Are government policies effective in promoting deploying resources?

Energy Policy 39, 4726-4741

DOI: 10.1016/j.enpol.2011.06.055

Citation Report

#	Article	IF	CITATIONS
1	Assessing the Strength and Effectiveness of Renewable Electricity Feed-In Tariffs in European Union Countries. SSRN Electronic Journal, 0, , .	0.4	11
2	Photovoltaics literature survey (No. 90). Progress in Photovoltaics: Research and Applications, 2011, 19, 996-998.	4.4	0
3	Green energy laws and Republican legislators in the United States. Energy Policy, 2012, 48, 576-583.	4.2	69
4	Have State Renewable Portfolio Standards Really Worked? Synthesizing Past Policy Assessments to Build an Integrated Econometric Analysis of RPS effectiveness in the U.S SSRN Electronic Journal, 0, , .	0.4	11
5	State-level renewable electricity policies and reductions in carbon emissions. Energy Policy, 2012, 45, 237-242.	4.2	54
6	Assessing and managing regulatory risk in renewable energy: Contrasts between Canada and the United States. Energy Policy, 2012, 45, 654-665.	4.2	47
7	Revisiting renewable portfolio standard effectiveness: policy design and outcome specification matter. Policy Sciences, 2013, 46, 277-310.	1.5	41
8	Why are Californian farmers adopting more (and larger) renewable energy operations?. Renewable Energy, 2013, 55, 322-330.	4.3	41
9	The impact of state policy on deployment and cost of solar photovoltaic technology in the U.S.: A sector-specific empirical analysis. Renewable Energy, 2013, 60, 679-690.	4.3	64
10	State distributed PV policies: Can low cost (to government) policies have a market impact?. Energy Policy, 2013, 59, 172-181.	4.2	36
11	Solar Thermal Energy Use in EU-27 Countries: Evolution and Promotion. Advanced Structured Materials, 2013, , 241-266.	0.3	0
12	Electricity generation from renewables in the United States: Resource potential, current usage, technical status, challenges, strategies, policies, and future directions. Renewable and Sustainable Energy Reviews, 2013, 24, 454-472.	8.2	47
13	Assessing the strength and effectiveness of renewable electricity feed-in tariffs in European Union countries. Energy Policy, 2013, 52, 385-401.	4.2	252
14	Empirical Estimates of the Influence of Renewable Energy Portfolio Standards on the Green Economies of States. Economic Development Quarterly, 2013, 27, 338-351.	0.6	39
15	Effects of government incentives on wind innovation in the United States. Environmental Research Letters, 2013, 8, 044032.	2.2	9
16	Effects of government policies on deploying geothermal electricity in 35 OECD and BRICS countries. Geosystem Engineering, 2014, 17, 11-16.	0.7	3
17	An Econometric Analysis of Support Scheme Effects on Renewable Energy Investments in Europe. Energy Procedia, 2014, 58, 2-8.	1.8	30
18	WHAT ABOUT THE ENTREPRENEUR? HOW STATIC BUSINESS MODELS DRIVE AND HINDER THE DEVELOPMENT OF SELF-SUSTAINING LOCAL ENERGY ACCESS VENTURES. Journal of Developmental Entrepreneurship, 2014, 19, 1450014.	0.4	2

