Thermal and mechanical interfacial properties of epoxy functionalized carbon nanotubes

Materials: F 528, 8517-8522

DOI: 10.1016/j.msea.2011.08.054

Citation Report

#	Article	IF	CITATIONS
1	Functionalization of multi-walled carbon nanotubes by epoxide ring-opening polymerization. Journal of Solid State Chemistry, 2011, 184, 3253-3256.	1.4	43
2	Thermal properties of epoxy resin/filler hybrid composites. Polymer Degradation and Stability, 2012, 97, 2148-2153.	2.7	134
3	Effects of carbon nanotubes on polymer physics. Journal of Polymer Science, Part B: Polymer Physics, 2012, 50, 591-623.	2.4	90
4	Structure and properties of novel epoxy resins containing naphthalene units and aliphatic chains. Iranian Polymer Journal (English Edition), 2013, 22, 325-334.	1.3	5
5	The thermal properties of a carbon nanotubeâ€enriched epoxy: Thermal conductivity, curing, and degradation kinetics. Journal of Applied Polymer Science, 2013, 130, 2722-2733.	1.3	26
6	Mechanical properties of multi-walled carbon nanotube/epoxy polysulfide nanocomposite. Materials & Design, 2013, 50, 62-67.	5.1	76
7	Recent Advances in Carbon-Nanotube-Based Epoxy Composites. Carbon Letters, 2013, 14, 1-13.	3.3	51
8	Electrical and thermal properties of stainless steel fibers and carbon nanotubes reinforced polyamide-6. Plastics, Rubber and Composites, 2013, 42, 437-445.	0.9	8
9	Evolution of carbon nanotube dispersion in preparation of epoxy-based composites: From a masterbatch to a nanocomposite. EXPRESS Polymer Letters, 2014, 8, 596-608.	1.1	30
10	Modeling of dynamic mechanical properties of epoxy and epoxy-phenolic reinforced with multi-wall carbon nanotubes. Journal of Composite Materials, 2014, 48, 2001-2009.	1.2	6
11	Synthesis and Modifications of Epoxy Resins and Their Composites: A Review. Polymer-Plastics Technology and Engineering, 2014, 53, 1723-1758.	1.9	155
12	Carbon Nanotube Epoxy Nanocomposites: The Effects of Interfacial Modifications on the Dynamic Mechanical Properties of the Nanocomposites. ACS Applied Materials & Samp; Interfaces, 2014, 6, 16621-16630.	4.0	97
13	Preparation and characterization of polyacrylonitrile-based carbon fiber papers. Journal of Industrial and Engineering Chemistry, 2014, 20, 3440-3445.	2.9	25
14	Fracture toughness improvement of epoxy resins with short carbon fibers. Journal of Industrial and Engineering Chemistry, 2014, 20, 1220-1222.	2.9	76
15	Structureâ€property relationship of substituted pyrrolidine functionalized CNT epoxy nanocomposite. Journal of Applied Polymer Science, 2015, 132, .	1.3	12
16	Rheological properties and fracture toughness of epoxy resin/multi-walled carbon nanotube composites. Polymer Engineering and Science, 2015, 55, 2676-2682.	1.5	6
17	Grafting Carbon Nanotubes on Glass Fiber by Dip Coating Technique to Enhance Tensile and Interfacial Shear Strength. Journal of Nanomaterials, 2015, 2015, 1-7.	1.5	13
18	Surface Modification of Carbon Nanotubes for High-Performance Polymer Composites. , 2015, , 13-59.		5

