Random Access Compressed Sensing for Energy-Efficie

IEEE Journal on Selected Areas in Communications 29, 1660-1670 DOI: 10.1109/jsac.2011.110915

Citation Report

#	Article	IF	CITATIONS
1	Impact of fading on random access compressed sensing. , 2011, , .		5
2	Random access compressed sensing over fading and noisy communication channels. , 2012, , .		2
3	Energy-Efficient Compressive State Recovery From Sparsely Noisy Measurements. IEEE Transactions on Instrumentation and Measurement, 2012, 61, 2392-2400.	4.7	4
4	Random access sensor networks: Field reconstruction from incomplete data. , 2012, , .		20
5	A multiple access scheme based on multi-dimensional compressed sensing. , 2012, , .		3
6	Sphere packing bound for quantum channels. , 2012, , .		7
7	Compressed sensing in random access networks with applications to underwater monitoring. Physical Communication, 2012, 5, 148-160.	2.1	15
8	Random Access Compressed Sensing over Fading and Noisy Communication Channels. IEEE Transactions on Wireless Communications, 2013, 12, 2114-2125.	9.2	42
9	A Distributed Secure Data Collection Scheme via Chaotic Compressed Sensing in Wireless Sensor Networks. Circuits, Systems, and Signal Processing, 2013, 32, 1363-1387.	2.0	13
10	Efficient compressive sampling of spatially sparse fields in wireless sensor networks. Eurasip Journal on Advances in Signal Processing, 2013, 2013, .	1.7	4
11	SNR efficient transmission for compressive sensing based wireless sensor networks. , 2013, , .		2
12	Resource allocation for hierarchical underwater sensor networks. , 2013, , .		0
13	Exploiting temporal and spatial correlation in wireless sensor networks. , 2013, , .		14
14	A Continuous Biomedical Signal Acquisition System Based on Compressed Sensing in Body Sensor Networks. IEEE Transactions on Industrial Informatics, 2013, 9, 1764-1771.	11.3	76
15	A hybrid reservation-based MAC protocol for underwater acoustic sensor networks. Ad Hoc Networks, 2013, 11, 1178-1192.	5.5	31
16	Analysis of Energy Efficiency of Compressive Sensing in Wireless Sensor Networks. IEEE Sensors Journal, 2013, 13, 1999-2008.	4.7	139
17	Compressed Sensing Signal and Data Acquisition in Wireless Sensor Networks and Internet of Things. IEEE Transactions on Industrial Informatics, 2013, 9, 2177-2186.	11.3	449
18	Multiple Access and Data Reconstruction in Wireless Sensor Networks Based on Compressed Sensing.	9.2	35

TION RED

#	Article	IF	CITATIONS
19	Target localization and tracking in a random access sensor network. , 2013, , .		5
20	Energy-efficient and Secure Sensor Data Transmission Using Encompression. , 2013, , .		18
21	Deterministic under-sampling with error correction in OFDM systems. , 2013, , .		0
22	A Hybrid Path-Oriented Code Assignment CDMA-Based MAC Protocol for Underwater Acoustic Sensor Networks. Sensors, 2013, 13, 15006-15025.	3.8	19
23	Compressed Sensing Data Fusion of Monitoring Cyanobacteria Bloom-Forming. Communications in Computer and Information Science, 2013, , 744-752.	0.5	0
24	Wireless Compressive Sensing for Energy Harvesting Sensor Nodes. IEEE Transactions on Signal Processing, 2013, 61, 4491-4505.	5.3	58
25	The Restricted Isometry Property of the Radon-like CS matrix. , 2013, , .		4
26	Wireless compressive sensing for energy harvesting sensor nodes over fading channels. , 2013, , .		4
27	Information Acquisition with Compressed Sensing Multiuser Detection in Underwater Sensor Networks. , 2013, , .		1
28	A User's Guide to Compressed Sensing for Communications Systems. IEICE Transactions on Communications, 2013, E96.B, 685-712.	0.7	185
29	IDMA-Based Compressed Sensing for Ocean Monitoring Information Acquisition with Sensor Networks. Mathematical Problems in Engineering, 2014, 2014, 1-13.	1.1	3
30	Signal Classification for Ground Penetrating Radar Using Sparse Kernel Feature Selection. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7, 4670-4680.	4.9	7
31	Compressive geoacoustic inversion using ambient noise. Journal of the Acoustical Society of America, 2014, 135, 1245-1255.	1.1	37
32	An efficient compressed sensing-based cross-layer congestion control scheme for Wireless Sensor Networks. , 2014, , .		3
33	Energy-Efficient Sensing in Wireless Sensor Networks Using Compressed Sensing. Sensors, 2014, 14, 2822-2859.	3.8	150
34	WSNs Data Acquisition by Combining Hierarchical Routing Method and Compressive Sensing. Sensors, 2014, 14, 16766-16784.	3.8	18
35	Random Access Compressed Sensing with Unequal Probabilities in Wireless Sensor Networks. , 2014, , .		0
36	CS-Based Framework for Sparse Signal Transmission over Lossy Link. , 2014, , .		4

