A Review of Bovine Anaplasmosis

Transboundary and Emerging Diseases 58, 1-30 DOI: 10.1111/j.1865-1682.2010.01173.x

Citation Report

#	Article	IF	CITATIONS
1	Multistrain genome analysis identifies candidate vaccine antigens of Anaplasma marginale. Vaccine, 2011, 29, 4923-4932.	1.7	27
2	Integrated Strategy for Sustainable Cattle Fever Tick Eradication in USA is Required to Mitigate the Impact of Global Change. Frontiers in Physiology, 2012, 3, 195.	1.3	82
3	Dispersion and Sampling of Adult Dermacentor andersoni in Rangeland in Western North America. Journal of Medical Entomology, 2012, 49, 253-261.	0.9	13
4	Development and validation of two PCR tests for the detection of and differentiation between Anaplasma ovis and Anaplasma marginale. Ticks and Tick-borne Diseases, 2012, 3, 283-287.	1.1	76
5	Detection and identification of putative bacterial endosymbionts and endogenous viruses in tick cell lines. Ticks and Tick-borne Diseases, 2012, 3, 137-146.	1.1	34
6	Molecular Survey and Genetic Identification of Anaplasma Species in Goats from Central and Southern China. Applied and Environmental Microbiology, 2012, 78, 464-470.	1.4	145
7	Serosurveillance for Livestock Pathogens in Free-Ranging Mule Deer (Odocoileus hemionus). PLoS ONE, 2012, 7, e50600.	1.1	30
8	Prevalence of Anaplasma marginale, Babesia bigemina and Theileria annulata infections among cattle in Sargodha District, Pakistan. African Journal of Agricultural Research Vol Pp, 2012, 7, .	0.2	13
9	Characterization of 14 microsatellite loci developed for Dermacentor albipictus and cross-species amplification in D. andersoni and D. variabilis (Acari: Ixodidae). Conservation Genetics Resources, 2012, 4, 379-382.	0.4	6
10	Adaptive immunity to Anaplasma pathogens and immune dysregulation: Implications for bacterial persistence. Comparative Immunology, Microbiology and Infectious Diseases, 2012, 35, 241-252.	0.7	54
11	Molecular Detection of Tick-Borne Pathogens of the Family Anaplasmataceae in Brazilian Brown Brocket Deer (Mazama gouazoubira, Fischer, 1814) and Marsh Deer (Blastocerus dichotomus, Illiger,) Tj ETQq0 C) 01r. g BT /O	venkock 10 Ti
12	Ixodid ticks of traditionally managed cattle in central Nigeria: where Rhipicephalus (Boophilus) microplus does not dare (yet?). Parasites and Vectors, 2013, 6, 171.	1.0	64
13	Prevalence and haemato-biochemical profile of Anaplasma marginale infection in dairy animals of Punjab (India). Asian Pacific Journal of Tropical Medicine, 2013, 6, 139-144.	0.4	43
14	Development of a Real-Time PCR Assay for Detection and Quantification ofAnaplasma ovisInfection. Transboundary and Emerging Diseases, 2013, 60, 119-124.	1.3	15
15	Specific Molecular Detection and Characterization of <i>Anaplasma marginale</i> in Mongolian Cattle. Journal of Veterinary Medical Science, 2013, 75, 399-406.	0.3	37
16	Detection of genetic diversity of Anaplasma marginale isolates in Minas Gerais, Brazil. Brazilian Journal of Veterinary Parasitology, 2013, 22, 129-135.	0.2	32
17	Efeitos do estresse da orquiectomia na citologia broncoalveolar de bezerros da raça Holandesa. Pesquisa Veterinaria Brasileira, 2013, 33, 93-98.	0.5	3
19	Improved diagnostic performance of a commercial <i>Anaplasma</i> antibody competitive enzyme-linked immunosorbent assay using recombinant major surface protein 5–glutathione <i>S</i> +transferase fusion protein as antigen. Journal of Veterinary Diagnostic Investigation, 2014, 26,	0.5	13

#	Article	IF	CITATIONS
20	Evaluation of the immune response to Anaplasma marginale MSP5 protein using a HSV-1 amplicon vector system or recombinant protein. Research in Veterinary Science, 2014, 97, 514-520.	0.9	6
21	Epidemiology and evolution of the genetic variability of Anaplasma marginale in South Africa. Ticks and Tick-borne Diseases, 2014, 5, 624-631.	1.1	34
22	Infection of water buffalo in Rio de Janeiro Brazil with Anaplasma marginale strains also reported in cattle. Veterinary Parasitology, 2014, 205, 730-734.	0.7	16
23	Tabanids: Neglected subjects of research, but important vectors of disease agents!. Infection, Genetics and Evolution, 2014, 28, 596-615.	1.0	147
24	Seroprevalence of Anaplasma marginale in Texas Cattle. Preventive Veterinary Medicine, 2014, 116, 188-192.	0.7	15
25	Endemic status of tick-borne infections and tick species diversity among transhumant zebu cattle in Karamoja Region, Uganda: Support for control approaches. Veterinary Parasitology: Regional Studies and Reports, 2015, 1-2, 21-30.	0.3	18
26	Outbreak of anaplasmosis associated with the presence of different Anaplasma marginale strains in dairy cattle in the states of São Paulo and Goiás, Brazil. Brazilian Journal of Veterinary Parasitology, 2015, 24, 438-446.	0.2	24
27	Emerging status of anaplasmosis in cattle in Hisar. Veterinary World, 2015, 8, 768-771.	0.7	14
28	Seroprevalence of Babesiosis and Anaplasmosis in Apparently Healthy Large Ruminants of Punjab, India. Proceedings of the National Academy of Sciences India Section B - Biological Sciences, 2015, 85, 885-888.	0.4	6
29	Characterization of two strains of Anaplasma marginale isolated from cattle in Rio de Janeiro, Brazil, after propagation in tick cell culture. Ticks and Tick-borne Diseases, 2015, 6, 141-145.	1.1	15
30	Role of Rhipicephalus microplus cheliceral receptors in gustation and host differentiation. Ticks and Tick-borne Diseases, 2015, 6, 228-233.	1.1	13
31	Molecular and serological in-herd prevalence of Anaplasma marginale infection in Texas cattle. Preventive Veterinary Medicine, 2015, 119, 1-9.	0.7	34
32	Genetic diversity and molecular phylogeny of Anaplasma marginale studied longitudinally under natural transmission conditions in Rio de Janeiro, Brazil. Ticks and Tick-borne Diseases, 2015, 6, 499-507.	1.1	23
33	Molecular and immunological characterization of three strains of Anaplasma marginale grown in cultured tick cells. Ticks and Tick-borne Diseases, 2015, 6, 522-529.	1.1	9
34	Development of a new PCR-based assay to detect Anaplasmataceae and the first report of Anaplasma phagocytophilum and Anaplasma platys in cattle from Algeria. Comparative Immunology, Microbiology and Infectious Diseases, 2015, 39, 39-45.	0.7	77
35	Low temperature affects cattle tick reproduction but does not lead to transovarial transmission of Anaplasma marginale. Veterinary Parasitology, 2015, 214, 322-326.	0.7	16
36	Using participatory epidemiology to investigate management options and relative importance of tick-borne diseases amongst transhumant zebu cattle in Karamoja Region, Uganda. Preventive Veterinary Medicine, 2015, 122, 287-297.	0.7	46
37	Anaplasma marginale and Anaplasma phagocytophilum: Rickettsiales pathogens of veterinary and public health significance. Parasitology Research, 2015, 114, 3941-3957.	0.6	94

