Enhanced anti-tumor efficacy by co-delivery of doxoru methoxy PEG-PLGA copolymer nanoparticles

Biomaterials

32, 8281-8290

DOI: 10.1016/j.biomaterials.2011.07.032

Citation Report

#	Article	IF	CITATIONS
4	Self-assembling nanoparticles for the release of bisphosphonates in the treatment of human cancers [WO2012042024]. Expert Opinion on Therapeutic Patents, 2012, 22, 1367-1375.	2.4	4
5	Co-encapsulation of magnetic Fe3O4 nanoparticles and doxorubicin into biodegradable PLGA nanocarriers for intratumoral drug delivery. International Journal of Nanomedicine, 2012, 7, 1697.	3.3	57
6	Combination Drug Delivery Approaches in Metastatic Breast Cancer. Journal of Drug Delivery, 2012, 2012, 1-17.	2.5	116
7	Co-delivery Strategies Based on Multifunctional Nanocarriers for Cancer Therapy. Current Drug Metabolism, 2012, 13, 1087-1096.	0.7	24
8	In vitro evaluation of anticancer nanomedicines based on doxorubicin and amphiphilic Y-shaped copolymers. International Journal of Nanomedicine, 2012, 7, 2687.	3.3	25
9	Self-Assembly and Paclitaxel Loading Capacity of Cellulose- <i>graft</i> -poly(lactide) Nanomicelles. Journal of Agricultural and Food Chemistry, 2012, 60, 3900-3908.	2.4	88
10	Methoxypoly(ethylene glycol) <i>â€blockâ€</i> Poly(<scp>L</scp> â€glutamic acid)â€Loaded Cisplatin and a Combination With iRGD for the Treatment of Nonâ€Smallâ€Cell Lung Cancers. Macromolecular Bioscience, 2012, 12, 1514-1523.	2.1	83
11	Polypeptide-based star-block quadripolymers as unimolecular nanocarriers for the simultaneous encapsulation of hydrophobic and hydrophilic guests. European Polymer Journal, 2012, 48, 1696-1708.	2.6	16
12	The apoptosis of OVCAR-3 induced by TNF-α plus IFN-γ co-immobilized polylactic acid copolymers. Journal of Materials Chemistry, 2012, 22, 14746.	6.7	9
13	Enhanced In Vitro Antitumor Efficacy and Strong Antiâ€Cellâ€Migration Activity of a Hydroxycamptothecinâ€Encapsulated Magnetic Nanovehicle. Chemistry - A European Journal, 2012, 18, 14037-14046.	1.7	22
14	Polymer nanoparticulate drug delivery and combination cancer therapy. Future Oncology, 2012, 8, 1471-1480.	1.1	25
15	Bioreducible polymersomes for intracellular dual-drug delivery. Journal of Materials Chemistry, 2012, 22, 22028.	6.7	79
16	Cellular Delivery of Doxorubicin via pH-Controlled Hydrazone Linkage Using Multifunctional Nano Vehicle Based on Poly(β-L-Malic Acid). International Journal of Molecular Sciences, 2012, 13, 11681-11693.	1.8	71
17	Transferrin-Conjugated Micelles: Enhanced Accumulation and Antitumor Effect for Transferrin-Receptor-Overexpressing Cancer Models. Molecular Pharmaceutics, 2012, 9, 1919-1931.	2.3	72
19	Facile Synthesis of Multimeric Micelles. Angewandte Chemie - International Edition, 2012, 51, 7287-7291.	7.2	11
20	Treatments of paclitaxel with poly(vinyl pyrrolidone) to improve drug release from poly(É>-caprolactone) matrix for film-based stent. International Journal of Pharmaceutics, 2012, 434, 161-168.	2.6	11
21	A mPEG-PLGA-b-PLL copolymer carrier for adriamycin and siRNA delivery. Biomaterials, 2012, 33, 4403-4412.	5.7	129
22	Self-assembled pH-responsive MPEC-b-(PLA-co-PAE) block copolymer micelles for anticancer drug delivery. Biomaterials, 2012, 33, 6273-6283.	5.7	211

#	Article	IF	CITATIONS
23	Development of a novel drug delivery system consisting of an antitumor agent tocopheryl succinate. Journal of Controlled Release, 2012, 161, 843-851.	4.8	34
24	Nanotechnological strategies for therapeutic targeting of tumor vasculature. Nanomedicine, 2013, 8, 1209-1222.	1.7	40
25	Polymeric topology and composition constrained polyether–polyester micelles for directional antitumor drug delivery. Acta Biomaterialia, 2013, 9, 8875-8884.	4.1	42
26	A Polymer–(Tandem Drugs) Conjugate for Enhanced Cancer Treatment. Advanced Healthcare Materials, 2013, 2, 822-827.	3.9	49
27	A Core–Shell Albumin Copolymer Nanotransporter for High Capacity Loading and Twoâ€Step Release of Doxorubicin with Enhanced Antiâ€Leukemia Activity. Advanced Healthcare Materials, 2013, 2, 884-894.	3.9	69
28	Multifunctional nanoparticles for targeted delivery of immune activating and cancer therapeutic agents. Journal of Controlled Release, 2013, 172, 1020-1034.	4.8	193
29	Multicompartimental Nanoparticles for Co-Encapsulation and Multimodal Drug Delivery to Tumor Cells and Neovasculature. Pharmaceutical Research, 2014, 31, 1106-19.	1.7	27
30	A Biodegradable Polymersome Containing Bclâ€xL siRNA and Doxorubicin as a Dual Delivery Vehicle for a Synergistic Anticancer Effect. Macromolecular Bioscience, 2013, 13, 745-754.	2.1	46
31	Enzymatic Synthesis of Poly(butylene- <i>co</i> -sebacate- <i>co</i> -glycolate) Copolyesters and Evaluation of the Copolymer Nanoparticles as Biodegradable Carriers for Doxorubicin Delivery. Macromolecules, 2013, 46, 1743-1753.	2.2	31
32	Materials innovation for co-delivery of diverse therapeutic cargos. RSC Advances, 2013, 3, 24794.	1.7	46
33	Sub-100 nm biodegradable nanoparticles:in vitrorelease features and toxicity testing in 2D and 3D cell cultures. Nanotechnology, 2013, 24, 045101.	1.3	23
34	Physicochemical Properties Determine Nanomaterial Cellular Uptake, Transport, and Fate. Accounts of Chemical Research, 2013, 46, 622-631.	7.6	627
35	Synergistic co-delivery of doxorubicin and paclitaxel using multi-functional micelles for cancer treatment. International Journal of Pharmaceutics, 2013, 454, 486-495.	2.6	93
36	Doxorubicin loaded superparamagnetic PLGA-iron oxide multifunctional microbubbles for dual-mode US/MR imaging and therapy of metastasis in lymph nodes. Biomaterials, 2013, 34, 2307-2317.	5.7	183
37	Strategies to target tumors using nanodelivery systems based on biodegradable polymers, aspects of intellectual property, and market. Journal of Chemical Biology, 2013, 6, 7-23.	2.2	23
38	Nanoâ \in ''bio effects: interaction of nanomaterials with cells. Nanoscale, 2013, 5, 3547.	2.8	223
39	Nanoparticles and the cardiovascular system: a critical review. Nanomedicine, 2013, 8, 403-423.	1.7	91
40	Targeted Drug Delivery. , 2013, , 181-234.		23

#	Article	IF	CITATIONS
42	Facile preparation of multifunctional hollow silica nanoparticles and their cancer specific targeting effect. Biomaterials Science, 2013, 1, 647.	2.6	48
43	Development of bioactive thermosensitive polymer–ceramic composite as bone substitute. Chemical Engineering Science, 2013, 89, 133-141.	1.9	5
44	New cyclodextrin derivative containing poly(L-lysine) dendrons for gene and drug co-delivery. Journal of Colloid and Interface Science, 2013, 405, 305-311.	5.0	49
45	Engineering the Assemblies of Biomaterial Nanocarriers for Delivery of Multiple Theranostic Agents with Enhanced Antitumor Efficacy. Advanced Materials, 2013, 25, 1616-1622.	11.1	95
46	Layer-by-Layer Polyelectrolyte–Polyester Hybrid Microcapsules for Encapsulation and Delivery of Hydrophobic Drugs. Biomacromolecules, 2013, 14, 2262-2271.	2.6	52
47	Design and Characterization of Controlled-Release Edible Packaging Films Prepared with Synergistic Whey-Protein Polysaccharide Complexes. Journal of Agricultural and Food Chemistry, 2013, 61, 5824-5833.	2.4	35
48	Nano-sized polymers and liposomes designed to deliver combination therapy for cancer. Current Opinion in Biotechnology, 2013, 24, 682-689.	3.3	100
49	Combination chemotherapy using core-shell nanoparticles through the self-assembly of HPMA-based copolymers and degradable polyester. Journal of Controlled Release, 2013, 165, 153-161.	4.8	57
50	Introduction to biomaterials for cancer therapeutics. , 2013, , 3-19.		3
51	Janus nanogels of PEGylated Taxol and PLGA–PEG–PLGA copolymer for cancer therapy. Nanoscale, 2013, 5, 9902.	2.8	30
52	Evaluation of bioavailability, efficacy, and safety profile of doxorubicin-loaded solid lipid nanoparticles. Journal of Nanoparticle Research, 2013, 15, 1.	0.8	17
53	Efficient Simultaneous Tumor Targeting Delivery of All-Trans Retinoid Acid and Paclitaxel Based on Hyaluronic Acid-Based Multifunctional Nanocarrier. Molecular Pharmaceutics, 2013, 10, 1080-1091.	2.3	81
54	Coâ€delivery of 10â€Hydroxycamptothecin with Doxorubicin Conjugated Prodrugs for Enhanced Anticancer Efficacy. Macromolecular Bioscience, 2013, 13, 584-594.	2.1	63
55	Evaluation of a mPEGâ€polyesterâ€based hydrogel as cell carrier for chondrocytes. Journal of Biomedical Materials Research - Part A, 2013, 101, 3311-3319.	2.1	10
56	Use of Nanotechnology to Develop Multi-Drug Inhibitors for Cancer Therapy. Journal of Nanomedicine & Nanotechnology, 2013, 04, .	1.1	52
57	Paclitaxel-loaded poly(glycolide-co-ε-caprolactone)-b-D-α-tocopheryl polyethylene glycol 2000 succinate nanoparticles for lung cancer therapy. International Journal of Nanomedicine, 2013, 8, 1947.	3.3	21
58	Micelles: Chemotherapeutic Drug Delivery. Clinical Pharmacology & Biopharmaceutics, 2013, 02, .	0.2	2
60	Evodiamine Synergizes with Doxorubicin in the Treatment of Chemoresistant Human Breast Cancer without Inhibiting P-Glycoprotein. PLoS ONE, 2014, 9, e97512.	1.1	51

ARTICLE IF CITATIONS Codelivery of Chemotherapeutics via Crosslinked Multilamellar Liposomal Vesicles to Overcome 1.1 31 61 Multidrug Resistance in Tumor. PLoS ONE, 2014, 9, e110611. Receptor binding peptides for target-selective delivery of nanoparticles encapsulated drugs. 3.3 International Journal of Nanomedicine, 2014, 9, 1537. Lethal drug combination: Arsenic loaded multiple drug mesoporous silica for theranostic 64 2.5 15 applications. Colloids and Surfaces B: Biointerfaces, 2014, 123, 506-514. Single-step assembly of polymer-lipid hybrid nanoparticles for mitomycin C delivery. Nanoscale 3.1 Research Letters, 2014, 9, 560. Nanoencapsulation of ABT-737 and camptothecin enhances their clinical potential through synergistic 2.7 66 43 antitumor effects and reduction of systemic toxicity. Cell Death and Disease, 2014, 5, e1454.e1454. Synthesis, Characterization and Drug Delivery Profile of Magnetic PLGAâ€PEGâ€PLGA/Maghemite Nanocomposite. Macromolecular Symposia, 2014, 343, 18-25. 0.4 Inhibition of 3â€D Tumor Spheroids by Timedâ€Released Hydrophilic and Hydrophobic Drugs from 69 5.2 22 Multilayered Polymeric Microparticles. Small, 2014, 10, 3986-3996. Antitumor efficacy of a PLGA composite nanofiber embedded with doxorubicin@MSNs and 1.7 40 hydroxycamptothecin@HANPs. RSC Advances, 2014, 4, 53344-53351. Controlled co-delivery nanocarriers based on mixed micelles formed from cyclodextrin-conjugated 2.5 17 71 and cross-linked copólymers. Colloids and Surfaces B: Biointerfaces, 2014, 123, 486-492. Polypeptide-based combination of paclitaxel and cisplatin for enhanced chemotherapy efficacy and 4.1 reduced side-effects. Acta Biomaterialia, 2014, 10, 1392-1402. Gel–Liposomeâ€Mediated Coâ€Delivery of Anticancer Membraneâ€Associated Proteins and Smallâ€Molecule 7.8 73 252 Drugs for Enhanced Therapeutic Efficacy. Advanced Functional Materials, 2014, 24, 2295-2304. Self-assembled hybrid nanoparticles for targeted co-delivery of two drugs into cancer cells. 74 2.2 Chemical Communications, 2014, 50, 3103 Preparation and characterization of long-circulating PELMD/mPEGâ€"PLGA-mixed micelles for 75 0.8 12 10-hydroxycamptothecin. Journal of Nanoparticle Research, 2014, 16, 1. Co-delivery of siRNAs and anti-cancer drugs using layered double hydroxide nanoparticles. Biomaterials, 2014, 35, 3331-3339. PEG–PLGA copolymers: Their structure and structure-influenced drug delivery applications. Journal 77 272 4.8 of Controlled Release, 2014, 183, 77-86. Enhancement of cancer therapy efficacy by trastuzumab-conjugated and pH-sensitive nanocapsules with the simultaneous encapsulation of hydrophilic and hydrophobic compounds. Nanomedicine: Nanotechnology, Biology, and Medicine, 2014, 10, 99-107. Nanotechnology-based intelligent drug design for cancer metastasis treatment. Biotechnology 79 6.0 151 Advances, 2014, 32, 761-777. A synergistic combination therapy with paclitaxel and doxorubicin loaded micellar nanoparticles. Colloids and Surfaces B: Biointerfaces, 2014, 116, 41-48.

