Convergence of electronic bands for high performance

Nature 473, 66-69 DOI: 10.1038/nature09996

Citation Report

#	Article	IF	CITATIONS
3	Optimized thermoelectric properties of Mo3Sb7â^'xTex with significant phonon scattering by electrons. Energy and Environmental Science, 2011, 4, 4086.	30.8	77
4	Recent advances in thermoelectrics. , 2011, , .		3
5	Exploring the doping effects of Ag in p-type PbSe compounds with enhanced thermoelectric performance. Journal Physics D: Applied Physics, 2011, 44, 475304.	2.8	50
6	Combination of large nanostructures and complex band structure for high performance thermoelectric lead telluride. Energy and Environmental Science, 2011, 4, 3640.	30.8	153
7	Reevaluation of PbTe1â^'xlx as high performance n-type thermoelectric material. Energy and Environmental Science, 2011, 4, 2090.	30.8	359
8	Colloidal Synthesis of Cu ₂ CdSnSe ₄ Nanocrystals and Hot-Pressing to Enhance the Thermoelectric Figure-of-Merit. Journal of the American Chemical Society, 2011, 133, 15910-15913.	13.7	149
9	Modelling of thermoelectric generator with heat pipe assist for range extender application. , 2011, , .		4
10	High Performance Thermoelectrics from Earth-Abundant Materials: Enhanced Figure of Merit in PbS by Second Phase Nanostructures. Journal of the American Chemical Society, 2011, 133, 20476-20487.	13.7	433
11	High thermoelectric figure of merit in nanostructured p-type PbTe–MTe (M = Ca, Ba). Energy and Environmental Science, 2011, 4, 4675.	30.8	162
12	Potential Thermoelectric Performance from Optimization of Hole-Doped <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mi>Bi</mml:mi><mml:mn>2</mml:mn></mml:msub><mml:msub><mml:mi Physical Review X, 2011, 1, .</mml:mi </mml:msub></mml:math 	⊳S& mml:</td <td>mi³⁶mml:rn</td>	mi ³⁶ mml:rn
13	Quantum confinement and spin-orbit interactions in PbSe and PbTe nanowires: First-principles calculation. Physical Review B, 2011, 84, .	3.2	10
14	Alloying to increase the band gap for improving thermoelectric properties of Ag2Te. Journal of Materials Chemistry, 2011, 21, 18256.	6.7	149
15	Energy Harvesting Technology Development at DARPA. Materials Research Society Symposia Proceedings, 2011, 1325, 53.	0.1	0
16	Lead telluride alloy thermoelectrics. Materials Today, 2011, 14, 526-532.	14.2	444
17	High Performance Na-doped PbTe–PbS Thermoelectric Materials: Electronic Density of States Modification and Shape-Controlled Nanostructures. Journal of the American Chemical Society, 2011, 133, 16588-16597.	13.7	322
18	Stabilizing the Optimal Carrier Concentration for High Thermoelectric Efficiency. Advanced Materials, 2011, 23, 5674-5678.	21.0	378
19	Increase in the thermoelectric power produced by mechanically alloyed Pb1â^' <i>x</i> Sn <i>x</i> Te due to the presence of 15 nm SnO2 inclusions. Journal of Applied Physics, 2011, 110, .	2.5	7
20	Figure-of-merit enhancement in nanostructured FeSb _{2â^`<i>x</i>} Ag _{<i>x</i>} with Ag _{1â^`<i>y</i>} Sb _{<i>y</i>} nanoinclusions. Nanotechnology, 2012, 23, 505402.	2.6	12

#	Article	IF	CITATIONS
21	Very heavily electron-doped CrSi ₂ as a high-performance high-temperature thermoelectric material. New Journal of Physics, 2012, 14, 033045.	2.9	31
22	Temperature Controlled Exhaust Heat Thermoelectric Generation. SAE International Journal of Passenger Cars - Electronic and Electrical Systems, 0, 5, 561-571.	0.3	14
23	Thermoelectric transport in strained Si and Si/Ge heterostructures. Journal of Physics Condensed Matter, 2012, 24, 275501.	1.8	27
24	Enhancement in the figure of merit of p-type Bi _{100â^'x} Sb _x alloys through multiple valence-band doping. Applied Physics Letters, 2012, 101, 053904.	3.3	18
25	High thermoelectric performance of solid solutions CuGa1â^' <i>x</i> In <i>x</i> Te2 (<i>x</i> = 0–1.0). Applied Physics Letters, 2012, 100, .	3.3	66
26	On the best bandstructure for thermoelectric performance: A Landauer perspective. Journal of Applied Physics, 2012, 111, .	2.5	45
27	Synthesis and thermoelectric properties of Mn-doped AgSbTe 2 compounds. Chinese Physics B, 2012, 21, 106101.	1.4	14
28	Optimal working conditions for thermoelectric generators with realistic thermal coupling. Europhysics Letters, 2012, 97, 28001.	2.0	100
29	Microscopic mechanism of low thermal conductivity in lead telluride. Physical Review B, 2012, 85, .	3.2	115
30	Effect of Te doping on the thermopower of PbSe _{1–x} Te _x . Emerging Materials Research, 2012, 1, 306-311.	0.7	5
31	The matryoshka effect. Nature, 2012, 489, 375-376.	27.8	3
32	Crystal structure, electronic structure and thermoelectric properties of n-type BiSbSTe2. Journal Physics D: Applied Physics, 2012, 45, 125301.	2.8	9
33	Dopants effect on the band structure of PbTe thermoelectric material. Applied Physics Letters, 2012, 101, 092102.	3.3	76
34	Nanostructured thermoelectric materials: Current research and future challenge. Progress in Natural Science: Materials International, 2012, 22, 535-549.	4.4	630
35	Band Engineering of Thermoelectric Materials. Advanced Materials, 2012, 24, 6125-6135.	21.0	1,307
36	Towards energy and resource efficient manufacturing: A processes and systems approach. CIRP Annals - Manufacturing Technology, 2012, 61, 587-609.	3.6	865
37	Microstructure modulation responsible for the improvement in thermoelectric property of a wide-gap AgIn5Se8 semiconductor. Intermetallics, 2012, 31, 217-224.	3.9	13
38	The realization of a high thermoelectric figure of merit in Ge-substituted Î ² -Zn4Sb3 through band structure modification. Journal of Materials Chemistry, 2012, 22, 13977.	6.7	54

	CITATION REI	PORT	
#	ARTICLE Copper ion liquid-like thermoelectrics. Nature Materials, 2012, 11, 422-425.	IF 27.5	CITATIONS
39	Copper for inquitable energies inaction inaction in the second seco	27,0	1,700
40	Electronic structure and thermoelectric performance of Zintl compound Ca5Ga2As6. Journal of Materials Chemistry, 2012, 22, 20284.	6.7	24
41	Thermoelectric Properties of a Wide–Gap Chalcopyrite Compound AgInSe ₂ . Key Engineering Materials, 0, 519, 188-192.	0.4	16
42	xmins:mmi= http://www.w3.org/1998/Math/Math/Math/Math/Math/Math/Math/Math	3.2	91
43	/> <mml: Effect of thermal disorder on high figure of merit in PbTe. Physical Review B, 2012, 86, .</mml: 	3.2	39
44	Quasicrystals and the Quest for Next Generation Thermoelectric Materials. Critical Reviews in Solid State and Materials Sciences, 2012, 37, 215-242.	12.3	10
45	Study on the effect of Pb partial substitution for Te on the thermoelectric properties of La ₃ Te _{4â^*x} Pb _x materials. Journal Physics D: Applied Physics, 2012, 45, 185303.al and electronic properties of Pb <mml:math< td=""><td>2.8</td><td>12</td></mml:math<>	2.8	12
46	xmins:mml="http://www.w3.org/1998/Math/Math/MathML_display="inline"> <mml:msub><mml:mrow /><mml:mrow><mml:mn>1</mml:mn><mml:mo>â"</mml:mo><mml:mi>x</mml:mi></mml:mrow></mml:mrow </mml:msub> xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:mi>x</mml:mi> /> <mml:mi>x</mml:mi> Te and Pb <mml:math< td=""><td>3.2</td><td>ath>Cd<mm 20</mm </td></mml:math<>	3.2	ath>Cd <mm 20</mm
47	And a second sec	27.8	3,767
48	Insects converge on resistance. Nature, 2012, 489, 376-377.	27.8	5
49	Electrical and thermoelectric properties of single-wall carbon nanotube doped Bi2Te3. Applied Physics Letters, 2012, 101, .	3.3	46
50	Lattice thermal conductivity diminution and high thermoelectric power factor retention in nanoporous macroassemblies of sulfur-doped bismuth telluride nanocrystals. Applied Physics Letters, 2012, 100, .	3.3	32
51	Topological crystalline insulator states inÂPb1â^'xSnxSe. Nature Materials, 2012, 11, 1023-1027.	27.5	693
52	Recent advances in thermoelectric nanocomposites. Nano Energy, 2012, 1, 42-56.	16.0	624
53	Thermoelectric properties of copper selenide with ordered selenium layer and disordered copper layer. Nano Energy, 2012, 1, 472-478.	16.0	271
54	Electrical and thermal transport properties of Pb-based chalcogenides: PbTe, PbSe, and PbS. Journal of Alloys and Compounds, 2012, 514, 40-44.	5.5	218
55	CdI2 structure type as potential thermoelectric materials: Synthesis and high temperature thermoelectric properties of the solid solution TiSxSe2â^'x. Journal of Alloys and Compounds, 2012, 521, 121-125.	5.5	31
56	Low effective mass leading to high thermoelectric performance. Energy and Environmental Science, 2012, 5, 7963.	30.8	511

#	Article	IF	CITATIONS
57	Influence of a Nano Phase Segregation on the Thermoelectric Properties of the p-Type Doped Stannite Compound Cu _{2+<i>x</i>} Zn _{1–<i>x</i>} GeSe ₄ . Journal of the American Chemical Society, 2012, 134, 7147-7154.	13.7	129
58	Resonant levels in bulk thermoelectric semiconductors. Energy and Environmental Science, 2012, 5, 5510-5530.	30.8	764
59	Phase separation and thermoelectric properties of Ag2Te-doped PbTe0.9S0.1. Acta Materialia, 2012, 60, 7241-7248.	7.9	14
60	Thermopower enhancement in Pb1â^'xMnxTe alloys and its effect on thermoelectric efficiency. NPG Asia Materials, 2012, 4, e28-e28.	7.9	214
61	Enhanced phonon scattering by mass and strain field fluctuations in Nb substituted FeVSb half-Heusler thermoelectric materials. Journal of Applied Physics, 2012, 112, .	2.5	82
62	Study of the Thermoelectric Properties of Lead Selenide Doped with Boron, Gallium, Indium, or Thallium. Journal of the American Chemical Society, 2012, 134, 17731-17738.	13.7	105
63	Interface Driven Energy Filtering of Thermoelectric Power in Spark Plasma Sintered Bi ₂ Te _{2.7} Se _{0.3} Nanoplatelet Composites. Nano Letters, 2012, 12, 4305-4310.	9.1	149
64	Seeing Is Believing: Weak Phonon Scattering from Nanostructures in Alkali Metal-Doped Lead Telluride. Nano Letters, 2012, 12, 343-347.	9.1	94
65	Enhancement of thermoelectric figure-of-merit by resonant states of aluminium doping in lead selenide. Energy and Environmental Science, 2012, 5, 5246-5251.	30.8	372
66	Stronger phonon scattering by larger differences in atomic mass and size in p-type half-Heuslers Hf1â ^{°°} xTixCoSb0.8Sn0.2. Energy and Environmental Science, 2012, 5, 7543.	30.8	244
67	Thermoelectric properties of Sr3GaSb3 – a chain-forming Zintl compound. Energy and Environmental Science, 2012, 5, 9121.	30.8	127
68	of <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mi>n</mml:mi></mml:math> -Type <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" Chemicalibonding.conductive<network.and ternary.ub="" thermoelectricl.performlance:of.the=""><mml:msub><mml:mi< td=""><td>7.8 ≻Si∢/mml•</td><td>1,048 mi><mml·m< td=""></mml·m<></td></mml:mi<></mml:msub></network.and></mml:math 	7.8 ≻Si∢/mml•	1,048 mi> <mml·m< td=""></mml·m<>
69	semiconductors Cu <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:msub><mml:mrow /><mml:mn>2</mml:mn></mml:mrow </mml:msub></mml:math> Sn <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"</mml:math 		

#	Article	IF	CITATIONS
75	Perspectives on thermoelectrics: from fundamentals to device applications. Energy and Environmental Science, 2012, 5, 5147-5162.	30.8	1,080
76	Enhanced Thermoelectric Properties of Solution Grown Bi ₂ Te _{3–<i>x</i>} Se _{<i>x</i>} Nanoplatelet Composites. Nano Letters, 2012, 12, 1203-1209.	9.1	348
77	Enhancement of Thermopower of TAGSâ€85 Highâ€Performance Thermoelectric Material by Doping with the Rare Earth Dy. Advanced Functional Materials, 2012, 22, 2766-2774.	14.9	81
78	Chalcopyrite CuGaTe ₂ : A Highâ€Efficiency Bulk Thermoelectric Material. Advanced Materials, 2012, 24, 3622-3626.	21.0	311
79	Enhancement of Thermoelectric Figure of Merit by the Insertion of MgTe Nanostructures in <i>p</i> â€ŧype PbTe Doped with Na ₂ Te. Advanced Energy Materials, 2012, 2, 1117-1123.	19.5	123
80	High Thermoelectric Figure of Merit in PbTe Alloys Demonstrated in PbTe–CdTe. Advanced Energy Materials, 2012, 2, 670-675.	19.5	240
81	Telluriumâ€Free Thermoelectric: The Anisotropic <i>n</i> â€Type Semiconductor Bi ₂ S ₃ . Advanced Energy Materials, 2012, 2, 634-638.	19.5	207
82	Increase in the Figure of Merit by Cd-Substitution in Sn1-xPbxTe and Effect of Pb/Sn Ratio on Thermoelectric Properties. Advanced Energy Materials, 2012, 2, 1218-1225.	19.5	22
83	Heavy Doping and Band Engineering by Potassium to Improve the Thermoelectric Figure of Merit in p-Type PbTe, PbSe, and PbTe _{1–<i>y</i>} Se _{<i>y</i>} . Journal of the American Chemical Society, 2012, 134, 10031-10038.	13.7	337
84	Microstructure and Thermoelectric Properties of Screen-Printed Thick Films of Misfit-Layered Cobalt Oxides with Ag Addition. Journal of Electronic Materials, 2012, 41, 1280-1285.	2.2	13
85	Enhanced Thermoelectric Performance and Thermal Stability in β-Zn4Sb3 by Slight Pb-Doping. Journal of Electronic Materials, 2012, 41, 1091-1099.	2.2	39
86	Thermoelectric Properties of Mn-Doped Ca5Al2Sb6. Journal of Electronic Materials, 2012, 41, 813-818.	2.2	24
87	One-step microwave-solvothermal rapid synthesis of Sb doped PbTe/Ag2Te core/shell composite nanocubes. Chemical Engineering Journal, 2012, 193-194, 227-233.	12.7	23
88	Electrical transport properties of microwave-synthesized Bi2Se3â^'xTex nanosheet. CrystEngComm, 2013, 15, 5626.	2.6	33
89	Ca _{1–<i>x</i>} RE _{<i>x</i>} Ag _{1–<i>y</i>} Sb (RE = La, Ce, Pr, Nd, Sm; O â Thermoelectric Performance. Journal of the American Chemical Society, 2013, 135, 11840-11848.	‰)¤Tj ETQ 13.7	9q0 0 0 rgBT 48
90	Thermoelectric Nanomaterials. Springer Series in Materials Science, 2013, , .	0.6	114
91	Impurity-band induced transport phenomenon and thermoelectric properties in Yb doped PbTe1â^'xlx. Physical Chemistry Chemical Physics, 2013, 15, 16686.	2.8	13
92	In Situ Precipitation of Te Nanoparticles in p-Type BiSbTe and the Effect on Thermoelectric Performance. ACS Applied Materials & Interfaces, 2013, 5, 3071-3074.	8.0	33

ARTICLE IF CITATIONS # High thermoelectric performance in tellurium free p-type AgSbSe2. Energy and Environmental Science, 93 30.8 226 2013, 6, 2603. Electronic and thermoelectric properties of CoSbS and FeSbS. Physical Review B, 2013, 87, . 94 3.2 High Three-Dimensional Thermoelectric Performance from Low-Dimensional Bands. Physical Review 95 7.8 131 Letters, 2013, 110, 146601. Lattice contribution to the high dielectric constant of PbTe. Physical Review B, 2013, 87, . High performance bulk thermoelectrics via a panoscopic approach. Materials Today, 2013, 16, 166-176. 97 14.2 421 Predicting alloy vibrational mode properties using lattice dynamics calculations, molecular dynamics 2.5 64 simulations, and the virtual crystal approximation. Journal of Applied Physics, 2013, 114, . In situ synthesis and thermoelectric properties of PbTe–graphene nanocomposites by utilizing a facile 99 10.3 120 and novel wet chemical method. Journal of Materials Chemistry A, 2013, 1, 12503. Improved Thermoelectric Properties of Se-Doped n-Type PbTe1â^x Se x (OÂâ‰ÂxÂâ‰Â1). Journal of Electronic 100 2.2 14 Materials, 2013, 42, 2292-2296. Electronic and thermal transport in GeTe: A versatile base for thermoelectric materials. Journal of 101 2.5 106 Applied Physics, 2013, 114, Thermoelectric performance enhancement of (BiS)1.2(TiS2)2 misfit layer sulfide by chromium doping. Journal of Advanced Ceramics, 2013, 2, 42-48. Synthesis and thermoelectric properties of CoSb3/WO3 thermoelectric composites. Intermetallics, 103 3.9 38 2013, 40, 71-75. Direct Evidence of Cation Disorder in Thermoelectric Lead Chalcogenides PbTe and PbS. Advanced 104 14.9 98 Functional Materials, 2013, 23, 5477-5483. Reflections on thermoelectrics. Nature Nanotechnology, 2013, 8, 469-469. 105 31.5 2 Ultrahigh Thermoelectric Performance by Electron and Phonon Critical Scattering in 21.0 394 Cu₂Se_{1â€x}I_x. Advanced Materials, 2013, 25, 6607-6612. Thermoelectricity in semiconductor nanowires. Physica Status Solidi - Rapid Research Letters, 2013, 7, 107 2.4 27 767-780. Pressure-induced amorphization and collapse of magnetic order in the type-I clathrate Eu8Ga16Ge30. Physical Review B, 2013, 88, . Increased thermoelectric performance by Cl doping in nanostructured AgPb18SbSe2Oâ^'xClx. Nano 109 16.0 30 Energy, 2013, 2, 1121-1127. Large enhancement in the thermoelectric properties of Pb0.98Na0.02Te by optimizing the synthesis 38 conditions. Journal of Materials Chemistry A, 2013, 1, 11269.

#	Article	IF	CITATIONS
111	Importance of non-parabolic band effects in the thermoelectric properties of semiconductors. Scientific Reports, 2013, 3, 3168.	3.3	147
112	Structural aspects of changes induced in PbTe by doping with Mn, In and Ga. Journal of Materials Science, 2013, 48, 8084-8100.	3.7	9
113	Synthesis and transport properties of AgBi3S5 ternary sulfide compound. Intermetallics, 2013, 36, 96-101.	3.9	14
114	Thermoelectric response of carbon nanotube films to Au-nanoparticle incorporation. Materials Research Bulletin, 2013, 48, 2950-2954.	5.2	4
115	Fabrication and properties of Bi2S3â~'xSex thermoelectric polycrystals. Solid State Communications, 2013, 162, 48-52.	1.9	34
116	Heat Transfer in Thermoelectric Materials and Devices. Journal of Heat Transfer, 2013, 135, .	2.1	119
117	Enhancing thermopower and hole mobility in bulk p-type half-Heuslers using full-Heusler nanostructures. Nanoscale, 2013, 5, 9419.	5.6	44
118	A Route to Phase Controllable Cu2ZnSn(S1â^'xSex)4 Nanocrystals with Tunable Energy Bands. Scientific Reports, 2013, 3, 2733.	3.3	73
119	All-scale hierarchical thermoelectrics: MgTe in PbTe facilitates valence band convergence and suppresses bipolar thermal transport for high performance. Energy and Environmental Science, 2013, 6, 3346.	30.8	646
120	Syntheses optimization, structural and thermoelectric properties of 1/1 Tsai-type quasicrystal approximants in RE–Au–SM systems (RE=Yb, Gd and SM=Si, Ge). Journal of Physics Condensed Matter, 2013, 25, 135402.	1.8	33
121	A Promising Midâ€Temperature Thermoelectric Material Candidate: Pb/Snâ€Codoped In ₄ Pb _{<i>x</i>} Sn _{<i>y</i>} Se ₃ . Advanced Materials, 2013, 25, 4800-4806.	21.0	55
122	Co-precipitation synthesis of Sn and/or S doped nanostructured Cu3Sb1â^'xSnxSe4â^'ySy with a high thermoelectric performance. CrystEngComm, 2013, 15, 7166.	2.6	34
123	Rational design of p-type thermoelectric PbTe: temperature dependent sodium solubility. Journal of Materials Chemistry A, 2013, 1, 8725.	10.3	56
124	Thermoelectric solid-oxide fuel cell with Ca2Co2O5 as cathode material. RSC Advances, 2013, 3, 2336.	3.6	10
125	First-Principles Study of The Electronic Structure and Thermoelectric Properties of IrN ₂ . Journal of the Physical Society of Japan, 2013, 82, 104706.	1.6	8
126	Improving p-type thermoelectric performance of Mg2(Ge,Sn) compounds via solid solution and Ag doping. Intermetallics, 2013, 32, 312-317.	3.9	31
127	The Criteria for Beneficial Disorder in Thermoelectric Solid Solutions. Advanced Functional Materials, 2013, 23, 1586-1596.	14.9	293
128	Valence-band structure of highly efficient <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>p</mml:mi>-type thermoelectric PbTe-PbS alloys. Physical Review B. 2013. 87</mml:math 	3.2	74

#	Article	IF	CITATIONS
129	Thermoelectricity. , 2013, , 149-212.		2
130	Electric-field thermopower modulation in SrTiO3-based field-effect transistors. Journal of Materials Science, 2013, 48, 2797-2805.	3.7	16
131	From oxides to selenides and sulfides: The richness of the CdI ₂ type crystallographic structure for thermoelectric properties. Physica Status Solidi (A) Applications and Materials Science, 2013, 210, 69-81.	1.8	69
132	High figure of merit and thermoelectric properties of Bi-doped Mg2Si0.4Sn0.6 solid solutions. Journal of Solid State Chemistry, 2013, 203, 333-339.	2.9	124
133	Metallurgical and thermoelectric properties in Co1â^'xPdxSb3 and Co1â^'xNixSb3 revisited. Journal of Alloys and Compounds, 2013, 572, 43-48.	5.5	21
134	Fermi surface and electron dispersion of PbTe doped with resonant Tl impurity from KKR-CPA calculations. Physical Review B, 2013, 88, .	3.2	35
135	Thermoelectric properties of Ag-doped Cu2Se and Cu2Te. Journal of Materials Chemistry A, 2013, 1, 12478.	10.3	253
136	Preparation and thermoelectric properties of inhomogeneous bismuth telluride alloyed nanorods. Journal of Alloys and Compounds, 2013, 570, 86-93.	5.5	34
138	Design of vanadium oxide structures with controllable electrical properties for energy applications. Chemical Society Reviews, 2013, 42, 5157.	38.1	401
139	Improving the Power Factor and the Role of Impurity Bands. Journal of Electronic Materials, 2013, 42, 1482-1489.	2.2	12
140	Role of Sodium Doping in Lead Chalcogenide Thermoelectrics. Journal of the American Chemical Society, 2013, 135, 4624-4627.	13.7	128
141	Nanoengineering thermoelectrics for 21st century: Energy harvesting and other trends in the field. Renewable and Sustainable Energy Reviews, 2013, 24, 288-305.	16.4	243
142	Single crystalline ultrathin gold nanowires: Promising nanoscale interconnects. AIP Advances, 2013, 3,	1.3	25
143	Low Electron Scattering Potentials in High Performance Mg ₂ Si _{0.45} Sn _{0.55} Based Thermoelectric Solid Solutions with Band Convergence. Advanced Energy Materials, 2013, 3, 1238-1244.	19.5	220
144	Beneficial Contribution of Alloy Disorder to Electron and Phonon Transport in Halfâ€Heusler Thermoelectric Materials. Advanced Functional Materials, 2013, 23, 5123-5130.	14.9	349
145	Validity of rigid band approximation of PbTe thermoelectric materials. APL Materials, 2013, 1, .	5.1	44
146	High Thermoelectric Efficiency of nâ€ŧype PbS. Advanced Energy Materials, 2013, 3, 488-495.	19.5	178
147	Structural disorder, magnetism, and electrical and thermoelectric properties of pyrochlore Nd ₂ Ru ₂ O ₇ . Journal of Physics Condensed Matter, 2013, 25, 186004.	1.8	30

#	Article	IF	CITATIONS
148	Data-Driven Review of Thermoelectric Materials: Performance and Resource Considerations. Chemistry of Materials, 2013, 25, 2911-2920.	6.7	366
149	High Thermoelectric Performance via Hierarchical Compositionally Alloyed Nanostructures. Journal of the American Chemical Society, 2013, 135, 7364-7370.	13.7	344
150	Thermoelectric properties of PbSe _{0.5} Te _{0.5} : <i>x</i> (PbI ₂) with endotaxial nanostructures: a promising n-type thermoelectric material. Nanotechnology, 2013, 24, 215401.	2.6	26
151	Thermoelectric property enhancement by Cu nanoparticles in nanostructured FeSb2. Applied Physics Letters, 2013, 102, .	3.3	36
152	Large Enhancements of Thermopower and Carrier Mobility in Quantum Dot Engineered Bulk Semiconductors. Journal of the American Chemical Society, 2013, 135, 7486-7495.	13.7	109
153	Rational Design of Advanced Thermoelectric Materials. Advanced Energy Materials, 2013, 3, 549-565.	19.5	264
154	Studies on the Bi ₂ Te ₃ –Bi ₂ Se ₃ –Bi ₂ Se ₃ –Bi ₂ Se ₃ 3system for mid-temperature thermoelectric energy conversion. Energy and Environmental Science, 2013, 6, 552-560.	30.8	250
155	Anisotropic optical and thermoelectric properties of In4Se3 and In4Te3. Journal of Applied Physics, 2013, 113, .	2.5	13
156	Thermoelectric properties of chalcopyrite type CuGaTe2 and chalcostibite CuSbS2. Journal of Applied Physics, 2013, 114, .	2.5	67
157	Characteristics of lattice thermal conductivity and carrier mobility of undoped PbSe-PbS solid solutions. Journal Physics D: Applied Physics, 2013, 46, 405301.	2.8	16
158	First-principles study of group III impurity doped PbSe: Bulk and nanowire. Physical Review B, 2013, 87, .	3.2	8
159	Transport Properties of an Intermetallic with Pseudo-hollandite Structure as a Potential Thermoelectric Material: The Example of TlxCr5Se8. Chemistry of Materials, 2013, 25, 1809-1815. Electronic inhomogeneity in <mml:math <="" td="" xmlns:mml="http://www.w3.org/1998/Math/MathML"><td>6.7</td><td>17</td></mml:math>	6.7	17
160	display="inline"> <mml:mi>n</mml:mi> - and <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>p</mml:mi>-type PbTe detected by<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:math< td=""><td>3.2</td><td>17</td></mml:math<></mml:math </mml:math 	3.2	17
161	/> <mml:mn>125</mml:mn> Te NMR. Physical Review B, 2013, 88, . High thermoelectric performance by resonant dopant indium in nanostructured SnTe. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 13261-13266.	7.1	632
162	Optical band gap and the Burstein–Moss effect in iodine doped PbTe using diffuse reflectance infrared Fourier transform spectroscopy. New Journal of Physics, 2013, 15, 075020.	2.9	188
163	Cation Disorder and Bond Anharmonicity Optimize the Thermoelectric Properties in Kinetically Stabilized Rocksalt AgBiS ₂ Nanocrystals. Chemistry of Materials, 2013, 25, 3225-3231.	6.7	115
164	High performance Bi2Te3 nanocomposites prepared by single-element-melt-spinning spark-plasma sintering. Journal of Materials Science, 2013, 48, 2745-2760.	3.7	96
165	Analysis of Phase Separation in High Performance PbTe–PbS Thermoelectric Materials. Advanced Functional Materials, 2013, 23, 747-757.	14.9	52

#	Article	IF	CITATIONS
166	Engineering of Novel Thermoelectric Materials and Devices for Next Generation, Long Life, 20% Efficient Space Power Systems. , 2013, , .		10
167	Rapid synthesis of high-performance thermoelectric materials directly from natural mineral tetrahedrite. MRS Communications, 2013, 3, 129-133.	1.8	56
168	Effect of aluminum on the thermoelectric properties of nanostructured PbTe. Nanotechnology, 2013, 24, 345705.	2.6	44
169	Investigation of the valence band structure of PbSe by optical and transport measurement. Materials Research Society Symposia Proceedings, 2013, 1490, 75-81.	0.1	2
170	Alkaline earth lead and tin compounds Ae ₂ Pb, Ae ₂ Sn, Ae = Ca, Sr, Ba, as thermoelectric materials. Science and Technology of Advanced Materials, 2013, 14, 055003.	6.1	16
171	An apparatus for concurrent measurement of thermoelectric material parameters. Review of Scientific Instruments, 2013, 84, 013907.	1.3	25
172	Electron and phonon transport in Co-doped FeV0.6Nb0.4Sb half-Heusler thermoelectric materials. Journal of Applied Physics, 2013, 114, 134905.	2.5	54
173	Investigation of skutterudite MgyCo4Sb12: High pressure synthesis and thermoelectric properties. Journal of Applied Physics, 2013, 113, 113703.	2.5	35
174	A computational study of the thermoelectric performance of ultrathin Bi2Te3 films. Applied Physics Letters, 2013, 102, .	3.3	78
175	Correlated evolution of colossal thermoelectric effect and Kondo insulating behavior. APL Materials, 2013, 1, 062102.	5.1	11
176	Enhanced asymmetrical transport of carriers induced by local structural distortion in chemically tuned titania: A possible mechanism for enhancing thermoelectric properties. Physical Review B, 2013, 88, .	3.2	11
177	Thermoelectric properties of molten Bi2Te3, Cul, and Agl. Applied Physics Letters, 2013, 102, .	3.3	18
178	Enhanced thermoelectric figure of merit in nanostructured ZnO by nanojunction effect. Applied Physics Letters, 2013, 103, .	3.3	19
179	Temperature dependent band gap in PbX (X = S, Se, Te). Applied Physics Letters, 2013, 103, .	3.3	140
180	Doping for higher thermoelectric properties in p-type BiCuSeO oxyselenide. Applied Physics Letters, 2013, 102, 123905.	3.3	77
181	Importance of local force fields on lattice thermal conductivity reduction in PbTe 1â^'x Se x alloys. Europhysics Letters, 2013, 102, 46002.	2.0	39
183	Thermoelectric properties of Ag ₂ Sb ₂ Ge _{46 â^ <i>x</i>} Dy _{ <i>x</i>} Te ₅₀ alloys with high power factor. Physica Status Solidi (A) Applications and Materials Science, 2013, 210, 2628-2637.	1.8	11
185	Ultrahigh thermoelectricity of atomically thick Bi2Se3 single layers: A computational study. Applied Surface Science, 2014, 321, 525-530.	6.1	11

#	Article	IF	CITATIONS
186	Solar thermoelectric generators fabricated on a silicon-on-insulator substrate. Journal of Micromechanics and Microengineering, 2014, 24, 085011.	2.6	7
187	Optical investigation of the thermoelectric topological crystalline insulator <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>Pb</mml:mi><mml:n Physical Review B, 2014, 90, .</mml:n </mml:msub></mml:mrow></mml:math 	nr c8₩2 > < mm	ıl:min>0.77<
188	Anharmonicity and atomic distribution of SnTe and PbTe thermoelectrics. Physical Review B, 2014, 90, .	3.2	64
189	Band structure engineering through orbital interaction for enhanced thermoelectric power factor. Applied Physics Letters, 2014, 104, .	3.3	64
190	Transport properties and valence band feature of high-performance (GeTe) ₈₅ (AgSbTe ₂) ₁₅ thermoelectric materials. New Journal of Physics, 2014, 16, 013057.	2.9	34
191	Thermoelectric power factor enhancement with gate-all-around silicon nanowires. Journal of Applied Physics, 2014, 115, 143704.	2.5	15
192	Microstructure and thermoelectric properties of Ga-DOPED SiGe alloys prepared by mechanical alloying and induction hot pressing. Functional Materials Letters, 2014, 07, 1450008.	1.2	5
193	Temperature effects on the energy bandgap and conductivity effective masses of charge carriers in lead telluride from first-principles calculations. Journal of Applied Physics, 2014, 116, .	2.5	7
194	The elastic and thermoelectric properties of the Zintl compound Ca5Al2Sb6 under high pressure. Journal of Applied Physics, 2014, 116, .	2.5	10
195	Electronic structure and thermoelectric performance of Zintl compound Sr3GaSb3: A first-principles study. Applied Physics Letters, 2014, 104, .	3.3	11
196	Enhanced thermoelectric performance of (Ba,In) double-filled skutterudites via randomly arranged micropores. Applied Physics Letters, 2014, 104, 142104.	3.3	27
197	Thermoelectric characteristic of the rough InN/GaN core-shell nanowires. Journal of Applied Physics, 2014, 116, 103707.	2.5	9
198	Direct evidence of strong local ferroelectric ordering in a thermoelectric semiconductor. Applied Physics Letters, 2014, 105, 113903.	3.3	11
199	Enhanced thermoelectric performance of In-substituted GeSb6Te10with homologous structure. APL Materials, 2014, 2, 086102.	5.1	11
200	Enhanced thermoelectric performance in p-type AgSbSe2 by Cd-doping. RSC Advances, 2014, 4, 11811.	3.6	43
201	Linear dependence of the Hall coefficient of 1% Na doped PbTe with varying magnetic field. Physica Status Solidi (A) Applications and Materials Science, 2014, 211, 1273-1275.	1.8	2
202	Electron transport modeling and energy filtering for efficient thermoelectric <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mtext>Mg</mml:mtext><mml:mn>2< solutions. Physical Review B, 2014, 89, .</mml:mn></mml:msub></mml:math 	/m ana :mn>	<b nomal:msub
203	Significant lattice thermal conductivity reduction following phase separation of the highly efficient Ge _{<i>x</i>} Pb _{1-<i>x</i>} Te thermoelectric alloys. Physica Status Solidi (B): Basic Research, 2014, 251, 1431-1437.	1.5	76

#	Article	IF	CITATIONS
204	Two-dimensional thermoelectrics with Rashba spin-split bands in bulk BiTel. Physical Review B, 2014, 90,	3.2	74
206	Thermoelectric Tin Selenide: The Beauty of Simplicity. Angewandte Chemie - International Edition, 2014, 53, 9126-9127.	13.8	44
207	Thermoelectric properties of indium doped PbTe1-ySey alloys. Journal of Applied Physics, 2014, 116, .	2.5	27
208	Polarization field engineering of GaN/AlN/AlGaN superlattices for enhanced thermoelectric properties. Applied Physics Letters, 2014, 104, .	3.3	45
209	Camel-back band-induced power factor enhancement of thermoelectric lead-tellurium from Boltzmann transport calculations. Applied Physics Letters, 2014, 104, .	3.3	14
210	Phonon scattering rates and atomic ordering in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>Ag</mml:mi><mml:n< td=""><td>1row><mn< td=""><td>nl:mn>1</td></mn<></td></mml:n<></mml:msub></mml:mrow></mml:math 	1row> <mn< td=""><td>nl:mn>1</td></mn<>	nl:mn>1

