CITATION REPORT List of articles citing

Progress in the production and application of n-butanol as a biofuel

DOI: 10.1016/j.rser.2011.06.001 Renewable and Sustainable Energy Reviews, 2011, 15, 4080-4

Source: https://exaly.com/paper-pdf/51080768/citation-report.pdf

Version: 2024-04-10

This report has been generated based on the citations recorded by exaly.com for the above article. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

#	Paper	IF	Citations
760	INTEGRATED SUPERCRITICAL FLUID EXTRACTION AND BIOPROCESSING. 2012, 8, 263-287		27
759	Improvement in the bioreactor specific productivity by coupling continuous reactor with repeated fed-batch reactor for acetone-butanol-ethanol production. 2012 , 161, 147-52		13
758	Efficient hydrogen production from bio-butanol oxidative steam reforming over bimetallic Coll-/ZnO catalysts. 2012 , 14, 1035		36
757	Butanol production from lignocellulosics. 2012 , 34, 1415-34		85
756	Characteristics of performance and emissions in high-speed direct injection diesel engine fueled with diethyl ether/diesel fuel blends. <i>Energy</i> , 2012 , 43, 214-224	7.9	185
755	Basic properties of refined, bleached and deodorized soybean oilButanol blends. Fuel, 2012, 102, 701-7	′0 / 8.1	6
754	Soot Emissions of Various Oxygenated Biofuels in Conventional Diesel Combustion and Low-Temperature Combustion Conditions. <i>Energy & Diesels</i> , 2012 , 26, 1900-1911	4.1	115
753	Effects of n-Butanol Addition on the Performance and Emissions of a Turbocharged Common-Rail Diesel Engine. 2012 ,		25
75 ²	Experimental Investigation of Butanol Isomer Combustion in Spark Ignition Engines. 2012,		26
751	Effect of Higher Content N-Butanol Blends on Combustion, Exhaust Emissions and Catalyst Performance of an Unmodified SI Vehicle Engine. 2012 ,		14
750	Chemicals from biobutanol: technologies and markets. <i>Biofuels, Bioproducts and Biorefining</i> , 2012 , 6, 483-493	5.3	106
749	Improvements in Biobutanol Fermentation and Their Impacts on Distillation Energy Consumption and Wastewater Generation. 2012 , 5, 504-514		57
748	Heat release analysis of combustion in heavy-duty turbocharged diesel engine operating on blends of diesel fuel with cottonseed or sunflower oils and their bio-diesel. <i>Fuel</i> , 2012 , 96, 524-534	7.1	86
747	Catalytic conversion of ethanol into an advanced biofuel: unprecedented selectivity for n-butanol. 2013 , 52, 9005-8		140
746	Valorization of cereal based biorefinery byproducts: reality and expectations. 2013 , 47, 9014-27		115
745	Butanol production from hemicellulosic hydrolysate of corn fiber by a Clostridium beijerinckii mutant with high inhibitor-tolerance. 2013 , 135, 379-85		57
744	The exploitation and environmental characteristics of diesel fuel containing rapeseed butyl esters. 2013 , 28, 158-165		16

(2013-2013)

743	Auto-ignition and combustion characteristics of n-butanol triggered by low- and high-temperature reactions of premixed n-heptane. <i>Fuel</i> , 2013 , 112, 1-7	' .1	25
742	LiquidŪiquid Equilibria of 1-Butanol/Water/IL Systems. 2013 , 52, 18472-18481		77
741	Fueling a stationary direct injection diesel engine with diesel-used palm oilButanol blends IAn experimental study. 2013 , 73, 95-105		90
74º	Effects of port fuel injection (PFI) of n-butanol and EGR on combustion and emissions of a direct injection diesel engine. 2013 , 76, 725-731		95
739	Hybrid vapor stripping permeation process for recovery and dehydration of 1-butanol and acetone/butanol/ethanol from dilute aqueous solutions. Part 1. Process Simulations. 2013 , 88, 1436-1447	7	34
738	Autoignition of n-Butanol/n-Heptane Blend Fuels in a Rapid Compression Machine under Low-to-Medium Temperature Ranges. <i>Energy & Damp; Fuels</i> , 2013 , 27, 7800-7808	.1	24
737	Butanol production from wood pulping hydrolysate in an integrated fermentation-gas stripping process. 2013 , 143, 467-75		113
736	Effects of n-butanol, 2-butanol, and methyl octynoate addition to diesel fuel on combustion and emissions over a wide range of exhaust gas recirculation (EGR) rates. 2013 , 112, 246-256		134
735	Biobutanol: the outlook of an academic and industrialist. 2013 , 3, 24734		125
734	Pervaporation performance of composite poly(dimethyl siloxane) membrane for butanol recovery from model solutions. 2013 , 434, 55-64		98
733	Hydrothermal Synthesis of 1-Butanol from Ethanol Catalyzed with Commercial Cobalt Powder. 2013 , 1, 1493-1497		15
732	Preparation of PDMS membrane using water as solvent for pervaporation separation of butanol water mixture. 2013 , 15, 2180		113
731	Autoignition Characterization of Primary Reference Fuels and n-Heptane/n-Butanol Mixtures in a Constant Volume Combustion Device and Homogeneous Charge Compression Ignition Engine. 4 Energy & Compression Ignition Engine.	1	33
730	Dehydration of xylose to furfural over niobium phosphate catalyst in biphasic solvent system. 2013 , 22, 826-832		51
729	The heat release analysis of bio-butanol/gasoline blends on a high speed SI (spark ignition) engine. Energy, 2013, 60, 230-241	'.9	64
728	Measurements of laminar flame speeds and flame instability analysis of 2-methyl-1-butanollir mixtures. <i>Fuel</i> , 2013 , 112, 263-271	'.1	58
727	Development of an n-heptane-n-butanol-PAH mechanism and its application for combustion and soot prediction. <i>Combustion and Flame</i> , 2013 , 160, 504-519	i.3	167
726	Evaluation of Clostridium ljungdahlii DSM 13528 reference genes in gene expression studies by qRT-PCR. 2013 , 116, 460-4		29

725	The two stage immobilized column reactor with an integrated solvent recovery module for enhanced ABE production. 2013 , 140, 269-76		38
724	The challenges and strategies of butanol application in conventional engines: The sensitivity study of ignition and valve timing. 2013 , 108, 248-260		68
723	Acetone, butanol, and ethanol production from cane molasses using Clostridium beijerinckii mutant obtained by combined low-energy ion beam implantation and N-methyl-N-nitro-N-nitrosoguanidine induction. 2013 , 137, 254-60		44
722	Impact of varying lignocellulosic sugars on continuous solvent production in an immobilized column reactor. 2013 , 147, 299-306		4
721	Fuel properties, engine performance and emission characteristic of common biodiesels as a renewable and sustainable source of fuel. <i>Renewable and Sustainable Energy Reviews</i> , 2013 , 22, 133-147	5.2	116
720	Experimental investigation of the effect of diesel \overline{b} otton oil \overline{b} -butanol ternary blends on phase stability, engine performance and exhaust emission parameters in a diesel engine. <i>Fuel</i> , 2013 , 109, 503- $\overline{5}$ 1	7	104
719	Simultaneous saccharification and fermentation process for ethanol production from steam-pretreated softwood: Recirculation of condensate streams. 2013 , 225, 574-579		19
718	Advanced biofuel production by the yeast Saccharomyces cerevisiae. 2013 , 17, 480-8		146
717	Biobutanol Production from Biomass. 2013 , 443-470		1
716	Studying combustion and cyclic irregularity of diethyl ether as supplement fuel in diesel engine. <i>7</i> . <i>Fuel</i> , 2013 , 109, 325-335	1	106
7 ¹ 5	Experimental study on combustion and emission characteristics of a diesel engine fueled with 2,5-dimethylfurandiesel, n-butanoldiesel and gasolinediesel blends. <i>Energy</i> , 2013 , 54, 333-342	9	159
714	Alternative fuels for transportation vehicles: A technical review. <i>Renewable and Sustainable Energy Reviews</i> , 2013 , 25, 404-419	5.2	134
713	Separation of butanol from ABE mixtures by sweep gas pervaporation using a supported gelled ionic liquid membrane: Analysis of transport phenomena and selectivity. 2013 , 444, 201-212		47
712	Advances in diesellIcohol blends and their effects on the performance and emissions of diesel engines. <i>Renewable and Sustainable Energy Reviews</i> , 2013 , 22, 46-72	5.2	314
711	Combustion and emissions of cottonseed oil and its bio-diesel in blends with either n-butanol or diethyl ether in HSDI diesel engine. <i>Fuel</i> , 2013 , 105, 603-613	1	167
710	Exhaust emissions with ethanol or n-butanol diesel fuel blends during transient operation: A review. <i>Renewable and Sustainable Energy Reviews</i> , 2013 , 17, 170-190	5.2	221
709	Study on performance and emissions of a passenger-car diesel engine fueled with butanoldiesel blends. <i>Energy</i> , 2013 , 55, 638-646	9	141
708	A Review on Atomization and Sprays of Biofuels for IC Engine Applications. 2013 , 5, 85-121		22

(2014-2013)

707	Sustainability of soil fertility and the use of lignocellulosic crop harvest residues for the production of biofuels: a literature review. 2013 , 34, 1725-34	10
706	Selection and optimization of a salting-out extraction system for recovery of biobutanol from fermentation broth. 2013 , 13, 464-471	26
7°5	Catalytic Conversion of Ethanol into an Advanced Biofuel: Unprecedented Selectivity for n-Butanol. 2013 , 125, 9175-9178	28
704	Influence of Fuel Composition on Exhaust Emissions of a DISI Engine during Catalyst Heating Operation. 2013 , 6, 627-640	3
703	In-Cylinder Spectroscopic Measurements of Combustion Process in a SI Engine Fuelled with Butanol-Gasoline Blend. 2013 ,	6
702	Criteria Emissions, Particle Number Emissions, Size Distributions, and Black Carbon Measurements from PFI Gasoline Vehicles Fuelled with Different Ethanol and Butanol Blends. 2013 ,	9
701	Density, Viscosity and Water Phase Stability of 1-Butanol-Gasoline Blends. 2014 , 2014, 1-7	7
700	Combustion and Emission Characteristics of a HCCI Engine Fuelled with Different n-Butanol-Gasoline Blends. 2014 ,	2
699	Effect of N-butanol-Diesel Blends on Partially Premixed Combustion and Emission Characteristics in a Light-duty Engine. 2014 ,	11
698	The Comparative Study of Gasoline and n-butanol on Spray Characteristics. 2014,	7
698 697	The Comparative Study of Gasoline and n-butanol on Spray Characteristics. 2014, Clean Combustion in a Diesel Engine Using Direct Injection of Neat n-Butanol. 2014,	7
697	Clean Combustion in a Diesel Engine Using Direct Injection of Neat n-Butanol. 2014 , Evaluating Particulate Emissions from a Flexible Fuel Vehicle with Direct Injection when Operated	
697 696	Clean Combustion in a Diesel Engine Using Direct Injection of Neat n-Butanol. 2014, Evaluating Particulate Emissions from a Flexible Fuel Vehicle with Direct Injection when Operated on Ethanol and Iso-butanol Blends. 2014, Near-real-time analysis of the phenotypic responses of Escherichia coli to 1-butanol exposure using	16 7
697 696 695	Clean Combustion in a Diesel Engine Using Direct Injection of Neat n-Butanol. 2014, Evaluating Particulate Emissions from a Flexible Fuel Vehicle with Direct Injection when Operated on Ethanol and Iso-butanol Blends. 2014, Near-real-time analysis of the phenotypic responses of Escherichia coli to 1-butanol exposure using Raman Spectroscopy. 2014, 196, 3983-91 Combustion and Emissions Characteristics of Valeric Biofuels in a Compression Ignition Engine.	16 7 28
697696695694	Clean Combustion in a Diesel Engine Using Direct Injection of Neat n-Butanol. 2014, Evaluating Particulate Emissions from a Flexible Fuel Vehicle with Direct Injection when Operated on Ethanol and Iso-butanol Blends. 2014, Near-real-time analysis of the phenotypic responses of Escherichia coli to 1-butanol exposure using Raman Spectroscopy. 2014, 196, 3983-91 Combustion and Emissions Characteristics of Valeric Biofuels in a Compression Ignition Engine. 2014, 140, Regulated Emissions, Air Toxics, and Particle Emissions from SI-DI Light-Duty Vehicles Operating on	16 7 28 24
697696695694693	Clean Combustion in a Diesel Engine Using Direct Injection of Neat n-Butanol. 2014, Evaluating Particulate Emissions from a Flexible Fuel Vehicle with Direct Injection when Operated on Ethanol and Iso-butanol Blends. 2014, Near-real-time analysis of the phenotypic responses of Escherichia coli to 1-butanol exposure using Raman Spectroscopy. 2014, 196, 3983-91 Combustion and Emissions Characteristics of Valeric Biofuels in a Compression Ignition Engine. 2014, 140, Regulated Emissions, Air Toxics, and Particle Emissions from SI-DI Light-Duty Vehicles Operating on Different Iso-Butanol and Ethanol Blends. 2014, 7, 183-199 Chemostat cultivation and transcriptional analyses of Clostridium acetobutylicum mutants with	16 7 28 24

689	Regulated and unregulated emissions from a compression ignition engine under low temperature combustion fuelled with gasoline and n-butanol/gasoline blends. <i>Fuel</i> , 2014 , 120, 163-170	7.1	50
688	Microexplosive combustion behavior of blended soybean oil and butanol droplets. <i>Fuel</i> , 2014 , 120, 22	-29 _{7.1}	43
687	MFI zeolite as adsorbent for selective recovery of hydrocarbons from ABE fermentation broths. 2014 , 20, 465-470		29
686	The use of (green field) biomass pretreatment liquor for fermentative butanol production and the catalytic oxidation of biobutanol. 2014 , 92, 1531-1538		13
685	Direct fermentation of xylan by Clostridium strain BOH3 for the production of butanol and hydrogen using optimized culture medium. 2014 , 154, 38-43		27
684	Potential use of a blend of diesel, biodiesel, alcohols and vegetable oil in compression ignition engines. <i>Fuel</i> , 2014 , 124, 168-172	7.1	91
683	Combustion and emissions characteristics of high n-butanol/diesel ratio blend in a heavy-duty diesel engine and EGR impact. 2014 , 78, 787-795		191
682	Performance, combustion and emission characteristics of n-butanol additive in methanolgasoline blend fired in a naturally-aspirated spark ignition engine. 2014 , 118, 318-326		68
681	Oxidative steam reforming of bio-butanol for hydrogen production: effects of noble metals on bimetallic CoM/ZnO catalysts (M=Ru, Rh, Ir, Pd). 2014 , 145, 56-62		36
68o	Application of new metabolic engineering tools for Clostridium acetobutylicum. 2014 , 98, 5823-37		62
679	Renewable hydrogen production from oxidative steam reforming of bio-butanol over CoIr/CeZrO2 catalysts: Relationship between catalytic behaviour and catalyst structure. 2014 , 150-151, 47-56		24
678	Apparent and intrinsic properties of commercial PDMS based membranes in pervaporative removal of acetone, butanol and ethanol from binary aqueous mixtures. 2014 , 453, 108-118		100
677	Direct hydrogenation of biomass-derived butyric acid to n-butanol over a ruthenium-tin bimetallic catalyst. 2014 , 7, 2998-3001		34
676	Separation and purification of biobutanol during bioconversion of biomass. <i>Separation and Purification Technology</i> , 2014 , 132, 513-540	8.3	117
675	Microbial inhibitors: formation and effects on acetone-butanol-ethanol fermentation of lignocellulosic biomass. 2014 , 98, 9151-72		97
674	Experimental study on emissions and performance of an internal combustion engine fueled with gasoline and gasoline/n-butanol blends. 2014 , 88, 277-283		114
673	Effect of biodieselButanol fuel blends on emissions and performance characteristics of a diesel engine. <i>Fuel</i> , 2014 , 135, 46-50	7.1	202
672	Liquid��quid equilibrium of 1-butanol + water + tri-n-butyl phosphate + ammonium chloride system. 2014 , 378, 73-77		8