#	ARTICLE	IF	CITATIONS
19	A rooftop revolution? A multidisciplinary analysis of state-level residential solar programs in New Jersey and Massachusetts. Journal of Environmental Studies and Sciences, 2014, 4, 163-171.	0.9	4
20	The cost of carbon dioxide abatement from state renewable portfolio standards. Resources and Energy Economics, 2014, 36, 332-350.	1.1	53
21	Determinants of wind and solar energy system adoption by U.S. farms: A multilevel modeling approach. Energy Policy, 2014, 69, 106-115.	4.2	37
22	Evaluation of property tax bonus to promote solar thermal systems in Andalusia (Spain). Energy Policy, 2014, 67, 832-843.	4.2	19
23	A review on promoting share of renewable energy by green-trading mechanisms in power system. Renewable and Sustainable Energy Reviews, 2014, 40, 923-929.	8.2	65
24	Direct and indirect energy use in China and the United States. Energy, 2014, 71, 414-420.	4.5	17
25	Determinants for the diffusion of renewable energy technologies - framework for assessing major factors in investors' decision-making processes. International Journal of Decision Support Systems, 2015, 1, 183.	0.1	1
26	Funding Renewable Energy: An Analysis of Renewable Portfolio Standards. SSRN Electronic Journal, 0,	0.4	0
27	Non-Renewable and Intermittent Renewable Energy Sources: Friends and Foes?. SSRN Electronic Journal, 0, , .	0.4	4
28	Sustainable and Renewable Energy: An Overview of the Application of Multiple Criteria Decision Making Techniques and Approaches. Sustainability, 2015, 7, 13947-13984.	1.6	194
29	The Role of Market-Oriented Institutions in the Deployment of Renewable Energies: Evidences from Europe. SSRN Electronic Journal, 2015, , .	0.4	0
30	Effectiveness of state incentives for promoting wind energy: A panel data examination. Frontiers in Energy, 2015, 9, 247-258.	1.2	9
31	Policies and Programs for Sustainable Energy Innovations. Innovation, Technology and Knowledge Management, 2015, , .	0.4	1
32	Time series properties of the renewable energy diffusion process: Implications for energy policy design and assessment. Renewable and Sustainable Energy Reviews, 2015, 52, 1680-1692.	8.2	18
33	State Renewable Energy Governance: Policy Instruments, Markets, or Citizens. Review of Policy Research, 2015, 32, 273-296.	2.8	39
34	Costs and benefits of renewables portfolio standards in the United States. Renewable and Sustainable Energy Reviews, 2015, 52, 523-533.	8.2	58
35	Wind energy deployment in the U.S.: An empirical analysis of the role of federal and state policies. Renewable and Sustainable Energy Reviews, 2015, 43, 796-806.	8.2	50
36	Do Mandatory <scp>U</scp> . <scp>S</scp> . State Renewable Portfolio Standards Increase Electricity Prices?. Growth and Change, 2016, 47, 157-174.	1.3	5

#	Article	IF	CITATIONS
37	Comprehensive evaluation on incentive policy in renewable energy promotion based on improved matter-element model with entropy weight. , 2016 , , .		0
38	Systematic analysis of factors affecting solar PV deployment. Journal of Energy Storage, 2016, 6, 163-172.	3.9	17
39	Drivers and Impacts of Renewable Portfolio Standards. Annual Review of Resource Economics, 2016, 8, 141-155.	1.5	24
40	The Disparate Influence of State Renewable Portfolio Standards on Renewable Electricity Generation Capacity. Land Economics, 2016, 92, 468-490.	0.5	20
41	The effectiveness of China's wind power policy: An empirical analysis. Energy Policy, 2016, 95, 269-279.	4.2	79
42	The state of the states. Renewable and Sustainable Energy Reviews, 2016, 60, 631-652.	8.2	16
43	What's powering wind? The effect of the U.S. state renewable energy policies on wind capacity (1994–2012). Applied Economics, 2016, 48, 5717-5730.	1.2	6
44	Review of financial support from EU Structural Funds to sustainable energy in Baltic States. Renewable and Sustainable Energy Reviews, 2016, 58, 1027-1038.	8.2	30
45	The evaluation of renewable energy policies across EU countries and US states: An econometric approach. Energy for Sustainable Development, 2016, 31, 83-90.	2.0	175
46	A policy analysis of Hawaii's solar tax credit. Renewable Energy, 2016, 85, 1036-1043.	4.3	24
47	Will Indian Industrial Energy Consumer Continue to Buy Green Energy?. Organization and Environment, 2017, 30, 253-274.	2.5	8
48	Are renewable energy subsidies effective? Evidence from Europe. Renewable and Sustainable Energy Reviews, 2017, 74, 412-423.	8.2	186
49	Can the US keep the PACE? A natural experiment in accelerating the growth of solar electricity. Applied Energy, 2017, 191, 163-169.	5.1	17
50	Faster market growth of wind and PV in late adopters due to global experience build-up. Energy, 2017, 131, 267-278.	4.5	27
51	Towards building a multi perspective policy development framework for transition into renewable energy. Sustainable Energy Technologies and Assessments, 2017, 21, 67-88.	1.7	32
52	The comparative effectiveness of residential solar incentives. Energy Policy, 2017, 108, 44-54.	4.2	46
53	Forecasting the diffusion of renewable electricity considering the impact of policy and oil prices: The case of South Korea. Applied Energy, 2017, 197, 29-39.	5.1	40
54	Analysis of the promotion of onshore wind energy in the EU: Feed-in tariff or renewable portfolio standard?. Renewable Energy, 2017, 111, 256-264.	4.3	68