#	Article	IF	CITATIONS
38	Co-infection with bovine viral diarrhoea virus and Anaplasma marginale in a dairy cattle herd may lead to acute bovine anaplasmosis. Veterinarni Medicina, 2016, 61, 504-515.	0.2	0
39	Important hemoprotozoan diseases of livestock: Challenges in current diagnostics and therapeutics: An update. Veterinary World, 2016, 9, 487-495.	0.7	38
40	Investigation of <i>Anaplasma marginale</i> Seroprevalence in a Traditionally Managed Large California Beef Herd. Veterinary Medicine International, 2016, 2016, 1-7.	0.6	5
41	<i>Anaplasma marginale</i> : Diversity, Virulence, and Vaccine Landscape through a Genomics Approach. BioMed Research International, 2016, 2016, 1-18.	0.9	25
42	Molecular Detection of <i> Anaplasma</i> spp. and <i> Ehrlichia</i> spp. in Ruminants from Twelve Provinces of China. Canadian Journal of Infectious Diseases and Medical Microbiology, 2016, 2016, 1-9.	0.7	24
43	Within guild coâ€infections influence parasite community membership: a longitudinal study in African Buffalo. Journal of Animal Ecology, 2016, 85, 1025-1034.	1.3	23
44	Extensive genetic diversity of Rickettsiales bacteria in multiple mosquito species. Scientific Reports, 2016, 6, 38770.	1.6	87
45	Influence of experimental Anaplasma marginale infection and splenectomy on NTPDase and 5'nucleotidase activities in platelets of cattle. Microbial Pathogenesis, 2016, 95, 49-53.	1.3	5
46	First molecular evidence for the presence of Anaplasma DNA in milk from sheep and goats in China. Parasitology Research, 2016, 115, 2789-2795.	0.6	17
47	Molecular investigation of tick-borne haemoparasite infections among transhumant zebu cattle in Karamoja Region, Uganda. Veterinary Parasitology: Regional Studies and Reports, 2016, 3-4, 27-35.	0.3	19
48	Simulated interactions of white-tailed deer (Odocoileus virginianus), climate variation and habitat heterogeneity on southern cattle tick (Rhipicephalus (Boophilus) microplus) eradication methods in south Texas, USA. Ecological Modelling, 2016, 342, 82-96.	1.2	24
49	Morphological, molecular and MALDI-TOF mass spectrometry identification of ixodid tick species collected in Oromia, Ethiopia. Parasitology Research, 2016, 115, 4199-4210.	0.6	47
50	Characterization of Anaplasma marginale subsp. centrale Strains by Use of msp1aS Genotyping Reveals a Wildlife Reservoir. Journal of Clinical Microbiology, 2016, 54, 2503-2512.	1.8	23
51	Prevalence and genetic characterization of Anaplasma marginale in zebu cattle (Bos indicus) and their ticks (Amblyomma variegatum , Rhipicephalus microplus) from Madagascar. Ticks and Tick-borne Diseases, 2016, 7, 1116-1123.	1.1	23
52	Arbovirosis and potential transmission blocking vaccines. Parasites and Vectors, 2016, 9, 516.	1.0	24
53	Tick-borne pathogens of zoonotic and veterinary importance in Nigerian cattle. Parasites and Vectors, 2016, 9, 217.	1.0	80
54	Acaricidal efficacies of Lippia gracilis essential oil and its phytochemicals against organophosphate-resistant and susceptible strains of Rhipicephalus (Boophilus) microplus. Veterinary Parasitology, 2016, 228, 60-64.	0.7	47
55	Exploring the immune signalling pathway-related genes of the cattle tick Rhipicephalus microplus: From molecular characterization to transcriptional profile upon microbial challenge. Developmental and Comparative Immunology, 2016, 59, 1-14.	1.0	43

ARTICLE

56 Potential Vertical Transmission of Winter Ticks (Dermacentor albipictus) from Moose (Alces) Tj ETQq0 0 0 rgBT /Overlock 10 Jf 50 742