(2014-2014)

671	Marked Increase in Hydrophobicity of Monolithic Carbon Cryogels via HCl Aging of Precursor Resorcinol F lormaldehyde Hydrogels: Application to 1-Butanol Recovery from Dilute Aqueous Solutions. 2014 , 118, 6866-6872		16	
670	Emission, efficiency, and influence in a diesel n-butanol dual-injection engine. 2014 , 87, 385-391		40	
669	Influence of properties of various common bio-fuels on the combustion and emission characteristics of high-speed DI (direct injection) diesel engine: Vegetable oil, bio-diesel, ethanol, n-butanol, diethyl ether. <i>Energy</i> , 2014 , 73, 354-366	7.9	246	
668	The influences of pressure and temperature on laminar flame propagations of n-butanol, iso-octane and their blends. <i>Energy</i> , 2014 , 73, 703-715	7.9	26	
667	Enhanced isopropanolButanolBthanol (IBE) production in immobilized column reactor using modified Clostridium acetobutylicum DSM792. <i>Fuel</i> , 2014 , 136, 226-232	7.1	34	
666	Spray and Combustion Characteristics of Neat Acetone-Butanol-Ethanol, n-Butanol, and Diesel in a Constant Volume Chamber. <i>Energy & Diesel in Acetone-Butanol (Notation and Diesel in Acetone-Butanol (Notatio</i>	4.1	90	
665	Shock Tube Measurements and Modeling Study on the Ignition Delay Times of n-Butanol/Dimethyl Ether Mixtures. <i>Energy & Delay Fuels</i> , 2014 , 28, 4206-4215	4.1	12	
664	An Experimental and Numerical Study on the Effects of Fuel Properties on the Combustion and Emissions of Low-Temperature Combustion Diesel Engines. 2014 , 186, 1795-1815		18	
663	Numerical study and correlation development on laminar burning velocities of n-butanol, iso-octane and their blends: Focusing on diluent and blend ratio effects. <i>Fuel</i> , 2014 , 124, 102-112	7.1	26	
662	Influence of butanoldiesel blends on particulate emissions of a non-road diesel engine. <i>Fuel</i> , 2014 , 118, 130-136	7.1	53	
661	Utilizing an endogenous pathway for 1-butanol production in Saccharomyces cerevisiae. 2014 , 22, 60-8		69	
660	Pervaporative separation of butanol using a composite PDMS/PEI hollow fiber membrane. 2014 , 20, 2814-2818		13	
659	Techno-economics of carbon preserving butanol production using a combined fermentative and catalytic approach. 2014 , 161, 263-9		13	
658	Effect of n-pentanol addition on the combustion, performance and emission characteristics of a direct-injection diesel engine. <i>Energy</i> , 2014 , 70, 172-180	7.9	178	
657	Combustion process investigation in a high speed diesel engine fuelled with n-butanol diesel blend by conventional methods and optical diagnostics. 2014 , 64, 225-237		75	
656	Pervaporative removal of acetone, butanol and ethanol from binary and multicomponent aqueous mixtures. <i>Separation and Purification Technology</i> , 2014 , 132, 422-429	8.3	50	
655	Life cycle assessment (LCA) for biofuels in Brazilian conditions: A meta-analysis. <i>Renewable and Sustainable Energy Reviews</i> , 2014 , 37, 435-459	16.2	99	
654	Time-resolved spray, flame, soot quantitative measurement fueling n-butanol and soybean biodiesel in a constant volume chamber under various ambient temperatures. <i>Fuel</i> , 2014 , 133, 317-325	7.1	59	

653	Black liquor fractionation for biofuels production - a techno-economic assessment. 2014 , 166, 508-17		20
652	Evaluating the regulated emissions, air toxics, ultrafine particles, and black carbon from SI-PFI and SI-DI vehicles operating on different ethanol and iso-butanol blends. <i>Fuel</i> , 2014 , 128, 410-421	7.1	103
651	Supercritical CO2 Extraction of 1-Butanol and Acetone from Aqueous Solutions Using a Hollow-Fiber Membrane Contactor. 2014 , 37, 1861-1872		7
650	Development of a stress-induced mutagenesis module for autonomous adaptive evolution of Escherichia coli to improve its stress tolerance. 2015 , 8, 93		14
649	Chemical Conversions of Biomass-Derived Platform Chemicals over Copper-Silica Nanocomposite Catalysts. 2015 , 8, 2345-57		26
648	An Enabling Study of Neat n-Butanol HCCI Combustion on a High Compression-ratio Diesel Engine. 2015 ,		11
647	Evaluating National Innovation System of Malaysia Based on University-industry Research Collaboration: A System Thinking Approach. 2015 , 11,		2
646	A Feasibility Study of Using Pyrolysis Oil/Butanol Blended Fuel in a DI Diesel Engine. 2015 ,		3
645	A Complete Assessment of the Emissions Performance of Ethanol Blends and Iso-Butanol Blends from a Fleet of Nine PFI and GDI Vehicles. 2015 , 8, 374-395		14
644	Combustion and Emissions Performance of a Spark Ignition Engine Fueled with Water Containing Acetone-Butanol-Ethanol and Gasoline Blends. 2015 ,		15
643	Performance and Emission Characteristics of n-Butanol and Iso-Butanol Diesel Blend Comparison. 2015 ,		8
642	Experimental Study of Combustion for Mixtures of Ethanol and Ignition Improvers in a Rapid Compression Machine. 2015 ,		2
641	Curve Fits for Thermodynamic Properties of Butanol Fuel. 2015,		1
640	Thermodynamic and Optical Investigations on Particle Emissions in a DISI Engine at Boosted Operation. 2015 , 9, 154-170		11
639	Experimental Investigation of Injection Strategies on Low Temperature Combustion Fuelled with Gasoline in a Compression Ignition Engine. 2015 , 2015, 1-10		6
638	CHARACTERIZATION OF n-BUTANOL AND GASOLINE SPRAY FROM A MULTIHOLE INJECTOR USING PHASE DOPPLER ANEMOMETRY. 2015 , 25, 1047-1062		2
637	Acetone-butanol-ethanol production in a novel continuous flow system. 2015 , 190, 315-20		7
636	Effect of fluid dynamic conditions on the recovery of ABE fermentation products by membrane-based dense gas extraction. 2015 , 95, 80-89		8

(2015-2015)

	Ignition Engine. 2015 , 8, 735-746	19
634	An Experimental Study on the Use of Butanol or Octanol Blends in a Heavy Duty Diesel Engine. 2015 , 8, 610-621	37
633	Numerical Study of RCCI and HCCI Combustion Processes Using Gasoline, Diesel, iso-Butanol and DTBP Cetane Improver. 2015 , 8, 831-845	32
632	n-Butanol droplet combustion: Numerical modeling and reduced gravity experiments. 2015 , 35, 1693-1700	21
631	Simultaneous enzymatic saccharification and ABE fermentation using pretreated oil palm empty fruit bunch as substrate to produce butanol and hydrogen as biofuel. 2015 , 77, 447-455	79
630	Combustion process investigations in an optically accessible DISI engine fuelled with n-butanol during part load operation. 2015 , 77, 363-376	37
629	Continuous lactose fermentation by Clostridium acetobutylicumassessment of solventogenic kinetics. 2015 , 180, 330-7	15
628	Precious metal-promoted NiMgAlfeD catalyst for hydrogen production with fast startup via catalytic partial oxidation of butanol. 2015 , 40, 1717-1725	6
627	Purification and characterization of a GH11 xylanase from biobutanol-producing Clostridium beijerinckii G117. 2015 , 175, 2832-44	5
626	Extensive analyses of diesellegetable oillh -butanol ternary blends in a diesel engine. 2015 , 145, 155-162	152
625	Preliminary Investigation of Direct Injection Neat n-Butanol in a Diesel Engine. 2015 , 137,	
	Treatmining investigation of Direct injection reach Bacanot in a Dieset Englise. 2015, 157,	13
624	Feasibility of using less viscous and lower cetane (LVLC) fuels in a diesel engine: A review. Renewable and Sustainable Energy Reviews, 2015, 51, 1166-1190	
624	Feasibility of using less viscous and lower cetane (LVLC) fuels in a diesel engine: A review.	
	Feasibility of using less viscous and lower cetane (LVLC) fuels in a diesel engine: A review. Renewable and Sustainable Energy Reviews, 2015, 51, 1166-1190 Continuous xylose fermentation by Clostridium acetobutylicumAssessment of solventogenic	83
623	Feasibility of using less viscous and lower cetane (LVLC) fuels in a diesel engine: A review. Renewable and Sustainable Energy Reviews, 2015, 51, 1166-1190 Continuous xylose fermentation by Clostridium acetobutylicumAssessment of solventogenic kinetics. 2015, 192, 142-8 Comparison of Combustion, Performance, and Emissions of HSDI Diesel Engine Operating on	83
623	Feasibility of using less viscous and lower cetane (LVLC) fuels in a diesel engine: A review. Renewable and Sustainable Energy Reviews, 2015, 51, 1166-1190 Continuous xylose fermentation by Clostridium acetobutylicumAssessment of solventogenic kinetics. 2015, 192, 142-8 Comparison of Combustion, Performance, and Emissions of HSDI Diesel Engine Operating on Blends of Diesel Fuel with Ethanol, n-Butanol, or Butanol Isomer Ether DEE. 2015, 141, Experimental Investigations of Particulate Size and Number Distribution in an Ethanol and	83 13 21
623 622 621	Feasibility of using less viscous and lower cetane (LVLC) fuels in a diesel engine: A review. Renewable and Sustainable Energy Reviews, 2015, 51, 1166-1190 Continuous xylose fermentation by Clostridium acetobutylicum—Assessment of solventogenic kinetics. 2015, 192, 142-8 Comparison of Combustion, Performance, and Emissions of HSDI Diesel Engine Operating on Blends of Diesel Fuel with Ethanol, n-Butanol, or Butanol Isomer Ether DEE. 2015, 141, Experimental Investigations of Particulate Size and Number Distribution in an Ethanol and Methanol Fueled HCCI Engine. 2015, 137,	83 13 21 42

617	Combustion of n-Butanol, Gasoline, and n-Butanol/Gasoline Mixture Droplets. <i>Energy & Combustion</i> 2015, 29, 3467-3475	4.1	33
616	Impacts of Acetone B utanol E thanol (ABE) ratio on spray and combustion characteristics of ABEdiesel blends. 2015 , 149, 367-378		77
615	ABE fermentation products recovery methods A review. <i>Renewable and Sustainable Energy Reviews</i> , 2015 , 48, 648-661	16.2	178
614	Experimental investigation on SI engine using gasoline and a hybrid iso-butanol/gasoline fuel. 2015 , 95, 398-405		75
613	PAHs formation simulation in the premixed laminar flames of TRF with alcohol addition using a semi-detailed combustion mechanism. <i>Fuel</i> , 2015 , 155, 44-54	7.1	20
612	Integrated systems involving membrane vapor permeation and applications. 2015, 177-201		4
611	Activity coefficients at infinite dilution and physicochemical properties for organic solutes and water in the ionic liquid 4-(3-hydroxypropyl)-4-methylmorpholinium bis(trifluoromethylsulfonyl)-amide. 2015 , 86, 154-161		27
610	Impact of properties of vegetable oil, bio-diesel, ethanol and n -butanol on the combustion and emissions of turbocharged HDDI diesel engine operating under steady and transient conditions. <i>Fuel</i> , 2015 , 156, 1-19	7.1	178
609	Effect of air dilution and effective compression ratio on the combustion characteristics of a HCCI (homogeneous charge compression ignition) engine fuelled with n-butanol. <i>Energy</i> , 2015 , 85, 296-303	7.9	37
608	The impact of ethanol and iso-butanol blends on gaseous and particulate emissions from two passenger cars equipped with spray-guided and wall-guided direct injection SI (spark ignition) engines. <i>Energy</i> , 2015 , 82, 168-179	7.9	60
607	Alfalfa juice as a nitrogen source or supplement for acetoneButanolBthanol production by Clostridium acetobutylicum. <i>Industrial Crops and Products</i> , 2015 , 78, 73-81	5.9	8
606	Feasibility of bioethanol and biobutanol as transportation fuel in spark-ignition engine: a review. 2015 , 5, 100184-100211		46
605	Highly Selective Formation of n-Butanol from Ethanol through the Guerbet Process: A Tandem Catalytic Approach. 2015 , 137, 14264-7		119
604	Experimental studies on combustion and emissions of RCCI fueled with n-heptane/alcohols fuels. <i>Fuel</i> , 2015 , 162, 239-250	7.1	52
603	Combustion Pathways of Biofuel Model Compounds. 2015 , 49, 103-187		6
602	Analysis of the sooting propensity of C-4 and C-5 oxygenates: Comparison of sooting indexes issued from laser-based experiments and group additivity approaches. <i>Combustion and Flame</i> , 2015 , 162, 3140-3155	5.3	47
601	-Butanol derived from biochemical and chemical routes: A review. 2015 , 8, 1-9		159
600	Laminar Flame Speeds and Kinetic Modeling of n-Pentanol and Its Isomers. <i>Energy & amp; Fuels</i> , 2015 , 29, 5334-5348	4.1	37

599	Enhanced acetone-butanol production from sugarcane juice by immobilized Clostridium acetobutylicum (ATCC 824) on thin-shell silk cocoons. 2015 , 20, 599-607		12
598	Seaweeds: a sustainable fuel source. 2015 , 421-458		4
597	Effects of 2,5-dimethylfuran fuel properties coupling with EGR (exhaust gas recirculation) on combustion and emission characteristics in common-rail diesel engines. <i>Energy</i> , 2015 , 93, 284-293	9	49
596	Impact of higher n-butanol addition on combustion and performance of GDI engine in stoichiometric combustion. 2015 , 106, 385-392		63
595	Catalytic Conversion of Ethanol ton-Butanol Using Ruthenium PN Ligand Complexes. 2015, 5, 5822-5826		57
594	Kinetics of the Hydrogen Abstraction Reaction From 2-Butanol by OH Radical. 2015 , 119, 12182-92		17
593	Combustion and emission characteristics of wood pyrolysis oil-butanol blended fuels in a DI diesel engine. 2015 , 16, 903-912		28
592	Effects of direct injection timing and premixed ratio on combustion and emissions characteristics of RCCI (Reactivity Controlled Compression Ignition) with N-heptane/gasoline-like fuels. <i>Energy</i> , 2015 , 93, 383-392	9	38
591	Performance and emission characteristics of a high-compression-ratio diesel engine fueled with wood pyrolysis oil-butanol blended fuels. <i>Energy</i> , 2015 , 93, 2241-2250	9	22
590	Biofuels in Brazilian aviation: Current scenario and prospects. <i>Renewable and Sustainable Energy Reviews</i> , 2015 , 43, 1063-1072	ó.2	49
589	Technical feasibility study of butanolgasoline blends for powering medium-duty transportation spark ignition engine. 2015 , 76, 706-716		57
588	Optimization of wastewater microalgae saccharification using dilute acid hydrolysis for acetone, butanol, and ethanol fermentation. 2015 , 140, 14-19		89
587	Response surface methodology based optimization of dieselli-butanol liotton oil ternary blend ratios to improve engine performance and exhaust emission characteristics. 2015 , 90, 383-394		119
586	Effects of higher ratios of n-butanol addition to diesellegetable oil blends on performance and exhaust emissions of a diesel engine. 2015 , 88, 209-220		101
585	Experimental study on diesel conventional and low temperature combustion by fueling four isomers of butanol. <i>Fuel</i> , 2015 , 141, 109-119	1	125
584	A review of the combustion and emissions properties of advanced transportation biofuels and their impact on existing and future engines. <i>Renewable and Sustainable Energy Reviews</i> , 2015 , 42, 1393-1417	ó.2	283
583	Alternative thermochemical routes for aviation biofuels via alcohols synthesis: Process modeling, techno-economic assessment and comparison. 2015 , 138, 346-366		99
582	Biobased n-Butanol Prepared from Poly-3-hydroxybutyrate: Optimization of the Reduction of n-Butyl Crotonate to n-Butanol. 2015 , 19, 710-714		6

