Polarity and timing-dependent effects of transcranial d explicit motor learning

Neuropsychologia 49, 800-804 DOI: 10.1016/j.neuropsychologia.2011.02.009

Citation Report

#	Article	IF	CITATIONS
1	Modulation of motor performance and motor learning by transcranial direct current stimulation. Current Opinion in Neurology, 2011, 24, 590-596.	1.8	228
2	The role of the right parietal lobe in the perception of causality: a tDCS study. Experimental Brain Research, 2011, 215, 315-325.	0.7	16
3	Enhanced locomotor adaptation aftereffect in the "broken escalator―phenomenon using anodal tDCS. Journal of Neurophysiology, 2012, 107, 2493-2505.	0.9	63
4	Dynamic modulation of intrinsic functional connectivity by transcranial direct current stimulation. Journal of Neurophysiology, 2012, 108, 3253-3263.	0.9	124
5	Enhancing Motor Skill Learning with Transcranial Direct Current Stimulation – A Concise Review with Applications to Stroke. Frontiers in Psychiatry, 2012, 3, 66.	1.3	64
6	Induction of visual dream reports after transcranial direct current stimulation (tDCs) during Stage 2 sleep. Journal of Sleep Research, 2012, 21, 369-379.	1.7	15
7	Primary motor and premotor cortex in implicit sequence learning – evidence for competition between implicit and explicit human motor memory systems. European Journal of Neuroscience, 2012, 36, 2710-2715.	1.2	121
8	Anodal tDCS to V1 blocks visual perceptual learning consolidation. Neuropsychologia, 2013, 51, 1234-1239.	0.7	62
9	Interventions for improving numerical abilities: Present and future. Trends in Neuroscience and Education, 2013, 2, 85-93.	1.5	76
10	Widespread Modulation of Cerebral Perfusion Induced during and after Transcranial Direct Current Stimulation Applied to the Left Dorsolateral Prefrontal Cortex. Journal of Neuroscience, 2013, 33, 11425-11431.	1.7	238
11	No effects of anodal transcranial direct stimulation on language abilities in early rehabilitation of post-stroke aphasic patients. Neurologia I Neurochirurgia Polska, 2013, 47, 414-422.	0.6	32
12	Toward a better dexterity: Direction for future studies. Clinical Neurophysiology, 2013, 124, 1488-1489.	0.7	0
13	Magnetoencephalographic evidence for the modulation of cortical swallowing processing by transcranial direct current stimulation. NeuroImage, 2013, 83, 346-354.	2.1	58
14	Effect of transcranial direct current stimulation (tDCS) during complex whole body motor skill learning. Neuroscience Letters, 2013, 552, 76-80.	1.0	38
15	Dual-tDCS Enhances Online Motor Skill Learning and Long-Term Retention in Chronic Stroke Patients. Frontiers in Human Neuroscience, 2012, 6, 343.	1.0	118
16	Noninvasive transcranial direct current stimulation over the left prefrontal cortex facilitates cognitive flexibility in tool use. Cognitive Neuroscience, 2013, 4, 81-89.	0.6	179
17	Using transcranial electrical stimulation to enhance cognitive functions in the typical and atypical brain. Translational Neuroscience, 2013, 4, .	0.7	56
18	Site-Dependent Effects of tDCS Uncover Dissociations in the Communication Network Underlying the Processing of Visual Search. Brain Stimulation, 2013, 6, 959-965.	0.7	24

#	Article	IF	CITATIONS
19	Combined neurostimulation and neuroimaging in cognitive neuroscience: past, present, and future. Annals of the New York Academy of Sciences, 2013, 1296, 11-30.	1.8	94
20	Transcranial Direct Current Stimulation (tDCS) of Left Parietal Cortex Facilitates Gesture Processing in Healthy Subjects. Journal of Neuroscience, 2013, 33, 19205-19211.	1.7	27
21	Anodal Transcranial Direct Current Stimulation Transiently Improves Contrast Sensitivity and Normalizes Visual Cortex Activation in Individuals With Amblyopia. Neurorehabilitation and Neural Repair, 2013, 27, 760-769.	1.4	86
22	Neuroenhancement of the aging brain: Restoring skill acquisition in old subjects. Annals of Neurology, 2013, 73, 10-15.	2.8	176
23	The effect of transcranial direct current stimulation on the motor suppression in stop-signal task. NeuroRehabilitation, 2013, 32, 191-196.	0.5	20
24	High-Frequency TRNS Reduces BOLD Activity during Visuomotor Learning. PLoS ONE, 2013, 8, e59669.	1.1	41
25	Transcranial Direct Current Stimulation in Sports Training: Potential Approaches. Frontiers in Human Neuroscience, 2013, 7, 129.	1.0	37
26	Task-Specific Effect of Transcranial Direct Current Stimulation on Motor Learning. Frontiers in Human Neuroscience, 2013, 7, 333.	1.0	132
27	The timing of cognitive plasticity in physiological aging: a tDCS study of naming. Frontiers in Aging Neuroscience, 2014, 6, 131.	1.7	76
28	Differential behavioral and physiological effects of anodal transcranial direct current stimulation in healthy adults of younger and older age. Frontiers in Aging Neuroscience, 2014, 6, 146.	1.7	67
29	Learned EEG-based brain self-regulation of motor-related oscillations during application of transcranial electric brain stimulation: feasibility and limitations. Frontiers in Behavioral Neuroscience, 2014, 8, 93.	1.0	42
30	Is neural hyperpolarization by cathodal stimulation always detrimental at the behavioral level?. Frontiers in Behavioral Neuroscience, 2014, 8, 226.	1.0	68
31	Post-stroke balance rehabilitation under multi-level electrotherapy: a conceptual review. Frontiers in Neuroscience, 2014, 8, 403.	1.4	11
32	Bihemispheric Transcranial Direct Current Stimulation Enhances Effector-Independent Representations of Motor Synergy and Sequence Learning. Journal of Neuroscience, 2014, 34, 1037-1050.	1.7	134
33	Improving the Efficacy of Ipsilesional Brain-Computer Interface Training in Neurorehabilitation of Chronic Stroke. Biosystems and Biorobotics, 2014, , 75-84.	0.2	0
34	Applications of transcranial direct current stimulation for understanding brain function. Trends in Neurosciences, 2014, 37, 742-753.	4.2	414
35	Local and remote effects of transcranial direct current stimulation on the electrical activity of the motor cortical network. Human Brain Mapping, 2014, 35, 2220-2232.	1.9	67
36	Effects of transcranial direct current stimulation in combination with motor practice on dexterous grasping and manipulation in healthy older adults. Physiological Reports, 2014, 2, e00255.	0.7	34