#	ARTICLE	IF	CITATIONS
55	An overview of feed-in tariffs, premiums and tenders to promote electricity from biogas in the EU-28. Renewable and Sustainable Energy Reviews, 2017, 73, 1366-1379.	8.2	62
56	Factors influencing buying behaviour of green energy consumer. Journal of Cleaner Production, 2017, 151, 393-405.	4.6	125
57	Did accelerated depreciation result in lower generation efficiencies for wind plants in India: An empirical analysis. Energy Policy, 2017, 102, 154-163.	4.2	8
58	Non-renewable and intermittent renewable energy sources: Friends and foes?. Energy Policy, 2017, 111, 58-67.	4.2	34
59	Effectiveness of state climate and energy policies in reducing power-sector CO2 emissions. Nature Climate Change, 2017, 7, 912-919.	8.1	70
60	Funding renewable energy: An analysis of renewable portfolio standards. Energy Economics, 2017, 66, 205-216.	5.6	139
61	What is the impact of the EU Energy Union on electricity prices? Results for selected member states. , $2017, \dots$		1
63	The role of market-oriented institutions in the deployment of renewable energies: evidences from Europe. Applied Economics, 2018, 50, 202-215.	1.2	15
64	Determinants and Evaluation of Local Energyâ€Efficiency Initiatives from the American Recovery and Reinvestment Act. Review of Policy Research, 2018, 35, 238-257.	2.8	12
65	Factors impacting diverging paths of renewable energy: A review. Renewable and Sustainable Energy Reviews, 2018, 81, 2335-2342.	8.2	112
66	Electricity generation from biogas of poultry waste: An assessment of potential and feasibility in Pakistan. Renewable and Sustainable Energy Reviews, 2018, 81, 1241-1246.	8.2	87
67	Factors Driving the Promotion of Hydroelectricity: A Qualitative Comparative Analysis. Review of Policy Research, 2018, 35, 213-237.	2.8	17
68	Assessing the evolution of power sector carbon intensity in the United States. Environmental Research Letters, 2018, 13, 064018.	2.2	52
69	A comprehensive review on expansion planning: Models and tools for energy policy analysis. Renewable and Sustainable Energy Reviews, 2018, 98, 346-360.	8.2	108
70	Key determinants of wind energy growth in India: Analysis of policy and non-policy factors. Energy Policy, 2018, 122, 622-638.	4.2	35
71	The determinants of wind energy growth in the United States: Drivers and barriers to state-level development. Renewable and Sustainable Energy Reviews, 2018, 97, 1-13.	8.2	28
72	The dynamics of the short and long-run effects of public policies supporting renewable energy: A comparative study of installed capacity and electricity generation. Economic Analysis and Policy, 2019, 63, 188-206.	3.2	41
73	External Impacts of Local Energy Policy: The Case of Renewable Portfolio Standards. Journal of the Association of Environmental and Resource Economists, 2019, 6, 187-213.	1.0	15