#	Article	IF	CITATIONS
223	Preparation of 1-D/3-D structured AgNWs/Bi2Te3 nanocomposites with enhanced thermoelectric properties. Acta Materialia, 2014, 73, 37-47.	7.9	45
224	Effect of Excess Na on the Morphology and Thermoelectric Properties of Na x Pb1â^'x Te0.85Se0.15. Journal of Electronic Materials, 2014, 43, 353-358.	2.2	7
225	New device architecture of a thermoelectric energy conversion for recovering low-quality heat. Applied Physics A: Materials Science and Processing, 2014, 114, 1201-1208.	2.3	15
226	Cost-Efficient Preparation and Enhanced Thermoelectric Performance of Bi0.48Sb1.52Te3 Bulk Materials with Micro- and Nanostructures. Journal of Electronic Materials, 2014, 43, 1768-1774.	2.2	8
227	High Thermoelectric Performance in Nonâ€Toxic Earthâ€Abundant Copper Sulfide. Advanced Materials, 2014, 26, 3974-3978.	21.0	631
228	Shifting up the optimum figure of merit of p-type bismuth telluride-based thermoelectric materials for power generation by suppressing intrinsic conduction. NPG Asia Materials, 2014, 6, e88-e88.	7.9	272
229	Improved thermoelectric performance of Nb-doped lead selenide. Journal of Alloys and Compounds, 2014, 600, 91-95.	5.5	19
230	Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals. Nature, 2014, 508, 373-377.	27.8	3,963
231	Highâ€Performance Pseudocubic Thermoelectric Materials from Nonâ€cubic Chalcopyrite Compounds. Advanced Materials, 2014, 26, 3848-3853.	21.0	269
232	Applying Quantitative Microstructure Control in Advanced Functional Composites. Advanced Functional Materials, 2014, 24, 2135-2153.	14.9	63
233	High Performance Mg ₂ (Si,Sn) Solid Solutions: a Point Defect Chemistry Approach to Enhancing Thermoelectric Properties. Advanced Functional Materials, 2014, 24, 3776-3781.	14.9	141
234	Optimum Carrier Concentration in nâ€Type PbTe Thermoelectrics. Advanced Energy Materials, 2014, 4, 1400486.	19.5	348
235	First-principles prediction the effect of lattice deformation on thermoelectric properties of CuGaTe2. Computational Materials Science, 2014, 90, 143-147.	3.0	7
236	Advanced thermoelectrics governed by a single parabolic band: Mg ₂ Si _{0.3} Sn _{0.7} , a canonical example. Physical Chemistry Chemical Physics, 2014, 16, 6893-6897.	2.8	114
237	Approaching the Minimum Thermal Conductivity in Rhenium‣ubstituted Higher Manganese Silicides. Advanced Energy Materials, 2014, 4, 1400452.	19.5	74
238	BiCuSeO oxyselenides: new promising thermoelectric materials. Energy and Environmental Science, 2014, 7, 2900-2924.	30.8	544
239	Decoupling Interrelated Parameters for Designing High Performance Thermoelectric Materials. Accounts of Chemical Research, 2014, 47, 1287-1295.	15.6	122
240	Thermoelectric properties of p-type polycrystalline SnSe doped with Ag. Journal of Materials Chemistry A, 2014, 2, 11171-11176.	10.3	488

#	Article		CITATIONS
241	Improved Bulk Materials with Thermoelectric Figureâ€ofâ€Merit Greater than 1: Tl _{10–<i>x</i>} Sn _{<i>x</i>} Te ₆ and Tl _{10–<i>x</i>} Pb _{<i>x</i>} Te ₆ . Advanced Energy Materials, 2014, 4, 1400348.	19.5	47
242	Elemental tellurium as a chiral <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>p</mml:mi>-type thermoelectric material. Physical Review B, 2014, 89, .</mml:math 	3.2	165
243	25th Anniversary Article: Semiconductor Nanowires – Synthesis, Characterization, and Applications. Advanced Materials, 2014, 26, 2137-2184.	21.0	759
244	Thermoelectric Properties of Two-Phase PbTe with Indium Inclusions. Journal of Electronic Materials, 2014, 43, 1630-1638.	2.2	12
245	Crooked Ag2Te nanowires with rough surfaces: facile microwave-assisted solution synthesis, growth mechanism, and electrical performances. New Journal of Chemistry, 2014, 38, 59-62.	2.8	19
246	Thermoelectric alloys between PbSe and PbS with effective thermal conductivity reduction and high figure of merit. Journal of Materials Chemistry A, 2014, 2, 3169.	10.3	87
247	Transmission Electron Microscopy Characterization of Nanomaterials. , 2014, , .		52
248	Nanoscale Thermoelectrics. Lecture Notes in Nanoscale Science and Technology, 2014, , .	0.8	20
249	Effect of Isovalent Substitution on the Thermoelectric Properties of the Cu ₂ ZnGeSe _{4–<i>x</i>} S _{<i>x</i>} Series of Solid Solutions. Journal of the American Chemical Society, 2014, 136, 442-448.	13.7	95
250	Microwave Synthesis of Microstructured and Nanostructured Metal Chalcogenides from Elemental Precursors in Phosphonium Ionic Liquids. Journal of the American Chemical Society, 2014, 136, 15465-15468.	13.7	43
251	Hinge-like structure induced unusual properties of black phosphorus and new strategies to improve the thermoelectric performance. Scientific Reports, 2014, 4, 6946.	3.3	202
252	Electronic structure and thermoelectric properties of orthorhombic SrLiAs. Journal of Applied Physics, 2014, 116, 033705.	2.5	6
253	Enhancement of the thermoelectric properties in a mid-temperature range in a phase-separated In4Se3â^' x Cl y /Baln2Se4 composite. Electronic Materials Letters, 2014, 10, 801-805.	2.2	5
254	Phonon Self-Energy and Origin of Anomalous Neutron Scattering Spectra in SnTe and PbTe Thermoelectrics. Physical Review Letters, 2014, 112, 175501.	7.8	125
255	Strain-induced electronic phase transition and strong enhancement of thermopower of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow><mml:mi mathvariant="normal">TiS</mml:mi </mml:mrow><mml:mn>2</mml:mn></mml:msub>. Physical Review B, 2014, 90, .</mml:math 	3.2	24
256	Band convergence in the non-cubic chalcopyrite compounds Cu ₂ MGeSe ₄ . Journal of Materials Chemistry C, 2014, 2, 10189-10194.	5.5	57
257	Low effective mass leading to an improved ZT value by 32% for n-type BiCuSeO: a first-principles study. Journal of Materials Chemistry A, 2014, 2, 13923.	10.3	42
258	Lead-free thermoelectrics: promising thermoelectric performance in p-type SnTe1â^xSex system. Journal of Materials Chemistry A, 2014, 2, 9620.	10.3	170

#	Article	IF	CITATIONS
259	Highly efficient (In ₂ Te ₃) _x (GeTe) _{3â^'3x} thermoelectric materials: a substitute for TAGS. Physical Chemistry Chemical Physics, 2014, 16, 15570-15575.	2.8	49
260	Morphological evolution and growth mechanism of hierarchical structure of PbTe films grown by off-axis magnetron co-sputtering. Applied Surface Science, 2014, 321, 233-239.	6.1	10
261	Thermoelectrics with earth abundant elements: low thermal conductivity and high thermopower in doped SnS. Journal of Materials Chemistry A, 2014, 2, 17302-17306.	10.3	246
262	Thermoelectric properties of Sn-doped p-type Cu ₃ SbSe ₄ : a compound with large effective mass and small band gap. Journal of Materials Chemistry A, 2014, 2, 13527-13533.	10.3	112
263	Origin of enhanced thermoelectric properties of doped CrSi ₂ . RSC Advances, 2014, 4, 3482-3486.	3.6	8
264	Optimization of thermoelectric efficiency in SnTe: the case for the light band. Physical Chemistry Chemical Physics, 2014, 16, 20741-20748.	2.8	230
265	Nanostructuring, carrier engineering and bond anharmonicity synergistically boost the thermoelectric performance of p-type AgSbSe2–ZnSe. Journal of Materials Chemistry A, 2014, 2, 4324.	10.3	76
266	Low effective mass and carrier concentration optimization for high performance p-type Mg _{2(1â^x)} Li _{2x} Si _{0.3} Sn _{0.7} solid solutions. Physical Chemistry Chemical Physics, 2014, 16, 23576-23583.	2.8	77
267	High <i>ZT</i> in p-Type (PbTe) _{1–2<i>x</i>} (PbSe) _{<i>x</i>} (PbS) _{<i>x</i>} (PbS) _{<i>x</i> Materials. Journal of the American Chemical Society, 2014, 136, 3225-3237.}	13.7	228
268	Recent advances in thermoelectric materials and solar thermoelectric generators – a critical review. RSC Advances, 2014, 4, 46860-46874.	3.6	122
269	Enhanced thermoelectric properties of poly(3,4-ethylenedioxythiophene) thin films treated with H 2 SO 4. Organic Electronics, 2014, 15, 3087-3095.	2.6	75
270	Improved thermoelectric performance of CuGaTe2 with convergence of band valleys: a first-principles study. RSC Advances, 2014, 4, 28714.	3.6	27
271	Enhancing the thermoelectric figure of merit through the reduction of bipolar thermal conductivity with heterostructure barriers. Applied Physics Letters, 2014, 105, .	3.3	96
272	Nanostructured YbAgCu ₄ for Potentially Cryogenic Thermoelectric Cooling. Nano Letters, 2014, 14, 5016-5020.	9.1	19
273	Polypyrrole nanotube film for flexible thermoelectric application. Synthetic Metals, 2014, 196, 173-177.	3.9	165
274	Atomic Layer-by-Layer Thermoelectric Conversion in Topological Insulator Bismuth/Antimony Tellurides. Nano Letters, 2014, 14, 4030-4035.	9.1	43
275	A Solar Thermoelectric Conversion Material Based on Bi ₂ Te ₃ and Carbon Nanotube Composites. Journal of Physical Chemistry C, 2014, 118, 20826-20831.	3.1	24
276	Resonant bonding leads to low lattice thermal conductivity. Nature Communications, 2014, 5, 3525.	12.8	484

#	Article	IF	CITATIONS
277	Site occupations of Zn in AgInSe ₂ -based chalcopyrites responsible for modified structures and significantly improved thermoelectric performance. RSC Advances, 2014, 4, 33897-33904.	3.6	20
278	Enhanced thermoelectric performance of phosphorene by strain-induced band convergence. Physical Review B, 2014, 90, .	3.2	271
279	Thermoelectric performance of tellurium-reduced quaternary p-type lead–chalcogenide composites. Acta Materialia, 2014, 80, 365-372.	7.9	28
280	Thermoelectric properties of the Ca ₅ Al _{2â^x} In _x Sb ₆ solid solution. Dalton Transactions, 2014, 43, 15872-15878.	3.3	28
281	Low-temperature soft-chemical synthesis and thermoelectric properties of barium-filled p-type skutterudite nanocrystals. Materials Science in Semiconductor Processing, 2014, 27, 593-598.	4.0	2
282	Origin of the High Performance in GeTe-Based Thermoelectric Materials upon Bi ₂ Te ₃ Doping. Journal of the American Chemical Society, 2014, 136, 11412-11419.	13.7	319
283	Right sizes of nano- and microstructures for high-performance and rigid bulk thermoelectrics. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 10949-10954.	7.1	115
284	The roles of Na doping in BiCuSeO oxyselenides as a thermoelectric material. Journal of Materials Chemistry A, 2014, 2, 4903.	10.3	135
285	Theoretical investigation of the effects of doping on the electronic structure and thermoelectric properties of ZnO nanowires. Physical Chemistry Chemical Physics, 2014, 16, 3771.	2.8	27
286	Thermoelectric Performance of <i>n</i> -Type (PbTe) _{0.75} (PbS) _{0.15} (PbSe) _{0.1} Composites. ACS Applied Materials & Interfaces, 2014, 6, 11476-11483.	8.0	69
287	High Band Degeneracy Contributes to High Thermoelectric Performance in pâ€Type Halfâ€Heusler Compounds. Advanced Energy Materials, 2014, 4, 1400600.	19.5	261
288	Highly efficient functional Ge _x Pb _{1â^'x} Te based thermoelectric alloys. Physical Chemistry Chemical Physics, 2014, 16, 20120-20126.	2.8	111
289	Broad temperature plateau for thermoelectric figure of merit ZT>2 in phase-separated PbTe0.7S0.3. Nature Communications, 2014, 5, 4515.	12.8	461
290	Chemical composition tuning in quaternary p-type Pb-chalcogenides – a promising strategy for enhanced thermoelectric performance. Physical Chemistry Chemical Physics, 2014, 16, 1835-1840.	2.8	48
291	Tuning bands of PbSe for better thermoelectric efficiency. Energy and Environmental Science, 2014, 7, 804-811.	30.8	214
292	Nonstoichiometry in the Zintl Phase Yb _{1â^'Î} Zn ₂ Sb ₂ as a Route to Thermoelectric Optimization. Chemistry of Materials, 2014, 26, 5710-5717.	6.7	95
293	Sulfide bornite thermoelectric material: a natural mineral with ultralow thermal conductivity. Energy and Environmental Science, 2014, 7, 4000-4006.	30.8	193
294	Three-dimensional hybridized carbon networks for high performance thermoelectric applications. RSC Advances, 2014, 4, 42234-42239.	3.6	0

#	Article		CITATIONS
295	High Thermoelectric Performance Pealized in a BiCuSeO System by Improving Carrier Mobility through		6
296			317
297	Improvement of electrical conductivity in Pb _{0.96â^'y} Mn _{0.04} Sn _y Te alloys for high temperature thermoelectric applications. RSC Advances, 2014, 4, 41425-41432.	3.6	3
298	Enhanced thermoelectric performance via carrier energy filtering effect in β-Zn4Sb3 alloy bulk embedded with (Bi2Te3)0.2(Sb2Te3)0.8. Journal of Applied Physics, 2014, 115, .		42
299	Self-propagating high-temperature synthesis for compound thermoelectrics and new criterion for combustion processing. Nature Communications, 2014, 5, 4908.		302
300	First-principles studies of the TE properties of [110]-Ge/Si core/shell nanowires with different surface structures. Journal of Materials Chemistry A, 2014, 2, 2538.	10.3	7
301	Fs-pulsed laser deposition of PbTe and PbTe/Ag thermoelectric thin films. Applied Physics A: Materials Science and Processing, 2014, 117, 401-407.	2.3	11
302	Anomalous transport and thermoelectric performances of CuAgSe compounds. Solid State Ionics, 2014, 261, 21-25.		60
303	Indium Selenides: Structural Characteristics, Synthesis and Their Thermoelectric Performances. Small, 2014, 10, 2747-2765.		278
304	Thermoelectric transport properties of p-type silver-doped PbS with <i>in situ</i> Ag ₂ S nanoprecipitates. Journal Physics D: Applied Physics, 2014, 47, 115303.	2.8	26
305	Fermi level pinning in Fe-doped PbTe under pressure. Applied Physics Letters, 2014, 105, .	3.3	28
306	Recent progress in thermoelectric materials. Science Bulletin, 2014, 59, 2073-2091.	1.7	113
307	Effects of Transition Metal Substitution on the Thermoelectric Properties of Metallic (BiS)1.2(TiS2)2 Misfit Layer Sulfide. Journal of Electronic Materials, 2014, 43, 1870-1874.	2.2	17
308	One-step interfacial synthesis and thermoelectric properties of Ag/Cu-poly(3,4-ethylenedioxythiophene) nanostructured composites. Journal of Nanoparticle Research, 2014, 16, 1.	1.9	18
309	Investigation of thermoelectric properties of half-metallic Co ₂ MnGe by using first principles calculations. Journal of Physics Condensed Matter, 2014, 26, 215501.	1.8	33
310	Enhanced thermoelectric performance of chloride doped bismuth sulfide prepared by mechanical alloying and spark plasma sintering. Journal of Alloys and Compounds, 2014, 587, 6-9.	5.5	42
311	A first principle study of electronic band structures and effective mass tensors of thermoelectric materials: PbTe, Mg2Si, FeGa3 and CoSb3. Computational Materials Science, 2014, 85, 340-346.	3.0	23
312	Preparation and thermoelectric properties of multi-walled carbon nanotubes/polypyrrole composites. Synthetic Metals, 2014, 195, 132-136.	3.9	122

#	Article	IF	CITATIONS
313	The panoscopic approach to high performance thermoelectrics. Energy and Environmental Science, 2014, 7, 251-268.	30.8	834
314	Synthesis and thermoelectric properties of tantalum-doped ZrNiSn half-Heusler alloys. Functional Materials Letters, 2014, 07, 1450032.	1.2	24
315	Thermal physics of the lead chalcogenides PbS, PbSe, and PbTe from first principles. Physical Review B, 2014, 89, .	3.2	212
316	Concentration anomalies of the thermal conductivity in PbTe-PbSe semiconductor solid solutions. Physica Status Solidi (B): Basic Research, 2014, 251, 1231-1238.	1.5	5
317	High Thermoelectric Performance of p-Type SnTe via a Synergistic Band Engineering and Nanostructuring Approach. Journal of the American Chemical Society, 2014, 136, 7006-7017.	13.7	553
318	First Principles Explanation of the Positive Seebeck Coefficient of Lithium. Physical Review Letters, 2014, 112, 196603.	7.8	68
319	Effect of Ball-Milling Conditions on Thermoelectric Properties of Polycrystalline CuGaTe ₂ . Materials Transactions, 2014, 55, 1215-1218.	1.2	10
320	Thermoelectric Properties of Al–Ga–Pd–Re Icosahedral Quasicrystals. Materials Transactions, 2014, 55, 1226-1231.	1.2	12
322	Nanocomposites for thermoelectrics and thermal engineering. MRS Bulletin, 2015, 40, 746-752.	3.5	40
323	Microstructure and thermoelectric properties of porous Bi2Te2.85Se0.15 bulk materials fabricated by semisolid powder processing. Journal of Materials Research, 2015, 30, 2585-2592.	2.6	11
324	Influence on Cr and Ni doping on PbTe local structural properties. Journal of Materials Science: Materials in Electronics, 2015, 26, 10020-10026.	2.2	3
325	Band and scattering tuning for high performance thermoelectric Sn1â^'xMnxTe alloys. Journal of Materiomics, 2015, 1, 307-315.	5.7	193
326	First-principles studies of lattice dynamics and thermal properties of Mg ₂ Si _{1â^'<i>x</i>} Sn _{<i>x</i>} . Journal of Materials Research, 2015, 30, 2578-2584.	2.6	10
327	Thermoelectric properties of spark plasma sintered lead telluride nanocubes. Journal of Materials Research, 2015, 30, 2638-2648.	2.6	12
329	Enhanced Thermoelectric Performance in Cu-Intercalated BiTeI by Compensation Weakening Induced Mobility Improvement. Scientific Reports, 2015, 5, 14319.	3.3	33
330	Organic Semiconductors and Polymers. , 2015, , 295-330. Benefits of Carrier-Pocket Anisotropy to Thermoelectric Performance: The Case of <mml:math< td=""><td></td><td>0</td></mml:math<>		0
331	xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:mi>p</mml:mi> -Type <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi>AgBiSe</mml:mi></mml:mrow><mml:mrow></mml:mrow></mml:msub></mml:mrow></mml:math 	3.8 < mml·mn >	84 .2
332	Physical Review Applied, 2015, 3, . First-principles study of anisotropic thermoelectric transport properties of IV-VI semiconductor compounds SnSe and SnS. Physical Review B, 2015, 92, .	3.2	383

#	Article	IF	CITATIONS
333	Diameter dependence of thermoelectric power of semiconducting carbon nanotubes. Physical Review B, 2015, 92, .	3.2	102
334	Electronic structure and thermoelectric properties of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi>n</mml:mi>- and <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi>n</mml:mi>-type SnSe from first-principles calculations. Physical Review B. 2015. 91</mml:math </mml:math 	3.2	137
335	High-throughput exploration of alloying as design strategy for thermoelectrics. Physical Review B, 2015, 92, .	3.2	65
336	Investigation of Preparation and Thermoelectric Properties of Ca _{2.5} La _{0.5} Co ₄ O ₉ Porous Ceramics. Advanced Materials Research, 2015, 1120-1121, 98-101.	0.3	0
337	A Revisit to High Thermoelectric Performance of Single-layer MoS2. Scientific Reports, 2015, 5, 18342.	3.3	154
338	Enhanced thermoelectric performance of β-Zn4Sb3 based nanocomposites through combined effects of density of states resonance and carrier energy filtering. Scientific Reports, 2015, 5, 17803.	3.3	58
339	Ultra-low Thermal Conductivity in Si/Ge Hierarchical Superlattice Nanowire. Scientific Reports, 2015, 5, 16697.	3.3	58
340	Thermoelectric properties and electronic transport analysis of Zr3Ni3Sb4-based solid solutions. Journal of Applied Physics, 2015, 118, .	2.5	5
341	Hierarchical Structures for High-Performance Chalcogenides: From Tellurides to Sulfides. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2015, 79, 538-547.	0.4	0
342	Thermal conductivity, electrical conductivity, and thermoelectric properties of CdTe and Cd0.8Zn0.2Te crystals between room temperature and 780oC. AlP Advances, 2015, 5, 057118.	1.3	15
343	Tuning the carrier concentration to improve the thermoelectric performance of CulnTe2 compound. AIP Advances, 2015, 5, .	1.3	16
344	Electronic thermal conductivity, thermoelectric properties and supercapacitive behaviour of conjugated polymer nanocomposite (polyaniline-WO ₃) thin film. EPJ Applied Physics, 2015, 69, 30901.	0.7	8
345	Suppression of structural phase transition by Sr substitution in the improper ferroelectric BaAl2O4. Japanese Journal of Applied Physics, 2015, 54, 10NC02.	1.5	1
346	High-entropy alloys as high-temperature thermoelectric materials. Journal of Applied Physics, 2015, 118,	2.5	105
347	Origin of resistivity anomaly in p-type leads chalcogenide multiphase compounds. AIP Advances, 2015, 5, 053601.	1.3	9
348	Thermoelectric properties of the 3C, 2H, 4H, and 6H polytypes of the wide-band-gap semiconductors SiC, GaN, and ZnO. AIP Advances, 2015, 5, .	1.3	17
349	Thermoelectric properties of p-type PbTe/Ag2Te bulk composites by extrinsic phase mixing. AIP Advances, 2015, 5, 127223.	1.3	5
350	Gas induced reduction synthesis of Sb2Te3 and Bi0.5Sb1.5Te3 nanosheets and their evolvement mechanism. Journal of Materiomics, 2015, 1, 316-324.	5.7	2

#	Article		CITATIONS
351	High Efficiency Halfâ€Heusler Thermoelectric Materials for Energy Harvesting. Advanced Energy Materials, 2015, 5, 1500588.	19.5	380
352	Tailoring of Electronic Structure and Thermoelectric Properties of a Topological Crystalline Insulator by Chemical Doping. Angewandte Chemie - International Edition, 2015, 54, 15241-15245.	13.8	49
355	Studies on mechanical properties of thermoelectric materials by nanoindentation. Physica Status Solidi (A) Applications and Materials Science, 2015, 212, 2191-2195.	1.8	69
356	Tuning Multiscale Microstructures to Enhance Thermoelectric Performance of nâ€∓ype Bismuthâ€Tellurideâ€Based Solid Solutions. Advanced Energy Materials, 2015, 5, 1500411.	19.5	379
357	On Intensifying Carrier Impurity Scattering to Enhance Thermoelectric Performance in Crâ€Doped Ce _y Co ₄ Sb ₁₂ . Advanced Functional Materials, 2015, 25, 6660-6670.	14.9	77
358	Ultrahigh Thermoelectric Performance in Mosaic Crystals. Advanced Materials, 2015, 27, 3639-3644.	21.0	195
359	Effective Electronic Mechanisms for Optimizing the Thermoelectric Properties of GeTeâ€Rich Alloys. Advanced Electronic Materials, 2015, 1, 1500228.	5.1	79
360	Hybridization Gap and Dresselhaus Spin Splitting in Eulr ₄ In ₂ Ge ₄ . Angewandte Chemie - International Edition, 2015, 54, 9186-9191.	13.8	7
361	Heterogeneous Distribution of Sodium for High Thermoelectric Performance of pâ€ŧype Multiphase Lead halcogenides. Advanced Energy Materials, 2015, 5, 1501047.	19.5	63
362	Hydrothermal Synthesis Au-Bi2Te3 Nanocomposite Thermoelectric Film with a Hierarchical Sub-Micron Antireflection Quasi-Periodic Structure. International Journal of Molecular Sciences, 2015, 16, 12547-12559.	4.1	4
363	Recent Developments inβ-Zn4Sb3Based Thermoelectric Compounds. Journal of Nanomaterials, 2015, 2015, 1-15.	2.7	8
364	Enhanced thermoelectric coupling near electronic phase transition: The role of fluctuation Cooper pairs. Physical Review B, 2015, 91, .	3.2	14
365	Band engineering via biaxial strain for enhanced thermoelectric performance in stannite-type Cu ₂ ZnSnSe ₄ . RSC Advances, 2015, 5, 24908-24914.	3.6	13
366	Thermoelectric Properties of <i>p</i> -Type Clathrate Ba _{8.0} Ga _{15.9} Zn _{<i>y</i>} Sn _{30.1} Single Crystals with Various Carrier Concentrations. Chemistry of Materials, 2015, 27, 1830-1836.	6.7	17
367	Enhancement of thermoelectric power of PbTe:Ag nanocomposite thin films. RSC Advances, 2015, 5, 25887-25895.	3.6	26
368	Superior thermoelectric performance in PbTe–PbS pseudo-binary: extremely low thermal conductivity and modulated carrier concentration. Energy and Environmental Science, 2015, 8, 2056-2068.	30.8	185
369	Characterization of Lorenz number with Seebeck coefficient measurement. APL Materials, 2015, 3, .	5.1	1,236
370	Thermoelectric properties of Na-doped Zintl compound: Mg3â^Na Sb2. Acta Materialia, 2015, 93, 187-193.	7.9	131

#	Article		CITATIONS
371	Synthesis, structure, magnetic and photoelectric properties of Ln ₃ M _{0.5} M′Se ₇ (Ln = La, Ce, Sm; M = Fe, Mn; M′ = Si, Ge) and La ₃ MnGaSe ₇ . RSC Advances, 2015, 5, 52629-52635.		18
372	Quasiparticle band structures and thermoelectric transport properties of p-type SnSe. Journal of Applied Physics, 2015, 117, .	2.5	135
373	Evaluating Broader Impacts of Nanoscale Thermal Transport Research. Nanoscale and Microscale Thermophysical Engineering, 2015, 19, 127-165.	2.6	69
374	Controlled growth of bismuth antimony telluride Bi Sb2â^'Te3 nanoplatelets and their bulk thermoelectric nanocomposites. Nano Energy, 2015, 15, 688-696.	16.0	94
375	Suppressing the bipolar contribution to the thermoelectric properties of Mg2Si0.4Sn0.6 by Ge substitution. Journal of Applied Physics, 2015, 117, .	2.5	51
376	Significant Reduction of Lattice Thermal Conductivity by the Electron-Phonon Interaction in Silicon with High Carrier Concentrations: A First-Principles Study. Physical Review Letters, 2015, 114, 115901.	7.8	229
377	Improvement of the thermoelectric performance of InSe-based alloys doped with Sn. RSC Advances, 2015, 5, 102856-102862.	3.6	24
378	High thermoelectric figure-of-merit in Sb ₂ Te ₃ /Ag ₂ Te bulk composites as Pb-free p-type thermoelectric materials. Journal of Materials Chemistry C, 2015, 3, 10494-10499.	5.5	41
379	Thermoelectric properties of materials with nontrivial electronic topology. Journal of Materials Chemistry C, 2015, 3, 12130-12139.	5.5	69
380	MoSi ₂ -type narrow band gap intermetallic compound Al ₆ Re ₅ Si ₄ as a thermoelectric material. Journal of Materials Chemistry C, 2015, 3, 10422-10429.	5.5	2
381	Thermoelectric properties of Eu- and Na-substituted SnTe. Journal of Rare Earths, 2015, 33, 1175-1181.	4.8	13
382	Thermoelectric Properties of Pseudogap Ti10Ru19B8 and Ti9TM2Ru18B8 (TM: Cr-Cu) Compounds. Journal of Electronic Materials, 2015, 44, 1483-1490.	2.2	2
383	Enhancement of Thermoelectric Performance of nâ€Type PbSe by Cr Doping with Optimized Carrier Concentration. Advanced Energy Materials, 2015, 5, 1401977.	19.5	92
384	Thermoelectric property studies on Cu Bi2SeS2 with nano-scale precipitates Bi2S3. Nano Energy, 2015, 12, 447-456.	16.0	37
385	Thermoelectric performance of Si80Ge20â^'xSbx based multiphase alloys with inhomogeneous dopant distribution. Energy Conversion and Management, 2015, 94, 331-336.	9.2	7
386	Effect of Cu concentration on thermoelectric properties of nanostructured p-type MgAg0.97â^'Cu Sb0.99. Acta Materialia, 2015, 87, 266-272.	7.9	53
387	Anisotropic Multicenter Bonding and High Thermoelectric Performance in Electron-Poor CdSb. Chemistry of Materials, 2015, 27, 1071-1081.	6.7	81
388	Current progress and future challenges in thermoelectric power generation: From materials to devices. Acta Materialia, 2015, 87, 357-376.	7.9	447

#	Article	IF	CITATIONS
389	Platinum nanoparticle modified TiO2 nanorods with enhanced catalytic performances. Journal of Alloys and Compounds, 2015, 622, 426-431.	5.5	11
390	Thermal conductivity of ordered-disordered material: a case study of superionic Ag ₂ Te. Nanotechnology, 2015, 26, 025702.	2.6	27
391	Enhancement of thermoelectric properties by Na doping in Te-free p-type AgSbSe ₂ . Dalton Transactions, 2015, 44, 1046-1051.	3.3	35
392	Electronic structure and transport properties of Cu-deficient kuramite Cu _{3â^'} <i>_x</i> SnS ₄ . Japanese Journal of Applied Physics, 2015, 54, 021801.	1.5	10
393	Influence of doping and solid solution formation on the thermoelectric properties of chalcopyrite semiconductors. Journal of Alloys and Compounds, 2015, 630, 277-281.	5.5	37
394	Thermoelectric performance of SnS and SnS–SnSe solid solution. Journal of Materials Chemistry A, 2015, 3, 4555-4559.	10.3	160
395	Improved thermoelectric efficiency in p-type ZnSb through Zn deficiency. Functional Materials Letters, 2015, 08, 1550028.	1.2	23
396	Diameter dependent thermoelectric properties of individual SnTe nanowires. Nanoscale, 2015, 7, 2869-2876.	5.6	46
397	High Thermoelectric Performance of a Heterogeneous PbTe Nanocomposite. Chemistry of Materials, 2015, 27, 944-949.	6.7	102
398	Mg Alloying in SnTe Facilitates Valence Band Convergence and Optimizes Thermoelectric Properties. Chemistry of Materials, 2015, 27, 581-587.	6.7	390
399	n-type thermoelectric material Mg ₂ Sn _{0.75} Ge _{0.25} for high power generation. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 3269-3274.	7.1	191
400	Theoretical understanding on band engineering of Mn-doped lead chalcogenides PbX (X = Te, Se, S). Journal of Physics Condensed Matter, 2015, 27, 095501.	1.8	22
401	Multi-localization transport behaviour in bulk thermoelectric materials. Nature Communications, 2015, 6, 6197.	12.8	108
402	Enhanced thermoelectric performance of TiO 2 -based hybrid materials by incorporating conducting polymer. Chinese Physics B, 2015, 24, 034402.	1.4	8
403	Enhanced thermoelectric performance of In2O3-based ceramics via Nanostructuring and Point Defect Engineering. Scientific Reports, 2015, 5, 7783.	3.3	57
404	Understanding the role and interplay of heavy-hole and light-hole valence bands in the thermoelectric properties of PbSe. Physical Review B, 2015, 91, .	3.2	34
405	Thermoelectric Investigation of the Pseudo Binary System PbTe–CoSe2. Journal of Electronic Materials, 2015, 44, 2089-2094.	2.2	7
406	Enhancement of thermoelectric performance in n-type PbTe1â^'Se by doping Cr and tuning Te:Se ratio. Nano Energy, 2015, 13, 355-367.	16.0	36

#	Article		CITATIONS
407	Graphene boosts thermoelectric performance of a Zintl phase compound. RSC Advances, 2015, 5, 11058-11070.		49
408	Tunable thermoelectric transport in nanomeshes via elastic strain engineering. Applied Physics Letters, 2015, 106, .	3.3	10
409	High-performance thermoelectric Cu2Se nanoplates through nanostructure engineering. Nano Energy, 2015, 16, 367-374.	16.0	218
410	Electronic structure and thermoelectric properties of Zintl compounds A ₃ AlSb ₃ (A = Ca and Sr): first-principles study. RSC Advances, 2015, 5, 65133-65138.	3.6	14
411	Thermoelectric properties of Pb0.75â^'xMnxSn0.25Te alloys with variable manganese content. Materials Science in Semiconductor Processing, 2015, 34, 326-333.	4.0	2
412	High thermoelectric performance of a defect in α-In ₂ Se ₃ -based solid solution upon substitution of Zn for In. Journal of Materials Chemistry C, 2015, 3, 9069-9075.	5.5	31
413	Low-Dimensional Transport and Large Thermoelectric Power Factors in Bulk Semiconductors by Band Engineering of Highly Directional Electronic States. Physical Review Letters, 2015, 114, 136601.	7.8	182
414	Effect of extended strain fields on point defect phonon scattering in thermoelectric materials. Physical Chemistry Chemical Physics, 2015, 17, 19410-19423.	2.8	55
415	Misfit Layer Compounds and Ferecrystals: Model Systems for Thermoelectric Nanocomposites. Materials, 2015, 8, 2000-2029.	2.9	52
416	Facile synthesis of monodisperse Cu3SbSe4 nanoparticles and thermoelectric performance of Cu3SbSe4 nanoparticle-based materials. Journal of Nanoparticle Research, 2015, 17, 1.	1.9	15
417	Enhanced thermoelectric power and electronic correlations in RuSe2. APL Materials, 2015, 3, .	5.1	11
418	Thermoelectric properties of Al–Mn–Si C40 phase containing small amount of W or Ta. Japanese Journal of Applied Physics, 2015, 54, 071801.	1.5	37
419	A demo solar thermoelectric conversion device based on Bi2Te3 and carbon nanotubes. Solar Energy Materials and Solar Cells, 2015, 141, 331-336.	6.2	9
420	Transport Properties of Polycrystalline p-type SnSe. Materials Today: Proceedings, 2015, 2, 690-698.	1.8	19
421	High-efficient thermoelectric materials: The case of orthorhombic IV-VI compounds. Scientific Reports, 2015, 5, 9567.	3.3	176
422	Sb deficiencies control hole transport and boost the thermoelectric performance of p-type AgSbSe ₂ . Journal of Materials Chemistry C, 2015, 3, 10415-10421.	5.5	23
423	Synthesis and Thermal Properties of Solid-State Structural Isomers: Ordered Intergrowths of SnSe and MoSe ₂ . Journal of the American Chemical Society, 2015, 137, 8803-8809.	13.7	23
424	Crystalline–Amorphous Silicon Nanocomposites with Reduced Thermal Conductivity for Bulk Thermoelectrics. ACS Applied Materials & Interfaces, 2015, 7, 13484-13489.	8.0	62

