2022, 327, 126942.	3.2	10
910	Physical properties, strength, and impurities stability of phosphogypsum-based cold-bonded aggregates. Construction and Building Materials, 2022, 331, 127307.	3.2	31
911	Ability of Hardened Paste of Cementitious Calcium–Aluminophosphate Mineral to Bind with Chloride Ions. Journal of Materials in Civil Engineering, 2022, 34, .	1.3	2
912	High-Temperature Performance of Low-Calcium Fly Ash–Based Geopolymers. Journal of Materials in Civil Engineering, 2022, 34, .	1.3	3
913	Creep of alkali-activated cement mixtures. Case Studies in Construction Materials, 2022, 16, e00954.	0.8	1
914	Performance criteria, environmental impact and cost assessment for 3D printable concrete mixtures. Resources, Conservation and Recycling, 2022, 181, 106255.	5.3	19
915	Multiscale Characterization of Fly Ash–Based Geopolymer and Type V Portland Cement Exposed to MgSO4. Journal of Materials in Civil Engineering, 2022, 34, .	1.3	3
916	Control the early-stage hydration of expansive additive from calcium sulfoaluminate clinker by polymer encapsulation. Cement, 2022, 8, 100021.	0.9	2
917	Effect of Predrying Temperature on Carbonation of Alkali-Activated Slag Pastes. Journal of Materials in Civil Engineering, 2022, 34, .	1.3	1
918	Structural transition to well-ordered phases of NaOH-activated slag-metakaolin cements aged by 6Âyears. Cement and Concrete Research, 2022, 156, 106791.	4.6	9

#	Article	IF	CITATIONS
919	Designing corrosion resistant systems with alternative cementitious materials. Cement, 2022, 8, 100029.	0.9	2
920	Influence of micro Fe2O3 and MgO on the physical and mechanical properties of the zeolite and kaolin based geopolymer mortar. Journal of Building Engineering, 2022, 52, 104443.	1.6	16
921	Experimental Evaluation of Tensile Performance of Aluminate Cement Composite Reinforced with Weft Knitted Fabrics as a Function of Curing Temperature. Polymers, 2021, 13, 4385.	2.0	6
922	Performance development of styrene-butadiene copolymer-modified calcium sulfoaluminate cement mortar under different curing conditions. Journal of Zhejiang University: Science A, 2021, 22, 1005-1026.	1.3	3
923	Reuse of Uncontrolled Burnt Bagasse Ash from Sugar Industries with Waste Rubber Powder in Construction: A Waste to Wealth Approach for Sugar Mills. Sugar Tech, 0, , 1.	0.9	0
924	Comparative Analysis of Heat Release, Bound Water Content and Compressive Strength of Alkali-Activated Slag-Fly Ash. Frontiers in Materials, 2022, 9, .	1.2	3
925	Hydration characteristics of coconut fibre-reinforced mortars containing CSA and Portland cement. Journal of Material Cycles and Waste Management, 0, , 1.	1.6	2
926	A review on soil stabilisation of unsealed road pavements from an Australian perspective. Road Materials and Pavement Design, 2023, 24, 1005-1049.	2.0	2
927	Hydration and Properties of Cement in the Belite-Ye′elimite-Ternesite System. Materials, 2022, 15, 2792.	1.3	2
928	Belite-calcium sulphoaluminate cement prepared by EMR and BS: Hydration characteristics and microstructure evolution behavior. Construction and Building Materials, 2022, 333, 127415.	3.2	10
929	The effect of slag chemistry on the reactivity of synthetic and commercial slags. Construction and Building Materials, 2022, 335, 127493.	3.2	15
930	New Applications of Ordinary Portland and Calcium Sulfoaluminate Composite Binder for Recycling Dredged Marine Sediments as Road Materials. International Journal of Geomechanics, 2022, 22, .	1.3	14
932	Comparison of the CAC-containing and CAC-free hydraulic binders in term of the hydrated matrix formation within refractory castables designed for the fast drying procedure. Journal of Thermal Analysis and Calorimetry, 0, , 1.	2.0	1
933	Recycling of Tropical Natural Fibers in Building Materials. , 0, , .		2