57	Transplacental transmission of bovine tick-borne pathogens: Frequency, co-infections and fatal neonatal anaplasmosis in a region of enzootic stability in the northeast of Brazil. Ticks and Tick-borne Diseases, 2016, 7, 270-275.	1.1	24
58	Anaplasmataceae in wild ungulates and carnivores in northern Spain. Ticks and Tick-borne Diseases, 2016, 7, 264-269.	1.1	35
59	Survey of Ticks Collected from Tennessee Cattle and Their Pastures for Anaplasma and Ehrlichia Species. Journal of Parasitology, 2016, 102, 54.	0.3	15
60	Identification of a vertically transmitted strain from Anaplasma marginale (UFMG3): Molecular and phylogenetic characterization, and evaluation of virulence. Ticks and Tick-borne Diseases, 2016, 7, 80-84.	1.1	12
61	Low genetic diversity of Anaplasma marginale in calves in an endemic area for bovine anaplasmosis in the state of São Paulo, Brazil. Ticks and Tick-borne Diseases, 2016, 7, 20-25.	1.1	19
62	Neoehrlichiosis: an emerging tick-borne zoonosis caused by Candidatus Neoehrlichia mikurensis. Experimental and Applied Acarology, 2016, 68, 279-297.	0.7	84
63	High Prevalence of <i>Anaplasma</i> spp. in Small Ruminants in Morocco. Transboundary and Emerging Diseases, 2017, 64, 250-263.	1.3	24
64	Molecular detection of Anaplasma marginale and Anaplasma ovis in sheep and goat in west highland pasture of Iran. Asian Pacific Journal of Tropical Biomedicine, 2017, 7, 455-459.	0.5	45
65	Molecular detection and genetic diversity of bovine Babesia spp., Theileria orientalis, and Anaplasma marginale in beef cattle in Thailand. Parasitology Research, 2017, 116, 751-762.	0.6	30
66	Genetic diversity and molecular epidemiology of Anaplasma. Infection, Genetics and Evolution, 2017, 49, 195-211.	1.0	149
67	Molecular characterisation of Anaplasma species from African buffalo (Syncerus caffer) in Kruger National Park, South Africa. Ticks and Tick-borne Diseases, 2017, 8, 400-406.	1.1	21
68	"Candidatus anaplasma camelii―in one-humped camels (Camelus dromedarius) in Morocco: a novel and emerging Anaplasma species?. Infectious Diseases of Poverty, 2017, 6, 1.	1.5	106
69	Molecular evidence of tick-borne hemoprotozoan-parasites (Theileria ovis and Babesia ovis) and bacteria in ticks and blood from small ruminants in Northern Algeria. Comparative Immunology, Microbiology and Infectious Diseases, 2017, 50, 34-39.	0.7	59
70	Bacterial arthropod-borne diseases in West Africa. Acta Tropica, 2017, 171, 124-137.	0.9	7
71	Anaplasma marginale Outer Membrane Protein A Is an Adhesin That Recognizes Sialylated and Fucosylated Glycans and Functionally Depends on an Essential Binding Domain. Infection and Immunity, 2017, 85, .	1.0	24
72	Guidelines for the Direct Detection of <i>Anaplasma</i> spp. in Diagnosis and Epidemiological Studies. Vector-Borne and Zoonotic Diseases, 2017, 17, 12-22.	0.6	56
73	Outbreak of anaplasmosis associated with novel genetic variants of Anaplasma marginale in a dairy cattle. Comparative Immunology, Microbiology and Infectious Diseases, 2017, 54, 20-26.	0.7	27

#	ARTICLE Molecular Epidemiological Survey and Genetic Characterization of <i>Anaplasma </i> Species in	IF	CITATIONS
74	Mongolian Livestock. Vector-Borne and Zoonotic Diseases, 2017, 17, 539-549. A novel modified-indirect ELISA based on spherical body protein 4 for detecting antibody during acute	0.6	19
76	And long-term infections with diverse Babesia bovis strains. Parasites and Vectors, 2017, 10, 77. Molecular investigation and phylogeny of Anaplasmataceae species infecting domestic animals and ticks in Corrigo France Parasites and Vectors, 2017, 10, 302	1.0	48
77	Diseases of the Hemolymphatic and Immune Systems. , 2017, , 716-844.		3
78	PCR-diagnosis of Anaplasma marginale in cattle populations of Ecuador and its molecular identification through sequencing of ribosomal 16S fragments. BMC Veterinary Research, 2017, 13, 392.	0.7	11
79	Identification of Anaplasma ovis appendage-associated protein (AAAP) for development of an indirect ELISA and its application. Parasites and Vectors, 2017, 10, 359.	1.0	5
80	Insight into the genetic diversity of Anaplasma marginale in cattle from ten provinces of China. Parasites and Vectors, 2017, 10, 565.	1.0	13
81	Anaplasma ovis genetic diversity detected by major surface protein 1a and its prevalence in small ruminants. Veterinary Microbiology, 2018, 217, 13-17.	0.8	13
82	Bovine anaplasmosis and tick-borne pathogens in cattle of the Galapagos Islands. Transboundary and Emerging Diseases, 2018, 65, 1262-1271.	1.3	16
83	Prevalence, risk factors, and genetic diversity of veterinary important tick-borne pathogens in cattle from Rhipicephalus microplus-invaded and non-invaded areas of Benin. Ticks and Tick-borne Diseases, 2018, 9, 450-464.	1.1	24
84	Occurrence of tick-borne haemoparasites in cattle in the Mungwi District, Northern Province, Zambia. Ticks and Tick-borne Diseases, 2018, 9, 707-717.	1.1	13
85	Prevalence, risk factors and vectors identification of bovine anaplasmosis and babesiosis in and around Jimma town, Southwestern Ethiopia. Acta Tropica, 2018, 177, 9-18.	0.9	21
86	Epidemiology of Babesia, Anaplasma and Trypanosoma species using a new expanded reverse line blot hybridization assay. Ticks and Tick-borne Diseases, 2018, 9, 155-163.	1.1	12
87	Chlamydiales, Anaplasma and Bartonella: persistence and immune escape of intracellular bacteria. Microbes and Infection, 2018, 20, 416-423.	1.0	12
88	Current and potential future distribution of the American dog tick (Dermacentor variabilis, Say) in North America. Ticks and Tick-borne Diseases, 2018, 9, 354-362.	1.1	59
89	Molecular identification of tick-borne pathogens infecting cattle in Mymensingh district of Bangladesh reveals emerging species of <i>Anaplasma</i> and <i>Babesia</i> . Transboundary and Emerging Diseases, 2018, 65, e231-e242.	1.3	33
90	Immune response and biochemistry of calves immunized with rMSP1a (Anaplasma marginale) using carbon nanotubes as carrier molecules. Brazilian Journal of Veterinary Parasitology, 2018, 27, 191-202.	0.2	3
91	Epidemiology of zoonotic tick-borne diseases in Latin America: Are we just seeing the tip of the iceberg?. F1000Research, 2018, 7, 1988.	0.8	20