# 425	ARTICLE The effect of nickel doping on electron and phonon transport in the n-type nanostructured thermoelectric material CoSbS. Journal of Materials Chemistry C, 2015, 3, 10442-10450.	IF 5.5	Citations 47
426	Enhanced thermoelectric performance of Bi2S3 by synergistical action of bromine substitution and copper nanoparticles. Nano Energy, 2015, 13, 554-562.	16.0	91
427	Anisotropy and high thermopower of LaOBiS2. Journal of Alloys and Compounds, 2015, 626, 208-211.	5.5	9
428	Thermoelectric materials: Energy conversion between heat and electricity. Journal of Materiomics, 2015, 1, 92-105.	5.7	794
429	Prediction of Giant Thermoelectric Power Factor in Type-VIII Clathrate Si46. Scientific Reports, 2014, 4, 7028.	3.3	28
430	Origin of different thermoelectric properties between Zintl compounds Ba3Al3P5 and Ba3Ga3P5: A first-principles study. Journal of Alloys and Compounds, 2015, 636, 387-394.	5.5	16
431	Electronic grade and flexible semiconductor film employing oriented attachment of colloidal ligand-free PbS and PbSe nanocrystals at room temperature. Nanoscale, 2015, 7, 9204-9214.	5.6	23
432	Studies on Thermoelectric Properties of nâ€type Polycrystalline SnSe _{1â€<i>x</i>} S <i>_x</i> by Iodine Doping. Advanced Energy Materials, 2015, 5, 1500360.	19.5	287
433	Enhanced thermoelectric properties of sorbitol-mixed PEDOT:PSS thin films by chemical reduction. Journal of Materials Science: Materials in Electronics, 2015, 26, 2838-2843.	2.2	29
434	An impurity intermediate band due to Pb doping induced promising thermoelectric performance of Ca ₅ In ₂ Sb ₆ . Physical Chemistry Chemical Physics, 2015, 17, 15156-15164.	2.8	10
435	Is Cu ₃ SbSe ₃ a promising thermoelectric material?. RSC Advances, 2015, 5, 42848-42854.	3.6	27
436	Thermoelectric properties of Ge doped n-type Ti _x Zr _{1â^'x} NiSn _{0.975} Ge _{0.025} half-Heusler alloys. Journal of Materials Chemistry A, 2015, 3, 12507-12514.	10.3	26
437	Construction of a 3D-rGO network-wrapping architecture in a Yb _y Co ₄ Sb ₁₂ /rGO composite for enhancing the thermoelectric performance. Journal of Materials Chemistry A, 2015, 3, 8643-8649.	10.3	71
438	Enhanced thermoelectric performance of n-type Bi2S3with added ZnO for power generation. RSC Advances, 2015, 5, 31004-31009.	3.6	10
439	Enhanced thermoelectric properties of Sr5In2Sb6via Zn-doping. Journal of Materials Chemistry A, 2015, 3, 10289-10295.	10.3	21
440	Enhanced thermoelectric properties of p-type Ag ₂ Te by Cu substitution. Journal of Materials Chemistry A, 2015, 3, 10303-10308.	10.3	49
441	Codoping in SnTe: Enhancement of Thermoelectric Performance through Synergy of Resonance Levels and Band Convergence. Journal of the American Chemical Society, 2015, 137, 5100-5112.	13.7	394
442	Functional Graded Germanium–Lead Chalcogenideâ€Based Thermoelectric Module for Renewable Energy Applications. Advanced Energy Materials, 2015, 5, 1500272.	19.5	95

		CITATION RE	PORT	
#	Article		IF	Citations
443	Advanced electron microscopy for thermoelectric materials. Nano Energy, 2015, 13, 626	-650.	16.0	80
444	High thermoelectric power factor in Cu–Ni alloy originate from potential barrier scatte boundaries. Nano Energy, 2015, 17, 279-289.	ring of twin	16.0	81
445	In-situ fabrication and enhanced thermoelectric properties of carbon nanotubes filled poly(3,4-ethylenedioxythiophene) composites. Synthetic Metals, 2015, 209, 480-483.		3.9	39
446	Thermoelectric power factor: Enhancement mechanisms and strategies for higher perfor thermoelectric materials. Materials Science and Engineering Reports, 2015, 97, 1-22.	mance	31.8	311
447	Inelastic x-ray scattering measurements of phonon dispersion and lifetimes in PbTe _{1â^'<i>x</i>} Se <i>_x</i> alloys. Journal of Physics Condense 375403.	ed Matter, 2015, 27,	1.8	14
448	Influence of Compensating Defect Formation on the Doping Efficiency and Thermoelect of Cu _{2-y} Se _{1–<i>x</i>} Br _{<i>x</i>} . Chemistry of 7018-7027.	ric Properties Materials, 2015, 27,	6.7	67
449	Convergence of multi-valley bands as the electronic origin of high thermoelectric perforr CoSb3 skutterudites. Nature Materials, 2015, 14, 1223-1228.	nance in	27.5	587
450	High Thermoelectric Figure of Merit Values of Germanium Antimony Tellurides with Kine Cobalt Germanide Precipitates. Journal of the American Chemical Society, 2015, 137, 12		13.7	99
451	Enhanced Thermoelectric Performance of Nanostructured Bi ₂ Te ₃ through Significant Phonon Scattering. ACS Applied Materials & Interfaces, 2015, 7, 23694-23699.		8.0	200
452	Enhanced thermoelectric properties in Pb-doped BiCuSeO oxyselenides prepared by ultra RSC Advances, 2015, 5, 69878-69885.	afast synthesis.	3.6	67
453	Synthesis, crystal structure, and thermoelectric properties of two new barium antimony Ba ₂ Sb ₂ Se ₅ and Ba ₆ Sb _{7Journal of Materials Chemistry C, 2015, 3, 9811-9818.}		5.5	20
454	Band gap engineering of Si-Ge alloys for mid-temperature thermoelectric applications. A 2015, 5, 037145.	P Advances,	1.3	9
455	Computational and experimental investigation of TmAgTe ₂ and XYZ ₂ compounds, a new group of thermoelectric materials identified by firs high-throughput screening. Journal of Materials Chemistry C, 2015, 3, 10554-10565.	t-principles	5.5	99
456	Atomic Disorders Induced by Silver and Magnesium Ion Migrations Favor High Thermoel Performance in αâ€MgAgSbâ€Based Materials. Advanced Functional Materials, 2015, 2		14.9	70
457	High Thermoelectric Performance and Enhanced Mechanical Stability of <i>p</i> -type Ge _{1–<i>x</i>} Sb _{<i>x</i>} Te. Chemistry of Materials, 2015, 2	7, 7171-7178.	6.7	293
458	Strong correlation between the crystal structure and the thermoelectric properties of pa homologue Cu _{x+y} Bi _{5â^'y} Ch ₈ (Ch = S or Se) com Materials Chemistry C, 2015, 3, 11271-11285.		5.5	9
459	Contrasting the Role of Mg and Ba Doping on the Microstructure and Thermoelectric Prop-Type AgSbSe ₂ . ACS Applied Materials & amp; Interfaces, 2015, 7, 23047-2	operties of 23055.	8.0	29
460	International Round-Robin Study of the Thermoelectric Transport Properties of an n-Type Half-Heusler Compound from 300ÂK to 773ÂK. Journal of Electronic Materials, 2015, 44	, 4482-4491.	2.2	49

#	Article	IF	CITATIONS
461	Valence band engineering and thermoelectric performance optimization in SnTe by Mn-alloying via a zone-melting method. Journal of Materials Chemistry A, 2015, 3, 19974-19979.	10.3	141
462	First-principles study on lattice thermal conductivity of thermoelectrics HgTe in different phases. Journal of Applied Physics, 2015, 117, .	2.5	16
463	Enhanced thermoelectric power factor of Re-substituted higher manganese silicides with small islands of MnSi secondary phase. Journal of Materials Chemistry C, 2015, 3, 10500-10508.	5.5	44
464	Electronic and thermoelectric properties of van der Waals materials with ring-shaped valence bands. Journal of Applied Physics, 2015, 118, .	2.5	120
465	Heterostructures of skutterudites and germanium antimony tellurides – structure analysis and thermoelectric properties of bulk samples. Journal of Materials Chemistry C, 2015, 3, 10525-10533.	5.5	13
466	Valence Band Modification and High Thermoelectric Performance in SnTe Heavily Alloyed with MnTe. Journal of the American Chemical Society, 2015, 137, 11507-11516.	13.7	371
467	Fabrication of thermoelectric materials – thermal stability and repeatability of achieved efficiencies. Journal of Materials Chemistry C, 2015, 3, 10610-10615.	5.5	17
468	Defects responsible for abnormal <i>n</i> -type conductivity in Ag-excess doped PbTe thermoelectrics. Journal of Applied Physics, 2015, 118, .	2.5	17
469	Synergistically optimized electrical and thermal transport properties of SnTe via alloying high-solubility MnTe. Energy and Environmental Science, 2015, 8, 3298-3312.	30.8	268
470	Computational Exploration of the Binary A ₁ B ₁ Chemical Space for Thermoelectric Performance. Chemistry of Materials, 2015, 27, 6213-6221.	6.7	38
471	Enhancement of the thermoelectric properties of n-type PbTe by Na and Cl co-doping. Journal of Materials Chemistry C, 2015, 3, 9559-9564.	5.5	79
472	Realizing high figure of merit in heavy-band p-type half-Heusler thermoelectric materials. Nature Communications, 2015, 6, 8144.	12.8	893
473	Electronic tuning of the transport properties of off-stoichiometric Pb <i>x</i> Sn1â^' <i>x</i> Te thermoelectric alloys by Bi2Te3 doping. Journal of Applied Physics, 2015, 118, .	2.5	75
474	Thermal conductivity reduction by isoelectronic elements V and Ta for partial substitution of Nb in half-Heusler Nb _{(1â^`x)/2} V _{(1â^`x)/2} X _X XCoSb. RSC Advances, 2015, 5, 102469-102476.	3.6	24
475	Tetrahedrites as thermoelectric materials: an overview. Journal of Materials Chemistry C, 2015, 3, 12364-12378.	5.5	148
476	Ab initio optimization of phonon drag effect for lower-temperature thermoelectric energy conversion. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 14777-14782.	7.1	75
477	Convergence of valence bands for high thermoelectric performance for p-type InN. Physica B: Condensed Matter, 2015, 479, 1-5.	2.7	6
478	Band structure engineering of multiple band degeneracy for enhanced thermoelectric power factors in MTe and MSe (M = Pb, Sn, Ge). RSC Advances, 2015, 5, 91974-91978.	3.6	18

#	Article	IF	CITATIONS
479	Significant band engineering effect of YbTe for high performance thermoelectric PbTe. Journal of Materials Chemistry C, 2015, 3, 12410-12417.	5.5	61
480	Better thermoelectrics through glass-like crystals. Nature Materials, 2015, 14, 1182-1185.	27.5	212
481	High Thermoelectric Performance SnTe–In ₂ Te ₃ Solid Solutions Enabled by Resonant Levels and Strong Vacancy Phonon Scattering. Chemistry of Materials, 2015, 27, 7801-7811.	6.7	191
482	Promising thermoelectric performance in n-type AgBiSe ₂ : effect of aliovalent anion doping. Journal of Materials Chemistry A, 2015, 3, 648-655.	10.3	115
483	Material descriptors for predicting thermoelectric performance. Energy and Environmental Science, 2015, 8, 983-994.	30.8	241
484	Enhanced figure of merit in antimony telluride thermoelectric materials by In–Ag co-alloying for mid-temperature power generation. Acta Materialia, 2015, 85, 270-278.	7.9	75
485	Study on thermoelectric performance by Na doping in nanostructured Mg1-Na Ag0.97Sb0.99. Nano Energy, 2015, 11, 640-646.	16.0	74
486	High Performance Oxides-Based Thermoelectric Materials. Jom, 2015, 67, 211-221.	1.9	71
487	Extraordinary role of Hg in enhancing the thermoelectric performance of p-type SnTe. Energy and Environmental Science, 2015, 8, 267-277.	30.8	347
488	Band engineering of high performance p-type FeNbSb based half-Heusler thermoelectric materials for figure of merit zT > 1. Energy and Environmental Science, 2015, 8, 216-220.	30.8	469
489	Antiperovskite compounds SbNSr3 and BiNSr3: Potential candidates for thermoelectric renewable energy generators. Physics Letters, Section A: General, Atomic and Solid State Physics, 2015, 379, 206-210.	2.1	40
490	The intrinsic disorder related alloy scattering in ZrNiSn half-Heusler thermoelectric materials. Scientific Reports, 2014, 4, 6888.	3.3	213
491	Nanostructure and doping stimulated phase separation in high-ZT Mg2Si0.55Sn0.4Ge0.05 compounds. Acta Materialia, 2015, 83, 285-293.	7.9	43
492	Measuring thermoelectric transport properties of materials. Energy and Environmental Science, 2015, 8, 423-435.	30.8	275
493	Main Group and Transition Metal Silicides for the Thermoelectric Energy Conversion. , 2016, , .		0
494	Cationic Site-Preference in the Yb14-xCaxAlSb11 (4.81 ≤ ≤10.57) Series: Theoretical and Experimental Studies. Materials, 2016, 9, 553.	2.9	14
495	Nanostructured State-of-the-Art Thermoelectric Materials Prepared by Straight-Forward Arc-Melting Method. , 0, , .		2
496	Spin-orbit and strain effect on power factor in monolayer MoS2. Computational Materials Science, 2016, 123, 8-13.	3.0	49

#	Article	IF	CITATIONS
497	Scandium-doped zinc cadmium oxide as a new stable n-type oxide thermoelectric material. Journal of Materials Chemistry A, 2016, 4, 12221-12231.	10.3	32
498	Investigation into the extremely low thermal conductivity in Ba heavily doped BiCuSeO. Nano Energy, 2016, 27, 167-174.	16.0	40
499	Recent advances in thermoelectric materials. Progress in Materials Science, 2016, 83, 330-382.	32.8	572
500	Distinct Impact of Alkali-Ion Doping on Electrical Transport Properties of Thermoelectric <i>p</i> -Type Polycrystalline SnSe. Journal of the American Chemical Society, 2016, 138, 8875-8882.	13.7	298
501	The Role of Ionized Impurity Scattering on the Thermoelectric Performances of Rock Salt AgPb <i>_m</i> SnSe ₂₊ <i>_m</i> . Advanced Functional Materials, 2016, 26, 5149-5157.	14.9	62
502	Thermoelectric Enhancement of Different Kinds of Metal Chalcogenides. Advanced Energy Materials, 2016, 6, 1600498.	19.5	145
503	Progressive Regulation of Electrical and Thermal Transport Properties to Highâ€Performance CuInTe ₂ Thermoelectric Materials. Advanced Energy Materials, 2016, 6, 1600007.	19.5	118
504	Improvement of thermoelectric performance of α-In ₂ Se ₃ upon S incorporation. Physica Status Solidi (A) Applications and Materials Science, 2016, 213, 986-993.	1.8	14
505	Thermoelectric performance enhancement of Mg ₂ Sn based solid solutions by band convergence and phonon scattering via Pb and Si/Ge substitution for Sn. Physical Chemistry Chemical Physics, 2016, 18, 20726-20737.	2.8	30
506	Spinodally Decomposed PbSe-PbTe Nanoparticles for High-Performance Thermoelectrics: Enhanced Phonon Scattering and Unusual Transport Behavior. ACS Nano, 2016, 10, 7197-7207.	14.6	44
507	Enhanced Thermoelectric Properties of Cu ₂ SnSe ₃ by (Ag,In)â€Coâ€Doping. Advanced Functional Materials, 2016, 26, 6025-6032.	14.9	82
508	Growth of <i>c</i> â€Axisâ€Oriented BiCuSeO Thin Films Directly on Si Wafers. Journal of the American Ceramic Society, 2016, 99, 3367-3370.	3.8	12
509	Element-selective resonant state in M-doped SnTe (M = Ga, In, and Tl). Physical Chemistry Chemical Physics, 2016, 18, 20635-20639.	2.8	37
510	Higher thermoelectric performance of Zintl phases (Eu _{0.5} Yb _{0.5}) _{1â^x} Ca _x Mg ₂ Bi ₂ by band engineering and strain fluctuation. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E4125-32.	7.1	145
511	The Origin of Ultralow Thermal Conductivity in InTe: Loneâ€Pairâ€Induced Anharmonic Rattling. Angewandte Chemie - International Edition, 2016, 55, 7792-7796.	13.8	145
512	The Origin of Ultralow Thermal Conductivity in InTe: Loneâ€Pairâ€Induced Anharmonic Rattling. Angewandte Chemie, 2016, 128, 7923-7927.	2.0	56
513	Investigation of thermoelectric properties of ZnV ₂ O ₄ compound at high temperatures. Journal Physics D: Applied Physics, 2016, 49, 425601.	2.8	24
514	On the tuning of electrical and thermal transport in thermoelectrics: an integrated theory–experiment perspective. Npj Computational Materials, 2016, 2, .	8.7	399

#	Article	IF	CITATIONS
515	Multiple Converged Conduction Bands in K ₂ Bi ₈ Se ₁₃ : A Promising Thermoelectric Material with Extremely Low Thermal Conductivity. Journal of the American Chemical Society, 2016, 138, 16364-16371.	13.7	130
516	Designing high-performance layered thermoelectric materials through orbital engineering. Nature Communications, 2016, 7, 10892.	12.8	203
517	A strategy to optimize the thermoelectric performance in a spark plasma sintering process. Scientific Reports, 2016, 6, 23143.	3.3	35
520	Clathrate-Based Thermoelectrics. , 2016, , 233-250.		1
522	Complex Chalcogenides: Pseudo-Hollandites, Structures and Properties. , 2016, , 473-486.		1
523	Chapter 4 All-Scale Hierarchical PbTe. , 2016, , 125-158.		4
524	Tetradymites: Bi2Te3-Related Materials. , 2016, , 53-108.		1
525	Optimization of thermoelectric properties for rough nano-ridge GaAs/AlAs superlattice structure. AlP Advances, 2016, 6, 115201.	1.3	10
526	High thermoelectric potential of Bi2Te3 alloyed GeTe-rich phases. Journal of Applied Physics, 2016, 120, .	2.5	75
527	Boost in room temperature thermoelectric performance of PbSe:Alx through band modification and low densification. Journal of Applied Physics, 2016, 120, .	2.5	15
528	Full-scale computation for all the thermoelectric property parameters of half-Heusler compounds. Scientific Reports, 2016, 6, 22778.	3.3	79
529	Classification of Valleytronics in Thermoelectricity. Scientific Reports, 2016, 6, 22724.	3.3	40
530	Thermoelectric properties of antiperovskite calcium oxides Ca3PbO and Ca3SnO. Journal of Applied Physics, 2016, 119, .	2.5	53
531	A low-temperature study of manganese-induced ferromagnetism and valence band convergence in tin telluride. Applied Physics Letters, 2016, 108, 182101.	3.3	12
532	High thermoelectric potential of <i>n</i> -type Pb1â^' <i>x</i> Ti <i>x</i> Te alloys. Journal of Applied Physics, 2016, 120, .	2.5	70
533	Thermoelectric properties of In and I doped PbTe. Journal of Applied Physics, 2016, 120, .	2.5	37
534	Enhanced thermoelectric properties of n-type NbCoSn half-Heusler by improving phase purity. APL Materials, 2016, 4, .	5.1	72
535	The effects of Ge doping on the thermoelectric performance of p-type polycrystalline SnSe. RSC Advances, 2016, 6, 114825-114829.	3.6	22

#	Article	IF	CITATIONS
536	Reduced thermal conductivity of a nanoparticle decorated nanowire: A non-equilibrium molecular dynamics study. AIP Conference Proceedings, 2016, , .	0.4	0
537	Size effect in thermoelectric materials. Npj Quantum Materials, 2016, 1, .	5.2	205
538	Contribution of point defects and nano-grains to thermal transport behaviours of oxide-based thermoelectrics. Npj Computational Materials, 2016, 2, .	8.7	52
539	Efficient thermoelectric energy conversion in Pb0.95Mn0.05Te p-n couple. Applied Physics Letters, 2016, 108, .	3.3	4
540	Soft phonon modes driven reduced thermal conductivity in self-compensated Sn1.03Te with Mn doping. Applied Physics Letters, 2016, 109, .	3.3	69
541	Potential thermoelectric material \${mathrm{Cs}}_{2}[{mathrm{PdCl}}_{4}]{{m{l}}}_{2}\$: a first-principles study. Materials Research Express, 2016, 3, 085903.	1.6	2
542	Boltzmann transport calculation of thermoelectric properties in Ag2Se1â^'xTex (x = 0.0 and 0.5). Journal of Applied Physics, 2016, 119, 165101.	2.5	4
543	Perspective: <i>n</i> -type oxide thermoelectrics via visual search strategies. APL Materials, 2016, 4, .	5.1	42
544	Thermoelectric Materials: A New Rapid Synthesis Process for Nontoxic and Highâ€Performance Tetrahedrite Compounds. Journal of the American Ceramic Society, 2016, 99, 51-56.	3.8	62
545	Thermoelectric properties of Tl-doped PbTeSe crystals grown by directional solidification. Journal of Crystal Growth, 2016, 439, 80-86.	1.5	11
546	Understanding thermoelectric properties from high-throughput calculations: trends, insights, and comparisons with experiment. Journal of Materials Chemistry C, 2016, 4, 4414-4426.	5.5	193
547	Large Thermopower, Crystalline Cd ₃ As ₂ by Lowâ€Temperature Vapor Deposition for Room Temperature Heat Waste Recovery. Advanced Electronic Materials, 2016, 2, 1500319.	5.1	9
548	Thermoelectric properties of Ni-doped BaSi ₂ . Functional Materials Letters, 2016, 09, 1650017.	1.2	5
549	High thermoelectric properties of n-type Cd-doped PbTe prepared by melt spinning. Scripta Materialia, 2016, 122, 1-4.	5.2	25
550	First-principles study on band structures and electrical transports of doped-SnTe. Journal of Materiomics, 2016, 2, 158-164.	5.7	22
551	Enhanced thermoelectric performance of chalcogenide Cu 2 CdSnSe 4 by ex-situ homogeneous nanoinclusions. Journal of Materiomics, 2016, 2, 179-186.	5.7	14
552	Elemental distributions within multiphase quaternary Pb chalcogenide thermoelectric materials determined through three-dimensional atom probe tomography. Nano Energy, 2016, 26, 157-163.	16.0	15
553	Texture anisotropy of higher manganese silicide following arc-melting and hot-pressing. Intermetallics, 2016, 68, 71-77.	3.9	80

#	Article	IF	CITATIONS
554	Carrier distribution in multi-band materials and its effect on thermoelectric properties. Journal of Materiomics, 2016, 2, 203-211.	5.7	23
555	Enhanced thermoelectric properties of topological crystalline insulator PbSnTe nanowires grown by vapor transport. Nano Research, 2016, 9, 820-830.	10.4	22
556	<i>>n</i> -Type Bi ₂ Te _{3–<i>x</i>} Se _{<i>x</i>} Nanoplates with Enhanced Thermoelectric Efficiency Driven by Wide-Frequency Phonon Scatterings and Synergistic Carrier Scatterings. ACS Nano, 2016, 10, 4719-4727.	14.6	303
558	The origin of low thermal conductivity in Sn _{1â^'x} Sb _x Te: phonon scattering via layered intergrowth nanostructures. Energy and Environmental Science, 2016, 9, 2011-2019.	30.8	234
559	Lead-free SnTe-based thermoelectrics: enhancement of thermoelectric performance by doping with Gd/Ag. Journal of Materials Chemistry A, 2016, 4, 7936-7942.	10.3	77
560	Indium substitution effect on thermoelectric and optical properties of Sn1â^'In Se compounds. Journal of Alloys and Compounds, 2016, 682, 785-790.	5.5	36
561	Interesting pressure dependence of power factor in BiTel. Journal Physics D: Applied Physics, 2016, 49, 215107.	2.8	16
562	Thermoelectric properties of half-Heusler ZrNiPb by using first principles calculations. RSC Advances, 2016, 6, 47953-47958.	3.6	36
563	On the relevance between fine structure and enhanced performance of skutterudite thermoelectric materials: X-ray spectroscopy studies. Journal of Materiomics, 2016, 2, 280-289.	5.7	9
564	SnSe: a remarkable new thermoelectric material. Energy and Environmental Science, 2016, 9, 3044-3060.	30.8	418
565	Vacancy scattering for enhancing the thermoelectric performance of CuGaTe ₂ solid solutions. Journal of Materials Chemistry A, 2016, 4, 15464-15470.	10.3	106
566	Attaining high mid-temperature performance in (Bi,Sb)2Te3 thermoelectric materials via synergistic optimization. NPG Asia Materials, 2016, 8, e302-e302.	7.9	119
567	High Power Factor and Enhanced Thermoelectric Performance of SnTe-AgInTe ₂ : Synergistic Effect of Resonance Level and Valence Band Convergence. Journal of the American Chemical Society, 2016, 138, 13068-13075.	13.7	214
568	Enhanced thermoelectric performance in PbSe-SrSe solid solution by Mn substitution. Journal of Alloys and Compounds, 2016, 687, 765-772.	5.5	15
569	Conversion efficiency of spin power to charge power in a normal metal with spin-orbit coupling. Physica B: Condensed Matter, 2016, 502, 166-169.	2.7	0
570	Realizing High Figure of Merit in Phase-Separated Polycrystalline Sn _{1–<i>x</i>} Pb _{<i>x</i>} Se. Journal of the American Chemical Society, 2016, 138, 13647-13654.	13.7	201
571	High thermoelectric performance in Te-free (Bi,Sb) ₂ Se ₃ via structural transition induced band convergence and chemical bond softening. Energy and Environmental Science, 2016, 9, 3436-3447.	30.8	159
572	Synthesis of SnTe/AgSbSe 2 nanocomposite as a promising lead-free thermoelectric material. Journal of Materiomics, 2016, 2, 165-171.	5.7	31

#	Article	IF	CITATIONS
573	Thermoelectric properties of polycrystalline SnSe _{1±x} prepared by mechanical alloying and spark plasma sintering. RSC Advances, 2016, 6, 92335-92340.	3.6	17
574	Understanding and manipulating the intrinsic point defect in α-MgAgSb for higher thermoelectric performance. Journal of Materials Chemistry A, 2016, 4, 16834-16840.	10.3	49
575	lsotropic Conduction Network and Defect Chemistry in Mg ₃₊ <i>_δ</i> Sb ₂ â€Based Layered Zintl Compounds with High Thermoelectric Performance. Advanced Materials, 2016, 28, 10182-10187.	21.0	400
576	Band structure engineering in highly degenerate tetrahedrites through isovalent doping. Journal of Materials Chemistry A, 2016, 4, 17096-17103.	10.3	44
577	Potential thermoelectric materials CsMI ₃ (M = Sn and Pb) in perovskite structures from first-principles calculations. RSC Advances, 2016, 6, 101552-101559.	3.6	36
578	Thermoelectric performance of Cu _{1â^'xâ^'δ} Ag _x InTe ₂ diamond-like materials with a pseudocubic crystal structure. Inorganic Chemistry Frontiers, 2016, 3, 1167-1177.	6.0	44
579	Lead-free tin chalcogenide thermoelectric materials. Inorganic Chemistry Frontiers, 2016, 3, 1449-1463.	6.0	42
580	Biaxial strain tuned thermoelectric properties in monolayer PtSe ₂ . Journal of Materials Chemistry C, 2016, 4, 9366-9374.	5.5	165
581	Thermoelectric properties of Cd doped tetrahedrite: Cu12â´'xCdxSb4S13. Intermetallics, 2016, 78, 21-29.	3.9	39
582	Efficient thermoelectric materials using nonmagnetic double perovskites with <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msup><mml:mi>d</mml:mi><mml:mn>0xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msup><mml:mi>d</mml:mi><mml:mn>6filling. Physical Review B. 2016. 94.</mml:mn></mml:msup></mml:mn></mml:msup></mml:math 		
583	Engineering the energy gap near the valence band edge in Mn-incorporated Cu ₃ Ga ₅ Te ₉ for an enhanced thermoelectric performance. Journal of Materials Chemistry C, 2016, 4, 8014-8019.	5.5	5
584	Understanding of the Extremely Low Thermal Conductivity in Highâ€Performance Polycrystalline SnSe through Potassium Doping. Advanced Functional Materials, 2016, 26, 6836-6845.	14.9	201
585	Transport, Structural and Mechanical Properties of Quaternary FeVTiAl Alloy. Journal of Electronic Materials, 2016, 45, 6012-6018.	2.2	70
586	Thermal stability of melt grown Tl-doped PbTeSe material for thermoelectric applications. Materials Science in Semiconductor Processing, 2016, 56, 94-99.	4.0	15
587	Enhancing the Figure of Merit of Heavyâ€Band Thermoelectric Materials Through Hierarchical Phonon Scattering. Advanced Science, 2016, 3, 1600035.	11.2	147
588	Multiple effects of Bi doping in enhancing the thermoelectric properties of SnTe. Journal of Materials Chemistry A, 2016, 4, 13171-13175.	10.3	128
589	Smart Materials for Controlled Droplet Motion. , 2016, , 204-237.		0
590	New Insights into Intrinsic Point Defects in V ₂ VI ₃ Thermoelectric Materials. Advanced Science, 2016, 3, 1600004.	11.2	317

# 591	ARTICLE Low Sound Velocity Contributing to the High Thermoelectric Performance of Ag ₈ SnSe ₆ . Advanced Science, 2016, 3, 1600196.	IF 11.2	CITATIONS 215
592	Simultaneous enhancement in the power factor and thermoelectric performance of copper sulfide by In ₂ S ₃ doping. Journal of Materials Chemistry A, 2016, 4, 12624-12629.	10.3	40
593	Enhanced thermoelectric properties of β-Cu2Se by incorporating CuGaSe2. Journal of Alloys and Compounds, 2016, 688, 521-526.	5.5	24
594	Rationally Designing High-Performance Bulk Thermoelectric Materials. Chemical Reviews, 2016, 116, 12123-12149.	47.7	1,624
595	Thermoelectric Properties of Cu ₂ SnSe ₄ with Intrinsic Vacancy. Chemistry of Materials, 2016, 28, 6227-6232.	6.7	115
596	Prospects of creating efficient thermoelectric materials based on the achievements of nanotechnology. Nanotechnologies in Russia, 2016, 11, 387-400.	0.7	18
597	Revisiting AgCrSe ₂ as a promising thermoelectric material. Physical Chemistry Chemical Physics, 2016, 18, 23872-23878.	2.8	48
598	Spin–orbital coupling effect on the power factor in semiconducting transition-metal dichalcogenide monolayers. Semiconductor Science and Technology, 2016, 31, 095011.	2.0	56
599	Preparation and thermoelectric properties of MoS2/Bi2Te3 nanocomposites. Ceramics International, 2016, 42, 17972-17977.	4.8	21
600	Anharmonicity in the High-Temperature <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mi>C</mml:mi><mml:mi>m</mml:mi><mml:mi>c</mml:mi><mml:mi><mml:mi>of SnSe: Soft Modes and Three-Phonon Interactions. Physical Review Letters, 2016, 117, 075502.</mml:mi></mml:mi></mml:math>	:m7a8h>Ph	as∉47
601	Extremely Low Thermal Conductivity in Thermoelectric Ge _{0.55} Pb _{0.45} Te Solid Solutions via Se Substitution. Chemistry of Materials, 2016, 28, 6367-6373.	6.7	42
602	Robust thermoelectric performance and high spin polarisation in CoMnTiAl and FeMnTiAl compounds. RSC Advances, 2016, 6, 80302-80309.	3.6	108
603	Are Solid Solutions Better in FeNbSbâ€Based Thermoelectrics?. Advanced Electronic Materials, 2016, 2, 1600394.	5.1	25
604	Nonmagnetic In Substituted CuFe _{1–<i>x</i>} In _{<i>x</i>} S ₂ Solid Solution Thermoelectric. Journal of Physical Chemistry C, 2016, 120, 27895-27902.	3.1	42
605	Fermi surface evolution of Na-doped PbTe studied through density functional theory calculations and Shubnikov–de Haas measurements. Physical Review B, 2016, 94, .	3.2	14
606	Achieving high power factor and output power density in p-type half-Heuslers Nb _{1-x} Ti _x FeSb. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 13576-13581.	7.1	213
608	Thermoelectric properties of GeSe. Journal of Materiomics, 2016, 2, 331-337.	5.7	67
609	Mg2Si-Based Materials for the Thermoelectric Energy Conversion. Jom, 2016, 68, 2680-2687.	1.9	24

ARTICLE IF CITATIONS Ultrahigh power factor and enhanced thermoelectric performance of individual Te/TiS2nanocables. 610 2.6 6 Nanotechnology, 2016, 27, 415704. Origin of low thermal conductivity in SnSe. Physical Review B, 2016, 94, . 3.2 287 Thermoelectric performance of functionalized < mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>Sc</mml:mi><mml:mn s2x/mml:mox</mnl:mox</mnl:mi>Sc</mnl:mi><mml:mi><mml:mox</mnl:mi><mml:mox</mnl:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:m 612 mathvariant="normal">C</mml:mi></mml:mrow></mml:math>MXenes. Physical Review B, 2016, 94, . Enhanced thermoelectric performance of CdO : Ag nanocomposites. Dalton Transactions, 2016, 45, 3.3 12215-12220. The Role of Electron–Phonon Interaction in Heavily Doped Fineâ€Grained Bulk Silicons as 614 5.138 Thermoelectric Materials. Advanced Electronic Materials, 2016, 2, 1600171. Control of valley degeneracy in<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> < mml:mrow> < mml:mi>Mo</mml:mi> < mml:msub> < mml:mi mathvariant="normal">S</mml:mi><mml:mn>2</mml:mn></mml:msub></mml:mrow></mml:math>by layer thickness and electric field and its effect on thermoelectric properties. Physical Review B, 2016, 3.2 Broadband phonon scattering in PbTe-based materials driven near ferroelectric phase transition by 616 3.2 28 strain or alloying. Physical Review B, 2016, 93, . Minority carrier blocking to enhance the thermoelectric figure of merit in narrow-band-gap 3.2 semiconductors. Physical Review B, 2016, 93, . Optimization of the Electronic Band Structure and the Lattice Thermal Conductivity of Solid Solutions According to Simple Calculations: A Canonical Example of the 618 6.7 54 Mg₂Si_{1a€"<i>x</i>a€"<i>y</i>}Ge_{<i>x</i>}Sn_{<i>y</i>} Ternary Solid Solution. Chemistry of Materials, 2016, 28, 5538-5548. High performance thermoelectric materials and devices based on GeTe. Journal of Materials Chemistry 619 5.5 194 C, 2016, 4, 7520-7536. High-throughput<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>Z</mml:mi><mml:mi>T</mml:mi></mjml:mrowys</mml:mi> 620 of nanoporous bulk materials as next-generation thermoelectric materials: A material genome approach. Physical Review B, 2016, 93 Computational predictions of energy materials using density functional theory. Nature Reviews 48.7 536 Materials, 2016, 1, . Limit of < mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>z</mml:mi></mml:mi></multimative:/mml:mi></multimative:/mml:mi></multimative:/mml:mi></multimative:/mml:mi></multimative:/mml:mi></multimative:/mml:mi></multimative:/mml:mi></multimative:/mml:mi></multimative:/mml:mi></multimative:/mml:mi></multimative:/mml:mi></multimative:/mml:mi></multimative:/mml:mi></multimative:/mml:mi></multimative:/mml:mi></multimative:/mml:mi></multimative:/mml:mi></multimative:/mml:mi></multimative:/mml:mi></multimative:/mml:mi></multimative:/mml:mi></multimative:/mml:mi></multimative:/mml:mi></multimative:/mml:mi></multimative:/mml:mi></multimative:/mml:mi></multimative:/mml:mi></multimative:/mml:mi></multimative:/mml:mi></multimative:/mml:mi></multimative:/mml:mi></multimative:/mml:mi></multimative:/mml:mi></multimative:/mml:mi></multimative:/mml:mi></multimative:/mml:mi></multimative:/mml:mi></multimative:/mml:mi></multimative:/mml:mi></multimative:/mml:mi></multimative:/mml:mi></multimative:/mml:mi></multimative:/mml:mi></multimative:/mml:mi></multimative:/mml:mi></multimative:/mml:mi></multimative:/mml:mi></multimative:/mml:mi></multimative:/mml:mi></multimative:/mml:mi></multimative:/mml:mi></multimative:/mml:mi></multimative:/mml:mi></multimative:/mml:mi></multimative:/mml:mi></multimative:/mml:mi></multimative:/mml:mi></multimative:/mml:mi></multimative:/mml:mi></multimative:/mml:mi></multimative:/mml:mi></multimative:/mml:mi></multimative:/mml:mi></multimative:/mml:mi></multimative:/mml:mi></multimative:/mml:mi></multimative:/mml:mi></multimative:/mml:mi></multimative:/mml:mi></multimative:/mml:mi></multimative:/mml:mi></multimative:/mml:mi></multimative:/mml:mi></multimative:/mml:mi></multimative:/mml:mi></multimative:/mml:mi></multimative:/mml:mi></multimative:/mml:mi></multimative:/mml:mi></multimative:/mml:mi></multimative:/mml:mi></multimative:/mml:mi></multimative:/mml:mi></multimative:/mml:mi></multimative:/mml:mi></multimative:/multimative:/mml:mi></multimative:/multimative:/mml:mi></multimative:/multima 622 in rocksalt structured chalcogenides by band convergence. Physical Review B, 2016, 94, . Combined electronic and thermodynamic approaches for enhancing the thermoelectric properties of Ti-doped PbTe. Physical Chemistry Chemical Physics, 2016, 18, 32429-32437. 2.8 Quaternary Pseudocubic Cu₂TMSnSe₄ (TM = Mn, Fe, Co) Chalcopyrite 624 39 5.1Thermoelectric Materials. Advanced Electronic Materials, 2016, 2, 1600312. A novel p-type half-Heusler from high-throughput transport and defect calculations. Journal of 64 Materials Ćhemistry C, 2016, 4, 11261-11268. Semiconductor Nanowires for Energy Harvesting. Semiconductors and Semimetals, 2016, 94, 297-368. 626 0.7 9 Preparation and Thermoelectric Properties of Sn-Based Type VIII Single-Crystalline Clathrate Via a-Sn Flux Method. Journal of Materials Engineering and Performance, 2016, 25, 2180-2184.

