Black currant polyphenols: Their storage stability and n

Industrial Crops and Products 34, 1301-1309

DOI: 10.1016/j.indcrop.2010.10.002

Citation Report

#	Article	IF	CITATIONS
1	Microencapsulation of phenolic compounds extracted from sour cherry pomace: effect of formulation, ultrasonication time and core to coating ratio. European Food Research and Technology, 2012, 235, 587-596.	1.6	102
2	Antioxidant capacity of bilberry extract microencapsulated in whey protein hydrogels. Food Research International, 2012, 47, 51-57.	2.9	94
3	An Optimized Method for Analysis of Phenolic Compounds in Buds, Leaves, and Fruits of Black Currant (Ribes nigrum L.). Journal of Agricultural and Food Chemistry, 2012, 60, 10501-10510.	2.4	81
4	Flavonoids as Anti-Inflammatory and Analgesic Drugs: Mechanisms of Action and Perspectives in the Development of Pharmaceutical Forms. Studies in Natural Products Chemistry, 2012, 36, 297-330.	0.8	86
5	Microencapsulation of Colors by Spray Drying - A Review. International Journal of Food Engineering, 2012, 8, .	0.7	64
6	Physicochemical Properties of Phytopharmaceutical Preparations as Affected by Drying Methods and Carriers. Drying Technology, 2012, 30, 921-934.	1.7	51
7	Phenolic compounds in fruits – an overview. International Journal of Food Science and Technology, 2012, 47, 2023-2044.	1.3	377
8	Effect of Degritting of Phenolic Extract from Sour Cherry Pomace on Encapsulation Efficiency—Production of Nano-suspension. Food and Bioprocess Technology, 2013, 6, 2494-2502.	2.6	25
9	Microencapsulation of purple Brazilian cherry juice in xanthan, tara gums and xanthan-tara hydrogel matrixes. Carbohydrate Polymers, 2013, 98, 1256-1265.	5.1	81
10	Phenolics and antifungal activities analysis in industrial crop Jerusalem artichoke (Helianthus) Tj ETQq $1\ 1\ 0.7843$	14 rgBT /C 2.5	verlock 10 <mark>Tf</mark>
11	Chemical profile of black currant fruit modified by different degree of infection with black currant leaf spot. Scientia Horticulturae, 2013, 150, 399-409.	1.7	49
12	Utilisation Potential of Feijoa Fruit Wastes as Ingredients for Functional Foods. Food and Bioprocess Technology, 2013, 6, 3441-3455.	2.6	38
13	Spray-Drying Microencapsulation of Polyphenol Bioactives: A Comparative Study Using Different Natural Fibre Polymers as Encapsulants. Food and Bioprocess Technology, 2013, 6, 2376-2388.	2.6	89
14	Parameter optimization for spray-drying microencapsulation of jaboticaba (Myrciaria jaboticaba) peel extracts using simultaneous analysis of responses. Journal of Food Engineering, 2013, 117, 538-544.	2.7	195
15	Lipid Encapsulated Phenolic Compounds by Fluidization. Journal of Encapsulation and Adsorption Sciences, 2013, 03, 13-15.	0.3	6
16	Spray Drying ofRhodomyrtus tomentosa(Ait.) Hassk. Flavonoids Extract: Optimization and Physicochemical, Morphological, and Antioxidant Properties. International Journal of Food Science, 2014, 2014, 1-11.	0.9	5
17	Microencapsulación de Antocianinas de Berenjena (Solanum melongena L.) mediante Secado por Aspersión y Evaluación de la Estabilidad de su Color y Capacidad Antioxidante: Anthocyanins Microencapsulation of Eggplant (Solanum melongena L.) and Evaluation of Color Stability and Antioxidant Capacity. Informacion Tecnologica (discontinued), 2014, 25, 31-42.	0.1	12
18	Physical Parameters and Chemical Composition of Fourteen Blackcurrant Cultivars (<i>Ribes) Tj ETQq1 1 0.7843</i>	14,rgBT/C	Overlock 10 Ti

#	ARTICLE	IF	CITATIONS
19	Storage and Baking Stability of Encapsulated Sour Cherry Phenolic Compounds Prepared from Microand Nano-Suspensions. Food and Bioprocess Technology, 2014, 7, 204-211.	2.6	43
20	Application of maltodextrin and gum Arabic in microencapsulation of saffron petal's anthocyanins and evaluating their storage stability and color. Carbohydrate Polymers, 2014, 105, 57-62.	5.1	248
22	Spray-Drying Microencapsulation of Anthocyanins by Natural Biopolymers: A Review. Drying Technology, 2014, 32, 509-518.	1.7	298
23	Use of the jabuticaba (Myrciaria cauliflora) depulping residue toÂproduce a natural pigment powder with functional properties. LWT - Food Science and Technology, 2014, 55, 203-209.	2.5	70
24	Chemical Profile and Antioxidative and Antimicrobial Activity of Juices and Extracts of 4 Black Currants Varieties (<i>Ribes nigrum</i> L.). Journal of Food Science, 2014, 79, C301-9.	1.5	26
25	Pomegranate peel phenolics: Microencapsulation, storage stability and potential ingredient for functional food development. LWT - Food Science and Technology, 2014, 55, 117-123.	2.5	263
26	Gum arabic/starch/maltodextrin/inulin as wall materials on the microencapsulation of rosemary essential oil. Carbohydrate Polymers, 2014, 101, 524-532.	5.1	415
27	Polyphenols and Their Formulations. , 2014, , 29-45.		33
28	Preparation of phycocyanin microcapsules and its properties. Food and Bioproducts Processing, 2014, 92, 89-97.	1.8	83
29	Rheological and Chemical Characterization of Smoothie Beverages Containing High Concentrations of Fibre and Polyphenols from Apple. Food and Bioprocess Technology, 2014, 7, 409-423.	2.6	23
31	Stability of Bioactive Compounds and Quality Parameters of Grugru Palm Powder (<scp><i>A</i></scp> <i>crocomia Aculeata</i>) in Different Drying Conditions. Journal of Food Quality, 2015, 38, 94-102.	1.4	6
32	Microencapsulation of Natural Anti-Oxidant Pigments. , 2015, , 369-389.		8
33	Encapsulation of Hydrophilic and Hydrophobic Flavors by Spray Drying. Japan Journal of Food Engineering, 2015, 16, 37-52.	0.1	26
34	Physical and Structural Properties of Spray Dried Tamarind (<i>Tamarindus indica</i> L) Pulp Extract Powder with Encapsulating Hydrocolloids. International Journal of Food Properties, 2015, 18, 1793-1800.	1.3	36
35	Microencapsulation of bioactives for food applications. Food and Function, 2015, 6, 1035-1052.	2.1	209
36	Effects of Core/Wall Ratio and Inlet Temperature on the Retention of Antioxidant Compounds during the Spray Drying of Sim $(\langle i \rangle R \langle i \rangle \langle i \rangle hodomyrtus tomentosa \langle i \rangle)$ Juice. Journal of Food Processing and Preservation, 2015, 39, 2088-2095.	0.9	12
37	Proanthocyanidins and Their Contribution to Sensory Attributes of Black Currant Juices. Journal of Agricultural and Food Chemistry, 2015, 63, 5373-5380.	2.4	24
38	The Encapsulation of Anthocyanins from Berry-Type Fruits. Trends in Foods. Molecules, 2015, 20, 5875-5888.	1.7	73