# 37	ARTICLE Effects of Repeated Anodal tDCS Coupled With Cognitive Training for Patients With Severe Traumatic Brain Injury. Journal of Head Trauma Rehabilitation, 2014, 29, E20-E29.	IF 1.0	Citations 65
38	The Physiological Basis of Brain Stimulation. , 2014, , 145-177.		12
39	Motor System. , 2014, , 207-235.		4
40	Effects of Brain Stimulation on Declarative and Procedural Memories. , 2014, , 237-263.		3
41	The role of inhibition in human motor cortical plasticity. Neuroscience, 2014, 278, 93-104.	1.1	53
42	"lf two witches would watch two watches, which witch would watch which watch?―tDCS over the left frontal region modulates tongue twister repetition in healthy subjects. Neuroscience, 2014, 256, 195-200.	1.1	25
43	Battery powered thought: Enhancement of attention, learning, and memory in healthy adults using transcranial direct current stimulation. NeuroImage, 2014, 85, 895-908.	2.1	378
44	Brain-Computer Interface Research. Biosystems and Biorobotics, 2014, , .	0.2	10
45	Effects of Different Electrical Brain Stimulation Protocols on Subcomponents of Motor Skill Learning. Brain Stimulation, 2014, 7, 532-540.	0.7	67
46	The Posterior Parietal Cortex (PPC) Mediates Anticipatory Motor Control. Brain Stimulation, 2014, 7, 800-806.	0.7	12
47	The impact of electrical stimulation techniques on behavior. Wiley Interdisciplinary Reviews: Cognitive Science, 2014, 5, 649-659.	1.4	14
48	Timing-dependent priming effects of tDCS on ankle motor skill learning. Brain Research, 2014, 1581, 23-29.	1.1	81
49	Electrifying the motor engram: effects of tDCS on motor learning and control. Experimental Brain Research, 2014, 232, 3379-3395.	0.7	49
50	Facilitation of corticospinal excitability by virtual reality exercise following anodal transcranial direct current stimulation in healthy volunteers and subacute stroke subjects. Journal of NeuroEngineering and Rehabilitation, 2014, 11, 124.	2.4	50
51	Neuromodulation of parietal and motor activity affects motor planning and execution. Cortex, 2014, 57, 51-59.	1.1	42
52	Use of transcranial direct current stimulation (tDCS) to enhance cognitive training: effect of timing of stimulation. Experimental Brain Research, 2014, 232, 3345-3351.	0.7	203
53	Transcranial direct current stimulation over left and right DLPFC: Lateralized effects on planning performance and related eye movements. Biological Psychology, 2014, 102, 130-140.	1.1	29
54	Cerebellar direct current stimulation enhances motor learning inÂolder adults. Neurobiology of Aging, 2014, 35, 2217-2221.	1.5	135

#	Article	IF	CITATIONS
55	Polarity-specific effects of motor transcranial direct current stimulation on fMRI resting state networks. NeuroImage, 2014, 88, 155-161.	2.1	92
56	No Effect of 2 mA Anodal tDCS Over the M1 on Performance and Practice Effect on Grooved Pegboard Test and Trail Making Test B. ENeuro, 2015, 2, ENEURO.0072-14.2015.	0.9	10
57	Anodal Transcranial Direct Current Stimulation Prolongs the Cross-education of Strength and Corticomotor Plasticity. Medicine and Science in Sports and Exercise, 2015, 47, 1788-1797.	0.2	40
58	Enhancing Motor Learning with Transcranial Direct Current Stimulation. Brain & Neurorehabilitation, 2015, 8, 81.	0.4	0
59	Effects of transcranial direct current stimulation on motor learning in healthy individuals: a systematic review. Fisioterapia Em Movimento, 2015, 28, 159-167.	0.4	2
60	Potentials and limits to enhance cognitive functions in healthy and pathological aging by tDCS. Frontiers in Cellular Neuroscience, 2015, 9, 355.	1.8	70
61	Non-Invasive Brain Stimulation: An Interventional Tool for Enhancing Behavioral Training after Stroke. Frontiers in Human Neuroscience, 2015, 9, 265.	1.0	89
62	Combinations of stroke neurorehabilitation to facilitate motor recovery: perspectives on Hebbian plasticity and homeostatic metaplasticity. Frontiers in Human Neuroscience, 2015, 9, 349.	1.0	52
63	Polarity-specific transcranial direct current stimulation disrupts auditory pitch learning. Frontiers in Neuroscience, 2015, 9, 174.	1.4	25
64	Direct electric stimulation to increase cerebrovascular function. Frontiers in Systems Neuroscience, 2015, 9, 54.	1.2	20
65	When Problem Size Matters: Differential Effects of Brain Stimulation on Arithmetic Problem Solving and Neural Oscillations. PLoS ONE, 2015, 10, e0120665.	1.1	26
66	Anodal direct current stimulation in the healthy aged: Effects determined by the hemisphere stimulated. Restorative Neurology and Neuroscience, 2015, 33, 509-519.	0.4	21
67	Motor Priming in Neurorehabilitation. Journal of Neurologic Physical Therapy, 2015, 39, 33-42.	0.7	117
68	Noninvasive Brain-Computer Interfaces Based on Sensorimotor Rhythms. Proceedings of the IEEE, 2015, 103, 907-925.	16.4	166
69	Blending transcranial direct current stimulations and physical exercise to maximize cognitive improvement. Frontiers in Psychology, 2015, 6, 678.	1.1	15
70	Brain–machine interfaces in neurorehabilitation of stroke. Neurobiology of Disease, 2015, 83, 172-179.	2.1	256
71	Consensus Paper: Probing Homeostatic Plasticity of Human Cortex With Non-invasive Transcranial Brain Stimulation, 2015, 8, 442-454.	0.7	138
72	Consensus Paper: Probing Homeostatic Plasticity of Human Cortex With Non-invasive Transcranial Brain Stimulation, 2015, 8, 993-1006.	0.7	103

#	Article	IF	CITATIONS
73	The effect of oppositional parietal transcranial direct current stimulation on lateralized brain functions. European Journal of Neuroscience, 2015, 42, 2904-2914.	1.2	28
74	Neuroimaging Modalities and Brain Technologies in the Context of Organizational Neuroscience. Monographs in Leadership and Management, 2015, , 83-113.	0.2	6
75	Transcranial direct current stimulation (tDCS) – Application in neuropsychology. Neuropsychologia, 2015, 69, 154-175.	0.7	101
76	Effects of anodal transcranial direct current stimulation combined with virtual reality for improving gait in children with spastic diparetic cerebral palsy: a pilot, randomized, controlled, double-blind, clinical trial. Clinical Rehabilitation, 2015, 29, 1212-1223.	1.0	81
77	Modulation of executive control in dual tasks with transcranial direct current stimulation (tDCS). Neuropsychologia, 2015, 68, 8-20.	0.7	30
78	The Interaction With Task-induced Activity is More Important Than Polarization: A tDCS Study. Brain Stimulation, 2015, 8, 269-276.	0.7	128
79	Brain–Machine Interfaces in Stroke Neurorehabilitation. , 2015, , 3-14.		9
80	Time- but Not Sleep-Dependent Consolidation of tDCS-Enhanced Visuomotor Skills. Cerebral Cortex, 2015, 25, 109-117.	1.6	119
81	Transcranial non-invasive brain stimulation in swallowing rehabilitation following stroke — A review of the literature. Physiology and Behavior, 2015, 143, 1-9.	1.0	28
82	Increasing propensity to mind-wander with transcranial direct current stimulation. Proceedings of the United States of America, 2015, 112, 3314-3319.	3.3	113
83	Patterns of Modulation in the Activity and Connectivity of Motor Cortex during the Repeated Generation of Movement Sequences. Journal of Cognitive Neuroscience, 2015, 27, 736-751.	1.1	25
84	The effect of transcranial alternating current stimulation (tACS) at alpha and beta frequency on motor learning. Behavioural Brain Research, 2015, 293, 234-240.	1.2	112
85	A Meta-analysis of Transcranial Direct Current Stimulation Studies Examining the Reliability of Effects on Language Measures. Brain Stimulation, 2015, 8, 1093-1100.	0.7	82
86	Reprint of: Transcranial direct current stimulation (tDCS) – Application in neuropsychology. Neuropsychologia, 2015, 74, 74-95.	0.7	51
87	Cumulative effects of anodal and priming cathodal tDCS on pegboard test performance and motor cortical excitability. Behavioural Brain Research, 2015, 287, 27-33.	1.2	29
88	Neural underpinnings of the â€~agent brain': new evidence from transcranial direct current stimulation. European Journal of Neuroscience, 2015, 42, 1889-1894.	1.2	31
89	Anodal transcranial direct current stimulation over premotor cortex facilitates observational learning of a motor sequence. European Journal of Neuroscience, 2015, 41, 1597-1602.	1.2	30
90	Reversing motor adaptation deficits in the ageing brain using nonâ€invasive stimulation. Journal of Physiology, 2015, 593, 3645-3655.	1.3	53