934	Comparative study on Phosphate-Powder as Partial-Replacement in conventional concrete and PrimeMaterials in GeopolymerConcrete. Materials Today: Proceedings, 2022, 65, 1348-1353.	0.9	1
935	A Multiscale and Multimethod Approach to Assess and Mitigate Concrete Damage Due to Alkali–Silica Reaction. Advanced Engineering Materials, 2022, 24, .	1.6	4
936	Characterisation of Recycled Quarzitic and Plastic Aggregates for Sustainable Lightweight Screeds. Key Engineering Materials, 0, 919, 28-34.	0.4	0
937	Synthesis of nanoparticles from slag and their enhancement effect on hydration properties of CaO/CaSO4-activated slag binder. Advanced Powder Technology, 2022, 33, 103586.	2.0	4

#	Article	IF	CITATIONS
938	Waste clay from bauxite beneficiation to produce calcium sulphoaluminate eco-cements. Construction and Building Materials, 2022, 340, 127703.	3.2	4
939	Effects of different alumina carriers on the phase formation and mechanical properties of sulfoaluminate cement clinker. Advances in Cement Research, 2023, 35, 1-11.	0.7	1
940	The impact of carbonation at different CO2 concentrations on the microstructure of phosphogypsum-based supersulfated cement paste. Construction and Building Materials, 2022, 340, 127823.	3.2	20
942	Water-to-cement ratio of calcium sulfoaluminate belite cements: Hydration, setting time, and strength development. Cement, 2022, 8, 100032.	0.9	15
943	Rapid regeneration cement-stabilized macadam: Preparation, mechanical properties, and dry shrinkage performance. Construction and Building Materials, 2022, 341, 127901.	3.2	5
944	Effect of Seawater on Hydration and Sulfate Resistance of Noncement Mortars. Journal of Materials in Civil Engineering, 2022, 34, .	1.3	0
945	Fabrication and characterisation of 0–3 KNLNTS piezoelectric ceramic/alite calcium sulfoaluminate cement composites. Journal of Materials Research and Technology, 2022, 19, 1563-1577.	2.6	2
946	GGBS hydration acceleration evidence in supersulfated cement by nanoSiO2. Cement and Concrete Composites, 2022, 132, 104609.	4.6	17
947	Application of Iron Tailings-Based Composite Supplementary Cementitious Materials (SCMs) in Green Concrete. Materials, 2022, 15, 3866.	1.3	2
948	Assessment of mechanical and micro-structural characterization of novel ambient cured cement-free composite concrete. Ceramics International, 2022, 48, 26519-26538.	2.3	6
949	The Valorisation of Selected Quarry and Mine Waste for Sustainable Cement Production within the Concept of Circular Economy. Sustainability, 2022, 14, 6833.	1.6	3
950	EDS Microanalysis of Unhydrated Blast Furnace Slag Grains in Field Concrete with Different Service Life. Microscopy and Microanalysis, 2022, 28, 1493-1503.	0.2	4
951	Effects of cementitious stabilisers on performance and life cycle impacts of full-depth reclamation. Road Materials and Pavement Design, 0, , 1-18.	2.0	1
952	Modifications in hydration kinetics and characteristics of calcium aluminate cement upon blending with calcium sulfoaluminate cement. Construction and Building Materials, 2022, 342, 127958.	3.2	12
953	Recycling of arsenic-containing biohydrometallurgy waste to produce a binder for cemented paste backfill: Influence of additives. Journal of Cleaner Production, 2022, 363, 132515.	4.6	4
954	Pumice-based supersulfated cements in mortars: Effects of pumice fineness and activator ratio on physical and environmental characteristics. Construction and Building Materials, 2022, 342, 127947.	3.2	8
955	Stress-strain behavior of low-carbon concrete activated by soda residue-calcium carbide slag under uniaxial and triaxial compression. Journal of Building Engineering, 2022, 55, 104678.	1.6	3
956	Waste Management for Green Concrete Solutions: A Concise Critical Review. Recycling, 2022, 7, 37.	2.3	10