#	Article	IF	Citations
39	Encapsulation of polyphenols into pHEMA e-spun fibers and determination of their antioxidant activities. International Journal of Pharmaceutics, 2015, 494, 278-287.	2.6	29
40	A process for turning pomegranate peels into a valuable food ingredient using ultrasound-assisted extraction and encapsulation. Innovative Food Science and Emerging Technologies, 2015, 31, 204-215.	2.7	160
41	Maintaining Antioxidant Potential of Fresh Fruits and Vegetables After Harvest. Critical Reviews in Food Science and Nutrition, 2015, 55, 806-822.	5.4	45
42	Microencapsulation of Juçara (<i>Euterpe edulis</i> M.) Pulp by Spray Drying Using Different Carriers and Drying Temperatures. Drying Technology, 2015, 33, 153-161.	1.7	83
43	Acetylation of normal and waxy maize starches as encapsulating agents for maize anthocyanins microencapsulation. Food and Bioproducts Processing, 2015, 94, 717-726.	1.8	35
44	Use of gelatin-maltodextrin composite as an encapsulation support for clarified juice from purple cactus pear (Opuntia stricta). LWT - Food Science and Technology, 2015, 62, 242-248.	2.5	76
45	Optimization of spray drying conditions for production of Bidens pilosa L. dried extract. Chemical Engineering Research and Design, 2015, 93, 366-376.	2.7	53
46	Fluctuations in the Levels of Antioxidant Compounds and Antioxidant Capacity of Ten Small Fruits During One Year of Frozen Storage. International Journal of Food Properties, 2015, 18, 21-32.	1.3	21
47	Optimisation of phenolic extraction from Averrhoa carambola pomace by response surface methodology and its microencapsulation by spray and freeze drying. Food Chemistry, 2015, 171, 144-152.	4.2	208
48	Assessment of stability of a spray dried extract from the medicinal plant Bidens pilosa L Journal of King Saud University, Engineering Sciences, 2016, 28, 141-146.	1.2	13
49	Black (Ribes nigrum L.) and Red Currant (Ribes rubrum L.) Cultivars. , 2016, , 101-126.		17
51	Encapsulation of Beetroot Pomace Extract: RSM Optimization, Storage and Gastrointestinal Stability. Molecules, 2016, 21, 584.	1.7	73
52	Green Tea Leaves Extract: Microencapsulation, Physicochemical and Storage Stability Study. Molecules, 2016, 21, 940.	1.7	52
53	Chokeberry (Aronia melanocarpa L.) extract loaded in alginate and alginate/inulin system. Industrial Crops and Products, 2016, 86, 120-131.	2.5	52
54	Preliminary studies of rosmarinic acid microencapsulation with chitosan and modified chitosan for topical delivery. Powder Technology, 2016, 297, 44-49.	2.1	84
55	Complexation of bovine \hat{l}^2 -lactoglobulin with malvidin-3-O-glucoside and its effect on the stability of grape skin anthocyanin extracts. Food Chemistry, 2016, 209, 234-240.	4.2	103
56	Spray drying bioactive orange-peel extracts produced by Soxhlet extraction: Use of WPI, antioxidant activity and moisture sorption isotherms. LWT - Food Science and Technology, 2016, 72, 1-8.	2.5	43
57	Preheated milk proteins improve the stability of grape skin anthocyanins extracts. Food Chemistry, 2016, 210, 221-227.	4.2	51

