Seasonal variations of soil microbial biomass and activiturfgrass systems

Soil Biology and Biochemistry 43, 1536-1543 DOI: 10.1016/j.soilbio.2011.03.031

Citation Report

#	Article	IF	CITATIONS
1	Heat stress and N fertilization affect soil microbial and enzyme activities in the creeping bentgrass (Agrostis Stolonifera L.) rhizosphere. Applied Soil Ecology, 2012, 56, 19-26.	4.3	16
2	Ridge-furrow and plastic-mulching tillage enhances maize–soil interactions: Opportunities and challenges in a semiarid agroecosystem. Field Crops Research, 2012, 126, 181-188.	5.1	185
3	Laccase mediated changes in physical and chemical composition properties of thatch layer in creeping bentgrass (Agrostis stolonifera L.). Soil Biology and Biochemistry, 2013, 64, 48-56.	8.8	6
4	Ridge-Furrow Mulching Systems—An Innovative Technique for Boosting Crop Productivity in Semiarid Rain-Fed Environments. Advances in Agronomy, 2013, , 429-476.	5.2	453
5	Bacterial communities in soil mimic patterns of vegetative succession and ecosystem climax but are resilient to change between seasons. Soil Biology and Biochemistry, 2013, 57, 749-757.	8.8	83
6	Optimizing Laccase Application on Creeping Bentgrass (<i>Agrostis stolonifera</i> L.) to Facilitate Biodethatching. Crop Science, 2014, 54, 1804-1815.	1.8	1
7	Comparison of Seasonal Soil Microbial Process in Snow-Covered Temperate Ecosystems of Northern China. PLoS ONE, 2014, 9, e92985.	2.5	13
8	Substrate and environmental controls on microbial assimilation of soil organic carbon: a framework for Earth system models. Ecology Letters, 2014, 17, 547-555.	6.4	148
9	Season and Nitrogen Effects on Activities of Three Hydrolytic Enzymes in Soils of the Gurbantunggut Desert, Northwest China. Communications in Soil Science and Plant Analysis, 2014, 45, 1699-1713.	1.4	2
10	Soil respiratory and enzyme activities in leachate-contaminated soils with different application rate of cow manure compost: a laboratory study. Environmental Earth Sciences, 2014, 71, 225-231.	2.7	4
11	Nitrogen budgets of urban lawns under three different management regimes in southern California. Biogeochemistry, 2014, 121, 127-148.	3.5	22
12	Seasonal and clonal variations of microbial biomass and processes in the rhizosphere of poplar plantations. Applied Soil Ecology, 2014, 78, 65-72.	4.3	11
13	Effects of biological soil crusts on soil enzyme activities in revegetated areas of the Tengger Desert, China. Applied Soil Ecology, 2014, 80, 6-14.	4.3	63
14	Seasonal Changes of Microbiological Properties in Steppe Soils from Degraded Arid Area in Tunisia. Arid Land Research and Management, 2014, 28, 49-58.	1.6	3
15	Identifying response groups of soil nitrifiers and denitrifiers to grazing and associated soil environmental drivers in Tibetan alpine meadows. Soil Biology and Biochemistry, 2014, 77, 89-99.	8.8	75
16	Mulching Effects on Labile Soil Organic Nitrogen Pools under a Spring Maize Cropping System in Semiarid Farmland. Agronomy Journal, 2015, 107, 1465-1472.	1.8	19
17	Coupled Carbon and Nitrogen Inputs Increase Microbial Biomass and Activity in Prairie Bioenergy Systems. Ecosystems, 2015, 18, 417-427.	3.4	34
18	Driving factors of temporal variation in agricultural soil respiration. Acta Agriculturae Scandinavica - Section B Soil and Plant Science, 2015, 65, 589-604.	0.6	4