581	A synthetic O2 -tolerant butanol pathway exploiting native fatty acid biosynthesis in Escherichia coli. 2015 , 112, 120-8	15	5
580	Experimental studies on 3A and 4A zeolite molecular sieves regeneration in TSA process: Aliphatic alcohols dewatering water desorption. 2015 , 259, 232-242	55	5
579	Recent advances to improve fermentative butanol production: genetic engineering and fermentation technology. 2015 , 119, 1-9	13	35
578	Effect of Fe doping on the structural and gas sensing properties of ZnO porous microspheres. 2015 , 76, 51-58	25	1
577	Biotechnological Strategies for Advanced Biofuel Production: Enhancing Tolerance Phenotypes Through Genome-Scale Modifications. 2016 , 227-263		
576	Hydrocarbon Speciation of Diesel Ignited Ethanol and Butanol Engines. 2016,	2	
575	Enhanced Down-Stream Processing of Biobutanol in the ABE Fermentation Process. 2016 , 38, 979-984	10	0
574	A Comparison of Drop-In Diesel Fuel Blends Containing Heavy Alcohols Considering Both Engine Properties and Global Warming Potentials. 2016 ,	6	
573	A Modeling Study of the Effects of Butanol Addition on Aromatic Species in Premixed Butane Flames. 2016 ,		
572	Effect of ozonolysis parameters on the inhibitory compound generation and on the production of ethanol by Pichia stipitis and acetone-butanol-ethanol by Clostridium from ozonated and water washed sugarcane bagasse. 2016 , 218, 850-8	8	
571	Highly Efficient Process for Production of Biofuel from Ethanol Catalyzed by Ruthenium Pincer Complexes. 2016 , 138, 9077-80	8;	7
57°	Reactive force field simulation studies on the combustion behavior of n -octanol. 2016 , 152, 132-139	28	8
569	Application of biobutanol in advanced CI engines 🖺 review. <i>Fuel</i> , 2016 , 183, 641-658	. 8:	1
568	Performance of biodiesel/higher alcohols blends in a diesel engine. 2016 , 40, 1134-1143	6	5
567	Experimental investigation of effect of Gasoline-higher alcohol blend on performance characteristic of four stroke Spark Ignition engine at variable compression ratio. 2016 ,	4	
566	Towards a green bulk-scale biobutanol from bioethanol upgrading. 2016 , 25, 907-910	22	2
565	Physico-chemical Properties of the Pseudo-binary Mixture Gasoline + 1 - Butanol. 2016 , 95, 330-336	3	
564	Strategies for emissions control in heavy-duty diesel engines to achieve low-emissions combustion with a high efficiency. 2016 , 230, 593-608	7	

(2016-2016)

563	Gamma infinity data for the separation of water-butan-1-ol mixtures using ionic liquids. <i>Separation and Purification Technology</i> , 2016 , 162, 162-170	8.3	32
562	Effects of diesel/PODE (polyoxymethylene dimethyl ethers) blends on combustion and emission characteristics in a heavy duty diesel engine. <i>Fuel</i> , 2016 , 177, 206-216	7.1	125
561	Experimental investigation on the knocking combustion characteristics of n-butanol gasoline blends in a DISI engine. 2016 , 175, 346-355		54
560	Alternative non-chromatographic method for alcohols determination in Clostridium acetobutylicum fermentations. 2016 , 126, 48-53		7
559	Acetone-butanol-ethanol from sweet sorghum juice by an immobilized fermentation-gas stripping integration process. 2016 , 211, 704-10		38
558	Optical soot measurement of bio-butanol upstream product, ABE (Acetone B utanol E thanol), under diesel-like conditions. <i>Fuel</i> , 2016 , 181, 300-309	7.1	22
557	Availability analysis of using iso-octane/n-butanol blends in spark-ignition engines. 2016 , 96, 281-294		26
556	Experiments on n -heptane combustion with two types of catalyst layouts. 2016 , 100, 325-332		10
555	Adsorptive separation performance of 1-butanol onto typical hydrophobic zeolitic imidazolate frameworks (ZIFs). 2016 , 18, 3842-3849		22
554	Experimental and numerical study on ethanol and dimethyl ether lifted flames in a hot vitiated co-flow. <i>Fuel</i> , 2016 , 184, 620-628	7.1	5
553	Performance and emissions of spark-ignition engine using ethanolthethanoltasoline, n-butanolto-butanoltasoline and iso-butanolthanoltasoline blends: A comparative study. 2016 , 19, 2053-2059		27
552	Engine performance evaluation and pollutant emissions analysis using ternary bio-ethanoliso-butanoligasoline blends in gasoline engines. 2016 , 139, 1057-1067		47
551	Combustion, performance and emissions characteristics of a spark-ignition engine fueled with isopropanol-n-butanol-ethanol and gasoline blends. <i>Fuel</i> , 2016 , 184, 864-872	7.1	91
550	Homogeneous Ethanol to Butanol Catalysis Guerbet Renewed. 2016 , 6, 7125-7132		105
549	Immobilized ethanol fermentation coupled to pervaporation with silicalite-1/polydimethylsiloxane/polyvinylidene fluoride composite membrane. 2016 , 220, 124-131		22
548	Development of a combined reduced primary reference fuel-alcohols (methanol/ethanol/propanols/butanols/n-pentanol) mechanism for engine applications. <i>Energy</i> , 2016 , 114, 542-558	7.9	64
547	Biomass, strain engineering, and fermentation processes for butanol production by solventogenic clostridia. 2016 , 100, 8255-71		39
546	Butanol or DEE blends with either straight vegetable oil or biodiesel excluding fossil fuel: Comparative effects on diesel engine combustion attributes, cyclic variability and regulated emissions trade-off. <i>Energy</i> , 2016 , 115, 314-325	7.9	132

545	Comparative Study on Steam Reforming of Single- and Multicomponent Model Compounds of Biomass Fermentation for Producing Biohydrogen over Mesoporous Ni/MgO Catalyst. <i>Energy & Mamp; Fuels</i> , 2016 , 30, 8432-8440	4.1	7
544	Effect of using butanol and octanol isomers on engine performance of steady state and cold start ability in different types of Diesel engines. <i>Fuel</i> , 2016 , 184, 708-717	7.1	53
543	Performance and emissions assessment of n-butanolthethanolth		60
542	Large-scale bioprocess competitiveness: the potential of dynamic metabolic control in two-stage fermentations. 2016 , 14, 121-136		58
541	Investigation of Fuel Injection Strategies for Direct Injection of Neat n-Butanol in a Compression Ignition Engine. 2016 , 9, 1512-1525		8
540	Experimental investigation of combustion, emissions and thermal balance of secondary butyl alcohol-gasoline blends in a spark ignition engine. 2016 , 123, 1-14		40
539	Investigation of pervaporation performance of POMS membrane during separation of butanol from water and the effect of added acetone and ethanol. <i>Separation and Purification Technology</i> , 2016 , 170, 40-48	8.3	30
538	Combustion characteristics of butanol isomers in multiphase droplet configurations. <i>Combustion and Flame</i> , 2016 , 169, 216-228	5.3	19
537	Experimental investigation on spray-wall impingement characteristics of n-butanol/diesel blended fuels. <i>Fuel</i> , 2016 , 182, 248-258	7.1	34
536	Multiblock Copolymer Grafting for Butanol Biofuel Recovery by a Sustainable Membrane Process. 2016 , 8, 16262-72		4
536 535			20
	2016, 8, 16262-72 Salting-out effect of potassium pyrophosphate (K4P2O7) on the separation of biobutanol from an		
535	2016, 8, 16262-72 Salting-out effect of potassium pyrophosphate (K4P2O7) on the separation of biobutanol from an aqueous solution. 2016, 91, 1860-1867 Unorthodox methods for enhancing solvent production in solventogenic Clostridium species. 2016,	4.1	20
535 534	2016, 8, 16262-72 Salting-out effect of potassium pyrophosphate (K4P2O7) on the separation of biobutanol from an aqueous solution. 2016, 91, 1860-1867 Unorthodox methods for enhancing solvent production in solventogenic Clostridium species. 2016, 100, 1089-1099	4.1 5.3	20
535534533	Salting-out effect of potassium pyrophosphate (K4P2O7) on the separation of biobutanol from an aqueous solution. 2016, 91, 1860-1867 Unorthodox methods for enhancing solvent production in solventogenic Clostridium species. 2016, 100, 1089-1099 Model-Based Design of Tailor-Made Biofuels. <i>Energy & Design Services</i> 2016, 30, 1109-1134 Development of a reduced toluene reference fuel (TRF)-2,5-dimethylfuran-polycyclic aromatic		20 18 54
535534533532	Salting-out effect of potassium pyrophosphate (K4P2O7) on the separation of biobutanol from an aqueous solution. 2016, 91, 1860-1867 Unorthodox methods for enhancing solvent production in solventogenic Clostridium species. 2016, 100, 1089-1099 Model-Based Design of Tailor-Made Biofuels. <i>Energy & Design Series</i> 2016, 30, 1109-1134 Development of a reduced toluene reference fuel (TRF)-2,5-dimethylfuran-polycyclic aromatic hydrocarbon (PAH) mechanism for engine applications. <i>Combustion and Flame</i> , 2016, 165, 453-465 Experimental investigation of butanol isomer combustion in Homogeneous Charge Compression		20 18 54 49
535534533532531	Salting-out effect of potassium pyrophosphate (K4P2O7) on the separation of biobutanol from an aqueous solution. 2016, 91, 1860-1867 Unorthodox methods for enhancing solvent production in solventogenic Clostridium species. 2016, 100, 1089-1099 Model-Based Design of Tailor-Made Biofuels. Energy & Development of a reduced toluene reference fuel (TRF)-2,5-dimethylfuran-polycyclic aromatic hydrocarbon (PAH) mechanism for engine applications. Combustion and Flame, 2016, 165, 453-465 Experimental investigation of butanol isomer combustion in Homogeneous Charge Compression Ignition (HCCI) engines. 2016, 165, 612-626 Ethanol fermentation integrated with PDMS composite membrane: An effective process. 2016,		20 18 54 49 76

(2016-2016)

527	Optical diagnostics of early flame development in a DISI (direct injection spark ignition) engine fueled with n-butanol and gasoline. <i>Energy</i> , 2016 , 108, 50-62	7.9	24
526	Effect of water-containing acetoneButanolathanol gasoline blends on combustion, performance, and emissions characteristics of a spark-ignition engine. 2016 , 117, 21-30		53
525	Biosynthesis of chain-specific alkanes by metabolic engineering in Escherichia coli. 2016 , 16, 53-59		12
524	Study on the Miscibility Behavior of Diesel\(\textit{B}\)-Butanol\(\textit{B}\)thanol Blends and Fluorimetric Estimation of Diesel Fraction. Energy & Fuels, 2016,	4.1	7
523	Upgrading fast pyrolysis oil: Solvent Enti-solvent extraction and blending with diesel. 2016, 110, 378-38	5	24
522	Use of higher alcohol biofuels in diesel engines: A review. <i>Renewable and Sustainable Energy Reviews</i> , 2016 , 60, 84-115	16.2	360
521	Comparative evaluation of the effect of butanoldiesel and pentanoldiesel blends on carbonaceous particulate composition and particle number emissions from a diesel engine. <i>Fuel</i> , 2016 , 176, 40-47	7.1	72
520	ZIF-7/PDMS mixed matrix membranes for pervaporation recovery of butanol from aqueous solution. <i>Separation and Purification Technology</i> , 2016 , 163, 39-47	8.3	73
519	Pervaporation membrane reactors. 2016 , 331-381		5
518	Catalytic conversion of methanol/ethanol to isobutanola highly selective route to an advanced biofuel. 2016 , 52, 5202-4		54
517	Renewable Resources: From Refinery to Bio-refinery. 2016 , 63-76		
516	Roll-coating of defect-free membranes with thin selective layer for alcohol permselective pervaporation: From laboratory scale to pilot scale. 2016 , 289, 106-113		15
515	Upgrading ethanol to 1-butanol with a homogeneous air-stable ruthenium catalyst. 2016 , 52, 2901-4		83
514	Modular and selective biosynthesis of gasoline-range alkanes. 2016 , 33, 28-40		64
513	Combustion noise radiation during dynamic diesel engine operation including effects of various biofuel blends: A review. <i>Renewable and Sustainable Energy Reviews</i> , 2016 , 54, 1099-1113	16.2	62
512	Gas strippingpervaporation hybrid process for energy-saving product recovery from acetoneButanolethanol (ABE) fermentation broth. 2016 , 287, 1-10		98
511	Combustion and Emissions in an HSDI Engine Running on Diesel or Vegetable Oil Base Fuel with n-Butanol or Diethyl Ether As a Fuel Extender. 2016 , 142,		17
510	Co-generation of bio-butanol and bio-lipids under a hybrid process. 2016 , 18, 1377-1386		26