#	ARTICLE	IF	CITATIONS
19	Mechanical properties of epoxy resins reinforced with synthetic boehmite (AlOOH) nanosheets. Journal of Applied Polymer Science, 2015, 132, .	1.3	21
20	Synthesis of a novel phosphorus-nitrogen-containing intumescent flame retardant and its application to fabrics. Journal of Industrial and Engineering Chemistry, 2015, 27, 40-43.	2.9	54
21	Tailored interface and enhanced elastic modulus in epoxy-based composites in presence of branched poly(ethyleneimine) grafted multiwall carbon nanotubes. Physical Chemistry Chemical Physics, 2015, 17, 7907-7913.	1.3	14
22	Synthesis and application of epoxy resins: A review. Journal of Industrial and Engineering Chemistry, 2015, 29, 1-11.	2.9	1,294
23	A study on mechanical properties and microstructure of tetragonal zirconia-based composites. Journal of Industrial and Engineering Chemistry, 2015, 27, 322-328.	2.9	3
24	Synthesis and thermal properties of urethane-containing epoxy resin. Journal of Industrial and Engineering Chemistry, 2015, 24, 20-23.	2.9	13
25	Improvement of hydrophilic properties of electrospun polyamide-imide fibrous mats by atmospheric-pressure plasma treatment. Journal of Physics and Chemistry of Solids, 2015, 78, 53-58.	1.9	12
26	Fracture toughness and surface morphology of polysulfone-modified epoxy resin. Journal of Industrial and Engineering Chemistry, 2015, 25, 9-11.	2.9	45
27	Fracture toughness and surface morphology of Al2O3/Pt composites. Journal of Industrial and Engineering Chemistry, 2015, 25, 5-8.	2.9	3
28	Effect of Dodecyal Amine Functionalized Graphene on the Mechanical and Thermal Properties of Epoxyâ€Based Composites. Polymer Engineering and Science, 2016, 56, 1221-1228.	1.5	31
29	Progress on Epoxy/Polyamide and Inorganic Nanofiller-Based Hybrids: Introduction, Application, and Future Potential. Polymer-Plastics Technology and Engineering, 2016, 55, 1842-1862.	1.9	26
30	Thermal, impact and toughness behaviors of expanded graphite/graphite oxide-filled epoxy composites. Composites Part B: Engineering, 2016, 94, 238-244.	5.9	52
31	Recent Developments in Different Types of Flame Retardants and Effect on Fire Retardancy of Epoxy Composite. Polymer-Plastics Technology and Engineering, 2016, 55, 1512-1535.	1.9	61
32	Functionalization of carbon nanotubes with $(3\hat{a} \in g ycidy oxypropy)\hat{a} \in trimethoxysilane$: Effect of wrapping on epoxy matrix nanocomposites. Journal of Applied Polymer Science, 2016, 133, .	1.3	11
33	Physico-mechanical and fire properties of polyurethane/melamine-formaldehyde interpenetrating polymer network foams. Macromolecular Research, 2016, 24, 773-776.	1.0	15
34	Pitch coating of SiC and its effects on the thermal stability and oxidation resistance of SiC/epoxy composites. Composites Part B: Engineering, 2016, 94, 218-223.	5.9	14
35	Significant improvements in the mechanical properties of chitosan functionalized carbon nanotubes/epoxy composites. RSC Advances, 2016, 6, 26210-26215.	1.7	21
36	Advances in Epoxy/Graphene Nanoplatelet Composite with Enhanced Physical Properties: A Review. Polymer-Plastics Technology and Engineering, 2016, 55, 643-662.	1.9	76