#	Article	IF	CITATIONS
628	Non-equilibrium processing leads to record high thermoelectric figure of merit in PbTe–SrTe. Nature Communications, 2016, 7, 12167.	12.8	498
629	Enhanced thermoelectric properties of SnSe polycrystals via texture control. Physical Chemistry Chemical Physics, 2016, 18, 31821-31827.	2.8	53
630	First-Principles Modeling of SrTiO ₃ Based Oxides for Thermoelectric Applications. Journal of Physical Chemistry C, 2016, 120, 25678-25688.	3.1	28
631	Defect Chemistry for Thermoelectric Materials. Journal of the American Chemical Society, 2016, 138, 14810-14819.	13.7	161
632	Engineering half-Heusler thermoelectric materials using Zintl chemistry. Nature Reviews Materials, 2016, 1, .	48.7	340
633	Extraordinary Off-Stoichiometric Bismuth Telluride for Enhanced n-Type Thermoelectric Power Factor. Journal of the American Chemical Society, 2016, 138, 14458-14468.	13.7	85
634	Origin of high thermoelectric performance of FeNb1â^'xZr/HfxSb1â^'ySny alloys: A first-principles study. Scientific Reports, 2016, 6, 33120.	3.3	20
635	Thermoelectric properties of copper chalcogenide alloys deposited via the solution-phase using a thiol–amine solvent mixture. RSC Advances, 2016, 6, 99905-99913.	3.6	25
636	Construction of a 3D porous network of copper film via a template-free deposition method with superior mechanical and electrical properties for micro-energy devices. Materials Research Express, 2016, 3, 085014.	1.6	6
637	Enhanced thermoelectric properties of the Dirac semimetal Cd ₃ As ₂ . Inorganic Chemistry Frontiers, 2016, 3, 1637-1643.	6.0	34
638	Enhancing average <i>ZT</i> in pristine PbSe by over-stoichiometric Pb addition. APL Materials, 2016, 4, 104801.	5.1	32
639	Improvement in thermoelectric performance of In ₆ Se ₇ by substitution of Sn for In. Physica Status Solidi (A) Applications and Materials Science, 2016, 213, 2176-2182.	1.8	8
640	Minimum Thermal Conductivity in Weak Topological Insulators with Bismuthâ€Based Stack Structure. Advanced Functional Materials, 2016, 26, 5360-5367.	14.9	29
641	Understanding Nanostructuring Processes in Thermoelectrics and Their Effects on Lattice Thermal Conductivity. Advanced Materials, 2016, 28, 2737-2743.	21.0	54
642	Interstitial Point Defect Scattering Contributing to High Thermoelectric Performance in SnTe. Advanced Electronic Materials, 2016, 2, 1600019.	5.1	235
643	Thinking Like a Chemist: Intuition in Thermoelectric Materials. Angewandte Chemie - International Edition, 2016, 55, 6826-6841.	13.8	639
644	Electronic structure and thermoelectric properties of (Mg2X)2 / (Mg2Y)2 (X, Y = Si, Ge, Sn) superlattices from first-principle calculations. European Physical Journal B, 2016, 89, 1.	1.5	4
645	Enhancement of thermoelectric performance of phase pure Zintl compounds Ca1â^'Yb Zn2Sb2, Ca1â^'Eu Zn2Sb2, and Eu1â^'Yb Zn2Sb2 by mechanical alloying and hot pressing. Nano Energy, 2016, 25, 136-144.	16.0	67

#	Article	IF	CITATIONS
646	Tailoring the mechanical properties of thermoelectric lead telluride by alloying with non-doping calcium. Journal of Materials Science, 2016, 51, 6933-6943.	3.7	24
647	Thermoelectric high-entropy alloys with low lattice thermal conductivity. RSC Advances, 2016, 6, 52164-52170.	3.6	91
648	Structure and thermoelectric performance of β-Cu2Se doped with Fe, Ni, Mn, In, Zn or Sm. Intermetallics, 2016, 75, 72-78.	3.9	57
649	Band engineering and rational design of high-performance thermoelectric materials by first-principles. Journal of Materiomics, 2016, 2, 114-130.	5.7	34
650	Thermoelectric properties of p-type Ag1â^'(Pb1â^'Sn) Sb1â^'Te+2. Journal of Solid State Chemistry, 2016, 242, 34-42.	2.9	6
651	Structural disorder, anisotropic micro-strain and cation vacancies in thermo-electric lead chalcogenides. Physical Chemistry Chemical Physics, 2016, 18, 15874-15883.	2.8	34
652	Thermoelectric properties of n-type half-Heusler compounds (Hf0.25Zr0.75)1–Nb NiSn. Acta Materialia, 2016, 113, 41-47.	7.9	54
653	A first-principles approach to half-Heusler thermoelectrics: Accelerated prediction and understanding of material properties. Journal of Materiomics, 2016, 2, 104-113.	5.7	56
654	Recent advances in high-performance bulk thermoelectric materials. International Materials Reviews, 2016, 61, 379-415.	19.3	394
655	Eutectic microstructures and thermoelectric properties of MnTe-rich precipitates hardened PbTe. Acta Materialia, 2016, 111, 202-209.	7.9	32
656	Impacts of Cu deficiency on the thermoelectric properties of Cu2â^'XSe nanoplates. Acta Materialia, 2016, 113, 140-146.	7.9	87
657	Enhanced thermoelectric performance of PbTe bulk materials with figure of merit zT >2 by multi-functional alloying. Journal of Materiomics, 2016, 2, 141-149.	5.7	118
658	Spin thermoelectric efficiency across a normal-metal/ferromagnetic-insulator interface. Physica B: Condensed Matter, 2016, 494, 59-62.	2.7	1
659	High thermoelectric performance of the distorted bismuth(110) layer. Physical Chemistry Chemical Physics, 2016, 18, 17373-17379.	2.8	17
660	Criteria for extending the operation periods of thermoelectric converters based on IV-VI compounds. Journal of Solid State Chemistry, 2016, 241, 79-85.	2.9	65
661	Synthesis and Thermoelectric Properties of the YbTe-YbSb System. Journal of Electronic Materials, 2016, 45, 779-785.	2.2	4
662	Enhancement of thermoelectric properties by effective K-doping and nano precipitation in quaternary compounds of (Pb1â^'xKxTe)0.70(PbSe)0.25(PbS)0.05. RSC Advances, 2016, 6, 62958-62967.	3.6	10
663	Lithium Doping to Enhance Thermoelectric Performance of MgAgSb with Weak Electron–Phonon Coupling. Advanced Energy Materials, 2016, 6, 1502269.	19.5	122

	CITATION	Report	
#	Article	IF	CITATIONS
664	Denken wie ein Chemiker: Thermoelektrika intuitiv. Angewandte Chemie, 2016, 128, 6938-6954.	2.0	33
665	Effect of high pressure on thermoelectric performance and electronic structure of SnSe via HPHT. Journal of Alloys and Compounds, 2016, 667, 123-129.	5.5	37
666	Importance of crystal chemistry with interstitial site determining thermoelectric transport properties in pavonite homologue Cu–Bi–S compounds. CrystEngComm, 2016, 18, 1453-1461.	2.6	14
667	Combustion synthesis of Cu 2 SnSe 3 thermoelectric materials. Journal of the European Ceramic Society, 2016, 36, 1407-1415.	5.7	26
668	Electronic structure and thermoelectric properties of p-type half-Heusler compound NbFeSb: a first-principles study. RSC Advances, 2016, 6, 10507-10512.	3.6	42
669	The thermoelectric performance of anisotropic SnSe doped with Na. RSC Advances, 2016, 6, 9112-9116.	3.6	95
670	New insight into the material parameter B to understand the enhanced thermoelectric performance of Mg ₂ Sn _{1â^xâ^y} Ge _x Sb _y . Energy and Environmental Science, 2016, 9, 530-539.	30.8	83
671	Broad temperature plateau for high ZTs in heavily doped p-type SnSe single crystals. Energy and Environmental Science, 2016, 9, 454-460.	30.8	396
672	Unraveling the origins of conduction band valley degeneracies in Mg2Si1â^'xSnx thermoelectrics. Physical Chemistry Chemical Physics, 2016, 18, 939-946.	2.8	12
673	Enhanced thermoelectric properties of p-type Bi 0.5 Sb 1.5 Te 3 bulk alloys by electroless plating with Cu and annealing. Scripta Materialia, 2016, 118, 19-23.	5.2	26
674	Enhanced thermopower in rock-salt SnTe–CdTe from band convergence. RSC Advances, 2016, 6, 32189-32192.	3.6	72
675	Maximizing the thermoelectric performance of topological insulator Bi ₂ Te ₃ films in the few-quintuple layer regime. Nanoscale, 2016, 8, 8855-8862.	5.6	53
676	Pressure enhanced thermoelectric properties in Mg ₂ Sn. RSC Advances, 2016, 6, 31272-31276.	3.6	38
677	Enhanced thermoelectric efficiency of Cu2â^'Se–Cu2S composite by incorporating Cu2S nanoparticles. Ceramics International, 2016, 42, 8395-8401.	4.8	30
678	Key issues in development of thermoelectric power generators: High figure-of-merit materials and their highly conducting interfaces with metallic interconnects. Energy Conversion and Management, 2016, 114, 50-67.	9.2	231
679	Thermoelectric properties of Bi-based Zintl compounds Ca _{1â^x} Yb _x Mg ₂ Bi ₂ . Journal of Materials Chemistry A, 2016. 4. 4312-4320. Thermoelectric Properties of <mml:math <="" td="" xmlns:mml="http://www.w3.org/1998/Math/MathML"><td>10.3</td><td>92</td></mml:math>	10.3	92
680	display="inline"> <mml:mrow><mml:mrow><mml:msub><mml:mrow><mml:mi>Mg</mml:mi></mml:mrow><r stretchy="false">(<mml:mi>Ge</mml:mi><mml:mo>,</mml:mo><mml:mi>Sn</mml:mi><mml:mo)< td=""><td>nml:mrow> Tj ETQq0 0</td><td>mml:mn>2<!--<br-->0 rgBT /Overlo</td></mml:mo)<></r </mml:msub></mml:mrow></mml:mrow>	nml:mrow> Tj ETQq0 0	mml:mn>2 <br 0 rgBT /Overlo
681	xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> 4mml:mi>Z 4mml:mi>TAgl alloying in SnTe boosts the thermoelectric performance via simultaneous valence band convergence and carrier concentration optimization. Journal of Solid State Chemistry, 2016, 242, 43-49.	2.9	59

#	Article	IF	CITATIONS
682	Enhanced Thermoelectric Properties in the Counter-Doped SnTe System with Strained Endotaxial SrTe. Journal of the American Chemical Society, 2016, 138, 2366-2373.	13.7	269
683	Ternary CuSbSe ₂ chalcostibite: facile synthesis, electronic-structure and thermoelectric performance enhancement. Journal of Materials Chemistry A, 2016, 4, 4188-4193.	10.3	69
684	Phase Stability, Crystal Structure, and Thermoelectric Properties of Cu ₁₂ Sb ₄ S _{13–<i>x</i>} Se _{<i>x</i>} Solid Solutions. Chemistry of Materials, 2016, 28, 1781-1786.	6.7	89
685	Prediction of the band structures of Bi2Te3-related binary and Sb/Se-doped ternary thermoelectric materials. Journal of the Korean Physical Society, 2016, 68, 115-120.	0.7	30
686	Enhanced mid-temperature thermoelectric performance of textured SnSe polycrystals made of solvothermally synthesized powders. Journal of Materials Chemistry C, 2016, 4, 2047-2055.	5.5	122
687	High thermoelectric performance of tellurium doped paracostibite. Journal of Materials Chemistry C, 2016, 4, 3094-3100.	5.5	29
688	Effective masses for Laplacians on periodic graphs. Journal of Mathematical Analysis and Applications, 2016, 436, 104-130.	1.0	11
689	In situ nanostructure design leading to a high figure of merit in an eco-friendly stable Mg ₂ Si _{0.30} Sn _{0.70} solid solution. RSC Advances, 2016, 6, 16824-16831.	3.6	17
690	Band engineering and improved thermoelectric performance in M-doped SnTe (M = Mg, Mn, Cd, and Hg). Physical Chemistry Chemical Physics, 2016, 18, 7141-7147.	2.8	86
691	Enhanced thermoelectric performance in the Rashba semiconductor BiTel through band gap engineering. Journal of Physics Condensed Matter, 2016, 28, 085801.	1.8	22
692	Electrochemical recycling of lead from hybrid organic–inorganic perovskites using deep eutectic solvents. Green Chemistry, 2016, 18, 2946-2955.	9.0	62
693	First principles thermodynamical modeling of the binodal and spinodal curves in lead chalcogenides. Physical Chemistry Chemical Physics, 2016, 18, 5005-5011.	2.8	13
694	Enhanced thermoelectric figure of merit in p-type β-Zn ₄ Sb ₃ /Bi _{0.4} Sb _{1.6} Te ₃ nanocomposites. RSC Advances, 2016, 6, 12243-12248.	3.6	28
695	Cu-based thermoelectric materials. Energy Storage Materials, 2016, 3, 85-97.	18.0	247
696	Calculation of dopant solubilities and phase diagrams of X–Pb–Se (X = Br, Na) limited to defects with localized charge. Journal of Materials Chemistry C, 2016, 4, 1769-1775.	5.5	12
697	Modulation doping and energy filtering as effective ways to improve the thermoelectric power factor. Journal of Computational Electronics, 2016, 15, 16-26.	2.5	36
698	Sulfuric acid vapor treatment for enhancing the thermoelectric properties of PEDOT:PSS thin-films. Journal of Materials Science: Materials in Electronics, 2016, 27, 6122-6127.	2.2	58
699	Cr ₂ Ge ₂ Te ₆ : High Thermoelectric Performance from Layered Structure with High Symmetry. Chemistry of Materials, 2016, 28, 1611-1615.	6.7	78

#	ARTICLE	IF	CITATIONS
700	Thermoelectric properties and extremely low lattice thermal conductivity in p-type Bismuth Tellurides by Pb-doping and PbTe precipitation. Journal of Alloys and Compounds, 2016, 671, 538-544.	5.5	34
701	High thermoelectric performance of n-type PbTe1â^'S due to deep lying states induced by indium doping and spinodal decomposition. Nano Energy, 2016, 22, 572-582.	16.0	59
702	First-principles calculations of thermal, electrical, and thermoelectric transport properties of semiconductors. Semiconductor Science and Technology, 2016, 31, 043001.	2.0	51
703	The structure and band gap design of high Si doping level Ag1â^'xGa1â^'xSixSe2 (x=1/2). Journal of Solid State Chemistry, 2016, 238, 21-24.	2.9	16
705	Predicting high thermoelectric performance of ABX ternary compounds NaMgX (X = P, Sb, As) with weak electron–phonon coupling and strong bonding anharmonicity. Journal of Materials Chemistry C, 2016, 4, 3281-3289.	5.5	43
706	Studies on thermoelectric figure of merit of Na-doped p-type polycrystalline SnSe. Journal of Materials Chemistry A, 2016, 4, 1848-1854.	10.3	210
707	Thermoelectric Properties of Fe2VAl and Fe2V0.75M0.25Al (MÂ=ÂMo, Nb, Ta) Alloys: First-Principles Calculations. Journal of Electronic Materials, 2016, 45, 1101-1114.	2.2	16
708	Tellurium as a high-performance elemental thermoelectric. Nature Communications, 2016, 7, 10287.	12.8	369
709	Importance of spin–orbit coupling in power factor calculations for half-Heusler ANiB (A = Ti, Hf, Sc,) Tj ETQqO C	0_rgBT /O	verlock 101
710	High performance thermoelectrics from earth-abundant materials: Enhanced figure of merit in PbS through nanostructuring grain size. Journal of Alloys and Compounds, 2016, 664, 411-416.	5.5	29
711	Predicted thermoelectric properties of olivine-type Fe ₂ GeCh ₄ (Ch  = â€%	₀S, Se and) Tj FTQq0 C
712	Effect of Zn substitution at a Cu site on the transport behavior and thermoelectric properties in Cu ₃ SbSe ₄ . RSC Advances, 2016, 6, 5528-5534.	3.6	31
713	Enhanced thermoelectric performance in p-type polycrystalline SnSe benefiting from texture modulation. Journal of Materials Chemistry C, 2016, 4, 1201-1207.	5.5	125
714	Thermoelectric transport properties of AgmPb100BimSe100+2m system. Journal of Materials Science: Materials in Electronics, 2016, 27, 2712-2717.	2.2	8
715	Reduction of thermal conductivity through nanostructuring enhances the thermoelectric figure of merit in Ge _{1â^'x} Bi _x Te. Inorganic Chemistry Frontiers, 2016, 3, 125-132.	6.0	128
716	Thermoelectric properties of materials near the band crossing line in Mg2Sn–Mg2Ge–Mg2Si system. Acta Materialia, 2016, 103, 633-642.	7.9	104
717	Coexisting transport behaviors in quasibinary Cd (3â^'3m) Ga 2m Te 3 (m = 0.75–0.98) system with structural vacancy and cationic interdiffusion. Scripta Materialia, 2016, 113, 194-197.	5.2	1
718	Single parabolic band behavior of thermoelectric p-type CuGaTe ₂ . Journal of Materials Chemistry C, 2016, 4, 209-214.	5.5	94

#	Article	IF	CITATIONS
719	Ultrahigh power factor and thermoelectric performance in hole-doped single-crystal SnSe. Science, 2016, 351, 141-144.	12.6	1,594
720	Recent progress in half-Heusler thermoelectric materials. Materials Research Bulletin, 2016, 76, 107-112.	5.2	157
721	Power generation from nanostructured PbTe-based thermoelectrics: comprehensive development from materials to modules. Energy and Environmental Science, 2016, 9, 517-529.	30.8	287
722	Effects of antimony content in MgAg0.97Sbx on output power and energy conversion efficiency. Acta Materialia, 2016, 102, 17-23.	7.9	45
723	Low-cost, abundant binary sulfides as promising thermoelectric materials. Materials Today, 2016, 19, 227-239.	14.2	257
724	Large linear magnetoresistance in topological crystalline insulator Pb0.6Sn0.4Te. Journal of Solid State Chemistry, 2016, 233, 199-204.	2.9	16
725	Spin-dependent thermoelectric figure of merit in a quantum dot. Physics Letters, Section A: General, Atomic and Solid State Physics, 2016, 380, 277-281.	2.1	5
726	High thermoelectric properties of PbTe–Sm2Se3 composites. Scripta Materialia, 2016, 112, 144-147.	5.2	14
727	Enhanced low temperature thermoelectric performance and weakly temperature-dependent figure-of-merit values of PbTe–PbSe solid solutions. Journal of Alloys and Compounds, 2016, 658, 885-890.	5.5	14
728	Preparation and electrical transport properties of VIII-type Sn-based single-crystal clathrates (Eu/Ba)8Ga16Sn30. Materials Technology, 2017, 32, 105-108.	3.0	5
729	Improving thermoelectric performance of p-type Ag-doped Mg2Si0.4Sn0.6 prepared by unique melt spinning method. Applied Thermal Engineering, 2017, 111, 1396-1400.	6.0	29
730	Thermoelectric properties of orthorhombic group IV–VI monolayers from the first-principles calculations. Journal of Applied Physics, 2017, 121, .	2.5	89
731	Scientific and Technical Challenges in Thermal Transport and Thermoelectric Materials and Devices. ECS Journal of Solid State Science and Technology, 2017, 6, N3058-N3064.	1.8	19
732	Multiâ€Scale Microstructural Thermoelectric Materials: Transport Behavior, Nonâ€Equilibrium Preparation, and Applications. Advanced Materials, 2017, 29, 1602013.	21.0	234
733	Influence of Thermally Activated Solid-State Crystal-to-Crystal Structural Transformation on the Thermoelectric Properties of the Ca _{5–<i>x</i>} Yb _{<i>x</i>} Al ₂ Sb ₆ (1.0 ≤i>x â‰☎.0) System. Chemistry of Materials, 2017, 29, 1384-1395.	6.7	20
734	Resonant level-induced high thermoelectric response in indium-doped GeTe. NPG Asia Materials, 2017, 9, e343-e343.	7.9	170
735	Theoretical investigation on thermoelectric properties of Cu-based chalcopyrite compounds. Physical Review B, 2017, 95, .	3.2	19
736	Titanium Trisulfide Monolayer as a Potential Thermoelectric Material: A First-Principles-Based Boltzmann Transport Study. ACS Applied Materials & Interfaces, 2017, 9, 2509-2515.	8.0	99

	CITATION REI	PORT	
#	Article	IF	CITATIONS
737	Discovery of high-performance low-cost n-type Mg3Sb2-based thermoelectric materials with multi-valley conduction bands. Nature Communications, 2017, 8, 13901.	12.8	415
738	Enhanced thermoelectric performance of a chalcopyrite compound CuIn3Se5â^xTex (x = 0~0.5) through crystal structure engineering. Scientific Reports, 2017, 7, 40224.	¹ 3.3	17
739	Strategy to optimize the overall thermoelectric properties of SnTe via compositing with its property-counter CuInTe2. Acta Materialia, 2017, 125, 542-549.	7.9	56
740	Computational prediction of high thermoelectric performance in p-type half-Heusler compounds with low band effective mass. Physical Chemistry Chemical Physics, 2017, 19, 4411-4417.	2.8	88
741	Valleytronics of Ill–V solid solutions for thermoelectric application. RSC Advances, 2017, 7, 7310-7314.	3.6	6
742	Interstitial Defects Improving Thermoelectric SnTe in Addition to Band Convergence. ACS Energy Letters, 2017, 2, 563-568.	17.4	123
743	Simultaneous improvement of power factor and thermal conductivity via Ag doping in p-type Mg ₃ Sb ₂ thermoelectric materials. Journal of Materials Chemistry A, 2017, 5, 4932-4939.	10.3	105
744	Enhanced thermoelectric performance of SnSe doped with layered MoS 2 /graphene. Materials Letters, 2017, 193, 146-149.	2.6	33
745	Variations of thermoelectric performance by electric fields in bilayer MX ₂ (M = W, Mo; X) Tj ETQq0 0	0.rgBT /C)verlock 10 1 19
746	High pressure synthesis and thermoelectric properties of polycrystalline Bi2Se3. Journal of Alloys and Compounds, 2017, 700, 223-227.	5.5	37
747	Ultrahigh Thermoelectric Figure of Merit and Enhanced Mechanical Stability of <i>p</i> -type AgSb _{1–<i>x</i>} Zn _{<i>x</i>} Te ₂ . ACS Energy Letters, 2017, 2, 349-356.	17.4	76
748	Nanocomposites from Solutionâ€Synthesized PbTeâ€BiSbTe Nanoheterostructure with Unity Figure of Merit at Lowâ€Medium Temperatures (500–600 K). Advanced Materials, 2017, 29, 1605140.	21.0	70
749	Highly Enhanced Thermoelectric Properties of Bi/Bi ₂ S ₃ Nanocomposites. ACS Applied Materials & Interfaces, 2017, 9, 4828-4834.	8.0	107
750	Improvement of thermoelectric properties and their correlations with electron effective mass in Cu1.98SxSe1â ^{~'} x. Scientific Reports, 2017, 7, 40436.	3.3	31
	Thermoelectric and thermal transport properties of complex oxide thin films, heterostructures and		

751	superlattices. Journal of Materials Research, 2017, 32, 183-203.	2.6	20
752	Enhancements of thermoelectric performance utilizing self-assembled monolayers in semiconductors. Journal of Physics and Chemistry of Solids, 2017, 104, 228-232.	4.0	0
753	Electronic and thermoelectric properties of the group-III nitrides (BN, AlN and GaN) atomic sheets under biaxial strains. Computational Materials Science, 2017, 130, 232-241.	3.0	35
754	Ideal Strength and Deformation Mechanism in High-Efficiency Thermoelectric SnSe. Chemistry of Materials, 2017, 29, 2382-2389.	6.7	50

#	Article	IF	CITATIONS
756	The Relation between the Electronic Structure and Thermoelectric Properties for Zintl Compounds Mg ₃ Sb ₂ . Journal of the Physical Society of Japan, 2017, 86, 024601.	1.6	17
757	Mg vacancy and dislocation strains as strong phonon scatterers in Mg 2 Si 1â°'x Sb x thermoelectric materials. Nano Energy, 2017, 34, 428-436.	16.0	116
758	Electronic origin of the high thermoelectric performance of GeTe among the p-type group IV monotellurides. NPG Asia Materials, 2017, 9, e353-e353.	7.9	223
759	Synergistic Strategy to Enhance the Thermoelectric Properties of CoSbS _{1–<i>x</i>} Se _{<i>x</i>} Compounds via Solid Solution. ACS Applied Materials & Interfaces, 2017, 9, 10595-10601.	8.0	38
760	Effect of secondary phases on thermoelectric properties of Cu 2 SnSe 3. Ceramics International, 2017, 43, 7002-7010.	4.8	29
761	Panoscopic approach for high-performance Te-doped skutterudite. NPG Asia Materials, 2017, 9, e352-e352.	7.9	44
762	Thermoelectric SnS and SnS-SnSe solid solutions prepared by mechanical alloying and spark plasma sintering: Anisotropic thermoelectric properties. Scientific Reports, 2017, 7, 43262.	3.3	71
763	Rock-salt-type nanoprecipitates lead to high thermoelectric performance in undoped polycrystalline SnSe. RSC Advances, 2017, 7, 8258-8263.	3.6	40
764	Small compressive strain-induced semiconductor–metal transition and tensile strain-enhanced thermoelectric properties in monolayer PtTe ₂ . Semiconductor Science and Technology, 2017, 32, 055004.	2.0	30
765	High thermopower and potential thermoelectric properties of crystalline LiH and NaH. Physical Review B, 2017, 95, .	3.2	26
766	Promoting SnTe as an Ecoâ€Friendly Solution for pâ€₽bTe Thermoelectric via Band Convergence and Interstitial Defects. Advanced Materials, 2017, 29, 1605887.	21.0	317
767	The Influence of Nanoscale Heterostructures on the Thermoelectric Properties of Bi-substituted TI5Te3. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2017, 643, 447-454.	1.2	6
768	An enhanced Seebeck coefficient and high thermoelectric performance in p-type In and Mg co-doped Sn _{1â^'x} Pb _x Te via the co-adjuvant effect of the resonance level and heavy hole valence band. Journal of Materials Chemistry C, 2017, 5, 5737-5748.	5.5	54
769	Heavy hole effect on the thermoelectric properties of highly doped p-type lead telluride. Journal of Applied Physics, 2017, 121, 025704.	2.5	4
770	Thermoelectric transport properties of polycrystalline SnSe alloyed with PbSe. Applied Physics Letters, 2017, 110, .	3.3	52
771	Enhancing thermoelectric performance of n-type PbSe via additional meso-scale phonon scattering. Inorganic Chemistry Frontiers, 2017, 4, 719-726.	6.0	31
772	Substitutional defects enhancing thermoelectric CuGaTe ₂ . Journal of Materials Chemistry A, 2017, 5, 5314-5320.	10.3	87
773	Enhanced Average Thermoelectric Figure of Merit of the PbTe–SrTe–MnTe Alloy. ACS Applied Materials & Interfaces, 2017, 9, 8729-8736.	8.0	38

#	Article	IF	CITATIONS
774	High thermoelectric power factor in two-dimensional crystals of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>Mo </mml:mi> <mml:msub> <mml:m mathvariant="normal">S <mml:mn>2 </mml:mn> </mml:m </mml:msub> </mml:mrow> . Physical Review B, 2017, 95, .</mml:math 	¹ⁱ 3.2	201
775	Thermoelectric silicides: A review. Japanese Journal of Applied Physics, 2017, 56, 05DA04.	1.5	129
776	Enhanced thermoelectric property in superionic conductor Bi-doped Cu1.8S. Journal of Alloys and Compounds, 2017, 708, 169-174.	5.5	27
777	Compromise and Synergy in Highâ€Efficiency Thermoelectric Materials. Advanced Materials, 2017, 29, 1605884.	21.0	1,098
778	New tricks for optimizing thermoelectric materials. Current Opinion in Green and Sustainable Chemistry, 2017, 4, 23-28.	5.9	20
779	Effect of Fe-Ru doping in the electronic and thermoelectric properties of new filled skutterudite Ba(Fe,Ru)4As12. Journal of Applied Physics, 2017, 121, .	2.5	5
780	Enhanced electrical properties of stoichiometric Bi0.5Sb1.5Te3 film with high-crystallinity via layer-by-layer in-situ Growth. Nano Energy, 2017, 33, 55-64.	16.0	64
781	Tuning the carrier scattering mechanism to effectively improve the thermoelectric properties. Energy and Environmental Science, 2017, 10, 799-807.	30.8	326
782	Structural optimization for thermoelectric properties in Cu-Bi-S pavonite compounds. Journal of Alloys and Compounds, 2017, 704, 282-288.	5.5	8
783	Lattice Dislocations Enhancing Thermoelectric PbTe in Addition to Band Convergence. Advanced Materials, 2017, 29, 1606768.	21.0	365
784	Recent advances in oxide thermoelectric materials and modules. Vacuum, 2017, 146, 356-374.	3.5	146
785	Intramolecularly-stabilized Group 14 Alkoxides - Promising Precursors for the Synthesis of Group 14-Chalcogenides by Hot-Injection Method. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2017, 643, 676-682.	1.2	6
786	Ultrahigh Average Thermoelectric Figure of Merit, Low Lattice Thermal Conductivity and Enhanced Microhardness in Nanostructured (GeTe) _{<i>x</i>} (AgSbSe ₂) _{100â^'<i>x</i>} . Chemistry - A European Journal, 2017, 23, 7438-7443.	3.3	60
787	Novel p-type thermoelectric materials Cu ₃ MCh ₄ (M = V, Nb, Ta; Ch = Se, Te): high band-degeneracy. Journal of Materials Chemistry A, 2017, 5, 9785-9792.	10.3	26
788	Acoustic phonon softening and reduced thermal conductivity in Mg2Si1â^' <i>x</i> Sn <i>x</i> solid solutions. Applied Physics Letters, 2017, 110, .	3.3	21
789	High Thermoelectric Performance in Electron-Doped AgBi ₃ S ₅ with Ultralow Thermal Conductivity. Journal of the American Chemical Society, 2017, 139, 6467-6473.	13.7	160
790	Insights into the thermoelectric properties of SnSe from ab initio calculations. Physical Chemistry Chemical Physics, 2017, 19, 12804-12815.	2.8	42
791	Simultaneous optimization of electrical and thermal transport properties of Bi0.5Sb1.5Te3 thermoelectric alloy by twin boundary engineering. Nano Energy, 2017, 37, 203-213.	16.0	164

	CITATION REI	PORT	
Article		IF	CITATIONS
Effect of on-site Coulomb interaction on electronic and transport properties of 100% CoMnVAs. Journal of Magnetism and Magnetic Materials, 2017, 435, 173-178.	spin polarized	2.3	48
High anisotropic thermoelectric effect in palladium phosphide sulphide. Physica Status Basic Research, 2017, 254, .	s Solidi (B):	1.5	9
Manipulating Band Convergence and Resonant State in Thermoelectric Material SnTe Codoping. ACS Energy Letters, 2017, 2, 1203-1207.	by Mn–In	17.4	98
Engineering band gap and electronic transport in organic–inorganic halide perovskit superlattices. Nanoscale, 2017, 9, 8600-8607.	tes by	5.6	26
Thermoelectric properties of \hat{I}^2 -As, Sb and Bi monolayers. RSC Advances, 2017, 7, 245	37-24546.	3.6	59
Understanding the electronic and phonon transport properties of a thermoelectric ma a first-principles study. Physical Chemistry Chemical Physics, 2017, 19, 12913-12920.	terial BiCuSeO:	2.8	41
Enhancing the thermoelectric performance of SnSe _{1â^'x} Te _x through band engineering. Journal of Materials Chemistry A, 2017, 5, 10713-10721.	nanoplates	10.3	94
Sb induces both doping and precipitation for improving the thermoelectric performant. Te. Inorganic Chemistry Frontiers, 2017, 4, 1066-1072.	ce of elemental	6.0	45
Thermoelectric properties of topological insulator BaSn2. Journal Physics D: Applied Ph 015101.	ıysics, 2017, 50,	2.8	18
Realizing the High Thermoelectric Performance of GeTe by Sb-Doping and Se-Alloying. Materials, 2017, 29, 605-611.	Chemistry of	6.7	226
n-type Bi-doped PbTe Nanocubes with Enhanced Thermoelectric Performance. Nano En 105-112.	nergy, 2017, 31,	16.0	113
Possible Mechanism for Hole Conductivity in Cu–As–Te Thermoelectric Glasses: A Study. Journal of Physical Chemistry C, 2017, 121, 14045-14050.	XANES and EXAFS	3.1	24
Low Thermal Conductivity and High Thermoelectric Performance in (GeTe) _{1–2<i>x</i>} (GeSe) _{<i>x</i>} (GeS) _{<i>x</i> between Solid Solution and Phase Separation. Journal of the American Chemical Socie 9382-9391.}		13.7	190
Partial indium solubility induces chemical stability and colossal thermoelectric figure o Cu ₂ Se. Energy and Environmental Science, 2017, 10, 1668-1676.	f merit in	30.8	272

805	Partial indium solubility induces chemical stability and colossal thermoelectric figure of merit in Cu ₂ Se. Energy and Environmental Science, 2017, 10, 1668-1676.	30.8	272
806	Facile rapid synthesis of a nanocrystalline Cu ₂ Te multi-phase transition material and its thermoelectric performance. RSC Advances, 2017, 7, 22558-22566.	3.6	33
807	High thermoelectric performance due to nano-inclusions and randomly distributed interface potentials in N-type (PbTe _{0.93â^x} Se _{0.07} Cl _x) _{0.93a',sub>(PbS)_{0.07}composi lournal of Materials Chemistry A. 2017. 5. 13535-13543.}	10.3 tes.	27
808	Improving Thermoelectric Performance of αâ€MgAgSb by Theoretical Band Engineering Design. Advanced Energy Materials, 2017, 7, 1700076.	19.5	46
809	Subtle Roles of Sb and S in Regulating the Thermoelectric Properties of Nâ€Type PbTe to High Performance. Advanced Energy Materials, 2017, 7, 1700099.	19.5	118

#

792

794

796

798

800

802

804

\sim		_		
Сіта	NTIO	N R	FPC	DRT

#	Article	IF	CITATIONS
810	Carrier density control and enhanced thermoelectric performance of Bi and Cu co-doped GeTe. APL Materials, 2017, 5, 056103.	5.1	34
811	Boosting the Thermoelectric Performance of (Na,K)-Codoped Polycrystalline SnSe by Synergistic Tailoring of the Band Structure and Atomic-Scale Defect Phonon Scattering. Journal of the American Chemical Society, 2017, 139, 9714-9720.	13.7	168
812	2D Black Phosphorus for Energy Storage and Thermoelectric Applications. Small, 2017, 13, 1700661.	10.0	139
813	Effect of lattice strain on nanomaterials in energy applications: A perspective on experiment and theory. International Journal of Hydrogen Energy, 2017, 42, 16064-16107.	7.1	12
814	Enhancement of the thermoelectric performance of bulk SnTe alloys via the synergistic effect of band structure modification and chemical bond softening. Journal of Materials Chemistry A, 2017, 5, 14165-14173.	10.3	65
815	Dataset on the electronic and thermal transport properties of quaternary compounds of (PbTe)0.95â^'x(PbSe)x(PbS)0.05. Data in Brief, 2017, 13, 233-241.	1.0	1
816	Ultrawide Thermo-optic Tuning of PbTe Meta-Atoms. Nano Letters, 2017, 17, 3940-3945.	9.1	73
817	Theoretical and experimental investigations of the thermoelectric properties of Al-, Bi- and Sn-doped ZnO. Materials Science in Semiconductor Processing, 2017, 66, 247-252.	4.0	35
818	Effect of MultiSubstitution on the Thermoelectric Performance of the Ca _{11â^'<i>x</i>} Yb _{<i>x</i>} Sb _{10â^'<i>y</i>} Ge _{<i>z</i>} (0 â%	ĵ¢Tj ETQq(≇.6	0 0 0 rgBT /O
	Chemistry, 2017, 56, 7099-7110.		
819	Solubility limits in quaternary SnTe-based alloys. RSC Advances, 2017, 7, 24747-24753.	3.6	14
820	First principles study of electronic, phonon and elastic properties of rock-salt-phase MTe (MÂ=ÂMg, Ca,) Tj ETQq	0 0 0 rgBT 2.1 rgBT	/Qverlock 10
821	Exploring the PbS–Bi ₂ S ₃ Series for Next Generation Energy Conversion Materials. Chemistry of Materials, 2017, 29, 5156-5167.	6.7	32
822	Extremely Low Lattice Thermal Conductivity and Point Defect Scattering of Phonons in Ag-doped (SnSe) _{1–<i>x</i>} (SnS) _{<i>x</i>} Compounds. Chemistry of Materials, 2017, 29, 5344-5352.	6.7	82
823	Transport properties of spin polarised quaternary CoMnVAs alloy. AIP Conference Proceedings, 2017, , .	0.4	0
824	Enhanced thermoelectric performance of BiCuSeO by increasing Seebeck coefficient through magnetic ion incorporation. Journal of Materials Chemistry A, 2017, 5, 13392-13399.	10.3	39
825	Grain size optimization for high-performance polycrystalline SnSe thermoelectrics. Journal of Materials Chemistry A, 2017, 5, 14053-14060.	10.3	53
826	Low-temperature thermoelectric properties of Pb doped Cu 2 SnSe 3. Physica B: Condensed Matter, 2017, 520, 7-12.	2.7	17