#	Article	IF	CITATIONS
91	Combined exercise and transcranial direct current stimulation intervention for knee osteoarthritis: protocol for a pilot randomised controlled trial: TableÂ1. BMJ Open, 2015, 5, e008482.	0.8	23
92	The Homeostatic Interaction Between Anodal Transcranial Direct Current Stimulation and Motor Learning in Humans is Related to GABAA Activity. Brain Stimulation, 2015, 8, 898-905.	0.7	70
93	Enhancing Hebbian Learning to Control Brain Oscillatory Activity. Cerebral Cortex, 2015, 25, 2409-2415.	1.6	49
94	Reliability and Variability of tDCS Induced Changes in the Lower Limb Motor Cortex. Brain Sciences, 2016, 6, 26.	1.1	32
95	Effects of a Single Session of High Intensity Interval Treadmill Training on Corticomotor Excitability following Stroke: Implications for Therapy. Neural Plasticity, 2016, 2016, 1-8.	1.0	23
96	Multisession Anodal tDCS Protocol Improves Motor System Function in an Aging Population. Neural Plasticity, 2016, 2016, 1-8.	1.0	25
97	Dopamine-independent effects of combining transcranial direct current stimulation with cued gait training on cortical excitability and functional mobility in Parkinsonââ,¬â,,¢s disease. Journal of Rehabilitation Medicine, 2016, 48, 819-823.	0.8	32
98	Transcranial Direct-Current Stimulation (tDCS). , 2016, , 85-115.		10
99	Beta Band Transcranial Alternating (tACS) and Direct Current Stimulation (tDCS) Applied After Initial Learning Facilitate Retrieval of a Motor Sequence. Frontiers in Behavioral Neuroscience, 2016, 10, 4.	1.0	57
100	Repetitive Transcranial Direct Current Stimulation Induced Excitability Changes of Primary Visual Cortex and Visual Learning Effects—A Pilot Study. Frontiers in Behavioral Neuroscience, 2016, 10, 116.	1.0	42
101	Modulating Human Auditory Processing by Transcranial Electrical Stimulation. Frontiers in Cellular Neuroscience, 2016, 10, 53.	1.8	35
102	Motor Sequence Learning in Healthy Older Adults Is Not Necessarily Facilitated by Transcranial Direct Current Stimulation (tDCS). Geriatrics (Switzerland), 2016, 1, 32.	0.6	9
103	Modulating Motor Learning through Transcranial Direct-Current Stimulation: An Integrative View. Frontiers in Psychology, 2016, 7, 1981.	1.1	52
104	Differential effects of primary motor cortex and cerebellar transcranial direct current stimulation on motor learning in healthy individuals: A randomized double-blind sham-controlled study. Neuroscience Research, 2016, 112, 10-19.	1.0	58
105	Interventions to improve mathematical performance for children with mathematical learning difficulties (MLD). The Cochrane Library, 2022, 2022, .	1.5	6
106	Transcranial Direct-Current Stimulation Can Enhance Motor Learning in Children. Cerebral Cortex, 2017, 27, bhw114.	1.6	75
107	Concurrent transcranial direct current stimulation and progressive resistance training in Parkinson's disease: study protocol for a randomised controlled trial. Trials, 2016, 17, 326.	0.7	8
108	Neurocognitive Effects of tDCS in the Healthy Brain. , 2016, , 103-141.		2

		CITATION RE	PORT	
#	Article		IF	CITATIONS
109	Clinical Research and Methodological Aspects for tDCS Research. , 2016, , 393-404.			4
110	Sensorimotor Rhythm BCI with Simultaneous High Definition-Transcranial Direct Curren Alters Task Performance. Brain Stimulation, 2016, 9, 834-841.	nt Stimulation	0.7	25
111	Increased resting state connectivity between ipsilesional motor cortex and contralesion cortex after transcranial direct current stimulation with physical therapy. Scientific Rep 23271.	1al premotor orts, 2016, 6,	1.6	25
112	No significant effect of transcranial direct current stimulation (tDCS) found on simple reaction time comparing 15 different simulation protocols. Neuropsychologia, 2016, 9	notor 1, 544-552.	0.7	58
113	Improvements in Attention and Decision-Making Following Combined Behavioral Traini Stimulation. Cerebral Cortex, 2016, 27, 3675-3682.	ng and Brain	1.6	31
114	Ipsilesional anodal tDCS enhances the functional benefits of rehabilitation in patients a Science Translational Medicine, 2016, 8, 330re1.	fter stroke.	5.8	178
115	tDCS over left M1 or DLPFC does not improve learning of a bimanual coordination task Reports, 2016, 6, 35739.	. Scientific	1.6	33
116	tDCS and Magnetic Resonance Imaging. , 2016, , 169-195.			1
117	Changed categorical perception of consonant–vowel syllables induced by transcrania current stimulation (tDCS). BMC Neuroscience, 2016, 17, 8.	al direct	0.8	12
118	Cerebellar, but not Motor or Parietal, High-Density Anodal Transcranial Direct Current S Facilitates Motor Adaptation. Journal of the International Neuropsychological Society, 2 928-936.	timulation 2016, 22,	1.2	33
119	Transcranial Direct Current Stimulation over the Parietal Cortex Improves Approximate Averaging. Journal of Cognitive Neuroscience, 2016, 28, 1700-1713.	Numerical	1.1	16
120	Modulation of linguistic prediction by TDCS of the right lateral cerebellum. Neuropsych 86, 103-109.	ologia, 2016,	0.7	33
121	Multiple sessions of transcranial direct current stimulation and upper extremity rehabilistroke: A review and meta-analysis. Clinical Neurophysiology, 2016, 127, 946-955.	itation in	0.7	102
122	Does transcranial direct current stimulation enhance cognitive and motor functions in brain? A systematic review and meta- analysis. Ageing Research Reviews, 2016, 25, 42-	the ageing 54.	5.0	143
123	The primary motor cortex is associated with learning the absolute, but not relative, tim of a task: A tDCS study. Physiology and Behavior, 2016, 160, 18-25.	ing dimension	1.0	17
124	"How Did I Make It?†Uncertainty about Own Motor Performance after Inhibition Cortex. Journal of Cognitive Neuroscience, 2016, 28, 1052-1061.	of the Premotor	1.1	16
125	Anodal-tDCS over the human right occipital cortex enhances the perception and memorand objects. Neuropsychologia, 2016, 81, 238-244.	ry of both faces	0.7	41
126	The effect of anodal transcranial direct current stimulation on motor sequence learning individuals: A systematic review and meta-analysis. Brain and Cognition, 2016, 102, 1-1	g in healthy 2.	0.8	114