#	ARTICLE	IF	Citations
37	Exploration of Epoxy Resins, Hardening Systems, and Epoxy/Carbon Nanotube Composite Designed for High Performance Materials: A Review. Polymer-Plastics Technology and Engineering, 2016, 55, 312-333.	1.9	98
38	Preparation and properties of soybean oil–based curing agents for epoxy resin. Journal of Applied Polymer Science, 2017, 134, .	1.3	3
39	Dodecylamine functionalization of carbon nanotubes to improve dispersion, thermal and mechanical properties of polyethylene based nanocomposites. Applied Surface Science, 2017, 410, 267-277.	3.1	81
40	CNT/polymer interface in polymeric composites and its sensitivity study at different environments. Advances in Colloid and Interface Science, 2017, 240, 77-106.	7.0	63
41	Improved Electrical and Thermal Properties of TETA Functionalized NGPs/Epoxy Nanocomposites. Springer Proceedings in Physics, 2017, , 407-414.	0.1	0
42	Polyurethane/Epoxy Interpenetrating Polymer Network. , 0, , .		13
43	The effects of MWNT on thermal conductivity and thermal mechanical properties of epoxy. AIP Conference Proceedings, 2017, , .	0.3	0
44	Mechanical properties of functionalised CNT filled kenaf reinforced epoxy composites. Materials Research Express, 2018, 5, 045034.	0.8	31
45	Covalent functionalization of graphene using polyacryloyl chloride and performance of functionalized graphene–epoxy nanocomposite. Polymer Composites, 2018, 39, 3119-3128.	2.3	9
46	Carbon Nanomaterial–Reinforced Epoxy Composites: A Review. Polymer-Plastics Technology and Engineering, 2018, 57, 1-16.	1.9	46
47	Fracture Toughness Improvement of Poly(lactic acid) Reinforced with Poly(<i>ε</i> caprolactone) and Surface-Modified Silicon Carbide. Advances in Materials Science and Engineering, 2018, 2018, 1-10.	1.0	8
49	Effect of carbon nanotube (CNT) functionalization in epoxy-CNT composites. Nanotechnology Reviews, 2018, 7, 475-485.	2.6	137
50	Matrices for Carbon Fiber Composites. Springer Series in Materials Science, 2018, , 69-103.	0.4	0
51	Graphene and carbon nanotube reinforced epoxy nanocomposites: A review. Polymer, 2019, 180, 121724.	1.8	135
52	Thermal stability and dynamic mechanical behavior of functional multiphase boride ceramics/epoxy composites. Journal of Polymer Engineering, 2019, 39, 508-514.	0.6	3
53	Effect of Carbon Nanofillers on the Mechanical and Interfacial Properties of Epoxy Based Nanocomposites: A Review. Polymer Science - Series A, 2019, 61, 439-460.	0.4	95
54	Multiscale Polymer Dynamics in Hierarchical Carbon Nanotube Grafted Glass Fiber Reinforced Composites. ACS Applied Polymer Materials, 2019, 1, 1905-1917.	2.0	11
55	Carbon-Filled Organic Phase-Change Materials for Thermal Energy Storage: A Review. Molecules, 2019, 24, 2055.	1.7	45

#	Article	IF	Citations
56	Recent Trends of Foaming in Polymer Processing: A Review. Polymers, 2019, 11, 953.	2.0	180
57	Preparation and characterization of graphite/thermosetting composites. Bulletin of Materials Science, 2019, 42, 1.	0.8	9
58	Effect of structure regulation of hyper-branched polyester modified carbon nanotubes on toughening performance of epoxy/carbon nanotube nanocomposites. RSC Advances, 2019, 9, 12864-12876.	1.7	16
59	Flexural Properties and Electrical Conductivity of Epoxy Resin/Carbon Fiber Cloth/Metallic Powder Composites. Macromolecular Research, 2019, 27, 10-13.	1.0	6
60	Enhanced Thermal and Mechanical Performance of Functionalized Graphene Epoxy Nanocomposites: Effect of Processing Conditions, Different Grades and Loading of Graphene. Lecture Notes on Multidisciplinary Industrial Engineering, 2019, , 19-33.	0.4	1
61	Enhancing the cycle stability of Li–O ₂ batteries <i>via</i> functionalized carbon nanotube-based electrodes. Journal of Materials Chemistry A, 2020, 8, 4263-4273.	5.2	15
62	Carbon nanotube- and graphene-reinforced multiphase polymeric composites: review on their properties and applications. Journal of Materials Science, 2020, 55, 2682-2724.	1.7	207
63	Synthesis and plasma surface functionalization of carbon nanotubes for using in advanced epoxy-based nanocomposites. Surface and Coatings Technology, 2020, 399, 126144.	2.2	25
64	Improved impact strength of poly(lactic acid) by incorporating poly(butylene succinate) and silicon dioxide nanoparticles. Korean Journal of Chemical Engineering, 2020, 37, 905-910.	1.2	16
65	Synergistic reinforcing of poly(lactic acid) by poly(butylene adipateâ€ <i>co</i> â€terephthalate) and alumina nanoparticles. Journal of Applied Polymer Science, 2021, 138, 50250.	1.3	17
66	A review featuring the fundamentals and advancements of polymer/CNT nanocomposite application in aerospace industry. Polymer Bulletin, 2021, 78, 539-557.	1.7	52
67	Preparation of a hyperbranched hybrid curing agent for epoxidized novolac resin. Fullerenes Nanotubes and Carbon Nanostructures, 2021, 29, 793-802.	1.0	3
68	Effects of nano reinforcing/matrix interaction on chemical, thermal and mechanical properties of epoxy nanocomposites. Journal of Composite Materials, 2021, 55, 4257-4272.	1.2	17
69	Mechanical and viscoelastic study of functionalized MWCNTs/epoxy/Kevlar composites. Polymer Composites, 2018, 39, E2064.	2.3	9
70	Thermal Stability and Fracture Toughness of Epoxy Resins Modified with Epoxidized Castor Oil and Al ₂ O ₃ Nanoparticles. Bulletin of the Korean Chemical Society, 2012, 33, 2513-2516.	1.0	13
71	Preparation and Characterization of PAN-based Superfined Carbon Fibers for Carbon-paper Applications. Bulletin of the Korean Chemical Society, 2013, 34, 3733-3737.	1.0	13
72	Polymer matrices for carbon fiber-reinforced polymer composites. Carbon Letters, 2013, 14, 76-88.	3.3	50
73	Superhydrophobic carbon-based materials: a review of synthesis, structure, and applications. Carbon Letters, 2014, 15, 89-104.	3.3	86