#	Article	IF	CITATIONS
74	Renewable Energy and its Finance as a Solution to the Environmental Degradation., 2019,, 55-63.		11
75	Nevada's experience with the Renewable Portfolio Standard. Energy Policy, 2019, 129, 279-291.	4.2	31
76	Do renewable energy incentive policies improve the performance of energy firms? Evidence from OECD countries. OPEC Energy Review, 2019, 43, 168-192.	1.0	15
77	Analysis of factors impacting wind and solar sectors—Challenges to sustainable development (Four) Tj ETQq1 1	0.784314 6.9	rgBT /Over
78	Impact of state policies on generating capacity for production of electricity and combined heat and power from forest biomass in the United States. Renewable Energy, 2019, 134, 1163-1172.	4.3	17
79	Non-utility Photovoltaic Deployment: Evaluation of U.S. State-level Policy Drivers. Strategic Planning for Energy and the Environment, 2019, 38, 52-80.	0.9	11
80	Does transmission unbundling increase wind power generation in the United States?. Energy Policy, 2019, 125, 307-316.	4.2	6
81	How do policies mobilize private finance for renewable energy?—A systematic review with an investor perspective. Applied Energy, 2019, 236, 1249-1268.	5.1	200
82	Towards a common renewable future: The System-GMM approach to assess the convergence in renewable energy consumption of EU countries. Energy Economics, 2020, 87, 103922.	5.6	88
83	Market-pull policies to promote renewable energy: A quantitative assessment of tendering implementation. Journal of Cleaner Production, 2020, 248, 119209.	4.6	29
84	Barriers to onshore wind energy implementation: A systematic review. Energy Research and Social Science, 2020, 60, 101337.	3.0	63
85	Exploring the Enabling Environments, Inherent Characteristics and Intrinsic Motivations Fostering Global Electricity Decarbonization. Energy Research and Social Science, 2020, 61, 101343.	3.0	17
86	Renewable energy policy effectiveness: A panel data analysis across Europe and Latin America. Renewable and Sustainable Energy Reviews, 2020, 133, 110351.	8.2	84
87	The Cost of Wind: Negative Economic Effects of Global Wind Energy Development. Energies, 2020, 13, 3667.	1.6	14
88	An assessment of the factors that influence the successes and failures of independent power producer projects. International Journal of Renewable Energy Technology, 2020, 11, 186.	0.2	0
89	The effect of the feed-in-system policy on renewable energy investments: Evidence from the EU countries. Energy Economics, 2020, 92, 104998.	5.6	22
90	Examining the Key Drivers of Residential Solar Adoption in Upstate New York. Sustainability, 2020, 12, 2552.	1.6	26
91	Policy targets behind green bonds for renewable energy: Do climate commitments matter?. Technological Forecasting and Social Change, 2020, 157, 120051.	6.2	121

#	Article	IF	Citations
92	The Politics of Wind: A state level analysis of political party impact on wind energy development in the United States. Energy Research and Social Science, 2020, 69, 101602.	3.0	8
93	Econometric Studies on the Development of Renewable Energy Sources to Support the European Union 2020–2030 Climate and Energy Framework: A Critical Appraisal. Sustainability, 2020, 12, 4828.	1.6	11
94	Preventing early lock-in with technology-specific policy designs: The Renewable Portfolio Standards and diversity in renewable energy technologies. Renewable and Sustainable Energy Reviews, 2020, 123, 109738.	8.2	24
95	Energy policy influence on the surplus welfare of subscribers in present of cleaner energy sources. Journal of Cleaner Production, 2021, 280, 124145.	4.6	8
96	Expediting a renewable energy transition in a privatised market via public policy: The case of south Australia 2004-18. Energy Policy, 2021, 148, 111940.	4.2	21
97	The effects of the renewable energies penetration on the surplus welfare under energy policy. Renewable Energy, 2021, 164, 1171-1182.	4.3	42
98	Analyzing the hysteresis properties and growth stability of renewable energy production of the U.S. Applied Economics, 2021, 53, 2752-2770.	1.2	7
99	Bioenergy development in the UK & Dioenergy sector. Biomass and Bioenergy, 2021, 144, 105887.	2.9	26
100	Renewable Portfolio Standards: Do Voluntary Goals vs. Mandatory Standards Make a Difference?. Review of Policy Research, 2021, 38, 146-163.	2.8	4
101	Revisiting the determinants of renewable energy investment - New evidence from political and government ideology. Energy Policy, 2021, 151, 112184.	4.2	37
102	Regional development trajectories of renewable energy: Evidence from French regions. Energy Strategy Reviews, 2021, 35, 100639.	3.3	3
103	The Price of Wind: An Empirical Analysis of the Relationship between Wind Energy and Electricity Price across the Residential, Commercial, and Industrial Sectors. Energies, 2021, 14, 3363.	1.6	0
104	Do renewable portfolio standards increase renewable energy capacity? Evidence from the United States. Journal of Environmental Management, 2021, 287, 112261.	3.8	33
105	Study on the direct and indirect effectiveness of wind power policy: Empirical evidence from 30 provinces in China. Renewable Energy, 2021, 170, 749-763.	4.3	22
106	The impact of technical efficiency, innovation, and climate policy on the economic viability of renewable electricity generation. Energy Economics, 2021, 100, 105357.	5.6	5
107	A panel data analysis of policy effectiveness for renewable energy expansion on Caribbean islands. Energy Policy, 2021, 155, 112340.	4.2	15
108	A machine learning model to investigate factors contributing to the energy transition of utility and independent power producer sectors internationally. IScience, 2021, 24, 102929.	1.9	1
109	Estimating energy interindustry linkages based on the Hypothetical Extraction Method (HEM) in China and USA. International Journal of Environmental Studies, 2022, 79, 662-685.	0.7	4