#	Article	IF	CITATIONS
92	Serological Detection of Antibodies against Anaplasma spp. in Cattle Reared in the Gyeongsangbuk-do, Korea. Korean Journal of Parasitology, 2018, 56, 287-290.	0.5	2
93	Serological evidence of exposure to some zoonotic microorganisms in cattle and humans with occupational exposure to livestock in Antioquia, Colombia. Cadernos De Saude Publica, 2018, 34, e00193617.	0.4	8
94	Tick-borne zoonoses in the Order Rickettsiales and Legionellales in Iran: A systematic review. PLoS Neglected Tropical Diseases, 2018, 12, e0006722.	1.3	12
95	Factors associated with seroprevalence of bovine anaplasmosis in Texas. Veterinary Parasitology: Regional Studies and Reports, 2018, 14, 32-40.	0.3	8
96	Genetic, host and environmental factors associated with a high prevalence of Anaplasma marginale. Ticks and Tick-borne Diseases, 2018, 9, 1286-1295.	1.1	18
97	Molecular evidence of the reservoir competence of water buffalo (Bubalus bubalis) for Anaplasma marginale in Cuba. Veterinary Parasitology: Regional Studies and Reports, 2018, 13, 180-187.	0.3	10
98	Transmission Dynamics of Bovine Anaplasmosis in a Cattle Herd. Interdisciplinary Perspectives on Infectious Diseases, 2018, 2018, 1-16.	0.6	14
99	Prevalence of Anaplasma bovis in Canadian populations of the Rocky Mountain wood tick, Dermacentor andersoni. Ticks and Tick-borne Diseases, 2018, 9, 1528-1531.	1.1	10
100	Molecular epidemiology, associated risk factors, and phylogenetic analysis of anaplasmosis in camel. Microbial Pathogenesis, 2018, 123, 377-384.	1.3	25
101	Factors associated with Seroprevalence of Anaplasma marginale in Kentucky cattle. Veterinary Parasitology: Regional Studies and Reports, 2018, 13, 212-219.	0.3	6
102	Tick-, Flea-, and Louse-Borne Diseases of Public Health and Veterinary Significance in Nigeria. Tropical Medicine and Infectious Disease, 2018, 3, 3.	0.9	18
103	Detection and Characterisation of Anaplasma marginale and A. centrale in South Africa. Veterinary Sciences, 2018, 5, 26.	0.6	19
104	Co-infections with multiple genotypes of Anaplasma marginale in cattle indicate pathogen diversity. Parasites and Vectors, 2018, 11, 5.	1.0	17
105	A hybrid protein containing MSP1a repeats and Omp7, Omp8 and Omp9 epitopes protect immunized BALB/c mice against anaplasmosis. Veterinary Research, 2018, 49, 6.	1.1	8
106	Molecular epidemiology of bovine anaplasmosis in Khyber Pakhtunkhwa, Pakistan. Tropical Animal Health and Production, 2018, 50, 1591-1598.	0.5	23
107	Economic and Health Impact of the Ticks in Production Animals. , 2019, , .		24
108	Effect of Enrofloxacin for treatment of bovine anaplasmosis and canine babesiosis. IOP Conference Series: Earth and Environmental Science, 2019, 315, 042016.	0.2	0
109	Molecular investigation and phylogeny of species of the Anaplasmataceae infecting animals and ticks in Senegal. Parasites and Vectors, 2019, 12, 495.	1.0	39

#	Article	IF	CITATIONS
110	Epidemiological survey of <i>Anaplasma marginale</i> in cattle and buffalo in Sri Lanka. Journal of Veterinary Medical Science, 2019, 81, 1601-1605.	0.3	6
111	High co-infection rates of Babesia bovis, Babesia bigemina, and Anaplasma marginale in water buffalo in Western Cuba. Parasitology Research, 2019, 118, 955-967.	0.6	20
112	Development of a novel fusion protein with Anaplasma marginale and A. centrale MSP5 improved performance of Anaplasma antibody detection by cELISA in infected and vaccinated cattle. PLoS ONE, 2019, 14, e0211149.	1.1	6
113	The leucokinin-like peptide receptor from the cattle fever tick, Rhipicephalus microplus, is localized in the midgut periphery and receptor silencing with validated double-stranded RNAs causes a reproductive fitness cost. International Journal for Parasitology, 2019, 49, 287-299.	1.3	16
114	Recombinant expression and characterization of major surface protein 4 from Anaplasma marginale. Acta Tropica, 2019, 197, 105047.	0.9	13
115	Seroprevalence of Anaplasma spp. among sheep and goats in Charsadda District, Pakistan. Small Ruminant Research, 2019, 176, 5-10.	0.6	11
116	Factors associated with seroprevalence of bovine anaplasmosis in Mississippi, USA. Veterinary Parasitology: Regional Studies and Reports, 2019, 17, 100301.	0.3	7
117	Evaluation of Tagetes patula (Asteraceae) as an ecological alternative in the search for natural control of the cattle tick Rhipicephalus (Boophilus) microplus (Acari: Ixodidae). Experimental and Applied Acarology, 2019, 77, 601-618.	0.7	8
118	Molecular evidence of coinfection of Anaplasma species in small ruminants from Anhui Province, China. Parasitology International, 2019, 71, 143-146.	0.6	11
119	<i>Anaplasma</i> spp. in dairy ruminants in Jordan: high individual and herd-level seroprevalence and association with abortions. Journal of Veterinary Diagnostic Investigation, 2019, 31, 481-484.	0.5	4
120	Detection of pathogens in Dermacentor reticulatus in northwestern Europe: evaluation of a high-throughput array. Heliyon, 2019, 5, e01270.	1.4	33
121	Genetic diversity of Anaplasma marginale in beef cattle in the Brazilian Pantanal. Ticks and Tick-borne Diseases, 2019, 10, 805-814.	1.1	15
122	First molecular detection and characterization of tick-borne pathogens in water buffaloes in Bohol, Philippines. Ticks and Tick-borne Diseases, 2019, 10, 815-821.	1.1	12
123	High-resolution melt (HRM) analysis for detection of SNPs associated with pyrethroid resistance in the southern cattle fever tick, Rhipicephalus (Boophilus) microplus (Acari: Ixodidae). International Journal for Parasitology: Drugs and Drug Resistance, 2019, 9, 100-111.	1.4	29
124	Molecular Assessment of Anaplasma marginale in Bovine and Rhipicephalus (Boophilus) microplus Tick of Endemic Tribal Belt of Coastal South Gujarat, India. Acta Parasitologica, 2019, 64, 700-709.	0.4	8
125	Molecular characterization of <i>Anaplasma</i> and <i>Ehrlichia</i> in ixodid ticks and reservoir hosts from Palestine: a pilot survey. Veterinary Medicine and Science, 2019, 5, 230-242.	0.6	18
126	The Prevalence of Ectoparasites of Livestock and Dogs in Edo State (South-South), Nigeria. Nigerian Veterinary Journal, 2019, 40, 62.	0.1	1
127	Dermacentor reticulatus in Berlin/Brandenburg (Germany): Activity patterns and associated pathogens. Ticks and Tick-borne Diseases, 2019, 10, 191-206.	1.1	32

