A review of nonlinear oscillatory shear tests: Analysis as oscillatory shear (LAOS)

Progress in Polymer Science 36, 1697-1753

DOI: 10.1016/j.progpolymsci.2011.02.002

Citation Report

#	Article	IF	CITATIONS
3	Rheometry of suspensions. , 2011, , 291-324.		1
4	A new non-linear parameter Q from FT-Rheology under nonlinear dynamic oscillatory shear for polymer melts system. Korea Australia Rheology Journal, 2011, 23, 227-235.	0.7	36
5	Fourier Transform Rheology as a universal non-linear mechanical characterization of droplet size and interfacial tension of dilute monodisperse emulsions. Journal of Colloid and Interface Science, 2011, 360, 818-825.	5.0	46
6	Optimizing the Sensitivity of FT-Rheology to Quantify and Differentiate for the First Time the Nonlinear Mechanical Response of Dispersed Beer Foams of Light and Dark Beer. Zeitschrift Fur Physikalische Chemie, 2012, 226, 547-567.	1.4	34
7	Rheological characteristics of poly(ethylene oxide) aqueous solutions under large amplitude oscillatory squeeze flow. Korea Australia Rheology Journal, 2012, 24, 257-266.	0.7	9
8	Rheological characterization of poly(ethylene oxide) aqueous solution under dynamic helical squeeze flow. Korea Australia Rheology Journal, 2012, 24, 267-275.	0.7	1
9	Nanogel formation of polymer solutions flowing through porous media. Soft Matter, 2012, 8, 6445.	1.2	20
10	The molecular origin of stress generation in worm-like micelles, using a rheo-SANS LAOS approach. Soft Matter, 2012, 8, 7831.	1.2	54
11	Elastic instabilities in a microfluidic cross-slot flow of wormlike micellar solutions. Soft Matter, 2012, 8, 5847.	1.2	45
12	Nonlinear Viscoelasticity and Shear Localization at Complex Fluid Interfaces. Langmuir, 2012, 28, 7757-7767.	1.6	54
13	New Insight to the Mechanism of the Shear-Induced Macroscopic Alignment of Diblock Copolymer Melts by a Unique and Newly Developed Rheo–SAXS Combination. Macromolecules, 2012, 45, 455-472.	2.2	45
14	Unique Nonlinear Behavior of Nano-Filled Elastomers: From the Onset of Strain Softening to Large Amplitude Shear Deformations. Macromolecules, 2012, 45, 2891-2904.	2.2	56
15	<i>In Situ</i> Rheodielectric, <i>ex Situ</i> 2D-SAXS, and Fourier Transform Rheology Investigations of the Shear-Induced Alignment of Poly(styrene- <i>b</i> -1,4-isoprene) Diblock Copolymer Melts. Macromolecules, 2012, 45, 7206-7219.	2.2	22
16	A new instrument for dynamic helical squeeze flow which superposes oscillatory shear and oscillatory squeeze flow. Review of Scientific Instruments, 2012, 83, 085105.	0.6	4
17	Dynamics of Melting and Recrystallization in a Polymeric Micellar Crystal Subjected to Large Amplitude Oscillatory Shear Flow. Physical Review Letters, 2012, 108, 258301.	2.9	48
18	Two-dimensional Fourier transform rheological study on thermosensitivity ofÂpoly(N,N-diethylacrylamide) in aqueous solutions. Polymer, 2012, 53, 4800-4805.	1.8	2
19	A novel method for visualising and quantifying through-plane skin layer deformations. Journal of the Mechanical Behavior of Biomedical Materials, 2012, 14, 199-207.	1.5	46
20	A sequence of physical processes determined and quantified in LAOS: An instantaneous local 2D/3D approach. Journal of Rheology, 2012, 56, 1129-1151.	1.3	111

#	Article	IF	Citations
21	Large amplitude oscillatory shear (LAOS) measurements to obtain constitutive equation model parameters: Giesekus model of banding and nonbanding wormlike micelles. Journal of Rheology, 2012, 56, 333-351.	1.3	132
22	Surface shear rheology of hydrophobin adsorption layers: laws of viscoelastic behaviour with applications to long-term foam stability. Faraday Discussions, 2012, 158, 195.	1.6	28
23	Effect of temperature on dynamic rheological properties of uncured rubber materials in both the linear and the nonlinear viscoelastic domains. Journal of Applied Polymer Science, 2012, 126, 408-422.	1.3	13
24	Nonlinear response of polypropylene (PP)/Clay nanocomposites under dynamic oscillatory shear flow. Korea Australia Rheology Journal, 2012, 24, 113-120.	0.7	31
25	The rheological behavior of native and high-pressure homogenized waxy maize starch pastes. Carbohydrate Polymers, 2012, 88, 481-489.	5.1	22
26	Fourier Transform Rheology as an innovative morphological characterization technique for the emulsion volume average radius and its distribution. Journal of Colloid and Interface Science, 2012, 380, 201-212.	5.0	43
27	Linear and non-linear viscoelastic behaviors of crosslinked tapioca starch/polysaccharide systems. Journal of Food Engineering, 2012, 109, 571-578.	2.7	41
28	Linear and nonlinear rheological behavior and crystallization of semicrystalline poly(styrene)–poly(l-lactide) block copolymers. European Polymer Journal, 2013, 49, 2704-2720.	2.6	10
29	Melt Rheology and its Applications in the Plastics Industry. Engineering Materials and Processes, 2013,	0.2	97
30	Superposition rheometry of a wormlike micellar fluid. Rheologica Acta, 2013, 52, 727-740.	1.1	45
31	Viscoelastic melt rheology and time–temperature superposition of polycarbonate–multi-walled carbon nanotube nanocomposites. Rheologica Acta, 2013, 52, 801-814.	1.1	25
32	Rheological properties of oil paints and their flow instabilities in blade coating. Rheologica Acta, 2013, 52, 643-659.	1.1	4
33	Low-dimensional intrinsic material functions for nonlinear viscoelasticity. Rheologica Acta, 2013, 52, 201-219.	1.1	125
34	Effect of organoclay on non-linear rheological properties of poly(lactic acid)/poly(caprolactone) blends. Korean Journal of Chemical Engineering, 2013, 30, 1013-1022.	1.2	51
35	Linear and nonlinear viscoelasticity of water-in-oil emulsions: Effect of droplet elasticity. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 434, 220-228.	2.3	24
36	Shear and dilatational linear and nonlinear subphase controlled interfacial rheology of \hat{l}^2 -lactoglobulin fibrils and their derivatives. Journal of Rheology, 2013, 57, 1003-1022.	1.3	100
37	Local mobility and microstructure in periodically sheared soft particle glasses and their connection to macroscopic rheology. Journal of Rheology, 2013, 57, 1023-1046.	1.3	57
38	Flow field visualization of entangled polybutadiene solutions under nonlinear viscoelastic flow conditions. Journal of Rheology, 2013, 57, 1411-1428.	1.3	57

#	Article	IF	CITATIONS
39	Investigation of the rheological behavior of industrial tubular and autoclave LDPEs under SAOS, LAOS, transient shear, and elongational flows compared with predictions from the MSF theory. Journal of Rheology, 2013, 57, 1693-1714.	1.3	34
40	Short-term and long-term irreversibility in particle suspensions undergoing small and large amplitude oscillatory stress. Journal of Rheology, 2013, 57, 1325-1346.	1.3	19
41	Relating structure and flow of soft colloids. European Physical Journal: Special Topics, 2013, 222, 2757-2772.	1.2	8
42	Yielding and flow of concentrated Pickering emulsions. Soft Matter, 2013, 9, 7568.	1.2	48
43	Thermal melting in depletion gels of hairy nanoparticles. Soft Matter, 2013, 9, 9088.	1.2	8
44	Remarkably high surface visco-elasticity of adsorption layers of triterpenoid saponins. Soft Matter, 2013, 9, 5738.	1.2	94
45	Describing and prescribing the constitutive response of yield stress fluids using large amplitude oscillatory shear stress (LAOStress). Journal of Rheology, 2013, 57, 27-70.	1.3	218
46	Numerical simulation results of the nonlinear coefficient $\langle i \rangle Q \langle i \rangle$ from FT-Rheology using a single mode pom-pom model. Journal of Rheology, 2013, 57, 1-25.	1.3	36
47	The jamming and unjamming transition in poly(N-isopropylacrylamide) microgel suspensions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 436, 912-921.	2.3	8
48	Large amplitude oscillatory shear properties of human skin. Journal of the Mechanical Behavior of Biomedical Materials, 2013, 28, 462-470.	1.5	51
49	Validity of the modified molecular stress function theory to predict the rheological properties of polymer nanocomposites. Journal of Rheology, 2013, 57, 881-899.	1.3	15
50	Rheology of viscoelastic suspensions of spheres under small and large amplitude oscillatory shear by numerical simulations. Journal of Rheology, 2013, 57, 813-839.	1.3	35
51	Dynamic Fracture of Nonglassy Suspensions. Physical Review Letters, 2013, 110, 148304.	2.9	47
52	Characterising soft tissues under large amplitude oscillatory shear and combined loading. Journal of Biomechanics, 2013, 46, 1060-1066.	0.9	53
53	Complex Oscillatory Yielding of Model Hard-Sphere Glasses. Physical Review Letters, 2013, 110, 178301.	2.9	65
54	Surface Pressure and Elasticity of Hydrophobin HFBII Layers on the Air–Water Interface: Rheology Versus Structure Detected by AFM Imaging. Langmuir, 2013, 29, 6053-6067.	1.6	32
55	Flow of concentrated solutions of starlike micelles under large-amplitude oscillatory shear. Rheologica Acta, 2013, 52, 785-800.	1.1	37
56	Nonlinear viscoelasticity of polymer nanocomposites under large amplitude oscillatory shear flow. Journal of Rheology, 2013, 57, 767-789.	1.3	84

#	ARTICLE	IF	Citations
57	Rheological detection of caging and solid–liquid transitions in soft colloid–polymer mixtures. Journal of Non-Newtonian Fluid Mechanics, 2013, 193, 11-20.	1.0	14
58	A new twist on Stokes' second problem: Partial penetration of nonlinearity in sheared viscoelastic layers. Journal of Non-Newtonian Fluid Mechanics, 2013, 196, 36-50.	1.0	13
59	Defining nonlinear rheological material functions for oscillatory shear. Journal of Rheology, 2013, 57, 177-195.	1.3	115
60	Synthesis and Linear and Nonlinear Melt Rheology of Well-Defined Comb Architectures of PS and PpMS with a Low and Controlled Degree of Long-Chain Branching. Macromolecules, 2013, 46, 4978-4994.	2.2	109
61	Reinforcement in Natural Rubber Elastomer Nanocomposites: Breakdown of Entropic Elasticity. Macromolecules, 2013, 46, 8964-8972.	2.2	53
62	Temperature Rise in Large-Amplitude Oscillatory Shear Flow from Shear Stress Measurements. Industrial & Description of the Measurements of the Mea	1.8	19
63	Mechanistic model for deformation of polymer nanocomposite melts under large amplitude shear. Journal of Polymer Science, Part B: Polymer Physics, 2013, 51, 764-771.	2.4	13
64	Far-from-equilibrium sheared colloidal liquids: Disentangling relaxation, advection, and shear-induced diffusion. Physical Review E, 2013, 88, 062309.	0.8	17
65	A novel gastric release PEGâ€enclatherated polymethacrylateâ€based memblet system. Journal of Applied Polymer Science, 2013, 128, 4327-4338.	1.3	2
67	Shear viscosity and nonlinear behavior of whole blood under large amplitude oscillatory shear. Biorheology, 2013, 50, 269-282.	1.2	57
68	Rheometry., 2014,,.		0
69	Molecular Dynamics of Polymer Composites Using Rheology and Combined RheoNMR on the Example of TiO ₂ -Filled Poly(n-Alkyl Methacrylates) and Trans-1,4-Polyisoprene. Soft Materials, 2014, 12, S4-S13.	0.8	8
70	Nonlinear glassy rheology. Current Opinion in Colloid and Interface Science, 2014, 19, 549-560.	3.4	48
71	Hybrid Carrageenans. Advances in Food and Nutrition Research, 2014, 72, 17-43.	1.5	19
72	Nonlinear viscoelasticity of entangled wormlike micellar fluid under large-amplitude oscillatory shear: Role of elastic Taylor-Couette instability. Physical Review E, 2014, 89, 062314.	0.8	3
73	Polyelectrolytes. Engineering Materials, 2014, , .	0.3	6
74	Tunable rheology of dense soft deformable colloids. Current Opinion in Colloid and Interface Science, 2014, 19, 561-574.	3.4	185
75	Variable-amplitude oscillatory shear response of amorphous materials. Physical Review E, 2014, 89, 062307.	0.8	22

#	Article	IF	Citations
76	Modeling the rheology of SR1500 and LY556 epoxies under manufacturer's recommended cure cycles after viscosimetry and rheometry characterization. Polymer Engineering and Science, 2014, 54, 831-839.	1.5	6
77	Flow instabilities in large amplitude oscillatory shear: a cautionary tale. Rheologica Acta, 2014, 53, 885-898.	1.1	33
78	Structure and Properties of Deforming Polymers. , 2014, , 25-58.		0
79	Preparation and rheological characterization of long chain branching polylactide. Polymer, 2014, 55, 2472-2480.	1.8	49
80	Large amplitude oscillatory shear and uniaxial extensional rheology of blends from linear and long-chain branched polyethylene and polypropylene. Journal of Rheology, 2014, 58, 635-658.	1.3	48
81	Mechanical spectral hole burning in polymer solutions: Comparison with large amplitude oscillatory shear fingerprinting. Journal of Rheology, 2014, 58, 43-62.	1.3	22
82	The quasilinear large-amplitude viscoelastic regime and its significance in the rheological characterization of soft matter. Journal of Rheology, 2014, 58, 537-561.	1.3	48
83	A new approach for calculating the true stress response from large amplitude oscillatory shear (LAOS) measurements using parallel plates. Rheologica Acta, 2014, 53, 75-83.	1.1	16
84	A simple thixotropic–viscoelastic constitutive model produces unique signatures in large-amplitude oscillatory shear (LAOS). Journal of Non-Newtonian Fluid Mechanics, 2014, 208-209, 27-41.	1.0	43
86	Impact of ghosts on the viscoelastic response of gelatinized corn starch dispersions subjected to small strain deformations. Carbohydrate Polymers, 2014, 110, 156-162.	5.1	23
87	A critical gel fluid with high extensibility: The rheology of chewing gum. Journal of Rheology, 2014, 58, 821-838.	1.3	26
88	The role of the hydrophobic phase in the unique rheological properties of saponin adsorption layers. Soft Matter, 2014, 10, 7034-7044.	1.2	57
89	Rheological characterization of tuna myofibrillar protein in linear and nonlinear viscoelastic regions. Journal of Food Engineering, 2014, 121, 58-63.	2.7	38
90	Large-amplitude oscillatory shear rheology of dilute active suspensions. Rheologica Acta, 2014, 53, 899-909.	1.1	28
91	A rheological criterion to determine the percolation threshold in polymer nano-composites. Rheologica Acta, 2014, 53, 869-882.	1.1	63
92	Dilute rigid dumbbell suspensions in large-amplitude oscillatory shear flow: Shear stress response. Journal of Chemical Physics, 2014, 140, 074904.	1.2	66
93	Rheological characterization of mammalian lung mucus. RSC Advances, 2014, 4, 34780-34783.	1.7	21
94	Timescales in creep and yielding of attractive gels. Soft Matter, 2014, 10, 1555.	1.2	98

#	Article	IF	CITATIONS
95	Stress localization, stiffening, and yielding in a model colloidal gel. Journal of Rheology, 2014, 58, 1089-1116.	1.3	114
96	Spatiotemporal stress and structure evolution in dynamically sheared polymer-like micellar solutions. Soft Matter, 2014, 10, 2889-2898.	1.2	39
97	Shear rheology of hydrophobin adsorption layers at oil/water interfaces and data interpretation in terms of a viscoelastic thixotropic model. Soft Matter, 2014, 10, 5777.	1.2	11
98	Large amplitude oscillatory shear of immiscible polymer blends and comparison to anisotropy and droplet models. Journal of Rheology, 2014, 58, 1903-1916.	1.3	5
99	Time dependence in large amplitude oscillatory shear: A rheo-ultrasonic study of fatigue dynamics in a colloidal gel. Journal of Rheology, 2014, 58, 1331-1357.	1.3	53
100	Structure, Ion Transport, and Rheology of Nanoparticle Salts. Macromolecules, 2014, 47, 4479-4492.	2.2	21
101	Effect of the Biopolymer Mixing Ratio on the Formation of Electrostatically Coupled Whey Proteinâ $^{\hat{1}_{2}}$ and $\hat{1}^{1}$ -Carrageenan Networks in the Presence and Absence of Oil Droplets. Journal of Agricultural and Food Chemistry, 2014, 62, 8730-8739.	2.4	12
102	A comprehensive constitutive law for waxy crude oil: a thixotropic yield stress fluid. Soft Matter, 2014, 10, 6619-6644.	1.2	183
103	Microstructure and nonlinear signatures of yielding in a heterogeneous colloidal gel under large amplitude oscillatory shear. Journal of Rheology, 2014, 58, 1359-1390.	1.3	80
104	Energy dissipation in concentrated monodisperse colloidal suspensions of silica particles in polyethylene glycol. Colloid and Polymer Science, 2014, 292, 3291-3299.	1.0	10
105	New way to characterize the percolation threshold of polyethylene and carbon nanotube polymer composites using Fourier transform (FT) rheology. Korea Australia Rheology Journal, 2014, 26, 319-326.	0.7	17
106	Effects of mixing protocol and mixing time on viscoelasticity of compatibilized PP/PS blends. Korea Australia Rheology Journal, 2014, 26, 311-318.	0.7	19
107	Intrinsic nonlinearity from LAOStrainâ€"experiments on various strain- and stress-controlled rheometers: a quantitative comparison. Rheologica Acta, 2014, 53, 621-634.	1.1	36
108	Chemical modification of New Zealand hoki (Macruronus novaezelandiae) skin gelatin and its properties. Food Chemistry, 2014, 155, 64-73.	4.2	33
109	Yield stress fluid flows: A review of experimental data. Journal of Non-Newtonian Fluid Mechanics, 2014, 211, 31-49.	1.0	375
110	Surfactant micelles: Model systems for flow instabilities of complex fluids. European Physical Journal E, 2014, 37, 23.	0.7	18
111	Plastic rearrangements in colloidal gels investigated by LAOS and LS-Echo. Journal of Rheology, 2014, 58, 1395-1417.	1.3	36
112	Sensitization of a stray-field NMR to vibrations: A potential for MR elastometry with a portable NMR sensor. Journal of Magnetic Resonance, 2014, 248, 1-7.	1.2	3

#	Article	IF	CITATIONS
113	Predicting extrusion instabilities of commercial polyethylene from non-linear rheology measurements. Rheologica Acta, 2014, 53, 817-829.	1.1	7
114	Shear characterisation of uni-directional fibre reinforced thermoplastic melts by means of torsion. Composites Part A: Applied Science and Manufacturing, 2014, 56, 8-26.	3.8	42
115	Large amplitude oscillatory shear of supramolecular materials. Journal of Non-Newtonian Fluid Mechanics, 2014, 206, 40-56.	1.0	18
116	The general low-frequency prediction for asymptotically nonlinear material functions in oscillatory shear. Journal of Rheology, 2014, 58, 891-910.	1.3	47
117	Large amplitudes oscillatory shear (LAOS) behavior of egg white foams with apple pectins and xanthan gum. Food Research International, 2014, 62, 299-307.	2.9	32
118	Experimental and modeling study of viscoelastic behaviors of magneto-rheological shear thickening fluids. Korea Australia Rheology Journal, 2014, 26, 149-158.	0.7	33
119	Characterization of Morphologies of Compatibilized Polypropylene/Polystyrene Blends with Nanoparticles via Nonlinear Rheological Properties from FT-Rheology. Macromolecules, 2014, 47, 4066-4076.	2.2	87
120	Large amplitude oscillatory shear and Fourier transform rheology analysis of branched polymer melts. Journal of Rheology, 2014, 58, 969-997.	1.3	46
121	Rheological behavior of hydrophobic fumed silica suspensions in different alkanes. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 456, 75-82.	2.3	15
122	Rheological Properties Measurement Method and Apparatus. Nippon Gomu Kyokaishi, 2015, 88, 303-308.	0.0	0
123	Fourier decomposition of polymer orientation in large-amplitude oscillatory shear flow. Structural Dynamics, 2015, 2, 024101.	0.9	17
124	Transient behavior of stress in a wormlike micellar solution under oscillatory shear. Colloid and Polymer Science, 2015, 293, 3237-3248.	1.0	3
125	Characterization of clay composite ballistic witness materials. Journal of Materials Science, 2015, 50, 7048-7057.	1.7	9
126	Polypropylene reinforced with nanocrystalline cellulose: Coupling agent optimization. Journal of Applied Polymer Science, 2015, 132, .	1.3	21
127	Exact Analytical Solution for Largeâ€Amplitude Oscillatory Shear Flow. Macromolecular Theory and Simulations, 2015, 24, 352-392.	0.6	50
128	The outstanding ability of nanosilica to stabilize dispersions of Nylon 6 droplets in a polypropylene matrix. Journal of Polymer Science, Part B: Polymer Physics, 2015, 53, 1567-1579.	2.4	22
129	The Rheology of Suspensions. , 2015, , .		1
130	Evaluation of the Physical Properties of Rubbers by Large Amplitude Oscillatory Shear Measurement. Kobunshi Ronbunshu, 2015, 72, 130-140.	0.2	O