#	Article	IF	CITATIONS
58	Microencapsulation of extracted bioactive compounds from brewer's spent grain to enrich fish-burgers. Food and Bioproducts Processing, 2016, 100, 450-456.	1.8	32
59	Microencapsulation of grape polyphenols using maltodextrin and gum arabic as two alternative coating materials: Development and characterization. Journal of Biotechnology, 2016, 239, 23-33.	1.9	142
60	Drying and Preservation of Polyphenols. Contemporary Food Engineering, 2016, , 281-302.	0.2	0
61	Spray Drying Formulation of Polyphenols-Rich Grape Marc Extract: Evaluation of Operating Conditions and Different Natural Carriers. Food and Bioprocess Technology, 2016, 9, 2046-2058.	2.6	37
62	Study of ultrasound-assisted emulsions on microencapsulation of ginger essential oil by spray drying. Industrial Crops and Products, 2016, 94, 413-423.	2.5	99
63	Nanoencapsulation strategies applied to maximize target delivery of intact polyphenols. , 2016, , 559-595.		6
64	Microencapsulation of probiotic jussara (Euterpe edulis M.) juice by spray drying. LWT - Food Science and Technology, 2016, 74, 21-25.	2.5	62
65	Microencapsulation of Natural Antioxidant Compounds Obtained from Biomass Wastes: A Review. Materials Science Forum, 0, 875, 112-126.	0.3	4
66	Encapsulation as a Carrier System to Enrich Foods with Antioxidants. Contemporary Food Engineering, 2016, , 61-78.	0.2	0
67	Characterization and storage properties of a new microencapsulation of tea polyphenols. Industrial Crops and Products, 2016, 89, 152-156.	2.5	31
68	Microencapsulation and storage stability of polyphenols from Vitis vinifera grape wastes. Food Chemistry, 2016, 190, 614-621.	4.2	74
69	Sour cherry pomace extract encapsulated in whey and soy proteins: Incorporation in cookies. Food Chemistry, 2016, 207, 27-33.	4.2	126
70	Interactions of milk \hat{l}_{\pm} - and \hat{l}^2 -casein with malvidin-3-O-glucoside and their effects on the stability of grape skin anthocyanin extracts. Food Chemistry, 2016, 199, 314-322.	4.2	144
71	The effect of different drying processes and the amounts of maltodextrin addition on the powder properties of sumac extract powders. Powder Technology, 2016, 287, 308-314.	2.1	146
72	Influence of freezing process and frozen storage on the quality of fruits and fruit products. Food Reviews International, 2016, 32, 280-304.	4.3	59
73	Encapsulation of Purple Maize Anthocyanins in Phosphorylated Starch by Spray Drying. Cereal Chemistry, 2016, 93, 130-137.	1.1	29
74	Encapsulation of bioactive compounds through electrospinning/electrospraying and spray drying: A comparative assessment of food-related applications. Drying Technology, 2017, 35, 139-162.	1.7	147
75	Physico-chemical, antioxidant, and anti-inflammatory properties and stability of hawthorn (<i>Crataegus monogyna</i> Jacq.) procyanidins microcapsules with inulin and maltodextrin. Journal of the Science of Food and Agriculture, 2017, 97, 669-678.	1.7	32

#	ARTICLE	IF	CITATIONS
76	Stability of spray-dried microencapsulated anthocyanins extracted from culinary banana bract. International Journal of Food Properties, 2017, 20, 3135-3148.	1.3	27
77	Effect of storage conditions on phenolic content and antioxidant capacity of spray dried sour cherry powder. LWT - Food Science and Technology, 2017, 79, 251-259.	2.5	36
78	Structural, physicochemical and biological properties of spray-dried wine powders. Food Chemistry, 2017, 228, 77-84.	4.2	20
79	Microencapsulation of <i>Theobroma cacao</i> L. waste extract: optimization using response surface methodology. Journal of Microencapsulation, 2017, 34, 111-120.	1.2	10
80	An approach to turn olive mill wastewater into a valuable food by-product based on spray drying in dehumidified air using drying aids. Powder Technology, 2017, 311, 376-389.	2.1	31
81	Functional relationships between phytochemicals and drying conditions during the processing of blackcurrant pomace into powders. Advanced Powder Technology, 2017, 28, 1340-1348.	2.0	26
82	Effects of the spray drying conditions of chokeberry (<i>Aronia melanocarpa</i> L.) juice concentrate on the physicochemical properties of powders. International Journal of Food Science and Technology, 2017, 52, 1933-1941.	1.3	24
83	Microencapsulation of an anthocyanin-rich blackberry (Rubus spp.) by-product extract by freeze-drying. LWT - Food Science and Technology, 2017, 84, 256-262.	2.5	137
85	Evaluation of the physical properties and conservation of the antioxidants content, employing inulin and maltodextrin in the spray drying of blueberry juice. Carbohydrate Polymers, 2017, 167, 317-325.	5.1	88
86	Silk fibroin nanoparticles: Efficient vehicles for the natural antioxidant quercetin. International Journal of Pharmaceutics, 2017, 518, 11-19.	2.6	77
87	Phenolic Fingerprint of Sicilian Modern Cultivars and Durum Wheat Landraces: A Tool to Assess Biodiversity. Cereal Chemistry, 2017, 94, CCHEM-06-17-012.	1.1	12
88	Use of prebiotic carbohydrate as wall material on lime essential oil microparticles. Journal of Microencapsulation, 2017, 34, 535-544.	1.2	12
89	Effect of processing technologies and storage conditions on stability of black currant juices with special focus on phenolic compounds and sensory properties. Food Chemistry, 2017, 221, 422-430.	4.2	38
90	Preservation of Antioxidant Activity and Polyphenols in Chokeberry Juice and Wine with the Use of Microencapsulation. Journal of Food Processing and Preservation, 2017, 41, e12924.	0.9	27
91	Influence of copigmentation on the stability of spray dried anthocyanins from blackberry. LWT - Food Science and Technology, 2017, 75, 72-77.	2.5	91
92	Influence of DE-value of maltodextrin on the physicochemical properties, antioxidant activity, and storage stability of spray dried concentrated mate (llex paraguariensis A. St. Hil.). LWT - Food Science and Technology, 2017, 79, 561-567.	2.5	39
93	Proposing Novel Encapsulating Matrices for Spray-Dried Ginger Essential Oil from the Whey Protein Isolate-Inulin/Maltodextrin Blends. Food and Bioprocess Technology, 2017, 10, 115-130.	2.6	55
94	Extraction and formulation of bioactive compounds. , 2017, , 93-140.		3