#	Article	IF	CITATIONS
957	An Essential Study of Strength Development in Geopolymer Materials Using the JMAK Method. Arabian Journal for Science and Engineering, 2023, 48, 4295-4307.	1.7	2
958	Early Age Monitoring of High Cement Replacement Mixtures for Pavement. Transportation Research Record, 2023, 2677, 1646-1657.	1.0	2
959	Investigation of engineering properties of sun-dried bottom ash based eco clay blocks. Materials Today: Proceedings, 2022, , .	0.9	1
960	Utilization of APC residues from sewage sludge incineration process as activator of alkali-activated slag/glass powder material. Cement and Concrete Composites, 2022, 133, 104680.	4.6	12
961	Influence of the type and concentration of the activator on the microstructure of alkali activated SiMn slag pastes. Construction and Building Materials, 2022, 342, 128067.	3.2	7
962	Effect of graphene oxide or triethanolamine-modified graphene oxide on the hydration of calcium sulfoaluminate cement. Construction and Building Materials, 2022, 345, 128315.	3.2	1
963	Production, characteristics, and utilization of rice husk ash in alkali activated materials: An overview of fresh and hardened state properties. Construction and Building Materials, 2022, 345, 128341.	3.2	35
964	Characterization of one-part alkali-activated slag with rice straw ash. Construction and Building Materials, 2022, 345, 128403.	3.2	10
965	Mechanical and long-term durability prediction of GFRP rebars with the adoption of low-pH CSA concrete. Construction and Building Materials, 2022, 346, 128444.	3.2	16
966	Engineering and creep performances of green super-sulfated cement concretes using circulating fluidized bed combustion fly ash. Construction and Building Materials, 2022, 346, 128274.	3.2	4
967	Hydration, reinforcing mechanism, and macro performance of multi-layer graphene-modified cement composites. Journal of Building Engineering, 2022, 57, 104880.	1.6	49
968	Recycling of arsenic-containing biohydrometallurgy waste to produce a binder for cemented paste backfill: Co-treatment with oil shale residue. Journal of Environmental Management, 2022, 319, 115621.	3.8	6
969	Mechanics, hydration phase and pore development of embodied energy and carbon composites based on ultrahigh-volume low-carbon cement with limestone calcined clay. Case Studies in Construction Materials, 2022, 17, e01299.	0.8	4
970	Fire resistance characteristics of geopolymer concrete for environmental sustainability: a review of thermal, mechanical and microstructure properties. Environment, Development and Sustainability, 2023, 25, 8975-9010.	2.7	7
971	Influence of colloidal nanosilica on hydration kinetics and properties of CaO/CaSO4-activated slag binder. International Journal of Mining Science and Technology, 2022, 32, 1407-1418.	4.6	5
972	Potential reactivity assessment of mechanically activated kaolin as alternative cement precursor. Applied Clay Science, 2022, 228, 106648.	2.6	15
973	Maximize the use of municipal waste generated by the hydrogen peroxide industry in the production of high-quality refractory CAC. Scientific Reports, 2022, 12, .	1.6	2
974	A Study on the Properties of Geopolymer Concrete Modified with Nano Graphene Oxide. Buildings, 2022, 12, 1066.	1.4	47

#	ARTICLE	IF	CITATIONS
975	Carbon-negative cement manufacturing from seawater-derived magnesium feedstocks. Proceedings of the United States of America, 2022, 119, .	3.3	11
976	Effects of Lithium Slag on the Frost Resistance of Cement-Soil. Materials, 2022, 15, 5531.	1.3	4
977	Development of Underwater Mortar Using Belitic Calcium Sulfoaluminate Cement. Advances in Civil Engineering Materials, 2022, 11, 398-409.	0.2	0
978	Quantifying the Workability of Calcium Sulfoaluminate Cement Paste Using Time-Dependent Rheology. Materials, 2022, 15, 5775.	1.3	5