#	Article	IF	CITATIONS
128	Seroprevalence of bovine Anaplasmosis in Georgia. Veterinary Parasitology: Regional Studies and Reports, 2019, 15, 100258.	0.3	7
129	Molecular survey and genetic characterization of Anaplasma marginale isolates in cattle from two regions of Russia. Ticks and Tick-borne Diseases, 2019, 10, 251-257.	1.1	10
130	Tickâ€borne pathogens in ticks (Acari: Ixodidae) collected from various domestic and wild hosts in Corsica (France), a Mediterranean island environment. Transboundary and Emerging Diseases, 2020, 67, 745-757.	1.3	41
131	Development of a subcutaneous ear implant to deliver an anaplasmosis vaccine to dairy steers. Journal of Animal Science, 2020, 98, .	0.2	3
132	Molecular identification of protozoal and bacterial organisms in domestic animals and their infesting ticks from north-eastern Algeria. Ticks and Tick-borne Diseases, 2020, 11, 101330.	1.1	30
133	Bovine anaplasmosis herd prevalence and management practices as risk-factors associated with herd disease status. Veterinary Parasitology: X, 2020, 277, 100021.	2.7	8
134	Development and evaluation of a double-antigen sandwich ELISA to identify <i>Anaplasma marginale–</i> infected and <i>A. centrale–</i> vaccinated cattle. Journal of Veterinary Diagnostic Investigation, 2020, 32, 70-76.	0.5	8
135	An overview of rickettsiae in Southeast Asia: Vector-animal-human interface. Acta Tropica, 2020, 202, 105282.	0.9	21
136	Correlation between Rhipicephalus microplus ticks and Anaplasma marginale infection in various cattle breeds in Brazil. Experimental and Applied Acarology, 2020, 81, 585-598.	0.7	14
137	Immune Response to Tick-Borne Hemoparasites: Host Adaptive Immune Response Mechanisms as Potential Targets for Therapies and Vaccines. International Journal of Molecular Sciences, 2020, 21, 8813.	1.8	11
138	A tick cell line as a powerful tool to screen the antimicrobial susceptibility of the tick-borne pathogen Anaplasma marginale. Experimental Parasitology, 2020, 217, 107958.	0.5	2
139	Molecular screening of Anaplasmataceae in ticks collected from cattle in Corsica, France. Experimental and Applied Acarology, 2020, 81, 561-574.	0.7	7
140	Epidemiology and genotyping of Anaplasma marginale and co-infection with piroplasms and other Anaplasmataceae in cattle and buffaloes from Egypt. Parasites and Vectors, 2020, 13, 495.	1.0	27
141	Bovines Harbor a Diverse Array of Vector-Borne Pathogens in Northeast Algeria. Pathogens, 2020, 9, 883.	1.2	4
142	Enhanced biosurveillance of high-consequence invasive pests: southern cattle fever ticks, Rhipicephalus (Boophilus) microplus, on livestock and wildlife. Parasites and Vectors, 2020, 13, 487.	1.0	11
143	Prevalence of antibodies to Anaplasma in cattle and buffaloes of different organized herds in India. Journal of Parasitic Diseases, 2021, 45, 359-365.	0.4	3
144	Seroprevalence of Selected Tick Borne Pathogens and Diversity and Abundance of Ixodid Ticks (Acari:) Tj ETQq0 0 2020, 7, 187.	0 rgBT /C 0.9	verlock 10 T 8
145	What is your diagnosis? Blood smear in a Hereford cow. Veterinary Clinical Pathology, 2020, 49, 359-361.	0.3	0

#	Article	IF	Citations
146	Identification and evaluation of UL36 protein from Dermacentor silvarum salivary gland and its interaction with Anaplasma ovis VirB10. Parasites and Vectors, 2020, 13, 105.	1.0	1
147	Molecular detection and genetic diversity of Anaplasma marginale based on the major surface protein genes in Thailand. Acta Tropica, 2020, 205, 105338.	0.9	20
148	Epidemiology and genetic diversity of Anaplasma marginale in Zamora-Chinchipe, Ecuador. Ticks and Tick-borne Diseases, 2020, 11, 101380.	1.1	4
149	Molecular epidemiology and associated risk factors of Anaplasma marginale and Theileria annulata in cattle from North-western Pakistan. Veterinary Parasitology, 2020, 279, 109044.	0.7	29
150	Landscape Ecology of Rhipicephalus (Boophilus) microplus (Ixodida: Ixodidae) Outbreaks in the South Texas Coastal Plain Wildlife Corridor Including Man-Made Barriers. Environmental Entomology, 2020, 49, 546-552.	0.7	13
151	Bovine abortion, stillbirth and neonatal death associated with Babesia bovis and Anaplasma sp. infections in southern Brazil. Ticks and Tick-borne Diseases, 2020, 11, 101443.	1.1	10
152	Efficacy of long-acting oxytetracycline and imidocarb dipropionate for the chemosterilization of Anaplasma marginale in experimentally infected carrier cattle in Argentina. Veterinary Parasitology: Regional Studies and Reports, 2021, 23, 100513.	0.3	2
153	First report of the presence of Anaplasma marginale in different tissues of the stable-fly Stomoxys calcitrans (Linnaeus, 1758) in Rio de Janeiro state, Brazil. Veterinary Parasitology: Regional Studies and Reports, 2021, 23, 100515.	0.3	0
154	Genetic diversity of major surface protein 1a of Anaplasma marginale in dairy cattle. Infection, Genetics and Evolution, 2021, 89, 104608.	1.0	3
155	Antimicrobial use practices and resistance in indicator bacteria in communal cattle in the Mnisi community, Mpumalanga, South Africa. Veterinary Medicine and Science, 2021, 7, 112-121.	0.6	12
156	Prevalence of serum antibodies of tick-borne diseases and the presence of Rhipicephalus microplus in communal grazing cattle in the north-eastern region of the Eastern Cape Province of South Africa. Parasitology Research, 2021, 120, 1183-1191.	0.6	3
157	Bovine Anaplasmosis and Control. Advances in Environmental Engineering and Green Technologies Book Series, 2021, , 221-242.	0.3	1
158	Co-Infection with Anaplasma Species and Novel Genetic Variants Detected in Cattle and Goats in the Republic of Korea. Pathogens, 2021, 10, 28.	1.2	21
159	Crossâ€sectional survey of cattle haemopathogens in Constantine, Northeast Algeria. Veterinary Medicine and Science, 2021, 7, 1237-1244.	0.6	5
160	Causes of death in beef cattle in southern Brazil. Journal of Veterinary Diagnostic Investigation, 2021, 33, 677-683.	0.5	7
161	Molecular survey on prevalence and risk factors of Anaplasma spp. infection in cattle and sheep in West of Iran. Tropical Animal Health and Production, 2021, 53, 266.	0.5	6
162	Molecular and serological detection of Anaplasma infection in carrier cattle in north India. Veterinary Parasitology: Regional Studies and Reports, 2021, 24, 100550.	0.3	2
163	Simulated dynamics of southern cattle fever ticks (Rhipicephalus (Boophilus) microplus) in south Texas, USA: investigating potential wildlife-mediated impacts on eradication efforts. Parasites and Vectors, 2021, 14, 231.	1.0	5