#	ARTICLE	IF	CITATIONS
95	Neuroprotective and Cognitive-Enhancing Effects of Microencapsulation of Mulberry Fruit Extract in Animal Model of Menopausal Women with Metabolic Syndrome. Oxidative Medicine and Cellular Longevity, 2017, 2017, $1-13$.	1.9	26
96	In vitro digestion models suitable for foods: Opportunities for new fields of application and challenges. Food Research International, 2018, 107, 423-436.	2.9	146
97	Impact of food matrix components on nutritional and functional properties of fruit-based products. Current Opinion in Food Science, 2018, 22, 153-159.	4.1	40
98	Impact of wall material physicochemical characteristics on the stability of encapsulated phytochemicals: A review. Food Research International, 2018, 107, 227-247.	2.9	102
99	Encapsulation efficiency and thermal stability of norbixin microencapsulated by spray-drying using different combinations of wall materials. Industrial Crops and Products, 2018, 111, 846-855.	2.5	78
100	Microencapsulation of Color and FlavorÂinÂConfectionery Products. , 2018, , 457-494.		9
101	Advanced Natural Food Colorant Encapsulation Methods: Anthocyanin PlantÂPigment., 2018,, 495-526.		8
102	Natural Food Pigments and Colorants. Reference Series in Phytochemistry, 2018, , 1-35.	0.2	4
103	PREPARATION OF POWDER FROM BROWN SEAWEED (SARGASSUM PLAGYOPHYLLUM) BY FREEZE-DRYING WITH MALTODEXTRIN AS A STABILIZER. International Journal of Applied Pharmaceutics, 2018, 10, 348.	0.3	8
104	Effects of storage conditions on phytochemical and stability of purple corn cob extract powder. Food Science and Technology, 2018, 38, 301-305.	0.8	22
105	Effect of the Spray Drying Process on the Quality of Coconut Powder Fortified with Calcium and Vitamins C, D ₃ and E. Advance Journal of Food Science and Technology, 2018, 16, 102-124.	0.1	9
106	A potential natural coloring agent with antioxidant properties: Microencapsulates of Renealmia alpinia (Rottb.) Maas fruit pericarp. NFS Journal, 2018, 13, 1-9.	1.9	15
107	Nanoencapsulation of Polyphenols towards Dairy Beverage Incorporation. Beverages, 2018, 4, 61.	1.3	13
108	Storage stability and simulated gastrointestinal release of spray dried grape marc phenolics. Food and Bioproducts Processing, 2018, 112, 96-107.	1.8	29
109	Valorization of grape pomace: Encapsulation and storage stability of its phenolic extract. Powder Technology, 2018, 340, 194-207.	2.1	89
110	Encapsulation to Protect Different Bioactives to Be Used as Nutraceuticals and Food Ingredients. Reference Series in Phytochemistry, 2018, , 1-20.	0.2	4
111	Use of sulfated cellulose nanocrystals towards stability enhancement of gelatin-encapsulated tea polyphenols. Cellulose, 2018, 25, 5157-5173.	2.4	15
112	Technological aspects and stability of polyphenols. , 2018, , 295-323.		16

#	ARTICLE	IF	CITATIONS
113	Studying the thin-layer drying kinetics and qualitative characteristics of dehydrated saffron petals. Journal of Food Processing and Preservation, 2018, 42, e13677.	0.9	6
114	Spray-dried polyphenolic extract from Italian black rice (Oryza sativa L., var. Artemide) as new ingredient for bakery products. Food Chemistry, 2018, 269, 603-609.	4.2	58
115	New Food Packaging Systems. , 2018, , 63-85.		4
116	Potential of Chokeberry (Aronia Melanocarpa L.) as a Therapeutic Food. , 2018, , 209-237.		3
117	Update on natural food pigments - A mini-review on carotenoids, anthocyanins, and betalains. Food Research International, 2019, 124, 200-205.	2.9	276
118	Effect of Agave Fructans as Carrier on the Encapsulation of Blue Corn Anthocyanins by Spray Drying. Foods, 2019, 8, 268.	1.9	20
119	Encapsulation optimization and pH- and temperature-stability of the complex coacervation between soy protein isolate and inulin entrapping fish oil. LWT - Food Science and Technology, 2019, 116, 108555.	2.5	35
120	New technologies for the storage of agricultural products. IOP Conference Series: Earth and Environmental Science, 2019, 315, 022046.	0.2	O
121	Microencapsulation of Saffron Petal Phenolic Extract: Their Characterization, <i>In Vitro</i> Gastrointestinal Digestion, and Storage Stability. Journal of Food Science, 2019, 84, 2745-2757.	1.5	27
122	Polyphenols extract from grape pomace. Characterization and valorisation through encapsulation into mesoporous silica-type matrices. Food and Chemical Toxicology, 2019, 133, 110787.	1.8	63
123	Microencapsulated Brazil nut (Bertholletia excelsa) cake extract powder as an added-value functional food ingredient. LWT - Food Science and Technology, 2019, 116, 108495.	2.5	22
124	Chokeberry polyphenols preservation using spray drying: effect of encapsulation using maltodextrin and skimmed milk on their recovery following <i>in vitro</i> digestion. Journal of Microencapsulation, 2019, 36, 693-703.	1.2	34
125	Encapsulation to Protect Different Bioactives to Be Used as Nutraceuticals and Food Ingredients. Reference Series in Phytochemistry, 2019, , 2163-2182.	0.2	5
126	Effect of microencapsulation on concentration of isoflavones during simulated in vitro digestion of isotonic drink. Food Science and Nutrition, 2019, 7, 805-816.	1.5	25
127	Microcapsule characterization of phenolic powder obtained from strawberry pomace. Journal of Food Processing and Preservation, 2019, 43, e13892.	0.9	3
128	Spray Drying Encapsulation of Elderberry Extract and Evaluating the Release and Stability of Phenolic Compounds in Encapsulated Powders. Food and Bioprocess Technology, 2019, 12, 1381-1394.	2.6	45
129	Micro- and nano-encapsulation in food industry. Croatian Journal of Food Science and Technology, 2019, 11, 113-121.	0.5	41
130	Optimized aqueous extracts of maqui (Aristotelia chilensis) suitable for powder production. Journal of Food Science and Technology, 2019, 56, 3553-3560.	1.4	12