979	CO2 storage in cement and concrete by mineral carbonation. Current Opinion in Green and Sustainable Chemistry, 2022, 38, 100672.	3.2	27
980	Durability aspects of blended concrete systems subjected to combined mechanical and environmental loading using piezo sensor. Construction and Building Materials, 2022, 348, 128613.	3.2	10
981	Using low-grade calcined clay to develop low-carbon and lightweight strain-hardening cement composites. Journal of Building Engineering, 2022, 58, 105023.	1.6	7
982	The effect of slag chemistry on CO2 binding capacity of C3S-slag (-gypsum) system. Construction and Building Materials, 2022, 354, 129208.	3.2	2
983	Role of the grain size on the hydration characteristics of slag in an aged field concrete. Cement and Concrete Research, 2022, 162, 106985.	4.6	15
984	Effects of sodium oxide content on the durability of alkali-activated mortar utilizing botswana copper mine tailings and fly ash. MATEC Web of Conferences, 2022, 364, 02010.	0.1	0
985	Effective Use of Biochar as an Additive for Alkali-Activated Slag Mortar Production. SSRN Electronic Journal, O, , .	0.4	0
986	Effects of K+ and CO32â~' on the performance of slag–ceramic blended geopolymers. Polymer Testing, 2023, 117, 107816.	2.3	3
987	Demolition Waste Potential for Completely Cement-Free Binders. Materials, 2022, 15, 6018.	1.3	16
988	Improved Cementitious Tile Adhesives' Workability and Mechanical Performance with the Use of Recycled Materials. Infrastructures, 2022, 7, 111.	1.4	1
989	Micro-Mechanical Properties of Slag Rim Formed in Cement–Slag System Evaluated by Nanoindentation Combined with SEM. Materials, 2022, 15, 6347.	1.3	7
990	Coal Ash Enrichment with Its Full Use in Various Areas. Materials, 2022, 15, 6610.	1.3	2
991	Molecular Insights into the Reaction Process of Alkali-Activated Metakaolin by Sodium Hydroxide. Langmuir, 2022, 38, 11337-11345.	1.6	5
992	Activated carbon-cement composite coated polyurethane foam as a cost-efficient solar steam generator. Journal of Cleaner Production, 2022, 379, 134302.	4.6	6

#	Article	IF	CITATIONS
993	Study on the flexural properties and fiberâ€selection method of fiberâ€reinforced geopolymer concrete. Structural Concrete, 0, , .	1.5	5
994	A method for the mix design of low carbon concrete towards industrial production. Materials and Structures/Materiaux Et Constructions, 2022, 55, .	1.3	2
995	Performance of photocatalytic, carbonated calcium sulfoaluminate-belite cement. Cement and Concrete Composites, 2022, 134, 104787.	4.6	4
996	Mechanical Strength Optimization of Geopolymer Concrete Pavement Blocks. Lecture Notes in Civil Engineering, 2023, , 609-621.	0.3	1
997	The Impact of Molar Proportion of Sodium Hydroxide and Water Amount on the Compressive Strength of Slag/Metakaolin (Waste Materials) Geopolymer Mortar. Advances in Civil Engineering, 2022, 2022, 1-14.	0.4	1
998	Mitigating plastic shrinkage cracking in alkali-activated slag systems by internal curing with superabsorbent polymers. Cement and Concrete Composites, 2022, 134, 104784.	4.6	11
999	Influence of tartaric acid dosage on the early-age and long-term properties of calcium sulfoaluminate belite cement composites. Construction and Building Materials, 2022, 356, 129257.	3.2	7
1000	Preparation of phosphogypsum (PG) based artificial aggregate and its application in the asphalt mixture. Construction and Building Materials, 2022, 356, 129218.	3.2	7
1001	Utilization of Green Material for Concrete in Construction. , 2022, 2, 82-95.		1
1002	Influence of Fe2O3, MgO and Molarity of NaOH Solution on the Mechanical Properties of Fly Ash-Based Geopolymers. Materials, 2022, 15, 6965.	1.3	1
1003	Effects of various curing methods on the compressive strength and microstructure of blast furnace slag-fly ash-based cementitious material activated by alkaline solid wastes. Construction and Building Materials, 2022, 357, 129397.	3.2	9