#	ARTICLE	IF	Citations
127	and meta-analysis. Journal of Neurology, Neurosurgery and Psychiatry, 2016, 87, 345-355.	0.9	196
128	Transcranial direct current stimulation associated with gait training in Parkinson's disease: A pilot randomized clinical trial. Developmental Neurorehabilitation, 2017, 20, 121-128.	0.5	58
129	Peripheral electrical stimulation increases corticomotor excitability and enhances the rate of visuomotor adaptation. Behavioural Brain Research, 2017, 322, 42-50.	1.2	3
130	A single session of prefrontal cortex transcranial direct current stimulation does not modulate implicit task sequence learning andÂconsolidation. Brain Stimulation, 2017, 10, 567-575.	0.7	19
131	Effects of tDCS on motor learning and memory formation: A consensus and critical position paper. Clinical Neurophysiology, 2017, 128, 589-603.	0.7	275
132	High-definition transcranial direct current stimulation to both primary motor cortices improves unimanual and bimanual dexterity. Neuroscience Letters, 2017, 643, 84-88.	1.0	24
133	Online and offline effects of cerebellar transcranial direct current stimulation on motor learning in healthy older adults: a randomized doubleâ€blind shamâ€controlled study. European Journal of Neuroscience, 2017, 45, 1177-1185.	1.2	39
134	Cross-education of muscular strength is facilitated by homeostatic plasticity. European Journal of Applied Physiology, 2017, 117, 665-677.	1.2	32
135	Combined transcranial and trans-spinal direct current stimulation in chronic headache: A feasibility and safety trial for a novel intervention. Hong Kong Physiotherapy Journal, 2017, 37, 1-9.	0.3	9
136	Voluntary movement reverses the effect of cathodal transcranial direct current stimulation (tDCS) on corticomotor excitability. Experimental Brain Research, 2017, 235, 2653-2659.	0.7	3
137	Preconditioning tDCS facilitates subsequent tDCS effect on skill acquisition in older adults. Neurobiology of Aging, 2017, 51, 31-42.	1.5	50
138	Task-specificity of unilateral anodal and dual-M1 tDCS effects on motor learning. Neuropsychologia, 2017, 94, 84-95.	0.7	26
139	Both anodal and cathodal transcranial direct current stimulation improves semantic processing. Neuroscience, 2017, 343, 269-275.	1.1	51
140	Anodal tDCS applied during multitasking training leads to transferable performance gains. Scientific Reports, 2017, 7, 12988.	1.6	34
141	Safety and feasibility of transcranial direct current stimulation (tDCS) combined with sensorimotor retraining in chronic low back pain: a protocol for a pilot randomised controlled trial. BMJ Open, 2017, 7, e013080.	0.8	7
142	Transcranial direct current stimulation over multiple days enhances motor performance of a grip task. Annals of Physical and Rehabilitation Medicine, 2017, 60, 329-333.	1.1	27
143	Motor learning in a complex balance task and associated neuroplasticity: a comparison between endurance athletes and nonathletes. Journal of Neurophysiology, 2017, 118, 1849-1860.	0.9	35
144	Investigating the feasibility of using transcranial direct current stimulation to enhance fluency in people who stutter. Brain and Language, 2017, 164, 68-76.	0.8	22

		15	Circination
#	ARTICLE	IF	CHATIONS
145	Procedural Task. Advances in Intelligent Systems and Computing, 2017, , 173-183.	0.5	8
146	Enhancement of motor consolidation by post-training transcranial direct current stimulation in older people. Neurobiology of Aging, 2017, 49, 1-8.	1.5	52
147	Unraveling Causal Mechanisms of Top-Down and Bottom-Up Visuospatial Attention with Non-invasive Brain Stimulation. Journal of the Indian Institute of Science, 2017, 97, 451-475.	0.9	6
148	Effects of High-Definition Anodal Transcranial Direct Current Stimulation Applied Simultaneously to Both Primary Motor Cortices on Bimanual Sensorimotor Performance. Frontiers in Behavioral Neuroscience, 2017, 11, 130.	1.0	22
149	Priming Neural Circuits to Modulate Spinal Reflex Excitability. Frontiers in Neurology, 2017, 8, 17.	1.1	55
150	Anatomical Parameters of tDCS to Modulate the Motor System after Stroke: A Review. Frontiers in Neurology, 2017, 8, 29.	1.1	59
151	Cerebellar tDCS Effects on Conditioned Eyeblinks using Different Electrode Placements and Stimulation Protocols. Frontiers in Human Neuroscience, 2017, 11, 23.	1.0	17
152	Modulation of Illusory Auditory Perception by Transcranial Electrical Stimulation. Frontiers in Neuroscience, 2017, 11, 351.	1.4	15
153	No Interaction between tDCS Current Strength and Baseline Performance: A Conceptual Replication. Frontiers in Neuroscience, 2017, 11, 664.	1.4	12
154	Immediate effect of transcranial direct current stimulation combined with functional electrical stimulation on activity of the tibialis anterior muscle and balance of individuals with hemiparesis stemming from a stroke. Journal of Physical Therapy Science, 2017, 29, 2138-2146.	0.2	18
155	Multisession anodal transcranial direct current stimulation induces motor cortex plasticity enhancement and motor learning generalization in an aging population. Clinical Neurophysiology, 2018, 129, 494-502.	0.7	18
156	Structural Plasticity in Adulthood with Motor Learning and Stroke Rehabilitation. Annual Review of Neuroscience, 2018, 41, 25-40.	5.0	85
157	Consumer-Grade Brain Stimulation Devices in Sports: A Challenge for Traditional Sport Psychology?. Journal of Applied Sport Psychology, 2018, 30, 473-493.	1.4	0
158	Poststimulation time interval-dependent effects of motor cortex anodal tDCS on reaction-time task performance. Cognitive, Affective and Behavioral Neuroscience, 2018, 18, 167-175.	1.0	16
159	Explicit motor sequence learning with the paretic arm after stroke. Disability and Rehabilitation, 2018, 40, 323-328.	0.9	6
160	Anodal transcranial direct current stimulation over the primary motor cortex does not enhance the learning benefits of self-controlled feedback schedules. Psychological Research, 2018, 82, 496-506.	1.0	3
161	Basic and functional effects of transcranial Electrical Stimulation (tES)—An introduction. Neuroscience and Biobehavioral Reviews, 2018, 85, 81-92.	2.9	136
162	Cerebellar transcranial direct current stimulation improves adaptive postural control. Clinical Neurophysiology, 2018, 129, 33-41.	0.7	48

#	Article	IF	CITATIONS
163	Revisiting interhemispheric imbalance in chronic stroke: A tDCS study. Clinical Neurophysiology, 2018, 129, 42-50.	0.7	50
164	Combination of a short cognitive training and tDCS to enhance visuospatial skills: A comparison between online and offline neuromodulation. Brain Research, 2018, 1678, 32-39.	1.1	41
165	Neurochemical changes underpinning the development of adjunct therapies in recovery after stroke: A role for GABA?. Journal of Cerebral Blood Flow and Metabolism, 2018, 38, 1564-1583.	2.4	16
166	Crossover design in transcranial direct current stimulation studies on motor learning: potential pitfalls and difficulties in interpretation of findings. Reviews in the Neurosciences, 2018, 29, 463-473.	1.4	10
167	Evidence Transcranial Direct Current Stimulation Can Improve Saccadic Eye Movement Control in Older Adults. Vision (Switzerland), 2018, 2, 42.	0.5	3
168	Beneficial effects of anodal transcranial direct current stimulation (tDCS) on spatial working memory in patients with schizophrenia. European Neuropsychopharmacology, 2018, 28, 1339-1350.	0.3	28
169	The role of the dorsolateral prefrontal cortex in the motor placebo effect. European Journal of Neuroscience, 2018, 48, 3410-3425.	1.2	9
170	Motor Learning Improvement Remains 3 Months After a Multisession Anodal tDCS Intervention in an Aging Population. Frontiers in Aging Neuroscience, 2018, 10, 335.	1.7	12
171	Transcranial stimulation of the frontal lobes increases propensity of mind-wandering without changing meta-awareness. Scientific Reports, 2018, 8, 15975.	1.6	31
172	1H MR spectroscopy of the motor cortex immediately following transcranial direct current stimulation at 7 Tesla. PLoS ONE, 2018, 13, e0198053.	1.1	15
173	Modulation of Excitability in the Temporoparietal Junction Relieves Virtual Reality Sickness. Cyberpsychology, Behavior, and Social Networking, 2018, 21, 381-387.	2.1	17
174	Short-Term Effects of Cerebellar tDCS on Standing Balance Performance in Patients with Chronic Stroke and Healthy Age-Matched Elderly. Cerebellum, 2018, 17, 575-589.	1.4	56
175	Optimal Combination of Anodal Transcranial Direct Current Stimulations and Motor Imagery Interventions. Neural Plasticity, 2018, 2018, 1-7.	1.0	5
176	Compromised tDCS-induced facilitation of motor consolidation in patients with multiple sclerosis. Journal of Neurology, 2018, 265, 2302-2311.	1.8	17
177	Effects of tDCS on Bimanual Motor Skills: A Brief Review. Frontiers in Behavioral Neuroscience, 2018, 12, 63.	1.0	30
178	The Effect of Transcranial Direct Current Stimulation on Jaw Motor Function Is Task Dependent: Speech, Syllable Repetition and Chewing. Frontiers in Human Neuroscience, 2018, 12, 33.	1.0	4
179	A Preliminary Comparison of Motor Learning Across Different Non-invasive Brain Stimulation Paradigms Shows No Consistent Modulations. Frontiers in Neuroscience, 2018, 12, 253.	1.4	27
180	Differential Bilateral Primary Motor Cortex tDCS Fails to Modulate Choice Bias and Readiness in Perceptual Decision Making. Frontiers in Neuroscience, 2018, 12, 410.	1.4	98