#	ARTICLE	IF	CITATIONS
131	Effect of Agave Fructans and Maltodextrin on Zn2+ Chlorophyll Microencapsulation by Spray Drying. Journal of Food Quality, 2019, 2019, 1-9.	1.4	5
132	Encapsulation of non-dewaxed propolis by freeze-drying and spray-drying using gum Arabic, maltodextrin and inulin as coating materials. Food and Bioproducts Processing, 2019, 116, 196-211.	1.8	64
133	Storage stability of encapsulated ascorbyl palmitate in normal and high amylose maize starches during pasting and spray dryin. Carbohydrate Polymers, 2019, 216, 217-223.	5.1	7
134	Optimization of Pulsed Electric Field Treatment for the Extraction of Bioactive Compounds from Blackcurrant. Food and Bioprocess Technology, 2019, 12, 1102-1109.	2.6	44
135	Potential of encapsulated phytochemicals in hydrogel particles., 2019,, 305-342.		1
136	Effect of ethanolic extraction, thermal vacuum concentration, ultrafiltration, and spray drying on polyphenolic compounds of tropical highland blackberry (Rubus adenotrichos Schltdl.) byâ€product. Journal of Food Process Engineering, 2019, 42, e13051.	1.5	6
137	Postharvest pre-storage processing improves antioxidants, nutritional and sensory quality of macadamia nuts. Scientia Horticulturae, 2019, 251, 197-208.	1.7	21
138	Widen the functionality of flavonoids from yellow onion skins through extraction and microencapsulation in whey proteins hydrolysates and different polymers. Journal of Food Engineering, 2019, 251, 29-35.	2.7	30
139	Natural Food Pigments and Colorants. Reference Series in Phytochemistry, 2019, , 867-901.	0.2	36
140	The Influence of Inulin on the Retention of Polyphenolic Compounds during the Drying of Blackcurrant Juice. Molecules, 2019, 24, 4167.	1.7	19
141	Highly Stable Microparticles of Cashew Apple (Anacardium occidentale L.) Juice with Maltodextrin and Chemically Modified Starch. Food and Bioprocess Technology, 2019, 12, 2107-2119.	2.6	11
142	Body Mass Index as a Determinant of Systemic Exposure to Gallotannin Metabolites during 6â€Week Consumption of Mango (<i>Mangifera indica</i> L.) and Modulation of Intestinal Microbiota in Lean and Obese Individuals. Molecular Nutrition and Food Research, 2019, 63, e1800512.	1.5	24
143	Physicochemical and Phytochemical Characterization and Storage Stability of Freeze-dried Encapsulated Pomegranate Peel Anthocyanin and In Vitro Evaluation of Its Antioxidant Activity. Food and Bioprocess Technology, 2019, 12, 199-210.	2.6	35
144	Spray-dried powders from berries extracts obtained upon several processing steps to improve the bioactive components content. Powder Technology, 2019, 342, 1008-1015.	2.1	49
145	Cocoa hulls polyphenols stabilized by microencapsulation as functional ingredient for bakery applications. Food Research International, 2019, 115, 511-518.	2.9	48
146	Optimization of spray drying conditions to microencapsulate cupuassu (<i>Theobroma) Tj ETQq1 1 0.784314 r</i>	gBT ₁ /Overl	ock ₁₄ 0 Tf 50
147	The pharmacodynamic profile of "Blackadder―blackcurrant juice effects upon the monoamine axis in humans: A randomised controlled trial. Nutritional Neuroscience, 2020, 23, 516-525.	1.5	9
148	Nutraceutical tablets from maqui berry (<i>Aristotelia chilensis</i>) spray-dried powders with high antioxidant levels. Drying Technology, 2020, 38, 1231-1242.	1.7	12

#	Article	IF	CITATIONS
149	Microencapsulation of polyphenols - The specific case of the microencapsulation of Sambucus Nigra L. extracts - A review. Trends in Food Science and Technology, 2020, 105, 454-467.	7.8	45
150	The influence of spray drying parameters and carrier material on the physico-chemical properties and quality of chokeberry juice powder. Journal of Food Science and Technology, 2020, 57, 564-577.	1.4	38
151	Effect of different microencapsulating materials and relative humidities on storage stability of microencapsulated grape pomace extract. Food Chemistry, 2020, 302, 125347.	4.2	30
152	Microencapsulation of fermented noni juice via micro-fluidic-jet spray drying: Evaluation of powder properties and functionalities. Powder Technology, 2020, 361, 995-1005.	2.1	29
153	Emerging techniques applied to by-products for food fortification. Journal of Food Science and Technology, 2020, 57, 905-914.	1.4	4
154	Quality of wheat bread enriched with onion extract and polyphenols content and antioxidant activity changes during bread storage. International Journal of Food Science and Technology, 2020, 55, 1725-1734.	1.3	10
155	Design and evaluation of microencapsulated systems containing extract of whole green coffee fruit rich in phenolic acids. Food Hydrocolloids, 2020, 100, 105437.	5.6	6
156	Total phenolics, anthocyanin profile and antioxidant activity of maqui, Aristotelia chilensis (Mol.) Stuntz, berries extract in freeze-dried polysaccharides microcapsules. Food Chemistry, 2020, 313, 126115.	4.2	53
157	Polyphenols from olive stones: extraction with a pilot scale pressurized water extractor, microencapsulation by spray-dryer and storage stability evaluation. Journal of Food Measurement and Characterization, 2020, 14, 849-861.	1.6	1
158	Polyphenolic Extract from Sambucus ebulus L. Leaves Free and Loaded into Lipid Vesicles. Nanomaterials, 2020, 10, 56.	1.9	17
159	Bioactive Compounds of Edible Fruits with Their Anti-Aging Properties: A Comprehensive Review to Prolong Human Life. Antioxidants, 2020, 9, 1123.	2.2	106
160	Improvement of Health-Promoting Functionality of Rye Bread by Fortification with Free and Microencapsulated Powders from Amelanchier alnifolia Nutt. Antioxidants, 2020, 9, 614.	2.2	12
161	Influence Carrier Agents, Drying Methods, Storage Time on Physico-Chemical Properties and Bioactive Potential of Encapsulated Sea Buckthorn Juice Powders. Molecules, 2020, 25, 3801.	1.7	25
162	The Bioaccessibility of Antioxidants in Black Currant Puree after High Hydrostatic Pressure Treatment. Molecules, 2020, 25, 3544.	1.7	13
163	Nutritional, Antioxidant, Antimicrobial, and Toxicological Profile of Two Innovative Types of Vegan, Sugar-Free Chocolate. Foods, 2020, 9, 1844.	1.9	10
164	Application of essential oils and polyphenols as natural antimicrobial agents in postharvest treatments: Advances and challenges. Food Science and Nutrition, 2020, 8, 2555-2568.	1.5	40
165	The effect of wall formulation on storage stability and physicochemical properties of cinnamon essential oil microencapsulated by spray drying. Chemical Papers, 2020, 74, 3455-3465.	1.0	15
166	Utilization of grape pomaces and brewery waste Saccharomyces cerevisiae for the production of bio-based microencapsulated pigments. Food Research International, 2020, 136, 109470.	2.9	26