#	Article	IF	CITATIONS
81	Dual drug loaded vitamin D3 nanoparticle to target drug resistance in cancer. RSC Advances, 2014, 4, 57271-57281.	1.7	11
82	Novel methotrexate prodrug-targeted drug delivery system based on PEG–lipid–PLA hybrid nanoparticles for enhanced anticancer efficacy and reduced toxicity of mitomycin C. Journal of Materials Chemistry B, 2014, 2, 6534-6548.	2.9	39
83	PEG-PLGA Nanoparticles Entrapping Doxorubicin Reduced Doxorubicin-Induced Cardiotoxicity in Rats. Advanced Materials Research, 0, 912-914, 263-268.	0.3	8
84	Combinatorial delivery of Crizotinib–Palbociclib–Sildenafil using TPGS-PLA micelles for improved cancer treatment. European Journal of Pharmaceutics and Biopharmaceutics, 2014, 88, 718-729.	2.0	53
85	Multifunctional nanocarriers for simultaneous encapsulation of hydrophobic and hydrophilic drugs in cancer treatment. Nanomedicine, 2014, 9, 1499-1515.	1.7	39
86	Co-delivery of doxorubicin and curcumin by polymeric micelles for improving antitumor efficacy on breast carcinoma. RSC Advances, 2014, 4, 46737-46750.	1.7	41
87	Therapeutic Effect of Folate-Targeted and PEGylated Phytosomes Loaded with a Mitomycin C–Soybean Phosphatidyhlcholine Complex. Molecular Pharmaceutics, 2014, 11, 3017-3026.	2.3	42
88	Enzyme-responsive nanomaterials for controlled drug delivery. Nanoscale, 2014, 6, 12273-12286.	2.8	456
89	Epigallocatechin-3-Gallate Potentiates the Effect of Curcumin in Inducing Growth Inhibition and Apoptosis of Resistant Breast Cancer Cells. The American Journal of Chinese Medicine, 2014, 42, 1279-1300.	1.5	49
90	Oligonucleotides—Assembled Au Nanorod-Assisted Cancer Photothermal Ablation and Combination Chemotherapy with Targeted Dual-Drug Delivery of Doxorubicin and Cisplatin Prodrug. ACS Applied Materials & Interfaces, 2014, 6, 4382-4393.	4.0	66
91	Hepatoma-targeting and pH-sensitive nanocarriers based on a novel d-galactopyranose copolymer for efficient drug delivery. International Journal of Pharmaceutics, 2014, 477, 187-196.	2.6	17
92	Doxorubicin-loaded poly(lactic-co-glycolic acid) hollow microcapsules for targeted drug delivery to cancer cells. New Journal of Chemistry, 2014, 38, 3917-3924.	1.4	21
93	Cytotoxic enhancement of hexapeptide-conjugated micelles in EGFR high-expressed cancer cells. Expert Opinion on Drug Delivery, 2014, 11, 1537-1550.	2.4	12
94	Synergistic co-delivery of doxorubicin and paclitaxel by porous PLGA microspheres for pulmonary inhalation treatment. European Journal of Pharmaceutics and Biopharmaceutics, 2014, 88, 1086-1093.	2.0	97
96	Hyaluronic acid-chitosan nanoparticles for co-delivery of MiR-34a and doxorubicin in therapy against triple negative breast cancer. Biomaterials, 2014, 35, 4333-4344.	5.7	427
97	Polymer Nanoparticles Encased in a Cyclodextrin Complex Shell for Potential Site―and Sequenceâ€Specific Drug Release. Advanced Functional Materials, 2014, 24, 4753-4761.	7.8	36
98	Development of Both Methotrexate and Mitomycin C Loaded PEGylated Chitosan Nanoparticles for Targeted Drug Codelivery and Synergistic Anticancer Effect. ACS Applied Materials & Interfaces, 2014, 6, 11413-11423.	4.0	77
99	Mitomycin C-Soybean Phosphatidylcholine Complex-Loaded Self-Assembled PEG-Lipid-PLA Hybrid Nanoparticles for Targeted Drug Delivery and Dual-Controlled Drug Release. Molecular Pharmaceutics, 2014, 11, 2915-2927.	2.3	64

		OKI	
#	Article	IF	CITATIONS
100	Co-delivery of doxorubicin and paclitaxel with linear-dendritic block copolymer for enhanced anti-cancer efficacy. Science China Chemistry, 2014, 57, 624-632.	4.2	26
101	Co-delivery of doxorubicin and paclitaxel by PEC-polypeptide nanovehicle for the treatment of non-small cell lung cancer. Biomaterials, 2014, 35, 6118-6129.	5.7	304
102	Theranostic Vesicles Based on Bovine Serum Albumin and Poly(ethylene) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 667 Delivery. Biomacromolecules, 2014, 15, 1586-1592.	7 Td (glyc 2.6	ol)-block-po 68
103	Methotrexate-loaded PLGA nanobubbles for ultrasound imaging and Synergistic Targeted therapy of residual tumor during HIFU ablation. Biomaterials, 2014, 35, 5148-5161.	5.7	116
104	Dual Targeted Polymeric Nanoparticles Based on Tumor Endothelium and Tumor Cells for Enhanced Antitumor Drug Delivery. Molecular Pharmaceutics, 2014, 11, 697-715.	2.3	30
105	Linolenic acid-modified PEC-PCL micelles for curcumin delivery. International Journal of Pharmaceutics, 2014, 471, 312-321.	2.6	84
106	Anticancer polymeric nanomedicine bearing synergistic drug combination is superior to a mixture of individually-conjugated drugs. Journal of Controlled Release, 2014, 187, 145-157.	4.8	98
107	Biosafe Nanoscale Pharmaceutical Adjuvant Materials. Journal of Biomedical Nanotechnology, 2014, 10, 2393-2419.	0.5	27
108	Amphiphilic Polymers: Drug Delivery. , 0, , 186-202.		0
109	Doxorubicin-Anchored Curcumin Nanoparticles for Multimode Cancer Treatment against Human Liver Carcinoma Cells. Particle and Particle Systems Characterization, 2015, 32, 1028-1042.	1.2	18
110	A Polymeric Bowl for Multiâ€Agent Delivery. Macromolecular Rapid Communications, 2015, 36, 1498-1504.	2.0	13
111	Dual-functional c(RGDyK)-decorated Pluronic micelles designed for antiangiogenesis and the treatment of drug-resistant tumor. International Journal of Nanomedicine, 2015, 10, 4863.	3.3	28
112	Anti-Tumor Activity of Docetaxel PLGA-PEG Nanoparticles with a Novel Anti-HER2 scFv. Journal of Nanomedicine & Nanotechnology, 2015, 06, .	1.1	4
113	Delivery of baicalein and paclitaxel using self-assembled nanoparticles: synergistic antitumor effect in vitro and in vivo. International Journal of Nanomedicine, 2015, 10, 3737.	3.3	49
114	Multi-small molecule conjugations as new targeted delivery carriers for tumor therapy. International Journal of Nanomedicine, 2015, 10, 5571.	3.3	13
115	Codelivery of SH-aspirin and curcumin by mPEG-PLGA nanoparticles enhanced antitumor activity by inducing mitochondrial apoptosis. International Journal of Nanomedicine, 2015, 10, 5205.	3.3	30
116	Co-delivery of cisplatin and paclitaxel by folic acid conjugated amphiphilic PEG-PLGA copolymer nanoparticles for the treatment of non-small lung cancer. Oncotarget, 2015, 6, 42150-42168.	0.8	84
117	Recent Trends in Preparation of Poly(lactide- <i>co</i> -glycolide) Nanoparticles by Mixing Polymeric Organic Solution with Antisolvent. Journal of Nanomaterials, 2015, 2015, 1-22.	1.5	114

#	Article	IF	CITATIONS
118	Caffeic Acid Phenethyl Ester Loaded PLGA Nanoparticles: Effect of Various Process Parameters on Reaction Yield, Encapsulation Efficiency, and Particle Size. Journal of Nanomaterials, 2015, 2015, 1-12.	1.5	59
119	Multi-layered polymeric nanoparticles for pH-responsive and sequenced release of theranostic agents. Chemical Communications, 2015, 51, 7733-7736.	2.2	19
120	Crizotinib-loaded polymeric nanoparticles in lung cancer chemotherapy. Medical Oncology, 2015, 32, 193.	1.2	34
121	Double emulsion solvent evaporation techniques used for drug encapsulation. International Journal of Pharmaceutics, 2015, 496, 173-190.	2.6	344
122	Fluorescent polymeric assemblies as stimuli-responsive vehicles for drug controlled release and cell/tissue imaging. Nanotechnology, 2015, 26, 025103.	1.3	8
123	In situ DOX-calcium phosphate mineralized CPT-amphiphilic gelatin nanoparticle for intracellular controlled sequential release of multiple drugs. Acta Biomaterialia, 2015, 15, 191-199.	4.1	40
124	Peptide Assembly Integration of Fibroblastâ€Targeting and Cellâ€Penetration Features for Enhanced Antitumor Drug Delivery. Advanced Materials, 2015, 27, 1865-1873.	11.1	158
125	Hyaluronic acid-decorated poly(lactic-co-glycolic acid) nanoparticles for combined delivery of docetaxel and tanespimycin. Carbohydrate Polymers, 2015, 123, 313-323.	5.1	39
126	Tumor-Targeted Delivery of Paclitaxel Using Low Density Lipoprotein-Mimetic Solid Lipid Nanoparticles. Molecular Pharmaceutics, 2015, 12, 1230-1241.	2.3	47
127	"Triple-Punch―Strategy for Triple Negative Breast Cancer Therapy with Minimized Drug Dosage and Improved Antitumor Efficacy. ACS Nano, 2015, 9, 1367-1378.	7.3	125
128	Polymeric Micelles for Multi-Drug Delivery in Cancer. AAPS PharmSciTech, 2015, 16, 10-20.	1.5	125
129	Construction of nanoparticles based on amphiphilic PEI–PA polymers for bortezomib and paclitaxel co-delivery. RSC Advances, 2015, 5, 15453-15460.	1.7	8
130	Green and facile synthesis of highly biocompatible carbon nanospheres and their pH-responsive delivery of doxorubicin to cancer cells. RSC Advances, 2015, 5, 17532-17540.	1.7	17
131	Co-delivery of HIF1α siRNA and gemcitabine via biocompatible lipid-polymer hybrid nanoparticles for effective treatment of pancreatic cancer. Biomaterials, 2015, 46, 13-25.	5.7	208
132	Epithelial cell adhesion molecule aptamer conjugated PEG–PLGA nanopolymersomes for targeted delivery of doxorubicin to human breast adenocarcinoma cell line in vitro. International Journal of Pharmaceutics, 2015, 479, 241-251.	2.6	120
133	Doxorubicin loaded PEG-b-poly(4-vinylbenzylphosphonate) coated magnetic iron oxide nanoparticles for targeted drug delivery. Journal of Magnetism and Magnetic Materials, 2015, 384, 320-327.	1.0	34
134	Effective co-delivery of doxorubicin and dasatinib using a PEG-Fmoc nanocarrier for combination cancer chemotherapy. Biomaterials, 2015, 67, 104-114.	5.7	111
135	The chemotherapeutic potential of doxorubicin-loaded PEG-b-PLGA nanopolymersomes in mouse breast cancer model. European Journal of Pharmaceutics and Biopharmaceutics, 2015, 94, 521-531.	2.0	80