#	Article	IF	CITATIONS
131	Molecular Mechanisms for Conformational and Rheological Responses of Entangled Polymer Melts to Startup Shear. Macromolecules, 2015, 48, 4164-4173.	2.2	19
132	Characterising skeletal muscle under large strain using eccentric and Fourier Transform-rheology. Journal of Biomechanics, 2015, 48, 3788-3795.	0.9	10
133	Computational Study of the Structure and Rheological Properties of Self-Associating Polymer Networks. Macromolecules, 2015, 48, 6313-6320.	2.2	26
134	On the Static and Dynamic Contact Problem of an Inflated Spherical Viscoelastic Membrane. Journal of Applied Mechanics, Transactions ASME, 2015, 82, .	1.1	6
135	Introduction to Complex Fluids. Biological and Medical Physics Series, 2015, , 3-52.	0.3	32
136	Constitutive model fingerprints in medium-amplitude oscillatory shear. Journal of Rheology, 2015, 59, 557-592.	1.3	50
137	The nonlinear viscoelasticity of hyaluronic acid and its role in joint lubrication. Soft Matter, 2015, 11, 2596-2603.	1.2	41
138	Mediating Gel Formation from Structurally Controlled Poly(Electrolytes) Through Multiple "Head-to-Body―Electrostatic Interactions. Macromolecular Rapid Communications, 2015, 36, 55-59.	2.0	7
139	On the rheology of pendular gels and morphological developments in paste-like ternary systems based on capillary attraction. Soft Matter, 2015, 11, 1500-1516.	1.2	74
140	Towards neutron scattering experiments with sub-millisecond time resolution. Journal of Applied Crystallography, 2015, 48, 220-226.	1.9	19
141	Single-point parallel disk correction for asymptotically nonlinear oscillatory shear. Rheologica Acta, 2015, 54, 223-233.	1.1	16
142	Padé approximants for large-amplitude oscillatory shear flow. Rheologica Acta, 2015, 54, 679-693.	1.1	19
143	Graphene Nanoplatelets as Rheology Modifiers for Polylactic Acid: Graphene Aspect-Ratio-Dependent Nonlinear Rheological Behavior. Industrial & Engineering Chemistry Research, 2015, 54, 8175-8182.	1.8	36
144	Large amplitude oscillatory shear (LAOS) in model colloidal suspensions and glasses: frequency dependence. Rheologica Acta, 2015, 54, 715-724.	1.1	24
145	Characterization of Effects of Silica Nanoparticles on (80/20) PP/PS Blends via Nonlinear Rheological Properties from Fourier Transform Rheology. Macromolecules, 2015, 48, 4669-4679.	2.2	63
146	Gelation of rod particle suspension in Newtonian fluid. Korea Australia Rheology Journal, 2015, 27, 125-135.	0.7	2
147	Nonlinear behavior of PP/PS blends with and without clay under large amplitude oscillatory shear (LAOS) flow. Korea Australia Rheology Journal, 2015, 27, 95-103.	0.7	22
148	The rheology of gelatin hydrogels modified by \hat{l}^2 -carrageenan. LWT - Food Science and Technology, 2015, 63, 612-619.	2.5	122

#	Article	IF	CITATIONS
149	Layering, melting, and recrystallization of a close-packed micellar crystal under steady and large-amplitude oscillatory shear flows. Journal of Rheology, 2015, 59, 793-820.	1.3	33
150	Large-amplitude oscillatory shear: comparing parallel-disk with cone-plate flow. Rheologica Acta, 2015, 54, 263-285.	1.1	32
151	A constitutive model for the time-dependent, nonlinear stress response of fibrin networks. Biomechanics and Modeling in Mechanobiology, 2015, 14, 995-1006.	1.4	15
152	Dynamic rheological analysis of gluten-free pasta as affected by composition and cooking time. Journal of Food Engineering, 2015, 160, 11-18.	2.7	24
153	Large amplitude oscillatory shear rheology of three different shear-thickening particle dispersions. Rheologica Acta, 2015, 54, 601-618.	1.1	64
154	Silk Hydrogels of Tunable Structure and Viscoelastic Properties Using Different Chronological Orders of Genipin and Physical Cross-Linking. ACS Applied Materials & Different Chronological 12099-12108.	4.0	60
155	Stimulus-responsive hydrogels: Theory, modern advances, and applications. Materials Science and Engineering Reports, 2015, 93, 1-49.	14.8	811
156	Nonlinear elasticity and cavitation of a triblock copolymer gel. Soft Matter, 2015, 11, 4315-4325.	1.2	37
157	Large Amplitude Oscillatory Shear Applications for the Characterization of Dispersed Systems. , 2015, , 113-142.		1
158	Rheology and microstructure of non-Brownian suspensions in the liquid and crystal coexistence region: strain stiffening in large amplitude oscillatory shear. Soft Matter, 2015, 11, 4061-4074.	1.2	18
159	Enhanced homogeneity and interfacial compatibility in melt-extruded cellulose nano-fibers reinforced polyethylene via surface adsorption of poly(ethylene glycol)- block -poly(ethylene) amphiphiles. European Polymer Journal, 2015, 72, 270-281.	2.6	51
160	Energy dissipation behaviors of a dispersed viscoelastic microsphere system. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 487, 240-245.	2.3	20
161	Structural change and dynamics of colloidal gels under oscillatory shear flow. Soft Matter, 2015, 11, 9262-9272.	1.2	32
162	Arrested Phase Separation of Elastin-like Polypeptide Solutions Yields Stiff, Thermoresponsive Gels. Biomacromolecules, 2015, 16, 3762-3773.	2.6	43
163	The Critical Role of Anionic Polymerization for Advances in the Physics of Polyolefins. , 2015, , 1033-1077.		0
164	Analysing the large amplitude oscillatory shear of the Cross and Cross–Maxwell models with the aid of Fourier transform rheology using the example of a solvent-borne alkyd primer. Journal of Non-Newtonian Fluid Mechanics, 2015, 225, 10-27.	1.0	2
165	Rheological characterizations of wormlike micellar solutions containing cationic surfactant and anionic hydrotropic salt. Journal of Rheology, 2015, 59, 1229-1259.	1.3	32
166	MODELING NONLINEAR VISCOELASTIC BEHAVIOR UNDER LARGE DEFORMATIONS. Rubber Chemistry and Technology, 2015, 88, 28-39.	0.6	5

#	Article	IF	Citations
167	Probing the Properties of Dough with Lowâ€Intensity Ultrasound. Cereal Chemistry, 2015, 92, 121-133.	1.1	16
168	Rheo-XPCS. Current Opinion in Colloid and Interface Science, 2015, 20, 261-271.	3.4	53
169	Non-linearity in rheological properties of polymers and composites under large amplitude oscillatory shear. Polymer Science - Series A, 2015, 57, 910-923.	0.4	6
170	Rheology of peptide―and proteinâ€based physical hydrogels: Are everyday measurements just scratching the surface?. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2015, 7, 34-68.	3.3	92
171	Large amplitude oscillatory shear studies on the strain-stiffening behavior of gelatin gels. Chinese Journal of Polymer Science (English Edition), 2015, 33, 70-83.	2.0	24
172	Model-based material functions for SAOS and LAOS analyses. Journal of Non-Newtonian Fluid Mechanics, 2015, 215, 19-30.	1.0	33
173	LAOS: The strain softening/strain hardening paradox. Journal of Rheology, 2015, 59, 21-32.	1.3	57
174	Shear rheology of mixed protein adsorption layers vs their structure studied by surface force measurements. Advances in Colloid and Interface Science, 2015, 222, 148-161.	7.0	20
175	Nonlinearity from FT-rheology for liquid crystal 8CB under large amplitude oscillatory shear (LAOS) flow. Journal of Rheology, 2015, 59, 1-19.	1.3	24
176	Mechanical and optical characterization of gelled matrices during storage. Carbohydrate Polymers, 2015, 117, 825-835.	5.1	13
177	Normal stress differences in large-amplitude oscillatory shear flow for dilute rigid dumbbell suspensions. Journal of Non-Newtonian Fluid Mechanics, 2015, 222, 56-71.	1.0	32
178	A geometrical interpretation of large amplitude oscillatory shear (LAOS) in application to fresh food foams. Journal of Food Engineering, 2015, 146, 53-61.	2.7	40
179	Surface dilational rheological properties in the nonlinear domain. Advances in Colloid and Interface Science, 2015, 222, 110-118.	7.0	39
180	Viscoelastic Behavior of Liquid-Crystal Polymer in Composite Systems. , 2016, , .		1
181	Normal Stress Differences and Yield Stresses in Attractive Particle Networks. Advances in Condensed Matter Physics, 2016, 2016, 1-21.	0.4	10
182	Nitrogen-Doped Carbon Nanotube/Polymer Nanocomposites Towards Thermoelectric Applications. , 0, ,		1
183	Complex Fluids in Energy Dissipating Systems. Applied Sciences (Switzerland), 2016, 6, 206.	1.3	33
184	Modification of Thermal and Mechanical Properties of PEG-PPG-PEG Copolymer (F127) with MA-POSS. Polymers, 2016, 8, 341.	2.0	53

#	Article	IF	CITATIONS
185	Modeling and Simulation of Mucus Flow in Human Bronchial Epithelial Cell Cultures – Part I: Idealized Axisymmetric Swirling Flow. PLoS Computational Biology, 2016, 12, e1004872.	1.5	29
186	Gelation of Soy Milk with Hagfish Exudate Creates a Flocculated and Fibrous Emulsion- and Particle Gel. PLoS ONE, 2016, 11, e0147022.	1.1	15
187	Rheological characterization of triglyceride shortenings. Rheologica Acta, 2016, 55, 767-779.	1.1	37
188	Fourier-Transform Rheology of Unvulcanized, Carbon Black Filled Styrene Butadiene Rubber. Macromolecular Materials and Engineering, 2016, 301, 457-468.	1.7	24
189	Accelerated Mechanical Degradation of Anion Exchange Membranes via Hydration Cycling. Journal of the Electrochemical Society, 2016, 163, H964-H969.	1.3	13
190	Predictions for the northern coast of the shear rheology map: XXLAOS. Journal of Fluid Mechanics, 2016, 798, 1-4.	1.4	8
191	Triggers and signatures of shear banding in steady and time-dependent flows. Journal of Rheology, 2016, 60, 821-834.	1.3	46
192	Nonlinear rheological behavior of multiblock copolymers under large amplitude oscillatory shear. Journal of Rheology, 2016, 60, 1161-1179.	1.3	16
193	Shear banding in large amplitude oscillatory shear (LAOStrain and LAOStress) of polymers and wormlike micelles. Journal of Rheology, 2016, 60, 883-904.	1.3	13
194	lon pairing controls rheological properties of "processionary―polyelectrolyte hydrogels. Soft Matter, 2016, 12, 9749-9758.	1.2	0
195	Dynamic shear rheology of a thixotropic suspension: Comparison of an improved structure-based model with large amplitude oscillatory shear experiments. Journal of Rheology, 2016, 60, 433-450.	1.3	99
196	A comparison of linear and branched wormlike micelles using large amplitude oscillatory shear and orthogonal superposition rheology. Journal of Rheology, 2016, 60, 1331-1346.	1.3	24
197	Diblock-copolymer thin films under shear. Journal of Chemical Physics, 2016, 145, 164908.	1.2	8
198	Large amplitude oscillatory shear of the Giesekus model. Journal of Rheology, 2016, 60, 257-266.	1.3	21
199	Yielding the yield stress analysis: A thorough comparison of recently proposed elasto-visco-plastic (EVP) fluid models. Journal of Non-Newtonian Fluid Mechanics, 2016, 238, 170-188.	1.0	16
200	Rheological effects of macromolecular interactions in synovial fluid. Biorheology, 2016, 53, 49-67.	1.2	37
201	Viscoelastic properties of polyacrylamide solutions from creep ringing data. Journal of Rheology, 2016, 60, 491-502.	1.3	21
202	Constitutive issues associated with LAOS experimental techniques. Journal of Rheology, 2016, 60, 705-714.	1.3	3

#	Article	IF	CITATIONS
203	Controlled production of polysaccharides–exploiting nutrient supply for levan and heteropolysaccharide formation in Paenibacillus sp Carbohydrate Polymers, 2016, 148, 326-334.	5.1	53
204	Effects of silica nanoparticles on copper nanowire dispersions in aqueous PVA solutions. Korea Australia Rheology Journal, 2016, 28, 111-120.	0.7	10
205	On a suspension of nearly spherical colloidal particles under large-amplitude oscillatory shear flow. Journal of Fluid Mechanics, 2016, 791, .	1.4	10
206	Morphological Evaluation of PP/PS Blends Filled with Different Types of Clays by Nonlinear Rheological Analysis. Macromolecules, 2016, 49, 3148-3160.	2.2	54
207	Rheological Behavior of Polystyrene-Based Nanocomposite Suspensions under LAOS. Materials Science Forum, 2016, 851, 215-220.	0.3	0
208	Structure and Conductivity of Semiconducting Polymer Hydrogels. Journal of Physical Chemistry B, 2016, 120, 6215-6224.	1.2	14
209	Rheological behaviour of oil-filled polymer nanoparticles in aqueous dispersion. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 499, 31-45.	2.3	6
210	Yielding the yield-stress analysis: a study focused on the effects of elasticity on the settling of a single spherical particle in simple yield-stress fluids. Soft Matter, 2016, 12, 5378-5401.	1.2	91
211	Structure-induced nonlinear viscoelasticity of non-woven fibrous matrices. Biomechanics and Modeling in Mechanobiology, 2016, 15, 1641-1654.	1.4	3
212	Effect of Molecular Weight, Polydispersity, and Monomer of Linear Homopolymer Melts on the Intrinsic Mechanical Nonlinearity ³ <i>Q</i> ₀ (Ή) in MAOS. Macromolecules, 2016, 49, 3566-3579.	2.2	70
213	Two dimensional mechanical correlation analysis on nonlinear oscillatory shear flow of yield stress fluids. Korea Australia Rheology Journal, 2016, 28, 175-180.	0.7	4
214	Macroscopic yielding in jammed solids is accompanied by a nonequilibrium first-order transition in particle trajectories. Physical Review E, 2016, 94, 022615.	0.8	86
215	Yielding the yield stress analysis: A thorough comparison of recently proposed elasto-visco-plastic (EVP) fluid models. Journal of Non-Newtonian Fluid Mechanics, 2016, 236, 104-122.	1.0	49
216	Automatic control: the vertebral column of dogfish sharks behaves as a continuously variable transmission with smoothly shifting functions. Journal of Experimental Biology, 2016, 219, 2908-2919.	0.8	22
217	Transient and Average Unsteady Dynamics of Single Polymers in Large-Amplitude Oscillatory Extension. Macromolecules, 2016, 49, 8018-8030.	2.2	21
218	Rheological behavior of cement pastes under Large Amplitude Oscillatory Shear. Cement and Concrete Research, 2016, 89, 332-344.	4.6	45
219	Large Time Approximation for Shearing Motions. SIAM Journal on Applied Mathematics, 2016, 76, 1964-1983.	0.8	7
220	Determination of physical emulsion stabilization mechanisms of wood hemicelluloses via rheological and interfacial characterization. Soft Matter, 2016, 12, 8690-8700.	1.2	50

#	Article	IF	CITATIONS
221	Linear and non-linear rheological behavior of polypropylene/polyamide blends modified with a compatibilizer agent and nanosilica and its relationship with the morphology. European Polymer Journal, 2016, 83, 10-21.	2.6	43
222	Injectable Hydrogels by Physical Crosslinking. , 2016, , 97-154.		1
223	Viscoelastic properties of aqueous guar gum derivative solutions under large amplitude oscillatory shear (LAOS). Carbohydrate Polymers, 2016, 153, 312-319.	5.1	47
224	First normal stress difference and in-situ spectral dynamics in a high sensitivity extrusion die for capillary rheometry via the ʽhole effect'. Polymer, 2016, 104, 193-203.	1.8	13
225	Design for Multicomponent Materials. Springer Series in Materials Science, 2016, , 13-36.	0.4	0
226	Oscillatory shearing behavior of rocket leaves powder incorporated dough. Korea Australia Rheology Journal, 2016, 28, 149-158.	0.7	5
227	Long Range Polymer Chain Dynamics Studied by Fluorescence Quenching. Macromolecules, 2016, 49, 6149-6162.	2.2	28
228	From the Volumeâ€Filling Effect to the Stressâ€Bearing Network: The Reinforcement Mechanisms of Carbon Black Filler in Natural Rubber. Macromolecular Materials and Engineering, 2016, 301, 1390-1401.	1.7	29
229	Interfacial Particle Dynamics: One and Two Step Yielding in Colloidal Glass. Langmuir, 2016, 32, 13472-13481.	1.6	46
230	Flexibility of three differential constitutive models evaluated by large amplitude oscillatory shear and Fourier transform rheology. Polymer, 2016, 104, 171-178.	1.8	3
231	Determination of linear viscoelastic properties of an entangled polymer melt by probe rheology simulations. Physical Review E, 2016, 93, 012501.	0.8	19
232	Local Oscillatory Rheology from Echography. Physical Review Applied, 2016, 5, .	1.5	14
233	Effects of chain conformation on the viscoelastic properties of polyacrylonitrile gels under large amplitude oscillatory shear. European Polymer Journal, 2016, 85, 341-353.	2.6	17
234	On different ways of measuring "the―yield stress. Journal of Non-Newtonian Fluid Mechanics, 2016, 238, 233-241.	1.0	251
235	Micellized α-Cyclodextrin-Based Supramolecular Hydrogel Exhibiting pH-Responsive Sustained Release and Corresponding Oscillatory Shear Behavior Analysis. ACS Biomaterials Science and Engineering, 2016, 2, 2185-2195.	2.6	19
236	Divergence of the third harmonic stress response to oscillatory strain approaching the glass transition. Soft Matter, 2016, 12, 8825-8832.	1.2	18
237	A revisit of strain-rate frequency superposition of dense colloidal suspensions under oscillatory shears. Journal of Central South University, 2016, 23, 1873-1882.	1.2	0
238	Rheological Behavior of Tough PVP- <i>in Situ</i> -PAAm Hydrogels Physically Cross-Linked by Cooperative Hydrogen Bonding. Macromolecules, 2016, 49, 8265-8273.	2.2	106

#	Article	IF	CITATIONS
239	Shear Banding of Soft Glassy Materials in Large Amplitude Oscillatory Shear. Physical Review Letters, 2016, 117, 188001.	2.9	33
240	The medium amplitude oscillatory shear of semidilute colloidal dispersions. Part II: Third harmonic stress contribution. Journal of Rheology, 2016, 60, 241-255.	1.3	7
241	Rheology of Soft Materials. , 2016, , 149-164.		6
242	On the Emergence of the Payne Effect in Polymer Melts Reinforced with Nanoparticles. Macromolecular Theory and Simulations, 2016, 25, 312-321.	0.6	28
243	Shear localisation in interfacial particle layers and its influence on Lissajous-plots. Rheologica Acta, 2016, 55, 267-278.	1.1	10
244	Correlation between large amplitude oscillatory shear (LAOS) and steady shear of soft solids at the onset of the fluid rheological behavior. Polymer, 2016, 104, 215-226.	1.8	20
245	Large Amplitude Oscillatory Shear. Springer Series in Materials Science, 2016, , 545-599.	0.4	1
246	Polymer Fluid Dynamics: Continuum and Molecular Approaches. Annual Review of Chemical and Biomolecular Engineering, 2016, 7, 479-507.	3.3	46
247	Effect of mixing on LAOS properties of hard wheat flour dough. Journal of Food Engineering, 2016, 190, 195-204.	2.7	48
248	Concurrent two-scale model for the viscoelastic behavior of elastomers filled with hard nanoparticles. Continuum Mechanics and Thermodynamics, 2016, 28, 1711-1739.	1.4	4
249	Complex polymer orientation. Polymer, 2016, 104, 227-239.	1.8	10
250	Investigation of nonlinear rheological behavior of linear and 3-arm star 1,4-cis-polyisoprene (PI) under medium amplitude oscillatory shear (MAOS) flow via FT-rheology. Polymer, 2016, 104, 268-278.	1.8	22
251	Strain stiffening and negative normal stress in alginate hydrogels. Journal of Polymer Science, Part B: Polymer Physics, 2016, 54, 1767-1775.	2.4	29
252	Toughening of Thermoresponsive Arrested Networks of Elastin-Like Polypeptides To Engineer Cytocompatible Tissue Scaffolds. Biomacromolecules, 2016, 17, 415-426.	2.6	47
253	An investigation into the effects of particle texture, water content and parallel plates× ³ diameters on rheological behavior of fine sediment. International Journal of Sediment Research, 2016, 31, 120-130.	1.8	5
254	Transient magnetorheological response of magnetoactive elastomers to step and pyramid excitations. Soft Matter, 2016, 12, 2901-2913.	1.2	38
255	A constitutive model for developing blood clots with various compositions and their nonlinear viscoelastic behavior. Biomechanics and Modeling in Mechanobiology, 2016, 15, 279-291.	1.4	39
256	Non-integer asymptotic scaling of a thixotropic-viscoelastic model in large-amplitude oscillatory shear. Journal of Non-Newtonian Fluid Mechanics, 2016, 227, 80-89.	1.0	17