1004	Design and performance optimization of alkali-activated waste coal bottom ash/slag porous concrete. Construction and Building Materials, 2022, 359, 129413.	3.2	6
1005	Drying shrinkage and microstructure of alkali-activated slag with different mixing time at low temperatures (â^'5 to 5°C). Construction and Building Materials, 2022, 360, 129529.	3.2	0
1006	The underlying role of sodium tripolyphosphate on the cementitious mechanism of calcium carbonate binder. Composites Part B: Engineering, 2022, 247, 110362.	5.9	6
1007	Study on combined technology of glutathione reduction and alkali solidification of chromium-containing sludge. Ecotoxicology and Environmental Safety, 2022, 247, 114221.	2.9	1
1008	Modification on the chloride binding capacity of alkali activated slag by applying calcium and aluminium containing phases. Construction and Building Materials, 2022, 358, 129427.	3.2	8
1009	Thermodynamic properties and hydration behavior of ye'elimite. Cement and Concrete Research, 2022, 162, 106995.	4.6	10
1010	Influence of Content and Source of Calcium Sulfate on Supersulfated Cement Exposed to Sodium and Magnesium Sulfate Attack at Later Ages. Journal of Materials in Civil Engineering, 2023, 35, .	1.3	2

#	Article	IF	Citations
1011	Microstructural characteristics and CO2 uptake of calcium sulfoaluminate cement by carbonation curing at different water-to-cement ratios. Cement and Concrete Research, 2023, 163, 107012.	4.6	24
1012	Utilization of high-volume phosphogypsum in artificial aggregate by compaction granulation: effects of muck on physical properties, strength and leaching stability. Journal of Sustainable Cement-Based Materials, 2023, 12, 951-961.	1.7	0
1013	Hybrid alkali activated cements (HAACs) system: A state-of-the-art review on fresh, mechanical, and durability behaviour. Construction and Building Materials, 2022, 361, 129636.	3.2	9
1014	Study on the hydration properties of a ternary cementitious material system containing activated gold tailings and granulated blast furnace slag. Journal of Building Engineering, 2023, 63, 105574.	1.6	5
1015	A Review on Selected Durability Parameters on Performance of Geopolymers Containing Industrial By-products, Agro- Wastes and Natural Pozzolan. Journal of Sustainable Construction Materials and Technologies, 2022, 7, 375-400.	0.4	2
1016	Environmental impact assessment of alkali-activated materials: Examining impacts of variability in constituent production processes and transportation. Construction and Building Materials, 2023, 363, 129032.	3.2	24
1017	Effects of Ms modulus, Na concentration and fly ash content on properties of vapour-cured geopolymer mortars exposed to high temperatures. Construction and Building Materials, 2023, 363, 129868.	3.2	6
1018	Behavior of calcined clay based geopolymers under sulfuric acid attack: Meta-illite and metakaolin. Construction and Building Materials, 2023, 363, 129889.	3.2	5
1019	Effective utilization of agricultural waste in synthesizing activator for sustainable geopolymer technology. Construction and Building Materials, 2023, 362, 129681.	3.2	14
1020	Hydration and compressive strength of supersulfated cement with low-activity high alumina ferronickel slag. Cement and Concrete Composites, 2023, 136, 104892.	4.6	17
1021	Assessing the individual impact of magnesia and titania nano- particles on the performance of alkali-activated slag mortars. Construction and Building Materials, 2023, 365, 130103.	3.2	3
1022	Effect of disodium EDTA on hydration and mechanical properties of calcium sulphoaluminate-belite cement. Cement and Concrete Research, 2023, 164, 107041.	4.6	7