ARTICLE IF CITATIONS Pluronic-based functional polymeric mixed micelles for co-delivery of doxorubicin and paclitaxel to 136 2.6 115 multidrug resistant tumor. International Journal of Pharmaceutics, 2015, 488, 44-58. Oleanolic Acid Loaded PEGylated PLA and PLGA Nanoparticles with Enhanced Cytotoxic Activity against 2.3 38 Cancer Cells. Molecular Pharmaceutics, 2015, 12, 2112-2125. Gold nanorods and curcumin-loaded nanomicelles for efficient <i>in vivo</i> photothermal therapy 138 1.7 28 of Barrett's esophagus. Nanomedicine, 2015, 10, 1723-1733. Transferrin-conjugated doxorubicin-loaded lipid-coated nanoparticles for the targeting and therapy 0.8 94 of lung cancer. Oncology Letters, 2015, 9, 1065-1072. Polymeric Nanomedicine for Tumor-Targeted Combination Therapy to Elicit Synergistic Genotoxicity 140 4.0 58 against Prostate Cancer. ACS Applied Materials & amp; Interfaces, 2015, 7, 6661-6673. Influence of bovine serum albumin coated poly(lactic-co-glycolic acid) particles on differentiation of mesenchymal stem cells. RSC Advances, 2015, 5, 40924-40931. 1.7 Trans-Blood Brain Barrier Delivery of Dopamine-Loaded Nanoparticles Reverses Functional Deficits in 142 7.3 191 Parkinsonian Rats. ACS Nano, 2015, 9, 4850-4871. Dual Drug Conjugated Nanoparticle for Simultaneous Targeting of Mitochondria and Nucleus in Cancer Cells. ACS Applied Materials & amp; Interfaces, 2015, 7, 7584-7598. 4.0 In vitro and in vivo evaluation of APRPG-modified angiogenic vessel targeting micelles for anticancer 144 2.6 20 therapy. International Journal of Pharmaceutics, 2015, 486, 356-366. pH-degradable and thermoresponsive water-soluble core cross-linked polymeric nanoparticles as 145 1.7 14 potential drug delivery vehicle for doxorubicin. RSC Advances, 2015, 5, 83565-83575. Multifunctional drug carriers comprised of mesoporous silica nanoparticles and polyamidoamine 146 3.3 38 dendrimers based on layer-by-layer assembly. Materials and Design, 2015, 88, 1127-1133. Smart Porous Silicon Nanoparticles with Polymeric Coatings for Sequential Combination Therapy. 2.3 Molecular Pharmaceutics, 2015, 12, 4038-4047. Smart micelle@polydopamine coreâ€"shell nanoparticles for highly effective chemoâ€"photothermal 148 2.8 97 combination therapy. Nanoscale, 2015, 7, 19722-19731. Recent Developments in Active Tumor Targeted Multifunctional Nanoparticles for Combination Chemotherapy in Cancer Treatment and Imaging. Journal of Biomedical Nanotechnology, 2015, 11, 149 1859-1898. Laser light triggered smart release of silibinin from a PEGylated–PLGA gold nanocomposite. Journal of 150 2.9 35 Materials Chemistry B, 2015, 3, 9023-9032. Chimeric Nanoparticle: A Platform for Simultaneous Targeting of Phosphatidylinositol-3-Kinase Signaling and Damaging DNA in Cancer Cells. ACS Applied Materials & amp; Interfaces, 2015, 7, 18327-18335. Co-delivery of Pirarubicin and Paclitaxel by Human Serum Albumin Nanoparticles to Enhance 152 Antitumor Effect and Reduce Systemic Toxicity in Breast Cancers. Molecular Pharmaceutics, 2015, 12, 2.370 4085-4098. Theranostic potential of gold nanoparticle-protein agglomerates. Nanoscale, 2015, 7, 18411-18423. 2.8

#	Article	IF	Citations
154	Improvement of Stability and Efficacy of C16Y Therapeutic Peptide via Molecular Self-Assembly into Tumor-Responsive Nanoformulation. Molecular Cancer Therapeutics, 2015, 14, 2390-2400.	1.9	26
155	Delivery of doxorubicin and paclitaxel from double-layered microparticles: The effects of layer thickness and dual-drug vs. single-drug loading. Acta Biomaterialia, 2015, 27, 53-65.	4.1	32
156	Hyaluronic acid-decorated dual responsive nanoparticles of Pluronic F127, PLGA, and chitosan for targeted co-delivery of doxorubicin and irinotecan to eliminate cancer stem-like cells. Biomaterials, 2015, 72, 74-89.	5.7	183
157	Utilizing the protein corona around silica nanoparticles for dual drug loading and release. Nanoscale, 2015, 7, 16251-16265.	2.8	27
158	Using a peptide segment to covalently conjugate doxorubicin and taxol for the study of drug combination effect. RSC Advances, 2015, 5, 101475-101479.	1.7	10
160	Assessment of the Biological Effects of a Multifunctional Nano-Drug-Carrier and Its Encapsulated Drugs. Journal of Proteome Research, 2015, 14, 5193-5201.	1.8	15
161	A self-assembled albumin based multiple drug delivery nanosystem to overcome multidrug resistance. RSC Advances, 2015, 5, 6807-6814.	1.7	16
162	Researching the dose ratio in a controlled release multiple-drug delivery system: using combination therapy with porous microparticles for the treatment of Helicobacter pylori infection. Journal of Materials Chemistry B, 2015, 3, 417-431.	2.9	4
163	Multiple Layerâ€byâ€Layer Lipidâ€Polymer Hybrid Nanoparticles for Improved FOLFIRINOX Chemotherapy in Pancreatic Tumor Models. Advanced Functional Materials, 2015, 25, 788-798.	7.8	96
164	Synergism through combination of chemotherapy and oxidative stress-induced autophagy in A549 lung cancer cells using redox-responsive nanohybrids: A new strategy for cancer therapy. Biomaterials, 2015, 42, 30-41.	5.7	50
165	Synergistic effect and drugâ€resistance relief of paclitaxel and cisplatin caused by Coâ€delivery using polymeric micelles. Journal of Applied Polymer Science, 2015, 132, .	1.3	9
166	Mulberry-like dual-drug complicated nanocarriers assembled with apogossypolone amphiphilic starch micelles and doxorubicin hyaluronic acid nanoparticles for tumor combination and targeted therapy. Biomaterials, 2015, 39, 131-144.	5.7	81
167	Paclitaxel/Epigallocatechin gallate coloaded liposome: A synergistic delivery to control the invasiveness of MDA-MB-231 breast cancer cells. Colloids and Surfaces B: Biointerfaces, 2015, 125, 65-72.	2.5	77
168	Powerful inner/outer controlled multi-target magnetic nanoparticle drug carrier prepared by liquid photo-immobilization. Scientific Reports, 2014, 4, 4990.	1.6	13
169	Co-administration with cell penetrating peptide enhances the oral bioavailability of docetaxel-loaded nanoparticles. Drug Development and Industrial Pharmacy, 2015, 41, 764-771.	0.9	18
170	c(RGDyK)-decorated Pluronic micelles for enhanced doxorubicin and paclitaxel delivery to brain glioma. International Journal of Nanomedicine, 2016, 11, 1629.	3.3	30
171	Synergistic effect of reduced polypeptide micelle for co-delivery of doxorubicin and TRAIL against drug-resistance in breast cancer. Oncotarget, 2016, 7, 61832-61844.	0.8	16
172	Development of docetaxel and alendronate-loaded chitosan-conjugated polylactide-co-glycolide nanoparticles: <i>In vitro</i> characterization in osteosarcoma cells. Tropical Journal of Pharmaceutical Research, 2016, 15, 1353.	0.2	11

#	ARTICLE	IF	CITATIONS
173	Biodegradable micelles enhance the antiglioma activity of curcumin in vitro and in vivo. International Journal of Nanomedicine, 2016, 11, 2721.	3.3	21
174	Influence of PLGA and PLGA-PEG on the dissolution profile of oxaliplatin. Polimeros, 2016, 26, 137-143.	0.2	40
175	PLGA Nanoparticles and Their Versatile Role in Anticancer Drug Delivery. Critical Reviews in Therapeutic Drug Carrier Systems, 2016, 33, 159-193.	1.2	69
176	Overview on Therapeutic Applications of Microparticulate Drug Delivery Systems. Critical Reviews in Therapeutic Drug Carrier Systems, 2016, 33, 309-361.	1.2	72
177	The application of prodrug-based nano-drug delivery strategy in cancer combination therapy. Colloids and Surfaces B: Biointerfaces, 2016, 146, 482-489.	2.5	45
178	Long-circulatory nanoparticles for gemcitabine delivery: Development and investigation of pharmacokinetics and in-vivo anticancer efficacy. European Journal of Pharmaceutical Sciences, 2016, 92, 183-193.	1.9	26
179	Targeting cancer cells in the tumor microenvironment: opportunities and challenges in combinatorial nanomedicine. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2016, 8, 208-222.	3.3	39
180	Biodegradable Selfâ€Assembled Nanoparticles of Galactoseâ€Containing Amphiphilic Triblock Copolymers for Targeted Delivery of Paclitaxel to HepG2 Cells. Macromolecular Bioscience, 2016, 16, 774-783.	2.1	15
181	Synthesis and <i>in vitro</i> evaluation of pH-sensitive PEG-I-dC16 block polymer micelles for anticancer drug delivery. Journal of Pharmacy and Pharmacology, 2016, 68, 751-761.	1.2	9
182	Enhanced anticancer efficacy of folate-grafted lipid modified dual drug loaded nanoassemblies to reduce drug resistance in ovarian cancer. Biomedical Physics and Engineering Express, 2016, 2, 065005.	0.6	2
183	Associating Drugs with Polymer Nanoparticles: A Challenge. , 2016, , 381-437.		0
184	Monodisperse microparticles loaded with the self-assembled berberine-phospholipid complex-based phytosomes for improving oral bioavailability and enhancing hypoglycemic efficiency. European Journal of Pharmaceutics and Biopharmaceutics, 2016, 103, 136-148.	2.0	71
185	TKD peptide as a ligand targeting drug delivery systems to memHsp70-positive breast cancer. International Journal of Pharmaceutics, 2016, 498, 40-48.	2.6	12
186	Nanoparticle-based combination drug delivery systems for synergistic cancer treatment. Journal of Pharmaceutical Investigation, 2016, 46, 325-339.	2.7	73
187	Doxorubicin- and cisplatin-loaded nanostructured lipid carriers for breast cancer combination chemotherapy. Drug Development and Industrial Pharmacy, 2016, 42, 2038-2043.	0.9	39
188	Combined cancer therapy with hyaluronan-decorated fullerene-silica multifunctional nanoparticles to target cancer stem-like cells. Biomaterials, 2016, 97, 62-73.	5.7	87
189	Dual responsive mesoporous silica nanoparticles for targeted co-delivery of hydrophobic and hydrophilic anticancer drugs to tumor cells. Journal of Materials Chemistry B, 2016, 4, 4382-4388.	2.9	55
190	Targeted Drug Delivery with Polymers and Magnetic Nanoparticles: Covalent and Noncovalent Approaches, Release Control, and Clinical Studies. Chemical Reviews, 2016, 116, 5338-5431.	23.0	1,333