#	Article	IF	CITATIONS
165	Monitoring bovine tick fever on a dairy farm: An economic proposal for rational use of medications. Journal of Dairy Science, 2021, 104, 5643-5651.	1.4	6
167	Epidemiology, haematology and molecular characterization of haemoprotozoon and rickettsial organisms causing infections in cattle of Jammu region, North India. BMC Veterinary Research, 2021, 17, 219.	0.7	8
168	Genetic diversity of Anaplasma bacteria: Twenty years later. Infection, Genetics and Evolution, 2021, 91, 104833.	1.0	54
169	Molecular detection and phylogenetic analyses of Anaplasma spp. in Haemaphysalis longicornis from goats in four provinces of China. Scientific Reports, 2021, 11, 14155.	1.6	9
170	Recombinase polymerase amplification (RPA) with lateral flow detection for three Anaplasma species of importance to livestock health. Scientific Reports, 2021, 11, 15962.	1.6	15
171	Molecular and recombinant characterization of major surface protein 5 from Anaplasma marginale. Acta Tropica, 2021, 220, 105933.	0.9	9
172	Economic Benefits of Diagnostic Testing in Livestock: Anaplasmosis in Cattle. Frontiers in Veterinary Science, 2021, 8, 626420.	0.9	5
173	Multiple vector-borne pathogens of domestic animals in Egypt. PLoS Neglected Tropical Diseases, 2021, 15, e0009767.	1.3	20
174	Sensitivity of Anaplasma marginale genotypes to oxytetracycline assessed by analyzing the msplî± gene in experimentally infected cattle. Ticks and Tick-borne Diseases, 2021, 12, 101787.	1.1	5
175	Molecular Survey of Babesia and Anaplasma Infection in Cattle in Bolivia. Veterinary Sciences, 2021, 8, 188.	0.6	4
176	Molecular characterization of Anaplasma marginale based on the msp1a and msp1b genes. Veterinary Microbiology, 2021, 262, 109236.	0.8	7
177	High genetic diversity and superinfection by Anaplasma marginale strains in naturally infected Angus beef cattle during a clinical anaplasmosis outbreak in southeastern Brazil. Ticks and Tick-borne Diseases, 2022, 13, 101829.	1.1	10
178	Epidemiology and Economic Importance of Tick-Borne Diseases of Cattle in Africa. Advances in Environmental Engineering and Green Technologies Book Series, 2021, , 144-165.	0.3	0
179	A review on Hyalomma species infestations on human and animals and progress on management strategies. Heliyon, 2020, 6, e05675.	1.4	38
180	Evidence confirming the phylogenetic position of Anaplasma centrale (ex Theiler 1911) Ristic and Kreier 1984. International Journal of Systematic and Evolutionary Microbiology, 2018, 68, 2682-2691.	0.8	13
181	Immunoinformatic Analysis to Identify Proteins to Be Used as Potential Targets to Control Bovine Anaplasmosis. International Journal of Microbiology, 2020, 2020, 1-8.	0.9	6
182	Multiple Pathogens Including Potential New Species in Tick Vectors in Côte d'Ivoire. PLoS Neglected Tropical Diseases, 2016, 10, e0004367.	1.3	82
183	Functional and Immunological Relevance of Anaplasma marginale Major Surface Protein 1a Sequence and Structural Analysis. PLoS ONE, 2013, 8, e65243.	1.1	46