#	ARTICLE	IF	CITATIONS
110	The Role of Renewable Energy Sources in Dynamics of Energy-Related GHG Emissions in the Baltic States. Sustainability, 2021, 13, 10215.	1.6	8
111	The Impact of Electricity Price on Power-Generation Structure: Evidence From China. Frontiers in Environmental Science, 2021, 9, .	1.5	2
112	The Impact of Environmental Policy Stringency on Renewable Energy Production in the Visegrad Group Countries. Energies, 2021, 14, 6225.	1.6	19
113	Provincial allocation of renewable portfolio standard in China based on efficiency and fairness principles. Renewable Energy, 2021, 179, 1233-1245.	4.3	30
114	Towards a Better Understanding of the Factors Explaining the Behavior of Green Energy Adoption. Lecture Notes in Energy, 2021, , 91-104.	0.2	1
115	Feed-In Tariffs Versus Tradable Green Certificates: Effectiveness of Support Policies on China's PV Deployment. SSRN Electronic Journal, 0, , .	0.4	0
116	Low-impact land use pathways to deep decarbonization of electricity. Environmental Research Letters, 2020, 15, 074044.	2.2	43
117	The Effects of Renewable Portfolio Standards on Carbon Intensity in the United States. SSRN Electronic Journal, 0, , .	0.4	6
118	Impacts of Renewable Portfolio Standards. SSRN Electronic Journal, 0, , .	0.4	1
121	Wind of Change or Wind of Challenges: Implementation factors regarding wind energy development, an international perspective. AIMS Energy, 2014, 2, 485-504.	1.1	15
122	Factors Affecting the Rise of Renewable Energy in the U.S.: Concern over Environmental Quality or Rising Unemployment?. Energy Journal, 2015, 36, 97-116.	0.9	17
123	Spatial Dependence in State Renewable Policy: Effects of Renewable Portfolio Standards on Renewable Generation within NERC Regions. Energy Journal, 2017, 38, 177-194.	0.9	15
124	Conventional Power Plants in Liberalized Electricity Marketswith Renewable Entry. Energy Journal, 2018, 39, 69-92.	0.9	14
125	Renewable Generation Capacity and Wholesale Electricity Price Variance. Energy Journal, 2019, 40, 143-168.	0.9	11
126	Consumer Preferences for Solar Energy: A Choice Experiment Study. Energy Journal, 2020, 41, 157-184.	0.9	27
127	Evaluating Renewable Portfolio Standards for In-State Renewable Deployment: Accounting for Policy Heterogeneity. Economics of Energy and Environmental Policy, 2015, 4, .	0.7	21
128	Market entry for wind energy: Strategic approaches for the original equipment manufacturer. Business Strategy and Development, 2022, 5, 165-186.	2.2	2
130	The Impact of State Policy on Deployment and Cost of Solar PV: A Sector-Specific Empirical Analysis. SSRN Electronic Journal, 0, , .	0.4	0