#	Article	IF	CITATIONS
181	Modulating Regional Motor Cortical Excitability with Noninvasive Brain Stimulation Results in Neurochemical Changes in Bilateral Motor Cortices. Journal of Neuroscience, 2018, 38, 7327-7336.	1.7	55
182	Insights Into Auditory Cortex Dynamics From Non-invasive Brain Stimulation. Frontiers in Neuroscience, 2018, 12, 469.	1.4	8
183	Impact of oscillatory tDCS targeting left prefrontal cortex on source memory retrieval. Cognitive Neuroscience, 2018, 9, 194-207.	0.6	10
184	Parietal, but Not Motor Cortex, HD-atDCS Deteriorates Learning Transfer of a Complex Bimanual Coordination Task. Journal of Cognitive Enhancement: Towards the Integration of Theory and Practice, 2019, 3, 111-123.	0.8	5
185	Improved conceptual generation and selection with transcranial direct current stimulation in older adults. Journal of Clinical and Experimental Neuropsychology, 2019, 41, 43-57.	0.8	3
186	Comparison of Transcranial Direct Current Stimulation Electrode Montages for the Lower Limb Motor Cortex. Brain Sciences, 2019, 9, 189.	1.1	9
187	Neurotechnology-aided interventions for upper limb motor rehabilitation in severe chronic stroke. Brain, 2019, 142, 2182-2197.	3.7	138
188	Timing-dependent interaction effects of tDCS with mirror therapy on upper extremity motor recovery in patients with chronic stroke: A randomized controlled pilot study. Journal of the Neurological Sciences, 2019, 405, 116436.	0.3	25
189	Single session high definition transcranial direct current stimulation to the cerebellum does not impact higher cognitive function. PLoS ONE, 2019, 14, e0222995.	1.1	10
190	Effects of low-gamma tACS on primary motor cortex in implicit motor learning. Behavioural Brain Research, 2019, 376, 112170.	1.2	28
191	Transcranial Direct Current Stimulation Integration with Magnetic Resonance Imaging, Magnetic Resonance Spectroscopy, Near Infrared Spectroscopy Imaging, and Electroencephalography. , 2019, , 293-345.		4
192	Transcranial Direct Current Stimulation in Stroke Rehabilitation: Present and Future. , 2019, , 509-539.		4
193	Methodological Considerations for Selection of Transcranial Direct Current Stimulation Approach, Protocols and Devices. , 2019, , 199-223.		1
194	Non-linear effects of cathodal transcranial direct current stimulation (tDCS) of the primary motor cortex on implicit motor learning. Experimental Brain Research, 2019, 237, 919-925.	0.7	22
195	Top 100 cited noninvasive neuromodulation clinical trials. Expert Review of Medical Devices, 2019, 16, 451-466.	1.4	12
196	Modulating Observation-Execution-Related Motor Cortex Activity by Cathodal Transcranial Direct Current Stimulation. Brain Sciences, 2019, 9, 121.	1.1	6
197	An acute application of transcranial random noise stimulation does not enhance motor skill acquisition or retention in a golf putting task. Human Movement Science, 2019, 66, 241-248.	0.6	13
198	New perspectives for the modulation of mind-wandering using transcranial electric brain stimulation. Neuroscience, 2019, 409, 69-80.	1.1	16

#	Article	IF	CITATIONS
199	Effects of Transcranial Direct Current Stimulation of Primary Motor Cortex on Reaction Time and Tapping Performance: A Comparison Between Athletes and Non-athletes. Frontiers in Human Neuroscience, 2019, 13, 103.	1.0	27
200	Inverse relationship between amplitude and latency of physiological mirror activity during repetitive isometric contractions. Neuroscience, 2019, 406, 300-313.	1.1	4
201	The efficacy of transcranial direct current stimulation to prefrontal areas is related to underlying cortical morphology. Neurolmage, 2019, 196, 41-48.	2.1	54
202	No effects of cerebellar transcranial direct current stimulation on force field and visuomotor reach adaptation in young and healthy subjects. Journal of Neurophysiology, 2019, 121, 2112-2125.	0.9	29
203	Priming the Motor Cortex With Anodal Transcranial Direct Current Stimulation Affects the Acute Inhibitory Corticospinal Responses to Strength Training. Journal of Strength and Conditioning Research, 2019, 33, 307-317.	1.0	11
204	Accounting for individual differences in the response to tDCS with baseline levels of neurochemical excitability. Cortex, 2019, 115, 324-334.	1.1	66
205	The Impact of Transcranial Direct Current Stimulation on Upper-Limb Motor Performance in Healthy Adults: A Systematic Review and Meta-Analysis. Frontiers in Neuroscience, 2019, 13, 1213.	1.4	25
206	Estimulación transcraneal de corriente continua anódica como potencial recurso ergogénico para fuerza muscular y percepción de esfuerzo:. Cuadernos De Psicologia Del Deporte, 2019, 19, 216-242.	0.2	0
207	Using tDCS to facilitate motor learning in speech production: The role of timing. Cortex, 2019, 111, 274-285.	1.1	31
208	Distinct behavioral response of primary motor cortex stimulation in itch and pain after burn injury. Neuroscience Letters, 2019, 690, 89-94.	1.0	12
209	Impact of concurrent task performance on transcranial direct current stimulation (tDCS)-Induced changes in cortical physiology and working memory. Cortex, 2019, 113, 37-57.	1.1	43
211	Does Transcranial Direct Current Stimulation Affect the Learning of a Fine Sequential Hand Motor Skill with Motor Imagery?. Journal of Motor Behavior, 2019, 51, 451-465.	0.5	4
212	Direct current stimulation boosts hebbian plasticity inÂvitro. Brain Stimulation, 2020, 13, 287-301.	0.7	103
213	Effect of tDCS on Fine Motor Control of Patients in Subacute and Chronic Post-Stroke Stages. Journal of Motor Behavior, 2020, 52, 383-395.	0.5	15
214	A Case of Transcranial Direct-Current Stimulation for Childhood Stroke Hemiparesis: A Brief Report. Developmental Neurorehabilitation, 2020, 23, 133-136.	0.5	4
215	Modulating brain activity and behaviour with tDCS: Rumours of its death have been greatly exaggerated. Cortex, 2020, 123, 141-151.	1.1	56
216	Increased leg muscle fatigability during 2ÂmA and 4ÂmA transcranial direct current stimulation over the left motor cortex. Experimental Brain Research, 2020, 238, 333-343.	0.7	18
217	Transcranial direct current stimulation facilitates category learning. Brain Stimulation, 2020, 13, 393-400.	0.7	12