#	Article	IF	CITATIONS
184	The genus Anaplasma: new challenges after reclassification. OIE Revue Scientifique Et Technique, 2015, 34, 577-586.	0.5	67
185	Seroprevalence and Molecular Detection of Bovine Anaplasmosis in Egypt. Pathogens, 2020, 9, 64.	1.2	10
186	Molecular survey of Anaplasma and Ehrlichia species in cattle from Karaman of Turkey, including a novel tandem report of Anaplasma marginale msp1a gene. Ankara Universitesi Veteriner Fakultesi Dergisi, 2019, 66, 255-260.	0.4	5
187	7. Prevention and control of tick-borne anaplasmosis, cowdriosis and babesiosis in the cattle industry. Ecology and Control of Vector-Borne Diseases, 2018, , 175-194.	0.3	4
188	Seroprevalence of Anaplasma Infection in Sheep and Cattle in Kurdistan Province of Iran with an Overview of one Decades of its Epidemiological Status in Iran. Journal of Scientific Research and Reports, 2015, 6, 26-36.	0.2	4
189	ANAPLASMOSE CONGÊNITA EM BEZERRA (Bos indicus) DA RAÇA NELORE - RELATO DE CASO. Nucleus Animalium, 2012, 4, .	0.1	0
190	Effect of Imidocarb dipropionate on the immune response to Foot and Mouth Disease vaccine in healthy and anaplasmosis-infected calves. Veterinary World, 2014, 7, 162-167.	0.7	1
192	Genome-Based Vaccinology Applied to Bovine Anaplasmosis. , 0, , .		0
193	10. Public-private partnership enabled use of anti-tick vaccine for integrated cattle fever tick eradication in the USA. Ecology and Control of Vector-Borne Diseases, 2018, , 275-298.	0.3	1
194	Molecular study of Anaplasma marginale parasite in carrier cattle in Al-Nasiriyah city. Iraqi Journal of Veterinary Sciences, 2019, 32, 299-301.	0.1	2
196	Experimental infection by Anaplasma marginale in buffaloes and cattle: clinical, hematological, molecular and pathological aspects. Pesquisa Veterinaria Brasileira, 2019, 39, 700-709.	0.5	3
197	Adana İlinde Sığırlarda Anaplasma marginale ve Anaplasma centrale'nin Serolojik ve Moleküler Yöntemler ile Araştırılması. Etlik Veteriner Mikrobiyoloji Dergisi, 2019, 30, 109-114.	0.2	0
198	Diseases of the Hematopoietic and Hemolymphatic Systems. , 2020, , 1151-1196.e11.		0
199	Explorando el genoma de Anaplasma marginale para el mejoramiento de la salud animal. Inventio, 2020, 16, .	0.0	0
200	Vector-Borne Diseases in Ruminants. , 2020, , 1-28.		0
201	Use of Biologics in the Prevention of Infectious Diseases. , 2020, , 1599-1668.e15.		0
202	Occurrence of Babesia bigemina and Anaplasma marginale in clinically affected cattle in western Santa Catarina, Brazil. Revista Brasileira De Saude E Producao Animal, 0, 21, .	0.3	0
203	First molecular detection of Anaplasma species in cattle from Kyrgyzstan; molecular identification of human pathogenic novel genotype Anaplasma capra and Anaplasma phagocytophilum related strain. Ticks and Tick-borne Diseases, 2022, 13, 101861.	1.1	18

#	Article	IF	CITATIONS
204	Epidemiological and Comparative Diagnostic Study of <i>Anaplasma</i> Spp. Infection in Goats from North-Eastern Algeria. Folia Veterinaria, 2020, 64, 61-74.	0.2	4
205	Serological status of Canadian cattle for brucellosis, anaplasmosis, and bluetongue in 2007-2008. Canadian Veterinary Journal, 2012, 53, 949-56.	0.0	6
206	Active surveillance of Anaplasma marginale in populations of arthropod vectors (Acari: Ixodidae;) Tj ETQq0 0 0 rg Canada. Canadian Journal of Veterinary Research, 2016, 80, 171-4.	BT /Overlc 0.2	ck 10 Tf 50 (1
207	Molecular Detection of Anaplasma marginale and Anaplasma ovis (Rickettsiales: Anaplasmataceae) in Ixodid Tick Species in Iran. Archives of Razi Institute, 2020, 75, 39-46.	0.4	2
208	First detection of <i>Anaplasma phagocytophilum</i> and <i>Babesia divergens</i> and high infection rates of <i>Anaplasma marginale</i> and <i>Babesia bigemina</i> in cattle in extensive grazing systems of Central Spain. Transboundary and Emerging Diseases, 2022, 69, .	1.3	1
209	Effect of Protracted Free-Choice Chlortetracycline-Medicated Mineral for Anaplasmosis Control on Escherichia coli Chlortetracycline Resistance Profile from Pastured Beef Cattle. Microorganisms, 2021, 9, 2495.	1.6	2
210	High genetic diversity of Anaplasma marginale infecting dairy cattle in northeastern Brazil. Brazilian Journal of Veterinary Parasitology, 2021, 30, e014321.	0.2	2
211	Concurrent occurrence of Anaplasma phagocytophilum and A. marginale in bovine peripheral blood samples from southwest of Iran. Journal of the Hellenic Veterinary Medical Society, 2020, 71, 2301.	0.1	1
212	Ticks and Tick-Borne Pathogens Abound in the Cattle Population of the Rabat-Sale Kenitra Region, Morocco. Pathogens, 2021, 10, 1594.	1.2	7
213	Using rumination and activity data for early detection of anaplasmosis disease in dairy heifer calves. Journal of Dairy Science, 2022, 105, 4421-4433.	1.4	5
214	The Use and Limitations of the 16S rRNA Sequence for Species Classification of Anaplasma Samples. Microorganisms, 2022, 10, 605.	1.6	17
216	Molecular detection and genetic characterization of Anaplasma marginale and Anaplasma platys in cattle in Nigeria. Ticks and Tick-borne Diseases, 2022, 13, 101955.	1.1	10
217	Occurrence of anaplasmosis among sheep (Ovis aries) and goats (Capra hircus) in Madina and Tabuk, Saudi Arabia. Journal of King Saud University - Science, 2022, 34, 101929.	1.6	1
218	Development and field evaluation of a nested polymerase chain reaction-restriction fragment length polymorphism (nPCR-RFLP) analysis to identify A. marginale-infected and A. centrale-vaccinated cattle. Ticks and Tick-borne Diseases, 2022, 13, 101952.	1.1	2
219	Use of green-modified micellar liquid chromatography for the determination of Imidocarb dipropionate residues in food samples. Microchemical Journal, 2022, 178, 107316.	2.3	5
220	Vector Specificity of Arbovirus Transmission. Frontiers in Microbiology, 2021, 12, 773211.	1.5	27
222	Serological and molecular surveys of spp. in Egyptian cattle reveal high infection prevalence Iranian Journal of Veterinary Research, 2021, 22, 288-297.	0.4	4
223	Epidemiology of tick-borne pathogens of cattle and tick control practices among mixed farming and pastoral communities in Gairo and Monduli districts, Tanzania. Veterinary Parasitology: Regional Studies and Reports, 2022, 32, 100738.	0.3	0