#	Article	IF	CITATIONS
257	Effects of Oscillatory Shear on the Orientation of the Inverse Bicontinuous Cubic Phase in a Nonionic Surfactant/Water System. Langmuir, 2016, 32, 2863-2873.	1.6	2
258	Fracture and adhesion of soft materials: a review. Reports on Progress in Physics, 2016, 79, 046601.	8.1	539
259	Characterization of Compatibilizing Effect of Organoclay in Poly(lactic acid) and Natural Rubber Blends by FT-Rheology. Macromolecules, 2016, 49, 2832-2842.	2.2	46
260	Dilatational rheology studies on a semicrystalline ferroelectric copolymer at the air–water interface. RSC Advances, 2016, 6, 16673-16678.	1.7	1
261	Viscoelastic Behaviors of Carbon Black Gel Extracted from Highly Filled Natural Rubber Compounds: Insights into the Payne Effect. Macromolecules, 2016, 49, 1454-1463.	2.2	70
262	A review of hemorheology: Measuring techniques and recent advances. Korea Australia Rheology Journal, 2016, 28, 1-22.	0.7	43
263	Rheological characterization of EVA and HDPE polymer modified bitumens under large deformation at 20 ${\hat {\sf A}}^{\circ}{\sf C}$. Construction and Building Materials, 2016, 112, 756-764.	3.2	20
264	Influence of carbon nanotubes localization and transfer on electrical conductivity in PA66/(PS/PPE)/CNTs nanocomposites. Polymer, 2016, 84, 198-208.	1.8	34
265	Nonlinear Behavior of Gelatin Networks Reveals a Hierarchical Structure. Biomacromolecules, 2016, 17, 590-600.	2.6	88
266	Pre-gelatinized tapioca starch and its mixtures with xanthan gum and \hat{l}^1 -carrageenan. Food Hydrocolloids, 2016, 56, 180-188.	5.6	55
267	The analysis of the influence of xanthan gum and apple pectins on egg white protein foams using the large amplitude oscillatory shear method. Food Hydrocolloids, 2016, 54, 293-301.	5.6	41
268	Gelation of \hat{l}^2 -lactoglobulin and its fibrils in the presence of transglutaminase. Food Hydrocolloids, 2016, 52, 942-951.	5.6	21
269	Exploration of the nature of a unique natural polymer-based thermosensitive hydrogel. Soft Matter, 2016, 12, 492-499.	1.2	13
270	Effects of the degree of surface modification on the rheological responses of precipitated silica suspensions in benzyl alcohol. Journal of Dispersion Science and Technology, 2017, 38, 737-742.	1.3	5
271	Dispersion stabilities and rheological properties of fumed silica suspensions. Journal of Dispersion Science and Technology, 2017, 38, 642-660.	1.3	25
272	Rheological behavior of hydrophobic fumed silica suspensions in aromatic dispersion media. Journal of Dispersion Science and Technology, 2017, 38, 223-228.	1.3	12
273	Integration of colloids into a semi-flexible network of fibrin. Soft Matter, 2017, 13, 1430-1443.	1.2	6
274	Copolymer based on lauryl methacrylate and poly(ethylene glycol) methyl ether methacrylate as amphiphilic macrosurfactant: Synthesis, characterization and their application as dispersing agent for carbon nanotubes. European Polymer Journal, 2017, 87, 308-317.	2.6	22

#	ARTICLE	IF	CITATIONS
275	Metal  turn-off', anion  turn-on' gelation cascade in pyridinylmethyl ureas. Chemical Communications 2017, 53, 2024-2027.		51
276	Oscillatory extensional rheology of microscale fluid filaments. Rheologica Acta, 2017, 56, 113-122.	1.1	2
277	Rheology of fumed silica/polydimethylsiloxane suspensions. Journal of Rheology, 2017, 61, 205-215.	1.3	55
278	Nonlinear relaxation modulus via dual-frequency medium amplitude oscillatory shear (MAOS): General framework and case study for a dilute suspension of Brownian spheroids. Journal of Rheology, 2017, 61, 67-82.	1.3	1
279	Microstructure, phase inversion and yielding in immiscible polymer blends with selectively wetting silica particles. Journal of Rheology, 2017, 61, 363-377.	1.3	26
280	Strain Hardening Behavior of Poly(vinyl alcohol)/Borate Hydrogels. Macromolecules, 2017, 50, 2124-2135.	2.2	45
281	The effect of oil type on network formation by protein aggregates into oleogels. RSC Advances, 2017, 7, 11803-11812.	1.7	58
282	A review on wall slip in high solid dispersions. Rheologica Acta, 2017, 56, 283-305.	1.1	135
283	Rheology of hydrating cement paste: Crossover between two aging processes. Cement and Concrete Research, 2017, 95, 226-231.	4.6	18
285	Non-linear Rheological Properties of Soy Protein Isolate Dispersions and Acid-Induced Gels. International Journal of Food Engineering, 2017, 13, .	0.7	4
286	In search of physical meaning: defining transient parameters for nonlinear viscoelasticity. Rheologica Acta, 2017, 56, 501-525.	1.1	83
287	From firm to fluid – Structure-texture relations of filled gels probed under Large Amplitude Oscillatory Shear. Journal of Food Engineering, 2017, 210, 1-18.	2.7	27
288	A study on the stability of the stress response of nonequilibrium ultrahigh molecular weight polyethylene melts during oscillatory shear flow. Journal of Rheology, 2017, 61, 503-513.	1.3	9
289	Polymer orientation contributions in large-amplitude oscillatory shear flow. Journal of Non-Newtonian Fluid Mechanics, 2017, 244, 85-103.	1.0	5
290	Dynamic wall slip behavior of yield stress fluids under large amplitude oscillatory shear. Journal of Rheology, 2017, 61, 627-641.	1.3	23
291	The intrinsic mechanical nonlinearity 3Q0(\ddot{l} %) of linear homopolymer melts. AIP Conference Proceedings, 2017, , .	0.3	2
292	Analysing the large amplitude oscillatory shear response of a bingham - hooke model in pipkin space and by fourier Transform rheology to predict weak strain overshoots. Journal of Non-Newtonian Fluid Mechanics, 2017, 245, 11-24.	1.0	1
293	Fatigue behavior of polystyrene (PS) analyzed from the Fourier transform (FT) of stress response: First evidence of $12/1(N)$ and $13/1(N)$ as new fingerprints. Polymer Testing, 2017, 60, 343-350.	2.3	26

#	ARTICLE	IF	Citations
294	Oscillatory rheology of dense, athermal suspensions of nearly hard spheres below the jamming point. Soft Matter, 2017, 13, 3664-3674.	1.2	19
295	Effect of aging on silica aerogel properties. Microporous and Mesoporous Materials, 2017, 241, 293-302.	2.2	111
296	On the wall slip phenomenon of elastomers in oscillatory shear measurements using parallel-plate rotational rheometry: II. Influence of experimental conditions. Polymer Testing, 2017, 61, 455-463.	2.3	10
297	Time-dependent viscoelastic properties of Oldroyd-B fluid studied by advection-diffusion lattice Boltzmann method. Korea Australia Rheology Journal, 2017, 29, 137-146.	0.7	3
298	Effect of formulation on structure-function relationships of concentrated emulsions: Rheological, tribological, and microstructural characterization. Food Hydrocolloids, 2017, 72, 11-26.	5.6	97
299	On the wall slip phenomenon of elastomers in oscillatory shear measurements using parallel-plate rotational rheometry: I. Detecting wall slip. Polymer Testing, 2017, 61, 430-440.	2.3	20
300	Effect of urea on heat-induced gelation of bovine serum albumin (BSA) studied by rheology and small angle neutron scattering (SANS). Korea Australia Rheology Journal, 2017, 29, 101-113.	0.7	16
301	The SAOS, MAOS and LAOS behavior of a concentrated suspension of tomato paste and its prediction using the Bird-Carreau (SAOS) and Giesekus models (MAOS-LAOS). Journal of Food Engineering, 2017, 208, 77-88.	2.7	33
302	Exact analytical solution for large-amplitude oscillatory shear flow from Oldroyd 8-constant framework: Shear stress. Physics of Fluids, 2017, 29, .	1.6	67
303	Unsteady shear flows of colloidal hard-sphere suspensions by dynamic simulation. Journal of Rheology, 2017, 61, 477-501.	1.3	20
304	Payne effect of silica-filled styrene-butadiene rubber. Polymer, 2017, 116, 304-313.	1.8	77
305	Small and large strain rheological characterizations of polymer- and crumb rubber-modified asphalt binders. Construction and Building Materials, 2017, 144, 168-177.	3.2	47
306	Predicting and assessing rupture in protein gels under oscillatory shear. Soft Matter, 2017, 13, 2643-2653.	1.2	13
307	Mapping thixo-elasto-visco-plastic behavior. Rheologica Acta, 2017, 56, 195-210.	1.1	79
308	Small amplitude oscillatory shear technique to evaluate structural build-up of cement paste. Materials and Structures/Materiaux Et Constructions, 2017, 50, 1.	1.3	86
309	Phase transition kinetics and rheology of gelatin-alginate mixtures. Food Hydrocolloids, 2017, 66, 49-60.	5.6	78
310	Bingham's heritage. Rheologica Acta, 2017, 56, 163-176.	1.1	34
311	Large Amplitude Oscillatory Shear From Viscoelastic Model With Stress Relaxation. Journal of Applied Mechanics, Transactions ASME, 2017, 84, .	1.1	0

#	ARTICLE	IF	CITATIONS
312	Structure and rheology of dual-associative protein hydrogels under nonlinear shear flow. Soft Matter, 2017, 13, 8511-8524.	1.2	9
313	Dynamic shear rheology and structure kinetics modeling of a thixotropic carbon black suspension. Rheologica Acta, 2017, 56, 811-824.	1.1	28
314	Commonalities in frequency-dependent viscoelastic damping in glasses in the MHz to THz regime. Journal of Applied Physics, 2017, 122, .	1.1	12
315	Nonlinearities and shear banding instability of polyacrylamide solutions under large amplitude oscillatory shear. Journal of Rheology, 2017, 61, 1061-1083.	1.3	23
316	Normal stress differences from Oldroyd 8-constant framework: Exact analytical solution for large-amplitude oscillatory shear flow. Physics of Fluids, 2017, 29, .	1.6	37
317	Yield stress materials in soft condensed matter. Reviews of Modern Physics, 2017, 89, .	16.4	511
318	Rheological behavior of high internal phase water-in-oil emulsions: Effects of droplet size, phase mass fractions, salt concentration and aging. Chemical Engineering Science, 2017, 174, 290-301.	1.9	66
319	Anomalous structural response of nematic colloidal platelets subjected to large amplitude stress oscillations. Physics of Fluids, 2017, 29, 023102.	1.6	4
320	Graphene Oxide: An All-in-One Processing Additive for 3D Printing. ACS Applied Materials & Samp; Interfaces, 2017, 9, 32977-32989.	4.0	74
321	Strain sweeps from Oldroyd 8-constant framework. , 2017, , .		4
322	Elastomers in large-amplitude oscillatory uniaxial extension. Rheologica Acta, 2017, 56, 955-970.	1.1	10
323	Analytical studies on the LAOS behaviors of some popularly used viscoelastic constitutive equations with a new insight on stress decomposition of normal stresses. Physics of Fluids, 2017, 29, .	1.6	11
324	Linear and Extensional Rheology of Model Branched Polystyrenes: From Loosely Grafted Combs to Bottlebrushes. Macromolecules, 2017, 50, 5964-5977.	2.2	75
325	Low-field rheo-NMR: A novel combination of NMR relaxometry with high end shear rheology. Journal of Rheology, 2017, 61, 905-917.	1.3	27
326	Soft Matter in Flow and High Performance Computing. , 2017, , 291-305.		0
327	Multi-scale investigation of gelatin/poly(vinyl alcohol) interactions in water. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 532, 18-25.	2.3	16
328	Fingerprinting Molecular Relaxation in Deformed Polymers. Physical Review X, 2017, 7, .	2.8	41
329	The role of nonlinear viscoelasticity on the functionality of laminating shortenings. Journal of Food Engineering, 2017, 212, 87-96.	2.7	14

#	Article	IF	Citations
330	Aging and rejuvenation of active matter under topological constraints. Scientific Reports, 2017, 7, 5667.	1.6	48
331	Thermoâ€physical properties of synthetic mucus for the study of airway clearance. Journal of Biomedical Materials Research - Part A, 2017, 105, 3025-3033.	2.1	15
332	Characterization of Dilution Effect of Semidilute Polymer Solution on Intrinsic Nonlinearity <i>Q</i> _O via FT Rheology. Macromolecules, 2017, 50, 6238-6254.	2.2	29
333	3D printing of bacteria into functional complex materials. Science Advances, 2017, 3, eaao6804.	4.7	314
334	A comparative study of the effects of cone-plate and parallel-plate geometries on rheological properties under oscillatory shear flow. Korea Australia Rheology Journal, 2017, 29, 281-294.	0.7	19
335	A sequence of physical processes quantified in LAOS by continuous local measures. Korea Australia Rheology Journal, 2017, 29, 269-279.	0.7	36
336	Non-linear stress response of non-gap-spanning magnetic chains suspended in a Newtonian fluid under oscillatory shear test: A direct numerical simulation. Physics of Fluids, 2017, 29, 107106.	1.6	12
337	Nonlinear rheology of colloidal suspensions probed by oscillatory shear. Journal of Rheology, 2017, 61, 797-815.	1.3	9
338	Pectin based food-ink formulations for 3-D printing of customizable porous food simulants. Innovative Food Science and Emerging Technologies, 2017, 42, 138-150.	2.7	128
339	The yielding and the linear-to-nonlinear viscoelastic transition of an elastoviscoplastic material. Journal of Rheology, 2017, 61, 893-903.	1.3	77
340	Metallo-supramolecular hydrogels based on amphiphilic polymers bearing a hydrophobic Schiff base ligand with rapid self-healing and multi-stimuli responsive properties. Polymer Chemistry, 2017, 8, 4680-4687.	1.9	37
341	Advances and challenges in the rheology of concentrated emulsions and nanoemulsions. Advances in Colloid and Interface Science, 2017, 247, 397-412.	7.0	81
342	Reversibility of strain stiffening in silk fibroin gels. International Journal of Biological Macromolecules, 2017, 95, 24-31.	3.6	11
343	The comparison of LAOS behavior of structured food materials (suspensions, emulsions and elastic) Tj ETQq1 1 (0.784314 i 7.8	rgBT /Overlo
344	Impact of enzymatic hydrolysis on the interfacial rheology of whey protein/pectin interfacial layers at the oil/water-interface. Food Hydrocolloids, 2017, 63, 8-18.	5.6	52
345	A Comprehensive Review on Controlled Synthesis of Longâ€Chain Branched Polyolefins: Part 3, Characterization of Longâ€Chain Branched Polymers. Macromolecular Reaction Engineering, 2017, 11, 1600012.	0.9	24
346	Linear viscoelasticity of complex coacervates. Advances in Colloid and Interface Science, 2017, 239, 46-60.	7.0	112
347	Food Rheology: Scientific Development and Importance to Food Industry. , 2017, , 1-4.		11

#	Article	IF	CITATIONS
348	Large Amplitude Oscillatory Shear (LAOS) Measurement and Fourier-Transform Rheology: Application to Food. , 2017, , 87-123.		15
349	A modern look on yield stress fluids. Rheologica Acta, 2017, 56, 177-188.	1.1	84
350	Power-law creep and residual stresses in a carbopol gel. Rheologica Acta, 2017, 56, 307-323.	1.1	64
351	Rheological characterization of macromolecular colloidal gels as simulant of bronchial mucus. , 2017, , .		3
352	Copolymer Nanocomposite Thinâ€Films Under Shear. Macromolecular Symposia, 2017, 376, 1600211.	0.4	0
353	Simple Accurate Expressions for Shear Stress in Large-Amplitude Oscillatory Shear Flow. Nihon Reoroji Gakkaishi, 2017, 45, 251-260.	0.2	12
354	Gas Barrier, Thermal, Mechanical and Rheological Properties of Highly Aligned Graphene-LDPE Nanocomposites. Polymers, 2017, 9, 294.	2.0	54
355	Linear and Nonlinear Rheology Combined with Dielectric Spectroscopy of Hybrid Polymer Nanocomposites for Semiconductive Applications. Nanomaterials, 2017, 7, 23.	1.9	31
356	Two Ways to Examine Differential Constitutive Equations: Initiated on Steady or Initiated on Unsteady (LAOS) Shear Characteristics. Polymers, 2017, 9, 205.	2.0	9
357	Microstructural Origins of Nonlinear Response in Associating Polymers under Oscillatory Shear. Polymers, 2017, 9, 556.	2.0	6
358	The Distribution of Nanoclay Particles at the Interface and Their Influence on the Microstructure Development and Rheological Properties of Reactively Processed Biodegradable Polylactide/Poly(butylene succinate) Blend Nanocomposites. Polymers, 2017, 9, 350.	2.0	39
359	Fumed and Precipitated Hydrophilic Silica Suspension Gels in Mineral Oil: Stability and Rheological Properties. Gels, 2017, 3, 32.	2.1	14
360	Dynamic rheological properties of mixed carrageenan gels under large strains. Journal of Biorheology, 2017, 31, 35-39.	0.2	9
361	An examination of the differential constitutive models under large amplitude oscillatory shear flow. AIP Conference Proceedings, 2017, , .	0.3	0
362	Tailor-made exopolysaccharides—CRISPR-Cas9 mediated genome editing in Paenibacillus polymyxa. Synthetic Biology, 2017, 2, ysx007.	1.2	45
363	LIQUIDS., 2017, , 129-232.		2
364	Double-stranded and single-stranded well-entangled DNA solutions under LAOS: A comprehensive study. Polymer, 2018, 140, 240-254.	1.8	18
365	Development of hydrogels, oleogels, and bigels as local drug delivery systems for periodontitis. Drug Development and Industrial Pharmacy, 2018, 44, 1488-1497.	0.9	44