#	Article	IF	Citations
218	Application of anodal tDCS at primary motor cortex immediately after practice of a motor sequence does not improve offline gain. Experimental Brain Research, 2020, 238, 29-37.	0.7	13
219	Anodal High-definition Transcranial Direct Current Stimulation over the Posterior Parietal Cortex Modulates Approximate Mental Arithmetic. Journal of Cognitive Neuroscience, 2020, 32, 862-876.	1.1	6
220	The posterior parietal cortex mediates early offline-rather than online-motor sequence learning. Neuropsychologia, 2020, 146, 107555.	0.7	8
221	Effects of tDCS on visual statistical learning. Neuropsychologia, 2020, 148, 107652.	0.7	1
222	Anodal Transcranial Direct Current Stimulation Enhances Retention of Visuomotor Stepping Skills in Healthy Adults. Frontiers in Human Neuroscience, 2020, 14, 251.	1.0	4
223	Effects of Multiple Sessions of Cathodal Priming and Anodal HD-tDCS on Visuo Motor Task Plateau Learning and Retention. Brain Sciences, 2020, 10, 875.	1.1	6
224	Transcranial direct current stimulation (tDCS) over the auditory cortex modulates GABA and glutamate: a 7ÂT MR-spectroscopy study. Scientific Reports, 2020, 10, 20111.	1.6	24
225	Timing-dependent effects of transcranial direct current stimulation with mirror therapy on daily function and motor control in chronic stroke: a randomized controlled pilot study. Journal of NeuroEngineering and Rehabilitation, 2020, 17, 101.	2.4	20
226	Neuro-Doping $\hat{a} \in \hat{a}$ a Serious Threat to the Integrity of Sport?. Neuroethics, 2020, , 1.	1.7	3
227	Visual motion perception improvements following direct current stimulation over V5 are dependent on initial performance. Experimental Brain Research, 2020, 238, 2409-2416.	0.7	12
228	Asymmetric Contributions of the Fronto-Parietal Network to Emotional Conflict in the Word–Face Interference Task. Symmetry, 2020, 12, 1701.	1.1	4
229	Electrifying discourse: Anodal tDCS of the primary motor cortex selectively reduces action appraisal in naturalistic narratives. Cortex, 2020, 132, 460-472.	1.1	16
230	Beneficial effects of cerebellar tDCS on motor learning are associated with altered putamen-cerebellar connectivity: A simultaneous tDCS-fMRI study. NeuroImage, 2020, 223, 117363.	2.1	32
231	Using non-invasive transcranial direct current stimulation for neglect and associated attentional deficits following stroke. Neuropsychological Rehabilitation, 2022, 32, 735-766.	1.0	4
232	A Single Session of Anodal Cerebellar Transcranial Direct Current Stimulation Does Not Induce Facilitation of Locomotor Consolidation in Patients With Multiple Sclerosis. Frontiers in Human Neuroscience, 2020, 14, 588671.	1.0	10
233	Transcranial Direct Current Stimulation for Motor Recovery Following Brain Injury. Current Physical Medicine and Rehabilitation Reports, 2020, 8, 268-279.	0.3	7
234	Effects of different transcranial direct current stimulation protocols on visuo-spatial contextual learning formation: evidence of homeostatic regulatory mechanisms. Scientific Reports, 2020, 10, 4622.	1.6	15
235	Dissociable effects of tDCS polarity on latent decision processes are associated with individual differences in neurochemical concentrations and cortical morphology. Neuropsychologia, 2020, 141, 107433.	0.7	16

#	Article	IF	CITATIONS
236	Electrophysiological Effects of Transcranial Direct Current Stimulation on Neural Activity in the Rat Motor Cortex. Frontiers in Neuroscience, 2020, 14, 495.	1.4	9
237	Baseline sensorimotor GABA levels shape neuroplastic processes induced by motor learning in older adults. Human Brain Mapping, 2020, 41, 3680-3695.	1.9	21
238	Mechanistic determinants of effector-independent motor memory encoding. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 17338-17347.	3.3	11
239	Effectiveness of cathodal tDCS of the primary motor or sensory cortex in migraine: A randomized controlled trial. Brain Stimulation, 2020, 13, 675-682.	0.7	34
240	Transcranial direct-current stimulation combined with attention increases cortical excitability and improves motor learning in healthy volunteers. Journal of NeuroEngineering and Rehabilitation, 2020, 17, 23.	2.4	17
241	Does M1 anodal transcranial direct current stimulation affects online and offline motor learning in patients with multiple sclerosis?. Neurological Sciences, 2020, 41, 2539-2546.	0.9	8
242	Transcranial Direct Current Stimulation at 4 mA Induces Greater Leg Muscle Fatigability in Women Compared to Men. Brain Sciences, 2020, 10, 244.	1.1	17
243	Multi-session Transcranial Direct Current Stimulation Over Primary Motor Cortex Facilitates Sequence Learning, Chunking, and One Year Retention. Frontiers in Human Neuroscience, 2020, 14, 75.	1.0	15
244	Utilizing transcranial direct current stimulation to enhance laparoscopic technical skills training: A randomized controlled trial. Brain Stimulation, 2020, 13, 863-872.	0.7	21
245	Effects of bifrontal transcranial direct current stimulation on brain glutamate levels and resting state connectivity: multimodal MRI data for the cathodal stimulation site. European Archives of Psychiatry and Clinical Neuroscience, 2021, 271, 111-122.	1.8	17
246	Transcranial direct current stimulation of dorsolateral prefrontal cortex improves dual-task gait performance in patients with Parkinson's disease: A double blind, sham-controlled study. Gait and Posture, 2021, 84, 11-16.	0.6	23
247	Transcranial Direct Current Stimulation Combined With Cognitive Training Induces Response Inhibition Facilitation Through Distinct Neural Responses According to the Stimulation Site: A Follow-up Event-Related Potentials Study. Clinical EEG and Neuroscience, 2021, 52, 181-192.	0.9	7
248	Effect of physical therapy interventions on spatiotemporal gait parameters in children with cerebral palsy: a systematic review. Disability and Rehabilitation, 2021, 43, 1507-1516.	0.9	12
249	tDCS and Magnetic Resonance Imaging. , 2021, , 127-158.		1
250	Frontoparietal anodal tDCS reduces ketamine-induced oscillopathies. Translational Neuroscience, 2021, 12, 282-296.	0.7	1
252	No Impact of Cerebellar Anodal Transcranial Direct Current Stimulation at Three Different Timings on Motor Learning in a Sequential Finger-Tapping Task. Frontiers in Human Neuroscience, 2021, 15, 631517.	1.0	8
253	Cathodal Transcranial Direct Current Stimulation (tDCS) Applied to the Left Premotor Cortex Interferes with Explicit Reproduction of a Motor Sequence. Brain Sciences, 2021, 11, 207.	1.1	8
254	Effect of Repetitive Passive Movement Before Motor Skill Training on Corticospinal Excitability and Motor Learning Depend on BDNF Polymorphisms. Frontiers in Human Neuroscience, 2021, 15, 621358.	1.0	4