1023	Fly Ash-Based Geopolymers as Lower Carbon Footprint Alternatives to Portland Cement for Well Cementing Applications. Energies, 2022, 15, 8819.	1.6	5
1024	Macroscopic Properties and Pore Structure Fractal Characteristics of Alkali-Activated Metakaolin–Slag Composite Cementitious Materials. Polymers, 2022, 14, 5217.	2.0	2
1025	Evaluation of the efflorescence resistance of calcium sulfoaluminate cement mortar: from indoor accelerated testing to outdoor exposure. Journal of Materials Research and Technology, 2023, 22, 2447-2461.	2.6	3
1026	Freeze–thaw resistance and sorptivity of fineâ€grained alkaliâ€activated cement concrete. Structural Concrete, 0, , .	1.5	0
1027	EFFECT OF BORAX ON CALCIUM SULFOALUMINATE CEMENT PROPERTIES. Ceramics - Silikaty, 2022, , 0-0.	0.2	1
1028	Use of a Full Factorial Design to Study the Relationship between Water Absorption and Porosity of GP and BW Mortar Activated. Advances in Civil Engineering, 2022, 2022, 1-10.	0.4	1

#	Article	IF	CITATIONS
1029	Effect of glass powder on the rheological and mechanical properties of slag-based mechanochemical activation geopolymer grout. European Journal of Environmental and Civil Engineering, 2023, 27, 3628-3652.	1.0	2
1030	Study on the Influence of Alkali Activator Solutions on Strength Improvement of Pozzolan Calcium Hydroxide Binders. Journal of Geoscience and Environment Protection, 2022, 10, 313-330.	0.2	0
1031	Microstructure Evolution Mechanism of Quaternary Phase Paste Containing Metakaolin and Silica Fume. ACS Sustainable Chemistry and Engineering, 2023, 11, 842-853.	3.2	0
1032	Flexural Behavior of GBFS-Based Geopolymer-Reinforced Concrete Beams. Buildings, 2023, 13, 141.	1.4	1
1033	Performances and microstructure of one-part fly ash geopolymer activated by calcium carbide slag and sodium metasilicate powder. Construction and Building Materials, 2023, 367, 130303.	3.2	18
1034	Anisotropic compressional behaviour of the Sorel cement F5-phase (Mg3(OH)5Cl·4H2O). Construction and Building Materials, 2023, 366, 130162.	3.2	0
1035	Development of alternative cementitious binders for 3D printing applications: A critical review of progress, advantages and challenges. Composites Part B: Engineering, 2023, 252, 110492.	5.9	19
1036	Rheological and microstructural properties of FA+GGBFS-based engineered geopolymer composites (EGCs) capable of comparing with M45-ECC as mechanical performance. Journal of Building Engineering, 2023, 65, 105792.	1.6	1
1037	Recent Advances in Alternative Cementitious Materials for Nuclear Waste Immobilization: A Review. Sustainability, 2023, 15, 689.	1.6	5
1038	Impact of amino acids as performance-controlling additives on the hydration of reactive MgO. Journal of Physics: Conference Series, 2023, 2423, 012029.	0.3	0
1039	Effect of Class C and Class F Fly Ash on Early-Age and Mature-Age Properties of Calcium Sulfoaluminate Cement Paste. Sustainability, 2023, 15, 2501.	1.6	0
1040	Toward performance improvement of supersulfated cement by nano silica: Asynchronous regulation on the hydration kinetics of silicate and aluminate. Cement and Concrete Research, 2023, 167, 107117.	4.6	12
1041	Rheology control of limestone calcined clay cement pastes by modifying the content of fine-grained metakaolin. Journal of Sustainable Cement-Based Materials, 2023, 12, 1126-1140.	1.7	2
1042	Effective use of biochar as an additive for alkali-activated slag mortar production. Construction and Building Materials, 2023, 370, 130487.	3.2	4
1043	Box-Behnken design based optimization and characterization of new eco-friendly building materials based on slag activated by diatomaceous earth. Construction and Building Materials, 2023, 375, 131027.	3.2	2
1044	Mechanical Performance and Chloride Penetration of Calcium Sulfoaluminate Concrete in Marine Tidal Zone. Materials, 2023, 16, 2905.	1.3	2