#	Article	IF	CITATIONS
191	Self-assembly of multifunctional integrated nanoparticles loaded with a methotrexate–phospholipid complex: combining simplicity and efficacy in both targeting and anticancer effects. RSC Advances, 2016, 6, 86717-86727.	1.7	11
192	A Silver(I)â€Estrogen Nanocluster: CSH Sensitivity and Targeting Suppression on HepG2 Cell. Small, 2016, 12, 6153-6159.	5.2	25
193	Glutathione-dependent micelles based on carboxymethyl chitosan for delivery of doxorubicin. Journal of Biomaterials Science, Polymer Edition, 2016, 27, 1824-1840.	1.9	5
194	Design of smart GE11-PLCA/PEG-PLCA blend nanoparticulate platforms for parenteral administration of hydrophilic macromolecular drugs: synthesis, preparation and in vitro/ex vivo characterization. International Journal of Pharmaceutics, 2016, 511, 1112-1123.	2.6	31
195	Evaluation of the antitumor effect of dexamethasone palmitate and doxorubicin co-loaded liposomes modified with a sialic acid–octadecylamine conjugate. European Journal of Pharmaceutical Sciences, 2016, 93, 177-183.	1.9	32
197	Biodegradable nano-architectural PEGylated approach for the improved stability and anticancer efficacy of bendamustine. International Journal of Biological Macromolecules, 2016, 92, 1242-1251.	3.6	29
198	Monitoring cancer prognosis, diagnosis and treatment efficacy using metabolomics and lipidomics. Metabolomics, 2016, 12, 146.	1.4	92
199	Quantification of Oxaliplatin Encapsulated into PLGA Microspheres by TGA. Macromolecular Symposia, 2016, 368, 116-121.	0.4	15
200	Redox-sensitive mPEG-SS-PTX/TPGS mixed micelles: An efficient drug delivery system for overcoming multidrug resistance. International Journal of Pharmaceutics, 2016, 515, 281-292.	2.6	72
201	Co-delivery of doxorubicin and quercetin via mPEG–PLGA copolymer assembly for synergistic anti-tumor efficacy and reducing cardio-toxicity. Science Bulletin, 2016, 61, 1689-1698.	4.3	32
202	Osteoclast-derived microRNA-containing exosomes selectively inhibit osteoblast activity. Cell Discovery, 2016, 2, 16015.	3.1	239
203	Tumour microenvironment-responsive lipoic acid nanoparticles for targeted delivery of docetaxel to lung cancer. Scientific Reports, 2016, 6, 36281.	1.6	30
204	Nano-based strategies to overcome p-glycoprotein-mediated drug resistance. Expert Opinion on Drug Metabolism and Toxicology, 2016, 12, 1021-1033.	1.5	43
205	Inducing enhanced immunogenic cell death with nanocarrier-based drug delivery systems for pancreatic cancer therapy. Biomaterials, 2016, 102, 187-197.	5.7	208
206	In vitro anticancer efficacy by magnetic targeted nanocarrier with local delivery of paclitaxel. Chemical Research in Chinese Universities, 2016, 32, 149-154.	1.3	4
207	Hemocompatibility of folic-acid-conjugated amphiphilic PEG-PLGA copolymer nanoparticles for co-delivery of cisplatin and paclitaxel: treatment effects for non-small-cell lung cancer. Tumor Biology, 2016, 37, 7809-7821.	0.8	32
208	HER2 Targeted Breast Cancer Therapy with Switchable "Off/On―Multifunctional "Smart―Magnetic Polymer Core–Shell Nanocomposites. ACS Applied Materials & Interfaces, 2016, 8, 2262-2279.	4.0	46
209	Targeting tumor microenvironment with PEG-based amphiphilic nanoparticles to overcome chemoresistance. Nanomedicine: Nanotechnology, Biology, and Medicine, 2016, 12, 269-286.	1.7	95

#	Article	IF	CITATIONS
210	Integration of photothermal therapy and synergistic chemotherapy by a porphyrin self-assembled micelle confers chemosensitivity in triple-negative breast cancer. Biomaterials, 2016, 80, 169-178.	5.7	85
211	Biodegradable polymers for targeted delivery of anti-cancer drugs. Expert Opinion on Drug Delivery, 2016, 13, 891-909.	2.4	91
212	iRGD decorated lipid-polymer hybrid nanoparticles for targeted co-delivery of doxorubicin and sorafenib to enhance anti-hepatocellular carcinoma efficacy. Nanomedicine: Nanotechnology, Biology, and Medicine, 2016, 12, 1303-1311.	1.7	86
213	Recent advances in amphiphilic polymers for simultaneous delivery of hydrophobic and hydrophilic drugs. Therapeutic Delivery, 2016, 7, 15-31.	1.2	35
214	Comparative evaluation of antibacterial activity of caffeic acid phenethyl ester and PLGA nanoparticle formulation by different methods. Nanotechnology, 2016, 27, 025103.	1.3	66
215	Hybrid polymeric nano-capsules loaded with gold nanoclusters and indocyanine green for dual-modal imaging and photothermal therapy. Journal of Materials Chemistry B, 2016, 4, 910-919.	2.9	47
216	Preparation, in vitro and in vivo evaluation of mPEG-PLGA nanoparticles co-loaded with syringopicroside and hydroxytyrosol. Journal of Materials Science: Materials in Medicine, 2016, 27, 24.	1.7	17
217	Recent advances in polymeric micelles for anti-cancer drug delivery. European Journal of Pharmaceutical Sciences, 2016, 83, 184-202.	1.9	392
218	Polymer assembly: Promising carriers as co-delivery systems for cancer therapy. Progress in Polymer Science, 2016, 58, 1-26.	11.8	86
219	Polymeric nanoparticles for targeted drug delivery system for cancer therapy. Materials Science and Engineering C, 2016, 60, 569-578.	3.8	530
220	Recent advances of cocktail chemotherapy by combination drug delivery systems. Advanced Drug Delivery Reviews, 2016, 98, 19-34.	6.6	496
221	pH-sensitive polymeric micelles formed by doxorubicin conjugated prodrugs for co-delivery of doxorubicin and paclitaxel. Carbohydrate Polymers, 2016, 137, 19-29.	5.1	94
222	Encapsulation of paclitaxel in ultra-fine nanoparticles of acrylic/styrene terpolymer for controlled release. Colloid and Polymer Science, 2016, 294, 95-105.	1.0	8
223	Lung cancer combination therapy: co-delivery of paclitaxel and doxorubicin by nanostructured lipid carriers for synergistic effect. Drug Delivery, 2016, 23, 1398-1403.	2.5	87
224	Amphiphilic dendritic nanomicelle-mediated co-delivery of 5-fluorouracil and doxorubicin for enhanced therapeutic efficacy. Journal of Drug Targeting, 2017, 25, 140-148.	2.1	34
225	In vivo comparative study of distinct polymeric architectures bearing a combination of paclitaxel and doxorubicin at a synergistic ratio. Journal of Controlled Release, 2017, 257, 118-131.	4.8	48
226	Synergistic chemotherapeutic effect of sorafenib-loaded pullulan-Dox conjugate nanoparticles against murine breast carcinoma. Nanoscale, 2017, 9, 2755-2767.	2.8	49
227	Improved antitumor efficacy of paclitaxel with nano-formulation in breast cancer. Nanotechnology Reviews, 2017, 6, 291-299.	2.6	7

#	Article	IF	CITATIONS
228	Aerosol delivery of biocompatible dihydroergotamine-loaded PLGA-PSPE polymeric micelles for efficient lung cancer therapy. Polymer Chemistry, 2017, 8, 1540-1554.	1.9	20
229	Co-delivery of Doxorubicin Encapsulated PLGA Nanoparticles and Bcl-xL shRNA Using Alkyl-Modified PEI into Breast Cancer Cells. Applied Biochemistry and Biotechnology, 2017, 183, 126-136.	1.4	39
230	A facile supramolecular approach to fabricate multifunctional upconversion nanoparticles as a versatile platform for drug loading, in vivo delivery and tumor imaging. Journal of Materials Chemistry B, 2017, 5, 2425-2435.	2.9	21
231	Efficient cocktail chemotherapy by co-delivery of a hydrogen sulfide-releasing aspirin prodrug and paclitaxel via single nanoparticles. RSC Advances, 2017, 7, 13458-13466.	1.7	7
232	Small-Sized mPEG–PLGA Nanoparticles of Schisantherin A with Sustained Release for Enhanced Brain Uptake and Anti-Parkinsonian Activity. ACS Applied Materials & Interfaces, 2017, 9, 9516-9527.	4.0	71
233	Biological effects of amphiphilic copolymer nanoparticle-encapsulated multi-target chemotherapeutic drugs on MCF-7 human breast cancer cells. Metabolomics, 2017, 13, 1.	1.4	5
234	Precise ratiometric loading of PTX and DOX based on redox-sensitive mixed micelles for cancer therapy. Colloids and Surfaces B: Biointerfaces, 2017, 155, 51-60.	2.5	56
235	Self assembled dual responsive micelles stabilized with protein for co-delivery of drug and siRNA in cancer therapy. Biomaterials, 2017, 133, 94-106.	5.7	75
236	Nanocarrier mediated combination drug delivery for chemotherapy – A review. Journal of Drug Delivery Science and Technology, 2017, 39, 362-371.	1.4	73
237	Palmitoyl ascorbate and doxorubicin co-encapsulated liposome for synergistic anticancer therapy. European Journal of Pharmaceutical Sciences, 2017, 105, 219-229.	1.9	24
238	Co-delivery of paclitaxel and tetrandrine via iRGD peptide conjugated lipid-polymer hybrid nanoparticles overcome multidrug resistance in cancer cells. Scientific Reports, 2017, 7, 46057.	1.6	59
239	A three-drug co-delivery system based on reduction-sensitive polymeric prodrug to effectively reverse multi-drug resistance. Chemical Research in Chinese Universities, 2017, 33, 484-491.	1.3	5
240	Facilely synthesized pH-responsive fluorescent polymer dots entrapping doped and coupled doxorubicin for nucleus-targeted chemotherapy. Journal of Materials Chemistry B, 2017, 5, 2921-2930.	2.9	16
241	Taxane-derived compounds protect SK-N-SH cells against oxidative stress injury induced by H ₂ O ₂ . Neurological Research, 2017, 39, 632-639.	0.6	5
242	Delivery of doxorubicin-loaded PLGA nanoparticles into U87 human glioblastoma cells. International Journal of Pharmaceutics, 2017, 524, 77-90.	2.6	122
243	Regulation of Drug Release by Tuning Surface Textures of Biodegradable Polymer Microparticles. ACS Applied Materials & Interfaces, 2017, 9, 14391-14400.	4.0	68
244	Polymeric Nanoparticle-Mediated Gene Delivery for Lung Cancer Treatment. Topics in Current Chemistry, 2017, 375, 35.	3.0	41
245	Mixed poly(vinyl pyrrolidone)-based drug-loaded nanomicelles shows enhanced efficacy against pancreatic cancer cell lines. European Journal of Pharmaceutical Sciences, 2017, 102, 250-260.	1.9	18

#	Article	IF	CITATIONS
246	Targeted Biomimetic Nanoparticles for Synergistic Combination Chemotherapy of Paclitaxel and Doxorubicin. Molecular Pharmaceutics, 2017, 14, 107-123.	2.3	74
247	Preparation and Characterization of Copolymer Micelles for the Solubilization and In Vitro Release of Luteolin and Luteoloside. AAPS PharmSciTech, 2017, 18, 2095-2101.	1.5	39
248	Development of novel self-assembled ES-PLGA hybrid nanoparticles for improving oral absorption of doxorubicin hydrochloride by P-gp inhibition: In vitro and in vivo evaluation. European Journal of Pharmaceutical Sciences, 2017, 99, 185-192.	1.9	22
249	Preparation and Characterization of Hypoglycemic Nanoparticles for Oral Insulin Delivery. Biomacromolecules, 2017, 18, 4281-4291.	2.6	18
250	Cube-shaped theranostic paclitaxel prodrug nanocrystals with surface functionalization of SPC and MPEG-DSPE for imaging and chemotherapy. Colloids and Surfaces B: Biointerfaces, 2017, 160, 649-660.	2.5	11
251	A multicomponent microemulsion using rational combination strategy improves lung cancer treatment through synergistic effects and deep tumor penetration. Drug Delivery, 2017, 24, 1179-1190.	2.5	24
252	Self-aggregates of 3,6-0,O'-dimyristoylchitosan derivative are effective in enhancing the solubility and intestinal permeability of camptothecin. Carbohydrate Polymers, 2017, 177, 178-186.	5.1	21
253	Ascorbyl palmitate-incorporated paclitaxel-loaded composite nanoparticles for synergistic anti-tumoral therapy. Drug Delivery, 2017, 24, 1230-1242.	2.5	37
254	Fluorescent microspheres for one-photon and two-photon imaging of mesenchymal stem cells. Journal of Materials Chemistry B, 2017, 5, 7809-7818.	2.9	9
255	Injectable and Self-Healing Thermosensitive Magnetic Hydrogel for Asynchronous Control Release of Doxorubicin and Docetaxel to Treat Triple-Negative Breast Cancer. ACS Applied Materials & Interfaces, 2017, 9, 33660-33673.	4.0	150
256	MgAl-layered double hydroxide nanoparticles co-delivering siIDO and Trp2 peptide effectively reduce IDO expression and induce cytotoxic T-lymphocyte responses against melanoma tumor in mice. Journal of Materials Chemistry B, 2017, 5, 6266-6276.	2.9	33
257	Simultaneous inhibition of growth and metastasis of hepatocellular carcinoma by co-delivery of ursolic acid and sorafenib using lactobionic acid modified and pH-sensitive chitosan-conjugated mesoporous silica nanocomplex. Biomaterials, 2017, 143, 1-16.	5.7	163
258	A Nano-in-Nano Polymer–Dendrimer Nanoparticle-Based Nanosystem for Controlled Multidrug Delivery. Molecular Pharmaceutics, 2017, 14, 2697-2710.	2.3	52
259	Stent containing CD44-targeting polymeric prodrug nanoparticles that release paclitaxel and gemcitabine in a time interval-controlled manner for synergistic human biliary cancer therapy. Journal of Materials Chemistry B, 2017, 5, 6317-6324.	2.9	5
260	A tumour microenvironment-responsive polymeric complex for targeted depletion of tumour-associated macrophages (TAMs). Journal of Materials Chemistry B, 2017, 5, 7307-7318.	2.9	21
261	Co-delivery nanoparticles of anti-cancer drugs for improving chemotherapy efficacy. Drug Delivery, 2017, 24, 1909-1926.	2.5	149
262	Recent development of functional aliphatic polycarbonates for the construction of amphiphilic polymers. Polymer Chemistry, 2017, 8, 7429-7437.	1.9	56
263	Co-delivery of hydrophilic gemcitabine and hydrophobic paclitaxel into novel polymeric micelles for cancer treatment. RSC Advances, 2017, 7, 24030-24039.	1.7	15