#	Article	IF	CITATIONS
255	Noninvasive brain stimulation to lateral prefrontal cortex alters the novelty of creative idea generation. Cognitive, Affective and Behavioral Neuroscience, 2021, 21, 311-326.	1.0	10
257	Combining transcranial direct current stimulation with a motor-cognitive task: the impact on dual-task walking costs in older adults. Journal of NeuroEngineering and Rehabilitation, 2021, 18, 23.	2.4	24
258	A Causal Role of the Cerebellum in Auditory Feedback Control of Vocal Production. Cerebellum, 2021, 20, 584-595.	1.4	11
259	Motor Sequence Learning across Multiple Sessions Is Not Facilitated by Targeting Consolidation with Posttraining tDCS in Patients with Progressive Multiple Sclerosis. Neural Plasticity, 2021, 2021, 1-11.	1.0	3
260	Timing-specific effects of single-session M1 anodal tDCS on motor sequence retention in healthy older adults. NeuroImage Reports, 2021, 1, 100009.	0.5	4
261	Effects of anodal transcranial direct current stimulation on implicit motor learning and languageâ€related brain function: An <scp>fMRI</scp> study. Psychiatry and Clinical Neurosciences, 2021, 75, 200-207.	1.0	9
262	A Systematic Review on the Effect of Transcranial Direct Current and Magnetic Stimulation on Fear Memory and Extinction. Frontiers in Human Neuroscience, 2021, 15, 655947.	1.0	25
264	Time Dependent Effect of the Combination of Transcranial Direct Current Stimulation and Transcutaneous Electrical Nerve Stimulation in Knee Osteoarthritis Patients. Shanghai Ligong Daxue Xuebao/Journal of University of Shanghai for Science and Technology, 2021, 23, 196-206.	0.1	0
265	Effects of Transcranial Direct Current Stimulation Combined With Physical Training on the Excitability of the Motor Cortex, Physical Performance, and Motor Learning: A Systematic Review. Frontiers in Neuroscience, 2021, 15, 648354.	1.4	26
266	Reversed Polarity bi-tDCS over M1 during a Five Days Motor Task Training Did Not Influence Motor Learning. A Triple-Blind Clinical Trial. Brain Sciences, 2021, 11, 691.	1.1	2
267	The Efficacy of Transcranial Direct Current Stimulation in Enhancing Surgical Skill Acquisition: A Preliminary Meta-Analysis of Randomized Controlled Trials. Brain Sciences, 2021, 11, 707.	1.1	12
268	Functional Interactions between Sensory and Memory Networks for Adaptive Behavior. Cerebral Cortex, 2021, 31, 5319-5330.	1.6	5
269	The effect of high-definition transcranial direct current stimulation intensity on motor performance in healthy adults: a randomized controlled trial. Journal of NeuroEngineering and Rehabilitation, 2021, 18, 103.	2.4	17
270	Perinatal stroke: mapping and modulating developmental plasticity. Nature Reviews Neurology, 2021, 17, 415-432.	4.9	35
271	Effect of Transcranial Direct Current Stimulation on Walking Speed, Functional Strength, and Balance in Older Adults: A Randomized, Double-Blind Controlled Trial. Medical Science Monitor, 2021, 27, e932623.	0.5	3
272	The effects of transcranial direct current stimulation on gait in patients with Parkinson's disease: a systematic review. Translational Neurodegeneration, 2021, 10, 22.	3.6	25
273	A Short-Term Intervention of High-Intensity Exercise and Anodal-tDCS on Motor Learning in Middle-Aged Adults: An RCT. Frontiers in Human Neuroscience, 2021, 15, 661079.	1.0	2
274	The initial visual performance modulates the effects of anodal transcranial direct current stimulation over the primary visual cortex on the contrast sensitivity function. Neuropsychologia, 2021, 156, 107854.	0.7	12

#	Article	IF	CITATIONS
275	The effects of transcranial direct current stimulation on upper-limb function post-stroke: A meta-analysis of multiple-session studies. Clinical Neurophysiology, 2021, 132, 1897-1918.	0.7	35
277	Effects of transcranial random noise stimulation timing on corticospinal excitability and motor function. Behavioural Brain Research, 2021, 414, 113479.	1.2	3
278	Transcranial Direct Current Stimulation Over the Right Anterior Temporal Lobe Does Not Modulate False Recognition. Frontiers in Psychology, 2021, 12, 718118.	1.1	1
279	Transcranial direct current stimulation decreased cognition-related reaction time in older adults: A systematic review and meta-analysis. Ageing Research Reviews, 2021, 70, 101377.	5.0	15
280	The effects of unilateral transcranial direct current stimulation on unimanual laparoscopic peg-transfer task. Brain Research, 2021, 1771, 147656.	1.1	3
281	Postâ€ŧraining stimulation of the right dorsolateral prefrontal cortex impairs working memory training performance. Journal of Neuroscience Research, 2021, 99, 2351-2363.	1.3	7
282	Investigating the effects of cerebellar transcranial direct current stimulation on saccadic adaptation and cortisol response. Cerebellum and Ataxias, 2021, 8, 1.	1.9	4
283	Clinical Research and Methodological Aspects for tDCS Research. , 2021, , 265-279.		1
284	Modulation of Executive Control in the Task Switching Paradigm With Transcranial Direct Current Stimulation (tDCS). Journal of Psychophysiology, 2016, 30, 55-65.	0.3	13
285	The Medial Frontal Cortex Mediates Self-Other Discrimination in the Joint Simon Task. Journal of Psychophysiology, 2016, 30, 87-101.	0.3	19
286	Application of Transcranial Electric Stimulation (tDCS, tACS, tRNS). European Psychologist, 2016, 21, 4-14.	1.8	32
290	Transcranial Magnetic and Electric Stimulation in Perception and Cognition Research. Frontiers in Neuroscience, 2012, , 335-355.	0.0	4
291	Enhanced Motor Learning Following Task-Concurrent Dual Transcranial Direct Current Stimulation. PLoS ONE, 2013, 8, e85693.	1.1	59
292	The effects of cervical transcutaneous spinal direct current stimulation on motor pathways supplying the upper limb in humans. PLoS ONE, 2017, 12, e0172333.	1.1	21
293	Single-session tDCS over the dominant hemisphere affects contralateral spectral EEG power, but does not enhance neurofeedback-guided event-related desynchronization of the non-dominant hemisphere's sensorimotor rhythm. PLoS ONE, 2018, 13, e0193004.	1.1	13
295	Effect of Transcranial Direct Current Stimulation on Movement Variability in Repetitive - Simple Tapping Task. The Journal of Korean Physical Therapy, 2015, 27, 38-42.	0.1	2
296	Differential Effects of Unihemispheric Concurrent Dual-site and Conventional Primary Motor Cortex Transcranial Direct Current Stimulation on Motor Sequence Learning in Healthy Individuals: A Randomized Sham-Controlled Study. Basic and Clinical Neuroscience, 2019, 10, 59-72.	0.3	6
297	Non-Invasive Electrical Brain Stimulation Montages for Modulation of Human Motor Function. Journal of Visualized Experiments, 2016, , e53367.	0.2	3