#	Article	IF	Citations
366	Lignin-based hydrogels with "super-swelling―capacities for dye removal. International Journal of Biological Macromolecules, 2018, 115, 1249-1259.	3.6	99
367	Engineering the rheological and thermomechanical properties of model imitation cheese using particle fillers. Journal of Food Engineering, 2018, 235, 9-15.	2.7	6
368	Nonlinear viscoelasticity of fat crystal networks. Rheologica Acta, 2018, 57, 251-266.	1.1	27
369	Contributions of silica network and interfacial fraction in reinforcement and Payne effect of polypropylene glycol nanocomposites. Polymer, 2018, 138, 139-145.	1.8	20
370	Shear banding in large amplitude oscillatory shear (LAOStrain and LAOStress) of soft glassy materials. Journal of Rheology, 2018, 62, 559-576.	1.3	24
371	Emergence of Strong Nonlinear Viscoelastic Response of Semifluorinated Alkane Monolayers. Langmuir, 2018, 34, 2489-2496.	1.6	6
372	Application of nonlinear rheology to assess the effect of secondary nanofiller on network structure of hybrid polymer nanocomposites. Physics of Fluids, 2018, 30, .	1.6	58
373	Influence of molecular properties on the mechanical fatigue of polystyrene (PS) analyzed via Wöhler curves and Fourier Transform rheology. Polymer, 2018, 138, 1-7.	1.8	22
374	Effect of fish gelatin and gum arabic interactions on concentrated emulsion large amplitude oscillatory shear behavior and tribological properties. Food Hydrocolloids, 2018, 79, 518-525.	5.6	78
375	Nonlinear measures and modeling to examine the role of physical and chemical crosslinking in poly(vinyl alcohol)-based crosslinked systems. Rheologica Acta, 2018, 57, 181-195.	1.1	7
376	Dynamic rheological properties of a fumed silica grease. Rheologica Acta, 2018, 57, 83-94.	1.1	23
377	The fat in a perfect croissant. Physics Today, 2018, 71, 70-71.	0.3	3
378	Synthesis of Carboxymethyl Flaxseed Gum and Study of Nonlinear Rheological Properties of Its Solutions. International Journal of Food Engineering, 2018, 14, .	0.7	8
379	Basic Fundamentals of Petroleum Rheology and Their Application for the Investigation of Crude Oils of Different Natures. Energy &	2.5	68
380	Effect of addition of different nano-clays on the fumed silica-polyethylene glycol based shear-thickening fluids. Materials Research Express, 2018, 5, 014001.	0.8	17
381	Nonlinear viscoelasticity of pre-compressed layered polymeric composite under oscillatory compression. Composites Science and Technology, 2018, 162, 188-197.	3.8	6
382	The yielding transition in periodically sheared binary glasses at finite temperature. Computational Materials Science, 2018, 150, 162-168.	1.4	31
383	Rheological behavior of composites made from linear medium-density polyethylene and hemp fibers treated by surface-initiated catalytic polymerization. Rheologica Acta, 2018, 57, 445-457.	1.1	5

#	Article	IF	Citations
384	Exploring Feature-Based Learning for Data-Driven Haptic Rendering. IEEE Transactions on Haptics, 2018, 11, 388-399.	1.8	6
385	Characterization of \hat{l}^2 -lactoglobulin gels induced by high pressure processing. Innovative Food Science and Emerging Technologies, 2018, 47, 335-345.	2.7	29
386	The role of chemical and physical crosslinking in different deformation stages of hybrid hydrogels. European Polymer Journal, 2018, 100, 86-95.	2.6	64
387	The effect of froth on the dewatering of coals – An oscillatory rheology study. Fuel, 2018, 222, 362-369.	3.4	17
388	Theoretical study of the flow in a fluid damper containing high viscosity silicone oil: Effects of shear-thinning and viscoelasticity. Physics of Fluids, 2018, 30, 030708.	1.6	32
389	Exact solutions for oscillatory shear sweep behaviors of complex fluids from the Oldroyd 8-constant framework. Physics of Fluids, 2018, 30, .	1.6	35
390	Linear and nonlinear rheological behavior of fat crystal networks. Critical Reviews in Food Science and Nutrition, 2018, 58, 2398-2415.	5 . 4	28
391	Path-dependent work and energy in large amplitude oscillatory shear flow. Journal of Non-Newtonian Fluid Mechanics, 2018, 251, 1-9.	1.0	4
392	Stability and rheological properties of hydrophobic fumed silica suspensions in mineral oil. Journal of Dispersion Science and Technology, 2018, 39, 1274-1279.	1.3	6
393	Rheological properties of synthetic mucus for airway clearance. Journal of Biomedical Materials Research - Part A, 2018, 106, 386-396.	2.1	33
394	Stress decomposition analysis in hard and soft sphere suspensions: double peaks in the elastic stress of hard sphere suspensions and its characteristic and structural origin. Rheologica Acta, 2018, 57, 15-27.	1.1	1
395	Exploring the Potential of Mesquite Gum–Nopal Mucilage Mixtures: Physicochemical and Functional Properties. Journal of Food Science, 2018, 83, 113-121.	1.5	11
396	Frequency-sweep medium-amplitude oscillatory shear (MAOS). Journal of Rheology, 2018, 62, 277-293.	1.3	26
397	Contemporary modeling and analysis of steady state and transient human blood rheology. Rheologica Acta, 2018, 57, 141-168.	1.1	26
398	Stress bifurcation in large amplitude oscillatory shear of yield stress fluids. Journal of Rheology, 2018, 62, 89-106.	1.3	24
399	Large amplitude oscillatory shear behavior and tribological properties of gum extracted from Alyssum homolocarpum seed. Food Hydrocolloids, 2018, 77, 669-676.	5.6	29
400	Rheological analysis of core-stabilized Pluronic F127 by semi-interpenetrating network (sIPN) in aqueous solution. Journal of Rheology, 2018, 62, 107-120.	1.3	22
401	Insights into wide variations in carbon fibre/polyetheretherketone rheology data under automated tape placement processing conditions. Journal of Composite Materials, 2018, 52, 2213-2228.	1.2	12

#	Article	IF	CITATIONS
402	Linear-nonlinear dichotomy of rheological responses in particle-filled polymer melts. Journal of Rheology, 2018, 62, 171-181.	1.3	16
403	A well defined glass state obtained by oscillatory shear. Journal of Rheology, 2018, 62, 197-207.	1.3	4
404	Effect of hydrogen bonding on the physicochemical and rheological features of chemically modified phenoxy. Polymer, 2018, 159, 12-22.	1.8	7
405	Polymeric Additive Manufacturing: The Necessity and Utility of Rheology. , 0, , .		8
406	A stability-reversibility map unifies elasticity, plasticity, yielding, and jamming in hard sphere glasses. Science Advances, 2018, 4, eaat6387.	4.7	71
407	Perspective: Nonlinear approaches to structure and dynamics of soft materials. Journal of Chemical Physics, 2018, 149, 240901.	1.2	16
408	High sensitivity measurements of normal force under large amplitude oscillatory shear. Rheologica Acta, 2018, 57, 757-770.	1.1	5
409	Evaluating rheological models for human blood using steady state, transient, and oscillatory shear predictions. Rheologica Acta, 2018, 57, 705-728.	1.1	36
410	Dynamic moduli of flocculated kaolinite sediments: effect of salinity, flocculant dose, and settling time. Colloid and Polymer Science, 2018, 296, 1935-1943.	1.0	13
411	Inferring the Nonlinear Mechanisms of a Reversible Network. Macromolecules, 2018, 51, 8772-8789.	2.2	25
412	Processing of Polymer Blends, Emphasizing: Melt Compounding; Influence of Nanoparticles on Blend Morphology and Rheology; Reactive Processing in Ternary Systems; Morphology–Property Relationships; Performance and Application Challenges; and Opportunities and Future Trends. Springer Series in Materials Science, 2018, , 167-197.	0.4	8
413	Small- and large-amplitude oscillatory rheometry with bead–spring dumbbells in Stokesian Dynamics to mimic viscoelasticity. Journal of Non-Newtonian Fluid Mechanics, 2018, 261, 136-152.	1.0	15
414	Concentration effect on the nonlinear measures of dense polyethylene oxide solutions under large amplitude oscillatory shear. Journal of Rheology, 2018, 62, 1299-1317.	1.3	16
415	Nonlinear viscoelastic behavior of aqueous foam under large amplitude oscillatory shear flow. Korea Australia Rheology Journal, 2018, 30, 147-159.	0.7	8
416	Power series for shear stress of polymeric liquid in large-amplitude oscillatory shear flow. Korea Australia Rheology Journal, 2018, 30, 169-178.	0.7	6
417	Continuous relaxation spectra for constitutive models in medium-amplitude oscillatory shear. Journal of Rheology, 2018, 62, 1271-1298.	1.3	13
418	Increased rate of solvent diffusion in a prototypical supramolecular gel measured on the picosecond timescale. Chemical Communications, 2018, 54, 6340-6343.	2.2	4
419	The transient behavior of soft glassy materials far from equilibrium. Journal of Rheology, 2018, 62, 869-888.	1.3	39

#	Article	IF	CITATIONS
420	The rheology of batch and continuously prepared gluten-free bread dough in oscillatory and capillary shear flow. Journal of Food Science and Technology, 2018, 55, 3077-3084.	1.4	6
421	Pad \tilde{A} © approximant for normal stress differences in large-amplitude oscillatory shear flow. Physics of Fluids, 2018, 30, 040910.	1.6	19
422	Fatigue life prediction via the timeâ€dependent evolution of linear and nonlinear mechanical parameters determined via Fourier transform of the stress. Journal of Applied Polymer Science, 2018, 135, 46634.	1.3	10
423	Effect of a functional polymer on the rheology and microstructure of sodium alginate. Carbohydrate Polymers, 2018, 199, 58-67.	5.1	26
424	Nonlinear rheological behavior of bitumen under LAOS stress. Journal of Rheology, 2018, 62, 975-989.	1.3	21
425	Characterization of rheological and physicochemical properties of Alaska walleye pollock (Gadus) Tj ETQq1 1 C	.7843]4 rgBT 1.4	Г <u>f</u> Overlock
426	Dynamic Rheological Behavior of Low Water-to-binder Ratio Mortars under Large Amplitude Oscillatory Shear (LAOS). Journal Wuhan University of Technology, Materials Science Edition, 2018, 33, 608-618.	0.4	5
427	Yield Stress Analysis of a Fumed Silica Lubricating Grease. Tribology Transactions, 2018, 61, 1131-1140.	1.1	14
428	Large amplitude oscillatory shear behavior and gelation procedure of high and low acyl gellan gum in aqueous solution. Carbohydrate Polymers, 2018, 199, 397-405.	5.1	35
429	Nonlinear shear and dilatational rheology of viscoelastic interfacial layers of cellulose nanocrystals. Physics of Fluids, 2018, 30, .	1.6	43
430	Effects of anionic and cationic surfactants on the rheological properties and kinetics of bovine serum albumin hydrogel. Rheologica Acta, 2018, 57, 563-573.	1.1	17
431	Rheological Response of Natural Soft Coastal Mud under Oscillatory Shear Loadings. Journal of Waterway, Port, Coastal and Ocean Engineering, 2018, 144, .	0.5	18
432	Nonlinear Viscoelasticity., 2018,, 369-459.		0
433	Nonlinear Rheology and Fracture of Disclination Network in Cholesteric Blue Phase III. Fluids, 2018, 3, 34.	0.8	4
434	Optimization and Characterization of Preceramic Inks for Direct Ink Writing of Ceramic Matrix Composite Structures. Materials, 2018, 11, 515.	1.3	43
435	A model of human skin under large amplitude oscillatory shear. Journal of the Mechanical Behavior of Biomedical Materials, 2018, 86, 423-432.	1.5	13
436	Linear and nonlinear rheological behavior of native and debranched waxy rice starch gels. Food Hydrocolloids, 2018, 85, 1-9.	5.6	65
437	Linear Viscoelasticity of Polymers and Polymer Nanocomposites: Molecular-Dynamics Large Amplitude Oscillatory Shear and Probe Rheology Simulations. Advances in Dielectrics, 2018, , 375-404.	1.2	4

#	Article	IF	CITATIONS
438	First-harmonic nonlinearities can predict unseen third-harmonics in medium-amplitude oscillatory shear (MAOS). Korea Australia Rheology Journal, 2018, 30, 1-10.	0.7	13
439	Rheological properties and microstructure of soy protein isolate le-carrageenan gels under high-speed shear treatment. Journal of Food Engineering, 2018, 236, 44-50.	2.7	24
440	Rheological nature and dropping performance of sweet potato starch dough as influenced by the binder pastes. Food Hydrocolloids, 2018, 85, 39-50.	5.6	27
441	Rheo-kinetics of bovine serum albumin in catanionic surfactant systems. Korean Journal of Chemical Engineering, 2018, 35, 1969-1978.	1.2	13
442	Self-Assembly and Mechanical Properties of a Triblock Copolymer Gel in a Mid-block Selective Solvent. ACS Symposium Series, 2018, , 157-197.	0.5	4
443	Inverse Analysis of Cellulose by Using the Energy-Based Method and a Rotational Rheometer. Applied Sciences (Switzerland), 2018, 8, 1354.	1.3	5
444	Rheology of fumed silica nanoparticles/partially hydrolyzed polyacrylamide aqueous solutions under small and large amplitude oscillatory shear deformations. Journal of Rheology, 2018, 62, 1197-1216.	1.3	39
445	Decomposition of <i>Q</i> ₀ from FT-rheology into elastic and viscous parts: Intrinsic-nonlinear master curves for polymer solutions. Journal of Rheology, 2018, 62, 919-939.	1.3	22
446	Rheological study of the effect of polyethylene oxide (PEO) homopolymer on the gelation of PEO-PPO-PEO triblock copolymer in aqueous solution. Korea Australia Rheology Journal, 2018, 30, 109-125.	0.7	18
447	Nonlinear Oscillatory Shear Mechanical Responses. Advances in Dielectrics, 2018, , 321-368.	1.2	10
448	Multilamellar Vesicle Formation Probed by Rheo-NMR and Rheo-SALS under Large Amplitude Oscillatory Shear. Langmuir, 2018, 34, 8314-8325.	1.6	15
449	A review of polymer nanohybrids for oil recovery. Advances in Colloid and Interface Science, 2019, 272, 102018.	7.0	69
450	Settling dynamics of two identical vertically aligned spheres in a thixotropic fluid. Journal of Non-Newtonian Fluid Mechanics, 2019, 271, 104146.	1.0	4
451	Dissipation and strain-stiffening behavior of pectin–Ca gels under LAOS. Soft Matter, 2019, 15, 6852-6866.	1.2	45
452	Droplet clustering in cyclodextrin-based emulsions mediated by methylcellulose. Soft Matter, 2019, 15, 6842-6851.	1.2	8
453	Experimental Basics of Various Methods for Measuring the Elastic Behavior. , 2019, , 21-35.		0
454	Structure–Property Relationships in Polyethylene-Based Composites Filled with Biochar Derived from Waste Coffee Grounds. Polymers, 2019, 11, 1336.	2.0	50
455	Cleaning insoluble viscoplastic soil layers using static and moving coherent impinging water jets. Chemical Engineering Science, 2019, 207, 752-768.	1.9	9

#	ARTICLE	IF	CITATIONS
456	Optical Tweezers Microrheology Maps the Dynamics of Strain-Induced Local Inhomogeneities in Entangled Polymers. Physical Review Letters, 2019, 123, 038001.	2.9	18
457	Unveiling Temporal Nonlinear Structure–Rheology Relationships under Dynamic Shearing. Polymers, 2019, 11, 1189.	2.0	25
458	A New Solid-like State for Liquid/Liquid/Particle Mixtures with Bicontinuous Morphology of Concentrated Emulsion and Concentrated Suspension. Langmuir, 2019, 35, 9529-9537.	1.6	3
459	Interfacial shear rheology of perfluorosulfonic acid ionomer monolayers at the air/water interface. Journal of Rheology, 2019, 63, 947-959.	1.3	10
460	Nonlinear and linear viscoelastic behaviors of thermoplastic vulcanizates containing rubber nanoparticle agglomerates. Polymer, 2019, 181, 121793.	1.8	12
461	Superharmonic Resonance in Carbon-Black-Filled Rubber by High-Frequency DMA. Polymers, 2019, 11, 1653.	2.0	1
462	Silicone Chain Extender for Recycled Polyethylene-terephthalate with Higher Flexibility. Journal Wuhan University of Technology, Materials Science Edition, 2019, 34, 1228-1232.	0.4	9
463	Characterization of the Effect of Clay on Morphological Evaluations of PLA/Biodegradable Polymer Blends by FT-Rheology. Macromolecules, 2019, 52, 7904-7919.	2.2	38
464	The study on mechanical properties of Phytagel medium. IOP Conference Series: Earth and Environmental Science, 2019, 346, 012089.	0.2	5
465	First-Order and Third-Order Nonlinearities from Medium-Amplitude Oscillatory Shearing of Hydrogen-Bonded Polymers and Other Viscoelastic Materials. Macromolecules, 2019, 52, 8690-8704.	2.2	6
466	Payne effect of carbon black filled natural rubber compounds and their carbon black gels. Polymer, 2019, 185, 121953.	1.8	52
467	Evaluation of the Degree of Dispersion of Polymer Nanocomposites (PNCs) Using Nonlinear Rheological Properties by FT-Rheology. Macromolecules, 2019, 52, 8604-8616.	2.2	22
468	Numerical simulations of oscillatory shear flow of particle suspensions at finite inertia. Rheologica Acta, 2019, 58, 741-753.	1.1	2
469	Rheological behaviour of thermotropic and lyotropic liquid crystalline phases of Guerbet branched chain glycolipids. Fluid Phase Equilibria, 2019, 502, 112305.	1.4	6
470	Effects of Ionic Strength on Lateral Particle Migration in Shear-Thinning Xanthan Gum Solutions. Micromachines, 2019, 10, 535.	1.4	8
471	The role of polymers in cross-kingdom bioadhesion. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20190192.	1.8	10
472	X-Ray Crystal Structures and Organogelator Properties of (R)-9-Hydroxystearic Acid. Molecules, 2019, 24, 2854.	1.7	3
473	Strain shifts under stress-controlled oscillatory shearing in theoretical, experimental, and structural perspectives: Application to probing zero-shear viscosity. Journal of Rheology, 2019, 63, 863-881.	1.3	14

#	Article	IF	CITATIONS
474	Aging of natural rubber studied via Fourier-transform rheology and double quantum NMR to correlate local chain dynamics with macroscopic mechanical response. Polymer, 2019, 181, 121804.	1.8	17
475	Influence of hydroxyl-terminated polybutadiene liquid on rheology of fumed silica filled cis-polybutadiene rubber. Polymer, 2019, 180, 121709.	1.8	11
476	Reinforcing effect of graphene oxide on mechanical properties, self-healing performance and recoverability of double network hydrogel based on lº-carrageenan and polyacrylamide. Polymer, 2019, 183, 121837.	1.8	34
477	Effects of berberine and metformin on intestinal inflammation and gut microbiome composition in db/db mice. Biomedicine and Pharmacotherapy, 2019, 118, 109131.	2.5	155
478	Relevance of Rheology on the Properties of PP/MWCNT Nanocomposites Elaborated with Different Irradiation/Mixing Protocols. Fluids, 2019, 4, 7.	0.8	5
479	Insight into the weak strain overshoot of carbon black filled natural rubber. Polymer, 2019, 167, 109-117.	1.8	57
480	Effect of transglutaminase and acidification temperature on the gelation of reconstituted skim milk. International Dairy Journal, 2019, 92, 59-68.	1.5	8
481	Inorganic nanoparticles modify the phase behavior and viscoelastic properties of non-lamellar lipid mesophases. Journal of Colloid and Interface Science, 2019, 541, 329-338.	5.0	12
482	Time-strain separability in medium-amplitude oscillatory shear. Physics of Fluids, 2019, 31, .	1.6	20
483	Structural Characterization of CVD Custom-Synthesized Carbon Nanotube/Polymer Nanocomposites in Large-Amplitude Oscillatory Shear (LAOS) Mode: Effect of Dispersion Characteristics in Confined Geometries. Macromolecules, 2019, 52, 1489-1504.	2.2	39
484	Experimental and modeling studies of the flow, dynamic and creep recovery properties of pearl millet starch as affected by concentration and cultivar type. International Journal of Biological Macromolecules, 2019, 135, 544-552.	3.6	14
485	Nonlinear viscoelastic properties of native male human skin and in vitro 3D reconstructed skin models under LAOS stress. Journal of the Mechanical Behavior of Biomedical Materials, 2019, 96, 310-323.	1.5	12
486	Oscillatory Shear Response of the Rigid Rod Model: Microstructural Evolution. Macromolecules, 2019, 52, 4907-4915.	2.2	2
487	pH-Controlled Self-Assembled Fibrillar Network Hydrogels: Evidence of Kinetic Control of the Mechanical Properties. Chemistry of Materials, 2019, 31, 4817-4830.	3.2	35
488	Classification of hydrocolloids based on small amplitude oscillatory shear, large amplitude oscillatory shear, and textural properties. Journal of Texture Studies, 2019, 50, 520-538.	1.1	17
489	Fatigue analysis of brittle polymers via Fourier transform of the stress. Mechanics of Materials, 2019, 137, 103100.	1.7	15
490	Regulating, Measuring, and Modeling the Viscoelasticity of Bacterial Biofilms. Journal of Bacteriology, 2019, 201, .	1.0	33
491	Nonlinear rheological behavior of gelatin gels: In situ gels and individual layers. Journal of Colloid and Interface Science, 2019, 553, 746-757.	5.0	30