#	Article	IF	CITATIONS
74	Effect of pristine halloysite nanotubes on dynamic mechanical and thermal behavior of reinforced epoxy nanocomposites. Iranian Polymer Journal (English Edition), 2022, 31, 247-259.	1.3	2
75	Effect of graphene oxide/graphitic nanofiber nanohybrids on interfacial properties and fracture toughness of carbon fibers-reinforced epoxy matrix composites. Composites Part B: Engineering, 2021, 227, 109387.	5.9	39
76	Matrices for Carbon Fiber Composites. Springer Series in Materials Science, 2015, , 67-99.	0.4	1
78	Characteristics and Properties of Epoxy/Polysulfide Composite Materials Reinforced by Carbon Nanotubes. Diyala Journal of Engineering Sciences, 2014, 7, 106-009.	0.3	4
79	Thermal and mechanical characterization of alumina modified multifunctional novolac epoxy nanocomposites. Polymers and Polymer Composites, 2022, 30, 096739112210818.	1.0	0
80	Determination of Mechanical Properties of Epoxy Composite Materials Reinforced with Silicate Nanofillers Using Digital Image Correlation (DIC). Polymers, 2022, 14, 1255.	2.0	8
81	Epoxy resin reinforced with graphene derivatives: physical and dielectric properties. Journal of Polymer Research, 2022, 29, $1.$	1.2	11
82	Reinforcement of polymer composite materials by titanium dioxide nanoparticles synthesized in plasma discharge under ultrasonic cavitation. Journal of Physics: Conference Series, 2022, 2231, 012012.	0.3	4
83	Nitrogen and Sulfur Co-Doped Graphene Quantum Dots Anchored TiO2 Nanocomposites for Enhanced Photocatalytic Activity. Catalysts, 2022, 12, 548.	1.6	12
84	Polyurethaneâ^'Epoxy Composites: Recent Developments and Future Perspectives. ACS Symposium Series, 0, , 257-280.	0.5	2
85	Epoxy Nanocomposites with Carbon Nanotubes. ACS Symposium Series, 0, , 169-200.	0.5	1
86	Investigation of effects of extreme environment conditions on multiwall carbon nanotubeâ€epoxy adhesive and adhesive joints. Polymer Composites, 2022, 43, 7500-7513.	2.3	7
87	Contemporary review on carbon nanotube (CNT) composites and their impact on multifarious applications. Nanotechnology Reviews, 2022, 11, 2632-2660.	2.6	21
88	Aerospace applications of polymer/carbonaceous nanofiller nanocomposites: mechanical, thermal, nonflammability, and physical aspects. , 2023, , 85-111.		0
89	A review: Impact of surface treatment of nanofillers for improvement in thermo mechanical properties of the epoxy based nanocomposites. Materials Today: Proceedings, 2023, 78, 164-172.	0.9	9
90	Mechanical properties of epoxy/carbon nanotube composites. , 2023, , 75-87.		0
91	Obtention and Characterization of GO/Epoxy and GO-GPTMS/Epoxy Nanocompounds with Different Oxidation Degrees and Ultrasound Methods. Journal of Carbon Research, 2023, 9, 28.	1.4	1
92	Tailored multifunctional nanocomposites obtained by integration of carbonaceous fillers in an aerospace grade epoxy resin curing at high temperatures. Diamond and Related Materials, 2023, 135, 109840.	1.8	10

Article IF Citations