509	Material compatibility evaluation for elastomers, plastics, and metals exposed to ethanol and butanol blends. <i>Fuel</i> , 2016 , 163, 248-259	10
508	Experimental study of dual n-butanol and iso-butanol additives on spark-ignition engine performance and emissions. <i>Fuel</i> , 2016 , 163, 166-174	56
507	Computational Investigation on Soot Mechanism of Diesel and Diesel/n-Butanol Blend in Constant Volume Chamber with Various Ambient Temperatures. <i>Energy & Diesel Amp; Fuels,</i> 2017 , 31, 916-931	3
506	Flammability limits of iso-butanol/iso-octane/n-heptane blends. 2017 , 88, 40-44	7
505	Drop-in biofuel production via conventional (lipid/fatty acid) and advanced (biomass) routes. Part I. <i>Biofuels, Bioproducts and Biorefining,</i> 2017 , 11, 344-362	45
504	Molecular interaction studies in the binary mixture of 1-ethyl-3-methylimidazolium trifluoromethanesulphonate+1-butanol from density, speed of sound and refractive index measurements. 2017 , 1-21	1
503	Butanol reforming: an overview on recent developments and future aspects. 2017, 34, 1-19	11
502	Investigation of n-butanol as fuel in a four-cylinder MPFI SI engine. <i>Energy</i> , 2017 , 125, 726-735 7.9	29
501	Investigation of emissions characteristics of secondary butyl alcohol-gasoline blends in a port fuel injection spark ignition engine. 2017 , 90, 01036	0
500	Adsorption breakthrough behavior of 1-butanol from an ABE model solution with high-silica zeolite: Comparison with zeolitic imidazolate frameworks (ZIF-8). 2017 , 243, 119-129	16
499	Cooperative growth of Geobacter sulfurreducens and Clostridium pasteurianum with subsequent metabolic shift in glycerol fermentation. 2017 , 7, 44334	27
498	Lignocellulosic n-butanol co-production in an advanced biorefinery using mixed cultures. 2017 , 102, 1-12	17
497	A novel glycosylated solution from Dioscorea zingiberensis C.H. Wright significantly improves the solvent productivity of Clostridium beijerinckii. 2017 , 241, 317-324	2
496	Metabolite labelling as a tool to define hierarchies in Clostridium acetobutylicum sugar usage and its relevance for biofuel production. 2017 , 10, 525-527	1
495	Butanol and pentanol: The promising biofuels for CI engines 🖪 review. <i>Renewable and Sustainable Energy Reviews</i> , 2017 , 78, 1068-1088	130
494	High-temperature oxidation kinetics of iso-octane/n-butanol blends-air mixture. <i>Energy</i> , 2017 , 133, 443-454	10
493	High selective water/butan-1-ol separation on investigation of limiting activity coefficients with [P 8,8,8,8][NTf 2] ionic liquid. 2017 , 449, 1-9	21
492	Influence of surface acid and base sites on the Guerbet coupling of ethanol to butanol over metal phosphate catalysts. 2017 , 352, 182-190	52

(2017-2017)

491	Cellulosic biobutanol by Clostridia: Challenges and improvements. <i>Renewable and Sustainable Energy Reviews</i> , 2017 , 79, 1241-1254	16.2	66	
490	Current advances on fermentative biobutanol production using third generation feedstock. 2017 , 35, 1049-1059		80	
489	State of the art review of biofuels production from lignocellulose by thermophilic bacteria. 2017 , 245, 1498-1506		87	
488	Study of butanol conversion to butenes over H-ZSM-5: Effect of chemical structure on activity, selectivity and reaction pathways. 2017 , 539, 1-12		28	
487	Eco-efficient butanol separation in the ABE fermentation process. <i>Separation and Purification Technology</i> , 2017 , 177, 49-61	8.3	72	
486	Experimental comparative study on combustion, performance and emissions characteristics of methanol, ethanol and butanol in a spark ignition engine. 2017 , 115, 53-63		79	
485	Clean combustion of n-butanol as a next generation biofuel for diesel engines. 2017 , 198, 347-359		67	
484	Experimental investigation of a spark ignition engine fueled with acetone-butanol-ethanol and gasoline blends. <i>Energy</i> , 2017 , 121, 43-54	7.9	44	
483	Using fusel oil as a blend in gasoline to improve SI engine efficiencies: A comprehensive review. <i>Renewable and Sustainable Energy Reviews</i> , 2017 , 69, 1232-1242	16.2	55	
482	Application of response surface methodology in optimization of performance and exhaust emissions of secondary butyl alcohol-gasoline blends in SI engine. 2017 , 133, 178-195		52	
481	Investigations on performance and pollutant emissions of spark-ignition engines fueled with n -butanol[isobutanol[lethanol[lmethanol[land acetone[gasoline blends: A comparative study. Renewable and Sustainable Energy Reviews, 2017 , 71, 404-413	16.2	72	
480	Modeling End-Gas Autoignition of Ethanol/Gasoline Surrogate Blends in the Cooperative Fuel Research Engine. <i>Energy & Double Cooperative Fuels</i> , 2017, 31, 2378-2389	4.1	28	
479	Pre-treatment and enzymatic hydrolysis of lettuce residues as feedstock for bio-butanol production. 2017 , 96, 172-179		51	
478	Towards the upgrading of fermentation broths to advanced biofuels: a water tolerant catalyst for the conversion of ethanol to isobutanol. 2017 , 7, 5128-5134		24	
477	Thermodynamic process and performance of high n-butanol/gasoline blends fired in a GDI production engine running wide-open throttle (WOT). 2017 , 152, 57-64		30	
476	Performance, emission, and combustion characteristics of twin-cylinder common rail diesel engine fuelled with butanol-diesel blends. 2017 , 24, 23351-23362		15	
475	Experimental study on combustion and emission performance of a spark-ignition engine fueled with water containing acetone-gasoline blends. <i>Fuel</i> , 2017 , 210, 133-144	7.1	13	
474	Combustion Behavior of Jet A Droplets and its Blends With Butanol. 2017 ,		2	

473	The impact of n-butanol and iso-butanol as components of butanol-acetone (BA) mixture-diesel blend on spray, combustion characteristics, engine performance and emission in direct injection diesel engine. <i>Energy</i> , 2017 , 140, 1074-1086	7.9	30
472	Engineered polyketides: Synergy between protein and host level engineering. 2017 , 2, 147-166		55
471	Performance evaluation of gasoline alternatives using a thermodynamic spark-ignition engine model. 2017 , 1, 1991-2005		7
470	Manganese-Catalyzed Upgrading of Ethanol into 1-Butanol. 2017 , 139, 11941-11948		183
469	Reactivity of the CH-bonds of 2-butanol in liquid-phase oxidation. 2017, 91, 2337-2343		1
468	Thermodynamic and energy analysis of renewable butanol@thanol fuel reforming for the production of hydrogen. 2017 , 5, 5876-5890		14
467	A static headspace GC-MS/MS method for the determination of ethanol, iso-butanol, and n-butanol at nanomolar concentrations in aqueous environmental samples. 2017 , 15, 1007-1014		3
466	The effect of different n-butanol-fatty acid methyl esters (FAME) blends on puffing characteristics. <i>Fuel</i> , 2017 , 208, 30-40	7.1	22
465	Separation of water/butan-1-ol mixtures based on limiting activity coefficients with phosphonium-based ionic liquid. 2017 , 113, 183-191		23
464	Investigation of ignition characteristics and performance of a neat n-butanol direct injection compression ignition engine at low load. <i>Fuel</i> , 2017 , 208, 137-148	7.1	15
463	Current status and strategies for second generation biofuel production using microbial systems. 2017 , 148, 1142-1156		157
462	Low-energy biomass pretreatment with deep eutectic solvents for bio-butanol production. 2017 , 243, 464-473		54
461	Pd/C-CaO-catalyzed lalkylation and hydrodeoxygenation of an acetone-butanol-ethanol mixture for biogasoline synthesis. 2017 , 313, 1486-1493		16
460	Renewable feedstocks for biobutanol production by fermentation. 2017 , 39, 135-140		38
459	Comparative Evaluation of Ethanol, n-Butanol, and Diethyl Ether Effects as Biofuel Supplements on Combustion Characteristics, Cyclic Variations, and Emissions Balance in Light-Duty Diesel Engine. 2017 , 143, 04016044		67
458	Combustion Instability during Starting of Turbocharged Diesel Engine Including Biofuel Effects. 2017 , 143, 04016047		11
457	Recovery of slaughterhouse Animal Fatty Wastewater Sludge by conversion into Fatty Acid Butyl Esters by acid-catalyzed esterification. 2017 , 60, 184-190		10
456	Species diagnostics and modeling study of laminar premixed flames fueled by acetoneButanolBthanol (ABE). 2017 , 36, 1303-1310		10

455	Effects of hydrogen additions on premixed rich flames of four butanol isomers. 2017 , 42, 3833-3841		20
454	Development of a reduced n-butanol mechanism with combined reduction methods. <i>Fuel</i> , 2017 , 187, 403-416	7.1	12
453	Review on the characteristics of butanol, its production and use as fuel in internal combustion engines. <i>Renewable and Sustainable Energy Reviews</i> , 2017 , 69, 642-651	16.2	180
452	Comparison of Single and Multiple Injection Strategies in a Butanol Diesel Dual Fuel Engine. 2017 ,		O
451	Renewable hydrogen production from butanol: a review. 2017 , 1, 90-101		13
450	Fuel Stratification and Partially Premixed Combustion With Neat N-Butanol in a Compression Ignition Engine. 2017 ,		
449	Influence of Acetone-Butanol-Ethanol (ABE) assoline Blends on Regulated and Unregulated Emissions From a PFI SI Engine. 2017 ,		
448	Analysis of entropy generation and exergy losses of iso-octane and n-butanol adiabatic constant-volume combustion process. 2017 , 24, 82		1
447	Combustion Characteristics for Partially Premixed and Conventional Combustion of Butanol and Octanol Isomers in a Light Duty Diesel Engine. 2017 ,		5
446	Regulated and Unregulated Emissions from a Spark Ignition Engine Fueled with Acetone-Butanol-Ethanol (ABE)-Gasoline Blends. 2017 ,		6
445	Effects of Butanol Isomers on the Combustion Characteristics and Particle Number Emissions of a GDI Engine. 2017 ,		3
444	Metabolic engineering of for the obligate reduction of -butyrate to -butanol. 2017 , 10, 178		15
443	Development of a Reduced Chemical Mechanism for Combustion of Gasoline-Biofuels. 2017,		1
442	Determination of the alternative butanol/gasoline and butanol/diesel fuel blends heats of combustion by a heat-loss compensated semi-microcalorimeter. 2018 , 132, 1953-1960		3
441	Influence of Blending n-Butanol with Isooctane and n-Heptane on Ignition Delay Times in a Fuel Ignition Tester. <i>Energy & Dels</i> , 2018, 32, 6239-6251	4.1	2
440	Cold flow and filterability properties of n-butanol and ethanol blends with diesel and biodiesel fuels. <i>Fuel</i> , 2018 , 224, 552-559	7.1	54
439	Utilization of acetone-butanol-ethanol-water mixture obtained from biomass fermentation as renewable feedstock for hydrogen production via steam reforming: Thermodynamic and energy analyses. 2018 , 261, 385-393		16
438	Experimental investigation on combustion, noise, vibrations, performance and emissions characteristics of diesel/n-butanol blends driven genset engine. <i>Fuel</i> , 2018 , 221, 44-60	7.1	64

437	Experimental study on combustion and emissions of dual fuel RCCI mode fueled with biodiesel/n-butanol, biodiesel/2,5-dimethylfuran and biodiesel/ethanol. <i>Energy</i> , 2018 , 148, 824-838	7.9	97
436	Effect of Alcohol Addition to Gasoline on Soot Distribution Characteristics in Laminar Diffusion Flames. 2018 , 41, 897-906		15
435	Effects of Methane Addition on Exhaust Gas Emissions and Combustion Efficiency of the Premixed n-Heptane/Air Combustion. <i>Energy & Energy </i>	4.1	12
434	Experimental comparison of acetone-n-butanol-ethanol (ABE) and isopropanol-n-butanol-ethanol (IBE) as fuel candidate in spark-ignition engine. 2018 , 133, 179-187		44
433	1D modeling of SI engine using n-butanol as fuel: Adjust of fuel properties and comparison between measurements and simulation. 2018 , 157, 224-238		15
432	Influence of fuel properties on multi-cylinder PPC operation over a wide range of EGR and operating conditions. <i>Fuel</i> , 2018 , 215, 352-362	7.1	16
431	Modeling of regeneration stage of 3A and 4A zeolite molecular sieves in TSA process used for dewatering of aliphatic alcohols. 2018 , 337, 416-427		14
430	Catalytic Upgrading of Ethanol to n-Butanol via Manganese-Mediated Guerbet Reaction. 2018 , 8, 997-10	002	89
429	Separation of Butanol, Acetone, and Ethanol. 2018, 255-285		8
428	Effect of ambient temperature on the puffing characteristics of single butanol-hexadecane droplet. <i>Energy</i> , 2018 , 145, 430-441	7.9	24
427	Consolidated bioprocessing of butanol production from xylan by a thermophilic and butanologenic sp. M5. 2018 , 11, 89		52
426	Performance of various Si/Al ratios of ZSM-5-filled polydimethylsiloxane/polyethersulfone membrane in butanol recovery by pervaporation. 2018 , 37, 3095-3105		5
425	Feasibility of butanol production from wheat starch wastewater by Clostridium acetobutylicum. <i>Energy</i> , 2018 , 154, 240-248	7.9	33
424	Bio-based liquid fuels as a source of renewable energy: A review. <i>Renewable and Sustainable Energy Reviews</i> , 2018 , 88, 82-98	16.2	57
423	Microalgae for biobutanol production (Fechnology evaluation and value proposition. 2018, 31, 367-376		36
422	Transcriptional response to organic compounds from diverse gasoline and biogasoline fuel emissions in human lung cells. 2018 , 48, 329-341		16
421	Investigation into particle emission characteristics of partially premixed combustion fueled with high n-butanol-diesel ratio blends. <i>Fuel</i> , 2018 , 223, 1-11	7.1	17
420	Comparison of Single and Multiple Injection Strategies in a Butanol Diesel Dual Fuel Engine. 2018 , 140,		15

(2018-2018)

419	Experimental evaluation of water-containing isopropanol-n-butanol-ethanol and gasoline blend as a fuel candidate in spark-ignition engine. 2018 , 219, 42-52		47
418	Extraction of butan-1-ol from aqueous solution using ionic liquids: An effect of cation revealed by experiments and thermodynamic models. <i>Separation and Purification Technology</i> , 2018 , 196, 71-81	8.3	17
417	Quaternary blends of diesel, biodiesel, higher alcohols and vegetable oil in a compression ignition engine. <i>Fuel</i> , 2018 , 212, 462-469	7.1	112
416	Separation of water/butan-1-ol based on activity coefficients at infinite dilution in 1,3-didecyl-2-methylimidazolium dicyanamide ionic liquid. 2018 , 116, 316-322		13
415	Proposal for biorefineries based on mixed cultures for lignocellulosic biofuel production: a techno-economic analysis. <i>Biofuels, Bioproducts and Biorefining</i> , 2018 , 12, 56-67	5.3	17
414	Production and application of ABE as a biofuel. <i>Renewable and Sustainable Energy Reviews</i> , 2018 , 82, 1195-1214	16.2	57
413	Biobutanol concentration by pervaporation using supported ionic liquid membranes. <i>Separation and Purification Technology</i> , 2018 , 196, 124-131	8.3	18
412	Characteristics of food processing wastes and their use in sustainable alcohol production. <i>Renewable and Sustainable Energy Reviews</i> , 2018 , 81, 510-523	16.2	47
411	Numerical optimization and comparative study of n-butanol concentration stratification combustion and n-butanol/diesel reactivity stratification combustion for advanced compression ignition (CI) engine. <i>Fuel</i> , 2018 , 213, 83-97	7.1	18
410	Numerical study of a boosted HCCI engine fueled with n-butanol and isobutanol. 2018 , 157, 28-40		28
409	Comprehensive study of key operating parameters on combustion characteristics of butanol-gasoline blends in a high speed SI engine. 2018 , 212, 13-32		21
408	Injection strategies for reducing smoke and improving the performance of a butanol-diesel common rail dual fuel engine. 2018 , 212, 1-12		36
407	Performance, Combustion, and Emissions Characteristics of Conventional Diesel Engine Using Butanol Blends. 2018 , 93-110		4
406	Prediction of cyclic variability in a diesel engine fueled with n-butanol and diesel fuel blends using artificial neural network. 2018 , 117, 538-544		45
405	Experimental and kinetic investigation on soot formation of n-butanol-gasoline blends in laminar coflow diffusion flames. <i>Fuel</i> , 2018 , 213, 195-205	7.1	33
404	Carbon-Increasing Catalytic Strategies for Upgrading Biomass into Energy-Intensive Fuels and Chemicals. 2018 , 8, 148-187		188
403	Combustion Characteristics of Isolated Free-Falling Droplets of Jet A Blended With Ethanol and Butanol. 2018 ,		1
402	Process Development for Bio-butanol Steam Reforming for PEMFC Application. 2018 , 7, 110		1