#	Article	IF	CITATIONS
492	Structure-Property Relationships via Recovery Rheology in Viscoelastic Materials. Physical Review Letters, 2019, 122, 248003.	2.9	37
493	Rheological, thermal and microstructural properties of casein/ \hat{l}^2 -carrageenan mixed systems. LWT - Food Science and Technology, 2019, 113, 108296.	2.5	49
494	Yielding and recovery of conductive pastes for screen printing. Rheologica Acta, 2019, 58, 361-382.	1.1	27
495	Modeling the rheology of thixotropic elasto-visco-plastic materials. Journal of Rheology, 2019, 63, 609-639.	1.3	60
496	Evidence of percolated network at the linear - Nonlinear transition in oscillatory shear. AIP Conference Proceedings, 2019, , .	0.3	6
497	Non-linear rheological (LAOS) behavior of sourdough-based dough. Food Hydrocolloids, 2019, 96, 481-492.	5.6	32
498	Biopolymers interaction elaborating using viscoelastic relaxation spectra, network parameters, and thermodynamic properties. Journal of Texture Studies, 2019, 50, 493-507.	1.1	0
499	Polymer Processing and Rheology. Polymers and Polymeric Composites, 2019, , 133-180.	0.6	6
500	Interfacial Rheology of Charged Anisotropic Cellulose Nanocrystals at the Air–Water Interface. Langmuir, 2019, 35, 7937-7943.	1.6	25
501	Nonlinearity in the Mechanical Response of Rubber as Investigated by High-Frequency DMA. Polymers, 2019, 11, 581.	2.0	4
502	Heavy oil recovery by surface modified silica nanoparticle/HPAM nanofluids. Fuel, 2019, 252, 622-634.	3.4	47
503	Large amplitude oscillatory shear (LAOS) rheology of nixtamalized corn masa. Journal of Cereal Science, 2019, 88, 31-37.	1.8	8
504	Instantaneous dimensionless numbers for transient nonlinear rheology. Rheologica Acta, 2019, 58, 539-556.	1.1	22
505	Nonlinear electrical and rheological spectroscopies identify structural and supramolecular relaxations in a model peptide. Soft Matter, 2019, 15, 4334-4345.	1.2	6
506	Tethered Semiflexible Polymer under Large Amplitude Oscillatory Shear. Polymers, 2019, 11, 737.	2.0	5
507	Stimuli Responsive, Self-Sustainable, and Self-Healable Functionalized Hydrogel with Dual Gelation, Load-Bearing, and Dye-Absorbing Properties. ACS Applied Materials & Samp; Interfaces, 2019, 11, 19572-19583.	4.0	41
508	CO2 in Lyotropic Liquid Crystals: Phase Equilibria Behavior and Rheology. Polymers, 2019, 11, 309.	2.0	5
509	High Dielectric Constant and Low Dielectric Loss via Poly(vinyl) Tj ETQq1 1 0.784314 rgBT /Overlock 10 Tf 50 67 Materials & Dielectric Loss via Poly(vinyl) Tj ETQq1 1 0.784314 rgBT /Overlock 10 Tf 50 67	Td (alcoho	ol)/Ti _{3 157}

#	Article	IF	CITATIONS
510	Experimental investigation of the dissipation characteristic of sandwich structures with periodically perforated viscoelastic damping material core. JVC/Journal of Vibration and Control, 2019, 25, 2008-2024.	1.5	4
511	Magnetorheological Elastomer's Material Modeling and Parameter Determination by Using the Energy-based Method. Advanced Structured Materials, 2019, , 1-15.	0.3	0
512	Linear and nonlinear shear studies reveal supramolecular responses in supercooled monohydroxy alcohols with faint dielectric signatures. Journal of Chemical Physics, 2019, 150, 104501.	1.2	11
513	Microgel particle formation: Influence of mechanical properties of pectin-based gels on microgel particle size distribution. Food Hydrocolloids, 2019, 94, 105-113.	5.6	21
514	Does shear induced demixing resemble a thermodynamically driven instability?. Journal of Rheology, 2019, 63, 335-359.	1.3	10
515	Power series for normal stress differences of polymeric liquids in large-amplitude oscillatory shear flow. Physics of Fluids, 2019, 31, .	1.6	4
516	Rheoâ€NMR in food scienceâ€"Recent opportunities. Magnetic Resonance in Chemistry, 2019, 57, 757-765.	1.1	10
517	Highly structured graphene polyethylene nanocomposites. AIP Conference Proceedings, 2019, , .	0.3	9
518	Rheological Characterization of Next-Generation Ballistic Witness Materials for Body Armor Testing. Polymers, 2019, 11, 447.	2.0	9
519	Discussion of "Linear and Nonlinear Rheological Properties of Bituminous Mastics under Large Amplitude Oscillatory Shear Testing―by Aboelkasim Diab and Zhanping You. Journal of Materials in Civil Engineering, 2019, 31, .	1.3	2
520	Rheological analysis of oil–water emulsions stabilized with clay particles by LAOS and interfacial shear moduli measurements. Rheologica Acta, 2019, 58, 453-466.	1.1	10
521	Large-amplitude oscillatory shear flow simulation for a FENE fluid. Rheologica Acta, 2019, 58, 241-260.	1.1	4
522	Grape Seed-Inspired Smart Hydrogel Scaffolds for Melanoma Therapy and Wound Healing. ACS Nano, 2019, 13, 4302-4311.	7.3	169
523	Small and large amplitude oscillatory shear behavior of supramolecular gels based on dopamine-boronic acid interactions. Journal of Rheology, 2019, 63, 391-404.	1.3	8
524	A simple method to analyze materials under quasilinear large amplitude oscillatory shear flow (QL-LAOS). Journal of Rheology, 2019, 63, 305-317.	1.3	10
525	First-harmonic intrinsic nonlinearity of model polymer solutions in medium amplitude oscillatory shear (MAOS). Korea Australia Rheology Journal, 2019, 31, 1-13.	0.7	16
526	Nonlinear system identification of soft materials based on Hilbert transform. Journal of Sound and Vibration, 2019, 447, 205-220.	2.1	4
527	Impact of soy proteins, hydrolysates and monoglycerides at the oil/water interface in emulsions on interfacial properties and emulsion stability. Colloids and Surfaces B: Biointerfaces, 2019, 177, 550-558.	2.5	71

#	Article	IF	CITATIONS
528	Time-dependent yield stress materials. Current Opinion in Colloid and Interface Science, 2019, 43, 15-25.	3.4	42
530	Rheological design of 3D printable all-inorganic inks using BiSbTe-based thermoelectric materials. Journal of Rheology, 2019, 63, 291-304.	1.3	43
531	Comb and Bottlebrush Polymers with Superior Rheological and Mechanical Properties. Advanced Materials, 2019, 31, e1806484.	11.1	117
532	Prevention of network destruction of partially hydrolyzed polyacrylamide (HPAM): Effects of salt, temperature, and fumed silica nanoparticles. Physics of Fluids, 2019, 31, .	1.6	44
533	Macromolecular tumbling and wobbling in large-amplitude oscillatory shear flow. Physics of Fluids, 2019, 31, 021214.	1.6	11
534	Rheological behavior of fumed silica filled polyethylene oxide. Journal of Polymer Science, Part B: Polymer Physics, 2019, 57, 397-405.	2.4	6
535	Experimental signatures of a nonequilibrium phase transition near the crossover point of a Langmuir monolayer. Journal of Physics Condensed Matter, 2019, 31, 504004.	0.7	2
536	Comparing the Electrorheological Effect of Polyhedral Silsesquioxane Cage Structures with Different Numbers of Cyanopropyl Functional Groups. ACS Omega, 2019, 4, 20964-20971.	1.6	5
537	Nonlinear material functions under medium amplitude oscillatory shear (MAOS) flow. Korea Australia Rheology Journal, 2019, 31, 267-284.	0.7	13
538	The effect of silica nanoparticles on the stability of aqueous foams. Journal of Dispersion Science and Technology, 2019, 40, 206-218.	1.3	13
539	Mechanical Properties of a Metal–Organic Framework formed by Covalent Cross-Linking of Metal–Organic Polyhedra. Journal of the American Chemical Society, 2019, 141, 1045-1053.	6.6	89
540	Fourier-transform rheology of unvulcanized styrene butadiene rubber filled with increasingly silanized silica. Soft Materials, 2019, 17, 269-282.	0.8	12
541	Dynamics of entangled polymer chains with nanoparticle attachment under large amplitude oscillatory shear. Journal of Polymer Science, Part B: Polymer Physics, 2019, 57, 62-76.	2.4	7
542	Viscoelastic and textural properties of canary seed starch gels in comparison with wheat starch gel. International Journal of Biological Macromolecules, 2019, 124, 270-281.	3 . 6	46
543	Polymer Processing and Rheology. Polymers and Polymeric Composites, 2019, , 1-47.	0.6	6
544	Effect of leavening time on LAOS properties of yeasted wheat dough. Food Hydrocolloids, 2019, 90, 421-432.	5.6	27
545	Shear banding in semidilute entangled polymer solutions. Current Opinion in Colloid and Interface Science, 2019, 39, 1-10.	3.4	14
546	Interfacial Fourier transform shear rheometry of complex fluid interfaces. Rheologica Acta, 2019, 58, 29-45.	1.1	10

#	ARTICLE	IF	CITATIONS
547	The effect of saline water on the settling of coal slurry and coal froth. Powder Technology, 2019, 344, 161-168.	2.1	16
548	Study of the Interactions of Zwitterions and Carbon Nanotubes by Nonlinear Rheology in an Aqueous Environment. Langmuir, 2019, 35, 1964-1972.	1.6	6
549	Concentrated emulsions as novel fat replacers in reduced-fat and low-fat Cheddar cheeses. Part 2. Large amplitude oscillatory shear behavior. International Dairy Journal, 2019, 91, 137-146.	1.5	26
550	Highly Methacrylated Gelatin Bioink for Bone Tissue Engineering. ACS Biomaterials Science and Engineering, 2019, 5, 831-845.	2.6	39
551	Nonlinear Rheology of Fats Using Large Amplitude Oscillatory Shear Tests., 2019, , 169-195.		4
552	Laminar mixing of non-Newtonian fluids in static mixers: process intensification perspective. Reviews in Chemical Engineering, 2020, 36, 423-436.	2.3	19
553	Preparation and rheological investigation of tough PAAm hydrogel by adding branched polyethyleneimine. Journal of Applied Polymer Science, 2020, 137, 48541.	1.3	4
554	Effect of styrene-butadiene-styrene (SBS) on the rheological behavior of asphalt binders. Construction and Building Materials, 2020, 231, 117076.	3.2	40
556	Dynamic rheology and mechanics of polymers in their solid state., 2020,, 241-261.		2
557	Self-Sustainable, self-healable, Load Bearable and Moldable stimuli responsive ionogel for the Selective Removal of Anionic Dyes from aqueous medium. Journal of Molecular Liquids, 2020, 298, 112048.	2.3	29
558	Interfacial characterization of immiscible polymer blends using rheology. , 2020, , 31-48.		2
559	Rheology of polymer-clay nanocomposites. , 2020, , 97-122.		9
560	Rheology of polymer blend nanocomposites. , 2020, , 123-160.		6
561	Cumulative nonlinearity as a parameter to quantify mechanical fatigue. Fatigue and Fracture of Engineering Materials and Structures, 2020, 43, 265-276.	1.7	9
562	Poreâ€Scale Flow Characterization of Polymer Solutions in Microfluidic Porous Media. Small, 2020, 16, e1903944.	5 . 2	84
563	Evolution of chain entanglements under large amplitude oscillatory shear flow and its effect on crystallization of isotactic polypropylene. Polymer, 2020, 186, 121899.	1.8	14
564	Processing techniques and structural and morphological characterization., 2020,, 81-98.		0
565	Investigating propensity of roller spatter during application of water-based architectural paints: effect of thickeners and volume solids. Journal of Coatings Technology Research, 2020, 17, 413-425.	1.2	2

#	Article	IF	CITATIONS
566	Energy dissipation in pH-sensitive hydrogels subjected to large amplitude oscillatory shear. Mechanics of Materials, 2020, 140, 103226.	1.7	9
567	Large Amplitude Oscillatory Shear (LAOS) analysis of gluten-free cake batters: The effect of dietary fiber enrichment. Journal of Food Engineering, 2020, 275, 109867.	2.7	13
568	Understanding the physics of hydrocolloids interaction using rheological, thermodynamic and functional properties: A case study on xanthan gum-cress seed gum blend. International Journal of Biological Macromolecules, 2020, 151, 1139-1153.	3.6	16
569	Effect of hydrothermal treatment on linear and nonlinear rheological properties of highland barley gels. LWT - Food Science and Technology, 2020, 119, 108868.	2.5	10
570	Investigation on solid-liquid transition of soft mud under steady and oscillatory shear loads. Sedimentary Geology, 2020, 397, 105570.	1.0	19
571	Acoustic bubble dynamics in a yield-stress fluid. Soft Matter, 2020, 16, 10405-10418.	1.2	13
572	Dispersion stability and rheological properties of silica suspensions in aqueous solutions. Advances in Colloid and Interface Science, 2020, 284, 102248.	7.0	15
573	Delay of re-entanglement kinetics by shear-induced nucleation precursors in isotactic polypropylene melt. Polymer, 2020, 210, 123000.	1.8	8
574	Investigating the mechanisms of rubber, styrene-butadiene-styrene and ethylene-vinyl acetate in asphalt binder based on rheological and distress-related tests. Construction and Building Materials, 2020, 262, 120744.	3.2	17
575	Characterization and rheology of platelet-rich plasma. Journal of Rheology, 2020, 64, 1017-1034.	1.3	4
576	Easy-Processable and Aging-Free All-Polymer Polysiloxane Composites. ACS Applied Polymer Materials, 2020, 2, 5835-5844.	2.0	8
577	Swelling of Hydrogels Based on Carboxymethylated Starch and Poly(Acrylic Acid): Nonlinear Rheological Approach. Polymers, 2020, 12, 2564.	2.0	8
578	Optimizing the printability and dispersibility of functionalized zirconium oxide/acrylate composites with various nano-to micro-particle ratios. Ceramics International, 2020, 46, 26903-26910.	2.3	15
579	Shear-Dependent Structures of Flocculated Micro/Nanofibrillated Cellulose (MNFC) in Aqueous Suspensions. Biomacromolecules, 2020, 21, 3561-3570.	2.6	17
580	Surfactant Driven Liquid to Soft Solid Transition of Cellulose Nanocrystal Suspensions. Langmuir, 2020, 36, 9551-9561.	1.6	12
581	Gingipain R1 and Lipopolysaccharide From Porphyromonas gingivalis Have Major Effects on Blood Clot Morphology and Mechanics. Frontiers in Immunology, 2020, 11, 1551.	2.2	13
582	A small-scale study of nonlinear blood rheology shows rapid transient transitions. Rheologica Acta, 2020, 59, 687-705.	1.1	4
583	Design of Thermoresponsive Polyamine Cross-Linked Perfluoropolyether Hydrogels for Imaging and Delivery Applications. ACS Medicinal Chemistry Letters, 2020, 11, 2032-2040.	1.3	8

#	Article	IF	Citations
584	Rheological behavior of concentrated slurry and wet granules for lithium ion battery electrodes. Advanced Powder Technology, 2020, 31, 4491-4499.	2.0	9
585	Fibrillar Network Dynamics during Oscillatory Rheology of Supramolecular Gels. Langmuir, 2020, 36, 13342-13355.	1.6	15
586	Rheological study of cellulose nanofiber disintegrated by a controlled high-intensity ultrasonication for a delicate nano-fibrillation. Cellulose, 2020, 27, 9257-9269.	2.4	14
587	Advanced Constitutive Modeling of the Thixotropic Elasto-Visco-Plastic Behavior of Blood: Description of the Model and Rheological Predictions. Materials, 2020, 13, 4184.	1.3	31
588	Correlation between linear and nonlinear material functions under large amplitude oscillatory shear. Physics of Fluids, 2020, 32, .	1.6	8
589	Rheological Investigation of Relaxation Behavior of Polycarbonate/Acrylonitrile-Butadiene-Styrene Blends. Polymers, 2020, 12, 1916.	2.0	4
590	A study on the boundary of linear viscoelasticity in simple shear flows: model calculations. Korea Australia Rheology Journal, 2020, 32, 205-212.	0.7	0
591	Yield stress analysis of cellulose nanocrystalline gels. Cellulose, 2020, 27, 9337-9353.	2.4	23
592	Medium amplitude parallel superposition (MAPS) rheology. Part 2: Experimental protocols and data analysis. Journal of Rheology, 2020, 64, 1263-1293.	1.3	11
593	High-Fidelity Hydrogel Thin Films Processed from Deep Eutectic Solvents. ACS Applied Materials & Amp; Interfaces, 2020, 12, 43191-43200.	4.0	8
594	Elucidating the Gae^3 overshoot in soft materials with a yield transition via a time-resolved experimental strain decomposition. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 21945-21952.	3.3	112
595	Interfacial properties of milk proteins: A review. Advances in Colloid and Interface Science, 2021, 295, 102347.	7.0	29
596	Roles played by novolac resin on rubber compounding, reinforcement and nonlinear rheological behaviors. Polymer, 2020, 207, 122895.	1.8	7
597	Injectable Thermosensitive Chitosan/Pullulan-Based Hydrogels with Improved Mechanical Properties and Swelling Capacity. Polymers, 2020, 12, 2514.	2.0	29
598	Influences of chemical crosslinking, physical associating, and filler filling on nonlinear rheological responses of polyisoprene. Journal of Rheology, 2020, 64, 775-784.	1.3	21
599	Two step yielding in soft materials. Advances in Colloid and Interface Science, 2020, 282, 102179.	7.0	25
600	Boronic ester-based self-healing hydrogels formed by using intermolecular B-N coordination. Polymer, 2020, 202, 122624.	1.8	14
601	Nonlinear rheological characteristics of single species bacterial biofilms. Npj Biofilms and Microbiomes, 2020, 6, 19.	2.9	35

#	Article	IF	CITATIONS
602	Effect of protein aggregation on rheological properties of pea protein gels. Food Hydrocolloids, 2020, 108, 106036.	5.6	53
603	Nonlinear responses of carbon black-filled polymer solutions to forced oscillatory shear. Journal of Non-Newtonian Fluid Mechanics, 2020, 282, 104319.	1.0	5
604	Rheological behavior of water-clay suspensions under large amplitude oscillatory shear. Rheologica Acta, 2020, 59, 665-683.	1.1	9
605	Mechanical response of industrial benchmark lipsticks under large-scale deformations. Acta Mechanica, 2020, 231, 3031-3042.	1.1	8
606	Shear rheo-viscoelasticity approach to the plastic cracking of early-age concrete. Cement and Concrete Research, 2020, 135, 106127.	4.6	14
607	Applicability of Modified Cox-Merz Rule to Concentrated Suspensions. Journal of Non-Newtonian Fluid Mechanics, 2020, 282, 104322.	1.0	6
608	Glass Stability Changes the Nature of Yielding under Oscillatory Shear. Physical Review Letters, 2020, 124, 225502.	2.9	60
609	Molecular understanding for large deformations of soft bottlebrush polymer networks. Soft Matter, 2020, 16, 6259-6264.	1.2	15
610	Effect of Topology and Molecular Properties on the Rheology and Fatigue Behavior of Solid Polystyrene/Polyisoprene Di- and Triblock Copolymers. Macromolecules, 2020, 53, 5572-5587.	2.2	14
611	Relationships among rheological, sensory, and wear behaviors of cheeses. Journal of Texture Studies, 2020, 51, 702-721.	1.1	8
612	Theoretical predictions for the rheology of dispersions of highly deformable particles under large amplitude oscillatory shear. Journal of Fluid Mechanics, 2020, 897, .	1.4	6
613	Size-Dependent Variability in Flow and Viscoelastic Behavior of Levan Produced by Gluconobacter albidus TMW 2.1191. Foods, 2020, 9, 192.	1.9	15
614	Polymer branching and first normal stress differences in smallâ€amplitude oscillatory shear flow. Canadian Journal of Chemical Engineering, 2020, 98, 1444-1455.	0.9	12
615	Stability and rheological properties of silica suspensions in water- immiscible liquids. Advances in Colloid and Interface Science, 2020, 278, 102139.	7.0	7
616	Effect of high pressure homogenization on sugar beet pulp: Rheological and microstructural properties. LWT - Food Science and Technology, 2020, 125, 109245.	2.5	10
617	Filler size effect in an attractive fibrillated network: a structural and rheological perspective. Soft Matter, 2020, 16, 3303-3310.	1.2	12
618	Rheo-viscoelastic behaviour of fresh cement-based materials: Cement paste, mortar and concrete. Construction and Building Materials, 2020, 248, 118667.	3.2	34
619	Medium amplitude parallel superposition (MAPS) rheology. Part 1: Mathematical framework and theoretical examples. Journal of Rheology, 2020, 64, 551-579.	1.3	19