# 264	ARTICLE Polymer-Based Materials in Cancer Treatment: From Therapeutic Carrier and Ultrasound Contrast	IF 0.7	CITATIONS
265	Agent to Theranostic Applications. Ultrasound in Medicine and Biology, 2017, 43, 69-82. Precision combination therapy for triple negative breast cancer via biomimetic polydopamine polymer core-shell nanostructures. Biomaterials, 2017, 113, 243-252.	5.7	98
266	Lipid-coated hollow mesoporous silica nanospheres for co-delivery of doxorubicin and paclitaxel: Preparation, sustained release, cellular uptake and pharmacokinetics. Materials Science and Engineering C, 2017, 71, 835-843.	3.8	29
267	The regulation of iron metabolism by hepcidin contributes to unloading-induced bone loss. Bone, 2017, 94, 152-161.	1.4	57
268	Anti-tumor Study of Chondroitin Sulfate-Methotrexate Nanogels. Nanoscale Research Letters, 2017, 12, 572.	3.1	25
269	A Novel MPEG-PDLLA-PLL Copolymer for Docetaxel Delivery in Breast Cancer Therapy. Theranostics, 2017, 7, 2652-2672.	4.6	55
270	Paclitaxel-loaded and A10-3.2 aptamer-targeted poly(lactide- co -glycolic acid) nanobubbles for ultrasound imaging and therapy of prostate cancer. International Journal of Nanomedicine, 2017, Volume 12, 5313-5330.	3.3	71
271	Platinum covalent shell cross-linked micelles designed to deliver doxorubicin for synergistic combination cancer therapy. International Journal of Nanomedicine, 2017, Volume 12, 3697-3710.	3.3	22
272	Synthesis, characterization, and in vitro activity against Candida spp. of fluconazole encapsulated on cationic and conventional nanoparticles of poly(lactic-co-glycolic) Tj ETQq0 0 0 rgB1	- /@.verlock	2 1 0 Tf 50 41
273	Effective use of nanocarriers as drug delivery systems for the treatment of selected tumors. International Journal of Nanomedicine, 2017, Volume 12, 7291-7309.	3.3	984
274	Application of a lipid-coated hollow calcium phosphate nanoparticle in synergistic co-delivery of doxorubicin and paclitaxel for the treatment of human lung cancer A549 cells. International Journal of Nanomedicine, 2017, Volume 12, 7979-7992.	3.3	31
275	Systemic delivery of the anticancer agent arenobufagin using polymeric nanomicelles. International Journal of Nanomedicine, 2017, Volume 12, 4981-4989.	3.3	13
276	Sequential Delivery of Cyclopeptide RA-V and Doxorubicin for Combination Therapy on Resistant Tumor and <i>In Situ</i> Monitoring of Cytochrome c Release. Theranostics, 2017, 7, 3781-3793.	4.6	27
277	Biodegradable polymeric micelles coencapsulating paclitaxel and honokiol: a strategy for breast cancer therapy in vitro and in vivo. International Journal of Nanomedicine, 2017, Volume 12, 1499-1514.	3.3	35
278	Comparative Efficacy of a Biocompatible Citrate-Functionalized Magnetic Fluid Mediating Radiofrequency Hyperthermia and Magnetohyperthermia to Treat Ectopic Ehrlich-Solid-Tumor-Bearing Elderly Mice. Journal of Cancer Science & Therapy, 2017, 09, .	1.7	2
279	Double or Simple Emulsion Process to Encapsulate Hydrophilic Oxytocin Peptide in PLA-PEG Nanoparticles. Pharmaceutical Research, 2018, 35, 82.	1.7	3
280	Co-administration of biocompatible self-assembled polylactic acid–hyaluronic acid block copolymer nanoparticles with tumor-penetrating peptide-iRGD for metastatic breast cancer therapy. Journal of Materials Chemistry B, 2018, 6, 3163-3180.	2.9	25
281	Selfâ€assembled, ellipsoidal polymeric nanoparticles for intracellular delivery of therapeutics. Journal of Biomedical Materials Research - Part A, 2018, 106, 2048-2058.	2.1	22

#	Article	IF	CITATIONS
282	Combinational drug delivery using nanocarriers for breast cancer treatments: A review. Journal of Biomedical Materials Research - Part A, 2018, 106, 2272-2283.	2.1	44
283	Customizing poly(lactic-co-glycolic acid) particles for biomedical applications. Acta Biomaterialia, 2018, 73, 38-51.	4.1	236
284	Size-controllable dual drug-loaded silk fibroin nanospheres through a facile formation process. Journal of Materials Chemistry B, 2018, 6, 1179-1186.	2.9	28
285	Encoding materials for programming a temporal sequence of actions. Journal of Materials Chemistry B, 2018, 6, 1433-1448.	2.9	5
286	Targeted production of reactive oxygen species in mitochondria to overcome cancer drug resistance. Nature Communications, 2018, 9, 562.	5.8	242
287	Nanomedicine: An effective tool in cancer therapy. International Journal of Pharmaceutics, 2018, 540, 132-149.	2.6	169
288	Co-delivery of docetaxel and doxorubicin using biodegradable PEG-PLA micelles for treatment of breast cancer with synergistic anti-tumour effects. Journal of Macromolecular Science - Pure and Applied Chemistry, 2018, 55, 310-316.	1.2	9
289	Chitosan Engineered PAMAM Dendrimers as Nanoconstructs for the Enhanced Anti-Cancer Potential and Improved In vivo Brain Pharmacokinetics of Temozolomide. Pharmaceutical Research, 2018, 35, 9.	1.7	64
290	High Drug Loading and Sub-Quantitative Loading Efficiency of Polymeric Micelles Driven by Donor–Receptor Coordination Interactions. Journal of the American Chemical Society, 2018, 140, 1235-1238.	6.6	236
291	Multi-functionalized chitosan nanoparticles for enhanced chemotherapy in lung cancer. Carbohydrate Polymers, 2018, 195, 311-320.	5.1	68
292	Verapamil and riluzole cocktail liposomes overcome pharmacoresistance by inhibiting P-glycoprotein in brain endothelial and astrocyte cells: A potent approach to treat amyotrophic lateral sclerosis. European Journal of Pharmaceutical Sciences, 2018, 120, 30-39.	1.9	31
293	Doxorubicin and paclitaxel carried by methoxy poly(ethylene glycol)-poly(lactide-co-glycolide) is superior than traditional drug-delivery methods. Nanomedicine, 2018, 13, 913-928.	1.7	5
294	Current and Future Approaches for Effective Cancer Imaging and Treatment. Cancer Biotherapy and Radiopharmaceuticals, 2018, 33, 39-51.	0.7	43
295	Nucleosome-inspired nanocarrier obtains encapsulation efficiency enhancement and side effects reduction in chemotherapy by using fullerenol assembled with doxorubicin. Biomaterials, 2018, 167, 205-215.	5.7	57
296	Polylactide/poly(ethylene glycol)/polylactide triblock copolymer micelles as carrier for delivery of hydrophilic and hydrophobic drugs: a comparison study. Journal of Pharmaceutical Investigation, 2018, 48, 381-391.	2.7	23
297	Recent advances in co-delivery systems based on polymeric nanoparticle for cancer treatment. Artificial Cells, Nanomedicine and Biotechnology, 2018, 46, 1095-1110.	1.9	83
298	Co-delivery of Vorinostat and Etoposide Via Disulfide Cross-Linked Biodegradable Polymeric Nanogels: Synthesis, Characterization, Biodegradation, and Anticancer Activity. AAPS PharmSciTech, 2018, 19, 634-647.	1.5	33
299	Coâ€Delivery of Drugs and Genes Using Polymeric Nanoparticles for Synergistic Cancer Therapeutic Effects. Advanced Healthcare Materials, 2018, 7, 1700886.	3.9	96

#	Article	IF	CITATIONS
300	Preparation of dual-drug conjugated polymeric micelles with synergistic anti-cancer efficacy in vitro. Journal of Drug Delivery Science and Technology, 2018, 43, 388-396.	1.4	15
301	Mixed Liposome Approach for Ratiometric and Sequential Delivery of Paclitaxel and Gemcitabine. AAPS PharmSciTech, 2018, 19, 693-699.	1.5	13
302	Suppression of p53R2 gene expression with specific siRNA sensitizes HepG2 cells to doxorubicin. Gene, 2018, 642, 249-255.	1.0	25
303	Co-delivery of cisplatin and CJM-126 via photothermal conversion nanoparticles for enhanced synergistic antitumor efficacy. Nanotechnology, 2018, 29, 015601.	1.3	14
304	Hybrid nanofibers based on poly-caprolactone/gelatin/hydroxyapatite nanoparticles-loaded Doxycycline: Effective anti-tumoral and antibacterial activity. Materials Science and Engineering C, 2018, 83, 25-34.	3.8	81
305	Development of docetaxel-loaded PEG–PLA nanoparticles using surfactant-free method for controlled release studies. International Journal of Polymeric Materials and Polymeric Biomaterials, 2018, 67, 535-542.	1.8	5
306	Neutrophil affinity for PGP and HAIYPRH (T7) peptide dual-ligand functionalized nanoformulation enhances the brain delivery of tanshinone IIA and exerts neuroprotective effects against ischemic stroke by inhibiting proinflammatory signaling pathways. New Journal of Chemistry, 2018, 42, 19043-19061.	1.4	7
307	An Angiopep-2 functionalized nanoformulation enhances brain accumulation of tanshinone IIA and exerts neuroprotective effects against ischemic stroke. New Journal of Chemistry, 2018, 42, 17359-17370.	1.4	9
308	Doxorubicin-loaded protease-activated near-infrared fluorescent polymeric nanoparticles for imaging and therapy of cancer. International Journal of Nanomedicine, 2018, Volume 13, 6961-6986.	3.3	50
309	Inducing angiogenesis with the controlled release of nitric oxide from biodegradable and biocompatible copolymeric nanoparticles. International Journal of Nanomedicine, 2018, Volume 13, 6517-6530.	3.3	32
310	Gold nanorod-encapsulated biodegradable polymeric matrix for combined photothermal and chemo-cancer therapy. International Journal of Nanomedicine, 2019, Volume 14, 181-193.	3.3	35
311	A Tf-modified tripterine-loaded coix seed oil microemulsion enhances anti-cervical cancer treatment. International Journal of Nanomedicine, 2018, Volume 13, 7275-7287.	3.3	37
312	Star-Graft Quarterpolymer-Based Polymersomes as Nanocarriers for Co-Delivery of Hydrophilic/Hydrophobic Chemotherapeutic Agents. ACS Omega, 2018, 3, 11896-11908.	1.6	9
313	Preparation, Characterization, and In Vivo Evaluation of an Oral Multiple Nanoemulsive System for Co-Delivery of Pemetrexed and Quercetin. Pharmaceutics, 2018, 10, 158.	2.0	28
314	<i>In Situ</i> Drug Delivery to Breast Cancer-Associated Extracellular Matrix. ACS Chemical Biology, 2018, 13, 2825-2840.	1.6	21
315	Smartly Engineered PEGylated Di-Block Nanopolymeric Micelles: Duo Delivery of Isoniazid and Rifampicin Against Mycobacterium tuberculosis. AAPS PharmSciTech, 2018, 19, 3237-3248.	1.5	27
316	Superparamagnetic nanoparticles for drug delivery. , 2018, , 843-859.		6
317	Preparation of a Mesoporous Structure of SnO2 for Increasing the Oral Bioavailability and Dissolution Rate of Nitrendipine. AAPS PharmSciTech, 2018, 19, 3228-3236.	1.5	0