#	Article	IF	CITATIONS
828	Manifestation of the structural stability of Mg-doped Zn4Sb3 via atomic fine structure investigation. Solid State Communications, 2017, 261, 26-31.	1.9	2
829	High temperature thermoelectric properties evolution of Pb1-Sn Te based alloys. Journal of Alloys and Compounds, 2017, 722, 33-38.	5.5	72
830	Cu S superionic compounds: Electronic structure and thermoelectric performance enhancement. Journal of Alloys and Compounds, 2017, 722, 17-24.	5.5	21
831	Enhanced thermoelectric properties of SnSe thin films grown by pulsed laser glancing-angle deposition. Journal of Materiomics, 2017, 3, 293-298.	5.7	39
832	Line patterning of anisotropic spin chains by polarized laser for application in micro-thermal management. Applied Physics Letters, 2017, 110, 191902.	3.3	4
833	Strain-induced electronic band convergence: effect on the Seebeck coefficient of Mg2Si for thermoelectric applications. Journal of Molecular Modeling, 2017, 23, 130.	1.8	7
834	Recent progress in thermoelectric nanocomposites based on solution-synthesized nanoheterostructures. Nano Research, 2017, 10, 1498-1509.	10.4	6
835	The role of excess Sn in Cu ₄ Sn ₇ S ₁₆ for modification of the band structure and a reduction in lattice thermal conductivity. Journal of Materials Chemistry C, 2017, 5, 4206-4213.	5.5	22
836	Deformation mechanisms in high-efficiency thermoelectric layered Zintl compounds. Journal of Materials Chemistry A, 2017, 5, 9050-9059.	10.3	31
837	High thermoelectric performance in pseudo quaternary compounds of (PbTe)0.95â^'x(PbSe)x(PbS)0.05 by simultaneous band convergence and nano precipitation. Acta Materialia, 2017, 131, 98-109.	7.9	34
838	Ultrahigh Thermoelectric Performance in SrNb _{0.2} Ti _{0.8} O ₃ Oxide Films at a Submicrometer-Scale Thickness. ACS Energy Letters, 2017, 2, 915-921.	17.4	21
839	Thermoelectric properties of AMg ₂ X ₂ , AZn ₂ Sb ₂ (A =) Tj ETQ Materials Chemistry A, 2017, 5, 8499-8509.	q1 1 0.784 10.3	4314 rgBT (C 83
840	Eco-friendly high-performance silicide thermoelectric materials. National Science Review, 2017, 4, 611-626.	9.5	71
841	Effective mass and Fermi surface complexity factor from ab initio band structure calculations. Npj Computational Materials, 2017, 3, .	8.7	145
842	An insight into β-Zn4Sb3 from its crystal structure, thermoelectric performance, thermal stability and graded material. Materials Today Energy, 2017, 3, 72-83.	4.7	24
843	On the Lorenz number of multiband materials. Physical Review B, 2017, 95, .	3.2	90
844	Realizing a thermoelectric conversion efficiency of 12% in bismuth telluride/skutterudite segmented modules through full-parameter optimization and energy-loss minimized integration. Energy and Environmental Science, 2017, 10, 956-963.	30.8	274
845	Temperature and pressure coefficients of iron resonant impurity level in PbTe. Journal of Applied Physics, 2017, 121, .	2.5	8

#	Article	IF	CITATIONS
846	Minority Carrier Blocking to Enhance the Thermoelectric Performance of Solution-Processed Bi _{<i>x</i>} Sb _{2–<i>x</i>} Te ₃ Nanocomposites via a Liquid-Phase Sintering Process. ACS Applied Materials & Interfaces, 2017, 9, 12501-12510.	8.0	46
847	Effects of Sb Substitution by Sn on the Thermoelectric Properties of ZrCoSb. Journal of Electronic Materials, 2017, 46, 3076-3082.	2.2	19
848	Scalable solution-based synthesis of component-controllable ultrathin PbTe1â^'xSexnanowires with high n-type thermoelectric performance. Journal of Materials Chemistry A, 2017, 5, 2876-2884.	10.3	26
849	Earth-Abundant and Non-Toxic SiX (X = S, Se) Monolayers as Highly Efficient Thermoelectric Materials. Journal of Physical Chemistry C, 2017, 121, 123-128.	3.1	41
850	A review on heat sink for thermo-electric power generation: Classifications and parameters affecting performance. Energy Conversion and Management, 2017, 134, 260-277.	9.2	136
851	Enhanced thermoelectric performance of lanthanum filled CoSb 3 synthesized under high pressure. Journal of Alloys and Compounds, 2017, 699, 751-755.	5.5	25
852	Understanding the thermoelectric properties of LaCoO ₃ compound. Philosophical Magazine, 2017, 97, 451-463.	1.6	39
853	Electronic structure, vibrational and thermoelectric properties of AgTaO3: A first-principles study. Journal of Alloys and Compounds, 2017, 696, 1168-1173.	5.5	11
854	Large-scale colloidal synthesis of Cu ₅ FeS ₄ compounds and their application in thermoelectrics. Journal of Materials Chemistry C, 2017, 5, 301-308.	5.5	29
855	Resonant doping in BiCuSeO thermoelectrics from first principles. Journal of Materials Chemistry A, 2017, 5, 931-936.	10.3	15
856	Electronic and Optical Properties of Single Wall Carbon Nanotubes. Topics in Current Chemistry, 2017, 375, 7.	5.8	15
857	ZnTe Alloying Effect on Enhanced Thermoelectric Properties of p-Type PbTe. ACS Applied Materials & Interfaces, 2017, 9, 3766-3773.	8.0	23
858	Vacancy-induced dislocations within grains for high-performance PbSe thermoelectrics. Nature Communications, 2017, 8, 13828.	12.8	360
859	Intrinsic localized mode and low thermal conductivity of PbSe. Physical Review B, 2017, 95, .	3.2	84
860	A Chemical Understanding of the Band Convergence in Thermoelectric CoSb ₃ Skutterudites: Influence of Electron Population, Local Thermal Expansion, and Bonding Interactions. Chemistry of Materials, 2017, 29, 1156-1164.	6.7	50
861	The crucial role of selenium for sulphur substitution in the structural transitions and thermoelectric properties of Cu ₅ FeS ₄ bornite. Dalton Transactions, 2017, 46, 2174-2183.	3.3	45
862	Cu ₈ GeSe ₆ -based thermoelectric materials with an argyrodite structure. Journal of Materials Chemistry C, 2017, 5, 943-952.	5.5	93
863	Defect chemistry and enhancement of thermoelectric performance in Ag-doped Sn _{1+l´â^`x} Ag _x Te. Journal of Materials Chemistry A, 2017, 5, 2235-2242.	10.3	54

#	Article	IF	CITATIONS
864	Promising thermoelectric performance in van der Waals layered SnSe2. Materials Today Physics, 2017, 3, 127-136.	6.0	95
865	Insight into mechanical properties and thermoelectric efficiency of Zr2CoZ (Z  =  Si, Ge) Heusler Materials Research Express, 2017, 4, 116307.	alloys.	18
866	Sc solubility in p-type half-Heusler (Ti1-Sc)NiSn thermoelectric alloys. Journal of Alloys and Compounds, 2017, 729, 446-452.	5.5	31
867	Cobalt-doping in Cu ₂ SnS ₃ : enhanced thermoelectric performance by synergy of phase transition and band structure modification. Journal of Materials Chemistry A, 2017, 5, 23267-23275.	10.3	78
868	Simultaneous Optimization of Carrier Concentration and Alloy Scattering for Ultrahigh Performance GeTe Thermoelectrics. Advanced Science, 2017, 4, 1700341.	11.2	151
869	Strain-induced thermoelectric performance enhancement of monolayer ZrSe ₂ . RSC Advances, 2017, 7, 47243-47250.	3.6	70
870	Exceptional Thermoelectric Properties of Layered GeAs ₂ . Chemistry of Materials, 2017, 29, 9300-9307.	6.7	80
871	Tuned thermoelectric transport properties of Co2.0Sb1.6Se2.4 and Co2.0Sb1.5M0.1Se2.4 (M=Zn, Sn): Compounds with high phonon scattering. Journal of Alloys and Compounds, 2017, 729, 303-312.	5.5	5
872	Photoemission study of the electronic structure of valence band convergent SnSe. Physical Review B, 2017, 96, .	3.2	30
873	Promising Thermoelectric Ag _{5â^î^} Te ₃ with Intrinsic Low Lattice Thermal Conductivity. ACS Energy Letters, 2017, 2, 2470-2477.	17.4	54
874	Ecoâ€Friendly SnTe Thermoelectric Materials: Progress and Future Challenges. Advanced Functional Materials, 2017, 27, 1703278.	14.9	312
875	High Thermoelectric Performance of New Rhombohedral Phase of GeSe stabilized through Alloying with AgSbSe ₂ . Angewandte Chemie, 2017, 129, 14301-14306.	2.0	19
876	Advances in thermoelectric materials research: Looking back and moving forward. Science, 2017, 357, .	12.6	1,613
877	More than half reduction in price per watt of thermoelectric device without increasing the thermoelectric figure of merit of materials. Applied Energy, 2017, 205, 1459-1466.	10.1	18
878	High Thermoelectric Performance of Ag9GaSe6 Enabled by Low Cutoff Frequency of Acoustic Phonons. Joule, 2017, 1, 816-830.	24.0	195
879	The Crystal Structures of Pb ₅ Sb ₄ S ₁₁ (Boulangerite) – A Phase Transition Explains Seemingly Contradictory Structure Models. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2017, 643, 1531-1542.	1.2	4
881	Thermal conductivity of thermoelectric material \hat{l}^2 -Cu2Se: Implications on phonon thermal transport. Applied Physics Letters, 2017, 111, .	3.3	9
882	Enhancing room temperature thermoelectric performance of n -type polycrystalline bismuth-telluride-based alloys via Ag doping and hot deformation. Materials Today Physics, 2017, 2, 62-68.	6.0	76

		15	Circuration
#		IF	CITATIONS
883	High thermoelectric performance and low thermal conductivity in Cu2â^'yS1/3Se1/3Te1/3 liquid-like materials with nanoscale mosaic structures. Nano Energy, 2017, 42, 43-50.	16.0	73
884	Analysis of magneto-electronic, thermodynamic and thermoelectric properties of ferromagnetic CoFeCrAl alloy. Materials Research Express, 2017, 4, 116103.	1.6	8
885	Texturing degree boosts thermoelectric performance of silver-doped polycrystalline SnSe. NPG Asia Materials, 2017, 9, e426-e426.	7.9	49
886	Superstrengthening <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi>Bi</mml:mi></mml:mrow><mml:mn>2through Nanotwinning. Physical Review Letters, 2017, 119, 085501.</mml:mn></mml:msub></mml:mrow></mml:math>	m π æ/mm	l:msub> <mm< td=""></mm<>
887	Ti based half Heusler compounds: A new on the screen with robustic thermoelectric performance. Journal of Alloys and Compounds, 2017, 727, 1171-1177.	5.5	28
888	Sodium doped polycrystalline SnSe: High pressure synthesis and thermoelectric properties. Journal of Alloys and Compounds, 2017, 727, 1014-1019.	5.5	44
889	Thermoelectric power factor of Bi-Sb-Te and Bi-Te-Se alloys and doping strategy: First-principles study. Journal of Alloys and Compounds, 2017, 727, 1067-1075.	5.5	16
890	Single and double-doping effects on the thermoelectric properties of two Zintl compounds: Eu ₁₁ Bi _{8.07(2)} Sn _{1.93} and Eu _{10.74(2)} K _{0.26} Bi _{9.14(2)} Sn _{0.86} . Dalton Transactions, 2017. 46. 11840-11850.	3.3	10
891	Enhanced thermoelectric and mechanical properties of p-type skutterudites with in situ formed Fe ₃ Si nanoprecipitate. Inorganic Chemistry Frontiers, 2017, 4, 1697-1703.	6.0	21
892	Extraordinary Thermoelectric Performance Realized in nâ€īype PbTe through Multiphase Nanostructure Engineering. Advanced Materials, 2017, 29, 1703148.	21.0	209
893	Tuning Thermal Transport in Chainâ€Oriented Conducting Polymers for Enhanced Thermoelectric Efficiency: A Computational Study. Advanced Functional Materials, 2017, 27, 1702847.	14.9	62
894	Effects of topological edge states on the thermoelectric properties of Bi nanoribbons. Physics Letters, Section A: General, Atomic and Solid State Physics, 2017, 381, 3167-3172.	2.1	3
895	Manipulation of ionized impurity scattering for achieving high thermoelectric performance in n-type Mg ₃ Sb ₂ -based materials. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 10548-10553.	7.1	267
896	High Thermoelectric Performance of New Rhombohedral Phase of GeSe stabilized through Alloying with AgSbSe ₂ . Angewandte Chemie - International Edition, 2017, 56, 14113-14118.	13.8	68
897	Synthesis and characteristics of PbTe1â´`xSex thin films formed via electrodeposition. Metals and Materials International, 2017, 23, 1056-1061.	3.4	5
898	Enhancing thermoelectric performance of Cu ₂ Se by doping Te. Physical Chemistry Chemical Physics, 2017, 19, 27664-27669.	2.8	30
899	Optimum electronic structures for high thermoelectric figure of merit within several isotropic elastic scattering models. Scientific Reports, 2017, 7, 10104.	3.3	8
900	Hydrothermal synthesis of SnQ (<i>Q</i> = Te, Se, S) and their thermoelectric properties. Nanotechnology, 2017, 28, 455707.	2.6	24

#	Article	IF	Citations
901	Topological insulators for thermoelectrics. Npj Quantum Materials, 2017, 2, .	5.2	143
902	Enhancement in thermoelectric performance of n-type Pb-deficit Pb-Sb-Te alloys. Journal of Alloys and Compounds, 2017, 729, 198-202.	5.5	23
903	Significant enhancement of figure-of-merit in carbon-reinforced Cu2Se nanocrystalline solids. Nano Energy, 2017, 41, 164-171.	16.0	103
904	Thermoelectric Properties of SnS with Na-Doping. ACS Applied Materials & Interfaces, 2017, 9, 34033-34041.	8.0	118
905	Superparamagnetic enhancement of thermoelectric performance. Nature, 2017, 549, 247-251.	27.8	472
906	The influence of lattice dynamics on the electronic spectrum of CoSb ₃ skutterudite. Journal of Materials Chemistry C, 2017, 5, 10185-10190.	5.5	4
907	Giant Pressureâ€Induced Enhancement of Seebeck Coefficient and Thermoelectric Efficiency in SnTe. ChemPhysChem, 2017, 18, 3315-3319.	2.1	8
908	Flexible thermoelectric power generation system based on rigid inorganic bulk materials. Applied Energy, 2017, 206, 649-656.	10.1	87
909	Effects of Mn substitution on thermoelectric properties of Culn 1â^'x Mn x Te 2. Chinese Physics B, 2017, 26, 097201.	1.4	6
910	Advances in Environment-Friendly SnTe Thermoelectrics. ACS Energy Letters, 2017, 2, 2349-2355.	17.4	109
911	Thermoelectric performance of SnTe with ZnO carrier compensation, energy filtering, and multiscale phonon scattering. Journal of the American Ceramic Society, 2017, 100, 5723-5730.	3.8	44
912	Large Voltage Generation of Flexible Thermoelectric Nanocrystal Thin Films by Finger Contact. Advanced Energy Materials, 2017, 7, 1700972.	19.5	31
913	New trends, strategies and opportunities in thermoelectric materials: A perspective. Materials Today Physics, 2017, 1, 50-60.	6.0	319
914	Effects of sintering on the microstructure and electrical properties of ZnO-based thermoelectric materials. Materials and Design, 2017, 132, 479-485.	7.0	29
915	Direct Observation of Inherent Atomicâ€Scale Defect Disorders responsible for Highâ€Performance Ti _{1â^'} <i>_x</i> Hf <i>_x</i> NiSn _{1â^²} <i>_y</i> Sb <i>Halfâ€Heusler Thermoelectric Alloys. Advanced Materials, 2017, 29, 1702091.</i>	<subxy<td>ub49(i></td></s	ub49(i>
917	Recent progress and future challenges on thermoelectric Zintl materials. Materials Today Physics, 2017, 1, 74-95.	6.0	275
918	Ultrahigh thermoelectric performance in Cu ₂ Se-based hybrid materials with highly dispersed molecular CNTs. Energy and Environmental Science, 2017, 10, 1928-1935.	30.8	298
919	Enhanced thermoelectric performance of heavy-fermion YbAl3 via multi-scale microstructures. Journal of Alloys and Compounds, 2017, 725, 1297-1303.	5.5	6

#	Article	IF	CITATIONS
920	Enhancing Thermoelectric Performance of TiNiSn Half-Heusler Compounds via Modulation Doping. Chemistry of Materials, 2017, 29, 7042-7048.	6.7	81
921	Ag-Mg antisite defect induced high thermoelectric performance of α-MgAgSb. Scientific Reports, 2017, 7, 2572.	3.3	28
922	Influence of Sodium Chloride Doping on Thermoelectric Properties of p-type SnSe. Journal of Electronic Materials, 2017, 46, 6662-6668.	2.2	18
923	Wide band gap design of new chalcogenide compounds: KSrPS ₄ and CsBaAsS ₄ . RSC Advances, 2017, 7, 38044-38051.	3.6	20
924	Synthesis and Thermoelectric Properties of ZnO/Cu ₂ SnSe ₃ Composites. Materials Science Forum, 0, 898, 1661-1668.	0.3	6
925	Facile chemical synthesis and enhanced thermoelectric properties of Ag doped SnSe nanocrystals. RSC Advances, 2017, 7, 34300-34306.	3.6	24
926	Extremely low thermal conductivity and high thermoelectric performance in liquid-like Cu ₂ Se _{1â^'x} S _x polymorphic materials. Journal of Materials Chemistry A, 2017, 5, 18148-18156.	10.3	86
927	Recent NMR Studies of Thermoelectric Materials. Annual Reports on NMR Spectroscopy, 2017, , 137-198.	1.5	11
928	Enhancing Thermoelectric Performance of n-Type Hot Deformed Bismuth-Telluride-Based Solid Solutions by Nonstoichiometry-Mediated Intrinsic Point Defects. ACS Applied Materials & Interfaces, 2017, 9, 28577-28585. lations in commission	8.0	71

#	Article	IF	CITATIONS
938	Significantly Enhanced Thermoelectric Performance of Î ³ -In2Se3through Lithiation via Chemical Diffusion. Chemistry of Materials, 2017, 29, 7467-7474.	6.7	18
939	Selfâ€Tuning nâ€Type Bi ₂ (Te,Se) ₃ /SiC Thermoelectric Nanocomposites to Realize High Performances up to 300 °C. Advanced Science, 2017, 4, 1700259.	11.2	72
940	High temperature thermoelectric performance of p-type TaRhSn half Heusler compound: A computational assessment. Ceramics International, 2017, 43, 15160-15166.	4.8	26
941	Performance optimization and single parabolic band behavior of thermoelectric MnTe. Journal of Materials Chemistry A, 2017, 5, 19143-19150.	10.3	53
942	Investigation of microstructural details in low thermal conductivity thermoelectric Sn1-xSbxTe alloy. Journal of Applied Physics, 2017, 122, .	2.5	1
943	Boosting the power factor with resonant states: A model study. Physical Review B, 2017, 96, .	3.2	13
944	Quaternary semiconductors Cu ₂ MgSnS ₄ and Cu ₂ MgSnSe ₄ as potential thermoelectric materials. Journal of Physics Communications, 2017, 1, 045014.	1.2	18
945	Optimization of segmented thermoelectric generator using Taguchi and ANOVA techniques. Scientific Reports, 2017, 7, 16746.	3.3	46
946	Enhanced Strength Through Nanotwinning in the Thermoelectric Semiconductor InSb. Physical Review Letters, 2017, 119, 215503.	7.8	45
947	Remarkable Roles of Cu To Synergistically Optimize Phonon and Carrier Transport in n-Type PbTe-Cu ₂ Te. Journal of the American Chemical Society, 2017, 139, 18732-18738.	13.7	230
948	Low Thermal Conductivity and High Thermoelectric Performance in Sb and Bi Codoped GeTe: Complementary Effect of Band Convergence and Nanostructuring. Chemistry of Materials, 2017, 29, 10426-10435.	6.7	117
949	High thermoelectric performance of p-BiSbTe compounds prepared by ultra-fast thermally induced reaction. Energy and Environmental Science, 2017, 10, 2638-2652.	30.8	138
950	Unexpected boost of thermoelectric performance by magnetic nanoparticles. Science China Materials, 2017, 60, 1023-1024.	6.3	4
951	Nanowires. Springer Handbooks, 2017, , 249-301.	0.6	4
952	High efficiency and non-Richardson thermionics in three dimensional Dirac materials. Applied Physics Letters, 2017, 111, .	3.3	17
953	Enhancing the thermoelectric performance of Ce _x Bi ₂ S ₃ by optimizing the carrier concentration combined with band engineering. Journal of Materials Chemistry C, 2017, 5, 12492-12499.	5.5	39
954	Thermoelectric band engineering: The role of carrier scattering. Journal of Applied Physics, 2017, 122, .	2.5	39
955	Single parabolic band transport in p-type EuZn ₂ Sb ₂ thermoelectrics. Journal of Materials Chemistry A, 2017, 5, 24185-24192.	10.3	38

#	Article	IF	CITATIONS
956	Hf/Sb co-doping induced a high thermoelectric performance of ZrNiSn: First-principles calculation. Scientific Reports, 2017, 7, 14590.	3.3	16
957	Micro- and Macromechanical Properties of Thermoelectric Lead Chalcogenides. ACS Applied Materials & Interfaces, 2017, 9, 40488-40496.	8.0	45
958	Enhancement of thermoelectrical performance in Au-ion implanted V ₂ O ₅ thin films. RSC Advances, 2017, 7, 50648-50656.	3.6	11
959	Thermoelectric performance of CuFeS2+2x composites prepared by rapid thermal explosion. NPG Asia Materials, 2017, 9, e390-e390.	7.9	38
960	Antibonding Holes Induce Good Thermoelectric Properties ofp-type Ca5Ga2As6. Journal of the Physical Society of Japan, 2017, 86, 074707.	1.6	1
961	Thermoelectric properties of two-dimensional transition metal dichalcogenides. Journal of Materials Chemistry C, 2017, 5, 7684-7698.	5.5	204
962	Optimizing the thermoelectric performance of In–Cd codoped SnTe by introducing Sn vacancies. Journal of Materials Chemistry C, 2017, 5, 7504-7509.	5.5	46
963	Mechanical properties of thermoelectric lanthanum telluride from quantum mechanics. Journal Physics D: Applied Physics, 2017, 50, 274002.	2.8	12
964	Band-Gap Nonlinearity in Lead Chalcogenide (PbQ, Q = Te, Se, S) Alloys. ACS Omega, 2017, 2, 3417-3423.	3.5	28
965	Decouple electronic and phononic transport in nanotwinned structures: a new strategy for enhancing the figure-of-merit of thermoelectrics. Nanoscale, 2017, 9, 9987-9996.	5.6	31
966	Search for new thermoelectric materials with low Lorenz number. Journal of Materials Chemistry A, 2017, 5, 17302-17311.	10.3	60
967	Electronic band structure of epitaxial PbTe (111) thin films observed by angle-resolved photoemission spectroscopy. Physical Review B, 2017, 95, .	3.2	6
968	High thermoelectric performance of Bi1â^'x K x CuSeO prepared by combustion synthesis. Journal of Materials Science, 2017, 52, 11569-11579.	3.7	8
969	Computation-Driven Materials Search for Thermoelectric Applications. ECS Journal of Solid State Science and Technology, 2017, 6, N3095-N3102.	1.8	10
970	Structural and Thermoelectric Properties of Nanostructured Nominally Stoichiometric Pb1â^'x Bi x Te Prepared by Mechanical Alloying. Journal of Electronic Materials, 2017, 46, 5781-5791.	2.2	9
971	Simultaneous optimization of the overall thermoelectric properties of Cu3SbSe4 by band engineering and phonon blocking. Journal of Alloys and Compounds, 2017, 724, 597-602.	5.5	22
972	Copper Hyper-Stoichiometry: The Key for the Optimization of Thermoelectric Properties in Stannoidite Cu _{8+<i>x</i>} Fe _{3–<i>x</i>} Sn ₂ S ₁₂ . Journal of Physical Chemistry C, 2017, 121, 16454-16461.	3.1	42
973	Effects of partial La filling and Sb vacancy defects on <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>CoS</mml:mi><mml:msub><mml: mathvariant="normal">b<mml:mn>3</mml:mn></mml: </mml:msub></mml:mrow> skutterudites. Physical Review B. 2017. 95.</mml:math 	mi 3.2	26

#	Article	IF	CITATIONS
974	Prospective high thermoelectric performance of the heavily <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi mathvariant="bold-italic">p -doped half-Heusler compound CoVSn. Physical Review B, 2017, 95, .</mml:mi </mml:math 	3.2	37
975	Investigations on the Electrochemical Reduction Behaviors of Cu-Se Compound in Sulfuric Acid Solutions. Journal of Electronic Materials, 2017, 46, 3187-3199.	2.2	Ο
976	Synergistically optimizing thermoelectric transport properties of n-type PbTe via Se and Sn co-alloying. Journal of Alloys and Compounds, 2017, 724, 208-221.	5.5	59
977	Thermoelectric Performance of Se/Cd Codoped SnTe via Microwave Solvothermal Method. ACS Applied Materials & Interfaces, 2017, 9, 22612-22619.	8.0	51
978	Improved thermoelectric power factor and conversion efficiency of perovskite barium stannate. RSC Advances, 2017, 7, 32703-32709.	3.6	34
979	Understanding the transport properties of YNiBi half- Heusler alloy: An Ab-initio study. AIP Conference Proceedings, 2017, , .	0.4	0
980	Origin of p-type characteristics in a SnSe single crystal. Applied Physics Letters, 2017, 110, .	3.3	81
981	Electrical Transport Properties of Type-VIII Sn-Based Single-Crystalline Clathrates (Eu/Ba) ₈ Ga ₁₆ Sn ₃₀ Prepared by Ga Flux Method. Chinese Physics Letters, 2017, 34, 047401.	3.3	3
982	Ag-doped SnSe2 as a promising mid-temperature thermoelectric material. Journal of Materials Science, 2017, 52, 10506-10516.	3.7	56
983	High thermoelectric performance in (Bi0.25Sb0.75)2Te3 due to band convergence and improved by carrier concentration control. Materials Today, 2017, 20, 452-459.	14.2	151
984	Soluble Lead and Bismuth Chalcogenidometallates: Versatile Solders for Thermoelectric Materials. Chemistry of Materials, 2017, 29, 6396-6404.	6.7	14
985	Spectroscopic evidence for temperature-dependent convergence of light- and heavy-hole valence bands of PbQ (Q = Te, Se, S). Europhysics Letters, 2017, 117, 27006.	2.0	11
986	High-Performance Low-Cost n-Type Se-Doped Mg ₃ Sb ₂ -Based Zintl Compounds for Thermoelectric Application. Chemistry of Materials, 2017, 29, 5371-5383.	6.7	148
987	Estimating Energy Conversion Efficiency of Thermoelectric Materials: Constant Property Versus Average Property Models. Journal of Electronic Materials, 2017, 46, 6-13.	2.2	21
988	A regenerative concept for thermoelectric power generation. Applied Energy, 2017, 185, 119-125.	10.1	28
989	Validity of Rigid-Band Approximation in the Study of Thermoelectric Properties of p-Type FeNbSb-Based Half-Heusler Compounds. Journal of Electronic Materials, 2017, 46, 3030-3035.	2.2	20
990	Thermoelectric performance of PbSnTeSe high-entropy alloys. Materials Research Letters, 2017, 5, 187-194.	8.7	81
991	Single crystal structure elucidation and thermoelectric properties of a long-periodically ordered germanium arsenic telluride. Journal of Alloys and Compounds, 2017, 694, 1160-1164.	5.5	7

#	Article	IF	CITATIONS
992	Current assisted sintering of PbTe—Effects on thermoelectric and mechanical properties. Materials Research Bulletin, 2017, 86, 159-166.	5.2	18
993	The Role of Zn in Chalcopyrite CuFeS ₂ : Enhanced Thermoelectric Properties of Cu _{1–} <i>_x</i> Zn <i>_x</i> FeS ₂ with In Situ Nanoprecipitates. Advanced Energy Materials, 2017, 7, 1601299.	19.5	147
994	Hierarchical Chemical Bonds Contributing to the Intrinsically Low Thermal Conductivity in αâ€MgAgSb Thermoelectric Materials. Advanced Functional Materials, 2017, 27, 1604145.	14.9	195
995	Thermal and Electrical Conductivity of Ge1Sb4Te7 Chalcogenide Alloy. Journal of Electronic Materials, 2017, 46, 955-960.	2.2	5
996	Skutterudite with graphene-modified grain-boundary complexion enhances zT enabling high-efficiency thermoelectric device. Energy and Environmental Science, 2017, 10, 183-191.	30.8	252
997	Thermoelectric properties of Sn doped BiCuSeO. Applied Surface Science, 2017, 418, 238-245.	6.1	27
998	The Potential of FeVSb Half-Heusler Phase for Practical Thermoelectric Material. Journal of Electronic Materials, 2017, 46, 3200-3206.	2.2	21
999	Improved thermoelectric performance of BiCuSeO by Ag substitution at Cu site. Journal of Alloys and Compounds, 2017, 691, 572-577.	5.5	38
1000	Theoretical study of thermoelectric properties of p-type Mg2 Si1â^' Sn solid solutions doped with Ga. Journal of Alloys and Compounds, 2017, 691, 151-158.	5.5	8
1001	Effect of the annealing on the power factor of un-doped cold-pressed SnSe. Applied Thermal Engineering, 2017, 111, 1426-1432.	6.0	21
1002	Magnetoelectric interaction and transport behaviours in magnetic nanocomposite thermoelectric materials. Nature Nanotechnology, 2017, 12, 55-60.	31.5	216
1003	Integrating Band Structure Engineering with Allâ€Scale Hierarchical Structuring for High Thermoelectric Performance in PbTe System. Advanced Energy Materials, 2017, 7, 1601450.	19.5	157
1004	Thermoelectric Properties of Ce/Pb Co-doped Polycrystalline In4â^'x Ce x Pb0.01Se3 Compounds. Journal of Electronic Materials, 2017, 46, 3215-3220.	2.2	2
1005	Enhanced thermoelectric performance via the solid solution formation: The case of pseudobinary alloy (Cu2Te)(Ga2Te3)3 upon Sb substitution for Cu. Materials and Design, 2017, 115, 325-331.	7.0	5
1006	The effect of charge carrier and doping site on thermoelectric properties of Mg2Sn0.75Ge0.25. Acta Materialia, 2017, 124, 528-535.	7.9	21
1007	Enhanced thermoelectric properties in pâ€type Bi _{0.4} Sb _{1.6} Te ₃ alloy by combining incorporation and doping using multiâ€scale CuAlO ₂ particles. Physica Status Solidi (A) Applications and Materials Science, 2017, 214, 1600451.	1.8	7
1008	Preparation and Thermoelectric Properties of Pb1–x Fe x Te Alloys Doped with Iodine. Journal of Electronic Materials, 2017, 46, 2645-2651.	2.2	6
1009	Manipulation of charge transport in thermoelectrics. Npj Quantum Materials, 2017, 2, .	5.2	55

#	Article	IF	CITATIONS
1010	Lithography-free resistance thermometry based technique to accurately measure Seebeck coefficient and electrical conductivity for organic and inorganic thin films. Review of Scientific Instruments, 2017, 88, 125112.	1.3	7
1011	Development of Thermoelectric Materials Based on Iron Sulfide Minerals. Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2017, 64, 173-179.	0.2	4
1012	Conducting polymer-based thermoelectric composites. , 2017, , 169-195.		13
1013	Effect of Native Defects on Transport Properties in Non-Stoichiometric CoSb3. Materials, 2017, 10, 287.	2.9	5
1014	Thermoelectric Properties of Highly-Crystallized Ge-Te-Se Glasses Doped with Cu/Bi. Materials, 2017, 10, 328.	2.9	26
1015	Thermoelectric Transport in Nanocomposites. Materials, 2017, 10, 418.	2.9	27
1016	Enhanced Thermoelectric Performance of Te-Doped Bi2Se3â^'xTex Bulks by Self-Propagating High-Temperature Synthesis. Crystals, 2017, 7, 257.	2.2	44
1017	Enhanced Thermoelectric Properties of Cu3SbSe4 Compounds via Gallium Doping. Energies, 2017, 10, 1524.	3.1	30
1019	The Effect of the Heavy-Hole Band on the Thermoelectric Figure-of-Merit of Heavily Doped p-Type Lead Telluride. Moscow University Physics Bulletin (English Translation of Vestnik Moskovskogo) Tj ETQq0 0 0 rgBT /O	veoløick 10) T á 50 417 1
1020	Microstructure Evolution of Ag-Alloyed PbTe-Based Compounds and Implications for Thermoelectric Performance. Crystals, 2017, 7, 281.	2.2	13
1021	Modification on Thermoelectric Properties of PbTe-Based Materials by Incorporation of Impurities. Current Smart Materials, 2017, 2, .	0.5	0
1022	Enhanced thermoelectric performance of high pressure synthesized Sb-doped Mg2Si. Journal of Alloys and Compounds, 2018, 741, 1148-1152.	5.5	17
1023	High performance of n-type (PbS)1-x-y(PbSe)x(PbTe)y thermoelectric materials. Journal of Alloys and Compounds, 2018, 744, 769-777.	5.5	29
1024	Nanostructural thermoelectric materials and their performance. Frontiers in Energy, 2018, 12, 97-108.	2.3	22
1025	Mechanical properties in thermoelectric oxides: Ideal strength, deformation mechanism, and fracture toughness. Acta Materialia, 2018, 149, 341-349.	7.9	25
1026	Resonant Bonding, Multiband Thermoelectric Transport, and Native Defects in n-Type BaBiTe3–xSex (x =) Tj ET	Qq1 ₇ 1 0.7	84314 rgBT
1027	Significantly optimized thermoelectric properties in high-symmetry cubic Cu ₇ PSe ₆ compounds <i>via</i> entropy engineering. Journal of Materials Chemistry A, 2018, 6, 6493-6502.	10.3	55
1028	Study on the thermoelectric performance of polycrystal SnSe with Se vacancies. Journal of Alloys	5.5	27