#	Article	IF	CITATIONS
620	Simple, Accurate and User-Friendly Differential Constitutive Model for the Rheology of Entangled Polymer Melts and Solutions from Nonequilibrium Thermodynamics. Materials, 2020, 13, 2867.	1.3	9
621	Effects of concentration and NaCl on rheological behaviors of konjac glucomannan solution under large amplitude oscillatory shear (LAOS). LWT - Food Science and Technology, 2020, 128, 109466.	2.5	18
622	The interaction between kaolinite and saline water in affecting the microstructure, rheology and settling of coal flotation products. Powder Technology, 2020, 372, 76-83.	2.1	6
623	Impact of filler composition on mechanical and dynamic response of 3-D printed silicone-based nanocomposite elastomers. Composites Science and Technology, 2020, 198, 108258.	3.8	20
624	Nonlinear Viscoelastic Response of Crumb Rubber Modified Asphalt Binder Under Large Strains. Transportation Research Record, 2020, 2674, 139-149.	1.0	9
625	Nonlinear Oscillatory Shear Tests in Viscoelastic Holography. Physical Review Letters, 2020, 124, 081601.	2.9	16
626	Non-linear rheological study of hydrogel sliding friction in water and concentrated hyaluronan solution. Tribology International, 2020, 147, 106270.	3.0	7
627	Impact of conjugation with maltodextrin on rheological properties of sodium caseinate. International Dairy Journal, 2020, 105, 104660.	1.5	12
628	Small and Medium Amplitude Oscillatory Shear Rheology of Model Branched Polystyrene (PS) Melts. Polymers, 2020, 12, 365.	2.0	9
629	The role of limestone and calcined clay on the rheological properties of LC3. Cement and Concrete Composites, 2020, 107, 103516.	4.6	80
630	Effect of aging at different temperatures on LAOS properties and secondary protein structure of hard wheat flour dough. Journal of Cereal Science, 2020, 92, 102926.	1.8	20
631	Distortion in Fourier transform rheology due to frequency error. Rheologica Acta, 2020, 59, 123-131.	1.1	2
632	Physical hydrogel with tunable flowability and self-recovery properties through introducing branched polymer and nanoparticle. Polymer, 2020, 198, 122515.	1.8	5
633	Nonlinear rheological behaviors of epoxy asphalt binder compared to base asphalt binder and SBS modified asphalt binder at above ambient temperatures. Construction and Building Materials, 2020, 250, 118755.	3.2	25
634	Twin-chain polymer hydrogels based on poly(vinyl alcohol) as new advanced tool for the cleaning of modern and contemporary art. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 7011-7020.	3.3	88
635	Direct Ink Writing Glass: A Preliminary Step for Optical Application. Materials, 2020, 13, 1636.	1.3	16
636	Poly(lactic Acid)–Biochar Biocomposites: Effect of Processing and Filler Content on Rheological, Thermal, and Mechanical Properties. Polymers, 2020, 12, 892.	2.0	74
637	Effect of high-pressure homogenization on rheological properties of citrus fiber. LWT - Food Science and Technology, 2020, 127, 109366.	2.5	16

#	Article	IF	CITATIONS
638	Evaluating predictability of various constitutive equations for MAOS behavior of entangled polymer solutions. Journal of Rheology, 2020, 64, 673-707.	1.3	8
639	Nonlinear viscoelastic characterization of charged cellulose nanocrystal network structure inÂthe presence of salt in aqueous media. Cellulose, 2020, 27, 5729-5743.	2.4	42
640	Scaling laws for frictional granular materials confined by constant pressure under oscillatory shear. Physical Review E, 2020, 101, 042902.	0.8	12
641	Relationship of non-linear rheological properties and quantitative network analysis parameters as a function of increasingly large amplitude deformations in non-fat, low-fat and high-fat yogurt products. Food Hydrocolloids, 2021, 111, 106194.	5.6	24
642	Small and large oscillatory shear properties of concentrated proteins. Food Hydrocolloids, 2021, 110, 106172.	5.6	69
643	Insights into the Payne Effect of Carbon Black Filled Styrene-butadiene Rubber Compounds. Chinese Journal of Polymer Science (English Edition), 2021, 39, 81-90.	2.0	18
644	Characterization of nonlinear viscoelasticity of magnetorheological grease under large oscillatory shear by using Fourier transform-Chebyshev analysis. Journal of Intelligent Material Systems and Structures, 2021, 32, 614-631.	1.4	10
645	The degradation of xanthan gum in ionic and non-ionic denaturants studied by rheology and molecular dynamics simulation. Carbohydrate Polymers, 2021, 251, 117061.	5.1	15
646	Insight into acrylate copolymer dispersion with multiple interactions using large-amplitude oscillation shear. Polymer, 2021, 212, 123130.	1.8	5
647	Rheological and structural properties of sodium caseinate as influenced by locust bean gum and κ-carrageenan. Food Hydrocolloids, 2021, 112, 106251.	5.6	63
648	Improved dispersion of clay-rich tailings in seawater using sodium polyacrylate. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 612, 126015.	2.3	11
649	Effects of hydrocolloids, acids and nutrients on gelatin network in gummies. Food Hydrocolloids, 2021, 113, 106549.	5.6	33
650	Fourier transform fatigue analysis of the stress in tension/tension of HDPE and PA6. Polymer Engineering and Science, 2021, 61, 993-1006.	1.5	3
651	Colloidal and polymeric contributions to the yielding of dense microgel suspensions. Journal of Colloid and Interface Science, 2021, 587, 437-445.	5.0	8
652	Large amplitude oscillatory rheology of silica and cellulose nanocrystals filled natural rubber compounds. Journal of Colloid and Interface Science, 2021, 588, 602-610.	5.0	32
653	Percolation implications in the rheology of polymer crystallization. Polymer Crystallization, 2021, 4, e10162.	0.5	3
654	Viscoelastic properties of poly (vinyl alcohol) hydrogels with cellulose nanocrystals fabricated through sodium chloride addition: Rheological evidence of double network formation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 609, 125577.	2.3	57
655	Effect of SiO2 Particles on the Relaxation Dynamics of Epoxidized Natural Rubber (ENR) in the Melt State by Time-Resolved Mechanical Spectroscopy. Polymers, 2021, 13, 276.	2.0	5

#	ARTICLE	IF	CITATIONS
656	Dynamics and memory of boundary stresses in discontinuous shear thickening suspensions during oscillatory shear. Soft Matter, 2021, 17, 1337-1345.	1.2	6
657	Physics of agarose fluid gels: Rheological properties and microstructure. Current Research in Food Science, 2021, 4, 436-448.	2.7	48
658	Rheological Aspects of Hydrogel Processing. Biomaterials Science Series, 2021, , 238-266.	0.1	0
659	Comparison of Rheological Behaviour of Bio-Based and Synthetic Epoxy Resins for Making Ecocomposites. Fluids, 2021, 6, 38.	0.8	4
660	PLA blend nanocomposites. , 2021, , 311-355.		1
661	Thermo-mechanical processing of plant proteins using shear cell and high-moisture extrusion cooking. Critical Reviews in Food Science and Nutrition, 2022, 62, 3264-3280.	5.4	80
662	Rheological responses of particle-filled polymer solutions: The transition to linear-nonlinear dichotomy. Journal of Rheology, 2021, 65, 1-12.	1.3	4
663	Importance of viscoelasticity in the thixotropic behavior of human blood. Rheologica Acta, 2021, 60, 119-140.	1.1	6
664	Rheological Properties of Fish Gelatin Modified with Sodium Alginate. Polymers, 2021, 13, 743.	2.0	21
665	Importance of Polymer Rheology on Material Extrusion Additive Manufacturing: Correlating Process Physics to Print Properties. ACS Applied Polymer Materials, 2021, 3, 1218-1249.	2.0	116
666	Candidate Formulations for a Sustainable Lipstick Supplemented with Vitamin D3: Effects of Wax Type and Concentration on Material Properties. Industrial & Engineering Chemistry Research, 2021, 60, 2027-2040.	1.8	5
667	Large amplitude oscillatory shear (LAOS) for nonlinear rheological behavior of heterogeneous emulsion gels made from natural supramolecular gelators. Food Research International, 2021, 140, 110076.	2.9	64
668	Characterization of polyethylene/silica nanocomposites using different rheological analyses. Korea Australia Rheology Journal, 2021, 33, 25-36.	0.7	4
669	Strain Softening of Bimodal Isoprene Rubber Vulcanizates. Macromolecular Materials and Engineering, 2021, 306, 2000802.	1.7	9
671	Correlations in rheological behavior between large amplitude oscillatory shear and steady shear flow of silicaâ€filled starâ€shaped styreneâ€butadiene rubber compounds: Experiment and simulation. Journal of Applied Polymer Science, 2021, 138, 50660.	1.3	8
672	Supramolecular ultra-short carboxybenzyl-protected dehydropeptide-based hydrogels for drug delivery. Materials Science and Engineering C, 2021, 122, 111869.	3.8	21
673	Three-Dimensional Printable, Extremely Soft, Stretchable, and Reversible Elastomers from Molecular Architecture-Directed Assembly. Chemistry of Materials, 2021, 33, 2436-2445.	3.2	16
674	Shear localization in large amplitude oscillatory shear (LAOS) flows of particulate suspensions. Physical Review Fluids, 2021, 6, .	1.0	0

#	Article	IF	Citations
675	Impact of Type of Sugar Beet Pectin–Sodium Caseinate Interaction on Emulsion Properties at pH 4.5 and pH 7. Foods, 2021, 10, 631.	1.9	8
676	Mechanical spectral hole burning in glassy polymers—Investigation of polycarbonate, a material with weak β-relaxation. Journal of Chemical Physics, 2021, 154, 124904.	1.2	4
677	Thermoresponsive and Injectable Composite Hydrogels of Cellulose Nanocrystals and Pluronic F127. ACS Applied Bio Materials, 2021, 4, 3507-3517.	2.3	33
678	Gelatin-Based Nanocomposites: A Review. Polymer Reviews, 2021, 61, 765-813.	5.3	24
679	Nonlinear rheological characteristics of fine aggregate matrix based on FT-rheology. Construction and Building Materials, 2021, 274, 121935.	3.2	5
680	Nonlinear (Large-Amplitude Oscillatory Shear) Rheological Properties and Their Impact on Food Processing and Quality. Annual Review of Food Science and Technology, 2021, 12, 591-609.	5.1	32
681	Rheological and Textural Properties of Apple Pectin-Based Composite Formula with Xanthan Gum Modification for Preparation of Thickened Matrices with Dysphagia-Friendly Potential. Polymers, 2021, 13, 873.	2.0	12
682	An orientation-stretch coupled model for entangled comb polymers. Journal of Rheology, 2021, 65, 113-128.	1.3	4
683	Fourier Transform (FT) Analysis of the Stress as a Tool to Follow the Fatigue Behavior of Metals. Applied Sciences (Switzerland), 2021, 11, 3549.	1.3	3
684	Combining mechanical and thermal surface fourier transform analysis to follow the dynamic fatigue behavior of polymers. Polymer Testing, 2021, 96, 107070.	2.3	5
685	Carbomer microgels as model yield-stress fluids. Reviews in Chemical Engineering, 2022, 38, 881-919.	2.3	27
686	Field–Frequency-Dependent Non-linear Rheological Behavior of Magnetorheological Grease Under Large Amplitude Oscillatory Shear. Frontiers in Materials, 2021, 8, .	1.2	2
687	Effect of D-Mannitol on the Microstructure and Rheology of Non-Aqueous Carbopol Microgels. Materials, 2021, 14, 1782.	1.3	1
688	Large Amplitude Oscillatory Shear testing for the performance grading of straight and polymer modified asphalt binders. Construction and Building Materials, 2021, 279, 122418.	3.2	2
689	Rheological characterization of CNC-CTAB network below and above critical micelle concentration (CMC). Carbohydrate Polymers, 2021, 257, 117552.	5.1	45
690	Suspensions of Soft Colloidal Particles. , 2021, , 227-290.		3
691	Tuning Thermal and Mechanical Properties of Polydimethylsiloxane with Carbon Fibers. Polymers, 2021, 13, 1141.	2.0	18
692	Rheological Aspects of Cellulose Nanomaterials: Governing Factors and Emerging Applications. Advanced Materials, 2021, 33, e2006052.	11.1	143

#	Article	IF	CITATIONS
693	Molecular Characterization of Polymer Networks. Chemical Reviews, 2021, 121, 5042-5092.	23.0	140
694	Probing gels and emulsions using large-amplitude oscillatory shear and frictional studies with soft substrate skin surrogates. Colloids and Surfaces B: Biointerfaces, 2021, 201, 111595.	2.5	18
695	Conformational state and charge determine the interfacial film formation and film stability of \hat{l}^2 -lactoglobulin. Food Hydrocolloids, 2021, 114, 106561.	5 . 6	19
696	Brownian dynamics simulation on orthogonal superposition rheology: Time–shear rate superposition of colloidal gel. Journal of Rheology, 2021, 65, 337-354.	1.3	6
697	Carbamoylated chitosan hydrogels with improved viscoelastic properties and stability for potential 3D cell culture applications. Biomedical Materials (Bristol), 2021, 16, 045019.	1.7	6
698	Flow-induced crystallization of a multiblock copolymer under large amplitude oscillatory shear: Experiments and modeling. Journal of Rheology, 2021, 65, 405-418.	1.3	4
699	Modeling Local Oscillatory Shear Dynamics of Functionalized Polymer Grafted Nanoparticles. Macromolecular Theory and Simulations, 2021, 30, 2100005.	0.6	3
700	Universal Strainâ€Life Curve Exponents for Thermoplastics and Elastomers under Tensionâ€Tension and Torsion. Macromolecular Materials and Engineering, 2021, 306, 2100165.	1.7	5
701	Cell nucleus as a microrheological probe to study the rheology of the cytoskeleton. Biophysical Journal, 2021, 120, 1542-1564.	0.2	1
702	Translational Applications of Hydrogels. Chemical Reviews, 2021, 121, 11385-11457.	23.0	438
703	Rheology of complex biobased quaternary blends: Poly(lactic acid) [poly(ethylene) Tj ETQq0 0 0 rgBT /Overlock 1	0 <u>Tf</u> 50 34	2Jd (oxide)]
704	Physicochemical and Rheological Characterization of Different Low Molecular Weight Gellan Gum Products and Derived Ionotropic Crosslinked Hydrogels. Gels, 2021, 7, 62.	2.1	20
705	Topology of the energy landscape of sheared amorphous solids and the irreversibility transition. Physical Review E, 2021, 103, 062614.	0.8	14
706	Holographic axion model: A simple gravitational tool for quantum matter. Science China: Physics, Mechanics and Astronomy, 2021, 64, 1.	2.0	53
707	Yielding Behavior of Bottlebrush and Linear Block Copolymers. Macromolecules, 2021, 54, 5636-5647.	2.2	7
708	Large Amplitude Oscillatory Shear to Quantify Elastic and Viscous Nature of Aged and Unaged Bitumen at Different Temperatures. , 2021, , .		0
710	Wall-anchored semiflexible polymer under large amplitude oscillatory shear flow. Journal of Chemical Physics, 2021, 154, 224901.	1.2	4
711	Blending Proteins in High Moisture Extrusion to Design Meat Analogues: Rheological Properties, Morphology Development and Product Properties. Foods, 2021, 10, 1509.	1.9	38

#	Article	IF	Citations
712	Study on strain stiffening of non-colloidal suspension in oscillating shear by a subsequent steady shear test. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 618, 126401.	2.3	7
713	Influence of nanoparticles and their selective localization on the structure and properties of polylactide-based blend nanocomposites. Composites Part B: Engineering, 2021, 215, 108845.	5. 9	54
714	Analytical Rheology of Honey: A State-of-the-Art Review. Foods, 2021, 10, 1709.	1.9	16
715	Evolution of complex modulus and higher harmonics of stress response of asphalt concrete in strain-controlled four-point beam fatigue tests. International Journal of Pavement Engineering, 0, , 1-17.	2.2	5
716	Investigating the rheology of 2D titanium carbide (MXene) dispersions for colloidal processing: Progress and challenges. Journal of Materials Research, 2021, 36, 4578-4600.	1.2	14
717	Behavior of semolina, hard, soft wheat flour dough at different aging times and temperatures through LAOS properties and molecular interactions of proteins. Journal of Food Engineering, 2021, 301, 110549.	2.7	18
718	Comparison of the Rheological Properties of Plant Proteins from Various Sources for Extrusion Applications. Foods, 2021, 10, 1700.	1.9	17
719	An insight into the structural evolution of waxy maize starch chains during growth based on nonlinear rheology. Food Hydrocolloids, 2021, 116, 106655.	5 . 6	21
720	Quantifying Chemical Composition and Cross-link Effects on EPDM Elastomer Viscoelasticity with Molecular Dynamics. Macromolecules, 2021, 54, 6780-6789.	2.2	11
722	Exploring the gelation of aqueous cellulose nanocrystals (CNCs)-hydroxyethyl cellulose (HEC) mixtures. Rheologica Acta, 2021, 60, 483-495.	1.1	11
723	Nonlinear measurements of kinetics and generalized dynamical modes. I. Extracting the one-dimensional Green's function from a time series. Journal of Chemical Physics, 2021, 155, 024122.	1.2	2
724	Nonlinear oscillatory shear tests of pressure-sensitive adhesives (PSAs) designed for transdermal therapeutic systems (TTS). Rheologica Acta, 2021, 60, 553-570.	1.1	4
725	Relationship between large amplitude oscillatory shear (LAOS) experiments and commercial pressure sensitive adhesives applications testing. International Journal of Adhesion and Adhesives, 2021, 108, 102869.	1.4	2
726	Oscillatory rheometry to characterize polymer flocculation of fluid fine tailings. Rheologica Acta, 2021, 60, 457-479.	1.1	3
727	Use of Multi-Anionic Sodium Tripolyphosphate to Enhance Dispersion of Concentrated Kaolin Slurries in Seawater. Metals, 2021, 11, 1085.	1.0	3
728	Effect of serum starvation on rheology of cell monolayers. Physics of Fluids, 2021, 33, 071908.	1.6	1
729	Nonlinear viscoelastic rheological behavior of bentonite and sepiolite drilling fluids under large amplitude oscillatory shear. Journal of Petroleum Science and Engineering, 2022, 208, 109210.	2.1	7
730	Advances in the rheology of emulsion explosive. Journal of Molecular Liquids, 2021, 336, 116854.	2.3	12

#	ARTICLE	IF	CITATIONS
731	Stateâ€Ofâ€Theâ€Art Quantification of Polymer Solution Viscosity for Plastic Waste Recycling. ChemSusChem, 2021, 14, 4071-4102.	3.6	22
732	Technological aspects of xanthan gum and gum Arabic presence in chicken egg albumin wet foams: Application of nonlinear rheology and nonparametric statistics. Food Hydrocolloids, 2021, 117, 106683.	5.6	8
733	Foaming and rheological properties of aqueous solutions: an interfacial study. Reviews in Chemical Engineering, 2023, 39, 271-295.	2.3	1
734	Fluidisation of yield stress fluids under vibration. Journal of Non-Newtonian Fluid Mechanics, 2021, 294, 104595.	1.0	9
735	Application of Pickering emulsions in 3D printing of personalized nutrition. Part I: Development of reduced-fat printable casein-based ink. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 622, 126641.	2.3	36
736	Hydrogen Bonds in Blends of Poly(N-isopropylacrylamide), Poly(N-ethylacrylamide) Homopolymers, and Carboxymethyl Cellulose. Journal of Composites Science, 2021, 5, 240.	1.4	1
737	A Generalized Model for the Field Assessment of Drilling Fluid Viscoelasticity. , 2021, , .		0
738	Capturing the Transient Microstructure of a Physically Assembled Gel Subjected to Temperature and Large Deformation. Macromolecules, 0, , .	2.2	4
739	Mapping the texture of plant protein blends for meat analogues. Food Hydrocolloids, 2021, 118, 106753.	5.6	40
740	Anisotropic Oldroyd-type models for non-colloidal suspensions of viscoelastic particles in Newtonian and yield-stress fluids via homogenization. Journal of Non-Newtonian Fluid Mechanics, 2021, 295, 104625.	1.0	7
741	Experimental evidence of the effect of aging on the yielding and pre-yielding behavior of bentonite and laponite suspensions. Journal of Rheology, 2021, 65, 1089-1102.	1.3	5
742	Ongoing relevance of Oldroyd 8-constant fluids. Journal of Non-Newtonian Fluid Mechanics, 2022, 299, 104653.	1.0	3
743	Modeling orthogonal superposition rheometry to probe nonequilibrium dynamics of entangled polymers. Journal of Rheology, 2021, 65, 983-998.	1.3	5
745	Oscillatory rheology of carboxymethyl cellulose gels: Influence of concentration and pH. Carbohydrate Polymers, 2021, 267, 118117.	5.1	34
746	Facile synthesis of zein-based emulsion gels with adjustable texture, rheology and stability by adding \hat{l}^2 -carotene in different phases. Food Hydrocolloids, 2022, 124, 107178.	5.6	20
747	Polysaccharide-based skin scaffolds with enhanced mechanical compatibility with native human skin. Journal of the Mechanical Behavior of Biomedical Materials, 2021, 122, 104607.	1.5	7
748	Gelation mechanism of alkali induced heat-set konjac glucomannan gel. Trends in Food Science and Technology, 2021, 116, 244-254.	7.8	30
749	Extruded whole grain flours and sprout millet as functional ingredients for gluten-free bread. LWT - Food Science and Technology, 2021, 150, 112042.	2.5	18