#	ARTICLE	IF	CITATIONS
167	Moringa oleiferaâ€"Storage Stability, In Vitro-Simulated Digestion and Cytotoxicity Assessment of Microencapsulated Extract. Processes, 2020, 8, 770.	1.3	6
168	Spray-drying wall materials: relationship with bioactive compounds. Critical Reviews in Food Science and Nutrition, 2021, 61, 2809-2826.	5.4	24
169	Encapsulation of Amazonian Blueberry juices: Evaluation of bioactive compounds and stability. LWT - Food Science and Technology, 2020, 124, 109152.	2.5	11
170	Experimental investigation of phycocyanin microencapsulation using maltodextrin as a coating material with spray drying method. AIP Conference Proceedings, 2020, , .	0.3	3
171	Use of a Taguchi Design in Hibiscus sabdariffa Extracts Encapsulated by Spray-Drying. Foods, 2020, 9, 128.	1.9	15
172	Co-Microencapsulation of Anthocyanins from Black Currant Extract and Lactic Acid Bacteria in Biopolymeric Matrices. Molecules, 2020, 25, 1700.	1.7	24
173	The Impact of Maltodextrin and Inulin on the Protection of Natural Antioxidants in Powders Made of Saskatoon Berry Fruit, Juice, and Pomace as Functional Food Ingredients. Molecules, 2020, 25, 1805.	1.7	10
174	Co-Microencapsulation of Anthocyanins from Cornelian Cherry Fruits and Lactic Acid Bacteria in Biopolymeric Matrices by Freeze-Drying: Evidences on Functional Properties and Applications in Food. Polymers, 2020, 12, 906.	2.0	16
175	Opportunities within the Agri-food System to Encourage a Nutritionally Balanced Diet– Part II. Food Reviews International, 2021, 37, 573-600.	4.3	2
176	Study on the interaction mechanism of purple potato anthocyanins with casein and whey protein. Food Hydrocolloids, 2021, 111, 106223.	5.6	69
177	Inulin/fructooligosaccharides/pectin-based structured systems: Promising encapsulating matrices of polyphenols recovered from jabuticaba peel. Food Hydrocolloids, 2021, 111, 106387.	5.6	25
178	Encapsulation of Extract from Unused Chokeberries by Spray Drying, Co-crystallization, and Ionic Gelation. Waste and Biomass Valorization, 2021, 12, 4567-4585.	1.8	21
179	Physicochemical properties and enzymatic activity of wheat germ extract microencapsulated with spray and freeze drying. Food Science and Nutrition, 2021, 9, 1192-1201.	1.5	9
180	Novel approaches in anthocyanin research - Plant fortification and bioavailability issues. Trends in Food Science and Technology, 2021, 117, 92-105.	7.8	50
181	Reactions and interactions of some food additives. , 2021, , 579-635.		1
182	Bioactive Substances, Heavy Metals, and Antioxidant Activity in Whole Fruit, Peel, and Pulp of Citrus Fruits. International Journal of Food Science, 2021, 2021, 1-14.	0.9	47
183	Twoâ€Steps of Gelation System Enhanced the Stability of Syzygium cuminiÂAnthocyanins by Encapsulation with Sodium Alginate, Maltodextrin, Chitosan and Gum Arabic. Journal of Polymers and the Environment, 2021, 29, 3679-3692.	2.4	22
184	Development of Controlled Delivery Functional Systems by Microencapsulation of Different Extracts of Plants: Hypericum perforatum L., Salvia officinalis L. and Syzygium aromaticum. Food and Bioprocess Technology, 2021, 14, 1503-1517.	2.6	15