401	Operational Strategies and Comprehensive Evaluation of Menthol Based Deep Eutectic Solvent for the Extraction of Lower Alcohols from Aqueous Media. 2018 , 6, 16920-16932	49
400	Effects of Different Injection Strategies and EGR on Partially Premixed Combustion. 2018,	8
399	Exhaust Emissions and Physicochemical Properties of n-Butanol/Diesel Blends with 2-Ethylhexyl Nitrate (EHN) or Hydrotreated Used Cooking Oil (HUCO) as Cetane Improvers. 2018 , 11, 3413	3
398	Performance and Regulated/Unregulated Emission Evaluation of a Spark Ignition Engine Fueled with Acetone B utanol E thanol and Gasoline Blends. 2018 , 11, 1121	6
397	Reduced Chemical Kinetic Mechanism for a Waste Cooking Oil Biodiesel/n-Pentanol Mixture for Internal Combustion Engine Simulation. <i>Energy & Energy & Energy</i>	14
396	Reactivity Controlled Compression Ignition combustion and emissions using n-butanol and methyl oleate. <i>Energy</i> , 2018 , 165, 911-924	17
395	Sustainable Waste-to-Energy Technologies: Fermentation. 2018 , 69-88	2
394	Use of Water-Butanol Blends in a Turbocharged Common Rail Dual Fuel Engine for Enhanced Performance and Reduce Smoke Levels. 2018 ,	O
393	A Broad Introduction to First-, Second-, and Third-Generation Biofuels. 2018 , 1-25	14
392	Cost- and Energy-Efficient Butanol-Based Extraction-Assisted Distillation Designs for Purification of 2,3-Butanediol for Use as a Drop-in Fuel. 2018 , 6, 14901-14910	26
391	Experimental and chemical kinetic study of the impact of n-butanol blending on the gross engine performance of a CRDI engine. 2018 , 178, 400-414	9
390	An oleaginous yeast platform for renewable 1-butanol synthesis based on a heterologous CoA-dependent pathway and an endogenous pathway. 2018 , 17, 166	8
389	Physical and Chemical Properties of 1-ButanolDiesel Fuel Blends. <i>Energy & Diesel Fuels</i> , 2018, 32, 11619-11631	7
388	A Pinch of Salt Improves n-Butanol Selectivity in the Guerbet Condensation of Ethanol over Cu-Doped Mg/Al Oxides. 2018 , 6, 15119-15126	13
387	CRISPR Gene Perturbations Provide Insights for Improving Bacterial Biofuel Tolerance. <i>Frontiers in Bioengineering and Biotechnology</i> , 2018 , 6, 122	13
386	Effect of Butanol Addition on Performance, Combustion Stability and Nano-Particle Emissions of a Conventional Diesel Engine. 2018 ,	9
385	A Review of Particulate Number (PN) Emissions from Gasoline Direct Injection (GDI) Engines and Their Control Techniques. 2018 , 11, 1417	114
384	Algal Biomass from Wastewater and Flue Gases as a Source of Bioenergy. 2018 , 11, 664	44

383	Experimental investigation of the suitability of 1-butanol blended with biodiesel as an alternative biofuel in diesel engines. 2018 , 15, 72-77		18
382	The influence of alcohol additives and EGR on the combustion and emission characteristics of diesel engine under high-load condition. 2018 , 140, 363-372		74
381	Exhaust emissions and performance of ternary iso-butanol B io-methanol g asoline and n-butanol B io-ethanol g asoline fuel blends in spark-ignition engines: Assessment and comparison. <i>T.9 Energy</i> , 2018 , 158, 830-844		49
380	Effect of acetoneButanol@thanol addition to diesel on the soot reactivity. Fuel, 2018, 226, 555-563		22
379	Reverse micelle formation in vegetable oil, 1-butanol and diesel biofuel blends Œlimination of need for transesterification of triglycerides. 2018 , 25, 57-64		2
378	Pervaporative separation and intensification of downstream recovery of acetone-butanol-ethanol (ABE). 2018 , 130, 148-159		32
377	UN sustainable development goals: How can sustainable/green chemistry contribute?. 2018 , 13, 154-157		6
376	Kinetics of n-butanol oxidation over Pt/ZSM-5 catalyst. 2018 , 179, 108-113		7
375	Prospects & potential of biobutanol production integrated with organophilic pervaporation [A techno-economic assessment. 2018 , 228, 437-449		23
374	An Experimental and Numerical Study of N-Dodecane/Butanol Blends for Compression Ignition Engines. 2018 ,		3
373	Simulation and comparison of processes for biobutanol production from lignocellulose via ABE fermentation. <i>Biofuels, Bioproducts and Biorefining</i> , 2018 , 12, 1023-1036		22
372	Impact of Ethanol and N-Butanol Addition on Fuel Properties and Exhaust Emissions of a Stationary Diesel Engine. 2018 , 144, 04018052		7
371	Alginate Adsorbent Immobilization Technique Promotes Biobutanol Production by Under Extreme Condition of High Concentration of Organic Solvent. 2018 , 9, 1071		1
370	Experimental study on combustion characteristics of an n-butanol-biodiesel droplet. <i>Energy</i> , 2018 , 160, 490-499		17
369	Combustion performance of dual-injection using n-butanol direct-injection and gasoline port fuel-injection in a SI engine. <i>Energy</i> , 2018 , 160, 573-581		37
368	Effects of n-butanol addition on sooting tendency and formation of C1 £12 primary intermediates of n-heptane/air mixture in a micro flow reactor with a controlled temperature profile. 2018 , 190, 2066-208	1	5
367	A comparative analysis of n-butanol/diesel and 1-pentanol/diesel blends in a compression ignition engine. Fuel, 2018, 234, 161-169 7.1		104
366	Recent Developments in the Conversion of Synthesis Gas to Short-Chain Alcohols over Cu-Co-Based Catalysts. 2018 , 90, 1465-1475		8

365	Performance of a gasoline engine powered by a mixture of ethanol and n-butanol. 2018 , 20, 1929-1937		8
364	Effects of biodiesel-ethanol and biodiesel-butanol blends on the combustion, performance and emissions of a diesel engine. <i>Energy</i> , 2018 , 155, 957-970	9	66
363	Thermodynamic analysis and heat integration for hydrogen production from bio-butanol for SOFC application: Steam reforming vs. autothermal reforming. 2018 , 40, 2590-2598		6
362	Fuel Stratification and Partially Premixed Combustion With Neat n-Butanol in a Compression Ignition Engine. 2018 , 140,		5
361	Hydrogen-rich syngas production of urea blended with biobutanol by a thermodynamic analysis. 2018 , 43, 17562-17573		3
360	Analysis of auto-ignition characteristics of low-alcohol/iso-octane blends using combined chemical kinetics mechanisms. <i>Fuel</i> , 2018 , 234, 836-849	<u>[</u>	9
359	Developments in Fermentative Butanol Production as an Alternative Biofuel Source. 2018, 140,		3
358	Evaluating Oxygenated Fuel Influence on Combustion and Emissions in Diesel Engines Using a Two-Zone Combustion Model. 2018 , 144, 04018046		35
357	Advanced bioprocessing strategies for biobutanol production from biomass. <i>Renewable and Sustainable Energy Reviews</i> , 2018 , 91, 1192-1204	2	53
356	Electron impact total ionization cross section for C4 and C5 isomeric alcohols. 2018, 431, 37-42		6
355	Autoignition reactivity of blends of diesel and biodiesel fuels with butanol isomers. 2019 , 92, 1223-1231		15
354	Direct transformation of butenes or ethylene into propylene by cascade catalytic reactions. 2019 , 9, 4466-	447	79
353	Combined Impact of n-Butanol Additive and Spark Timing on Combustion and Efficiency of a GDI Engine. 2019 , 145, 04019018		3
352	Molecular sieve ceramic pervaporation membranes in solvent recovery: A comprehensive review. 2019 , 7, 103367		14
351	Extraction of Natural Fragrance Ingredients: History Overview and Future Trends. 2019 , 16, e1900424		21
350	Adsorptive recovery of alcohols from a model syngas fermentation broth. <i>Fuel</i> , 2019 , 254, 115590	1	5
349	Effects of butanolgasoline blends on SI engine performance, fuel consumption, and emission characteristics at partial engine speeds. 2019 , 10, 483-492		11
348	Butanol production from lignocellulosic biomass: revisiting fermentation performance indicators with exploratory data analysis. 2019 , 12, 167		46

347	Alternative fuels for IC engines and jet engines and comparison of their gaseous and particulate matter emissions. 2019 , 17-64		3
346	Investigation on the effect of butanol isomers with gasoline on spark ignition engine characteristics. 2019 , 265-289		3
345	Recent advances of biofuels and biochemicals production from sustainable resources using co-cultivation systems. 2019 , 12, 155		31
344	Renewable hydrogen production by steam reforming of butanol over multiwalled carbon nanotube-supported catalysts. 2019 , 44, 30014-30023		7
343	Computational Studies on the Thermodynamic and Kinetic Parameters of Oxidation of 2-Methoxyethanol Biofuel via H-Atom Abstraction by Methyl Radical. 2019 , 9, 15361		14
342	Synthesis of ethanol and its catalytic conversion. 2019 , 64, 89-191		5
341	Current Status of Biotechnological Processes in the Biofuel Industries. 2019 , 47-69		2
340	The utilization of n-butanol/diesel blends in Acetylene Dual Fuel Engine. 2019 , 5, 1030-1040		15
339	Biofuels in Automobiles: Advantages and Disadvantages: A Review. 2019 , 3, 27-33		8
338	Progress of acetone-butanol-ethanol (ABE) as biofuel in gasoline and diesel engine: A review. 2019 , 196, 106179		58
338			58 7
	196, 106179 Study of performance and emissions of a stationary DI variable compression ratio CI engine fueled		
337	Study of performance and emissions of a stationary DI variable compression ratio CI engine fueled with n-butanol/diesel blends using Taguchi technique: analytical and experimental analysis. 2019 , 1-27 Combustion visualization for coal-based synthetic fuel and its mixture with oxygenated fuels	7.1	
337	Study of performance and emissions of a stationary DI variable compression ratio CI engine fueled with n-butanol/diesel blends using Taguchi technique: analytical and experimental analysis. 2019, 1-27 Combustion visualization for coal-based synthetic fuel and its mixture with oxygenated fuels achieved using two-color method. 2019, 160, 372-380 Numerical study of particle dynamics in laminar diffusion flames of gasoline blended with different	7.1 7.1	7
337 336 335	Study of performance and emissions of a stationary DI variable compression ratio CI engine fueled with n-butanol/diesel blends using Taguchi technique: analytical and experimental analysis. 2019, 1-27 Combustion visualization for coal-based synthetic fuel and its mixture with oxygenated fuels achieved using two-color method. 2019, 160, 372-380 Numerical study of particle dynamics in laminar diffusion flames of gasoline blended with different alcohols. <i>Fuel</i> , 2019, 257, 116065 The potential of dimethyl carbonate (DMC) as an alternative fuel for compression ignition engines	•	7 2 10
337 336 335 334	Study of performance and emissions of a stationary DI variable compression ratio CI engine fueled with n-butanol/diesel blends using Taguchi technique: analytical and experimental analysis. 2019, 1-27 Combustion visualization for coal-based synthetic fuel and its mixture with oxygenated fuels achieved using two-color method. 2019, 160, 372-380 Numerical study of particle dynamics in laminar diffusion flames of gasoline blended with different alcohols. Fuel, 2019, 257, 116065 The potential of dimethyl carbonate (DMC) as an alternative fuel for compression ignition engines with different EGR rates. Fuel, 2019, 257, 115920 Experimental investigation on combustion and unregulated emission characteristics of	•	7 2 10 28
337 336 335 334 333	Study of performance and emissions of a stationary DI variable compression ratio CI engine fueled with n-butanol/diesel blends using Taguchi technique: analytical and experimental analysis. 2019, 1-27 Combustion visualization for coal-based synthetic fuel and its mixture with oxygenated fuels achieved using two-color method. 2019, 160, 372-380 Numerical study of particle dynamics in laminar diffusion flames of gasoline blended with different alcohols. Fuel, 2019, 257, 116065 The potential of dimethyl carbonate (DMC) as an alternative fuel for compression ignition engines with different EGR rates. Fuel, 2019, 257, 115920 Experimental investigation on combustion and unregulated emission characteristics of butanol-isomer/gasoline blends. 2019, 26, 2244-2258 Numerical research on effect of hydrogen blending fractions on idling performance of an n-butanol	7.1	7 2 10 28 2

329	Butanol Synthesis Routes for Biofuel Production: Trends and Perspectives. 2019 , 12,	62
328	Manganese-Catalyzed Selective Upgrading of Ethanol with Methanol into Isobutanol. 2019 , 12, 3069-3072	22
327	Investigation on Blending Effects of Gasoline Fuel with N-Butanol, DMF, and Ethanol on the Fuel Consumption and Harmful Emissions in a GDI Vehicle. 2019 , 12, 1845	45
326	Influence of Injection Timing on Performance and Exhaust Emission of CI Engine Fuelled with Butanol-Diesel Using a 1D GT-Power Model. 2019 , 7, 299	7
325	Study of n-butanol conversion to butenes: Effect of Si/Al ratio on activity, selectivity and kinetics. 2019 , 582, 117101	9
324	Status of biofuel in India with production and performance characteristics: a review. 2019 , 1-17	8
323	Improved Biobutanol Production in 2-L Simultaneous Saccharification and Fermentation with Delayed Yeast Extract Feeding and in-situ Recovery. 2019 , 9, 7443	13
322	Biobutanol as a promising liquid fuel for the future - recent updates and perspectives. <i>Fuel</i> , 2019 , 253, 637-646	70
321	Investigation into SI engine performance characteristics and emissions fuelled with ethanol/butanol-gasoline blends. 2019 , 143, 762-771	55
320	Dynamics and control of a heat pump assisted azeotropic dividing-wall column for biobutanol purification. 2019 , 146, 416-426	13
319	Biodiesel, Bioethanol, and Biobutanol Production from Microalgae. 2019 , 293-321	10
318	A comparative study on the combustion and emissions of dual-fuel engine fueled with natural gas/methanol, natural gas/ethanol, and natural gas/n-butanol. 2019 , 192, 11-19	34
317	Lemon peel oil as an alternative fuel for GDI engines: A spray characterization perspective. 2019 , 142, 249-263	15
316	Omics-based analyses revealed metabolic responses of to lignocellulose-derived inhibitors furfural, formic acid and phenol stress for butanol fermentation. 2019 , 12, 101	29
315	Effect of Injection Pressure and Airfluel Ratio on the Self-Ignition Properties of 1-ButanolDiesel Fuel Blends: Study Using a Constant-Volume Combustion Chamber. <i>Energy & Description</i> 23, 2335-2347	6
314	Novel fusants of two and three clostridia for enhanced green production of biobutanol. 2019 , 1-11	4
313	Experimental and numerical investigations on the laminar burning velocity of n-butanol + air mixtures at elevated temperatures. <i>Fuel</i> , 2019 , 249, 36-44	8
312	Clostridial conversion of corn syrup to Acetone-Butanol-Ethanol (ABE) via batch and fed-batch fermentation. 2019 , 5, e01401	17