#	Article	IF	CITATIONS
318	Radiolabeled PLGA Nanoparticles for Effective Targeting of Bendamustine in Tumor Bearing Mice. Pharmaceutical Research, 2018, 35, 200.	1.7	4
319	Neutrophil-mediated delivery of pixantrone-loaded liposomes decorated with poly(sialic) Tj ETQq1 1 0.784314 rg	BT_/Overlo	ock310 Tf 500
320	Glutathione-triggered dual release of doxorubicin and camptothecin for highly efficient synergistic anticancer therapy. Colloids and Surfaces B: Biointerfaces, 2018, 169, 273-279.	2.5	20
321	Influence of PLA-PEG nanoparticles manufacturing process on intestinal transporter PepT1 targeting and oxytocin transport. European Journal of Pharmaceutics and Biopharmaceutics, 2018, 129, 122-133.	2.0	13
322	Biodegradable Alginate-Chitosan Hollow Nanospheres for Codelivery of Doxorubicin and Paclitaxel for the Effect of Human Lung Cancer A549 Cells. BioMed Research International, 2018, 2018, 1-11.	0.9	24
323	Potential of nanoparticles as drug delivery system for cancer treatment. , 2018, , 431-468.		4
324	Dual drug delivery and sequential release by amphiphilic Janus nanoparticles for liver cancer theranostics. Biomaterials, 2018, 181, 113-125.	5.7	97
325	Nanoparticles for Targeted Drug Delivery to Cancer Stem Cells and Tumor. Methods in Molecular Biology, 2018, 1831, 59-67.	0.4	7
326	Physicochemical properties of nanosized polymeric drug carrier systems. , 2018, , 7-17.		1
327	Enhanced cancer therapy with cold-controlled drug release and photothermal warming enabled by one nanoplatform. Biomaterials, 2018, 180, 265-278.	5.7	25
328	Evaluation of Anti-Tumor Efficacy of Vorinostat Encapsulated Self-Assembled Polymeric Micelles in Solid Tumors. AAPS PharmSciTech, 2018, 19, 3141-3151.	1.5	12
329	CD44-Targeting PLGA Nanoparticles Incorporating Paclitaxel and FAK siRNA Overcome Chemoresistance in Epithelial Ovarian Cancer. Cancer Research, 2018, 78, 6247-6256.	0.4	104
330	Dimeric BODIPY-loaded liposomes for dual hypoxia marker imaging and activatable photodynamic therapy against tumors. Journal of Materials Chemistry B, 2018, 6, 4351-4359.	2.9	37
331	Co-delivery of Metformin and Paclitaxel Via Folate-Modified pH-Sensitive Micelles for Enhanced Anti-tumor Efficacy. AAPS PharmSciTech, 2018, 19, 2395-2406.	1.5	22
332	Surface Functionalization of Polymeric Nanoparticles with Umbilical Cord-Derived Mesenchymal Stem Cell Membrane for Tumor-Targeted Therapy. ACS Applied Materials & Interfaces, 2018, 10, 22963-22973.	4.0	110
333	Amphiphilic block copolymers–based micelles for drug delivery. , 2018, , 365-400.		12
334	Polyion complex hydrogels from chemically modified cellulose nanofibrils: Structure-function relationship and potential for controlled and pH-responsive release of doxorubicin. Acta Biomaterialia, 2018, 75, 346-357.	4.1	43
335	Temperature-sensitive liposomes for co-delivery of tamoxifen and imatinib for synergistic breast cancer treatment. Journal of Liposome Research, 2019, 29, 153-162.	1.5	49

		CITATION RE	PORT	
#	Article		IF	CITATIONS
336	Current Status and Future Challenges of Various Polymers as Cancer Therapeutics. , 20	19, , 1-20.		3
337	Magnetic-responsive and targeted cancer nanotheranostics by PA/MR bimodal imaging photothermally triggered immunotherapy. Biomaterials, 2019, 219, 119370.	guided	5.7	92
338	Multifunctional Albumin-Stabilized Gold Nanoclusters for the Reduction of Cancer Stem Cancers, 2019, 11, 969.	ו Cells.	1.7	25
339	A novel core-shell nanofiber drug delivery system intended for the synergistic treatment melanoma. European Journal of Pharmaceutical Sciences, 2019, 137, 105002.	t of	1.9	56
340	Redox dual-responsive paclitaxel-doxorubicin heterodimeric prodrug self-delivery nanoa for more effective breast cancer synergistic combination chemotherapy. Nanomedicine Nanotechnology, Biology, and Medicine, 2019, 21, 102066.		1.7	17
341	Transferrin-decorated thymoquinone-loaded PEG-PLGA nanoparticles exhibit anticarcing in non-small cell lung carcinoma <i>via</i> the modulation of miR-34a and miR-16. Bion Science, 2019, 7, 4325-4344.	ogenic effect naterials	2.6	52
342	Docetaxel-loaded biomimetic nanoparticles for targeted lung cancer therapy in vivo. Jou Nanoparticle Research, 2019, 21, 1.	ırnal of	0.8	29
343	Fabrication of redox-responsive Bi(mPEG-PLGA)-Se2 micelles for doxorubicin delivery. In Journal of Pharmaceutics, 2019, 567, 118486.	ternational	2.6	36
344	Intracellular Trafficking Network and Autophagy of PHBHHx Nanoparticles and their Imp Drug Delivery. Scientific Reports, 2019, 9, 9585.	plications for	1.6	9
345	Heterotargeted Nanococktail with Traceless Linkers for Eradicating Cancer. Advanced F Materials, 2019, 29, 1906433.	unctional	7.8	14
346	Nanoparticlesâ€Mediated Combination Therapies for Cancer Treatment. Advanced The 1900076.	apeutics, 2019, 2,	1.6	47
347	The Strategies of Nanomaterials for Traversing Blood-Brain Barrier. , 2019, , 29-57.			5
348	Gemcitabine Combination Nano Therapies for Pancreatic Cancer. Pharmaceutics, 2019,	11, 574.	2.0	58
349	Sulforaphane Mediates Glutathione Depletion via Polymeric Nanoparticles to Restore C Chemosensitivity. ACS Nano, 2019, 13, 13445-13455.	isplatin	7.3	106
350	Cold-Responsive Nanoparticle Enables Intracellular Delivery and Rapid Release of Trehal Organic-Solvent-Free Cryopreservation. Nano Letters, 2019, 19, 9051-9061.	ose for	4.5	53
351	Injectable Silk–Vaterite Composite Hydrogels with Tunable Sustained Drug Release C Biomaterials Science and Engineering, 2019, 5, 6602-6609.	apacity. ACS	2.6	12
352	Localized controlled release of bevacizumab and doxorubicin by thermo-sensitive hydro normalization of tumor vasculature and to enhance the efficacy of chemotherapy. Inter Journal of Pharmaceutics, 2019, 572, 118799.		2.6	41
353	Nanoscale systems for local drug delivery. Nano Today, 2019, 28, 100765.		6.2	46

#	Article	IF	CITATIONS
354	Hyaluronic acid modified liposomes for targeted delivery of doxorubicin and paclitaxel to CD44 overexpressing tumor cells with improved dual-drugs synergistic effect. Journal of Drug Delivery Science and Technology, 2019, 53, 101179.	1.4	27
355	Biocompatibility and paclitaxel/cisplatin dual-loading of nanotubes prepared from poly(ethylene) Tj ETQq1 1 0.78	34314 rgBT 1.2	/Overlock 10
300	Pharmaceutical Journal, 2019, 27, 1025-1035.	1.2	8
356	Neutrophil-mediated and low density lipoprotein receptor-mediated dual-targeting nanoformulation enhances brain accumulation of scutellarin and exerts neuroprotective effects against ischemic stroke. RSC Advances, 2019, 9, 1299-1318.	1.7	13
357	Stem cell membrane vesicle–coated nanoparticles for efficient tumorâ€ŧargeted therapy of orthotopic breast cancer. Polymers for Advanced Technologies, 2019, 30, 1051-1060.	1.6	34
358	Fabrication of redox-responsive doxorubicin and paclitaxel prodrug nanoparticles with microfluidics for selective cancer therapy. Biomaterials Science, 2019, 7, 634-644.	2.6	50
359	A Polycationic Brush Mediated Co-Delivery of Doxorubicin and Gene for Combination Therapy. Polymers, 2019, 11, 60.	2.0	14
360	Two-Photon Image Tracking of Neural Stem Cells via Iridium Complexes Encapsulated in Polymeric Nanospheres. ACS Biomaterials Science and Engineering, 2019, 5, 1561-1568.	2.6	11
361	Pluronic F127-based micelles for tumor-targeted bufalin delivery. International Journal of Pharmaceutics, 2019, 559, 289-298.	2.6	51
362	Encapsulation of a new quinoxaline derivative in PLCA alters the pattern of its anticancer potency and induces apoptosis. Cancer Chemotherapy and Pharmacology, 2019, 83, 649-658.	1.1	10
363	Biodegradable Block Copolymers and Their Applications for Drug Delivery. , 2019, , 401-447.		8
364	Co-delivery of DOX and PDTC by pH-sensitive nanoparticles to overcome multidrug resistance in breast cancer. Colloids and Surfaces B: Biointerfaces, 2019, 181, 185-197.	2.5	42
365	Reversing tumor stemness via orally targeted nanoparticles achieves efficient colon cancer treatment. Biomaterials, 2019, 216, 119247.	5.7	43
366	Efficient Co-delivery of Doxorubicin and Methotrexate by pH-Sensitive Dual-Functional Nanomicelles for Enhanced Synergistic Antitumor Efficacy. ACS Applied Bio Materials, 2019, 2, 2271-2279.	2.3	14
367	Dual drug loaded PLGA nanospheres for synergistic efficacy in breast cancer therapy. Materials Science and Engineering C, 2019, 103, 109716.	3.8	30
368	Short and Long-Term Effects of the Exposure of Breast Cancer Cell Lines to Different Ratios of Free or Co-Encapsulated Liposomal Paclitaxel and Doxorubicin. Pharmaceutics, 2019, 11, 178.	2.0	17
369	Polymeric Co-Delivery Systems in Cancer Treatment: An Overview on Component Drugs' Dosage Ratio Effect. Molecules, 2019, 24, 1035.	1.7	66
370	Self-assembly pH-sensitive chitosan/alginate coated polyelectrolyte complexes for oral delivery of insulin. Journal of Microencapsulation, 2019, 36, 96-107.	1.2	56
371	Delivering Combination Chemotherapies and Targeting Oncogenic Pathways via Polymeric Drug Delivery Systems. Polymers, 2019, 11, 630.	2.0	26

Article

372	Biomedical applications of PLGA particles. , 2019, , 87-129.		4
373	Polymeric Micelles in Management of Lung Cancer. , 2019, , 193-216.		2
374	Thermo-Responsive Nanocomposite Hydrogels Based on PEG-b-PLGA Diblock Copolymer and Laponite. Polymers, 2019, 11, 250.	2.0	19
375	Application of Red Cell Membrane in Nanobiotechnology. , 2019, , .		0
376	The Application of Nanotechnology in the Codelivery of Active Constituents of Plants and Chemotherapeutics for Overcoming Physiological Barriers during Antitumor Treatment. BioMed Research International, 2019, 2019, 1-16.	0.9	7
377	Combinational delivery therapies of nucleic acids for cancer treatment. , 2019, , 257-291.		0
378	An efficient prodrug-based nanoscale delivery platform constructed by water soluble eight-arm-polyethylene glycol-diosgenin conjugate. Materials Science and Engineering C, 2019, 98, 153-160.	3.8	12
379	Cosmetic reconstruction in breast cancer patients: Opportunities for nanocomposite materials. Acta Biomaterialia, 2019, 86, 41-65.	4.1	14
380	Investigation of the antitumor activity and toxicity of long-circulating and fusogenic liposomes co-encapsulating paclitaxel and doxorubicin in a murine breast cancer animal model. Biomedicine and Pharmacotherapy, 2019, 109, 1728-1739.	2.5	42
381	Optimization of Rutin-Loaded PLGA Nanoparticles Synthesized by Single-Emulsion Solvent Evaporation Method. ACS Omega, 2019, 4, 555-562.	1.6	64
382	Smart aptamer-modified calcium carbonate nanoparticles for controlled release and targeted delivery of epirubicin and melittin into cancer cells <i>in vitro</i> and <i>in vivo</i> . Drug Development and Industrial Pharmacy, 2019, 45, 603-610.	0.9	34
383	Co-delivery of paclitaxel and doxorubicin using mixed micelles based on the redox sensitive prodrugs. Colloids and Surfaces B: Biointerfaces, 2019, 175, 126-135.	2.5	32
384	Nanochemoprevention with therapeutic benefits: An updated review focused on epigallocatechin gallate delivery. Critical Reviews in Food Science and Nutrition, 2020, 60, 1243-1264.	5.4	38
385	Drug carrier for sustained release of withaferin A for pancreatic cancer treatment. Journal of Materials Science, 2020, 55, 1702-1714.	1.7	8
386	The Benefits of Macromolecular/Supramolecular Approaches in Hydrogen Sulfide Delivery: A Review of Polymeric and Self-Assembled Hydrogen Sulfide Donors. Antioxidants and Redox Signaling, 2020, 32, 79-95.	2.5	32
387	Co-delivery of dual chemo-drugs with precisely controlled, high drug loading polymeric micelles for synergistic anti-cancer therapy. Biomaterials Science, 2020, 8, 949-959.	2.6	39
388	Engineering shape-defined PLGA microPlates for the sustained release of anti-inflammatory molecules. Journal of Controlled Release, 2020, 319, 201-212.	4.8	27
389	Bead-String-Shaped DNA Nanowires with Intrinsic Structural Advantages and Their Potential for Biomedical Applications, ACS Applied Materials & amp: Interfaces, 2020, 12, 3341-3353.	4.0	34