		CITATION REPORT		
#	Article		IF	CITATIONS
37	Blind Frequency Hopping Spectrum Estimation: A Bayesian Approach. , 2014, , .			2
38	Hierarchical CoSaMP for compressively sampled sparse signals with nested structure. E on Advances in Signal Processing, 2014, 2014, .	Eurasip Journal	1.7	2
39	Transmission-Efficient Clustering Method for Wireless Sensor Networks Using Compre IEEE Transactions on Parallel and Distributed Systems, 2014, 25, 806-815.	ssive Sensing.	5.6	128
40	Efficient information transmission under lossy WSNs link using compressive sensing. ,	2014,,.		0
41	Frame length control for sparse signal transmission over lossy wireless link. , 2015, , .			0
42	Sparsity-Cognizant Multiple-Access Schemes for Large Wireless Networks with Node B	uffers. , 2015, , .		0
43	Energy-efficient Data Aggregation Scheme for Underwater Acoustic Sensor Networks.	,2015,,.		2
44	Data lost pattern of random spare signal transmission in IoT. , 2015, , .			0
45	Efficient Sparse Signal Transmission over a Lossy Link Using Compressive Sensing. Sen 19880-19911.	sors, 2015, 15,	3.8	11
46	Sparse Recovery Optimization in Wireless Sensor Networks with a Sub-Nyquist Sampli 2015, 15, 16654-16673.	ng Rate. Sensors,	3.8	41
47	Efficient Cross-Layer Optimization Algorithm for Data Transmission in Wireless Sensor Journal of Electrical and Computer Engineering, 2015, 2015, 1-6.	Networks.	0.9	2
48	Cooperative Access Schemes for Efficient SWIPT Transmissions in Cognitive Radio Net	works. , 2015, , .		16
49	EEHR: Energy Efficient Hybrid Routing Protocol for Underwater WSNs. , 2015, , .			2
50	Compressed data collection for clustering-based sensor networks. , 2015, , .			0
51	On the Quality and Timeliness of Fusion in a Random Access Sensor Network. IEEE Sign Letters, 2015, 22, 1259-1263.	nal Processing	3.6	1
52	<italic>CDC</italic> : Compressive Data Collection for Wireless Sensor Netw Transactions on Parallel and Distributed Systems, 2015, 26, 2188-2197.	orks. IEEE	5.6	227
53	A collision-analysis-based energy-efficient routing protocol in 3D underwater acoustic s networks. Computer Communications, 2015, 66, 25-35.	sensor	5.1	11
54	A Data Acquisition Protocol for a Reactive Wireless Sensor Network Monitoring Applic Sensors, 2015, 15, 10221-10254.	ation.	3.8	16