1045	Long-term performance of ferrite-rich calcium sulfoaluminate cement-based paste under seawater corrosion. Construction and Building Materials, 2023, 377, 131056.	3.2	4
1046	Interpretation of the early stiffening process in alkali-activated slag pastes. Cement and Concrete Research, 2023, 167, 107118.	4.6	4

#	Article	IF	CITATIONS
1047	A new eco-friendly concrete made of high content phosphogypsum based aggregates and binder: Mechanical properties and environmental benefits. Journal of Cleaner Production, 2023, 400, 136555.	4.6	16
1048	Production of perlite-based-aerated geopolymer using hydrogen peroxide as eco-friendly material for energy-efficient buildings. Journal of Materials Research and Technology, 2023, 24, 81-99.	2.6	17
1049	Recent progress on graphene oxide for next-generation concrete: Characterizations, applications and challenges. Journal of Building Engineering, 2023, 69, 106192.	1.6	5
1050	Optimization of alkali-activated binders using natural minerals and industrial waste materials as precursor materials. Journal of Building Engineering, 2023, 69, 106230.	1.6	3
1051	Multi-objective optimization of fly ash-slag based geopolymer considering strength, cost and CO2 emission: A new framework based on tree-based ensemble models and NSGA-II. Journal of Building Engineering, 2023, 68, 106070.	1.6	4
1052	Mechanisms of Chemical and Autogenous Shrinkage in Alkali-Activated Hybrid Systems. Journal of Materials in Civil Engineering, 2023, 35, .	1.3	Ο
1053	Reinforcing effects of carbon nanotubes on cement-based grouting materials under dynamic impact loading. Construction and Building Materials, 2023, 382, 131083.	3.2	10
1054	Effects of amino acids on the multiscale properties of carbonated wollastonite composites. Construction and Building Materials, 2023, 374, 130816.	3.2	5
1055	Efficient utilization of waste CRT glass in low carbon super-sulfated cement mortar. Cement and Concrete Composites, 2023, 139, 105037.	4.6	7
1056	Effect of copper and stainless steel slags on fresh, mechanical and pore structure properties of alkali activated ground granulated blast furnace slag. Case Studies in Construction Materials, 2023, 18, e01981.	0.8	3
1057	Sodium-based activators in alkali- activated materials: Classification and comparison. Journal of Building Engineering, 2023, 70, 106397.	1.6	3
1058	Rice husk ash as an alternative soluble silica source for alkali-activated metakaolin systems applied to recycled asphalt pavement stabilization. Transportation Geotechnics, 2023, 39, 100940.	2.0	8
1059	Hydration and phase conversion of MgO-modified calcium aluminate cement. Construction and Building Materials, 2023, 369, 130425.	3.2	3
1060	Fresh properties of limestone-calcined clay-slag cement pastes. Cement and Concrete Composites, 2023, 138, 104962.	4.6	9
1061	Portland/Sulfoaluminate Cement Blends for the Control of Early Age Hydration and Yield Stress. Buildings, 2023, 13, 409.	1.4	3
1062	The Influence of Substitution of Fly Ash with Marble Dust or Blast Furnace Slag on the Properties of the Alkali-Activated Geopolymer Paste. Coatings, 2023, 13, 403.	1.2	9
1063	M45-ECC ve uçucu kül+cüruf esaslı tasarlanmış geopolimer kompozitlerin mekanik ve mikroyapısal özellikleri. ×mer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 0, , .	0.2	0
1065	Can superabsorbent polymers be used as rheology modifiers for cementitious materials in the context of 3D concrete printing?. Construction and Building Materials, 2023, 371, 130777.	3.2	7

#	Article	IF	CITATIONS
π 1066	Study on the characteristics of alkali-activated fly ash-slag improved by cenosphere: Hydration and drying shrinkage. Construction and Building Materials, 2023, 372, 130822.	3.2	9
	drying shirikage. Construction and building Materials, 2023, 372, 130622.		