#	Article	IF	CITATIONS
390	<i>In vitro</i> and <i>inÂvivo</i> characteristics of doxorubicin-loaded cyclodextrine-based polyester modified gadolinium oxide nanoparticles: a versatile targeted theranostic system for tumour chemotherapy and molecular resonance imaging. Journal of Drug Targeting, 2020, 28, 533-546.	2.1	19
391	Coating of PLA-nanoparticles with cyclic, arginine-rich cell penetrating peptides enables oral delivery of liraglutide. Nanomedicine: Nanotechnology, Biology, and Medicine, 2020, 24, 102132.	1.7	38
392	Specific cellular internalization and pH-responsive behavior of doxorubicin loaded PLGA-PEG nanoparticles targeted with anti EGFRvIII antibody. Life Sciences, 2020, 261, 118361.	2.0	11
393	Smart nanocarriers-based drug delivery for cancer therapy: An innovative and developing strategy. Journal of Drug Delivery Science and Technology, 2020, 60, 102018.	1.4	46
394	Combination therapy using Smac peptide and doxorubicin-encapsulated MUC 1-targeted polymeric nanoparticles to sensitize cancer cells to chemotherapy: An in vitro and in vivo study. International Journal of Pharmaceutics, 2020, 587, 119650.	2.6	19
395	Dual-Responsive Dual-Drug-Loaded Bioinspired Polydopamine Nanospheres as an Efficient Therapeutic Nanoplatform against Drug-Resistant Cancer Cells. ACS Applied Bio Materials, 2020, 3, 5730-5740.	2.3	15
396	Cetuximab conjugated temozolomide-loaded poly (lactic-co-glycolic acid) nanoparticles for targeted nanomedicine in EGFR overexpressing cancer cells. Journal of Drug Delivery Science and Technology, 2020, 60, 101928.	1.4	29
397	Enhanced Antitumor Efficacy of Docetaxel-Loaded Monomethoxy Poly(ethylene glycol)-Poly(D,) Tj ETQq1 1 0.784 Nanoscience and Nanotechnology, 2020, 20, 7263-7270.	-314 rgBT 0.9	/Overlock 10 0
398	Organic Dye Nanoparticles with a Special Dâ~'π–A Structure for Photoacoustic Imaging and Photothermal Therapy. ACS Applied Bio Materials, 2020, 3, 5722-5729.	2.3	12
399	Poly(Caprolactone)â€Poly(N â€Isopropyl Acrylamide)â€Fe 3 O 4 Magnetic Nanofibrous Structure with Stimuli Responsive Drug Release. Macromolecular Materials and Engineering, 2020, 305, 2000208.	1.7	4
400	Lysine-embedded cellulose-based nanosystem for efficient dual-delivery of chemotherapeutics in combination cancer therapy. Carbohydrate Polymers, 2020, 250, 116861.	5.1	25
401	Targeting Multiple Signaling Pathways in Cancer: The Rutin Therapeutic Approach. Cancers, 2020, 12, 2276.	1.7	105
402	Preparation of Doxorubicin-Loaded Amphiphilic Poly(D,L-Lactide-Co-Glycolide)-b-Poly(N-Acryloylmorpholine) AB2 Miktoarm Star Block Copolymers for Anticancer Drug Delivery. Materials, 2020, 13, 3713.	1.3	10
403	Combined photodynamic-chemotherapy investigation of cancer cells using carbon quantum dot-based drug carrier system. Drug Delivery, 2020, 27, 791-804.	2.5	46
404	Remote loading paclitaxel–doxorubicin prodrug into liposomes for cancer combination therapy. Acta Pharmaceutica Sinica B, 2020, 10, 1730-1740.	5.7	55
405	Rational design and latest advances of codelivery systems for cancer therapy. Materials Today Bio, 2020, 7, 100056.	2.6	39
406	Trap and kill strategy for non-BRCA mutant pancreatic cancer by co-delivery of olaparib and JQ1 with plectin-1 targeting peptide nanoparticles. Nano Today, 2020, 33, 100877.	6.2	18
407	Avermectin loaded carboxymethyl cellulose nanoparticles with stimuli-responsive and controlled release properties. Industrial Crops and Products, 2020, 152, 112497.	2.5	39

#	Article	IF	CITATIONS
408	The Endocytic Mechanism and Cytotoxicity of Boron-Containing Vesicles. Chemical and Pharmaceutical Bulletin, 2020, 68, 618-627.	0.6	10
409	A Combinational Approach Towards Treatment of Breast Cancer: an Analysis of Noscapine-Loaded Polymeric Nanoparticles and Doxorubicin. AAPS PharmSciTech, 2020, 21, 166.	1.5	26
410	Rapamycin-Loaded mPEG-PLGA Nanoparticles Ameliorate Hepatic Steatosis and Liver Injury in Non-alcoholic Fatty Liver Disease. Frontiers in Chemistry, 2020, 8, 407.	1.8	31
411	Paclitaxel/methotrexate co-loaded PLGA nanoparticles in glioblastoma treatment: Formulation development and in vitro antitumor activity evaluation. Life Sciences, 2020, 256, 117943.	2.0	39
412	Preparation and characterization of Keratin-PEG conjugate-based micelles as a tumor microenvironment-responsive drug delivery system. Journal of Biomaterials Science, Polymer Edition, 2020, 31, 1163-1178.	1.9	14
413	Co-delivery of doxorubicin and paclitaxel by reduction/pH dual responsive nanocarriers for osteosarcoma therapy. Drug Delivery, 2020, 27, 1044-1053.	2.5	45
414	Intranasal lipid nanocapsules for systemic delivery of nimodipine into the brain: In vitro optimization and in vivo pharmacokinetic study. Materials Science and Engineering C, 2020, 116, 111236.	3.8	15
415	Effect simultaneous delivery with P-glycoprotein inhibitor and nanoparticle administration of doxorubicin on cellular uptake and in vitro anticancer activity. Saudi Pharmaceutical Journal, 2020, 28, 465-472.	1.2	12
416	A novel nanoparticle loaded with methyl caffeate and caffeic acid phenethyl ester against <i>Ralstonia solanacearum</i> —a plant pathogenic bacteria. RSC Advances, 2020, 10, 3978-3990.	1.7	10
417	Biodegradable nanomaterials. , 2020, , 123-157.		5
418	Pickering stabilized nanocellulose-alginate: A diosgenin-mediated delivery of quinalizarin as a potent cyto-inhibitor in human lung/breast cancer cell lines. Materials Science and Engineering C, 2020, 109, 110621.	3.8	13
419	Combination of Paclitaxel and R-flurbiprofen loaded PLGA nanoparticles suppresses glioblastoma growth on systemic administration. International Journal of Pharmaceutics, 2020, 578, 119076.	2.6	26
420	Design and in vitro evaluation of folate-targeted, co-drug encapsulated theranostic liposomes for non-small cell lung cancer. Journal of Drug Delivery Science and Technology, 2020, 57, 101707.	1.4	21
421	Rational Chemical Multifunctionalization of Graphene Interface Enhances Targeted Cancer Therapy. Angewandte Chemie, 2020, 132, 14138-14143.	1.6	10
422	Rational Chemical Multifunctionalization of Graphene Interface Enhances Targeted Cancer Therapy. Angewandte Chemie - International Edition, 2020, 59, 14034-14039.	7.2	25
423	Polymeric Nanocarriers of Drug Delivery Systems in Cancer Therapy. Pharmaceutics, 2020, 12, 298.	2.0	150
424	Dual-responsive polymersomes as anticancer drug carriers for the co-delivery of doxorubicin and paclitaxel. Journal of Materials Chemistry B, 2021, 9, 801-808.	2.9	23
425	Responsive and activable nanomedicines for remodeling the tumor microenvironment. Nature Protocols, 2021, 16, 405-430.	5.5	31

# 426	ARTICLE Multifunctional drug-loaded micelles encapsulated in thermo-sensitive hydrogel for in vivo local cancer treatment: Synergistic effects of anti-vascular and immuno-chemotherapy. Chemical Engineering Journal, 2021, 406, 126879.	IF 6.6	CITATIONS
427	Preparation of Paclitaxel and Etoposide Co-loaded mPEG-PLGA Nanoparticles: an Investigation with Artificial Neural Network. Journal of Pharmaceutical Innovation, 2021, 16, 11-25.	1.1	4
428	Recent developments in selenium-containing polymeric micelles: prospective stimuli, drug-release behaviors, and intrinsic anticancer activity. Journal of Materials Chemistry B, 2021, 9, 6770-6801.	2.9	16
429	Fundamentals of Nanocarriers and Drug Targeting. , 2021, , 3-42.		1
430	Direct Comparison of B Cell Surface Receptors as Therapeutic Targets for Nanoparticle Delivery of BTK Inhibitors. Molecular Pharmaceutics, 2021, 18, 850-861.	2.3	0
431	Development and application of ultrasound contrast agents in biomedicine. Journal of Materials Chemistry B, 2021, 9, 7633-7661.	2.9	16
432	Enhanced NO-induced angiogenesis <i>via</i> NO/H ₂ S co-delivery from self-assembled nanoparticles. Biomaterials Science, 2021, 9, 5150-5159.	2.6	17
433	Encapsulating Halofuginone Hydrobromide in TPGS Polymeric Micelles Enhances Efficacy Against Triple-Negative Breast Cancer Cells. International Journal of Nanomedicine, 2021, Volume 16, 1587-1600.	3.3	9
434	Rational nanocarrier design towards clinical translation of cancer nanotherapy. Biomedical Materials (Bristol), 2021, 16, 032005.	1.7	14
435	Nanocarriers for targeted drug delivery. Journal of Drug Delivery Science and Technology, 2021, 62, 102426.	1.4	61
436	Dual drug delivery system with flexible and controllable drug ratios for synergistic chemotherapy. Science China Chemistry, 2021, 64, 1020-1030.	4.2	7
437	Novel Poly-(Lactic-Co-Glycolic Acid) Targeted Nanoparticles Conjunct with Antibody for the Enhancement of Antibacterial Activity against Ralstonia solanacearum. Agronomy, 2021, 11, 1159.	1.3	1
438	Effect of Paclitaxel/etoposide co-loaded polymeric nanoparticles on tumor size and survival rate in a rat model of glioblastoma. International Journal of Pharmaceutics, 2021, 604, 120722.	2.6	24
439	The next generation therapy for lung cancer: taking medicine by inhalation. Nanotechnology, 2021, 32, 392002.	1.3	6
440	Bacterial cytoplasmic membranes synergistically enhance the antitumor activity of autologous cancer vaccines. Science Translational Medicine, 2021, 13, .	5.8	109
441	Tumor-Specific ONOO [–] Nanogenerator for Improved Drug Delivery and Enhanced Chemotherapy of Tumor. ACS Nano, 2021, 15, 11514-11525.	7.3	28
442	Perfluorocarbons Therapeutics in Modern Cancer Nanotechnology for Hypoxiainduced Anti-tumor Therapy. Current Pharmaceutical Design, 2021, 27, 4376-4387.	0.9	1
443	Mechanism of miR-30b-5p-Loaded PEG-PLGA Nanoparticles for Targeted Treatment of Heart Failure. Frontiers in Pharmacology, 2021, 12, 745429.	1.6	7