#	Article	IF	Citations
224	Molecular epidemiology, phylogenetic analysis and risk assessment of Anaplasma marginale from naturally infected bovines of Punjab (India). Acta Tropica, 2022, 232, 106499.	0.9	1
225	Naturally occurring Anaplasma marginale infection in cattle: Molecular prevalence and associated risk factors, haemato-biochemical alterations, oxidant/antioxidant status and serum trace mineral levels. Microbial Pathogenesis, 2022, 167, 105575.	1.3	5
226	Nucleotide sequence types (ntSTs) of Anaplasma marginale in cattle in Nigeria based on the major surface protein 5 (msp5) gene. Acta Tropica, 2022, 233, 106544.	0.9	2
227	Current and Future Molecular Diagnostics of Tick-Borne Diseases in Cattle. Veterinary Sciences, 2022, 9, 241.	0.6	13
228	Pyrokinin receptor silencing in females of the southern cattle tick Rhipicephalus (Boophilus) microplus is associated with a reproductive fitness cost. Parasites and Vectors, 2022, 15, .	1.0	3
229	Mexican Strains of Anaplasma marginale: A First Comparative Genomics and Phylogeographic Analysis. Pathogens, 2022, 11, 873.	1.2	1
231	Molecular Identification of Babesia spp. and Anaplasma marginale in Water Buffaloes in Veracruz and Tabasco, Mexico: A Retrospective Study. Microorganisms, 2022, 10, 1702.	1.6	1
232	Buffaloes as new hosts for Anaplasma capra: Molecular prevalence and phylogeny based on gtlA, groEL, and 16S rRNA genes. Research in Veterinary Science, 2022, 152, 458-464.	0.9	11
233	Epidemiology of Tick-Borne Pathogens of Cattle and Tick Control Practices in Coastal Kenya. SSRN Electronic Journal, 0, , .	0.4	0
234	Phylogenetic exploration and haemato-biochemical significance of Anaplasma marginale infection in water buffalo (Bubalus bubalis). Indian Journal of Animal Sciences, 2022, 92, 549-554.	0.1	0
235	Characterization of strains of Anaplasma marginale from clinical cases in bovine using major surface protein 1a in Uruguay. Frontiers in Veterinary Science, 0, 9, .	0.9	1
236	Molecular prevalence of Anaplasma marginale and associated risk factors in beef cattle herds from Ohio: a cross-sectional study. Journal of the American Veterinary Medical Association, 2022, 260, 1839-1843.	0.2	6
237	Bovine Anaplasmosis: Will there ever be an almighty effective vaccine?. Frontiers in Veterinary Science, 0, 9, .	0.9	5
238	Serological Analysis of IgG and IgM Antibodies against Anaplasma spp. in Various Animal Species of the Qinghai-Tibetan Plateau. Animals, 2022, 12, 2723.	1.0	4
239	Molecular Epidemiological Investigation of Piroplasms and Anaplasmataceae Bacteria in Egyptian Domestic Animals and Associated Ticks. Pathogens, 2022, 11, 1194.	1.2	3
240	Satisfactory breeding potential is transiently eliminated in beef bulls with clinical anaplasmosis. BMC Veterinary Research, 2022, 18, .	0.7	1
241	Epidemiology of tick-borne pathogens of cattle and tick control practices in coastal Kenya. Preventive Veterinary Medicine, 2022, 209, 105777.	0.7	1
243	Expression profiling of cytokine genes in peripheral blood mononuclear cells from <i>Anaplasma marginale</i> infected and healthy cattle. Animal Biotechnology, 2023, 34, 4281-4290.	0.7	2

#	ARTICLE	IF	CITATIONS
244	Chapter 21: Biting flies and zebra stripes. , 2022, , 563-603.		2
245	Bovine anaplasmosis as a risk factor for retained placenta, mastitis, and abomasal displacement in dairy cattle. Research in Veterinary Science, 2023, 154, 145-150.	0.9	1
246	Direct PCR-RFLP based detection and differentiation of Anaplasma species in naturally infected goats of eastern Haryana, India. Indian Journal of Animal Sciences, 2019, 89, .	0.1	1
247	Vector-Borne Diseases in Ruminants. , 2023, , 441-468.		0
248	Epidemiological aspects of cattle tick fever in Brazil. Brazilian Journal of Veterinary Parasitology, 2023, 32, .	0.2	2
249	Molecular detection and characterization of Anaplasma spp. in cattle and sable antelope from Lusaka and North-Western provinces of Zambia. Veterinary Parasitology: Regional Studies and Reports, 2023, 39, 100847.	0.3	1
250	Prevalence of Anaplasma phagocytophilum, Borrelia burgdorferi sensu lato, Rickettsia spp. and Babesia spp. in cattle serum and questing ticks from Belgium. Ticks and Tick-borne Diseases, 2023, 14, 102146.	1.1	1
251	Desiccant Dusts, With and Without Bioactive Botanicals, Lethal to <i>Rhipicephalus</i> (<i>Boophilus</i>) <i>microplus</i> Canestrini (Ixodida: Ixodidae) in the Laboratory and on Cattle. Journal of Medical Entomology, 2023, 60, 346-355.	0.9	1
252	Temporal Dynamics of AnaplasmaÂmarginale Infections and the Composition of Anaplasma spp. in Calves in the Mnisi Communal Area, Mpumalanga, South Africa. Microorganisms, 2023, 11, 465.	1.6	2
253	Diagnosis of Anaplasma marginale in cattle at the Iowa State University veterinary diagnostic laboratory 2003–2021. Veterinary Parasitology: Regional Studies and Reports, 2023, 39, 100845.	0.3	0
254	Development and field evaluation of an ELISA to differentiate <i>Anaplasma marginale</i> –infected from <i>A. centrale</i> –vaccinated cattle. Journal of Veterinary Diagnostic Investigation, 2023, 35, 204-208.	0.5	0
255	Transovarial transmission of pathogenic protozoa and rickettsial organisms in ticks. Parasitology Research, 2023, 122, 691-704.	0.6	4
256	Prevalence and haemato-biochemical changes of tick-borne haemoparasitic diseases in crossbred cattle of Haryana, India. Indian Journal of Animal Sciences, 2017, 87, .	0.1	16
257	Global prevalence and species diversity of tick-borne pathogens in buffaloes worldwide: a systematic review and meta-analysis. Parasites and Vectors, 2023, 16, .	1.0	2
258	Epidemiology of Anaplasma marginale and Anaplasma centrale infections in African buffalo (Syncerus) Tj ETQqO	0 0 rgBT /	Overlock 10 T

Wildlife, 2023, 21, 47-54.