#	Article	IF	CITATIONS
1029	High-Performance PbTe Thermoelectric Films by Scalable and Low-Cost Printing. ACS Energy Letters, 2018, 3, 818-822.	17.4	53
1030	High-temperature thermoelectric properties of polycrystalline CaMn1-Nb O3-l´. Ceramics International, 2018, 44, 9204-9214.	4.8	13
1031	Enhanced thermoelectric performance of SnTe: High efficient cation - anion Co-doping, hierarchical microstructure and electro-acoustic decoupling. Nano Energy, 2018, 47, 81-88.	16.0	67
1032	Is SrZn ₂ Sb ₂ a Realistic Candidate for High-Temperature Thermoelectric Applications?. Journal of Physical Chemistry C, 2018, 122, 5317-5324.	3.1	8
1033	Optimizing interfacial transport properties of InO ₂ single atomic layers in In ₂ O ₃ (ZnO) ₄ natural superlattices for enhanced high temperature thermoelectrics. Nanoscale, 2018, 10, 4500-4514.	5.6	8
1034	Expanding frontiers in materials chemistry and physics with multiple anions. Nature Communications, 2018, 9, 772.	12.8	612
1035	DFT studies of thermoelectric properties of R–Au intermetallics at 300ÂK. Journal of Rare Earths, 2018, 36, 197-202.	4.8	16
1036	Synthesis and Thermoelectric Properties of WO ₃ /Cu ₂ SnSe ₃ Composites. Materials Science Forum, 0, 913, 811-817.	0.3	4
1037	Valleytronics in thermoelectric materials. Npj Quantum Materials, 2018, 3, .	5.2	104
1038	Enhancement of thermoelectric performance via weak disordering of topological crystalline insulators and band convergence by Se alloying in Pb0.5Sn0.5Te1 â^² xSex. Journal of Materials Chemistry A, 2018, 6, 5870-5879.	10.3	11
1039	Modification of Bulk Heterojunction and Cl Doping for High-Performance Thermoelectric SnSe ₂ /SnSe Nanocomposites. ACS Applied Materials & Interfaces, 2018, 10, 15793-15802.	8.0	39
1040	Enhanced thermoelectric performance through grain boundary engineering in quaternary chalcogenide Cu2ZnSnSe4. AIP Advances, 2018, 8, 045218.	1.3	8
1041	Electronic structure and thermoelectric properties of PbS1-xTex (x=0, 0.25, 0.50, 0.75, 1.0) alloys: Ab initio study. Superlattices and Microstructures, 2018, 124, 248-256.	3.1	6
1042	Thermoelectric properties of polycrystalline palladium sulfide. RSC Advances, 2018, 8, 13154-13158.	3.6	14
1043	Graphene network in copper sulfide leading to enhanced thermoelectric properties and thermal stability. Nano Energy, 2018, 49, 267-273.	16.0	108
1044	Realization of non-equilibrium process for high thermoelectric performance Sb-doped GeTe. Science Bulletin, 2018, 63, 717-725.	9.0	49
1045	Influence of defect distribution on the thermoelectric properties of FeNbSb based materials. Physical Chemistry Chemical Physics, 2018, 20, 14441-14449.	2.8	18
1046	Thermoelectric properties of layered NaSbSe ₂ . Journal of Physics Condensed Matter, 2018, 30, 225501.	1.8	10

#	Article	IF	CITATIONS
1047	Synergetic optimization of electronic and thermal transport for high-performance thermoelectric GeSe–AgSbTe ₂ alloy. Journal of Materials Chemistry A, 2018, 6, 8215-8220.	10.3	38
1048	Thermoelectric performance of p-type zone-melted Se-doped Bi0.5Sb1.5Te3 alloys. Rare Metals, 2018, 37, 308-315.	7.1	36
1049	Thermoelectricity in correlated narrow-gap semiconductors. Journal of Physics Condensed Matter, 2018, 30, 183001.	1.8	58
1050	MnTe2 as a novel promising thermoelectric material. Journal of Materiomics, 2018, 4, 215-220.	5.7	19
1051	Self-assembled 3D flower-like hierarchical Ti-doped Cu3SbSe4 microspheres with ultralow thermal conductivity and high zT. Nano Energy, 2018, 49, 221-229.	16.0	45
1052	Multiple phase transitions and structural oscillations in thermoelectric Cu2S at elevating temperatures. Ceramics International, 2018, 44, 13076-13081.	4.8	10
1053	Thermoelectric properties of nanostructured bornite Cu5-xCoxFeS4 synthesized by high energy ball milling. Journal of Alloys and Compounds, 2018, 750, 1-7.	5.5	15
1054	Self-propagating high-temperature synthesis and thermoelectric performances of Cu2SnSe3. Journal of Alloys and Compounds, 2018, 750, 965-971.	5.5	11
1055	Crystal Structure Induced Ultralow Lattice Thermal Conductivity in Thermoelectric Ag ₉ AlSe ₆ . Advanced Energy Materials, 2018, 8, 1800030.	19.5	88
1056	Routes for high-performance thermoelectric materials. Materials Today, 2018, 21, 974-988.	14.2	265
1057	Observation of valence band crossing: the thermoelectric properties of CaZn ₂ Sb ₂ –CaMg ₂ Sb ₂ solid solution. Journal of Materials Chemistry A, 2018, 6, 9437-9444.	10.3	70
1058	Thermoelectric Properties of Variants of Cu4Mn2Te4 with Spinel-Related Structure. Inorganic Chemistry, 2018, 57, 5258-5266.	4.0	12
1059	Effect of Dislocation Arrays at Grain Boundaries on Electronic Transport Properties of Bismuth Antimony Telluride: Unified Strategy for High Thermoelectric Performance. Advanced Energy Materials, 2018, 8, 1800065.	19.5	40
1060	Sodiumâ€Doped Tin Sulfide Single Crystal: A Nontoxic Earthâ€Abundant Material with High Thermoelectric Performance. Advanced Energy Materials, 2018, 8, 1800087.	19.5	80
1061	Enhancing Thermoelectric Performance of PbSe by Se Vacancies. Journal of Electronic Materials, 2018, 47, 2584-2590.	2.2	8
1062	Thermoelectric Performance of Single Phase p-Type Quaternary (PbTe) _{0.65–<i>x</i>} (PbSe) _{0.35} (PbS) _{<i>x</i>} Alloys. ACS Applied Energy Materials, 2018, 1, 1898-1903.	5.1	7
1063	Magneto-electronic and thermoelectric properties of some Fe-based Heusler alloys. Journal of Physics and Chemistry of Solids, 2018, 119, 251-257.	4.0	27
1064	The intrinsic low lattice thermal conductivity in the rock salt SnSe. Computational Materials Science, 2018, 148, 54-59.	3.0	16

#	Article	IF	CITATIONS
1065	Lattice stability and thermal properties of Fe2VAl and Fe2TiSn Heusler compounds. AIP Conference Proceedings, 2018, , .	0.4	0
1066	Crystal chemistry and thermoelectric transport of layered AM ₂ X ₂ compounds. Inorganic Chemistry Frontiers, 2018, 5, 1744-1759.	6.0	67
1067	Theoretical investigations of electrical transport properties in CoSb3 skutterudites under hydrostatic loadings. Rare Metals, 2018, 37, 316-325.	7.1	8
1068	Strong anharmonic phonon scattering induced giant reduction of thermal conductivity in PbTe nanotwin boundary. Physical Review B, 2018, 97, .	3.2	34
1069	Enhanced thermoelectric properties of p-type SnS0.2Se0.8 solid solution doped with Ag. Journal of Alloys and Compounds, 2018, 745, 172-178.	5.5	14
1070	Effects of interface layers on the performance of annular thermoelectric generators. Energy, 2018, 147, 612-620.	8.8	37
1071	Manipulation of Phonon Transport in Thermoelectrics. Advanced Materials, 2018, 30, e1705617.	21.0	316
1072	Simultaneous blocking of minority carrier and high energy phonon in p-type skutterudites. Nano Energy, 2018, 46, 249-256.	16.0	16
1073	High Thermoelectric Performance in SnTe–AgSbTe ₂ Alloys from Lattice Softening, Giant Phonon–Vacancy Scattering, and Valence Band Convergence. ACS Energy Letters, 2018, 3, 705-712.	17.4	151
1074	Charge Transport in Thermoelectric SnSe Single Crystals. ACS Energy Letters, 2018, 3, 689-694.	17.4	41
1075	Sodium Substitution in Lead Telluride. Chemistry of Materials, 2018, 30, 1362-1372.	6.7	27
1076	High performance p-type half-Heusler thermoelectric materials. Journal Physics D: Applied Physics, 2018, 51, 113001.	2.8	65
1077	Electron mean-free-path filtering in Dirac material for improved thermoelectric performance. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 879-884.	7.1	61
1078	A Hidden Dimension to Explore New Thermoelectrics. Joule, 2018, 2, 16-18.	24.0	4
1079	Realizing <i>zT</i> of 2.3 in Ge _{1â^'} <i>_x</i> _{â^'} <i>_y</i> Sb <i>_x</i> li>In <i>_{ via Reducing the Phaseâ€Transition Temperature and Introducing Resonant Energy Doping. Advanced Materials, 2018, 30, 1705942.}</i>	y </td <td>^{'i>Te}316</td>	^{'i>Te} 316
1080	Quaternary Pavonites A _{1+<i>x</i>} Sn _{2–<i>x</i>} Bi _{5+<i>x</i>} S ₁₀ (A ⁺ = Li ⁺ , Na ⁺): Site Occupancy Disorder Defines Electronic Structure, Inorganic Chemistry, 2018, 57, 2260-2268.	4.0	12
1081	Grain Boundaries Softening Thermoelectric Oxide BiCuSeO. ACS Applied Materials & Interfaces, 2018, 10, 6772-6777.	8.0	10
1082	Rhombohedral to Cubic Conversion of GeTe via MnTe Alloying Leads to Ultralow Thermal Conductivity, Electronic Band Convergence, and High Thermoelectric Performance. Journal of the American Chemical Society, 2018, 140, 2673-2686.	13.7	307

#	Article	IF	CITATIONS
1083	Microstructure and thermoelectric properties of un-doped Mg2Si1â^'xSnx single crystals prepared by high temperature gradient directional solidification. Journal of Materials Science: Materials in Electronics, 2018, 29, 6245-6253.	2.2	8
1084	Manipulating Band Structure through Reconstruction of Binary Metal Sulfide for Highâ€Performance Thermoelectrics in Solutionâ€Synthesized Nanostructured Bi ₁₃ S ₁₈ I ₂ . Angewandte Chemie - International Edition, 2018, 57, 2413-2418.	13.8	20
1085	Optimization of peak and average figures of merits for In & Se co-doped SnTe alloys. Inorganic Chemistry Frontiers, 2018, 5, 793-801.	6.0	17
1086	Manipulating Band Structure through Reconstruction of Binary Metal Sulfide for Highâ€Performance Thermoelectrics in Solutionâ€Synthesized Nanostructured Bi 13 S 18 I 2. Angewandte Chemie, 2018, 130, 2437-2442.	2.0	11
1087	Thermoelectric transport properties of Pb–Sn–Te–Se system. Rare Metals, 2018, 37, 343-350.	7.1	55
1088	Chemical Potential Evaluation of Thermoelectric and Mechanical Properties of Zr2CoZ (ZÂ=ÂSi, Ge) Heusler Alloys. Journal of Electronic Materials, 2018, 47, 2468-2478.	2.2	12
1089	SnSeÂ+ÂAg2Se composite engineering with ball milling for enhanced thermoelectric performance. Rare Metals, 2018, 37, 333-342.	7.1	24
1090	Achieving <i>zT</i> > 2 in pâ€Type AgSbTe _{2â^} <i>_x</i> Se <i>_x</i> Alloys via Exploring the Extra Light Valence Band and Introducing Dense Stacking Faults. Advanced Energy Materials, 2018, 8, 1702333.	19.5	143
1091	Effect of High Pressure and Temperature on Structural, Thermodynamic and Thermoelectric Properties of Quaternary CoFeCrAl Alloy. Journal of Electronic Materials, 2018, 47, 2042-2049.	2.2	9
1092	Thermoelectric Devices: A Review of Devices, Architectures, and Contact Optimization. Advanced Materials Technologies, 2018, 3, 1700256.	5.8	259
1093	Large Power Factor Improvement in a Novel Solid–Liquid Thermoelectric Hybrid Device. ACS Applied Energy Materials, 2018, 1, 254-259.	5.1	6
1094	Grain-by-Grain Compositional Variations and Interstitial Metals—A New Route toward Achieving High Performance in Half-Heusler Thermoelectrics. ACS Applied Materials & Interfaces, 2018, 10, 4786-4793.	8.0	39
1095	Thermoelectric and topological properties of half-Heusler compounds ZrIrX(As, Sb, Bi). Physics Letters, Section A: General, Atomic and Solid State Physics, 2018, 382, 673-678.	2.1	18
1096	High-Performance Thermoelectric Bulk Colusite by Process Controlled Structural Disordering. Journal of the American Chemical Society, 2018, 140, 2186-2195.	13.7	98
1097	Twin Engineering in Solutionâ€Synthesized Nonstoichiometric Cu ₅ FeS ₄ Icosahedral Nanoparticles for Enhanced Thermoelectric Performance. Advanced Functional Materials, 2018, 28, 1705117.	14.9	53
1098	Ag-Segregation to Dislocations in PbTe-Based Thermoelectric Materials. ACS Applied Materials & Interfaces, 2018, 10, 3609-3615.	8.0	74
1099	Recent progress towards high performance of tin chalcogenide thermoelectric materials. Journal of Materials Chemistry A, 2018, 6, 2432-2448.	10.3	101
1100	Vanadium-Doping-Induced Resonant Energy Levels for the Enhancement of Thermoelectric Performance in Hf-Free ZrNiSn Half-Heusler Alloys. ACS Applied Energy Materials, 2018, 1, 757-764.	5.1	63

		15	6
#	ARTICLE High thermoelectric performance balanced by electrical and thermal transport in tetrahedrites	IF	CITATIONS
1101	Cu12+Sb4S12Se. Energy Storage Materials, 2018, 13, 127-133.	18.0	35
1102	Enhancing Molecular nâ€Type Doping of Donor–Acceptor Copolymers by Tailoring Side Chains. Advanced Materials, 2018, 30, 1704630.	21.0	217
1103	Thermoelectric properties of Ag-doped compound: Mg3-xAgxSb2. Journal of Materiomics, 2018, 4, 75-79.	5.7	17
1104	Transition from mobility-activated small polaron to carrier density-activated conduction of sol-gel-derived highly-oriented CuAlO2 thin film and enhanced thermoelectric properties. Ceramics International, 2018, 44, 5950-5960.	4.8	7
1105	Enhancing Thermoelectric Performances of Bismuth Antimony Telluride via Synergistic Combination of Multiscale Structuring and Band Alignment by FeTe ₂ Incorporation. ACS Applied Materials & Materials	8.0	66
1106	Influence of leg geometry configuration and contact resistance on the performance of annular thermoelectric generators. Energy Conversion and Management, 2018, 166, 337-342.	9.2	65
1107	Lattice Dynamics and Thermal Conductivity in Cu2Zn1–xCoxSnSe4. Inorganic Chemistry, 2018, 57, 6051-6056.	4.0	19
1108	Synthesis and thermoelectric properties of Rashba semiconductor BiTeBr with intensive texture. Rare Metals, 2018, 37, 274-281.	7.1	20
1109	Modulation of carrier concentration and microstructure for high performance Bi x Sb 2-x Te 3 thermoelectrics prepared by rapid solidification. Journal of Solid State Chemistry, 2018, 264, 141-147.	2.9	9
1110	Enhanced thermoelectric performance of Na-doped PbTe synthesized under high pressure. Science China Materials, 2018, 61, 1218-1224.	6.3	29
1111	Remarkable electron and phonon band structures lead to a high thermoelectric performance <i>ZT</i> > 1 in earth-abundant and eco-friendly SnS crystals. Journal of Materials Chemistry A, 2018, 6, 10048-10056.	10.3	90
1112	Thermoelectric transport properties of rock-salt SnSe: first-principles investigation. Journal of Materials Chemistry C, 2018, 6, 12016-12022.	5.5	43
1113	Crystalline Solids with Intrinsically Low Lattice Thermal Conductivity for Thermoelectric Energy Conversion. ACS Energy Letters, 2018, 3, 1315-1324.	17.4	132
1114	Effect of nanostructure on thermoelectric properties of La _{0.7} Sr _{0.3} MnO ₃ in 300–600 K temperature range. Materials Research Express, 2018, 5, 055026.	1.6	6
1115	Single parabolic band behavior of thermoelectric p-type Cu4Mn2Te4. Journal of Alloys and Compounds, 2018, 753, 93-99.	5.5	8
1116	Thermoelectric Properties of Topological Insulators. Physica Status Solidi (B): Basic Research, 2018, 255, 1800020.	1.5	37
1117	Large thermoelectric power factor from crystal symmetry-protected non-bonding orbital in half-Heuslers. Nature Communications, 2018, 9, 1721.	12.8	111
1118	Large enhancement of thermoelectric performance in CuInTe 2 upon compression. Materials Today Physics, 2018, 5, 1-6.	6.0	38

#	Article	IF	CITATIONS
1119	High-performance SnSe thermoelectric materials: Progress and future challenge. Progress in Materials Science, 2018, 97, 283-346.	32.8	419
1120	The journey of tin chalcogenides towards high-performance thermoelectrics and topological materials. Chemical Communications, 2018, 54, 6573-6590.	4.1	84
1121	Effects of anion and cation doping on the thermoelectric properties of n-type PbS. Journal of the European Ceramic Society, 2018, 38, 3512-3517.	5.7	19
1122	Cornucopia of Structures in the Pseudobinary System (SnSe)xBi2Se3: A Crystal-Chemical Copycat. Inorganic Chemistry, 2018, 57, 4427-4440.	4.0	11
1123	Low-Symmetry Rhombohedral GeTe Thermoelectrics. Joule, 2018, 2, 976-987.	24.0	402
1124	Chemical manipulation of phase stability and electronic behavior in Cu _{4â^'x} Ag _x Se ₂ . Journal of Materials Chemistry A, 2018, 6, 6997-7004.	10.3	13
1125	Magnetic-field enhanced high-thermoelectric performance in topological Dirac semimetal Cd 3 As 2 crystal. Science Bulletin, 2018, 63, 411-418.	9.0	55
1126	Lead-free MnTe mid-temperature thermoelectric materials: facile synthesis, p-type doping and transport properties. Journal of Materials Chemistry C, 2018, 6, 4265-4272.	5.5	36
1127	Thermoelectric properties and thermal stability of Bi-doped PbTe single crystal. Physica B: Condensed Matter, 2018, 538, 154-159.	2.7	13
1128	Enhancement of Thermoelectric Performance in Na-Doped Pb _{0.6} Sn _{0.4} Te _{0.95–<i>x</i>} Se _{<i>x</i>} S _{0.05} via Breaking the Inversion Symmetry, Band Convergence, and Nanostructuring by Multiple Elements Doping, ACS Applied Materials & amp: Interfaces. 2018. 10. 11613-11622.	8.0	18
1129	Unusually large chemical potential shift in a degenerate semiconductor: Angle-resolved photoemission study of SnSe and Na-doped SnSe. Physical Review B, 2018, 97, .	3.2	13
1130	Enhanced thermoelectric performance of bismuth-doped magnesium silicide synthesized under high pressure. Journal of Materials Science, 2018, 53, 9091-9098.	3.7	15
1131	Tuning the thermoelectric properties by manipulating copper in Cu2SnSe3 system. Journal of Alloys and Compounds, 2018, 748, 273-280.	5.5	13
1132	Enhancing thermoelectric performance of Cu-modified Bi0.5Sb1.5Te3 by electroless plating and annealing. Progress in Natural Science: Materials International, 2018, 28, 218-224.	4.4	6
1133	High-Power-Density Skutterudite-Based Thermoelectric Modules with Ultralow Contact Resistivity Using Fe–Ni Metallization Layers. ACS Applied Energy Materials, 2018, 1, 1603-1611.	5.1	44
1134	Odyssey of thermoelectric materials: foundation of the complex structure. Journal of Physics Communications, 2018, 2, 062001.	1.2	34
1135	Materials for energy harvesting: At the forefront of a new wave. MRS Bulletin, 2018, 43, 176-180.	3.5	150
1136	Enhancement of Thermoelectric Performances in a Topological Crystal Insulator Pb _{0.7} Sn _{0.3} Se via Weak Perturbation of the Topological State and Chemical Potential Tuning by Chloring Doping, ACS Applied Materials & amp: Interfaces, 2018, 10, 10927-10934	8.0	15

#	Article	IF	CITATIONS
1137	Engineering of charge carriers <i>via</i> a two-dimensional heterostructure to enhance the thermoelectric figure of merit. Nanoscale, 2018, 10, 7077-7084.	5.6	76
1138	Enhanced thermoelectric performance of n-type PbTe doped with Na2Te. Intermetallics, 2018, 92, 113-118.	3.9	20
1139	Magneto-electronic, thermal, and thermoelectric properties of some Co-based quaternary alloys. Journal of Physics and Chemistry of Solids, 2018, 112, 190-199.	4.0	61
1140	High thermoelectric performance of α-MgAgSb for power generation. Energy and Environmental Science, 2018, 11, 23-44.	30.8	127
1141	Enhanced thermoelectric properties of Cu1.8S by Ti-doping induced secondary phase. Journal of Alloys and Compounds, 2018, 731, 577-583.	5.5	26
1142	Enhancement of Thermoelectric Properties in SnTe with (Ag, In) Co-Doping. Journal of Electronic Materials, 2018, 47, 205-211.	2.2	28
1143	Achieving high Figure of Merit in p-type polycrystalline Sn0.98Se via self-doping and anisotropy-strengthening. Energy Storage Materials, 2018, 10, 130-138.	18.0	101
1144	Unique Role of Refractory Ta Alloying in Enhancing the Figure of Merit of NbFeSb Thermoelectric Materials. Advanced Energy Materials, 2018, 8, 1701313.	19.5	181
1145	Metal oxides for thermoelectric power generation and beyond. Advanced Composites and Hybrid Materials, 2018, 1, 114-126.	21.1	98
1146	Comparison of Predicted Thermoelectric Energy Conversion Efficiency by Cumulative Properties and Reduced Variables Approaches. Journal of Electronic Materials, 2018, 47, 3085-3090.	2.2	2
1147	Band engineering in Mg ₃ Sb ₂ by alloying with Mg ₃ Bi ₂ for enhanced thermoelectric performance. Materials Horizons, 2018, 5, 59-64.	12.2	177
1148	Enhanced thermoelectric performance through synergy of resonance levels and valence band convergence <i>via</i> Q/ln (Q = Mg, Ag, Bi) co-doping. Journal of Materials Chemistry A, 2018, 6, 2507-2516.	10.3	34
1149	A comparative study of different exchange-correlation functionals in understanding structural, electronic and thermoelectric properties of Fe2VAl and Fe2TiSn compounds. Computational Materials Science, 2018, 143, 316-324.	3.0	28
1150	Excellent thermoelectricity performance of p-type SnSe along b axis. Physica B: Condensed Matter, 2018, 530, 264-269.	2.7	22
1151	High thermoelectric performance of few-quintuple Sb2Te3 nanofilms. Nano Energy, 2018, 43, 285-290.	16.0	51
1152	Thermoelectric Properties of Texture-Controlled (GeTe) x (AgSbTe2)100â^'x (xÂ=Â75, 80, 85, and 90) Alloys Fabricated by Gas-Atomization and Hot-Extrusion Processes. Journal of Electronic Materials, 2018, 47, 3119-3126.	2.2	5
1153	Impact of Coinage Metal Insertion on the Thermoelectric Properties of GeTe Solid-State Solutions. Journal of Physical Chemistry C, 2018, 122, 227-235.	3.1	49
1154	Achieving High Thermoelectric Figure of Merit in Polycrystalline SnSe via Introducing Sn Vacancies. Journal of the American Chemical Society, 2018, 140, 499-505.	13.7	180

#	Article	IF	Citations
1155	Ytterbium Silicide (YbSi ₂): A Promising Thermoelectric Material with a High Power Factor	2.4	13
	at Room Temperature. Physica Status Solidi - Rapid Research Letters, 2018, 12, 1700372.		
1156	Phase Boundary Mapping to Obtain n-type Mg3Sb2-Based Thermoelectrics. Joule, 2018, 2, 141-154.	24.0	274
1157	Ultra-high average figure of merit in synergistic band engineered Sn Na1â^'Se0.9S0.1 single crystals. Materials Today, 2018, 21, 501-507.	14.2	71
1158	Understanding the combustion process for the synthesis of mechanically robust SnSe thermoelectrics. Nano Energy, 2018, 44, 53-62.	16.0	51
1159	Crystal structure of high-performance thermoelectric materials by high resolution neutron powder diffraction. Physica B: Condensed Matter, 2018, 551, 64-68.	2.7	9
1160	High Performance Thermoelectric Materials: Progress and Their Applications. Advanced Energy Materials, 2018, 8, 1701797.	19.5	548
1161	Quasiharmonic calculations of thermodynamic properties for La3â^'xTe4 system. Computational Materials Science, 2018, 142, 417-426.	3.0	6
1162	First-principles study of high spin-polarization and thermoelectric efficiency of ferromagnetic CoFeCrAs quaternary Heusler alloy. Journal of Magnetism and Magnetic Materials, 2018, 449, 493-499.	2.3	28
1163	Strain-induced enhancement of thermoelectric performance of TiS ₂ monolayer based on first-principles phonon and electron band structures. Nanotechnology, 2018, 29, 015204.	2.6	56
1164	Control of donor-like effect in V2VI3 polycrystalline thermoelectric materials. Materials Research Bulletin, 2018, 99, 377-384.	5.2	9
1165	Hydrothermal method for the synthesis of Sb ₂ Te ₃ , and Bi _{0.5} Sb _{1.5} Te ₃ nanoplates and their thermoelectric properties. International Journal of Applied Ceramic Technology, 2018, 15, 132-139.	2.1	14
1166	Electron–phonon coupling in semiconductors within the GW approximation. New Journal of Physics, 2018, 20, 123008.	2.9	68
1167	Effect of annealing treatment on thermoelectric properties of Ti-doped ZnO thin film. AIP Conference Proceedings, 2018, , .	0.4	1
1168	Improvement of the Thermoelectric Performance of Pseudogap and Narrow-Gap Compounds via Theoretical Calculations. Materials Transactions, 2018, 59, 1411-1416.	1.2	5
1169	Cost effective synthesis of p-type Zn-doped MgAgSb by planetary ball-milling with enhanced thermoelectric properties. RSC Advances, 2018, 8, 35353-35359.	3.6	17
1170	Low thermal conductivity and high figure of merit for rapidly synthesized n-type Pb _{1â^'x} Bi _x Te alloys. Dalton Transactions, 2018, 47, 15957-15966.	3.3	10
1171	Low lattice thermal conductivity and promising thermoelectric figure of merit of Zintl type TlInTe ₂ . Journal of Materials Chemistry C, 2018, 6, 13269-13274.	5.5	30
1172	Remarkably high thermoelectric performance of Cu _{2â^'x} Li _x Se bulks with nanopores. Journal of Materials Chemistry A, 2018, 6, 23417-23424.	10.3	73

#	Article	IF	CITATIONS
1173	Enhanced thermoelectric performance in topological crystalline insulator n-type Pb _{0.6} Sn _{0.4} Te by simultaneous tuning of the band gap and chemical potential. Journal of Materials Chemistry A, 2018, 6, 24216-24223.	10.3	8
1174	Rare earth doping and effective band-convergence in SnTe for improved thermoelectric performance. Applied Physics Letters, 2018, 113, .	3.3	25
1175	High performance thermoelectric materials based on metal organic coordination polymers through firstâ€principles band engineering. Journal of Computational Chemistry, 2018, 39, 2582-2588.	3.3	12
1176	Chalcopyrite ZnSnSb ₂ : A Promising Thermoelectric Material. ACS Applied Materials & Interfaces, 2018, 10, 43682-43690.	8.0	22
1177	Exploring a Novel Atomic Layer with Extremely Low Lattice Thermal Conductivity: ZnPSe ₃ and Its Thermoelectrics. Journal of Physical Chemistry C, 2018, 122, 27917-27924.	3.1	18
1178	Detrimental Effects of Doping Al and Ba on the Thermoelectric Performance of GeTe. Materials, 2018, 11, 2237.	2.9	33
1179	Chemical Insights into PbSe– <i>x</i> %HgSe: High Power Factor and Improved Thermoelectric Performance by Alloying with Discordant Atoms. Journal of the American Chemical Society, 2018, 140, 18115-18123.	13.7	80
1180	High Thermoelectric Performance in Two-Dimensional Tellurium: An Ab Initio Study. ACS Applied Materials & Interfaces, 2018, 10, 40702-40709.	8.0	104
1181	Dominant electron-phonon scattering mechanisms inn-type PbTe from first principles. Physical Review B, 2018, 98, .	3.2	51
1182	High thermoelectric power factor of ytterbium silicon-germanium. Applied Physics Letters, 2018, 113, .	3.3	15
1183	Structural and thermoelectric properties of copper sulphide powders. Journal of Semiconductors, 2018, 39, 122001.	3.7	23
1184	Ultralow thermal conductivity in a two-dimensional material due to surface-enhanced resonant bonding. Materials Today Physics, 2018, 7, 89-95.	6.0	12
1185	Investigations on electrical and thermal transport properties of Cu2SnSe3 with unusual coexisting nanophases. Materials Today Physics, 2018, 7, 77-88.	6.0	25
1186	Improved thermoelectric property of Ti0.75HfMo0.25CrGe by doping Ti2CrGe Heusler alloy with Hf and Mo: Confirmation of entropy "gene―in thermoelectric materials design. Journal of Applied Physics, 2018, 124, .	2.5	5
1187	Transport mechanisms and property optimization of p-type (Zr, Hf)CoSb half-Heusler thermoelectric materials. Materials Today Physics, 2018, 7, 69-76.	6.0	63
1188	Enhancement of thermoelectric properties by lattice softening and energy band gap control in Te-deficient InTe1â~' <i>l´</i> . AIP Advances, 2018, 8, .	1.3	24
1189	Fabrication with Semiconductor Packaging Technologies and Characterization of a Large cale Flexible Thermoelectric Module. Advanced Materials Technologies, 2019, 4, 1800556.	5.8	26
1190	High Thermoelectric Figure of Merit via Tunable Valley Convergence Coupled Low Thermal Conductivity in AllBIVC2VChalcopyrites. Journal of Physical Chemistry C, 2018, 122, 29150-29157.	3.1	25

#	Article	IF	CITATIONS
1191	Designing band engineering for thermoelectrics starting from the periodic table of elements. Materials Today Physics, 2018, 7, 35-44.	6.0	75
1192	Effect of stacking faults and surface roughness on the thermal conductivity of InAs nanowires. Journal of Applied Physics, 2018, 124, 205101.	2.5	3
1193	Advances in thermoelectrics. Advances in Physics, 2018, 67, 69-147.	14.4	383
1194	First-principles thermodynamic theory of Seebeck coefficients. Physical Review B, 2018, 98, .	3.2	25
1195	Growth and transport properties of Mg3X2 (XÂ= Sb, Bi) single crystals. Materials Today Physics, 2018, 7, 61-68.	6.0	60
1196	High Thermoelectric Performance Originating from the Grooved Bands in the ZrSe ₃ Monolayer. ACS Applied Materials & Interfaces, 2018, 10, 37031-37037.	8.0	29
1197	Compatibility between Co-Metallized PbTe Thermoelectric Legs and an Ag–Cu–In Brazing Alloy. Materials, 2018, 11, 99.	2.9	14
1198	Dual Alloying Strategy to Achieve a High Thermoelectric Figure of Merit and Lattice Hardening in p-Type Nanostructured PbTe. ACS Energy Letters, 2018, 3, 2593-2601.	17.4	37
1199	High thermoelectric performance of single phase p-type cerium-filled skutterudites by dislocation engineering. Journal of Materials Chemistry A, 2018, 6, 20128-20137.	10.3	22
1200	Vacancy Manipulation for Thermoelectric Enhancements in GeTe Alloys. Journal of the American Chemical Society, 2018, 140, 15883-15888.	13.7	182
1201	High-entropy functional materials. Journal of Materials Research, 2018, 33, 3138-3155.	2.6	186
1202	Effect of the Processing Route on the Thermoelectric Performance of Nanostructured CuPb ₁₈ SbTe ₂₀ . Inorganic Chemistry, 2018, 57, 12976-12986.	4.0	29
1203	Thermoelectric properties of n-type transition metal-doped PbSe. Materials Today Physics, 2018, 6, 45-52.	6.0	23
1204	Synergistic optimization of carrier transport and thermal conductivity in Sn-doped Cu ₂ Te. Journal of Materials Chemistry A, 2018, 6, 18928-18937.	10.3	29
1205	The Atomic Circus: Small Electron Beams Spotlight Advanced Materials Down to the Atomic Scale. Advanced Materials, 2018, 30, e1802402.	21.0	27
1206	The Thermoelectric Properties of SnSe Continue to Surprise: Extraordinary Electron and Phonon Transport. Chemistry of Materials, 2018, 30, 7355-7367.	6.7	79
1207	High-Performance Thermoelectric Materials for Solar Energy Application. , 2018, , 3-38.		4
1208	Thermoelectric properties of Ag9GaS6 with ultralow lattice thermal conductivity. Materials Today Physics, 2018, 6, 60-67.	6.0	46

#	Article	IF	CITATIONS
1209	Excessively Doped PbTe with Ge-Induced Nanostructures Enables High-Efficiency Thermoelectric Modules. Joule, 2018, 2, 1339-1355.	24.0	169
1210	Charge and phonon transport in PbTe-based thermoelectric materials. Npj Quantum Materials, 2018, 3, .	5.2	227
1211	High Thermoelectric Performance in Sintered Octahedron-Shaped Sn(CdIn) _{<i>x</i>} Te _{1+2<i>x</i>} Microcrystals. ACS Applied Materials & Interfaces, 2018, 10, 38944-38952.	8.0	31
1212	High-Performance GeTe Thermoelectrics in Both Rhombohedral and Cubic Phases. Journal of the American Chemical Society, 2018, 140, 16190-16197.	13.7	108
1213	Methodology of Thermoelectric Power Factor Enhancement by Controlling Nanowire Interface. ACS Applied Materials & Interfaces, 2018, 10, 37709-37716.	8.0	72
1214	Bonding Hierarchy Gives Rise to High Thermoelectric Performance in Layered Zintl Compound BaAu2P4. Chemistry of Materials, 2018, 30, 7760-7768.	6.7	28
1215	Increased Seebeck Coefficient and Decreased Lattice Thermal Conductivity in Grain-Size-Controlled p-Type PbTe–MgTe System. ACS Applied Energy Materials, 2018, 1, 6586-6592.	5.1	12
1216	Thermoelectric Transport Properties of Cd _{<i>x</i>} Bi _{<i>y</i>} Ge _{1–<i>x</i>–<i>y</i>} Te Alloys. ACS Applied Materials & Interfaces, 2018, 10, 39904-39911.	8.0	41
1217	Effects of Y, GdCu, and Al Addition on the Thermoelectric Behavior of CoCrFeNi High Entropy Alloys. Metals, 2018, 8, 781.	2.3	17
1218	Review of Exhaust Gas Heat Recovery Mechanism for Internal Combustion Engine Using Thermoelectric Principle. , 2018, , .		2
1219	Entropy Engineering of SnTe: Multiâ€Principalâ€Element Alloying Leading to Ultralow Lattice Thermal Conductivity and Stateâ€ofâ€theâ€Art Thermoelectric Performance. Advanced Energy Materials, 2018, 8, 1802116.	19.5	157
1220	Achieving high thermoelectric performance with Pb and Zn codoped polycrystalline SnSe via phase separation and nanostructuring strategies. Nano Energy, 2018, 53, 683-689.	16.0	98
1221	Microstructure engineering beyond SnSe1-xSx solid solution for high thermoelectric performance. Journal of Materiomics, 2018, 4, 321-328.	5.7	18
1222	Enhanced electrical transport properties via Pb vacancies in single crystalline PbTe prepared by Te-flux method. Physica B: Condensed Matter, 2018, 550, 9-14.	2.7	1
1223	Modeling and Experimentation of New Thermoelectric Cooler–Thermoelectric Generator Module. Energies, 2018, 11, 576.	3.1	46
1224	Thermoelectric Cooling. , 0, , .		6
1225	Arrays of Planar Vacancies in Superior Thermoelectric Ge _{1â^'} <i>_x</i> _{â^'} <i>_y</i> Cd <i>_x</i> Bi <i>_{ with Band Convergence. Advanced Energy Materials, 2018, 8, 1801837.}</i>	y ∢/sus b> </td <td>'i>1⊚1</td>	'i> 1⊚ 1
1226	Investigation of the electronic structure and lattice dynamics of the thermoelectric material	3.2	11