#	ARTICLE	IF	CITATIONS
185	Combination of mechanical and chemical extraction of astaxanthin from Haematococcus pluvialis and its properties of microencapsulation. Biocatalysis and Agricultural Biotechnology, 2021, 33, 101979.	1.5	13
186	Food-derived polyphenol compounds and cardiovascular health: A nano-technological perspective. Food Bioscience, 2021, 41, 101033.	2.0	18
187	Spray Drying as a Method of Choice for Obtaining High Quality Products from Food Wastes– A Review. Food Reviews International, 2023, 39, 1953-1985.	4.3	4
188	Physical, chemical, and biological evaluation of nanoparticles containing phenolic compounds from wine production residues. Journal of Food Processing and Preservation, 2021, 45, e15629.	0.9	3
189	Effect of Jam and Marmalade Processing and Storage on Phytochemical Properties of Currant Cultivars (Ribes Spp.). Journal of Food Processing and Preservation, 0, , e15820.	0.9	3
190	Effect of Marination with Black Currant Juice on the Formation of Biogenic Amines in Pork Belly during Refrigerated Storage. Food Science of Animal Resources, 2021, 41, 763-778.	1.7	12
191	Chemical characteristics and targeted encapsulated Cordia myxa fruits extracts nanoparticles for antioxidant and cytotoxicity potentials. Saudi Journal of Biological Sciences, 2021, 28, 5349-5358.	1.8	12
192	Recent advancements in encapsulation of bioactive compounds as a promising technique for meat preservation. Meat Science, 2021, 181, 108585.	2.7	32
193	Microencapsulation of guava pulp using prebiotic wall material. Brazilian Journal of Food Technology, 0, 24, .	0.8	8
194	Microencapsulation of Natural Food Colourants. International Journal of Nutrition and Food Sciences, 2014, 3, 145.	0.3	81
195	6: Isolation, Purification and Encapsulation Techniques for Bioactive Compounds from Agricultural and Food Production Waste., 2017,, 159-194.		1
196	Mikroenkapsulasi Fikosianin dalam Maltodekstrin-Alginat: Formulasi dan Karakterisasi. Agritech, 2018, 38, 23.	0.0	12
197	Role of the Encapsulation in Bioavailability of Phenolic Compounds. Antioxidants, 2020, 9, 923.	2.2	151
198	Microencapsulation of Banana Passion Fruit (<i>Passiflora tripartita Var.) Tj ETQq1 1 0.784314 rgB Nutrition Sciences (Print), 2014, 05, 671-682.</i>	BT /Overloo 0.2	ck 10 Tf 50 2 13
199	Microencapsulação por spray drying dos compostos bioativos do extrato aquoso de erva mate (llex) Tj ETQq0 () 8.g ^{BT} /C)yerlock 10
200	Microencapsulação de compostos bioativos pelo método de extrusão. Ciência E Natura, 0, 37, 97.	0.0	5
201	Application of gum Arabic in the production of spray-dried chokeberry polyphenols, microparticles characterisation and in vitro digestion method. Lekovite Sirovine, 2018, , 9-16.	0.8	12
202	Changes in Antioxidant Properties and Amounts of Bioactive Compounds during Simulated In Vitro Digestion of Wheat Bread Enriched with Plant Extracts. Molecules, 2021, 26, 6292.	1.7	11

#	ARTICLE	IF	CITATIONS
204	WpÅ,yw dodatku mikrokapsuÅ,kowanych ekstrakt \tilde{A}^3 w z Å,uski cebuli na wybrane wÅ,a \mathring{A} ciwo \mathring{A} ci pieczywa pszennego / Effect of microencapsulated onion husk extracts on selected properties of wheat bread. International Journal of Food Science and Bioprocessing, 2016, , .	0.0	0
206	Yaban Mersini (Vaccinium corymbosum L.) Suyu Konsantresinin Pýskýrtmeli Kurutucuda Kurutulması: Tepki Yýzey Yöntemiyle Optimizasyon. Akademik Gıda, 0, , 139-148.	0.5	4
207	Bioactive compounds and antioxidant activity of wines from different currant cultivars. Journal on Processing and Energy in Agriculture, 2018, 22, 27-30.	0.3	3
208	STABILITY AND TOXICITY PROFILE OF SOLUTION ENHANCED DISPERSION BY SUPERCRITICAL FLUIDS (SEDS) FORMULATED Andrographis paniculata EXTRACT. Brazilian Journal of Chemical Engineering, 2019, 36, 969-978.	0.7	1
209	Retention capacity of maltodextrin antioxidants in cranberry juice by spray drying process. ECORFAN Journal-Ecuador, 0, , 12-20.	0.0	0
210	Development of a technology for the production of snacks based on blackcurrant berries (Ribes) Tj ETQq1 1 0.784	314 rgBT 0.1	/Overlock 1 0
211	Organik çilek özütünün püskürtmeli kurutulması. Harran Tarım Ve Gıda Bilimleri Dergisi, 2020 126-139.	,24, .c.o	1
212	ENCAPSULATION OF BARBERRY FRUIT EXTRACTS BY SPRAY DRYING AND LIPOSOME ENTRAPMENT. Acta Alimentaria, 2020, 49, 125-134.	0.3	1
213	Extraction and Encapsulation of Phenolic Compounds of Tunisian Rosemary (Rosmarinus officinalis) Tj ETQq0 0 0 0	gBT /Over	lock 10 Tf 5
214	Preservation of Biologically Active Compounds and Nutritional Potential of Quick-Frozen Berry Fruits of the Genus Rubus. Processes, 2021, 9, 1940.	1.3	10
215	Productive longevity of the black currants in the middle tayga subzone (Komi Republic). Pomiculture & Small Fruits Culture in Russia, 2020, 60, 111-117.	0.1	0
216	Preparation of spray-dried soybean oil body microcapsules using maltodextrin: Effects of dextrose equivalence. LWT - Food Science and Technology, 2022, 154, 112874.	2.5	22
217	Anthocyanin content and storage stability of spray/freeze drying microencapsulated anthocyanins from berries: a review. International Journal of Food Engineering, 2021, 17, 927-944.	0.7	1
218	Effect of carrier type on the spray-dried willowherb (Epilobium angustifolium L.) leaves extract, powder properties and bioactive compounds encapsulation. Lekovite Sirovine, 2021, , 41-45.	0.8	1
219	Novel insights on extraction and encapsulation techniques of elderberry bioactive compounds. Critical Reviews in Food Science and Nutrition, 2023, 63, 5937-5952.	5.4	14
221	Organik Yaban Mersini Ekstraktından Elde Edilen Biyoaktif Bileşiklerin Püskürtmeli Kurutmayla Enkapsülasyonu. Akademik Gıda, 2022, 20, 1-11.	0.5	1
222	Phenolic Compound Profile by UPLC-MS/MS and Encapsulation with Chitosan of Spondias mombin L. Fruit Peel Extract from Cerrado Hotspot—Brazil. Molecules, 2022, 27, 2382.	1.7	1
223	Influence of Different Coffee Brewing Methods on the Biochemical Composition of Fruit Juice and Coffee Drink. Proceedings of the Latvian Academy of Sciences, 2021, 75, 469-475.	0.0	О

