Controlled installation of spudcan foundations on loose

Marine Structures 24, 528-550 DOI: 10.1016/j.marstruc.2011.06.005

Citation Report

#	Article	IF	CITATIONS
1	A Numerical Investigation Into the Bottom Boundary Effect for Spudcan Penetration on Sand Overlying Clay in Centrifuge Test. , 2012, , .		1
2	Spudcans als Gründungsform für Offshoreâ€Hubplattformen. Bautechnik, 2012, 89, 831-840.	0.2	3
3	Numerical investigation of bearing capacity due to spudcan penetration in sand overlying clay. Canadian Geotechnical Journal, 2012, 49, 1393-1407.	1.4	89
4	Active earth pressure shielding in quay wall constructions: numerical modeling. Acta Geotechnica, 2012, 7, 343-355.	2.9	18
5	Numerical analysis and verification of pile penetration into stiff-over-soft clay. Petroleum Exploration and Development, 2013, 40, 526-530.	3.0	3
6	Eulerian finite element simulation of spudcan–pile interaction. Canadian Geotechnical Journal, 2013, 50, 595-608.	1.4	50
7	Bearing capacity and critical punch-through depth of spudcan on sand overlying clay. China Ocean Engineering, 2014, 28, 139-147.	0.6	2
8	Predicting the resistance profile of a spudcan penetrating sand overlying clay. Canadian Geotechnical Journal, 2014, 51, 1151-1164.	1.4	98
9	Assessing the punch-through hazard of a spudcan on sand overlying clay. Geotechnique, 2015, 65, 883-896.	2.2	63
10	Large deformation finite element analyses in geotechnical engineering. Computers and Geotechnics, 2015, 65, 104-114.	2.3	197
11	Effect of spudcan geometry on penetration and extraction resistance in clay. Geotechnique, 2015, 65, 147-154.	2.2	9
12	Numerical Modeling of Spudcan Deep Penetration in Three-Layer Clays. International Journal of Geomechanics, 2015, 15, .	1.3	22
13	Prediction of spudcan penetration resistance profile in stiff-over-soft clays. Canadian Geotechnical Journal, 2016, 53, 1978-1990.	1.4	23
14	Simplified numerical prediction of the penetration resistance profile of spudcan foundation on sediments with interbedded medium-loose sand layer. Applied Ocean Research, 2016, 55, 89-101.	1.8	10
15	Three-Dimensional Finite Element Modeling for Spudcan Penetration into a Clayey Seabed. , 2017, , .		1
16	Numerical investigation of spudcan penetration in multi-layer deposits with an interbedded sand layer. Geotechnique, 0, , 1-17.	2.2	3
17	Bayesian Prediction of Punch-Through Probability for Spudcans in Stiff-over-Soft Clay. , 2017, , .		5
19	Predicting jack-up spudcan installation in sand overlying stiff clay. Ocean Engineering, 2017, 146, 246-256.	1.9	17

CITATION REPORT

#	Article	IF	CITATIONS
20	Lateral boundary effects in centrifuge foundation tests. International Journal of Physical Modelling in Geotechnics, 2017, 17, 144-160.	0.5	30
21	Application of a Coupled Eulerian-Lagrangian Technique on Constructability Problems of Site on Very Soft Soil. Applied Sciences (Switzerland), 2017, 7, 1080.	1.3	12
22	Estimating Spudcan Penetration Resistance in Stiff-Soft-Stiff Clay. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2018, 144, .	1.5	16
23	Deformational behaviour of steel sheet piles during jacking. Computers and Geotechnics, 2018, 101, 1-10.	2.3	4
24	An updating void ratio model for large deformation simulation of geogrid-granular strip anchors plates. Computers and Geotechnics, 2018, 94, 134-149.	2.3	12
25	Response Study of Jacket Piles Induced by Spudcan Penetration. , 2018, , .		1
26	Optimising spudcan shape for mitigating horizontal and moment loads induced on a spudcan penetrating near a conical footprint. Applied Ocean Research, 2018, 79, 62-73.	1.8	13
27	Combined Bearing Capacity of Spudcans on a Double Layer Deposit of Strong-Over-Weak Clays. Journal of Ocean University of China, 2019, 18, 133-143.	0.6	11
28	Numerical investigation of spudcan-footprint interaction in non-uniform clays. Ocean Engineering, 2019, 188, 106295.	1.9	6
29	Spudcan Penetration Simulation Using the Coupled Eulerian-Lagrangian Method with Thermo-Mechanical Coupled Analysis. Journal of Ocean University of China, 2019, 18, 317-327.	0.6	6
30	A finite element approach for predicting the full resistance profile of a spudcan deeply penetrating in dense sand overlying clay. Applied Ocean Research, 2019, 87, 155-164.	1.8	14
31	Penetration response of spudcans in layered sands. Applied Ocean Research, 2019, 82, 236-244.	1.8	13
32	Physical and Numerical Modeling of Dynamic Penetration of Ship Anchor in Clay. Journal of Waterway, Port, Coastal and Ocean Engineering, 2019, 145, .	0.5	15
33	Measured and calculated spudcan penetration profiles for case histories in sand-over-clay. Applied Ocean Research, 2019, 82, 447-457.	1.8	11
34	Large displacement numerical study of 3D plate anchors. European Journal of Environmental and Civil Engineering, 2020, 24, 520-538.	1.0	13
35	Improvement to the intergranular strain model for larger numbers of repetitive cycles. Acta Geotechnica, 2020, 15, 3593-3604.	2.9	16
36	Quantifying installation risk during spudcan penetration. Ocean Engineering, 2020, 216, 108050.	1.9	10
37	Estimation of Distribution Factor for Peak Penetration Resistance Prediction of Spudcan Foundations in Loose to Medium-Dense Sand Overlying Clay. Applied Sciences (Switzerland), 2020, 10, 8795.	1.3	1