#	Article	IF	CITATIONS
19	Functional dependencies of soil CO2emissions on soil biological properties in northern German agricultural soils derived from a glacial till. Acta Agriculturae Scandinavica - Section B Soil and Plant Science, 2015, 65, 233-245.	0.6	1
20	Seasonal influence of climate manipulation on microbial community structure and function in mountain soils. Soil Biology and Biochemistry, 2015, 80, 296-305.	8.8	70
21	A time for every season: soil aggregate turnover stimulates decomposition and reduces carbon loss in grasslands managed for bioenergy. GCB Bioenergy, 2016, 8, 588-599.	5.6	72
22	Temporal variation in soil enzyme activities after afforestation in the Loess Plateau, China. Geoderma, 2016, 282, 103-111.	5.1	107
23	Soil enzymes and microbial endophytes as indicators of climate variation along an altitudinal gradient with respect to wheat rhizosphere under mountain ecosystem. Rhizosphere, 2016, 2, 75-84.	3.0	15
24	The US National Mall Microbiome: A Census of Rhizosphere Bacteria Inhabiting Landscape Turf. Crop Science, 2017, 57, S-341.	1.8	15
25	Differences among Soilâ€Inhabiting Microbial Communities in Poa annua Turf throughout the Growing Season. Crop Science, 2017, 57, S-262.	1.8	16
26	Microbial community biomass and structure in saline and non-saline soils associated with salt- and boron-tolerant poplar clones grown for the phytoremediation of selenium. International Journal of Phytoremediation, 2018, 20, 129-137.	3.1	11
27	Seasonal variation rather than stand age determines bacterial diversity in the rhizosphere of wolfberry (Lycium barbarum L.) associated with soil degradation. Journal of Soils and Sediments, 2018, 18, 1518-1529.	3.0	6
28	Phosphorus and Nitrogen Drive the Seasonal Dynamics of Bacterial Communities in Pinus Forest Rhizospheric Soil of the Qinling Mountains. Frontiers in Microbiology, 2018, 9, 1930.	3.5	25
29	Influence of soil physicochemical properties on the depth profiles of perfluoroalkylated acids (PFAAs) in soil along a distance gradient from a fluorochemical plant and associations with soil microbial parameters Chemosphere, 2019, 236, 124407.	8.2	26
30	Soil Biological Health: Influence of Crop Rotational Diversity and Tillage on Soil Microbial Properties. Soil Science Society of America Journal, 2019, 83, 1431-1442.	2.2	29
31	Minimum data set for evaluation of stand density effects on soil quality in Larix principis-rupprechtii plantations in North China. Ecological Indicators, 2019, 103, 236-247.	6.3	43
32	Soil microbial attributes along a chronosequence of Scots pine (Pinus sylvestris var. mongolica) plantations in northern China. Pedosphere, 2020, 30, 433-442.	4.0	5
33	Seasonal dynamics of soil microbial biomass C and N of Keteleeria fortunei var. cyclolepis forests with different ages. Journal of Forestry Research, 2020, 31, 2377-2384.	3.6	19
34	Do metal contamination and plant species affect microbial abundance and bacterial diversity in the rhizosphere of metallophytes growing in mining areas in a semiarid climate?. Journal of Soils and Sediments, 2020, 20, 1003-1017.	3.0	10
35	Enhanced Mechanical Properties of Pure Zirconium via Friction Stir Processing. Acta Metallurgica Sinica (English Letters), 2020, 33, 147-153.	2.9	7
36	Change in soil microbial biomass and regulating factors in an alpine meadow site on the Qinghai-Tibetan Plateau. Soil Science and Plant Nutrition, 2020, 66, 177-194.	1.9	15