#	Article	IF	CITATIONS
1227	Perspectives on Thermoelectricity in Layered and 2D Materials. Advanced Electronic Materials, 2018, 4, 1800248.	5.1	77
1228	Investigation of electronic properties of Nd doped PbS. Physica B: Condensed Matter, 2018, 550, 311-316.	2.7	4
1229	Structure and Improved Thermoelectric Properties of Ag _{2<i>x</i>} Cr _{2–2<i>x</i>} Se ₃ Compounds. Inorganic Chemistry, 2018, 57, 12125-12131.	4.0	5
1230	Approaching Topological Insulating States Leads to High Thermoelectric Performance in n-Type PbTe. Journal of the American Chemical Society, 2018, 140, 13097-13102.	13.7	77
1231	Se substitution and micro-nano-scale porosity enhancing thermoelectric Cu 2 Te. Chinese Physics B, 2018, 27, 047204.	1.4	5
1232	Design of Highly Efficient Thermoelectric Materials: Tailoring Reciprocalâ€5pace Properties by Realâ€5pace Modification. Advanced Materials, 2018, 30, e1802000.	21.0	51
1233	High Thermoelectric Figure of Merit Achieved in Cu ₂ S _{1–<i>x</i>} Te _{<i>x</i>} Alloys Synthesized by Mechanical Alloying and Spark Plasma Sintering. ACS Applied Materials & Interfaces, 2018, 10, 32201-32211.	8.0	31
1234	Microstructure of Cu2S nanoprecipitates and its effect on electrical and thermal properties in thermoelectric Cu2Zn0.2Sn0.8S3 ceramics. AIP Advances, 2018, 8, 085105.	1.3	5
1235	Electron Density Optimization and the Anisotropic Thermoelectric Properties of Ti Self-Intercalated Ti _{1+<i>x</i>} S ₂ Compounds. ACS Applied Materials & Interfaces, 2018, 10, 32344-32354.	8.0	23
1236	Constructing Highly Porous Thermoelectric Monoliths with High-Performance and Improved Portability from Solution-Synthesized Shape-Controlled Nanocrystals. Nano Letters, 2018, 18, 4034-4039.	9.1	38
1237	Determining ideal strength and failure mechanism of thermoelectric CuInTe2 through quantum mechanics. Journal of Materials Chemistry A, 2018, 6, 11743-11750.	10.3	10
1238	An efficient mechanism for enhancing the thermoelectricity of nanoribbons by blocking phonon transport in 2D materials. Journal of Physics Condensed Matter, 2018, 30, 275701.	1.8	28
1239	Enhanced thermoelectric performance of n-type bismuth-telluride-based alloys via In alloying and hot deformation for mid-temperature power generation. Journal of Materiomics, 2018, 4, 208-214.	5.7	39
1240	A first-principles study of the effects of electron–phonon coupling on the thermoelectric properties: a case study of the SiGe compound. Journal of Materials Chemistry A, 2018, 6, 12125-12131.	10.3	33
1241	Coupling of charge carriers with magnetic entropy for power factor enhancement in Mn doped Sn _{1.03} Te for thermoelectric applications. Journal of Materials Chemistry C, 2018, 6, 6489-6493.	5.5	56
1242	3D charge and 2D phonon transports leading to high out-of-plane <i>ZT</i> in n-type SnSe crystals. Science, 2018, 360, 778-783.	12.6	859
1243	Weak Electron Phonon Coupling and Deep Level Impurity for High Thermoelectric Performance Pb _{1â^'} <i>_x</i> Ga <i>_x</i> Te. Advanced Energy Materials, 2018, 8, 1800659.	19.5	111
1244	Electronic Structure Control of Sub-nanometer 1D SnTe <i>via</i> Nanostructuring within Single-Walled Carbon Nanotubes. ACS Nano, 2018, 12, 6023-6031.	14.6	42

#	Article	IF	CITATIONS
1245	Engineering electrical transport in α-MgAgSb to realize high performances near room temperature. Physical Chemistry Chemical Physics, 2018, 20, 16729-16735.	2.8	15
1246	Thermoelectric properties of p-type cubic and rhombohedral GeTe. Journal of Applied Physics, 2018, 123, .	2.5	40
1247	Absence of Nanostructuring in NaPb _{<i>m</i>} SbTe _{<i>m</i>+2} : Solid Solutions with High Thermoelectric Performance in the Intermediate Temperature Regime. Journal of the American Chemical Society, 2018, 140, 7021-7031.	13.7	27
1248	Strategies for discovery and optimization of thermoelectric materials: Role of real objects and local fields. Frontiers of Physics, 2018, 13, 1.	5.0	6
1249	Thermoelectric Properties of Doped-Cu ₃ SbSe ₄ Compounds: A First-Principles Insight. Inorganic Chemistry, 2018, 57, 7321-7333.	4.0	36
1250	Thermal conductivity in Bi _{0.5} Sb _{1.5} Te _{3+ <i>x</i>} and the role of dense dislocation arrays at grain boundaries. Science Advances, 2018, 4, eaar5606.	10.3	143
1251	Extraordinary Thermoelectric Performance Realized in Hierarchically Structured AgSbSe ₂ with Ultralow Thermal Conductivity. ACS Applied Materials & Interfaces, 2018, 10, 18685-18692.	8.0	49
1252	Tuning SnSe/SnS hetero-interfaces to enhance thermoelectric performance. Functional Materials Letters, 2018, 11, 1850069.	1.2	10
1253	Thermoelectric Performance of IV–VI Compounds with Octahedralâ€Like Coordination: A Chemicalâ€Bonding Perspective. Advanced Materials, 2018, 30, e1801787.	21.0	78
1254	Fabrication, characterization and simulation of Zn-doped PbS nanopowder. Physica B: Condensed Matter, 2018, 545, 245-249.	2.7	6
1255	Synergistically optimizing electrical and thermal transport properties of n -type PbSe. Progress in Natural Science: Materials International, 2018, 28, 275-280.	4.4	5
1256	Complex alloying effect on thermoelectric transport properties of Cu ₂ Ge(Se _{1â^) Tj ETQq1}	1 9.78431 1.4	4 rgBT /Over
1257	Recent progress and futuristic development of PbSe thermoelectric materials and devices. Materials Today Energy, 2018, 9, 359-376.	4.7	57
1258	Growth and optical property of PbS/ZnS nanocrystals. Superlattices and Microstructures, 2018, 120, 727-731.	3.1	8
1259	Tunable Optimum Temperature Range of High-Performance Zone Melted Bismuth-Telluride-Based Solid Solutions. Crystal Growth and Design, 2018, 18, 4646-4652.	3.0	29
1260	Two-channel model for ultralow thermal conductivity of crystalline Tl ₃ VSe ₄ . Science, 2018, 360, 1455-1458.	12.6	206
1261	Manipulation of Band Structure and Interstitial Defects for Improving Thermoelectric SnTe. Advanced Functional Materials, 2018, 28, 1803586.	14.9	183
1262	Lanthanide Contraction as a Design Factor for Highâ€Performance Halfâ€Heusler Thermoelectric Materials. Advanced Materials, 2018, 30, e1800881.	21.0	101

	CITATION RE	PORT	
Article		IF	CITATIONS
Recent advances in inorganic material thermoelectrics. Inorganic Chemistry Frontiers, 2380-2398.	2018, 5,	6.0	63
Pd ₂ Se ₃ Monolayer: A Promising Two-Dimensional Thermoel with Ultralow Lattice Thermal Conductivity and High Power Factor. Chemistry of Mate 5639-5647.	lectric Material erials, 2018, 30,	6.7	119
Heavy Doping by Bromine to Improve the Thermoelectric Properties of nâ€ŧype Polycr Advanced Science, 2018, 5, 1800598.	ystalline SnSe.	11.2	57
Enhanced thermoelectric performance of Sn-doped Cu ₃ SbS _{4Materials Chemistry C, 2018, 6, 8546-8552.}	>>. Journal of	5.5	59
Band engineering and precipitation enhance thermoelectric performance of SnTe with Chinese Physics B, 2018, 27, 047202.	ı Zn-doping.	1.4	14
Enhanced thermoelectric performance in Cu2GeSe3 via (Ag,Ga)-co-doping on cation s Alloys and Compounds, 2018, 769, 218-225.	ites. Journal of	5.5	10
Precursors for PbTe, PbSe, SnTe, and SnSe synthesized using diphenyl dichalcogenides Communications, 2018, 54, 9055-9058.	s. Chemical	4.1	15
Strategies for optimizing the thermoelectricity of PbTe alloys. Chinese Physics B, 2018	3, 27, 047306.	1.4	18
Low-cost and environmentally benign selenides as promising thermoelectric materials. Materiomics, 2018, 4, 304-320.	. Journal of	5.7	73
Extraordinary thermoelectric performance in n-type manganese doped Mg3Sb2 Zintl: degeneracy, tuned carrier scattering mechanism and hierarchical microstructure. Nanc 52, 246-255.		16.0	188
Processing high efficiency functional gradient thermoelectric materials. Materials Toda 2018, 6, 1-8.	ay Physics,	6.0	6
Enhanced Thermoelectric Properties of Polycrystalline SnSe via LaCl3 Doping. Material	ls, 2018, 11, 203.	2.9	30
Improvement in Thermoelectric Performance of SnS Due to Electronic Structure Modif Biaxial Strain. Journal of Electronic Materials, 2018, 47, 6443-6449.	fication Under	2.2	3
Acoustic deformation potentials of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>n</mml:mi>first principles. Physical Review B, 2018, 98, .</mml:math 	nath> -type PbTe from	3.2	17
Carbon-Based Materials for Thermoelectrics. Advances in Condensed Matter Physics, 2	2018, 2018, 1-29.	1.1	35
Enhanced Thermoelectric Properties in a New Silicon Crystal Si ₂₄ with Inv Nanoscale Porous Structure. Nano Letters, 2018, 18, 4748-4754.	trinsic	9.1	15

1279	MnS Incorporation into Higher Manganese Silicide Yields a Green Thermoelectric Composite with High Performance/Price Ratio. Advanced Science, 2018, 5, 1800626.	11.2	16
1280	Meltâ€Centrifuged (Bi,Sb) ₂ Te ₃ : Engineering Microstructure toward High Thermoelectric Efficiency. Advanced Materials, 2018, 30, e1802016.	21.0	133

#

1263

1264

1265

1267

1269

1270

1271

1273

1275

#	Article	IF	CITATIONS
1281	Band Structures and Transport Properties of High-Performance Half-Heusler Thermoelectric Materials by First Principles. Materials, 2018, 11, 847.	2.9	42
1282	Enhanced thermoelectric properties of p-type polycrystalline SnSe by regulating the anisotropic crystal growth and Sn vacancy. Chinese Physics B, 2018, 27, 047211.	1.4	11
1283	Advances in Thermoelectric Mg ₃ Sb ₂ and Its Derivatives. Small Methods, 2018, 2, 1800022.	8.6	66
1284	Orbital Alignment for High Performance Thermoelectric YbCd ₂ Sb ₂ Alloys. Chemistry of Materials, 2018, 30, 5339-5345.	6.7	50
1285	Thickness and temperature dependent thermoelectric properties of Bi ₈₇ Sb ₁₃ nanofilms measured with a novel measurement platform. Semiconductor Science and Technology, 2018, 33, 085014.	2.0	15
1286	Synergistic Compositional–Mechanical–Thermal Effects Leading to a Record High <i>zT</i> in nâ€Type V ₂ VI ₃ Alloys Through Progressive Hot Deformation. Advanced Functional Materials, 2018, 28, 1803617.	14.9	73
1287	Manipulation of Solubility and Interstitial Defects for Improving Thermoelectric SnTe Alloys. ACS Energy Letters, 2018, 3, 1969-1974.	17.4	69
1288	First-principles study of thermoelectric properties of Mg2Si–Mg2Pb semiconductor materials. RSC Advances, 2018, 8, 17168-17175.	3.6	15
1289	Phase-transition temperature suppression to achieve cubic GeTe and high thermoelectric performance by Bi and Mn codoping. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 5332-5337.	7.1	183
1290	Multinary diamond-like chalcogenides for promising thermoelectric application. Chinese Physics B, 2018, 27, 047206.	1.4	15
1291	Fundamental and progress of Bi ₂ Te ₃ -based thermoelectric materials. Chinese Physics B, 2018, 27, 048403.	1.4	114
1292	Ductile deformation mechanism in semiconductor α-Ag2S. Npj Computational Materials, 2018, 4, .	8.7	54
1293	Thermoelectric SnTe with Band Convergence, Dense Dislocations, and Interstitials through Sn Self ompensation and Mn Alloying. Small, 2018, 14, e1802615.	10.0	132
1294	Thermoelectric and Transport Properties of FeV1â [~] 'xTixSb Half-Heusler System Synthesized by Controlled Mechanical Alloying Process. Electronic Materials Letters, 2018, 14, 725-732.	2.2	17
1295	Thermoelectric Properties of Biâ€Doped Mg ₂ Si _{0.6} Sn _{0.4} Solid Solutions Synthesized by Twoâ€Step Low Temperature Reaction Combined with Hot Pressing. Physica Status Solidi (A) Applications and Materials Science, 2018, 215, 1800136.	1.8	12
1296	Structure and thermoelectric properties of the silver lead bismuth selenides Ag5Pb9Bi19Se40 and AgPb3Bi7Se14. Dalton Transactions, 2018, 47, 12431-12438.	3.3	5
1297	Revisiting lattice thermal transport in PbTe: The crucial role of quartic anharmonicity. Applied Physics Letters, 2018, 113, .	3.3	100
1298	Porosity induced thermoelectric performance optimization for antimony telluride. Ceramics International, 2018, 44, 21421-21427.	4.8	13

#	Article	IF	CITATIONS
1299	Giant enhancement of the figure-of-merit over a broad temperature range in nano-boron incorporated Cu ₂ Se. Journal of Materials Chemistry A, 2018, 6, 18409-18416.		49
1300	Large Nernst power factor over a broad temperature range in polycrystalline Weyl semimetal NbP. Energy and Environmental Science, 2018, 11, 2813-2820.		57
1301	Soft phonon modes from off-center Ge atoms lead to ultralow thermal conductivity and superior thermoelectric performance in n-type PbSe–GeSe. Energy and Environmental Science, 2018, 11, 3220-3230.	30.8	115
1302	Thermoelectric stability of Eu- and Na-substituted PbTe. Journal of Materials Chemistry C, 2018, 6, 9482-9493.	5.5	18
1303	Germanium Chalcogenide Thermoelectrics: Electronic Structure Modulation and Low Lattice Thermal Conductivity. Chemistry of Materials, 2018, 30, 5799-5813.	6.7	105
1304	Enhanced thermoelectric performance in p-type Mg _{3} Sb _{2} via lithium doping. Chinese Physics B, 2018, 27, 047212.	1.4	27
1305	The critical role of boron doping in the thermoelectric and mechanical properties of nanostructured α-MgAgSb. Journal of Materials Chemistry C, 2018, 6, 9821-9827.	5.5	13
1306	Improvement of thermoelectric performance of copper-deficient compounds Cu _{2.5+Î′} In _{4.5} Te ₈ (<i>Î′</i> = 0–0.15) due to a degenerate impurity band and ultralow lattice thermal conductivity. RSC Advances, 2018, 8, 27163-27170.	3.6	4
1307	Achieving high thermoelectric performance of Cu _{1.8} S composites with WSe ₂ nanoparticles. Nanotechnology, 2018, 29, 345402.	2.6	19
1308	Few-Layer PdSe ₂ Sheets: Promising Thermoelectric Materials Driven by High Valley Convergence. ACS Omega, 2018, 3, 5971-5979.	3.5	87
1309	High Thermoelectric Performance in Supersaturated Solid Solutions and Nanostructured nâ€Type PbTe–GeTe. Advanced Functional Materials, 2018, 28, 1801617.	14.9	92
1310	Recent Advances of Layered Thermoelectric Materials. Advanced Sustainable Systems, 2018, 2, 1800046.	5.3	47
1311	Realizing High Thermoelectric Performance in nâ€Type Highly Distorted Sbâ€Doped SnSe Microplates via Tuning High Electron Concentration and Inducing Intensive Crystal Defects. Advanced Energy Materials, 2018, 8, 1800775.	19.5	120
1312	Enhanced thermoelectric properties of hydrothermally synthesized Bi _{0.88â^'x} Zn _x Sb _{0.12} nanoalloys below the semiconductor–semimetal transition temperature. RSC Advances, 2018, 8, 20764-20772.	3.6	4
1313	Increased effective mass and carrier concentration responsible for the improved thermoelectric performance of the nominal compound Cu ₂ Ga ₄ Te ₇ with Sb substitution for Cu. RSC Advances, 2018, 8, 21637-21643.	3.6	1
1314	Thermoelectric properties and thermal tolerance of indium tin oxide nanowires. Nanotechnology, 2018, 29, 364001.	2.6	10
1315	Entropy optimized phase transitions and improved thermoelectric performance in n-type liquid-like Ag9GaSe6 materials. Materials Today Physics, 2018, 5, 20-28.	6.0	70
1316	Significantly improved thermal stability and thermoelectric performance of Cu-deficient Cu _{4â~î´} Ga ₄ Te ₈ (<i>l´</i> = 1.12) chalcogenides through addition of Sb. Journal of Materials Chemistry A, 2018, 6, 12672-12681.	10.3	5

#	Article	IF	CITATIONS
1317	Thermoelectric transport of GaAs, InP, and PbTe: Hybrid functional with $k\hat{A}\cdot p\hat{l}f$ interpolation versus scissor-corrected generalized gradient approximation. Journal of Applied Physics, 2018, 123, .	2.5	16
1318	Influence of defects on the thermoelectricity in SnSe: A comprehensive theoretical study. Physical Review B, 2018, 97, .	3.2	53
1319	Biaxial strain tuned electronic structures and power factor in Janus transition metal dichalchogenide monolayers. Semiconductor Science and Technology, 2018, 33, 085003.	2.0	63
1320	Ga-Doping-Induced Carrier Tuning and Multiphase Engineering in n-type PbTe with Enhanced Thermoelectric Performance. ACS Applied Materials & Interfaces, 2018, 10, 22401-22407.	8.0	49
1321	Nano-scale dislocations induced by self-vacancy engineering yielding extraordinary n-type thermoelectric Pb0.96-yInySe. Nano Energy, 2018, 50, 785-793.	16.0	51
1322	A New Material with a Composite Crystal Structure Causing Ultralow Thermal Conductivity and Outstanding Thermoelectric Properties: Tl ₂ Ag ₁₂ Te _{7+Î} . Journal of the American Chemical Society, 2018, 140, 8578-8585.	13.7	33
1323	A guard to reduce the accidental oxidation of PbTe nanocrystals. Nanoscale, 2018, 10, 12284-12290.	5.6	2
1324	Structure transformation in Ca _{1â^'xâ^'Î} Sr _Î La _x Ag _{1â^'y} Sb (0)	[j ETQq1 1	. 0 ₈ 784314 r
1325	Thermoelectric Nanomaterials. , 2019, , 349-358.		4
1326	Promising cubic MnGeTe2 thermoelectrics. Science China Materials, 2019, 62, 379-388.	6.3	16
1327	Copperâ€Rich Thermoelectric Sulfides: Sizeâ€Mismatch Effect and Chemical Disorder in the [<i>T</i> S ₄]Cu ₆ Complexes of Cu ₂₆ <i>T</i> ₂ 66S ₃₂ (<i>T</i> =Cr, Mo, W) Colusites. Angewandte Chemie, 2019, 131, 15601-15609.	2.0	5
1328	Band and Phonon Engineering for Thermoelectric Enhancements of Rhombohedral GeTe. ACS Applied Materials & Interfaces, 2019, 11, 30756-30762.	8.0	37
1329	Ultrahigh Power Factor and Electron Mobility in n-Type Bi ₂ Te ₃ – <i>x</i> %Cu Stabilized under Excess Te Condition. ACS Applied Materials & Interfaces, 2019, 11, 30999-31008.	8.0	45
1330	Perspective on <i>ab initio</i> phonon thermal transport. Journal of Applied Physics, 2019, 126, .	2.5	76
1331	Mechanical Performance of a Thermoelectric Composite in the Vicinity of an Elliptic Inhomogeneity. Quarterly Journal of Mechanics and Applied Mathematics, 2019, 72, 429-447.	1.3	13
1332	Mechanical and transport properties of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si44.svg"><mml:mrow><mml:msub><mml:mrow><mml:mtext>Bi</mml:mtext></mml:mrow><mml:mro single ouin. Computational Materials Science. 2019. 170. 109182.</mml:mro </mml:msub></mml:mrow></mml:math 	w≯≺mml:r	ni∛x
1333	Electronic Structure and Phase Stability of Yb-Filled CoSb ₃ Skutterudite Thermoelectrics from First-Principles. Chemistry of Materials, 2019, 31, 6154-6162.	6.7	17

#	Article	IF	CITATIONS
1335	Copperâ€Rich Thermoelectric Sulfides: Sizeâ€Mismatch Effect and Chemical Disorder in the [<i>T</i> S ₄]Cu ₆ Complexes of Cu ₂₆ <i>T</i> ₂ Ge ₆ S ₃₂ (<i>T</i> =Cr, Mo, W) Colusites. Angewandte Chemie - International Edition, 2019, 58, 15455-15463.		36
1336	Enhanced thermoelectric properties of natural chalcopyrite by vacuum annealing. Materials Letters, 2019, 253, 430-433.	2.6	8
1337	Enhanced thermoelectric properties of Bi ₂ S ₃ polycrystals through an electroless nickel plating process. RSC Advances, 2019, 9, 23029-23035.	3.6	5
1338	Carbon nanomaterials for thermoelectric applications. , 2019, , 121-137.		0
1339	Oxygen adsorption and its influence on the thermoelectric performance of polycrystalline SnSe. Journal of Materials Chemistry C, 2019, 7, 10507-10513.	5.5	28
1340	Mid-temperature thermoelectric performance of zone-melted Sb2(Te,Se)3 alloys near phase transition boundary. Journal of Materiomics, 2019, 5, 590-596.	5.7	9
1341	Electronic structure as a guide in screening for potential thermoelectrics: Demonstration for half-Heusler compounds. Physical Review B, 2019, 100, .	3.2	34
1342	3D Printing of highly textured bulk thermoelectric materials: mechanically robust BiSbTe alloys with superior performance. Energy and Environmental Science, 2019, 12, 3106-3117.	30.8	125
1343	The excellent TE performance of photoelectric material CdSe along with a study of Zn(Cd)Se and Zn(Cd)Te based on first-principles. RSC Advances, 2019, 9, 25471-25479.	3.6	7
1344	Fermi surface complexity, effective mass, and conduction band alignment in n-type thermoelectric Mg3Sb2 – <i>x</i> Bi <i>x</i> from first principles calculations. Journal of Applied Physics, 2019, 126, .	2.5	41
1345	Insights into the design of thermoelectric Mg3Sb2 and its analogs by combining theory and experiment. Npj Computational Materials, 2019, 5, .	8.7	111
1346	Studying the Seebeck coefficient of Fe2VAl compound in the high temperature region. AIP Conference Proceedings, 2019, , .	0.4	3
1347	High thermoelectric cooling performance of n-type Mg ₃ Bi ₂ -based materials. Science, 2019, 365, 495-498.	12.6	457
1348	Pure spin current generated in thermally driven molecular magnetic junctions: a promising mechanism for thermoelectric conversion. Journal of Materials Chemistry A, 2019, 7, 19037-19044.	10.3	92
1349	Exploring Novel Flat-Band Polymorphs of Single-Layered Germanium Sulfide for High-Efficiency Thermoelectric Applications. Journal of Physical Chemistry C, 2019, 123, 18124-18131.	3.1	37
1350	Local nanostructures enhanced the thermoelectric performance of n-type PbTe. Journal of Materials Chemistry A, 2019, 7, 18458-18467.	10.3	53
1351	Revelation of Inherently High Mobility Enables Mg ₃ Sb ₂ as a Sustainable Alternative to nâ€Bi ₂ Te ₃ Thermoelectrics. Advanced Science, 2019, 6, 1802286.	11.2	71
1352	Realizing high figure of merit plateau in Ge Bi Te via enhanced Bi solution and Ge precipitation. Journal of Alloys and Compounds, 2019, 805, 831-839.	5.5	25

#	Article	IF	CITATIONS
1353	Magnetic Fieldâ€Enhanced Thermoelectric Performance in Dirac Semimetal Cd ₃ As ₂ Crystals with Different Carrier Concentrations. Advanced Functional Materials, 2019, 29, 1902437.		33
1354	Promising materials for thermoelectric applications. Journal of Alloys and Compounds, 2019, 806, 471-486.	5.5	76
1355	Reducing Lattice Thermal Conductivity of MnTe by Se Alloying toward High Thermoelectric Performance. ACS Applied Materials & Interfaces, 2019, 11, 28221-28227.	8.0	29
1356	The p–n transformation and thermoelectric property optimization of Cu _{1+x} FeSe ₂ (<i>x</i> = 0–0.05) alloys. Journal of Materials Chemistry C, 2019, 7, 9641-9647.	5.5	6
1357	Thermoelectric power generation: from new materials to devices. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2019, 377, 20180450.	3.4	116
1358	Transport Properties of CdSb Alloys with a Promising Thermoelectric Performance. ACS Applied Materials & Interfaces, 2019, 11, 27098-27103.	8.0	12
1359	Optimal band gap for improved thermoelectric performance of two-dimensional Dirac materials. Journal of Applied Physics, 2019, 126, .	2.5	18
1360	Enhancement of Thermoelectric Properties of Bismuth Telluride Composite with Gold Nano-Particles Inclusions Using Electrochemical Co-Deposition. Journal of the Electrochemical Society, 2019, 166, D508-D513.	2.9	21
1361	Thermoelectric Properties of Metal Chalcogenides Nanosheets and Nanofilms Grown by Chemical and Physical Routes. , 2019, , 157-184.		2
1362	Simultaneous Boost of Power Factor and Figureâ€ofâ€Merit in In–Cu Codoped SnTe. Small, 2019, 15, e1902493.	10.0	43
1363	Hybrid-Functional and Quasi-Particle Calculations of Band Structures of Mg2Si, Mg2Ge, and Mg2Sn. Journal of the Korean Physical Society, 2019, 75, 144-152.	0.7	20
1364	Improved Thermoelectric Power Factor in Completely Organic Nanocomposite Enabled by <scp>l</scp> -Ascorbic Acid. ACS Applied Polymer Materials, 2019, 1, 1942-1947.	4.4	15
1365	Magneto-electronic, thermoelectric, thermodynamic and optical properties of rare earth YCoTiX (XÂ=) Tj ETQq0 (0 0 rgBT /C)verlock 10 T 21
1366	Gigantic Phonon-Scattering Cross Section To Enhance Thermoelectric Performance in Bulk Crystals. ACS Nano, 2019, 13, 8347-8355.	14.6	54
1367	Enhancing thermoelectric performance by Fermi level tuning and thermal conductivity degradation in (Ge1â °xBix)Te crystals. Scientific Reports, 2019, 9, 8616.	3.3	39
1368	High Thermoelectric Performance in PbSe–NaSbSe ₂ Alloys from Valence Band Convergence and Low Thermal Conductivity. Advanced Energy Materials, 2019, 9, 1901377.	19.5	54
1369	Lone-Pair Electron-Driven Thermoelectrics at Room Temperature. Journal of Physical Chemistry Letters, 2019, 10, 4117-4122.	4.6	12

1370	Extraordinary Role of Bi for Improving Thermoelectrics in Low-Solubility SnTe–CdTe Alloys. ACS Applied Materials & Interfaces, 2019, 11, 26093-26099.	8.0	35
------	--	-----	----

#	ARTICLE		CITATIONS
1371	Thermoelectric study of Zn-doped n-type AgIn5Se8: Hopping and band electrical conduction along with low lattice thermal conduction in diamond-like structure. Journal of Alloys and Compounds, 2019, 805, 444-453.		6
1372	Extraordinary nâ€Type Mg ₃ SbBi Thermoelectrics Enabled by Yttrium Doping. Advanced Materials, 2019, 31, e1903387.	21.0	120
1373	Synergistically optimizing interdependent thermoelectric parameters of n-type PbSe through introducing a small amount of Zn. Materials Today Physics, 2019, 9, 100102.	6.0	38
1374	Development of integrated two-stage thermoelectric generators for large temperature difference. Science China Technological Sciences, 2019, 62, 1596-1604.	4.0	23
1375	Effect of In and Cd co-doping on the thermoelectric properties of Sn _{1â^'x} Pb _x Te. Materials Research Express, 2019, 6, 104010.	1.6	12
1376	Realization of High Thermoelectric FigureÂof Merit in GeTe by Complementary Co-doping of Bi and In. Joule, 2019, 3, 2565-2580.	24.0	175
1377	Enhanced Mechanical Properties of Na _{0.02} Pb _{0.98} Te/MoTe ₂ Thermoelectric Composites Through in-Situ-Formed MoTe ₂ . ACS Applied Materials & Interfaces, 2019, 11, 41472-41481.	8.0	12
1378	n-Type TaCoSn-Based Half-Heuslers as Promising Thermoelectric Materials. ACS Applied Materials & Interfaces, 2019, 11, 41321-41329.	8.0	44
1379	Thermoelectric Performance of Two-Dimensional AlX (X = S, Se, Te): A First-Principles-Based Transport Study. ACS Omega, 2019, 4, 17773-17781.	3.5	38
1380	Solute manipulation enabled band and defect engineering for thermoelectric enhancements of SnTe. InformaÄnÃ-Materiály, 2019, 1, 571-581.	17.3	36
1381	Collective Effect of Fe and Se To Improve the Thermoelectric Performance of Unfilled p-Type CoSb ₃ Skutterudites. ACS Applied Energy Materials, 2019, 2, 1067-1076.	5.1	32
1382	Design of Highâ€Performance Disordered Halfâ€Heusler Thermoelectric Materials Using 18â€Electron Rule. Advanced Functional Materials, 2019, 29, 1905044.	14.9	81
1383	Enhancing thermoelectric transport properties of n-type PbS through introducing CaS/SrS. Journal of Solid State Chemistry, 2019, 280, 120995.	2.9	15
1384	High performance thermoelectric module through isotype bulk heterojunction engineering of skutterudite materials. Nano Energy, 2019, 66, 104193.	16.0	40
1385	Impact of the scattering physics on the power factor of complex thermoelectric materials. Journal of Applied Physics, 2019, 126, .	2.5	37
1386	Tuning the electronic structures and transport coefficients of Janus PtSSe monolayer with biaxial strain. Journal of Applied Physics, 2019, 126, .	2.5	30
1387	A comprehensive analysis of delamination and thermoelectric performance of thermoelectric pn-junctions with temperature-dependent material properties. Composite Structures, 2019, 229, 111484.	5.8	13
1388	Realizing High Thermoelectric Performance at Ambient Temperature by Ternary Alloying in Polycrystalline Si1-x-yGexSny Thin Films with Boron Ion Implantation. Scientific Reports, 2019, 9, 14342.	3.3	30

#	Article	IF	CITATIONS
1389	Efficient Sc-Doped Mg _{3.05–<i>x</i>} Sc <i>_x</i> SbBi Thermoelectrics Near Room Temperature. Chemistry of Materials, 2019, 31, 8987-8994.		55
1390	Maximizing Thermoelectric Figures of Merit by Uniaxially Straining Indium Selenide. Journal of Physical Chemistry C, 2019, 123, 25437-25447.	3.1	9
1392	Understanding the Structure and Properties of Sesqui halcogenides (i.e.,) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 5	0 667 Td 21.0	(V ₂₉₈
1393	High Power Factor vs. High zT—A Review of Thermoelectric Materials for High-Temperature Application. Entropy, 2019, 21, 1058.	2.2	105
1394	Thermoelectric performance of adenine and porphine. Applied Physics Express, 2019, 12, 125005.	2.4	4
1395	Improved thermoelectric properties of Ag-doped polycrystalline SnSe with facile electroless plating. Materials Research Express, 2019, 6, 126302.	1.6	3
1396	Large Thermal Conductivity Drops in the Diamondoid Lattice of CuFeS ₂ by Discordant Atom Doping. Journal of the American Chemical Society, 2019, 141, 18900-18909.	13.7	66
1397	Spin-entropy induced thermopower and spin-blockade effect in CoO. Physical Review B, 2019, 100, .	3.2	6
1399	Enhancement of Thermoelectric Performance of Layered SnSe ₂ by Synergistic Modulation of Carrier Concentration and Suppression of Lattice Thermal Conductivity. ACS Applied Energy Materials, 2019, 2, 8481-8490.	5.1	18
1400	Leveraging electron-phonon interaction to enhance the thermoelectric power factor in graphene-like semimetals. Physical Review B, 2019, 100, .	3.2	6
1401	Are Cu ₂ Teâ€Based Compounds Excellent Thermoelectric Materials?. Advanced Materials, 2019, 31, e1903480.	21.0	72
1402	Liquidâ€Phase Hot Deformation to Enhance Thermoelectric Performance of nâ€type Bismuthâ€Tellurideâ€Based Solid Solutions. Advanced Science, 2019, 6, 1901702.	11.2	71
1403	Comprehensive Investigation on the Thermoelectric Properties of pâ€Type PbTeâ€PbSeâ€PbS Alloys. Advanced Electronic Materials, 2019, 5, 1900609.	5.1	29
1404	Largely Enhanced Seebeck Coefficient and Thermoelectric Performance by the Distortion of Electronic Density of States in Ge ₂ Sb ₂ Te ₅ . ACS Applied Materials & Interfaces, 2019, 11, 34046-34052.	8.0	38
1405	Flexible thermoelectrics: from silver chalcogenides to full-inorganic devices. Energy and Environmental Science, 2019, 12, 2983-2990.	30.8	188
1406	Influences of Microhole Depth and SiO ₂ Nanoparticle/Microsphere Passivation Layer on the Performance of GaN-Based Light-Emitting Diodes. IEEE Transactions on Electron Devices, 2019, 66, 4211-4215.	3.0	8
1407	Enhancement of Thermoelectric Properties in Pd–In Co-Doped SnTe and Its Phase Transition Behavior. ACS Applied Materials & Interfaces, 2019, 11, 33792-33802.	8.0	32
1408	Layered oxygen-containing thermoelectric materials: Mechanisms, strategies, and beyond. Materials Today, 2019, 29, 68-85.	14.2	66

#	Article	IF	CITATIONS
1409	Scalable Multi-nanostructured Silicon for Room-Temperature Thermoelectrics. ACS Applied Energy Materials, 2019, 2, 7083-7091.	5.1	17
1410	High Thermoelectric Performance of Bi _{0.46} Sb _{1.54} Te ₃ -SnTe: Synergistic Modulation of Electrical and Thermal Transport by the Introduction of Thermoelectric Hetero Nano Region. ACS Applied Materials & Interfaces, 2019, 11, 36658-36665.	8.0	15
1411	Thermoelectric Properties of Cu2SnSe3-Based Composites Containing Melt-Spun Cu–Te. Metals, 2019, 9, 971.	2.3	2
1412	Comparative First-Principles Study of Antiperovskite Oxides and Nitrides as Thermoelectric Material: Multiple Dirac Cones, Low-Dimensional Band Dispersion, and High Valley Degeneracy. Physical Review Applied, 2019, 12, .	3.8	14
1413	High Thermoelectric Performance of SnTe by the Synergistic Effect of Alloy Nanoparticles with Elemental Elements. ACS Applied Energy Materials, 2019, 2, 7354-7363.	5.1	25
1414	Unusual lattice thermal conductivity in the simple crystalline compounds <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mrow><mml:mi>Tl</mml:mi><mml:mi> athvariant="normal">Te</mml:mi> <mml:mn>2</mml:mn></mml:mrow><mml:mrow><mml:mo>(</mml:mo></mml:mrow></mml:mrow></mml:math>	>X <td>ni>><mml:mr@< td=""></mml:mr@<></td>	ni>> <mml:mr@< td=""></mml:mr@<>
1415	High Figure of Merit in Gallium-Doped Nanostructured n-Type PbTe- <i>x</i> GeTe with Midgap States. Journal of the American Chemical Society, 2019, 141, 16169-16177.	13.7	76
1416	Realizing high thermoelectric properties of SnTe via synergistic band engineering and structure engineering. Nano Energy, 2019, 65, 104056.	16.0	116
1417	Enhanced thermoelectric properties in chimney ladder structured Mn(BxSi1-x)1.75 due to the dual lattice occupation of boron. Applied Physics Letters, 2019, 115, 123902.	3.3	5
1418	Synergistically Optimizing Carrier Concentration and Decreasing Sound Velocity in n-type AgInSe ₂ Thermoelectrics. Chemistry of Materials, 2019, 31, 8182-8190.	6.7	23
1419	Chemical Flexibility of Mg in Pnictide Materials: Structure and Properties Diversity. Chemistry of Materials, 2019, 31, 8286-8300.	6.7	17
1420	Transport properties of p-type CaMg2Bi2 thermoelectrics. Journal of Materiomics, 2019, 5, 567-573.	5.7	21
1421	Band engineering, carrier density control, and enhanced thermoelectric performance in multi-doped SnTe. APL Materials, 2019, 7, .	5.1	14
1422	Thermoelectric generator at optimal power with external and internal irreversibilities. Journal of Applied Physics, 2019, 126, .	2.5	9
1423	Large enhancement of thermoelectric performance of InTe compound by sintering and CuInTe2 doping. Journal of Applied Physics, 2019, 126, .	2.5	11
1424	Enhanced Thermoelectric Performance of Zintl Phase Ca ₉ Zn _{4+<i>x</i>} Sb ₉ by Beneficial Disorder on the Selective Cationic Site. ACS Applied Materials & amp; Interfaces, 2019, 11, 37741-37747.	8.0	17
1425	Evaluation of thermoelectric CdSnAs2 with intrinsically low effective mass. Journal of Alloys and Compounds, 2019, 809, 151772.	5.5	4
1426	High thermoelectric performance in low-cost SnS _{0.91} Se _{0.09} crystals. Science, 2019, 365, 1418-1424.	12.6	395