#	Article	IF	CITATIONS
55	Energy Efficient Sensor Activation for Water Distribution Networks Based on Compressive Sensing. IEEE Journal on Selected Areas in Communications, 2015, 33, 2997-3010.	14.0	46
56	Compressed sensing based data processing and MAC protocol design for smartgrids. , 2015, , .		0
57	Throughput of Underwater Wireless Ad Hoc Networks With Random Access: A Physical Layer Perspective. IEEE Transactions on Wireless Communications, 2015, 14, 6257-6268.	9.2	30
58	Data Gathering with Compressive Sensing in Wireless Sensor Networks: A Random Walk Based Approach. IEEE Transactions on Parallel and Distributed Systems, 2015, 26, 35-44.	5.6	129
59	Signal Processing With Direct Computations on Compressively Sensed Data. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2015, 23, 30-43.	3.1	34
60	CS2-Collector: A New Approach for Data Collection in Wireless Sensor Networks Based on Two-Dimensional Compressive Sensing. Sensors, 2016, 16, 1318.	3.8	8
61	Dynamic sample rate adaptation for long-term IoT sensing applications. , 2016, , .		19
62	Energy-Efficient Distributed Compressed Sensing Data Aggregation for Cluster-Based Underwater Acoustic Sensor Networks. International Journal of Distributed Sensor Networks, 2016, 12, 8197606.	2.2	17
63	Energy-Efficient Data Recovery via Greedy Algorithm for Wireless Sensor Networks. International Journal of Distributed Sensor Networks, 2016, 12, 7256396.	2.2	3
64	Minimizing energy consumption in transmission efficient wireless sensor network. , 2016, , .		1
65	On the design of green protocols for underwater sensor networks. , 2016, 54, 67-73.		44
66	Joint data compression and MAC protocol design for smartgrids with renewable energy. Wireless Communications and Mobile Computing, 2016, 16, 2590-2604.	1.2	17
67	A multi-layer Internet of things database schema for online-to-offline systems. International Journal of Distributed Sensor Networks, 2016, 12, 155014771666424.	2.2	6
68	Adaptive Filter Based Strategy for Data Collection in Wireless Sensor Networks. , 2016, , .		1
69	Enhanced Single Chain-Based Scheme in Cylindrical Underwater Wireless Sensor Networks. , 2016, , .		2
70	Online rate adjustment for adaptive random access compressed sensing of time-varying fields. Eurasip Journal on Advances in Signal Processing, 2016, 2016, .	1.7	4
71	Optimal reception of sub-sampled time-domain sparse signals in wired/wireless OFDM transceivers. Eurasip Journal on Wireless Communications and Networking, 2016, 2016, .	2.4	2
72	Multivariated Bayesian Compressive Sensing in Wireless Sensor Networks. IEEE Sensors Journal, 2016, 16, 2196-2206.	4.7	29

#	Article	IF	CITATIONS
73	Energy-balanced compressive data gathering in Wireless Sensor Networks. Journal of Network and Computer Applications, 2016, 61, 102-114.	9.1	24
74	Analysis of One-Time Random Projections for Privacy Preserving Compressed Sensing. IEEE Transactions on Information Forensics and Security, 2016, 11, 313-327.	6.9	115
75	<sc>Replisom</sc> : Disciplined Tiny Memory Replication for Massive IoT Devices in LTE Edge Cloud. IEEE Internet of Things Journal, 2016, 3, 327-338.	8.7	58
76	Energy-efficient compressed data aggregation in underwater acoustic sensor networks. Wireless Networks, 2016, 22, 1985-1997.	3.0	19
77	Cross-Layer Energy Minimization for Underwater ALOHA Networks. IEEE Systems Journal, 2017, 11, 551-561.	4.6	15
78	Sparse Signal Aloha: A Compressive Sensing-Based Method for Uncoordinated Multiple Access. IEEE Communications Letters, 2017, 21, 1301-1304.	4.1	11
79	Compressive data gathering in wireless sensor networks via group sparse regularization. , 2017, , .		2
81	Accelerating Yield Mapping at Low Data Rates Using Compressive Field Estimate. , 2017, , .		1
82	Design and Implementation of Low-Power Analog-to-Information Conversion for Environmental Information Perception. Energies, 2017, 10, 753.	3.1	5
83	Underwater Wireless Sensor Networks. ACM Computing Surveys, 2019, 51, 1-36.	23.0	110
84	LS-Decomposition for Robust Recovery of Sensory Big Data. IEEE Transactions on Big Data, 2018, 4, 542-555.	6.1	25
85	A new sensor selection scheme for Bayesian learning based sparse signal recovery in WSNs. Journal of the Franklin Institute, 2018, 355, 1798-1818.	3.4	8
86	Dual-Domain Compressed Sensing Method for Oceanic Environmental Elements Collection with Underwater Sensor Networks. Mobile Networks and Applications, 2018, 23, 272-284.	3.3	4
87	Link State Routing Based on Compressed Sensing. Wireless Personal Communications, 2018, 99, 253-271.	2.7	0
88	Ocean Monitoring Framework based on Compressive Sensing using Acoustic Sensor Networks. , 2018, ,		5
89	RECONSTRUCTION-FREE DEEP CONVOLUTIONAL NEURAL NETWORKS FOR PARTIALLY OBSERVED IMAGES. , 2018, , .		4
90	Q-Learning Based Adaptive Channel Selection for Underwater Sensor Networks. , 2018, , .		3
91	Compressive Sensing-Based IoT Applications: A Review. Journal of Sensor and Actuator Networks, 2018, 7, 45.	3.9	46