#	ARTICLE	IF	CITATIONS
224	Development of a food colorant from Syzygium cumini L. (Skeels) by spray drying. Journal of Food Science and Technology, 2022, 59, 4045-4055.	1.4	1
226	Value-Added Crackers Enriched with Red Onion Skin Anthocyanins Entrapped in Different Combinations of Wall Materials. Antioxidants, 2022, 11, 1048.	2.2	8
227	Micro-Encapsulation and Characterization of Anthocyanin-Rich Raspberry Juice Powder for Potential Applications in the Food Industry. Processes, 2022, 10, 1038.	1.3	12
228	Next Generation Ingredients Based on Winemaking By-Products and an Approaching to Antiviral Properties. Foods, 2022, 11, 1604.	1.9	2
229	Effects of spray-drying parameters on physicochemical properties of powdered fruits. Foods and Raw Materials, 2022, , 235-251.	0.8	8
230	Antioxidant Activities of Co-Encapsulated Natal Plum (Carissa macrocarpa) Juice Inoculated with Ltp. plantarum 75 in Different Biopolymeric Matrices after In Vitro Digestion. Foods, 2022, 11, 2116.	1.9	3
231	Microencapsulation by Spray Drying and Antioxidant Activity of Phenolic Compounds from Tucuma Coproduct (Astrocaryum vulgare Mart.) Almonds. Polymers, 2022, 14, 2905.	2.0	10
232	Impact of Freeze- and Spray-Drying Microencapsulation Techniques on \hat{I}^2 -Glucan Powder Biological Activity: A Comparative Study. Foods, 2022, 11, 2267.	1.9	6
233	Spray Drying of Chokeberry Juiceâ€"Antioxidant Phytochemicals Retention in the Obtained Powders versus Energy Consumption of the Process. Foods, 2022, 11, 2898.	1.9	2
234	Separation, purification, analyses, and preservation of polyphenols. , 2022, , 247-270.		2
235	Natural and clean label ingredients for microencapsulation. , 2023, , 269-291.		1
236	Encapsulation of soy isoflavone extract by freeze drying, its stability during storage and development of isoflavone enriched yoghurt. Journal of Food Science and Technology, 2022, 59, 4945-4955.	1.4	1
237	Prospecting the role of nanotechnology in extending the shelf-life of fresh produce and in developing advanced packaging. Food Packaging and Shelf Life, 2022, 34, 100955.	3.3	9
238	Encapsulation and characterization of raspberry juice powder for multiple applications in the food industry. Acta Horticulturae, 2022, , 679-684.	0.1	0
239	Assessment of the Influence of Storage Conditions and Time on Red Currants (Ribes rubrum L.) Using Image Processing and Traditional Machine Learning. Agriculture (Switzerland), 2022, 12, 1730.	1.4	5
240	Nutritional value and antioxidant capacity of organic and conventional vegetables of the genus Allium. Scientific Reports, 2022, 12, .	1.6	9
241	Application of Imaging and Artificial Intelligence for Quality Monitoring of Stored Black Currant (Ribes nigrum L.). Foods, 2022, 11, 3589.	1.9	10
242	Bioactive Compounds from Elderberry: Extraction, Health Benefits, and Food Applications. Processes, 2022, 10, 2288.	1.3	10

#	ARTICLE	IF	CITATIONS
243	Evaluation of the antioxidant activity of the content of microencapsulated blackberry anthocyanins (Rubus glaucus), 2020, 27, 63-78.		0
244	Stereocomplexed Microparticles as Quercetin Carriers for Improving Plant Growth During Salinity Stress. Journal of Polymers and the Environment, 0, , .	2.4	0
245	Antioxidant Stability of Moringa Leaves Extract Powders Obtained by Cocrystallization, Vacuum Drying, and Plating. Journal of Food Quality, 2022, 2022, 1-10.	1.4	1
246	Evaluation of the release, stability and antioxidant activity of Brazilian red propolis extract encapsulated by spray-drying, spray-chilling and using the combination of both techniques. Food Research International, 2023, 164, 112423.	2.9	5
247	Preparation, characterization and gastrointestinal stability of silk fibroin nanoparticles loaded with red wine polyphenols. Food Bioscience, 2023, 52, 102431.	2.0	5
248	Production and Evaluation of Yogurt Colored with Anthocyanin-Rich Pigment Prepared from Jabuticaba (Myrciaria cauliflora Mart.) Skin. Processes, 2023, 11, 526.	1.3	2
249	Anthocyanin Accumulation in Berry Fruits and Their Antimicrobial and Antiviral Properties: An Overview. Horticulturae, 2023, 9, 288.	1.2	9
250	Encapsulated natural pigments: Techniques and applications. Journal of Food Process Engineering, 2023, 46, .	1.5	2
251	In Vitro Study on the Effect of the Appropriate Encapsulating Agent for the Release of Phenolic Compounds from <i>Hibiscus sabdariffa</i> Linn Extracts. ACS Food Science & Technology, 2023, 3, 608-615.	1.3	1
252	Influence of storage variables on the antioxidant and antitumor activities, phenolic compounds and vitamin C of an agglomerate of Andean berries. Heliyon, 2023, 9, e14857.	1.4	1
253	Biologically active substances of elder: Properties, methods of extraction and preservation. Food Systems, 2023, 6, 80-94.	0.2	0
271	Spray drying encapsulation of natural food colorants. , 2024, , 303-337.		0
272	Encapsulation efficiency of food bioactive ingredients during spray drying., 2024, , 473-516.		0
273	Spray drying encapsulation of phenolic compounds and antioxidants. , 2024, , 339-375.		0
274	Packaging and storage of spray-dried food powders. , 2024, , 573-618.		0
275	Spray drying of sugar-rich food products. , 2024, , 145-188.		O