#	Article	IF	CITATIONS
444	Alginate-Based Amphiphilic Block Copolymers as a Drug Codelivery Platform. Nano Letters, 2021, 21, 7495-7504.	4.5	8
445	Separable Microneedle Patch to Protect and Deliver DNA Nanovaccines Against COVID-19. ACS Nano, 2021, 15, 14347-14359.	7.3	73
446	cRGD-installed docetaxel-loaded mertansine prodrug micelles: redox-triggered ratiometric dual drug release and targeted synergistic treatment of B16F10 melanoma. Nanotechnology, 2017, 28, 295103.	1.3	24
447	Co-delivery Systems of Multiple Drugs Using Nanotechnology for Future Cancer Therapy. Chemical and Pharmaceutical Bulletin, 2020, 68, 603-612.	0.6	25
448	Multifunctional Polyethylene Glycol (PEG)-Poly (Lactic-Co-Glycolic Acid) (PLGA)-Based Nanoparticles Loading Doxorubicin and Tetrahydrocurcumin for Combined Chemoradiotherapy of Glioma. Medical Science Monitor, 2019, 25, 9737-9751.	0.5	22
449	Sustained-releasing hollow microparticles with dual-anticancer drugs elicit greater shrinkage of tumor spheroids. Oncotarget, 2017, 8, 80841-80852.	0.8	5
450	Emerging Strategies in Stimuli-Responsive Nanocarriers as the Drug Delivery System for Enhanced Cancer Therapy. Current Pharmaceutical Design, 2019, 25, 2609-2625.	0.9	32
451	Advances and Challenges in the Use of Nanoparticles to Optimize PK/PD Interactions of Combined Anti-Cancer Therapies. Current Drug Metabolism, 2015, 15, 818-828.	0.7	14
452	Nanoantibiotics: A Novel Rational Approach to Antibiotic Resistant Infections. Current Drug Metabolism, 2019, 20, 720-741.	0.7	16
453	Development of Long-Circulating and Fusogenic Liposomes Co-encapsulating Paclitaxel and Doxorubicin in Synergistic Ratio for the Treatment of Breast Cancer. Current Drug Delivery, 2019, 16, 829-838.	0.8	12
454	Smart Synthetic Polymer Nanocarriers for Controlled and Site-Specific Drug Delivery. Current Topics in Medicinal Chemistry, 2015, 15, 1424-1490.	1.0	22
455	Nanoparticles for Effective Combination Therapy of Cancer. International Journal of Nanotechnology and Nanomedicine, 2016, 1, .	1.0	11
456	Preparation and characterization of an injectable thermosensitive hydrogel for simultaneous delivery of paclitaxel and doxorubicin. Research in Pharmaceutical Sciences, 2018, 13, 181.	0.6	29
457	Enhanced anticancer efficacy of docetaxel through galbanic acid encapsulated into PLA-PEG nanoparticles in treatment of colon cancer, in vitro and in vivo study. Journal of Bioactive and Compatible Polymers, 2021, 36, 520-530.	0.8	2
458	Innovative nanochemotherapy for overcoming cancer multidrug resistance. Nanotechnology, 2021, 33,	1.3	6
459	Stimuli-Responsive Polymeric Nanosystems for Controlled Drug Delivery. Applied Sciences (Switzerland), 2021, 11, 9541.	1.3	5
460	Nano Drugs. , 2018, , 83-102.		1
461	Rutin Loaded PLGA Nanoparticles; Synthesis by using Different Methods and Characterization. Journal of the Institute of Science and Technology, 0, , 922-932.	0.3	2

#	Article	IF	Citations
	Efficacy of Dual-Targeting Combined Anti-Tuberculosis Drug Delivery System in the Treatment of		
462	Tuberculous Meningitis. Journal of Biomedical Nanotechnology, 2021, 17, 2034-2042.	0.5	4
463	Recent Advances in Biomaterial Scaffolds for Integrative Tumor Therapy and Bone Regeneration. Advanced Therapeutics, 2021, 4, 2000212.	1.6	15
464	Nanoparticles for local delivery of siRNA in lung therapy. Advanced Drug Delivery Reviews, 2021, 179, 114038.	6.6	23
465	Polyethylenimine–Poly(lactic-co-glycolic acid)2 Nanoparticles Show an Innate Targeting Ability to the Submandibular Salivary Gland via the Muscarinic 3 Receptor. ACS Central Science, 2021, 7, 1938-1948.	5.3	Ο
466	The Anti-Inflammation and Anti-Nociception Effect of Ketoprofen in Rats Could Be Strengthened Through Co-Delivery of a H2S Donor, S-Propargyl-Cysteine. Journal of Inflammation Research, 2021, Volume 14, 5863-5875.	1.6	2
468	Nanoparticles for Effective Combination Therapy of Cancer. , 2016, 1, .		6
469	PECylated ethyl cellulose micelles as a nanocarrier for drug delivery. RSC Advances, 2021, 11, 30532-30543.	1.7	5
470	Active targeted Janus nanoparticles enable anti-angiogenic drug combining chemotherapy agent to prevent postoperative hepatocellular carcinoma recurrence. Biomaterials, 2022, 281, 121362.	5.7	21
471	Targeting Co-Delivery of Doxorubicin and Gefitinib by Biotinylated Au NCs for Overcoming Multidrug Resistance in Imaging-Guided Anticancer Therapy. SSRN Electronic Journal, 0, , .	0.4	0
472	Specific Silencing of Microglial Gene Expression in the Rat Brain by Nanoparticle-Based Small Interfering RNA Delivery. ACS Applied Materials & Interfaces, 2022, 14, 5066-5079.	4.0	8
473	PLGA's Plight and the Role of Stealth Surface Modification Strategies in Its Use for Intravenous Particulate Drug Delivery. Advanced Healthcare Materials, 2022, 11, e2101536.	3.9	26
474	Combination drug delivery approaches for cancer therapy. , 2022, , 213-237.		1
475	Stroma-Targeted Nanoparticles Remodel Stromal Alignment to Enhance Drug Delivery and Improve Anti-Tumor Efficacy of Nab-Paclitaxel in Pancreatic Ductal Adenocarcinoma. SSRN Electronic Journal, 0, , .	0.4	0
476	Overcoming the challenges of drug resistance through combination drug delivery approach. , 2022, , 31-46.		1
477	PEGylation of Metal Oxide Nanoparticles Modulates Neutrophil Extracellular Trap Formation. Biosensors, 2022, 12, 123.	2.3	10
478	Validated HPLC-UV Method for Simultaneous Estimation of Paclitaxel and Doxorubicin Employing Ion Pair Chromatography: Application in Formulation Development and Pharmacokinetic Studies. BioMed Research International, 2022, 2022, 1-11.	0.9	6
479	Construction of Intelligent Responsive Drug Delivery System and Multiâ€Mode Imaging Based on Gold Nanodots. Macromolecular Rapid Communications, 2022, 43, e2200034.	2.0	8
480	Main Fabrication Methods of Micellar Nanoparticles for Nanoscale Tumor Therapy through the Self-assembly of Amphiphilic Copolymers. Current Chinese Science, 2022, 2, 263-274.	0.2	0

#	Article	IF	CITATIONS
481	Regulating the Oil-Water Interface to Construct Double Emulsions: Current Understanding and Their Biomedical Applications. Chemical Research in Chinese Universities, 2022, 38, 698-715.	1.3	3
483	Signaling Pathway Inhibitors, miRNA, and Nanocarrier-Based Pharmacotherapeutics for the Treatment of Lung Cancer: A Review. Pharmaceutics, 2021, 13, 2120.	2.0	4
484	RGD Peptide-Conjugated Selenium Nanocomposite Inhibits Human Glioma Growth by Triggering Mitochondrial Dysfunction and ROS-Dependent MAPKs Activation. Frontiers in Bioengineering and Biotechnology, 2021, 9, 781608.	2.0	13
486	Exploiting the layer-by-layer nanoarchitectonics for the fabrication of polymer capsules: A toolbox to provide multifunctional properties to target complex pathologies. Advances in Colloid and Interface Science, 2022, 304, 102680.	7.0	10
487	Amphiphilic Crosslinked Four-Armed Poly(lactic- <i>co</i> -glycolide) Electrospun Membranes for Enhancing Cell Adhesion. ACS Biomaterials Science and Engineering, 2022, 8, 2428-2436.	2.6	0
488	Pegylated-polycaprolactone nano-sized drug delivery platforms loaded with biocompatible silver(I) complexes for anticancer therapeutics. RSC Medicinal Chemistry, 0, , .	1.7	1
489	Targeting co-delivery of doxorubicin and gefitinib by biotinylated Au NCs for overcoming multidrug resistance in imaging-guided anticancer therapy. Colloids and Surfaces B: Biointerfaces, 2022, 217, 112608.	2.5	5
490	Honokiol nanosuspensions loaded thermosensitive hydrogels as the local delivery system in combination with systemic paclitaxel for synergistic therapy of breast cancer. European Journal of Pharmaceutical Sciences, 2022, 175, 106212.	1.9	9
491	Numerical Study of Magnetic Drug Targeting Inside the Bifurcated Channel as a Simplified Model of Right Common Iliac Artery Using Fe3O4–Blood Magnetic Nanofluid. Iranian Journal of Science and Technology - Transactions of Mechanical Engineering, 2023, 47, 51-65.	0.8	3
492	Exploring structure and dynamics of the polylacticâ€coâ€glycolic acid–polyethylene glycol copolymer and its homopolymer constituents in various solvents using allâ€atom molecular dynamics. Journal of Applied Polymer Science, 2022, 139, .	1.3	3
493	A pH-stable, mucin based nanoparticle system for the co-delivery of hydrophobic and hydrophilic drugs. International Journal of Biological Macromolecules, 2022, 215, 102-112.	3.6	5
494	Nanobubbles: A Novel Targeted Drug Delivery System. Brazilian Journal of Pharmaceutical Sciences, 0, 58, .	1.2	2
495	Self-emulsifying System Co-loaded with Paclitaxel and Coix Seed Oil Deeply Penetrated to Enhance Efficacy in Cervical Cancer. Current Drug Delivery, 2023, 20, 919-926.	0.8	6
496	New Water-Soluble Magnetic Field-Induced Drug Delivery System Obtained Via Preferential Molecular Marriage over Narcissistic Self-Sorting. Langmuir, 2022, 38, 8999-9009.	1.6	2
497	Stroma-targeted nanoparticles that remodel stromal alignment to enhance drug delivery and improve the antitumor efficacy of Nab-paclitaxel in pancreatic ductal adenocarcinoma models. Nano Today, 2022, 45, 101533.	6.2	10
498	Nanocarriers for Smart Therapeutic Strategies to Treat Drug-Resistant Tumors: A Review. Assay and Drug Development Technologies, 2022, 20, 191-210.	0.6	0
499	Recent Advances in Nanoparticle-Based Co-Delivery Systems for Cancer Therapy. Nanomaterials, 2022, 12, 2672.	1.9	23
500	Combinatorial Chemosensitive Nanomedicine Approach for the Treatment of Breast Cancer. Current Molecular Medicine, 2023, 23, 876-888.	0.6	5

#	Article	IF	CITATIONS
501	Nanovesicles for drug codelivery. , 2022, , 21-37.		0
502	Nanocarriers for intracellular co-delivery of proteins and small-molecule drugs for cancer therapy. Frontiers in Bioengineering and Biotechnology, 0, 10, .	2.0	9
504	Correct Identification of the Coreâ€Shell Structure of Cell Membraneâ€Coated Polymeric Nanoparticles. Chemistry - A European Journal, 2022, 28, .	1.7	5
505	Therapeutic poly(amino acid)s as drug carriers for cancer therapy. Chinese Chemical Letters, 2023, 34, 107953.	4.8	9
506	Nanoaggregates of Biphilic Carboxyl-Containing Copolymers as Carriers for Ionically Bound Doxorubicin. Materials, 2022, 15, 7136.	1.3	6
507	Amphiphilic phosphorous dendron micelles co-deliver microRNA inhibitor and doxorubicin for augmented triple negative breast cancer therapy. Journal of Materials Chemistry B, 2023, 11, 5483-5493.	2.9	6
508	Co-Delivery System of Curcumin and Colchicine Using Functionalized Mesoporous Silica Nanoparticles Promotes Anticancer and Apoptosis Effects. Pharmaceutics, 2022, 14, 2770.	2.0	9
509	Enzyme and Reactive Oxygen Species–Responsive Dual-Drug Delivery Nanocomplex for Tumor Chemo-Photodynamic Therapy. International Journal of Nanomedicine, 0, Volume 18, 1-16.	3.3	2
510	Co-Delivery of paclitaxel and doxorubicin in folate-Targeted pluronic/ploy (D,L-lactide- <i>b</i> -glycolide) polymersomes. Journal of Biomaterials Applications, 2023, 37, 1555-1567.	1.2	3
511	Synchronized delivery of dual-drugs for potentiating combination chemotherapy based on smart triple-responsive polymeric micelles. , 2023, 147, 213344.		4
512	Delivery of neutrophil membrane encapsulated non-steroidal anti-inflammatory drugs by degradable biopolymer microneedle patch for rheumatoid arthritis therapy. Nano Today, 2023, 49, 101791.	6.2	6
513	PLGA-based nanoparticles for enhanced diagnosis and cancer therapy. , 2023, , 179-210.		0
535	Application of Nanofillers in Drug Delivery Industry. , 2024, , 1-41.		0

Application of Nanofillers in Drug Delivery Industry. , 2024, , 1-41. 535