#	Article	IF	CITATIONS
92	Bayesian Compressive Sensing Based Optimized Node Selection Scheme in Underwater Sensor Networks. Sensors, 2018, 18, 2568.	3.8	8
93	A Random Access Scheme to Balance Energy Efficiency and Accuracy in Monitoring Applications. , 2018, , .		2
94	Green Compressive Sampling Reconstruction in IoT Networks. Sensors, 2018, 18, 2735.	3.8	4
95	Interference Cancelling Codes for Ultra-Reliable Random Access. International Journal of Wireless Information Networks, 2018, 25, 422-433.	2.7	6
96	Rakeness-Based Compressed Sensing and Hub Spreading to Administer Short/Long-Range Communication Tradeoff in IoT Settings. IEEE Internet of Things Journal, 2018, 5, 2220-2233.	8.7	5
97	Energy-efficient and secure transmission scheme based on chaotic compressive sensing in underwater wireless sensor networks. , 2018, 81, 129-137.		21
98	A sparsity feedback-based data gathering algorithm for Wireless Sensor Networks. Computer Networks, 2018, 141, 145-156.	5.1	16
99	Semaphore Based Data Aggregation and Similarity Findings for Underwater Wireless Sensor Networks. International Journal of Grid and High Performance Computing, 2019, 11, 59-76.	0.9	9
100	Distributed Consensus Algorithm for Events Detection in Cyber-Physical Systems. IEEE Internet of Things Journal, 2019, 6, 2299-2308.	8.7	58
101	On the Lifetime of Compressive Sensing Based Energy Harvesting in Underwater Sensor Networks. IEEE Sensors Journal, 2019, 19, 4680-4687.	4.7	20
102	Hybrid cross layer mechanism for high reliability in under water wireless sensor network. , 2019, , .		0
103	Adaptive Sampling Techniques for Autonomous Agents in Wireless Sensor Networks. , 2019, , .		4
104	An Interference-Aware Channel Access Strategy for WSNs Exploiting Temporal Correlation. IEEE Transactions on Communications, 2019, 67, 8585-8597.	7.8	6
105	Data Uploading Strategy for Underwater Wireless Sensor Networks. Sensors, 2019, 19, 5265.	3.8	9
106	PRSS: A Prejudiced Random Sensing Strategy for Energy-Efficient Information Collection in the Internet of Things. IEEE Internet of Things Journal, 2019, 6, 2717-2728.	8.7	12
107	Data ferries based compressive data gathering for wireless sensor networks. Wireless Networks, 2019, 25, 675-687.	3.0	3
108	Omnibus outlier detection in sensor networks using windowed locality sensitive hashing. Future Generation Computer Systems, 2020, 110, 587-609.	7.5	11
109	A novel gateway-based solution for remote elderly monitoring. Journal of Biomedical Informatics, 2020, 109, 103521.	4.3	6