#	Article	IF	CITATIONS
298	Modulating Neuronal Networks to Enhance Postural Control: A Review of Transcranial Direct Current Stimulation Approach. Iranian Red Crescent Medical Journal, 2019, 21, .	0.5	2
299	GABA, not BOLD, reveals dissociable learning-dependent plasticity mechanisms in the human brain. ELife, 2018, 7, .	2.8	40
300	Timing-Dependent Effects of Transcranial Direct Current Stimulation on Hand Motor Function in Healthy Individuals: A Randomized Controlled Study. Brain Sciences, 2021, 11, 1325.	1.1	1
302	Application of Transcranial Direct Current Stimulation (tDCS) -As A Rehabilitation Tool to Patient After Stroke. Korean Journal of Sport Studies, 2017, 56, 153-165.	0.1	1
308	Single session transcranial direct current stimulation to the primary motor cortex fails to enhance early motor sequence learning in Parkinson's disease. Behavioural Brain Research, 2022, 418, 113624.	1.2	6
309	Timing-Dependent Priming Effects of Anodal tDCS on Two-Hand Coordination. Journal of Psychophysiology, 2020, 34, 224-234.	0.3	1
311	Is transcranial direct current stimulation a potential method for improving response inhibition?. Neural Regeneration Research, 2013, 8, 1048-54.	1.6	5
312	Non-invasive brain stimulation for enhancement of corticospinal excitability and motor performance. Basic and Clinical Neuroscience, 2013, 4, 257-65.	0.3	14
313	Effect of transcranial direct current stimulation in addition to visuomotor training on choice reaction time and cognition function in amateur soccer players (FAST trial): A randomized control trial. Neuroscience Letters, 2022, 766, 136346.	1.0	0
314	Effects of High-Definition Transcranial Direct Current Stimulation Over the Left Fusiform Face Area on Face View Discrimination Depend on the Individual Baseline Performance. Frontiers in Neuroscience, 2021, 15, 704880.	1.4	7
316	Transcranial Direct Current Stimulation Provides No Additional Benefit to Improvements in Self-Reported Craving Following Mindfulness-Based Relapse Prevention. Mindfulness, 2022, 13, 92-103.	1.6	4
317	Modulating Cognitive–Motor Multitasking with Commercial-off-the-Shelf Non-Invasive Brain Stimulation. Brain Sciences, 2022, 12, 180.	1.1	3
318	Discernible effects of tDCS over the primary motor and posterior parietal cortex on different stages of motor learning. Brain Structure and Function, 2022, 227, 1115-1131.	1.2	4
319	Anodal Transcranial Direct Current Stimulation Over Prefrontal Cortex Slows Sequence Learning in Older Adults. Frontiers in Human Neuroscience, 2022, 16, 814204.	1.0	6
320	Possibilities of transcranial direct current stimulation (tDCS) use in elite sport. Sports Medicine Research and Practice, 2021, 11, 64-72.	0.1	0
321	Combining Transcranial Direct Current Stimulation With Tai Chi to Improve Dual-Task Gait Performance in Older Adults With Mild Cognitive Impairment: A Randomized Controlled Trial. Frontiers in Aging Neuroscience, 2021, 13, 766649.	1.7	11
322	Combined transcranial Direct Current Stimulation and robot-assisted arm training in patients with stroke: a systematic review. Restorative Neurology and Neuroscience, 2021, 39, 435-446.	0.4	1
323	A randomized sham-controlled trial on the effects of dual-tDCS "during―physical therapy on lower limb performance in sub-acute stroke and a comparison to the previous study using a "before― stimulation protocol. BMC Sports Science, Medicine and Rehabilitation, 2022, 14, 68.	0.7	5

#	Article	IF	CITATIONS
324	Inter-Individual Variability in tDCS Effects: A Narrative Review on the Contribution of Stable, Variable, and Contextual Factors. Brain Sciences, 2022, 12, 522.	1.1	37
331	Modulation of Interhemispheric Synchronization and Cortical Activity in Healthy Subjects by High-Definition Theta-Burst Electrical Stimulation. Neural Plasticity, 2022, 2022, 1-14.	1.0	0
332	Transcranial Direct Current Stimulation Targeting the Entire Motor Network Does Not Increase Corticospinal Excitability. Frontiers in Human Neuroscience, 2022, 16, .	1.0	1
333	Effect of concurrent transcranial direct current stimulation on instrumented timed up and go task performance in people with Parkinson's disease: A double-blind and cross-over study. Journal of Clinical Neuroscience, 2022, 100, 184-191.	0.8	5
334	A lack of timing-dependent effects of transcranial direct current stimulation (tDCS) on the performance of a choice reaction time task. Neuroscience Letters, 2022, 782, 136691.	1.0	1
336	The Comparison of the Effectiveness of Cognitive Rehabilitation and Transcranial Direct Current Stimulation on Executive Functions of Combat Veterans with Posttraumatic Stress Disorder. Journal of Clinical Research in Paramedical Sciences, 2022, 11, .	0.1	1
337	Robust Enhancement of Motor Sequence Learning with 4mA Transcranial Electric Stimulation. SSRN Electronic Journal, 0, , .	0.4	0
338	Intervention is a better predictor of tDCS mind-wandering effects than subjective beliefs about experimental results. Scientific Reports, 2022, 12, .	1.6	3
339	Noninvasive Brain Stimulation: Multiple Effects on Cognition. Neuroscientist, 2023, 29, 639-653.	2.6	14
340	Neural Mechanism Underlying Task-Specific Enhancement of Motor Learning by Concurrent Transcranial Direct Current Stimulation. Neuroscience Bulletin, 2023, 39, 69-82.	1.5	5
342	Addressing the inconsistent electric fields of tDCS by using patient-tailored configurations in chronic stroke: Implications for treatment. NeuroImage: Clinical, 2022, 36, 103178.	1.4	7
343	High-definition transcranial direct current stimulation of the left middle temporal complex does not affect visual motion perception learning. Frontiers in Neuroscience, 0, 16, .	1.4	4
344	High-Definition Transcranial Direct Current with Electrical Theta Burst on Post-Stroke Motor Rehabilitation: A Pilot Randomized Controlled Trial. Neurorehabilitation and Neural Repair, 2022, 36, 645-654.	1.4	2
345	Attention bias modification through transcranial direct current stimulation (tDCS): A review. Neurophysiologie Clinique, 2022, 52, 341-353.	1.0	7
346	The impact of anodal transcranial direct current stimulation of primary motor cortex on motor learning in older adults with low levels of activity. International Journal of Therapy and Rehabilitation, 2022, 29, 1-13.	0.1	1
347	The influence of tDCS on perceived bouncing/streaming. Experimental Brain Research, 0, , .	0.7	0
348	Bibliometric and visual analysis of transcranial direct current stimulation in the web of science database from 2000 to 2022 via CiteSpace. Frontiers in Human Neuroscience, 0, 16, .	1.0	6
349	Anodal online transcranial direct current stimulation facilitates visual motion perceptual learning. European Journal of Neuroscience, 2023, 57, 479-489.	1.2	3

#	Article	IF	CITATIONS
350	Anodal tDCS does not enhance the learning of the sequential finger-tapping task by motor imagery practice in healthy older adults. Frontiers in Aging Neuroscience, 0, 14, .	1.7	1
351	Robust enhancement of motor sequence learning with 4ÂmA transcranial electric stimulation. Brain Stimulation, 2023, 16, 56-67.	0.7	9
352	Optimizing the Effect of tDCS on Motor Sequence Learning in the Elderly. Brain Sciences, 2023, 13, 137.	1.1	6
353	Do Higher Transcranial Direct Current Stimulation Doses Lead to Greater Gains in Upper Limb Motor Function in Post-Stroke Patients?. International Journal of Environmental Research and Public Health, 2023, 20, 1279.	1.2	5
354	Motor learning and tDCS: A systematic review on the dependency of the stimulation effect on motor task characteristics or tDCS assembly specifications. Neuropsychologia, 2023, 179, 108463.	0.7	5
356	Stimulating human prefrontal cortex increases reward learning. NeuroImage, 2023, 271, 120029.	2.1	2
357	Electric field simulations of transcranial direct current stimulation in children with perinatal stroke. Frontiers in Human Neuroscience, 0, 17, .	1.0	2
358	Multi-focal Stimulation of the Cortico-cerebellar Loop During the Acquisition of a Novel Hand Motor Skill in Chronic Stroke Survivors. Cerebellum, 2024, 23, 341-354.	1.4	1
359	Transcranial direct current stimulation to the left dorsolateral prefrontal cortex enhances early dexterity skills with the left non-dominant hand: a randomized controlled trial. Journal of Translational Medicine, 2023, 21, .	1.8	2
360	Motor Evoked Potential Amplitude in Motor Behavior-based Transcranial Direct Current Stimulation Studies: A Systematic Review. Journal of Motor Behavior, 2023, 55, 313-329.	0.5	1
361	Repeated unilateral handgrip contractions alter functional connectivity and improve contralateral limb response times. Scientific Reports, 2023, 13, .	1.6	1