#	Article	IF	CITATIONS
750	Viscoelastic behaviour of rapid and slow self-healing hydrogels formed by densely branched arabinoxylans from Plantago ovata seed mucilage. Carbohydrate Polymers, 2021, 269, 118318.	5.1	9
751	First- and third-order shear nonlinearities across the structural relaxation peak of the deeply supercooled pharmaceutical liquid indomethacin. Journal of Chemical Physics, 2021, 155, 134901.	1.2	3
752	Impact of EO chain length of dodecanol ethoxylates (C12En) on the rheological properties and physical stability of pesticide suspension concentrate. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 627, 127163.	2.3	7
7 53	Interfacial film formation and film stability of high hydrostatic pressure-treated β-lactoglobulin. Food Hydrocolloids, 2021, 119, 106746.	5.6	20
754	Linear and non-linear rheology of heat-set soy protein gels: Effects of selective proteolysis of \hat{l}^2 -conglycinin and glycinin. Food Hydrocolloids, 2021, 120, 106962.	5.6	34
755	Rheological behavior of high modulus asphalt binder and its indication for fracture performances. Construction and Building Materials, 2021, 306, 124835.	3.2	5
756	Rheological behavior of nanocellulose gels at various calcium chloride concentrations. Carbohydrate Polymers, 2021, 274, 118660.	5.1	29
757	Molecular structures of octenyl succinic anhydride modified starches in relation to their ability to stabilize high internal phase emulsions and oleogels. Food Hydrocolloids, 2021, 120, 106953.	5.6	28
758	Construction of 3D printed reduced-fat meat analogue by emulsion gels. Part I: Flow behavior, thixotropic feature, and network structure of soy protein-based inks. Food Hydrocolloids, 2021, 120, 106967.	5.6	72
7 59	The study of rheological properties and microstructure of carboxylated nanocellulose as influenced by level of carboxylation. Food Hydrocolloids, 2021, 121, 106985.	5.6	18
760	Novel high internal phase emulsions with gelled oil phase: Preparation, characterization and stability evaluation. Food Hydrocolloids, 2021, 121, 106995.	5.6	52
761	Rheological control of pea fibre dispersions in oil: The role of particle and water volume fractions. Food Hydrocolloids, 2021, 121, 106988.	5.6	5
762	In Situ Visualization of the Structural Evolution and Alignment of Lyotropic Liquid Crystals in Confined Flow. Small, 2021, 17, e2006229.	5.2	12
763	Rheological and Thickening Properties. , 2021, , 75-117.		2
764	Rheological, EMI and corrosion properties of epoxy coating with nanoparticle and conductive carbon black. SN Applied Sciences, 2021, 3, 1.	1.5	7
765	Thermodynamic and Rheological Properties of Polyelectrolyte Systems. Engineering Materials, 2014, , 215-244.	0.3	4
766	Shear Rheology. , 2014, , 363-386.		2
767	Nonlinear "oddities―at the percolation of 3D hierarchical graphene polymer nanocomposites. Rheologica Acta, 2020, 59, 333-347.	1.1	10

#	Article	IF	CITATIONS
768	Understanding the role of gluten subunits (LMW, HMW glutenins and gliadin) in the networking behavior of a weak soft wheat dough and a strong semolina wheat flour dough and the relationship with linear and non-linear rheology. Food Hydrocolloids, 2020, 108, 106002.	5.6	34
769	Rate-dependent viscoelasticity of an impact-hardening polymer under oscillatory shear. Materials Research Express, 2020, 7, 075701.	0.8	2
770	Single polymer dynamics under large amplitude oscillatory extension. Physical Review Fluids, 2016, 1, .	1.0	26
771	Structural state diagram of concentrated suspensions of jammed soft particles in oscillatory shear flow. Physical Review Fluids, 2018, 3, .	1.0	10
772	Orientation dynamics of dilute functionalized graphene suspensions in oscillatory flow. Physical Review Fluids, 2018, 3, .	1.0	10
773	Elastoplastic behavior of yield stress fluids. Physical Review Fluids, 2019, 4, .	1.0	22
774	Microscopic signatures of yielding in concentrated nanoemulsions under large-amplitude oscillatory shear. Physical Review Materials, 2018, 2, .	0.9	19
775	Rheological fingerprinting as an effective tool to guide development of personal care formulations. International Journal of Cosmetic Science, 2020, 42, 536-547.	1.2	4
776	The weakly nonlinear response and nonaffine interpretation of the Johnson–Segalman/Gordon–Schowalter model. Journal of Rheology, 2020, 64, 1409-1424.	1.3	9
777	Hydrogels. , 2016, , 55-98.		5
778	Analysis of the complex rheological properties of highly concentrated proteins with a closed cavity rheometer. Applied Rheology, 2020, 30, 64-76.	3.5	26
779	Nonlinear Viscoelastic Behavior of Air-Water Interface Containing Surfactant-Laden Nanoparticles. Nihon Reoroji Gakkaishi, 2020, 48, 15-25.	0.2	4
780	Rheological Characterization of Pharmaceutical and Cosmetic Formulations for Cutaneous Applications. Current Pharmaceutical Design, 2019, 25, 2349-2363.	0.9	8
782	Fatigue performance evaluation of bitumen mastics reinforced with polyolefins through a dissipated energy approach. Materiales De Construccion, 2020, 70, 217.	0.2	4
783	The Study on the Rheological Properties of Polymer Matrix for MIF (Molded-In Foaming) Process. Elastomers and Composites, 2014, 49, 323-329.	0.1	3
784	The Investigation of Rheological Properties Development for Polymer Matrix Including Foaming Agent. Elastomers and Composites, 2016, 51, 24-30.	0.1	3
785	Rheological interpretation of intermediate physical state of gel and liquid crystalline phases in cellulose solution and their synergetic effects on the mechanical property. Cellulose, 2021, 28, 10863-10874.	2.4	3
786	Structure and Properties of Reactively Extruded Opaque Post-Consumer Recycled PET. Polymers, 2021, 13, 3531.	2.0	17

#	Article	IF	Citations
787	Evaluation of kashar cheese meltability by tack and large amplitude oscillatory shear (LAOS) tests. International Dairy Journal, 2022, 127, 105242.	1.5	8
788	Effect of crosslink-induced heterogeneities on the transport and deformation behavior of hydrophilic ionic polymer membranes. Polymer Journal, 0, , .	1.3	1
789	Effects of Breaking Methods on the Viscosity, Rheological Properties and Nutritional Value of Tomato Paste. Foods, 2021, 10, 2395.	1.9	8
790	Rheological approach to the adhesion property of metalâ€plated acrylonitrileâ€butadieneâ€styrene to secure the driver's safety. Journal of Applied Polymer Science, 2022, 139, 51735.	1.3	1
791	Viscoelastic Rheological Behaviors of Polypropylene and LMPP Blends. Polymers, 2021, 13, 3485.	2.0	7
792	Linear and nonlinear viscoelasticity of self-associative hydrogen-bonded polymers. Polymer, 2021, 235, 124301.	1.8	8
793	Nonlinear Viscoelasticity: Phenomena. Engineering Materials and Processes, 2013, , 91-113.	0.2	0
794	Rheology Measurement for Automotive Coatings. , 2017, , 95-113.		0
795	Polymer Rheology. Seikei-Kakou, 2018, 30, 331-336.	0.0	0
796	LAOS (Large Amplitude Oscillatory Shear) Applications for Semisolid Foods. Food Engineering Series, 2019, , 97-131.	0.3	7
798	Use of Combined Rheo-NMR to Investigate the Relationship Between the Molecular and Mechanical Properties of Early Cement Paste Hydration. RILEM Bookseries, 2020, , 256-265.	0.2	3
799	Rheological properties of soy protein isolate $\hat{a} \in \hat{a}$ carboxymethyl flaxseed gum mixed dispersions under large amplitude oscillatory shear. International Journal of Food Engineering, 2020, 16, .	0.7	2
800	Effects of froth properties on dewatering of flotation products– A critical review. Minerals Engineering, 2020, 155, 106477.	1.8	3
801	Dielectrorheology of Aspect-Ratio-Tailored Carbon Nanotube/Polyethylene Composites under Large Deformations: Implications for High-Temperature Dielectrics. ACS Applied Nano Materials, 2021, 4, 11493-11504.	2.4	11
802	Preparation of Nacreâ€Like Polyimide/Montmorillonite Composite Films with Excellent Water Vapor Barrier Properties by Gravityâ€Induced Deposition. Advanced Materials Interfaces, 2021, 8, 2001786.	1.9	5
803	LAOS (Large Amplitude Oscillatory Shear) Analysis for Shear-Thickening Behavior of Concentrated Slurry. Nihon Reoroji Gakkaishi, 2020, 48, 245-250.	0.2	0
804	Linear and nonlinear oscillatory rheology of chemically pretreated and non-pretreated cellulose nanofiber suspensions. Carbohydrate Polymers, 2022, 275, 118765.	5.1	11
805	Crystallization and Rheological Properties of Milk Fat. , 2020, , 219-244.		1

#	Article	IF	Citations
806	Rheology and Texture of Cream, Milk Fat, Butter and Dairy Fat Spreads., 2020,, 245-275.		4
807	Functional Properties in Industrial Applications. Food Engineering Series, 2020, , 383-417.	0.3	0
808	Nonlinear Mechanics of Colloidal Gels: Creep, Fatigue, and Shear-Induced Yielding. , 2020, , 1-24.		2
809	DİYET LİFİ İLE ZENGİNLEŞTİRİLMİŞ GLUTENSİZ KEK HAMURLARININ YÜKSEK GENLİKLİ SA REOLOJİK KARAKTERİZASYONU. Gıda, 2020, 45, 356-368.	LINIMLI KA O.1	YMA ANALA
810	Vesicle dynamics in large amplitude oscillatory extensional flow. Journal of Fluid Mechanics, 2021, 929, .	1.4	2
811	Enhanced microscopic dynamics in mucus gels under a mechanical load in the linear viscoelastic regime. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	8
812	Bulk rheology of sticky DNA-functionalized emulsions. Physical Review E, 2021, 104, 054602.	0.8	3
813	Differences in Viscoelasticity of Ophthalmic Polymer Solution after Sterilization. Walailak Journal of Science and Technology, 2020, 17, 686-697.	0.5	1
814	Mechanical and dielectric response within and beyond the linear regime. Journal of Physics Condensed Matter, 2020, 32, 494001.	0.7	0
815	Chain-stretch relaxation from low-frequency Fourier transform rheology. Physical Review Research, 2020, 2, .	1.3	0
816	Acid-induced gels from soy and whey protein thermally-induced mixed aggregates: Rheology and microstructure. Food Hydrocolloids, 2022, 125, 107376.	5.6	20
817	Spectral method for time-strain separable integral constitutive models in oscillatory shear. Physics of Fluids, 2021, 33, .	1.6	7
818	Large-amplitude oscillatory shear to investigate the nonlinear rheology of polymer glasses $\hat{a}\in \text{MMA}$. Mechanics of Time-Dependent Materials, 0, , 1.	2.3	2
819	Mechanical response and yielding transition of silk-fibroin and silk-fibroin/cellulose nanocrystals composite gels. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 636, 128121.	2.3	7
820	Rheological properties and microstructure of a novel starch-based emulsion gel produced by one-step emulsion gelation: Effect of oil content. Carbohydrate Polymers, 2022, 281, 119061.	5.1	40
821	Texturing Fermented Emulsion Gels from Soy Protein: Influence of the Emulsifying Agent—Soy Protein vs. Pectin Microgels—On Gel Microstructure, Rheology and Tribology. Foods, 2022, 11, 294.	1.9	9
822	Effects of globular and flexible structures on the emulsifying and interfacial properties of mixed soy proteins. Food Hydrocolloids, 2022, 127, 107539.	5.6	21
823	nn-PINNs: Non-Newtonian physics-informed neural networks for complex fluid modeling. Soft Matter, 2021, 18, 172-185.	1.2	33

#	Article	IF	CITATIONS
824	Gelation performance of PAM/PEI polymer gel with addition of retarder in high-salinity conditions. Journal of Sol-Gel Science and Technology, 2022, 101, 299-313.	1.1	3
825	Effective rheology mapping for characterizing polymer solutions utilizing ultrasonic spinning rheometry. Experiments in Fluids, 2022, 63, 1 .	1.1	6
826	Tactile friction and rheological studies to objectify sensory properties of topical formulations. Journal of Rheology, 2022, 66, 305-326.	1.3	7
827	High frequency viscoelasticity of soft particle glasses. Journal of Rheology, 2022, 66, 293-304.	1.3	2
828	Comparison of Sequence of Physical Processes (SPP) and Fourier Transform Coupled with Chebyshev Polynomials (FTC) methods to Interpret Large Amplitude Oscillatory Shear (LAOS) Response of Viscoelastic Doughs and Viscous Pectin Solution. Food Hydrocolloids, 2022, 128, 107558.	5.6	21
829	Effect and Mechanism of Acid-Induced Soy Protein Isolate Gels as Influenced by Cellulose Nanocrystals and Microcrystalline Cellulose. Foods, 2022, 11, 461.	1.9	15
830	A Microfluidic Prototype for High-Frequency, Large Strain Oscillatory Flow Rheometry. Micromachines, 2022, 13, 256.	1.4	0
831	Optical tweezer measurements of asymptotic nonlinearities in complex fluids. Physical Review E, 2021, 104, 064604.	0.8	3
832	LIQUIDS., 2022,, 133-250.		0
222			
833	VISCOELASTICITY., 2022, , 45-131.		1
833	VISCOELASTICITY., 2022, , 45-131. Tuning the drug multimodal release through a co-assembly strategy based on magnetic gels. Nanoscale, 2022, 14, 5488-5500.	2.8	9
	Tuning the drug multimodal release through a co-assembly strategy based on magnetic gels.	2.8	
834	Tuning the drug multimodal release through a co-assembly strategy based on magnetic gels. Nanoscale, 2022, 14, 5488-5500. Rheological experiment and fractional derivative model for aqueous polyurethane dispersion. Journal		9
834	Tuning the drug multimodal release through a co-assembly strategy based on magnetic gels. Nanoscale, 2022, 14, 5488-5500. Rheological experiment and fractional derivative model for aqueous polyurethane dispersion. Journal of Applied Polymer Science, 2022, 139, 52259. Materials Design of Highly Branched Bottlebrush Polymers at the Intersection of Modeling, Synthesis,	1.3	9
834 835 836	Tuning the drug multimodal release through a co-assembly strategy based on magnetic gels. Nanoscale, 2022, 14, 5488-5500. Rheological experiment and fractional derivative model for aqueous polyurethane dispersion. Journal of Applied Polymer Science, 2022, 139, 52259. Materials Design of Highly Branched Bottlebrush Polymers at the Intersection of Modeling, Synthesis, Processing, and Characterization. Chemistry of Materials, 2022, 34, 1990-2024. Phase transitions of cellulose nanocrystal suspensions from nonlinear oscillatory shear. Cellulose,	3.2	9 0 26
834 835 836	Tuning the drug multimodal release through a co-assembly strategy based on magnetic gels. Nanoscale, 2022, 14, 5488-5500. Rheological experiment and fractional derivative model for aqueous polyurethane dispersion. Journal of Applied Polymer Science, 2022, 139, 52259. Materials Design of Highly Branched Bottlebrush Polymers at the Intersection of Modeling, Synthesis, Processing, and Characterization. Chemistry of Materials, 2022, 34, 1990-2024. Phase transitions of cellulose nanocrystal suspensions from nonlinear oscillatory shear. Cellulose, 2022, 29, 3655-3673. The Influence of Colloidal Properties of Carbon Black on Static and Dynamic Mechanical Properties	1.3 3.2 2.4	9 0 26
834 835 836 837	Tuning the drug multimodal release through a co-assembly strategy based on magnetic gels. Nanoscale, 2022, 14, 5488-5500. Rheological experiment and fractional derivative model for aqueous polyurethane dispersion. Journal of Applied Polymer Science, 2022, 139, 52259. Materials Design of Highly Branched Bottlebrush Polymers at the Intersection of Modeling, Synthesis, Processing, and Characterization. Chemistry of Materials, 2022, 34, 1990-2024. Phase transitions of cellulose nanocrystal suspensions from nonlinear oscillatory shear. Cellulose, 2022, 29, 3655-3673. The Influence of Colloidal Properties of Carbon Black on Static and Dynamic Mechanical Properties of Natural Rubber. Polymers, 2022, 14, 1194.	1.3 3.2 2.4 2.0	9 0 26 10

#	Article	IF	CITATIONS
842	Effects of \hat{l}^2 -Carrageenan and Guar Gum on the Rheological Properties and Microstructure of Phycocyanin Gel. Foods, 2022, 11, 734.	1.9	15
843	Droplet Dispersion States of Cyclodextrin-Based Emulsions from Nonlinear Rheological Properties. Langmuir, 2022, 38, 4599-4605.	1.6	2
844	Probing the Dynamic Structural Evolution of End-Functionalized Polybutadiene/Organo-Clay Nanocomposite Gels before and after Yielding by Nonlinear Rheology and 1H Double-Quantum NMR. Polymers, 2022, 14, 1518.	2.0	2
845	Mechanical fatigue of biodegradable polymers: A study on polylactic acid (PLA), polybutylene succinate (PBS) and polybutylene adipate terephthalate (PBAT). International Journal of Fatigue, 2022, 159, 106798.	2.8	16
846	Research on nonlinear rheological properties of waxy crude oil based on large amplitude oscillatory shearing. Journal of Petroleum Science and Engineering, 2022, 213, 110444.	2.1	3
847	Insight into the effect of ultrasound treatment on the rheological properties of myofibrillar proteins based on the changes in their tertiary structure. Food Research International, 2022, 157, 111136.	2.9	14
848	Rheological and structural trends on encapsulation of bioactive compounds of essential oils: A global systematic review of recent research. Food Hydrocolloids, 2022, 129, 107628.	5 . 6	14
849	Stokes' second problem and oscillatory Couette flow for a two-layer fluid: Analytical solutions. AEJ - Alexandria Engineering Journal, 2022, 61, 10197-10218.	3.4	2
850	Coupling Kinetic Modelling with SAOS and LAOS Rheology of Poly(⟨i⟩n⟨/i⟩â€butyl acrylate). Macromolecular Rapid Communications, 2022, 43, e2100620.	2.0	4
851	Nonlinear Schapery viscoelastic material model for thermoplastic polymers. Journal of Applied Polymer Science, 2022, 139, .	1.3	3
853	Impact of Phenolic Acid Derivatives on \hat{l}^2 -Lactoglobulin Stabilized Oil-Water-Interfaces. Food Biophysics, 2022, 17, 508-522.	1.4	4
854	From breakup to coiling and buckling regimes in buoyant viscoplastic injections. Journal of Fluid Mechanics, 2022, 940, .	1.4	8
855	Impacts of filler loading and particle size on the transition to linear-nonlinear dichotomy in the rheological responses of particle-filled polymer solutions. Journal of Rheology, 2022, 66, 605-618.	1.3	1
856	Impact of HHP-treated starches on LAOS, tribology, and steady shear behavior of reduced-fat O/W emulsions. Innovative Food Science and Emerging Technologies, 2022, 78, 103006.	2.7	3
857	Synergistic interactions between konjac glucomannan and welan gum mixtures. LWT - Food Science and Technology, 2022, 162, 113425.	2.5	7
858	Collagen and its derivatives: From structure and properties to their applications in food industry. Food Hydrocolloids, 2022, 131, 107748.	5.6	62
859	Pectin degree of esterification influences rheology and digestibility of whey protein isolate-pectin stabilized bilayer oil-in-water nanoemulsions. Food Hydrocolloids, 2022, 131, 107789.	5.6	14
860	Property transitions of neat and styrene–butadiene-styrene (SBS)-modified asphalt binders from small, medium to large-amplitude oscillatory shears. International Journal of Pavement Engineering, 2023, 24, .	2.2	5