311	Performance of butanol separation from ABE mixtures by pervaporation using silicone-coated ionic liquid gel membranes 2019 , 9, 8546-8556		13
310	Combustion and regulated/unregulated emissions of a direct injection spark ignition engine fueled with C3-C5 alcohol/gasoline surrogate blends. <i>Energy</i> , 2019 , 174, 779-791	7.9	15
309	Experimental comparative assessment of butanol or ethanol diesel-fuel extenders impact on combustion features, cyclic irregularity, and regulated emissions balance in heavy-duty diesel engine. <i>Energy</i> , 2019 , 174, 1145-1157	7.9	69
308	Alternatives for the Purification of the Blend Butanol/Ethanol from an Acetone/Butanol/Ethanol Fermentation Effluent. 2019 , 42, 1088-1100		8
307	Effect of hydroxyl (OH) group position in alcohol on performance, emission and combustion characteristics of SI engine. 2019 , 189, 195-201		21
306	Review and Performance Evaluation of Fifty Alternative Liquid Fuels for Spark-Ignition Engines. <i>Energy & Energy & Energ</i>	4.1	20
305	Ecofuel feedstocks and their prospects. 2019 , 15-51		7
304	Experimental study on auto-ignition characteristics of a butanol-hexadecane droplet under elevated pressures and temperatures. <i>Energy</i> , 2019 , 171, 654-665	7.9	4
303	Numerical Analysis of the Effects of Swirl Ratio on the Performance of Diesel Engine Fueled with N-Butanol D iesel Blends. 2019 , 145, 04019005		3
302	Experimental study of the effect of n-butanol additive on spray characteristics of biodiesel in a high-pressure common-rail injection system. 2019 , 233, 211-220		8
301	Biobutanol Production from Bagasse Using Ammonia Pre-treatment and Acid Hydrolysis Method. 2019 , 543, 012053		1
300	Biobutanol production from oil palm frond juice in 2 L stirred tank bioreactor with in situ gas stripping recovery. 2019 , 702, 012004		0
299	Experimental Study of the Combustion Characteristic of Commercial Bus Floor Leather with Adding Combustion Improver. 2019 ,		
298	Clostridium sp. as Bio-Catalyst for Fuels and Chemicals Production in a Biorefinery Context. 2019 , 9, 96	2	18
297	Preparation, important fuel properties, and comparative use of un-preheated palm fatty acid distillate-diesel blends in a single cylinder diesel engine. 2019 , 134, 1089-1098		3
296	ButanolEcetone mixture blended with cottonseed biodiesel: Spray characteristics evolution, combustion characteristics, engine performance and emission. 2019 , 37, 4729-4739		27
295	Effects of C3\$\tilde{1}\$5 alcohols on solubility of alcohols/diesel blends. Fuel, 2019 , 236, 65-74	7.1	53
294	Ethanol for Air Transportation. 2019 , 425-448		

293	Enriched microbial consortia for dark fermentation of sugarcane vinasse towards value-added short-chain organic acids and alcohol production. 2019 , 127, 594-601	20
292	Linear ⊞lcohols production from supercritical ethanol over Cu/Al2O3 catalyst. <i>Energy</i> , 2019 , 166, 569-57€.9	8
291	The influence of mixing ratio of low carbon mixed alcohols on knock combustion of spark ignition engines. <i>Fuel</i> , 2019 , 240, 339-348	9
290	Effect of n-butanol fumigation on the regulated and unregulated emission characteristics of a diesel engine. <i>Fuel</i> , 2019 , 242, 84-95	28
289	Experimental investigation on combustion characteristics in dual-fuel dual-injection engine. 2019 , 181, 15-25	28
288	Optimization of fusel oil lassoline blend ratio to enhance the performance and reduce emissions. 2019 , 148, 1334-1345	31
287	Effect of acetone-butanol-ethanol (ABE) gasoline blends on regulated and unregulated emissions in spark-ignition engine. <i>Energy</i> , 2019 , 168, 1157-1167	16
286	Experimental studies of a diesel engine run on biodiesel n-butanol blends. 2019 , 135, 687-700	41
285	Prediction of the performance and emissions of a spark ignition engine fueled with butanol-gasoline blends based on support vector regression. 2019 , 38, e13042	32
284	Effects of EGR rates on combustion and emission characteristics in a diesel engine with n-butanol/PODE3-4/diesel blends. 2019 , 146, 212-222	42
283	Experimental study of the autoignition properties of n-butanoldiesel fuel blends at various ambient gas temperatures. <i>Fuel</i> , 2019 , 235, 1316-1326	25
282	Effect of the addition of 1-pentanol on engine performance and emission characteristics of diesel and biodiesel fuelled single cylinder diesel engine. 2020 , 41, 58-63	14
281	Traditional Biomass: A Replacement for Petro-Fuels. 2020 , 795-809	2
280	Alternative butanol/gasoline and butanol/diesel fuel blends: An analysis of the interdependence between physical-chemical properties by a multivariate principal component analysis model. 2020 , 31, 733-754	1
279	Comparative investigation of the effects of lower and higher alcohols/bio-diesel blends on engine performance and emissions characteristics of a diesel engine. 2020 , 41, 652-658	3
278	Comparative study on single-injection and pilot-injection strategies for DI CI engine fuelled with the butanol/diesel blend. 2020 , 41, 1227-1234	5
277	Using poly(vinyldodecylimidazolium bromide) for the in-situ product recovery of n-butanol. 2020 , 36, e2926	1
276	Bio-butanol as a new generation of clean alternative fuel for SI (spark ignition) and CI (compression ignition) engines. 2020 , 147, 2494-2521	96

(2020-2020)

275	Comparison of acid-, alkaline-, and ionic liquid t reated Napier grass as an immobilization carrier for butanol production by Clostridium beijerinckii JCM 8026. <i>Biomass Conversion and Biorefinery</i> , 2020 , 10, 1071-1082	2.3	3	
274	Production technologies, current role, and future prospects of biofuels feedstocks: A state-of-the-art review. 2020 , 50, 384-436		108	
273	Effects of blending C3-C4 alcohols on motor gasoline properties and performance of spark ignition engines: A review. 2020 , 197, 106194		35	
272	Study on the Solubility between Diesel and Acetone B utanol E thanol with or without Water. <i>Energy & Diesel and Acetone B</i> utanol with or without Water.	4.1	5	
271	Effects of a wave-shaped piston bowl geometry on the performance of heavy duty Diesel engines fueled with alcohols and biodiesel blends. 2020 , 148, 512-522		16	
270	A compressive review on the effects of alcohols and nanoparticles as an oxygenated enhancer in compression ignition engine. 2020 , 203, 112244		83	
269	Experimental study on combustion and emission characteristics of iso-butanol/diesel and gasoline/diesel RCCI in a heavy-duty engine under low loads. <i>Fuel</i> , 2020 , 261, 116434	7.1	40	
268	A new skeletal mechanism for diesel-n-butanol blends combustion in engine. <i>Fuel</i> , 2020 , 264, 116856	7.1	17	
267	Skeletal Mechanism Generation and Validation for Acetonell-butanolethanol (ABE) Combustion in Diesel Engine. <i>Energy & Diesel & D</i>	4.1	10	
266	Conversion of biorenewably available acetone and butanol to liquid fuels using base catalysts. <i>Biomass Conversion and Biorefinery</i> , 2020 , 11, 1921	2.3	6	
265	Optimising the biodiesel production process: Implementation of glycerol derivatives into biofuel formulations and their potential to form hydrofuels. <i>Fuel</i> , 2020 , 264, 116695	7.1	17	
264	Biobutanol from lignocellulosic biomass: bioprocess strategies. 2020 , 169-193		9	
263	Current advances in on-site cellulase production and application on lignocellulosic biomass conversion to biofuels: A review. 2020 , 132, 105419		83	
262	Potential of n-butanol/diesel blends for CI engines under post injection strategy and different EGR rates conditions. 2020 , 204, 112329		33	
261	Purification of isopropanol-butanol-ethanol (IBE) from fermentation broth: process intensification and evaluation. 2020 , 158, 108182		5	
260	Gene coexpression network analysis reveals a novel metabolic mechanism of responding to phenolic inhibitors from lignocellulosic hydrolysates. 2020 , 13, 163		9	
259	Phosphine-free pincer-ruthenium catalyzed biofuel production: high rates, yields and turnovers of solventless alcohol alkylation. 2020 , 10, 8347-8358		7	
258	Experimental investigation on soot formation characteristics of n-heptane/butanol isomers blends in laminar diffusion flames. <i>Energy</i> , 2020 , 211, 118714	7.9	9	

257	Effects of hydrogen direct injection on combustion and emission characteristics of a hydrogen/Acetone-Butanol-Ethanol dual-fuel spark ignition engine under lean-burn conditions. 2020 , 45, 34193-34203	18
256	Understanding alcohol aggregates and the water hydrogen bond network towards miscibility in alcohol solutions: graph theoretical analysis. 2020 , 22, 17181-17195	12
255	Recent Progress with Pincer Transition Metal Catalysts for Sustainability. 2020 , 10, 773	35
254	Quantum chemical calculation, molecular dynamics simulation and process design for separation of heptane - butanol using ionic liquids extraction. 2020 , 316, 113851	14
253	Predicting the combustion behaviour of compression ignition engine fuelled with biodiesel from Stoechospermum marginatum, a macro algae. 2021 , 28, 63464-63479	1
252	Empirical investigation and control-oriented modeling of n-butanol HCCI for improving combustion controllability. <i>Fuel</i> , 2020 , 280, 118551 7.1	4
251	Experimental studies of single cylinder engine run on diesel-biodiesel-butanol blends. 2020 , 863, 012060	1
250	Biomass coproducts utilization. 2020 , 153-197	
249	Experimental study the effects of acetoneButanol@thanol (ABE), spark timing and lambda on the performance and emissions characteristics of a high-speed SI engine. <i>Fuel</i> , 2020 , 279, 118499	10
248	NOx Emission Reduction Technology for Marine Engine Based on Tier-III: A Review. 2020 , 29, 1242-1268	16
247	The study of the spark ignition engine operation at fuelling with n-butanol-gasoline blends. 2020 , 180, 01010	1
246	Comparative study on effects of injection mode on combustion and emission characteristics of a combined injection n-butanol/gasoline SI engine with hydrogen direct injection. <i>Energy</i> , 2020 , 213, 1189039	5
245	Manganese Diphosphine and Phosphinoamine Complexes Are Effective Catalysts for the Production of Biofuel Alcohols the Guerbet Reaction. 2020 , 39, 3873-3878	6
244	Ethanol producing yeast isolated from Indonesian flower nectar and wild forrest honey. 2020,	
243	Intensified Purification Alternative for Methyl Ethyl Ketone Production. 2020 , 311-339	
242	Study of effects of ignition improvers on ethanol compression ignition in the rapid compression machine. <i>Journal of the Brazilian Society of Mechanical Sciences and Engineering</i> , 2020 , 42, 1	1
241	. 2020,	
240	Selected Fuel Properties of Alcohol and Rapeseed Oil Blends. 2020 , 13, 3821	2

(2020-2020)

Synergistic effect between noble metal M (M = Pt, Pd, Rh) and polyoxometalate solution (H3PMo12O40) to catalyze and oxidize butanol under thermal condition and their application in the 239 fuel cell. 2020, 31, 15954-15959 Thermodynamic and transport properties of ternary mixture (ethyl oleate + n-hexadecane +1-butanol) and its binary constituents (ethyl oleate +1-butanol and ethyl oleate + n-hexadecane) 238 at different temperatures and atmospheric pressure. 2020, 317, 114186 Using Co-Culture to Functionalize Clostridium Fermentation. 2021, 39, 914-926 8 237 Negative impact of butyric acid on butanol recovery by pervaporation with a silicalite-1 membrane 236 8.3 from ABE fermentation. Separation and Purification Technology, 2020, 245, 116883 Effects of the injection timing on knock and combustion characteristics in dual-fuel dual-injection 235 5 engines. 2020, 234, 2578-2591 The effect of butanol isomers on diesel engine performance, emission and combustion 234 15 characteristics under different load conditions. Fuel, 2020, 277, 118188 Experimental study of the performance and emissions characteristics of fusel oil/gasoline blends in 7.1 19 233 spark ignited engine using response surface methodology. Fuel, 2020, 277, 118182 Performance and emission levels of butanol, acetone-butanol-ethanol, butanol-acetone/diesel 232 7 blends in a diesel engine. 2020, 1-11 Insights into Ethanol Coupling over Hydroxyapatite using Modulation Excitation Operando Infrared 231 3 Spectroscopy. 2020, 12, 4167-4175 High Acetone-Butanol-Ethanol Production from Food Waste by Recombinant Clostridium 230 saccharoperbutylacetonicum in Batch and Continuous Immobilized-Cell Fermentation. 2020, 8, 9822-9832 A novel reduced i-propanol-n-butanol-ethanol (IBE)/diesel mechanism for engine combustion and 229 7.1 9 emissions prediction. Fuel, 2020, 278, 118291 Impact of n-butanol-gasoline-hydrogen blends on combustion reactivity, performance and tailpipe 228 emissions using TGDI engine parameters variation. **2020**, 40, 100773 Effect of exhaust gas recirculation and hydrogen direct injection on combustion and emission 227 7 characteristics of a n-butanol SI engine. 2020, 45, 17961-17974 Choline chloride-based deep eutectic solvents as green extractant for the efficient extraction of 226 12 1-butanol or 2-butanol from azeotropic n-heptane + butanol mixtures. 2020, 313, 113524 An experimental and modeling study of autoignition characteristics of butanol/diesel blends over 225 5.3 7 wide temperature ranges. Combustion and Flame, 2020, 217, 175-187 Consolidated bioprocessing performance of a two-species microbial consortium for butanol 18 224 production from lignocellulosic biomass. 2020, 117, 2985-2995 Pathway dissection, regulation, engineering and application: lessons learned from biobutanol 36 223 production by solventogenic clostridia. 2020, 13, 39 Alternative Fuels for Diesel Engines: New Frontiers. 2020, 222