CITATION REPORT

#	Article	IF	CITATIONS
37	Heavy grazing over 64 years reduced soil bacterial diversity in the foothills of the Rocky Mountains, Canada. Applied Soil Ecology, 2020, 147, 103361.	4.3	28
38	Nitrogen forms in runoff export from St. Augustinegrass. Agronomy Journal, 2021, 113, 3730-3742.	1.8	1
39	Elucidating the influence of resident seed and soil microbiota on the developing creeping bentgrassAmicrobiome. , 2020, 3, e20038.		6
40	Space Is More Important than Season when Shaping Soil Microbial Communities at a Large Spatial Scale. MSystems, 2020, 5, .	3.8	71
41	Soil carbon sequestration in bermudagrass golf course fairways in Lubbock, Texas. Agronomy Journal, 2020, 112, 148-157.	1.8	8
42	Mineralization and nitrification: Archaea dominate ammonia-oxidising communities in grassland soils. Soil Biology and Biochemistry, 2020, 143, 107725.	8.8	44
43	Patterns of local, intercontinental and interseasonal variation of soil bacterial and eukaryotic microbial communities. FEMS Microbiology Ecology, 2020, 96, .	2.7	19
44	Evaluation of soil enzyme activities as soil biological activity indicators in desert-oasis transition zone soils in China. Arid Land Research and Management, 2021, 35, 162-176.	1.6	0
45	Relationships between nitrogen cycling microbial community abundance and composition reveal the indirect effect of soil pH on oak decline. ISME Journal, 2021, 15, 623-635.	9.8	63
46	Soil microbial biomass and composition from urban landscapes in a semiarid climate. Applied Soil Ecology, 2021, 158, 103810.	4.3	8
47	The Abundance of N-Transforming Bacteria in Ungrazing and Grazing Area Under Oil Palm- Cattle Integration Management in South Kalimantan. , 0, , .		0
48	Hummock-hollow microtopography affects soil enzyme activity by creating environmental heterogeneity in the sedge-dominated peatlands of the Changbai Mountains, China. Ecological Indicators, 2021, 121, 107187.	6.3	9
49	Species Diversity Induces Idiosyncratic Effects on Litter Decomposition in a Degraded Meadow Steppe. Frontiers in Environmental Science, 2021, 9, .	3.3	6
50	Tree cover mediate indices related to the content of organic matter and the size of microbial population in semi-arid ecosystems. Journal of Environmental Management, 2021, 285, 112144.	7.8	0
51	Plant Age Influences Microbiome Communities More Than Plant Compartment in Greenhouse-Grown Creeping Bentgrass. Phytobiomes Journal, 2021, 5, 373-381.	2.7	7
52	Seasonal changes in soil properties, microbial biomass and enzyme activities across the soil profile in two alpine ecosystems. Soil Ecology Letters, 2021, 3, 383-394.	4.5	16
53	Effect of mulch on soil thermal regimes - A review. International Journal of Agriculture Environment and Biotechnology, 2015, 8, 645.	0.1	40
54	Improvement of subsoil physicochemical and microbial properties by short-term fallow practices. PeerJ, 2019, 7, e7501.	2.0	4

CITATION REPORT

#	Article	IF	CITATIONS
55	Impact of fertilisers on five turfgrass mixtures for football pitches under natural conditions. Zahradnictvi (Prague, Czech Republic: 1992), 2021, 48, 190-204.	0.9	2
57	Urban conditions affect soil characteristics and physiological performance of three evergreen woody species. Plant Physiology and Biochemistry, 2022, 171, 169-181.	5.8	6
58	Distinct soil microbial communities under <i>Ageratina adenophora</i> invasions. Plant Biology, 2022, 24, 430-439.	3.8	14
59	Drip Fertigated Planting Systems with Polythene Mulching on Cauliflower–Eggplant Cropping Systems in Hot and Subhumid Climate: Impact on Soil Health and Crop Yield. Communications in Soil Science and Plant Analysis, 2022, 53, 1261-1276.	1.4	0
60	Short-Term Grazing Exclusion Alters Soil Bacterial Co-occurrence Patterns Rather Than Community Diversity or Composition in Temperate Grasslands. Frontiers in Microbiology, 2022, 13, 824192.	3.5	6
67	Divergent temporal variations in soil microbial attributes under a subtropic afforestation. Ecological Indicators, 2022, 142, 109170.	6.3	2
68	Threeâ€dimensional mapping of carbon, nitrogen, and phosphorus in soil microbial biomass and their stoichiometry at the global scale. Global Change Biology, 2022, 28, 6728-6740.	9.5	29
69	Ecological and health risk assessment of different land uses along with seasonal variation in toxic metal contamination around Varanasi city situated in Indo-Gangetic Plain. Environmental Geochemistry and Health, 2023, 45, 3293-3315.	3.4	2
70	Az "Alsóban az élet―cÃmű hazai talajállapotot célzó közösségi tudomány program elsÅ' tapas eredményei. Agrokemia Es Talajtan, 2023, 72, 25-43.	sztalatai Ã 0.2	©გ
72	Effects of coastal embankments on seasonal variations in nitrogen storage in the plant-soil systems of Suaeda salsa salt marshes in Eastern China. Ecological Engineering, 2024, 199, 107168.	3.6	0
73	Heavy grazing reduces soil bacterial diversity by increasing soil pH in a semi-arid steppe. PeerJ, 0, 12, e17031.	2.0	0
74	Seasonal Population Trends of Microbial Communities in Oil Tainted Soils in Greater Port Harcourt Area, Nigeria. , 2024, 10, 12-28.		0
75	Effects of Intercropping and Nitrogen Application on Soil Fertility and Microbial Communities in Peanut Rhizosphere Soil. Agronomy, 2024, 14, 635.	3.0	0