#	Article	IF	CITATIONS
861	A comparative study of the nonlinear rheological properties of three different cellulose nanofibril suspensions. Physics of Fluids, 2022, 34, .	1.6	4
862	Linear and non-linear rheological properties of water–ethanol hybrid pectin gels for aroma enhancement. Food Chemistry: X, 2022, 14, 100328.	1.8	4
863	Tuning the rheological and tribological properties to simulate oral processing of novel high internal phase oleogel-in-water emulsions. Food Hydrocolloids, 2022, 131, 107757.	5.6	44
864	Largeâ€amplitude oscillatory shear behavior of xanthan gum/locust bean gum mixture: Effect of preparation methods on synergistic interaction. Journal of Food Process Engineering, 2022, 45, .	1.5	2
865	Effects of particle roughness on the rheology and structure of capillary suspensions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 648, 129224.	2.3	2
866	Nonlinear Mechanics of Colloidal Gels: Creep, Fatigue, and Shear-Induced Yielding., 2022, , 313-336.		2
867	Hybrid double-network dual-crosslinked hydrogel with self-healing ability and mechanical stability. Synthesis, characterization and application for motion sensors. European Polymer Journal, 2022, 173, 111258.	2.6	10
868	Nonlinear viscoelastic characteristic investigations of waxy crude oils under stress-controlled large amplitude oscillatory shear (LAOStress). Rheologica Acta, 2022, 61, 483-497.	1.1	1
869	Slow dynamics and time-composition superposition in gels of cellulose nanocrystals. Journal of Chemical Physics, 0, , .	1.2	5
870	Experimental and theoretical studies of cross-stream migration of non-spherical particles in a quadratic flow of a viscoelastic fluid. Soft Matter, 2022, 18, 4613-4624.	1.2	5
871	Softening and Residual Loss Modulus of Jammed Grains under Oscillatory Shear in an Absorbing State. Physical Review Letters, 2022, 128, .	2.9	4
872	Energy dissipation in phase change salogels under shear stress. Polymer, 2022, 253, 124977.	1.8	2
873	Rheological fingerprinting and tribological assessment of high internal phase emulsions stabilized by whey protein isolate: Effects of protein concentration and pH. Food Hydrocolloids, 2022, 131, 107816.	5.6	11
874	Protein oleogels prepared by solvent transfer method with varying protein sources. Food Hydrocolloids, 2022, 132, 107821.	5.6	9
875	Scaling purely elastic instability of strongly shear thinning polymer solutions. Physical Review E, 2022, 105, .	0.8	5
876	Food rheology applications of large amplitude oscillation shear (LAOS). Trends in Food Science and Technology, 2022, 127, 221-244.	7.8	30
877	Temperature-dependent properties of fat in adipose tissue from pork, beef and lamb. Part 2: rheology and texture. Food and Function, 2022, 13, 7132-7143.	2.1	9
878	Viscoelasticity of Low-Molecular-Weight Polyelectrolytes. Journal of Physical Chemistry B, O, , .	1.2	2

#	Article	IF	CITATIONS
879	Large amplitude oscillatory shear flow: Microstructural assessment of polymeric systems. Progress in Polymer Science, 2022, 132, 101580.	11.8	27
880	Characterizing purely elastic turbulent flow of a semi-dilute entangled polymer solution in a serpentine channel. Physics of Fluids, 0, , .	1.6	4
881	Viscoelastoplastic classification of cementitious suspensions: transient and non-linear flow analysis in rotational and oscillatory shear flows. Rheologica Acta, 2022, 61, 549-570.	1.1	6
882	Strain dependent magneto-mechanical property of magnetorheological gel composite: Rheological measurement and model establishment. Composites Science and Technology, 2022, 227, 109612.	3.8	9
883	Measuring and understanding cure-dependent viscoelastic properties of epoxy resin: A review. Polymer Testing, 2022, 114, 107701.	2.3	19
884	The centrifugal spinning of vitamin doped natural gum fibers for skin regeneration. Carbohydrate Polymers, 2022, 294, 119792.	5.1	10
885	Micellar entanglement and its relation to the elastic behavior of wormlike micelle fluids. Journal of Colloid and Interface Science, 2022, 626, 1015-1027.	5.0	5
886	Effect of fat on non-linear rheological behavior of processed cheese spreads using coupled amplitude-frequency sweeps, Fourier Transform-Chebyshev polynomials method, sequence of physical processes, and quantitative network analysis. Journal of Food Engineering, 2023, 336, 111193.	2.7	8
887	Analytic Matrix Method for Frequency Response Techniques Applied to Nonlinear Dynamical Systems II: Large Amplitude Oscillations. Mathematics, 2022, 10, 2700.	1.1	1
888	A rheological characterization of synthetic detergent formulations. Physics of Fluids, 2022, 34, .	1.6	2
889	The micromorphology and large amplitude oscillatory shear behaviors of hydrocarbon gel fuels filled with fumed silica and aluminium sub-microparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, , 130013.	2.3	2
890	Determination of linearity limit of bitumen and mastic using large-amplitude oscillatory shear. International Journal of Pavement Engineering, 2023, 24, .	2.2	2
891	A Polyanionic Tartrateâ€containing Temperatureâ€responsive Hydrogel. Chemistry - an Asian Journal, 0, , .	1.7	1
892	Effect of gums on the multi-scale characteristics and 3D printing performance of potato starch gel. Innovative Food Science and Emerging Technologies, 2022, 80, 103102.	2.7	16
893	Kramers–Kronig relations for nonlinear rheology. Part I: General expression and implications. Journal of Rheology, 2022, 66, 973-982.	1.3	5
894	Large amplitude oscillatory shear (LAOS) behavior of chocolates of different compositions. Journal of Rheology, 2022, 66, 859-879.	1.3	6
895	Kramers–Kronig relations for nonlinear rheology. Part II: Validation of medium amplitude oscillatory shear (MAOS) measurements. Journal of Rheology, 2022, 66, 925-936.	1.3	6
896	Transformation of high moisture extrusion on pea protein isolate in melting zone during: From the aspects of the rheological property, physicochemical attributes and modification mechanism. Food Hydrocolloids, 2022, 133, 108016.	5. 6	15

#	Article	IF	CITATIONS
897	Nonlinear rheological properties of Chinese cold skin noodle (liangpi) and wheat starch gels by large amplitude oscillatory shear (LAOS). Food Hydrocolloids, 2023, 134, 108030.	5.6	13
898	High-Speed, 3D Volumetric Displacement and Strain Mapping in Soft Materials Using Light Field Microscopy. Experimental Mechanics, 2022, 62, 1673-1690.	1.1	2
899	Vibration Characteristics of Shear Thickening Fluid-Based Sandwich Structures. Advances in Polymer Technology, 2022, 2022, 1-12.	0.8	3
900	Nonlinear rheology of silicone rubber composites with tailored mechanical and dielectric properties. Composites Communications, 2022, 35, 101328.	3.3	5
901	Large amplitude oscillatory shear measurement and Fourier-transform rheology: application to food. , 2023, , 105-141.		0
902	Effect of functional anisotropy on the local dynamics of polymer grafted nanoparticles. Soft Matter, 2022, 18, 6209-6221.	1.2	3
903	Plasmonic lipogels: driving co-assembly of composites with peptide-based gels for controlled drug release. Soft Matter, 2022, 18, 8384-8397.	1.2	1
904	Microstructural changes of concentrated Newtonian suspensions in the first oscillation cycles probed with linear and non-linear rheology. Soft Matter, 2022, 18, 6051-6065.	1.2	3
905	Temperature- and strain-dependent transient microstructure and rheological responses of endblock-associated triblock gels of different block lengths in a midblock selective solvent. Soft Matter, 2022, 18, 7020-7034.	1.2	1
906	Rheology and rheological measurements of starch. , 2023, , 517-552.		0
907	Nonlinear viscoelastic rheology of wheat dough. , 2023, , 553-586.		0
908	Emulsion-based oleogelation using octenyl succinic anhydride modified granular cold-water swelling starch. Food Hydrocolloids, 2023, 135, 108186.	5.6	11
909	Incorporating chitin nanocrystal yields stronger soy protein gel: Insights into linear and nonlinear rheological behaviors by oscillatory shear tests. Food Hydrocolloids, 2023, 135, 108177.	5.6	8
910	A compact rotary magnetic tweezers device for dynamic material analysis. Review of Scientific Instruments, 2022, 93, .	0.6	3
911	Synthetic Mucin Gels with Selfâ€Healing Properties Augment Lubricity and Inhibit HIVâ€1 and HSVâ€2 Transmission. Advanced Science, 2022, 9, .	5.6	5
912	3D printing of void-free glass monoliths: rheological and geometric considerations. Rheologica Acta, 2022, 61, 773-784.	1.1	2
913	Influence of pressure on the gel strength and on the solid-like behavior for an inverted emulsion drilling fluid. Journal of Petroleum Science and Engineering, 2022, 219, 111114.	2.1	4
914	Tailored mechanosensitive nanogels release drugs upon exposure to different levels of stenosis. Nanoscale, 0, , .	2.8	1

#	Article	IF	CITATIONS
915	Rheological and viscoelastic properties of collagens and their role in bioprinting by micro-extrusion. Biomedical Materials (Bristol), 2022, 17, 062005.	1.7	5
916	Shear Alignment Mechanisms of Close-Packed Spheres in a Bulk ABA Triblock Copolymer. Macromolecules, 2022, 55, 9465-9477.	2.2	1
917	Anisotropic Oldroyd-type models for non-colloidal suspensions of viscoelastic particles in Newtonian and yield-stress fluids via homogenization., 2022, 4, 100084.		0
918	Probing metal-carboxylate interactions in cellulose nanofibrils-based hydrogels using nonlinear oscillatory rheology. Carbohydrate Polymers, 2023, 300, 120262.	5.1	6
919	Particle Migration in Large Cross-Section Ceramic On-Demand Extrusion Components. Journal of the European Ceramic Society, 2022, , .	2.8	0
920	Auxetic behavior and unusual shear resistance of crumpled materials: Opportunities for programming the nonlinear responses of crumpled mechanical metamaterials. Materials and Design, 2022, 223, 111258.	3.3	8
921	Structure-rheology relationship in monoolein liquid crystals. Journal of Colloid and Interface Science, 2023, 630, 878-887.	5.0	6
922	Rheology and microstructure of thermoresponsive composite gels of hematite pseudocubes and Pluronic F127. Journal of Chemical Physics, 2022, 157, .	1.2	5
923	Time-resolved microstructural changes in large amplitude oscillatory shear of model single and double component soft gels. Journal of Rheology, 2022, 66, 1287-1304.	1.3	5
924	Quantitative investigation on the nonlinear viscoelasticity of magnetorheological gel under large amplitude oscillatory shear. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 655, 130293.	2.3	2
925	Insight of the non-linear viscoelasticity of noodle dough using large amplitude oscillatory extension tests and the correlation with noodle quality. Journal of Food Engineering, 2023, 341, 111320.	2.7	1
926	Role of gelation temperature in rheological behavior and microstructure of high elastic starch-based emulsion-filled gel. Food Hydrocolloids, 2023, 135, 108208.	5 . 6	14
927	Strain softening of natural rubber composites filled with carbon black and aramid fiber. Journal of Rheology, 2023, 67, 157.	1.3	5
928	Large amplitude oscillatory shear behavior of thermoresponsive hydrogels: Single versus double network. Journal of Rheology, 2023, 67, 15-33.	1.3	4
929	Improving freeze-thaw stability and 3D printing performance of soy protein isolate emulsion gel inks by guar & amp; xanthan gums. Food Hydrocolloids, 2023, 136, 108293.	5.6	27
930	Rheology and tribology of nanocellulose-based biodegradable greases: Wear and friction protection mechanisms of cellulose microfibrils. Tribology International, 2023, 178, 108080.	3.0	20
931	Heat-induced gelation of protein from mealworm (Tenebrio molitor): influence of pH and zinc concentration. Food Hydrocolloids for Health, 2022, 2, 100105.	1.6	2
932	Electrochemically Enhanced Delivery of Pemetrexed from Electroactive Hydrogels. Polymers, 2022, 14, 4953.	2.0	4

#	Article	IF	CITATIONS
933	Measures of the yield stress fluids oriented for dysphagia management using steady-state shear, transient shear, and large-amplitude oscillatory shear (LAOS). Physics of Fluids, 2022, 34, .	1.6	10
934	Rheological fingerprinting and applications of cellulose nanocrystal based composites: A review. Journal of Molecular Liquids, 2023, 370, 121011.	2.3	5
935	Strain Softening of Styrene-Isoprene-Styrene Copolymers under Large Amplitude Oscillatory Shear for Clarifying Payne Effect in Rubbers and Their Nanocomposites. Chinese Journal of Polymer Science (English Edition), 2023, 41, 153-165.	2.0	0
936	Visual Exploration of Rheological Test Results from Soft Materials. , 2022, , .		O
937	Green double crosslinked starch-alginate hydrogel regulated by sustained calcium ion-gluconolactone release for human motion monitoring. Chemical Engineering Journal, 2023, 455, 140653.	6.6	19
938	Investigating the physical and quality characteristics and rheology of mayonnaise containing aquafaba as an egg substitute. Journal of Food Engineering, 2023, 344, 111388.	2.7	8
940	Influence of Low-Molar-Mass Xyloglucans on the Rheological Behavior of Concentrated Cellulose Nanocrystal Suspensions. Biomacromolecules, 0, , .	2.6	2
941	Fourier-transform rheology and printability maps of complex fluids for three-dimensional printing. Physics of Fluids, 2023, 35, .	1.6	9
942	Optical spinning rheometry test on viscosity curves of less viscous fluids at low shear rate range. Experiments in Fluids, 2023, 64, .	1.1	0
943	Nonlinear rheological performance characterization of styrene-butadiene-styrene and crumb rubber composite modified bitumen using large amplitude oscillatory shear tests. Journal of Cleaner Production, 2023, 385, 135712.	4.6	4
944	Depinning dynamics of confined colloidal dispersions under oscillatory shear. Physical Review E, 2023, 107, .	0.8	0
945	Multiscale modeling of complex fluids under SAOS and LAOS using a combined FENE transient network model. Physica Scripta, 2023, 98, 025213.	1.2	1
946	Large amplitude oscillatory shear (LAOS) and Fourier transform rheology of ultrasonically extruded epoxidized soybean oil colloids containing organically modified nanoclay. Polymer, 2023, 267, 125670.	1.8	1
947	Understanding the transient large amplitude oscillatory shear behavior of yield stress fluids. Journal of Rheology, 2023, 67, 331-352.	1.3	16
948	Viscous dissipation in large amplitude oscillatory shear of unsaturated wet granular matter. Journal of Rheology, 2023, 67, 365-372.	1.3	1
949	On the identification and interpretation of large amplitude oscillatory compression (LAOC) loadings. , 2023, , .		О
950	Flow and assembly of cellulose nanocrystals (CNC): A bottom-up perspective - A review. International Journal of Biological Macromolecules, 2023, 232, 123391.	3.6	10
951	Structure and rheology of oil-continuous capillary suspensions containing water-swellable cellulose beads and fibres. Food Hydrocolloids, 2023, 139, 108503.	5.6	4

#	Article	IF	Citations
952	Relation between large amplitude oscillatory shear analysis and bubble forming properties of chewing gum. Journal of Food Engineering, 2023, 346, 111428.	2.7	1
953	Percolation and phase behavior in cellulose nanocrystal suspensions from nonlinear rheological analysis. Carbohydrate Polymers, 2023, 308, 120622.	5.1	6
954	Biomimetic strain-stiffening in fully synthetic dynamic-covalent hydrogel networks. Chemical Science, 2023, 14, 4796-4805.	3.7	8
955	Evolution of flow reversal and flow heterogeneities in high elasticity wormlike micelles (WLMs) with a yield stress. Journal of Rheology, 2023, 67, 661-681.	1.3	2
956	Self-similarity and Payne effect of whey protein-escin mixtures at the air-water interface. Food Hydrocolloids, 2023, 139, 108554.	5.6	2
957	Mussel-inspired quaternary composite hydrogels with high strength and high tissue adhesion for transdermal drug delivery: Synergistic hydrogen bonding and drug release mechanism. Chemical Engineering Journal, 2023, 465, 142942.	6.6	8
958	Jamming to unjamming: Phase transition in cyclodextrin-based emulsions mediated by sodium casein. Journal of Colloid and Interface Science, 2023, 640, 540-548.	5.0	2
959	Tuning the pea protein gel network to mimic the heterogenous microstructure of animal protein. Food Hydrocolloids, 2023, 140, 108611.	5.6	2
960	Enhanced freeze-thawing stability of water-in-oil Pickering emulsions stabilized by ethylcellulose nanoparticles and oleogels. Carbohydrate Polymers, 2023, 312, 120814.	5.1	4
961	Molecular structure and linear-non linear rheology relation of rice starch during milky, dough, and mature stages. Carbohydrate Polymers, 2023, 312, 120812.	5.1	5
962	Large amplitude oscillatory shear study of a colloidal gel near the critical state. Journal of Chemical Physics, 2023, 158, .	1.2	5
963	Annealing Effects of Multidirectional Oscillatory Shear in Model Glass Formers. Physical Review Applied, 2023, 19, .	1.5	0
964	Temperature-Modulated Changes in Thin Gel Layer Thickness Triggered by Electrochemical Stimuli. Langmuir, 2023, 39, 2398-2407.	1.6	6
965	Perspectives, analyses, and progress in additive manufacturing of food. Physics of Fluids, 2023, 35, .	1.6	4
966	Determination of the characteristic curves of a nonlinear first order system from Fourier analysis. Scientific Reports, 2023, 13, .	1.6	0
967	Gaborheometry: Applications of the discrete Gabor transform for time resolved oscillatory rheometry. Journal of Rheology, 2023, 67, 479-497.	1.3	2
968	Rheological Performance of High-Temperature-Resistant, Salt-Resistant Fracturing Fluid Gel Based on Organic-Zirconium-Crosslinked HPAM. Gels, 2023, 9, 151.	2.1	3
969	An exact expression of three-body system for the complex shear modulus of frictional granular materials. Soft Matter, 2023, 19, 2127-2137.	1.2	0

#	Article	IF	Citations
970	Infrared Spectral Classification of Natural Bitumens for Their Rheological and Thermophysical Characterization. Molecules, 2023, 28, 2065.	1.7	17
971	Polymers and rheology: A tale of give and take. Polymer, 2023, 271, 125811.	1.8	7
972	Strain-dependent assessment of dough's polymer structure and functionality during the baking process. PLoS ONE, 2023, 18, e0282670.	1.1	3
973	Introduction to viscoelasticity and plasticity, and their relation to the underlying microscopic dynamics in soft matter systems. Physica A: Statistical Mechanics and Its Applications, 2023, 631, 128653.	1.2	1
974	Chemical, functional, rheological and structural properties of broken rice–barnyard millet–green gram grits blend for the production of extrudates. Journal of Food Process Engineering, 2023, 46, .	1.5	1
975	Strain controlled shear hardening behavior in suspensions of alumina spheres in a polydimethylsiloxane oligomer matrix. Polymers for Advanced Technologies, 0, , .	1.6	0
976	Steady State and Dynamic Oscillatory Shear Properties of Carbon Black Filled Elastomers. Journal of Elastomers and Plastics, 2023, 55, 719-767.	0.7	1
977	Effects of temperature and pH on interfacial viscoelasticity, bulk rheology and tribological properties of whey protein isolate-stabilized high internal phase emulsions. Food Hydrocolloids, 2023, 142, 108756.	5.6	5
978	Effect of Cold Atmospheric Pressure Argon Plasma Jet Treatment on the Freeze-Dried Mucilage of Chia Seeds (Salvia hispanica L.). Foods, 2023, 12, 1563.	1.9	3
979	Small and large oscillatory shear behaviors of gelatin/starch system regulated by amylose/amylopectin ratio. Food Hydrocolloids, 2023, 142, 108780.	5.6	6
980	Extremely early onset of nonlinear viscoelasticity in dynamic shear of ideally monodisperse <scp>DNA</scp> . Journal of Polymer Science, 0, , .	2.0	0
981	Impact of physicoâ€chemical properties of nanocellulose on rheology of aqueous suspensions and its utility in multiple fields: A review. Journal of Vinyl and Additive Technology, 2023, 29, 617-648.	1.8	3
982	A fatigue damage criterion for bitumen based on the evolution of higher harmonic stress. Materials and Structures/Materiaux Et Constructions, 2023, 56, .	1.3	0
996	Influence of Friction on Magnetorheological Effect. , 2023, , 229-249.		0
1031	Nonlinear Viscoelasticity., 2018,, 369-459.		0
1048	Structure and Properties of Deforming Polymers. , 2015, , 25-58.		0
1049	Experimental Basics of Various Methods for Measuring the Elastic Behavior., 2019, , 21-35.		0
1057	A comprehensive review of food rheology: analysis of experimental, computational, and machine learning techniques. Korea Australia Rheology Journal, 2023, 35, 279-306.	0.7	1

Article IF Citations