221	The screening of intermediates in a ruthenium and iridium ion-catalyzed gas-phase reaction of ethanol converting to butanol by ICP-MS/MS. 2020 , 35, 804-809	4
220	Densities and viscosities for the ternary system of (ethylcyclohexane + 1-butanol + ethyl octanoate) and corresponding binary systems at $T = (293.15B23.15) \text{ K. } 2020, 150, 106173$	6
219	Comparative Analysis of Effect of Diesel and N-Butanol Blend Properties on Combustion Process and Hydrocarbon Emission at Various Oxygen-Intake Concentrations. 2020 , 146, 04020010	2
218	Estimation of NOx and soot emission from a constant volume n-butanol/n-dodecane blended spray using unsteady flamelet model based on n-dodecane/n-butanol/NOx/PAH chemistry. 2020 , 93, 1868-1882	5
217	Reactivity controlled compression ignition with triple injection fuel: ethanol@iesel@thanol. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2020, 42, 1	
216	Effects of n-Butanol Blends on the Formation of Hydrocarbons and PAHs from Fuel-Rich Heptane Combustion in a Micro Flow Reactor with a Controlled Temperature Profile. 2020 , 1-26	2
215	Research on the combustion and emissions of an SI engine with acetone-butanol-ethanol (ABE) port injection plus gasoline direct injection. <i>Fuel</i> , 2020 , 267, 117311	7
214	Liquid Diquid Equilibrium for the Ternary Systems Water + 1-Butanol + 1-Hexanol or 1-Octanol at 303.15, 313.15, and 323.15 K. 2020 , 65, 477-486	6
213	Effect of C3, C4, and C5 Alcohols Addition to Diesel in Conjunction with Injection Timing and Intake Dilution on the Characteristics of a DI Diesel Engine. <i>Energy & Discourt Engine</i> 2.1	32
212	Estimation of Carbon Dioxide Emissions from a Diesel Engine Powered by Lignocellulose Derived Fuel for Better Management of Fuel Production. 2020 , 13, 561	6
211	Spray combustion simulation study of waste cooking oil biodiesel and diesel under direct injection diesel engine conditions. <i>Fuel</i> , 2020 , 267, 117240	14
21 0	Biofuels. 2020 , 125-170	О
209	Acid B ase Promoted Dehydrogenation Coupling of Ethanol on Supported Ag Particles. 2020 , 59, 3342-3350	9
208	Substrate Analysis for Effective Biofuels Production. 2020 ,	1
207	Statistical optimization of a cellulase from Aspergillus glaucus CCHA for hydrolyzing corn and rice straw by RSM to enhance yield of reducing sugar. 2020 , 42, 583-595	8
206	Selective Separation of 1-Butanol from Aqueous Solution through Pervaporation Using PTSMP-Silica Nano Hybrid Membrane. 2020 , 10,	8
205	Effects of Ethanol Blending on the Formation of Soot in n-Heptane/Air Coflow Diffusion Flame. 2020 , 2020, 1-10	5
204	Effects of alcohol addition to traditional fuels on soot formation: A review. 2021 , 22, 1395-1420	12

(2021-2021)

203	Influence of diethyl ether on engine performance and emissions characteristics of blends of butanol, pentanol or biodiesel (neem oil methyl ester) in a single cylinder diesel engine. 2021 , 42, 435-443	4
202	A direct gasoline pre-blending of bioalcohol mixtures as a means of decreasing separation energy losses. 2021 , 12, 615-623	1
201	Influences of isomeric butanol addition on anti-knock tendency of primary reference fuel and toluene primary reference fuel gasoline surrogates. 2021 , 22, 39-49	16
200	Experimental analysis for assessing noise and vibration of the diesel engine fuelled with a butanoldiesel blend under different injection pressures and engine speeds. 2021 , 18, 2019-2030	2
199	Improving the gasoline properties by blending butanol-Al2O3 to optimize the engine performance and reduce air pollution. <i>Energy</i> , 2021 , 218, 119442 7.9	8
198	Bioenergy for better sustainability: technologies, challenges and prospect. 2021 , 43-66	
197	Impact of acetoneButanolBthanol (ABE) and gasoline blends on the energy balance of a high-speed spark-ignition engine. 2021 , 184, 116267	7
196	Feasibility study of the combustion strategy of n-butanol/diesel dual direct injection (DI2) in a compression-ignition engine. <i>Fuel</i> , 2021 , 289, 119865 7.1	8
195	Recent advances in butanol production by acetone-butanol-ethanol (ABE) fermentation. 2021 , 144, 105919	41
194	Highlighting the Greener Shift in Transportation Energy and Fuels Based on Novel Catalytic Materials. <i>Energy & Description</i> 4.1	4
193	Molecular kinetic extraction mechanism analysis of 1-butanol from n-heptane-1-butanol by choline-based DESs as extractants. 2021 , 322, 114665	6
192	Near zero-waste biofuel production from bioderived polyhydroxybutyrate. <i>Fuel</i> , 2021 , 286, 119405 7.1	5
191	Enhancing product selectivity in biomass and bioalcohol reactions over Cu-doped porous metal oxides. 2021 , 77, 299-341	
190	Applications of biosolvents in environmental remediation. 2021 , 1-14	1
189	Biofuel: Marine Biotechnology Securing Alternative Sources of Renewable Energy. 2021, 161-194	1
188	Potential Assessment of Methanol to Reduce the Emission in LTC Mode Diesel Engine. 2021 , 271-292	5
187	Impact analysis of partially premixed combustion strategy on the emissions of a compression ignition engine fueled with higher octane number fuels: A review. 2021 , 45, 5772-5777	6
186	Room temperature iron catalyzed transfer hydrogenation using n-butanol and poly(methylhydrosiloxane). 2021 , 23, 2703-2709	11

185	Review on the synthesis, performance and trends of butanol: a cleaner fuel additive for gasoline. 1-17		3
184	Potential Improvement in PM-NOX Trade-Off in a Compression Ignition Engine by n-Octanol Addition and Injection Pressure. 2021 , 9, 310		2
183	Measurements and Data Analysis Review of Laminar Burning Velocity and Flame Speed for Biofuel/Air Mixtures. 2021 , 1094, 012029		0
182	Physicochemical Properties of Biobutanol as an Advanced Biofuel. 2021 , 14,		3
181	An Experimental Study of the Compression Ignition of Ethanol/n-Butanol Blends in a Rapid Compression Machine.		O
180	Comparisons of Using Ternary and Dual GasolineAlcohol Blends in Performance and Releases of SI Engines. 2021 , 46, 7495-7508		3
179	Temperature Dependence of Density and Viscosity of Biobutanol-Gasoline Blends. 2021 , 11, 3172		5
178	A synthetic skeletal mechanism for combustion simulation of acetone-n-butanol-ethanol mixture and its components in diesel engines. <i>Fuel</i> , 2021 , 290, 120097	7.1	3
177	Investigations on the effects of low temperature reforming of n-heptane/n-butanol blends on the flame development progress and combustion chemical kinetics. <i>Fuel</i> , 2021 , 290, 120001	7.1	2
176	Control of -Butanol Induced Lipidome Adaptations in. 2021 , 11,		O
175	An investigation to utilize ternary diesel-palm fatty acid distillate-10 wt% n-butanol blends as simply novel diesel substitutes. <i>Fuel</i> , 2021 , 289, 119965	7.1	0
174	Valorization of pelagic sargassum biomass into sustainable applications: Current trends and challenges. 2021 , 283, 112013		13
173	Bibliometric Studies on Emissions from Diesel Engines Running on Alcohol/Diesel Fuel Blends. A Case Study about Noise Emissions. 2021 , 9, 623		3
172	Effect of exhaust gas recirculation on the performance and emission characteristics of a DI-CI engine fueled with butanol/diesel blends. 2021 , 40, e13658		
171	Experimental study on puffing, auto-ignition and combustion characteristics of an n-pentanol-diesel droplet. <i>Energy</i> , 2021 , 223, 119994	7.9	3
170	Development and application of a practical diesel-n-butanol-PAH mechanism in engine combustion and emissions prediction. 1-15		1
169	Thermodynamic Analysis of Using EthanolMethanolGasoline Blends in a Turbocharged, Spark-Ignition Engine. 2021 , 143,		4
168	Progress in the Use of Biobutanol Blends in Diesel Engines. 2021 , 14, 3215		9

167	Time-Resolved Endoscopic Evaluation of Spatial Temperature and Soot Distribution in a Butanol-Diesel Blend Fueled Direct Injection Compression Ignition Engine. 2022 , 144,		3
166	Upgrading of Ethanol to n-Butanol via a Ruthenium Catalyst in Aqueous Solution. 2021 , 40, 1884-1888		2
165	A comparative study on alcohol-diesel blended fuels in a common rail diesel engine: Combined effects of carbon numbers, oxygen content, and molecular structure. 095765092110240		
164	A Series of Efficient Umbrella Modeling Strategies to Track Irradiation-Mutation Strains Improving Butyric Acid Production From the Pre-development Earlier Stage Point of View. <i>Frontiers in Bioengineering and Biotechnology</i> , 2021 , 9, 609345	5.8	O
163	A comprehensive review on ecological approaches of waste to wealth strategies for production of sustainable biobutanol and its suitability in automotive applications. 2021 , 239, 114219		14
162	Adaptive laboratory evolution principles and applications in industrial biotechnology. 2021 , 54, 107795		12
161	Enzymes, Biocatalysis, and Metabolic Engineering for Enabling a Circular Economy and Sustainability. 2021 , 121, 10367-10451		20
160	Effect of temperature on tribological properties of 1-butanol@iesel fuel blends Preliminary experimental study using the HFRR method. <i>Fuel</i> , 2021 , 296, 120700	7.1	7
159	Rhenium Complexes Bearing Tridentate and Bidentate Phosphinoamine Ligands in the Production of Biofuel Alcohols via the Guerbet Reaction. 2021 , 40, 2844-2851		O
158	Combustion and emission characteristics of an Acetone-Butanol-Ethanol (ABE) spark ignition engine with hydrogen direct injection. 2021 , 46, 30145-30157		4
157	Low-carbon alcohol fuels for decarbonizing the road transportation industry: a bibliometric analysis 2000-2021. 2021 , 1		6
156	Development and validation of a n-butanol reduced chemical kinetic mechanism under engine relevant conditions. 2021 , 53, 1285		1
155	Electronic and steric factors for enhanced selective synthesis of 2-ethyl-1-hexanol in the Ir-complex-catalyzed Guerbet reaction of 1-butanol. 2021 , 42, 1586-1592		1
154	Transition metals promoting Mg-Al mixed oxides for conversion of ethanol to butanol and other valuable products: reaction pathways. 2021 , 626, 118380		2
153	Influence of functional groups on low-temperature combustion chemistry of biofuels. 2021 , 86, 100925		14
152	Lignocellulosic Bioethanol and Biobutanol as a Biocomponent for Diesel Fuel. 2021 , 14,		
151	High-Flux Thin Film Composite PIM-1 Membranes for Butanol Recovery: Experimental Study and Process Simulations. 2021 , 13, 42635-42649		5
150	Analysis of Ethanol to Reduce Solid Particle Pollution in SI Engines. 2021 , 2021, 1-11		1

149	Blends of scum oil methyl ester, alcohols, silver nanoparticles and the operating conditions affecting the diesel engine performance and emission: an optimization study using Dragon fly algorithm. 2021 , 11, 2415		5
148	Skeletal mechanism for i-propanol-n-butanol-ethanol (IBE) and n-butanol combustion in diesel engine. <i>Fuel</i> , 2021 , 302, 121136	7.1	2
147	Knock analysis of bio-butanol in TISI engine based on chemical reaction kinetics. <i>Energy</i> , 2021 , 239, 1221	90)	2
146	Comparative investigation of ignition behavior of butanol isomers using constant volume combustion chamber under diesel-engine like conditions. <i>Fuel</i> , 2021 , 304, 121347	7.1	3
145	The effects of n-butanol/gasoline blends and 2.5% n-butanol/gasoline blend with 9% water injection into the intake air on the SIE engine performance and exhaust emissions. <i>Fuel</i> , 2021 , 303, 1212	.70 ¹	O
144	Study on effects of molecule structure on exhaust emissions from RCCI engine fueled with low alcohol isomers. <i>Fuel</i> , 2021 , 304, 121339	7.1	6
143	Comparative assessment of n-butanol addition in CTL on performance and exhaust emissions of a CI engine. <i>Fuel</i> , 2021 , 303, 121223	7.1	1
142	Production, characterization and assessment of reformulated bio-mixture fuel from a mixture of various raw feedstock's and the effect of n-butanol as an additive on bio-mixture blends. 2021 , 154, 106	5246	O
141	Polyether-block-amide thin-film composite hollow fiber membranes for the recovery of butanol from ABE process by pervaporation. <i>Separation and Purification Technology</i> , 2021 , 279, 119758	8.3	2
140	An extensive investigation of utilization of a C8 type long-chain alcohol as a sustainable next-generation biofuel and diesel fuel blends in a CI engine IThe effects of alcohol infusion ratio on the performance, exhaust emissions, and combustion characteristics. <i>Fuel</i> , 2021 , 305, 121453	7.1	6
139	Biobutanol. 2022 , 61-93		
138	Using low viscosity micro-emulsification fuels composed of waste frying oil-diesel fuel-higher bio-alcohols in a turbocharged-CRDI diesel engine. <i>Fuel</i> , 2022 , 308, 121966	7.1	4
137	Distributed combustion of diesel B utanol fuel blends in a mixture temperature-controlled burner. <i>Fuel</i> , 2022 , 307, 121840	7.1	2
136	State of art of valorising of diverse potential feedstocks for the production of alcohols and ethers: Current changes and perspectives. <i>Chemosphere</i> , 2022 , 286, 131587	8.4	5
135	Biobutanol: A Promising Alternative Commercial Biofuel. 2021 , 1521-1539		
134	Effect of n-Butanol and Gasoline Blends on SI Engine Performance and Emissions. 2021 , 175-190		3
133	Low and Medium Carbon Alcohol Fueled Dual-Fuel Compression Ignition Engine. 2021, 213-250		O
132	Experimental study on combustion and emissions of an SI engine with gasoline port injection and acetone-butanol-ethanol (ABE) direct injection. <i>Fuel</i> , 2021 , 284, 119037	7.1	5

Heterogeneous catalytic ethanol transformation into chemicals: Some Brazilian contributions. 2021 131 , 343-375 The Potential of Vegetal Biomass for Biomolecules Production. 2021, 130 Interfacial Sites in Ag Supported Layered Double Oxide for Dehydrogenation Coupling of Ethanol 129 \circ to n-Butanol. 2021, 10, 1095-1103 Cross Elkylation of primary alcohols catalysed by DMF-stabilized iridium nanoparticles. 2021, 19, 1950-1954 128 Industrial Waste Valorization. 2020, 515-537 127 1 Biomass Conversion to Bioenergy Products. 2014, 137-167 126 2 Algal Butanol Production. 2020, 33-50 125 1 Biobutanol Production From Renewable Resources. 2016, 1, 1-68 124 7 An additive manufacturing-based approach for carbon fiber reinforced polymer recycling. 2020, 69, 33-36 123 Study of the influence of alcohols addition to gasoline on the distillation curve, and vapor pressure. 122 1 2019, 30, 122-126 Energy and exergy analysis of spark ignited engine fueled with Gasoline-Ethanol-Butanol blends. 121 2 2020, 8, 1007-1028 Systemic Approach to Quality Enhancement and Competitiveness in Higher Education. 2020, 48-71 120 Evaluation of Carbon and Electron Flow in <i&qt;Lactobacillus brevis</i&qt; as a Potential Host 119 2 for Heterologous 1-Butanol Biosynthesis. 2013, 03, 450-461 Optical Diagnostics of Spray Characteristics and Soot Volume Fractions of n-Butanol, n-Octanol, 118 Diesel, and Hydrotreated Vegetable Oil Blends in a Constant Volume Combustion Chamber. Preliminary Testing of n-Butanol HCCI on High Compression Ratio Diesel Engines. 117 4 116 Experimental Investigations on Lean Burn Spark Ignition Engine Using Methanol - Gasoline Blends. Soluting-In, Soluting-Out, and Washing-Out Effects of Various Additives on Aqueous 1-Butanol 115 Solutions. Engineering transcription factor BmoR mutants for constructing multifunctional alcohol 114 biosensors.