#	ARTICLE	IF	CITATIONS
131	Review of Policies Toward the Acceleration of the Adoption of Renewable Energy Technologies. Innovation, Technology and Knowledge Management, 2015, , 1-16.	0.4	2
132	Welfare Spillovers from Renewable Portfolio Standards. SSRN Electronic Journal, 0, , .	0.4	0
133	Effectiveness of Financial and Fiscal Instruments for Promoting Sustainable Renewable Energy Technologies. Economic and Business Review, 2015, 17, .	0.2	0
134	Technical Analysis and Enlightenment of Renewable Energy. Low Carbon Economy, 2017, 08, 106-117.	0.7	0
135	A Multi-Level Perspective Analysis on the Effectiveness of Global Renewable Energy Policy Tools. Sustainable Energy, 2018, 08, 65-75.	0.1	0
136	A Study on the Influencing Factors on Economic Performances of Bioenergy Companies in Korea: Focusing on the Mediating Effects of Government Policies. Journal of Korea Society of Waste Management, 2018, 35, 297-316.	0.1	0
137	Transition to renewable energy technologies and future prospects for oilâ€exporting countries. OPEC Energy Review, 2020, 44, 429-450.	1.0	2
138	Effectiveness of renewable energy incentives on sustainability: evidence from dynamic panel data analysis for the EU countries and Turkey. Environmental Science and Pollution Research, 2022, 29, 26613-26630.	2.7	15
139	Planning and developing large solar power plants: A case study of 750ÂMW Rewa Solar Park in India. Cleaner Engineering and Technology, 2022, 6, 100396.	2.1	6
140	At scale adoption of battery storage technology in Indian power industry: Enablers, frameworks and policies. Technological Forecasting and Social Change, 2022, 176, 121467.	6.2	8
141	Regulation Matters Support Schemes for Renewable Energy Capacity in Worldwide Comparison. SSRN Electronic Journal, 0, , .	0.4	0
142	The institutional and socio-technical determinants of renewable energy production in the EU: implications for policy. Journal of Industrial and Business Economics, 2022, 49, 267-299.	0.8	7
143	The role of energy prices and economic growth in renewable energy capacity expansion – Evidence from OECD Europe. Renewable Energy, 2022, 189, 435-443.	4.3	12
144	Network herding of energy funds in the post-Carbon-Peak Policy era: Does it benefit profitability and stability?. Energy Economics, 2022, 109, 105948.	5 . 6	7
145	Empirical evidence based effectiveness assessment of policy regimes for wind power development in China. Renewable and Sustainable Energy Reviews, 2022, 164, 112535.	8.2	16
146	Policy instruments matter: Support schemes for renewable energy capacity in worldwide comparison. Energy Policy, 2022, 168, 113093.	4.2	13
147	Estimating the impacts of natural gas power generation growth on solar electricity development: PJM's evolving resource mix and ramping capability. Wiley Interdisciplinary Reviews: Energy and Environment, 2023, 12, .	1.9	4
148	Which factors influence the decisions of renewable energy investors? Empirical evidence from OECD and BRICS countries. Environmental Science and Pollution Research, 2023, 30, 1720-1736.	2.7	18

#	Article	IF	CITATIONS
149	The Russian Federation's renewable energy development determinants: evidence from empirical research. International Journal of Energy Sector Management, 2022, ahead-of-print, .	1.2	1
150	International expansion of renewable energy capacities: The role of innovation and choice of policy instruments. Ecological Economics, 2023, 204, 107658.	2.9	9
151	Evaluating the cost impacts to meet China's renewable electricity portfolio standard target in 2030. International Journal of Green Energy, 0, , 1-17.	2.1	0
152	Impacts of wind power on air quality, premature mortality, and exposure disparities in the United States. Science Advances, 2022, 8, .	4.7	9
153	Natural energy materials and storage systems for solar dryers: State of the art. Solar Energy Materials and Solar Cells, 2023, 255, 112276.	3.0	12
154	A comparison of state-level carbon reduction strategies: A case study of Hawaiâ€~i. Energy and Climate Change, 2023, 4, 100100.	2.2	1
155	Corporate cash holdings in response to climate risk and policies. Finance Research Letters, 2023, 55, 103910.	3.4	3
156	ELEKTRİK ENERJİSİ ÜRETİM SEKTÖRÜNDE UYGULANAN TEŞVİKLERİN EKONOMİK BÜYÜME ÖRNEKLEMİNDE AMPİRİK BİR ANALİZ. Mehmet Akif Ersoy Üniversitesi İktisadi Ve İdari Bilimler Fak Dergisi, 0, , .	∕E ETKİLI ù∕ø lt esi	ERİ: TÜRK O