1067	Zinc oxide in alkali-activated slag (AAS): retardation mechanism, reaction kinetics and immobilization. Construction and Building Materials, 2023, 371, 130739.	3.2	3
1068	Silane-modified graphene oxide in geopolymer: Reaction kinetics, microstructure, and mechanical performance. Cement and Concrete Composites, 2023, 139, 104997.	4.6	5
1069	Investigation on water and fertilizer retention properties of hydrated sulphoaluminate cement pastes modified by bentonite for porous ecological concrete. Case Studies in Construction Materials, 2023, 18, e01967.	0.8	0
1070	Experimental Investigation of Geopolymers for Application in High-Temperature and Geothermal Well Cementing. , 2023, , .		1
1071	Development of a High-Performance Concrete Compressive-Strength Prediction Model Using an Ensemble Machine-Learning Method Based on Bagging and Stacking. Journal of the Computational Structural Engineering Institute of Korea, 2023, 36, 9-18.	0.1	1
1072	Influence of different grinding degrees of fly ash on properties and reaction degrees of geopolymers. PLoS ONE, 2023, 18, e0282927.	1.1	1
1073	EFFECT OF ALON THE STRUCTURE AND CYCLE OF C-S-H IN RECYCLABLE CEMENT. Cement Science and Concrete Technology, 2023, 76, 545-553.	0.1	0
1074	Geotechnical property development and micro-characteristic evolution of solidified sludge. Environmental Geotechnics, 0, , 1-13.	1.3	0
1075	Strength development and microstructure properties of slag activated with alkaline earth metal ions: a review study. European Journal of Environmental and Civil Engineering, 2023, 27, 4497-4527.	1.0	2
1076	Some Critical Reflections on the SEM-EDS Microanalysis of the Hydrotalcite-like Phase in Slag Cement Paste. Materials, 2023, 16, 3143.	1.3	3
1077	Nanomaterial-Reinforced Portland-Cement-Based Materials: A Review. Nanomaterials, 2023, 13, 1383.	1.9	4
1078	Mechanical performance of cementitious composites reinforced with weft-knitted spacer fabrics under static flexural and impact loading. Construction and Building Materials, 2023, 384, 131376.	3.2	2
1079	Enhancing the thermo-mechanical properties of calcium aluminate concrete at elevated temperatures using synergistic flame-retardant polymer fibres. Cement and Concrete Composites, 2023, 140, 105088.	4.6	11
1080	HYDRATION AND EARLY MECHANICAL PERFORMANCE OF BELITE SULFOALUMINATE CEMENT CONTAINING MgAlâ,,,Oâ,,,, FROM SOLID WASTE. Ceramics - Silikaty, 2023, , 167-173.	0.2	0
1081	A Comprehensive Investigation on the Influence of Zeolite, Pumice, and Limestone Powder on the Characteristics of Eco-Friendly Calcium Aluminate Cement Mixes. Advances in Materials Science and Engineering, 2023, 2023, 1-17.	1.0	1
1087	First Global Implementation of Geopolymer in Primary Casing Cementing. , 2023, , .		1
1098	The Influence of Gypsum Content on the Hydration and Properties of Belite-Ye'elimite-Ferrite (BYF) Clinker. RILEM Bookseries, 2023, , 197-208.	0.2	1

#	Article	IF	CITATIONS
1099	Influence of Slag Chemistry on the Carbonation of Sodium Sulfate-Activated Slag Cements. RILEM Bookseries, 2023, , 451-461.	0.2	0
1100	Evaluation of the Cracking Risk in Alkali Activated Materials by Means of Restrained Shrinkage. RILEM Bookseries, 2023, , 374-384.	0.2	0
1121	Compressive strength of geopolymer concrete from volcanic ash calcination. AIP Conference Proceedings, 2023, , .	0.3	0
1149	Effect of Untreated Recycled Aggregate on Properties of GPC. Lecture Notes in Civil Engineering, 2024, , 17-27.	0.3	0
1161	Stabilization and solidification of oil-polluted soils using secondary stabilizers and industrial wastes. International Journal of Environmental Science and Technology, 2024, 21, 2129-2162.	1.8	1
1176	PRODUÇÃO DE CIMENTO SEM CLÃNQUER A PARTIR DE COPRODUTOS SIDEÚRGICOS E RESÃDUOS DA CONSTRUÇÃO. , 0, , .		0
1186	Sustainable Utilization of Anthropogenic Coal Fly Ash Through Mechanical and Chemical Activation. , 2023, , 143-159.		0
1201	A comprehensive review of synthesis kinetics and formation mechanism of geopolymers. RSC Advances, 2024, 14, 446-462.	1.7	0
1206	Cementitious binders incorporating residues. , 2024, , 429-444.		0
1213	Evaluating the Performance of Alkali-Activated Materials Containing Phase Change Materials: A Review. Lecture Notes in Civil Engineering, 2024, , 789-804.	0.3	0
1221	Consistency, setting, and strength properties of fly ash and slag based geopolymer mortar activated with water class _ 2024 _ 41-52		0

with water glass. , 2024, , 41-52. 1221