113	Recent progress on n-butanol production by lactic acid bacteria. 2021 , 37, 205		O
112	One-pot synthesis of high-carbon bio-alcohols from aqueous ethanol upgrading over water-tolerance NiSn@C catalyst. 2021 , 249, 114822		2
111	A Review on Spray Characteristics of Biobutanol and Its Blended Fuels in IC engines. 2016 , 21, 144-154		
110	Combustion and Emission Characteristics of Wood Pyrolysis Oil and N-Butanol-Blended Fuel in a Diesel Engine. 2018 , 171-187		1
109	Equilibrio l <mark>q</mark> uido-vapor para el sistema cuaternario Agua-Acetona-Butanol-Etanol a Presiones Reducidas 2018 , 10,		
108	Biobutanol in Advanced CI Engine. 2019 , 329-370		
107	Production of Liquid Biofuels from Biomass. 2019 , 1-33		
106	A Comparison Study on Emission Characteristics of Using Higher Alcohol Oxygenates with Gasoline in a Multipoint Fuel Injection Spark-Ignition Engine. 2020 , 48, 20180716		O
105	Bacteria for Butanol Production: Bottlenecks, Achievements and Prospects. 2019 , 13, 1429-1440		
104	Performance improvement in compact single cylinder IC engines for fuel efficient racing application. 2020 ,		
103	Modelling and experimental thermodynamic data of hydroxylic compounds (C1-C6) as a function of temperature. 2020 , 23, 176-195		
102	Particle Size Distributions of Butanol-Diesel and Acetone B utanol E thanol (ABE)-Diesel Blend Fuels in Wick-Fed Diffusion Flames. <i>Energy & Diesel State (Control of the Control of the C</i>	4.1	
101	The potential of oxygenated fuels (n-octanol, methylal, and dimethyl carbonate) as an alternative fuel for compression ignition engines with different load conditions. <i>Fuel</i> , 2022 , 309, 122129	7.1	O
100	Study on Alternate Fuels and Their Effect on Particulate Emissions from GDI Engines. 2020 , 149-157		
99	Biobutanol: A Promising Alternative Commercial Biofuel. 2020 , 1-19		O
98	Impact of Diesel-Butanol-Waste Cooking Oil Biodiesel Blends on Stationary Diesel Engine Performance and Emission Characteristics. 2020 , 173-192		
97	Synthetic Biology and Future Production of Biofuels and HighWalue Products. 2020 , 271-302		4
96	A Glimpse of the World of Volatile Fatty Acids Production and Application: A review. 2021 ,		3

95 Effect of Bioprocess Parameters on Biofuel Production. **2021**, 95-126

94	The Effect of Butanol-Gasoline Blends on Harmful Engine Deposits.		
7 1			
93	Prediction of Ternary Gasoline Composition Using Light and Heavy Alcohols to Reduce Fuel Consumption and Meet Emission Standards.		
92	Life cycle assessment of diesel blending production. 2021 , 26, 200297-0		2
91	Waste biomass to biobutanol: recent trends and advancements. 2022 , 393-423		0
90	Alternative jet fuels: biojet fuels@hallenges and opportunities. 2022 , 181-194		1
89	Utilization of agricultural biomass for bio-butanol production. 2022 , 235-248		
88	Steam explosion of lignocellulosic biomass for multiple advanced bioenergy processes: A review. <i>Renewable and Sustainable Energy Reviews</i> , 2022 , 154, 111871	16.2	12
87	Feasibility of adding N-Butanol and di isopropyl ether with gasoline on its physico-chemical properties. 1-18		0
86	Effects of oxygenated biofuel additives on soot formation: A comprehensive review of laboratory-scale studies. <i>Fuel</i> , 2021 , 122635	7.1	7
85	Food Waste Biorefinery for Bioenergy and Value Added Products. 2022 , 185-224		
84	Temperature effects on alcohol aggregation phenomena and phase behavior in n-butanol aqueous solution. 2022 , 347, 118339		2
83	COSMO-RS prediction, liquid-liquid equilibrium experiment and quantum chemistry calculation for the separation of n-butanol and n-heptane system using ionic liquids. 2022 , 167, 106719		1
82	Bioconversion of Agricultural Residue into Biofuel and High-Value Biochemicals: Recent Advancement. 2022 , 233-268		1
81	An overview of some futurist advanced biofuels and their conversion technologies. 2022 , 1-20		
80	Kinetic analysis of the acetone-butanol-ethanol combustion mechanism in 0D simulated Otto cycle internal engine. 2022 , 135, 303		
79	The study on the influence of utilizing n-butanol at fuelling spark ignition engines. 2022 , 1220, 012004		
78	Higher alcohol production from ethanol over occluded [Mg4(OH)4]4+ clusters in MgO/KNaX. 2022 , 632, 118502		O

77 Microbial assisted production of alcohols, acetone and glycerol. **2022**, 47-92

76	An Experimental Study on Combustion and Cycle-by-Cycle Variations of an N-Butanol Engine with Hydrogen Direct Injection under Lean Burn Conditions 2022 , 22,		
75	Effect of Combustion Boundary Conditions and n-Butanol on Surrogate Diesel Fuel HCCI Combustion and Emission Based on Two-Stroke Diesel Engine. 2022 , 13, 303		1
74	Design and research on preparation of C4 olefins by ethanol coupling based on logistic. 2022 , 8, 370-37	76	O
73	Biomass, Bioenergy, and Biofuels. 2022 , 463-485		1
72	Bioconversion of Malaysia Renewable Energy Resources to Biobutanol. 2022 , 117-146		O
71	Promotion of cobalt-containing hydrotalcite materials with potassium, ceria and zirconia for CO2 sorption-assisted reforming of butanol to H2. 2022 ,		
70	Study on the Effect of Secondary Injection on the Combustion and Emission of N-Butanol Engine. <i>SSRN Electronic Journal</i> ,	1	
69	Engineering Transcription Factor BmoR Mutants for Constructing Multifunctional Alcohol Biosensors 2022 ,		1
68	Effect of sonication pretreatment on hydrogen and acetone-butanol-ethanol coproduction from Chlamydomonas mexicana biomass using Clostridium acetobutylicum. 2022 , 10, 107600		O
67	Development and validation of a new n-dodecane-n-butanol-PAH reduced mechanism under diesel engine-relevant conditions. <i>Fuel</i> , 2022 , 319, 123829	7.1	O
66	Insights into the influence of n-butanol with neat biodiesel and biodiesel-diesel blends on diesel engine characteristics: Review. 2022 , 46, 5441-5466		O
65	Butanol production by Clostridium acetobutylicum ATCC 824 using electro-fermentation in culture medium supplemented with butyrate and neutral red.		O
64	Effect of Pre-Injection on Combustion and Emission Characteristics of a Diesel Engine Fueled with Diesel/Methanol/n-Butanol Blended Fuel. 2022 , 10, 60		O
63	Progress on compatibility issues of Alcohols on Automotive Materials: Kinetics, Challenges and Future Prospects- A Comprehensive Review. 2022 ,		О
62	Data_Sheet_1.pdf. 2018 ,		
61	A review on butanol properties, production and its application in internal combustion engines. 2022		O
60	Tailored Recycling Chemicals and Fuels from Poly-3-hydroxybutyrate: A Review. <i>Biofuels, Bioproducts and Biorefining</i> ,	5.3	O

59	Characteristics and Application of Rhodopseudomonas palustris as a Microbial Cell Factory. <i>Frontiers in Bioengineering and Biotechnology</i> , 2022 , 10,	5.8	1
58	Review of alternative technologies for acetone-butanol-ethanol separation: Principles, state-of-the-art, and development trends. <i>Separation and Purification Technology</i> , 2022 , 121244	8.3	1
57	Experimental and kinetic modeling studies of laminar flame speed of n-butanol/ethanol blends. <i>Journal of the Brazilian Society of Mechanical Sciences and Engineering</i> , 2022 , 44,	2	
56	Dominant dynamics of n-butanol/air autoignition and the influence of additives. <i>Combustion and Flame</i> , 2022 , 242, 112173	5.3	1
55	An attempt to implement partially premixed combustion strategy in a multi-cylinder CRDI engine: A detailed experimental and wavelet transform analysis. <i>Fuel</i> , 2022 , 323, 124372	7.1	3
54	Green biorefinery for sugar beet pulp valorisation: Microwave hydrothermal processing for pectooligosaccharides recovery and biobutanol production. <i>Industrial Crops and Products</i> , 2022 , 184, 115060	5.9	O
53	Conversion of Renewable Biomass into Bioproducts. ACS Symposium Series, 1-5	0.4	
52	Process intensification in biobutanol production. 2022 , 223-262		O
51	Kinetics and Mechanisms of Selected Reactions over Hydroxyapatite-Based Catalysts. 2022 , 163-199		
50	Exploring the potential of highly selective deep eutectic solvents (DES) based membranes for dehydration of butanol via pervaporation. <i>Chemosphere</i> , 2022 , 135480	8.4	О
49	Butanol recovery from synthetic fermentation broth by vacuum distillation in a rotating packed bed. <i>Separation and Purification Technology</i> , 2022 , 297, 121551	8.3	
48	Numerical investigation on the ignition and flame characteristics of n-dodecane-n-butanol spray under diesel engine conditions. <i>Fuel</i> , 2022 , 325, 124881	7.1	O
47	Dynamics of Electron Collision with Potential Biofuel: N-Butanol. SSRN Electronic Journal,	1	
46	Optical Investigation on the Spray Evaporation Characteristics of Isopropanol-Butanol-Ethanol (Ibe)/Diesel Blends. <i>SSRN Electronic Journal</i> ,	1	
45	Experimental and Numerical Study on the Effect of NO2 on n-Butanol/Biodiesel Dual-Fuel Combustion in a Compression Ignition Engine. <i>ACS Omega</i> , 2022 , 7, 24812-24823	3.9	
44	Critical Review on Effects of Alcohols and Nanoadditives on Performance and Emission in Low-Temperature Combustion Engines: Advances and Perspectives. <i>Energy & Description of Engines and Perspectives</i> .	4.1	9
43	Investigation of performance, combustion and emission characteristics in a diesel engine fueled with methanol/ethanol/nHeptane/diesel blends. <i>Energy</i> , 2022 , 257, 124740	7.9	1
42	Catalytic conversion of glucose and its biopolymers into renewable compounds by inducing CII bond scission and formation. <i>Biomass Conversion and Biorefinery</i> ,	2.3	

Combustion and emission characteristics of diesel/n-butanol blends with split-injection and exhaust 41 gas recirculation stratification. 2022, 29, 2189-2200 Critical Analysis of Various Strategies for the Effective and Economical Separation and Purification 40 of Butanol from ABE Fermentation. 1-26 ReaxFF simulations on the combustion of Al and n-butanol nanofluid. 2022, 330, 125465 39 \circ Spray evaporation characteristics of isopropanol-butanol-ethanol (IBE)/diesel blends in a constant 38 volume chamber. 2022, 330, 125659 Sooting transition chemistry for iso-octane/n-butanol counterflow diffusion flames. 2022, 105, 141-156 O 37 Dynamics of electron collision with potential biofuel: N-butanol. 2023, 202, 110504 36 Hydrogen production from steam butanol reforming over cobalt catalyst supported on ceria. 2022, O 35 Biobutanol. **2022**, 51-89 34 Advanced Biofuels from ABE (Acetone/Butanol/Ethanol) and Vegetable Oils (Castor or Sunflower \circ 33 Oil) for Using in Triple Blends with Diesel: Evaluation on a Diesel Engine. 2022, 15, 6493 An experimental investigation into the combustion stability and emissions of an n-butanol/diesel 32 blended fueled partially premixed compression ignition (PPCI) engine. 146808742211201 Dielectric and Acoustic Characterization Study of Cyclohexane with n-Butanol at 298 K. 2022, 96, 2113-2120 31 Current prospects of biofuel production from sewage sludge. 2022, 19-35 30 \circ Recent Developments in Synthetic Biology and their Role in Uplifting Lignocellulose Bioeconomy. 29 O 2022, 203-220 Sensitivity of soot formation to strain rates in counterflow diffusion flames of various C3-C5 28 alkanes and alcohols. 2023, 333, 126321 Butanol-gasoline blends impact on performance and exhaust emissions of a four stroke spark 1 27 ignition engine. 2023, 41, 102612 A comprehensive review on combustion, performance and emission aspects of higher alcohols and 26 its additive effect on the diesel engine. 2023, 335, 127011 Evaporation Characteristics and Morphological Evolutions of Fuel Droplets After Hitting Different 25 Ο Wettability Surfaces. Algal Butanol Production: Recent Developments. 2023, 81-107

23	Control in advanced biofuels synthesis via alcohol upgrading: catalyst selectivity to ´n-butanol, ´sec-butanol or isobutanol.	0
22	Effect of n-Butanol Addition to Diesel Fuel on Reduction of PAH Formation and Regulated Pollutants. 1-15	1
21	Experimental investigation of N-Butanol as a fuel additive for Spark Ignition (S.I.) Engine. 2022,	0
20	Review of density and viscosity data of pure fatty acid methyl ester, ethyl ester and butyl ester. 2023 , 339, 127466	O
19	The Impact of Propanol, N-Butanol and Pentanol on Aqueous Dispersions of Sonicated Liposomes. EPR Study. 2022 , 29, 565-579	0
18	A non expected alternative Ni(0) Species in the Ni-Catalytic Aldehyde and Alcohol Arylation Reactions Facilitated by a 1,5-Diaza-3,7-diphosphacyclooctane Ligand.	O
17	The selective ethanol Guerbet condensation over alkali metal-doped sepiolite. 2023,	0
16	Microwave Assisted Pincer-Ruthenium Catalyzed Guerbet Reaction for the Upgradation of Bio-Ethanol to Bio-Butanol.	1
15	Biomass valorization to biobutanol. 2023 , 151-178	0
14	Guerbet upgrading of ethanol to n-butanol using Ru(iii) catalysts under air.	O
13	Simulation of combustion process in diesel/butanol dual fuel engine. 2023, 45, 1485-1498	0
12	Towards the sustainable conversion of corn stover into bioenergy and bioproducts through biochemical route: Technical, economic and strategic perspectives. 2023 , 400, 136699	O
11	PAH laser diagnostics and soot particle dynamics in gasoline co-flow flames doped with n-butanol. 2023 , 272, 127108	0
10	Effect of ABE and butanol blends with n-dodecane in different volume ratios on diesel combustion and soot characteristics in ECN spray a conditions. 2023 , 345, 128099	O
9	The investigation of auto-ignition properties of 1-butanolbiodiesel blends under various temperatures conditions. 2023 , 346, 128388	0
8	Numerical investigation on the temporal and quasi-steady state soot characteristics of n-dodecane-n-butanol spray combustion. 2023 , 268, 126770	O
7	Multiple combustion modes switching to realize full-load efficient energy conversion of n-butanol/diesel dual direct injection (DI2) engine. 2023 , 278, 116722	0
6	Graphite supported heteropolyacid as a regenerable catalyst in the dehydration of 1-butanol to butenes. 2023 , 114017	О

Length exclusion separation of acetone/butanol using ZIF-302 derivatives with adjustable ellipsoidal cage sizes. 2023, 312, 123371

Microbial Remediation of Agricultural Residues. 2023, 325-358

Reducing gasoline engine emissions using novel bio-based oxygenates: a review.

Monohydric aliphatic alcohols as liquid fuels for using in internal combustion engines: A review. 095440892311604

Membrane contactors-assisted liquid-liquid extraction of biomolecules from biorefinery liquid streams: A case study on organic acids. 2023, 317, 123927