CITATION REPORT

#	Article	IF	CITATIONS
38	Numerical analysis of reinstallation of spudcans near footprints formed during prior installations. Applied Ocean Research, 2020, 100, 102163.	1.8	4
39	Mitigating punch-through on sand-over-clay using skirted foundations. Ocean Engineering, 2020, 201, 107133.	1.9	6
40	Perspective Review on Subsea Jet Trenching Technology and Modeling. Journal of Marine Science and Engineering, 2020, 8, 460.	1.2	2
41	Design of A Bionic Spudcan and Analysis of Penetration and Extraction Performances for Jack-up Platform. China Ocean Engineering, 2020, 34, 80-88.	0.6	10
42	Modeling of large deformation problem considering spatially variable soils in offshore engineering. Marine Georesources and Geotechnology, 2021, 39, 906-918.	1.2	13
43	Predicting the overall horizontal bearing capacity of jack-up rigs using deck–foundation–soil-coupled model. Proceedings of the Institution of Mechanical Engineers Part M: Journal of Engineering for the Maritime Environment, 2021, 235, 213-224.	0.3	3
44	Method to Evaluate Effect of Spudcan Penetration on Adjacent Jacket Piles. Applied Ocean Research, 2021, 106, 102436.	1.8	4
45	Study on spudcan reinstallation next to a footprint using large deformation finite element method. Proceedings of the Institution of Mechanical Engineers Part M: Journal of Engineering for the Maritime Environment, 2021, 235, 532-545.	0.3	0
46	Numerical Simulation of the Construction Process of Long Spiral CFG Piles. Advances in Civil Engineering, 2021, 2021, 1-13.	0.4	0
47	Capacity of caissons in stiff-over-soft clay under combined V–H-M loadings. Ocean Engineering, 2021, 229, 109007.	1.9	11
48	A comparison of jack-up spudcan penetration predictions and recorded field data. Applied Ocean Research, 2021, 112, 102713.	1.8	3
49	Undrained bearing capacity of spudcan in soft-over-stiff clay after penetration. Ocean Engineering, 2021, 235, 109369.	1.9	3
50	Geotechnical Analysis of a Mat Foundation Supporting a Wellhead Platform. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2021, 147, .	1.5	3
51	Large Deformation Analysis of Spudcan Penetration into Sand Overlying Normally Consolidated Clay. Springer Series in Geomechanics and Geoengineering, 2013, , 723-733.	0.0	1
52	Effect of Reinforcement Ratio and Vertical Load Level on Lateral Capacity of Bridge Pile Foundations. Polish Maritime Research, 2018, 25, 120-126.	0.6	5
53	Coupled Eulerian-Lagrangian Modeling to Study the Long-Runout Landslide: A Case Study. Sustainable Civil Infrastructures, 2019, , 242-253.	0.1	0
54	Possibilities and Limitations of ALE Large Deformations Analyses in Geotechnical Engineering. Lecture Notes in Applied and Computational Mechanics, 2020, , 97-112.	2.0	0
55	Improved Prediction of Peak Resistance for Spudcan Penetration in Sand Layer Overlying Clay. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2022, 148, .	1.5	3

CITATION REPORT

#	Article	IF	CITATIONS
56	Aspects of soft clay behaviour important for correct prediction of spudcan foundation penetration. Computers and Geotechnics, 2022, 142, 104552.	2.3	0
57	Research on Optimal Design of Spudcan Structures to Ease Spudcan-Footprint Interactions in Clay and Comparative Analyses with Different Measures. Polish Maritime Research, 2022, 29, 43-56.	0.6	2
58	Influence of spudcan penetration on the stability of adjacent steel cylinder in sand. Ships and Offshore Structures, 0, , 1-10.	0.9	0
59	Finite element analysis of newly designed monopiles for offshore wind turbines on seabed with shallowly buried batholith. Ships and Offshore Structures, 2023, 18, 735-747.	0.9	2
60	Numerical Investigation on the Spudcan Penetration into Sand Overlying Clay Considering the Strain Effects. Applied Sciences (Switzerland), 2022, 12, 7454.	1.3	0
61	Multilayer-perceptron-based prediction of sand-over-clay bearing capacity during spudcan penetration. International Journal of Naval Architecture and Ocean Engineering, 2022, 14, 100479.	1.0	1
62	Numerical study on the combined bearing performance of tripod-bucket foundation for floating and fixed wind turbines. Proceedings of the Institution of Mechanical Engineers Part M: Journal of Engineering for the Maritime Environment, 0, , 147509022211314.	0.3	0
63	Capacity of spudcan foundation on dense sand overlying clay under combined loading. Ocean Engineering, 2022, 266, 112980.	1.9	5
64	Settlement analysis of the giant open caisson during the construction of the Changtai Yangtze River Bridge. Frontiers in Earth Science, 0, 10, .	0.8	1