#	Article	IF	CITATIONS
110	Deep Reinforcement Learning Based MAC Protocol for Underwater Acoustic Networks. IEEE Transactions on Mobile Computing, 2022, 21, 1625-1638.	5.8	12
111	SCRA: Structured Compressive Random Access for Efficient Information Collection in IoT. IEEE Internet of Things Journal, 2020, 7, 2356-2367.	8.7	2
112	Data recoverability and estimation for perception layer in semantic web of things. PLoS ONE, 2021, 16, e0245847.	2.5	2
113	Segment Based Clustering with Data Aggregation for Underwater Wireless Sensor Networks. , 2021, , .		0
114	Energy-Efficient Collision Avoidance MAC Protocols for Underwater Sensor Networks: Survey and Challenges. Journal of Marine Science and Engineering, 2021, 9, 741.	2.6	27
115	A CS-Based Grant-Free Media Access Scheme for NOMA-Based Industrial IoTs with Location Awareness. International Journal of Wireless Information Networks, 2021, 28, 412.	2.7	1
116	A Survey on Energy-Efficient Strategies in Static Wireless Sensor Networks. ACM Transactions on Sensor Networks, 2021, 17, 1-48.	3.6	33
117	A Decade Bibliometric Analysis of Underwater Sensor Network Research on the Internet of Underwater Things: An African Perspective. EAI/Springer Innovations in Communication and Computing, 2020, , 147-182.	1.1	3
118	Wireless information and power transfer for underwater acoustic timeâ€reversed NOMA. IET Communications, 2020, 14, 3394-3403.	2.2	16
119	An Enhanced Dynamic Token Protocol for Underwater Acoustic Sensor Networks. International Journal on Smart Sensing and Intelligent Systems, 2012, 5, 879-895.	0.7	3
120	Distributed Random Multi-Hop Compressed Sensing in 3-D Underwater Sensor Networks. Information Technology Journal, 2014, 13, 941-947.	0.3	2
121	Super-Resolution Information Collection in Underwater Sensor Networks with Random Node Deployment: A Compressed Sensing Approach. Journal of Networks, 2012, 7, .	0.4	5
122	Sub-Sampling in OFDM with Constant Time Signal Recovery. Image Processing & Communications, 2016, 21, 19-32.	0.3	0
123	Efficient Data Gathering with Compressed Sensing Multiuser Detection in Underwater Wireless Sensor Networks. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, 2018, , 614-625.	0.3	Ο
126	Energy-efficient collection scheme based on compressive sensing in underwater wireless sensor networks for environment monitoring over fading channels. , 2022, 127, 103530.		7
127	Compressive Sensing Node Localization Method Using Autonomous Underwater Vehicle Network. Wireless Personal Communications, 2022, 126, 2781-2799.	2.7	7
128	A Novel Deep-Learning-Based Robust Data Transmission Period Control Framework in IoT Edge Computing System. IEEE Internet of Things Journal, 2022, 9, 23486-23505.	8.7	5
129	Upscaling Fog Computing in Oceans for Underwater Pervasive Data Science Using Low-Cost Micro-Clouds. ACM Transactions on Internet of Things, 2023, 4, 1-29.	4.6	3

#	Article	IF	CITATIONS
130	Performance Analysis of Distributed Compressed Sensing Schemes for Data Aggregation in Low-Power Wireless Sensor Networks. , 2022, , .		0
131	WIP: Two Packet Collision Model Parameter Sets. , 2023, , .		0
132	Unmanned Aerial Vehicle-Based Compressed Data Acquisition for Environmental Monitoring in WSNs. Sensors, 2023, 23, 8546.	3.8	1
133	The A*orthogonal least square algorithm with the self-training dictionary for propeller signals reconstruction. Applied Acoustics, 2024, 215, 109709.	3.3	1