#	Article	IF	CITATIONS
1427	Enhanced thermoelectric figure of merit in nano-structured Si dispersed higher manganese silicide. Materials Science in Semiconductor Processing, 2019, 104, 104649.	4.0	14
1428	Tailoring Nanoporous Structures in Bi ₂ Te ₃ Thin Films for Improved Thermoelectric Performance. ACS Applied Materials & Interfaces, 2019, 11, 38075-38083.	8.0	41
1429	Realizing a stable high thermoelectric <i>zT</i> â^¼ 2 over a broad temperature range in Ge _{1â^'xâ^'y} Ga _x Sb _y Te <i>via</i> band engineering and hybrid flash-SPS processing. Inorganic Chemistry Frontiers, 2019, 6, 63-73.	6.0	78
1430	Effect of single metal doping on the thermoelectric properties of SnTe. Sustainable Energy and Fuels, 2019, 3, 251-263.	4.9	21
1431	Origin of high thermoelectric performance with a wide range of compositions for Bi _x Sb _{2â^'x} Te ₃ single quintuple layers. Physical Chemistry Chemical Physics, 2019, 21, 1315-1323.	2.8	7
1432	Tailoring the thermoelectric properties of sol-gel grown CZTS/ITO thin films by controlling the secondary phases. Physica B: Condensed Matter, 2019, 558, 86-90.	2.7	28
1433	High Thermoelectric Power Factor and Efficiency from a Highly Dispersive Band in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" overflow="scroll"><mml:msub><mml:mi>Ba</mml:mi><mml:mn>2</mml:mn></mml:msub><mml:mi>BiPhysical Review Applied, 2019, 11, .</mml:mi></mml:math 	i> 3.8 i> <mml:m< td=""><td>i>Au</td></mml:m<>	i>Au
1434	Cation-anion codoping to enhance thermoelectric performance of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si0008.gif" overflow="scroll"><mml:msub><mml:mrow><mml:mi>BiSbSe</mml:mi></mml:mrow><mml:mrow><mml:mn>3< Materials Science in Semiconductor Processing, 2019, 93, 299-303.</mml:mn></mml:mrow></mml:msub></mml:math 	/ <mark>4.0</mark> 1:mn>	· <1mml:mrov
1435	Thermoelectric properties of topological insulator lanthanum phosphide via first-principles study. Journal of Applied Physics, 2019, 125, .	2.5	16
1436	Magnetotransport Properties of the Orbital-Ordered State of Ba1â^'xSrxV13O18. Journal of the Physical Society of Japan, 2019, 88, 024708.	1.6	1
1437	Interplay between Composition, Electronic Structure, Disorder, and Doping due to Dual Sublattice Mixing in Nonequilibrium Synthesis of ZnSnN ₂ :O. Advanced Materials, 2019, 31, e1807406.	21.0	35
1438	A Review of Boron-Rich Silicon Borides Basedon Thermodynamic Stability and Transport Properties of High-Temperature Thermoelectric Materials. High Temperature Materials and Processes, 2019, 38, 411-424.	1.4	14
1439	Thermal stability of p-type Ag-doped Mg ₃ Sb ₂ thermoelectric materials investigated by powder X-ray diffraction. Physical Chemistry Chemical Physics, 2019, 21, 4295-4305.	2.8	25
1440	Roles of AgSbTe ₂ nanostructures in PbTe: controlling thermal properties of chalcogenides. Journal of Materials Chemistry C, 2019, 7, 3787-3794.	5.5	10
1441	Enhanced thermoelectric performance in the n-type NbFeSb half-Heusler compound with heavy element Ir doping. Materials Today Physics, 2019, 8, 62-70.	6.0	44
1442	Super Large Sn _{1–<i>x</i>} Se Single Crystals with Excellent Thermoelectric Performance. ACS Applied Materials & Interfaces, 2019, 11, 8051-8059.	8.0	43
1443	High efficient nanostructured PbSe0.5Te0.5 exhibiting broad figure-of-merit plateau. Journal of Alloys and Compounds, 2019, 785, 862-870.	5.5	8
1444	Pressure-induced conduction band convergence in the thermoelectric ternary chalcogenide CuBiS ₂ . Physical Chemistry Chemical Physics, 2019, 21, 662-673.	2.8	15

#	Article		CITATIONS
1445	Realizing high thermoelectric performance in Cu ₂ Te alloyed Cu _{1.15} In _{2.29} Te ₄ . Journal of Materials Chemistry A, 2019, 7, 2360-2367.		16
1446	Enhanced thermoelectric performance of higher manganese silicides by shock-induced high-density dislocations. Journal of Materials Chemistry A, 2019, 7, 3384-3390.	10.3	26
1447	Thermoelectric Performance of Single-Phase Tellurium-Reduced Quaternary (PbTe) _{0.55} (PbS) _{0.1} (PbSe) _{0.35} . ACS Omega, 2019, 4, 9235-9240.	3.5	2
1448	An alternative approach to predict Seebeck coefficients: Application to La3â^'xTe4. Scripta Materialia, 2019, 169, 87-91.	5.2	9
1449	Decoupling thermal and electrical transport in α-MgAgSb with synergic pressure and doping strategy. Journal of Applied Physics, 2019, 125, .	2.5	8
1450	Origin of Intrinsically Low Thermal Conductivity in Talnakhite Cu _{17.6} Fe _{17.6} S ₃₂ Thermoelectric Material: Correlations between Lattice Dynamics and Thermal Transport. Journal of the American Chemical Society, 2019, 141, 10905-10914.	13.7	50
1451	Anisotropic thermoelectric properties of Weyl semimetal NbX (X = P and As): a potential thermoelectric material. Physical Chemistry Chemical Physics, 2019, 21, 15167-15176.	2.8	31
1452	Fine tuning of Fermi level by charged impurity-defect cluster formation and thermoelectric properties in n-type PbTe-based compounds. Journal of Materials Chemistry A, 2019, 7, 16488-16500.	10.3	24
1453	Origins of promising thermoelectric performance in quaternary selenide BaAg ₂ SnSe ₄ . Applied Physics Express, 2019, 12, 071006.	2.4	4
1454	Role of Cation Vacancies in Cu ₂ SnSe ₃ Thermoelectrics. ACS Applied Materials & Interfaces, 2019, 11, 24212-24220.	8.0	30
1455	Significant average <i>ZT</i> enhancement in Cu ₃ SbSe ₄ -based thermoelectric material <i>via</i> softening p–d hybridization. Journal of Materials Chemistry A, 2019, 7, 17648-17654.	10.3	41
1456	Understanding the asymmetrical thermoelectric performance for discovering promising thermoelectric materials. Science Advances, 2019, 5, eaav5813.	10.3	52
1457	Analysis of three-dimensional ellipsoidal inclusions in thermoelectric solids. International Journal of Engineering Science, 2019, 142, 158-169.	5.0	22
1458	Thermoelectric transport properties of n-type tin sulfide. Scripta Materialia, 2019, 170, 99-105.	5.2	29
1459	Physical properties and possible applications of gold-based rare earth intermetallics (R-Au): A review. Journal of Magnetism and Magnetic Materials, 2019, 490, 165477.	2.3	9
1460	Realizing Highâ€Ranged Outâ€ofâ€Plane ZTs in Nâ€Type SnSe Crystals through Promoting Continuous Phase Transition. Advanced Energy Materials, 2019, 9, 1901334.	19.5	83
1461	Theoretical Investigation of Metal-Shrouded Tl ₂ 0 Monolayers: Pudding-Mold-Type Band Structure and Thermoelectric Performance. ACS Applied Nano Materials, 2019, 2, 4061-4066.	5.0	26
1462	Enhancing effects of Te substitution on the thermoelectric power factor of nanostructured SnSe _{1â^'x} Te _x . Physical Chemistry Chemical Physics, 2019, 21, 15725-15733.	2.8	25

#	Article	IF	CITATIONS
1463	Tin Acceptor Doping Enhanced Thermoelectric Performance of n-Type Yb Single-Filled Skutterudites via Reduced Electronic Thermal Conductivity. ACS Applied Materials & Interfaces, 2019, 11, 25133-25139.	8.0	19
1464	Synergistically Improved Electronic and Thermal Transport Properties in Nb-Doped Nb _{<i>y</i>} Mo _{1–<i>y</i>} Se _{2–2<i>x</i>} Te _{2<i>x</i>} Solid Solutions Due to Alloy Phonon Scattering and Increased Valley Degeneracy. ACS Applied Materials & amp: Interfaces. 2019. 11. 26069-26081.	8.0	9
1465	Comprehensive calculations and prominent thermoelectric properties of Li3P and Li3As. Physics Letters, Section A: General, Atomic and Solid State Physics, 2019, 383, 2802-2808.	2.1	3
1466	Thermoelectric properties of electronegatively filled S _y Co _{4â^'x} Ni _x Sb ₁₂ skutterudites. Journal of Materials Chemistry C, 2019, 7, 8079-8085.	5.5	21
1467	Ultralow Lattice Thermal Conductivity in SnTe by Manipulating the Electron–Phonon Coupling. Journal of Physical Chemistry C, 2019, 123, 15996-16002.	3.1	36
1468	High Thermoelectric Performance in n-Type Polycrystalline SnSe via Dual Incorporation of Cl and PbSe and Dense Nanostructures. ACS Applied Materials & Interfaces, 2019, 11, 21645-21654.	8.0	47
1469	Anion-exchange synthesis of thermoelectric layered SnS _{0.1} Se _{0.9â^'x} Te _x nano/microstructures in aqueous solution: complexity and carrier concentration. Journal of Materials Chemistry C, 2019, 7, 7572-7579.	5.5	14
1470	Chemical Bonding and Physical Properties in Quasicrystals and Their Related Approximant Phases: Known Facts and Current Perspectives. Applied Sciences (Switzerland), 2019, 9, 2132.	2.5	10
1471	Electrical transport and thermoelectric properties of Te–Se solid solutions. Physics Letters, Section A: General, Atomic and Solid State Physics, 2019, 383, 2615-2620.	2.1	12
1472	Flexible Thermoelectric Materials and Generators: Challenges and Innovations. Advanced Materials, 2019, 31, e1807916.	21.0	419
1473	A First Principle Study of Structural, Electronic, and Vibrational Properties of LuPdBi Halfâ€Heusler Alloy. Physica Status Solidi (B): Basic Research, 2019, 256, 1900117.	1.5	18
1474	Quasiperiodic Branches in the Thermoelectricity of Nanowires. Journal of Electronic Materials, 2019, 48, 5099-5110.	2.2	2
1475	Seeing atomic-scale structural origins and foreseeing new pathways to improved thermoelectric materials. Materials Horizons, 2019, 6, 1548-1570.	12.2	27
1476	Nanostructured SnSe integrated with Se quantum dots with ultrahigh power factor and thermoelectric performance from magnetic field-assisted hydrothermal synthesis. Journal of Materials Chemistry A, 2019, 7, 15757-15765.	10.3	45
1477	The n- and p-type thermoelectric response of a semiconducting Co-based quaternary Heusler alloy: a density functional approach. Journal of Materials Chemistry C, 2019, 7, 7664-7671.	5.5	20
1478	Large enhancement of the thermoelectric power factor in disordered materials through resonant scattering. Physical Review B, 2019, 99, .	3.2	5
1479	Synthesis and Characterization of Vacancy-Doped Neodymium Telluride for Thermoelectric Applications. Chemistry of Materials, 2019, 31, 4460-4468.	6.7	20
1480	Optimizing the thermoelectric transport properties of Bi ₂ O ₂ Se monolayer< <i>via</i> biaxial strain. Physical Chemistry Chemical Physics, 2019, 21, 15097-15105.	2.8	76

		CITATION REPO	RT	
# 1481	ARTICLE Thermoelectric properties of nanocrystalline lead telluride. AIP Conference Proceedings, 2019, , .	IF		CITATIONS
1482	Optical and transport properties of few quintuple-layers of Bi2-xSbxSe3 nanoflakes synthesized by hydrothermal method. Journal of Alloys and Compounds, 2019, 804, 272-280.	′ 5	.5	8
1483	Enhanced thermoelectric performance of a simple method prepared polycrystalline SnSe optimize spark plasma sintering. Journal of Applied Physics, 2019, 125, .	d by 2	.5	10
1484	Fracture structure and thermoelectric enhancement of Cu2Se with substitution of nanostructure Ag2Se. Physical Chemistry Chemical Physics, 2019, 21, 13569-13577.	2	.8	18
1485	Heterostructures in two-dimensional colloidal metal chalcogenides: Synthetic fundamentals and applications. Nano Research, 2019, 12, 1750-1769.	1	0.4	33
1486	Multipoint Defect Synergy Realizing the Excellent Thermoelectric Performance of nâ€Type Polycrystalline SnSe via Re Doping. Advanced Functional Materials, 2019, 29, 1902893.	1	4.9	73
1487	Double Half-Heuslers. Joule, 2019, 3, 1226-1238.	2	4.0	103
1488	Bi ₂ Te ₃ single crystals with high room-temperature thermoelectric performance enhanced by manipulating point defects based on first-principles calculation. RSC Advances, 2019, 9, 14422-14431.	3	.6	28
1489	Alloying for orbital alignment enables thermoelectric enhancement of EuCd ₂ Sb ₂ . Journal of Materials Chemistry A, 2019, 7, 12773-12778.	1	0.3	42
1490	High-performance YbAl3/Bi0.5Sb1.5Te3 artificially tilted multilayer thermoelectric devices via mat genome engineering method. Journal of Power Sources, 2019, 430, 193-200.	erial 7.	.8	12
1491	Novel n-type thermoelectric material of ZnIn2Se4. Journal of Alloys and Compounds, 2019, 797, 9	40-944. 5	.5	22
1492	Synergistically optimizing interdependent thermoelectric parameters of n-type PbSe through alloy CdSe. Energy and Environmental Science, 2019, 12, 1969-1978.	ing 3	0.8	99
1493	Bilayer MSe ₂ (MÂ= Zr, Hf) as promising two-dimensional thermoelectric materials: a first-principles study. RSC Advances, 2019, 9, 12394-12403.	3	.6	35
1494	Thermoelectric power factor enhancement based on carrier transport physics in ultimately phonon-controlled Si nanostructures. Materials Today Energy, 2019, 13, 56-63.	4	.7	39
1495	Enhanced and stabilized n-type thermoelectric performance in α-CuAgSe by Ni doping. Materials Physics, 2019, 10, 100095.	Foday 6	.0	13
1496	Anharmonic Convergence: Tuning Two Dials on Phonons for High zT in p-type PbTe. Joule, 2019, 3 1180-1181.	, 2	4.0	16
1497	Promising thermoelectric materials of Cu3VX4 (X=S, Se, Te): A Cu-V-X framework plus void tunnel International Journal of Modern Physics C, 2019, 30, 1950045.	s. 1.	.7	10
1498	Doping-Induced Polymorph and Carrier Polarity Changes in Thermoelectric Ag(Bi,Sb)Se _{2<td>ıb> 4</td><td>.0</td><td>11</td>}	ıb> 4	.0	11

		CITATION RE	PORT	
#	Article		IF	CITATIONS
1499	Enhanced thermoelectric properties of n-type Ti-doped PbTe. MRS Advances, 2019, 4, 1683-168	Э.	0.9	1
1500	Enhanced thermoelectric performance of GeTe through <i>in situ</i> microdomain and Ge-vacar control. Journal of Materials Chemistry A, 2019, 7, 15181-15189.	ncy	10.3	56
1501	Band alignment and scattering considerations for enhancing the thermoelectric power factor of complex materials: The case of Co-based half-Heusler alloys. Physical Review B, 2019, 99, .		3.2	47
1502	Effect of Rare-Earth Metals Substitution for Ca on the Crystal Structure and Thermoelectric Properties of the Ca _{11–<i>x</i>} RE _{<i>x</i>} Sb _{10–<i>y</i>Crystal Growth and Design, 2019, 19, 3498-3508.}	sub> System.	3.0	13
1503	Thermoelectric interface materials: A perspective to the challenge of thermoelectric power generation module. Journal of Materiomics, 2019, 5, 321-336.		5.7	113
1504	Power output evaluation of a porous annular thermoelectric generator for waste heat harvesting International Journal of Heat and Mass Transfer, 2019, 137, 979-989.		4.8	31
1505	A descriptive model of thermoelectric transport in a resonant system of PbSe doped with Tl. Jour of Materials Chemistry A, 2019, 7, 12859-12868.	nal	10.3	13
1507	Lanthanum based quaternary Heusler alloys LaCoCrX (X = Al, Ga): Hunt for half-metallicity a thermoelectric efficiency. Results in Physics, 2019, 13, 102300.	ınd high	4.1	33
1508	Non-linear enhancement of thermoelectric performance of a TiSe ₂ monolayer due t tensile strain, from first-principles calculations. Journal of Materials Chemistry C, 2019, 7, 7308-7	o '317.	5.5	22
1509	Natural sulvanite Cu3MX4 (M = Nb, Ta; X = S, Se): Promising visible-light photocatalys splitting. Computational Materials Science, 2019, 165, 137-143.	ts for water	3.0	9
1510	Dimensionality reduction of germanium selenide for high-efficiency thermoelectric applications. Ceramics International, 2019, 45, 15122-15127.		4.8	20
1511	First-principles study of thermal transport properties in the two- and three-dimensional forms of Bi ₂ O ₂ Se. Physical Chemistry Chemical Physics, 2019, 21, 10931-1093	8.	2.8	43
1512	Present and future thermoelectric materials toward wearable energy harvesting. Applied Materia Today, 2019, 15, 543-557.	ls	4.3	119
1513	Physical, electronic and thermoelectric properties of [001] surfaces of TiCoSb half-Heusler compound. Materials Research Express, 2019, 6, 086414.		1.6	4
1514	Reconciling Crystallographic and Physical Property Measurements on Thermoelectric Lead Sulfid Journal of the American Chemical Society, 2019, 141, 8146-8157.	е.	13.7	20
1515	Realizing n-type BiCuSeO through halogens doping. Ceramics International, 2019, 45, 14953-14	957.	4.8	11
1516	Printable Thermoelectric Materials and Applications. Frontiers in Materials, 2019, 6, .		2.4	10
1517	Realizing Bi-doped α-Cu2Se as a promising near-room-temperature thermoelectric material. Che Engineering Journal, 2019, 371, 593-599.	mical	12.7	46

#	Article	IF	CITATIONS
1518	Design, growth and characterization of PbTe-based thermoelectric materials. Progress in Crystal Growth and Characterization of Materials, 2019, 65, 47-94.	4.0	28
1519	Characterization of commercial thermoelectric organic composite thin films. Journal of Materials Science, 2019, 54, 9565-9572.	3.7	6
1520	Thermoelectric optimization of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>AgBiS</mml:mi><mml:msub><mm mathvariant="normal">e<mml:mn>2</mml:mn></mm </mml:msub></mml:mrow> by defect engineering for room-temperature applications. Physical Review B, 2019, 99, .</mml:math 	l:mi 3.2	38
1521	Complex Band Structures and Lattice Dynamics of Bi ₂ Te ₃ â€Based Compounds and Solid Solutions. Advanced Functional Materials, 2019, 29, 1900677.	14.9	135
1522	Intrinsic anharmonic localization in thermoelectric PbSe. Nature Communications, 2019, 10, 1928.	12.8	51
1523	Fabrication and Thermoelectric Properties of Single-Crystal Argyrodite Ag ₈ SnSe ₆ . Chemistry of Materials, 2019, 31, 2603-2610.	6.7	35
1524	Thermoelectric Figure-of-Merit of Fully Dense Single-Crystalline SnSe. ACS Omega, 2019, 4, 5442-5450.	3.5	40
1525	Enhanced Thermoelectric Performance of Quaternary Cu _{2–2<i>x</i>} Ag _{2<i>x</i>} Se _{1–<i>x</i>} S <i>_x</i> Liquid-like Chalcogenides. ACS Applied Materials & Interfaces, 2019, 11, 13433-13440.	8.0	38
1526	Achieving band convergence by tuning the bonding ionicity in nâ€ŧype Mg ₃ Sb ₂ . Journal of Computational Chemistry, 2019, 40, 1693-1700.	3.3	68
1527	Thermoelectrics of Nanowires. Chemical Reviews, 2019, 119, 9260-9302.	47.7	110
1528	Good Performance and Flexible PEDOT:PSS/Cu ₂ Se Nanowire Thermoelectric Composite Films. ACS Applied Materials & Interfaces, 2019, 11, 12819-12829.	8.0	153
1529	Dynamic Ag ⁺ -intercalation with AgSnSe ₂ nano-precipitates in Cl-doped polycrystalline SnSe ₂ toward ultra-high thermoelectric performance. Journal of Materials Chemistry A, 2019, 7, 9761-9772.	10.3	50
1531	Thermoelectric and thermal stability improvements in Nano-Cu2Se included Ag2Se. Journal of Solid State Chemistry, 2019, 273, 122-127.	2.9	28
1532	High Thermoelectric Performance Achieved in GeTe–Bi ₂ Te ₃ Pseudoâ€Binary via Van der Waals Gapâ€Induced Hierarchical Ferroelectric Domain Structure. Advanced Functional Materials, 2019, 29, 1806613.	14.9	101
1533	Thermoelectric properties of p-type MnSe. Journal of Alloys and Compounds, 2019, 789, 953-959.	5.5	14
1534	Dramatically reduced lattice thermal conductivity of Mg2Si thermoelectric material from nanotwinning. Acta Materialia, 2019, 169, 9-14.	7.9	30
1535	Carrier tuning and multiple phonon scattering induced high thermoelectric performance in n-type Sb-doped PbTe alloys. Applied Physics A: Materials Science and Processing, 2019, 125, 1.	2.3	14
1536	Enhancement of Thermoelectric Performance for n-Type PbS through Synergy of Gap State and Fermi Level Pinning. Journal of the American Chemical Society, 2019, 141, 6403-6412.	13.7	67

#	Article	IF	CITATIONS
1537	First-principles assessment of thermoelectric properties of CuFeS2. Journal of Applied Physics, 2019, 125, .	2.5	22
1538	Cu/Sb Codoping for Tuning Carrier Concentration and Thermoelectric Performance of GeTe-Based Alloys with Ultralow Lattice Thermal Conductivity. ACS Applied Energy Materials, 2019, 2, 2596-2603.	5.1	45
1539	Band engineering and crystal field screening in thermoelectric Mg ₃ Sb ₂ . Journal of Materials Chemistry A, 2019, 7, 8922-8928.	10.3	36
1540	Magnetic iron doping in Cu2SnS3 ceramics for enhanced thermoelectric transport properties. Journal of Applied Physics, 2019, 125, .	2.5	30
1541	Nanoscale pores plus precipitates rendering high-performance thermoelectric SnTe1-xSex with refined band structures. Nano Energy, 2019, 60, 1-7.	16.0	86
1542	Aguilarite Ag ₄ SSe Thermoelectric Material: Natural Mineral with Low Lattice Thermal Conductivity. ACS Applied Materials & Interfaces, 2019, 11, 12632-12638.	8.0	30
1543	Lattice Strain Advances Thermoelectrics. Joule, 2019, 3, 1276-1288.	24.0	333
1544	Enhanced thermoelectric performance in single-crystal-like semiconducting flexible GaAs films. APL Materials, 2019, 7, .	5.1	4
1545	Thermoelectric energy conversion and topological materials based on heavy metal chalcogenides. Journal of Solid State Chemistry, 2019, 275, 103-123.	2.9	33
1546	Light Element Doping and Introducing Spin Entropy: An Effective Strategy for Enhancement of Thermoelectric Properties in BiCuSeO. ACS Applied Materials & Interfaces, 2019, 11, 15543-15551.	8.0	31
1547	Superior performance and high service stability for GeTe-based thermoelectric compounds. National Science Review, 2019, 6, 944-954.	9.5	96
1548	Enhanced thermoelectric properties of Ag-doped MnO2 single crystal nanowires for room-temperature application. Materials Research Express, 2019, 6, 075073.	1.6	4
1549	Thermoelectric Properties of Thiospinel-Type CuCo2S4. Journal of Electronic Materials, 2019, 48, 4179-4187.	2.2	24
1550	Enhancement of thermoelectric performance of Al doped PbTe-PbSe due to carrier concentration optimization and alloying. Journal of Alloys and Compounds, 2019, 791, 786-791.	5.5	13
1551	Maximization of transporting bands for high-performance SnTe alloy thermoelectrics. Materials Today Physics, 2019, 9, 100091.	6.0	45
1552	From thermoelectricity to phonoelectricity. Applied Physics Reviews, 2019, 6, 021305.	11.3	13
1553	Anionic Doping and Cationic Site Preference in CaYb ₄ Al ₂ Sb _{6–<i>x</i>} Ge _{<i>x</i>} (<i>x</i> = 0.2, 0.5,) Tj	ЕТ <u>Q</u> 0000	rgBT /Overlo
	Chemistry, 2019, 58, 5827-5836.		
1554	Promoted high temperature carrier mobility and thermoelectric performance of InTe enabled by altering scattering mechanism. Journal of Materials Chemistry A, 2019, 7, 11690-11698.	10.3	25

#	Article	IF	Citations
1555	Thermoelectric and magnetic properties of rare earth borides: Boron cluster and layered compounds. Journal of Solid State Chemistry, 2019, 275, 70-82.	2.9	62
1556	Coherent magnetic nanoinclusions induce charge localization in half-Heusler alloys leading to high-Tc ferromagnetism and enhanced thermoelectric performance. Journal of Materials Chemistry A, 2019, 7, 11095-11103.	10.3	27
1557	Dislocation Evolution and Migration at Grain Boundaries in Thermoelectric SnTe. ACS Applied Energy Materials, 2019, 2, 2392-2397.	5.1	27
1558	The Thermoelectric Properties of Bismuth Telluride. Advanced Electronic Materials, 2019, 5, 1800904.	5.1	446
1559	Bandgap engineering of PbTe ultra-thin layers by surface passivations. Journal of Physics Condensed Matter, 2019, 31, 295503.	1.8	2
1560	Experimental revelation of multiband transport in heavily doped BaCd2Sb2 with promising thermoelectric performance. Materials Today Physics, 2019, 8, 123-127.	6.0	30
1561	Thermoelectric properties of multi-walled carbon nanotube-embedded Cu2S thermoelectric materials. Journal of Materials Science: Materials in Electronics, 2019, 30, 5177-5184.	2.2	20
1562	Thermoelectric GeTe with Diverse Degrees of Freedom Having Secured Superhigh Performance. Advanced Materials, 2019, 31, e1807071.	21.0	197
1563	Enhanced Density-of-States Effective Mass and Strained Endotaxial Nanostructures in Sb-Doped Pb _{0.97} Cd _{0.03} Te Thermoelectric Alloys. ACS Applied Materials & Interfaces, 2019, 11, 9197-9204.	8.0	66
1564	Progress on PEDOT:PSS/Nanocrystal Thermoelectric Composites. Advanced Electronic Materials, 2019, 5, 1800822.	5.1	70
1565	Thermoelectric performance of single elemental doped n-type PbTe regulated by carrier concentration. Journal of Alloys and Compounds, 2019, 787, 180-185.	5.5	11
1566	Grain growth mechanism and thermoelectric properties of hot press and spark plasma sintered Na-doped PbTe. Journal of Alloys and Compounds, 2019, 786, 515-522.	5.5	21
1567	High Thermoelectric Power Factor in IntermetallicCoSiArising from Energy Filtering of Electrons by Phonon Scattering. Physical Review Applied, 2019, 11, .	3.8	31
1568	Synergetic Enhancement of Thermoelectric Performance by Selective Charge Anderson Localization–Delocalization Transition in n-Type Bi-Doped PbTe/Ag ₂ Te Nanocomposite. ACS Nano, 2019, 13, 3806-3815.	14.6	70
1569	Towards the high-throughput synthesis of bulk materials: thermoelectric PbTe–PbSe–SnTe–SnSe alloys. Molecular Systems Design and Engineering, 2019, 4, 407-420.	3.4	28
1570	Extraordinary thermoelectric performance in MgAgSb alloy with ultralow thermal conductivity. Nano Energy, 2019, 59, 311-320.	16.0	59
1571	Emerging Theory, Materials, and Screening Methods: New Opportunities for Promoting Thermoelectric Performance. Annalen Der Physik, 2019, 531, 1800437.	2.4	83
1572	Designing high-performance thermoelectrics in two-dimensional tetradymites. Nano Energy, 2019, 58, 743-749.	16.0	50

#	Article	IF	CITATIONS
1573	Synergistically optimized electrical and thermal transport properties of polycrystalline SnSe via alloying SnS. Journal of Solid State Chemistry, 2019, 273, 85-91.	2.9	23
1574	High Thermoelectric Performance in Mg ₂ (Si _{0.3} Sn _{0.7}) by Enhanced Phonon Scattering. ACS Applied Energy Materials, 2019, 2, 2129-2137.	5.1	44
1575	Promising thermoelectric properties and anisotropic electrical and thermal transport of monolayer SnTe. Applied Physics Letters, 2019, 114, .	3.3	25
1576	Achieving an excellent thermoelectric performance in nanostructured copper sulfide bulk via a fast doping strategy. Materials Today Physics, 2019, 8, 71-77.	6.0	44
1577	Achieving a fine balance between the strong mechanical and high thermoelectric properties of n-type PbTe–3% Sb materials by alloying with PbS. Journal of Materials Chemistry A, 2019, 7, 6304-6311.	10.3	24
1578	Hybrid Organic–Inorganic Thermoelectric Materials and Devices. Angewandte Chemie - International Edition, 2019, 58, 15206-15226.	13.8	138
1579	Hybride organischâ€∎norganische thermoelektrische Materialien und Baueinheiten. Angewandte Chemie, 2019, 131, 15348-15370.	2.0	9
1580	All-Scale Hierarchically Structured p-Type PbSe Alloys with High Thermoelectric Performance Enabled by Improved Band Degeneracy. Journal of the American Chemical Society, 2019, 141, 4480-4486.	13.7	87
1581	Thermoelectric Performance of 2D Tellurium with Accumulation Contacts. Nano Letters, 2019, 19, 1955-1962.	9.1	81
1582	Quasi-two-dimensional GeSbTe compounds as promising thermoelectric materials with anisotropic transport properties. Applied Physics Letters, 2019, 114, .	3.3	23
1583	Designing chemical analogs to PbTe with intrinsic high band degeneracy and low lattice thermal conductivity. Nature Communications, 2019, 10, 719.	12.8	50
1584	Exceptional thermoelectric performance in Mg ₃ Sb _{0.6} Bi _{1.4} for low-grade waste heat recovery. Energy and Environmental Science, 2019, 12, 965-971.	30.8	177
1585	Thermoelectric performance of (GeTe) _{1â^'x} (Sb ₂ Te ₃) _x fabricated by high pressure sintering method. Materials Research Express, 2019, 6, 1250h5.	1.6	4
1586	Keynote Speech: Nanostructure thermoelectrics. , 2019, , .		0
1587	Current Research and Future Prospective of Iron-Based Heusler Alloys as Thermoelectric Materials. Nanotechnologies in Russia, 2019, 14, 281-289.	0.7	2
1588	Magnesioreduction Synthesis of Co-Doped β-FeSi2: Mechanism, Microstructure, and Improved Thermoelectric Properties. ACS Applied Energy Materials, 2019, 2, 8525-8534.	5.1	20
1589	Origin of Band Modulation in GeTe-Rich Ge–Sb–Te Thin Film. ACS Applied Electronic Materials, 2019, 1, 2619-2625.	4.3	3
1590	Zn: a versatile resonant dopant for SnTe thermoelectrics. Materials Today Physics, 2019, 11, 100158.	6.0	57

#	Article	IF	CITATIONS
1591	Two-dimensional MgX ₂ Se ₄ (X = Al, Ga) monolayers with tunable electronic properties for optoelectronic and photocatalytic applications. Nanoscale, 2019, 11, 19806-19813.	5.6	21
1592	High-performance electron-doped GeMnTe ₂ : hierarchical structure and low thermal conductivity. Journal of Materials Chemistry A, 2019, 7, 27361-27366.	10.3	20
1593	Significant enhancement in the thermoelectric performance of Bi ₂ O ₂ S through dimensionality reduction. Journal of Materials Chemistry C, 2019, 7, 14986-14992.	5.5	33
1594	Half-Heusler Thermoelectrics. , 2019, , 203-226.		2
1595	High-efficiency half-Heusler thermoelectric modules enabled by self-propagating synthesis and topologic structure optimization. Energy and Environmental Science, 2019, 12, 3390-3399.	30.8	135
1596	Realizing high thermoelectric performance in GeTe through decreasing the phase transition temperature <i>via</i> entropy engineering. Journal of Materials Chemistry A, 2019, 7, 26393-26401.	10.3	103
1597	New insights into the role of dislocation engineering in N-type filled skutterudite CoSb ₃ . Journal of Materials Chemistry C, 2019, 7, 13622-13631.	5.5	25
1598	Achieving high power factor and thermoelectric performance through dual substitution of Zn and Se in tetrahedrites Cu12Sb4S13. Applied Physics Letters, 2019, 115, .	3.3	19
1599	Recent advances of n-type low-cost PbSe-based thermoelectric materials. Materials Today Advances, 2019, 4, 100029.	5.2	9
1600	Thermoelectric Properties of Carbon Nanotubes. Energies, 2019, 12, 4561.	3.1	52
1601	Electrical Transport and Thermoelectric Properties of SnSe–SnTe Solid Solution. Materials, 2019, 12, 3854.	2.9	17
1602	Ultralow lattice thermal conductivity of chalcogenide perovskite CaZrSe3 contributes to high thermoelectric figure of merit. Npj Computational Materials, 2019, 5, .	8.7	31
1603	Enhancement of the electronic thermoelectric properties of bulk strained silicon-germanium alloys using the scattering relaxation times from first-principles calculations. Journal of Applied Physics, 2019, 126, 215103.	2.5	9
1604	Nanostructured potential well/barrier engineering for realizing unprecedentedly large thermoelectric power factors. Materials Today Physics, 2019, 11, 100159.	6.0	18
1605	Giant enhancement of cryogenic thermopower by polar structural instability in the pressurized semimetal MoTe2. Physical Review B, 2019, 100, .	3.2	10
1606	Achieving an Ultrahigh Power Factor in Sb ₂ Te ₂ Se Monolayers via Valence Band Convergence. ACS Applied Materials & Interfaces, 2019, 11, 46688-46695.	8.0	21
1607	Influence of Nanostructuration on PbTe Alloys Synthesized by Arc-Melting. Materials, 2019, 12, 3783.	2.9	9
1608	Novel Thermoelectric Materials and Device Design Concepts. , 2019, , .		12

		CITATION REPORT		
# 1609	ARTICLE Multicomponent Chalcogenides with Diamond-Like Structure as Thermoelectrics. , 2019	,,137-157.	IF	Citations
1610	Enhancement of thermoelectric performance across the topological phase transition in o selenide. Nature Materials, 2019, 18, 1321-1326.	lense lead	27.5	87
1611	High-performance and low thermal conductivity in nano-layered Cu2Se prepared by a Na method. CrystEngComm, 2019, 21, 6850-6858.	Cl-flux	2.6	10
1612	Realizing high thermoelectric performance with comparable p- and n-type figure-of-merit graphene/h-BN superlattice monolayer. Physical Chemistry Chemical Physics, 2019, 21, 2	s in a 26630-26636.	2.8	6
1613	Thermoelectrics. SpringerBriefs in Materials, 2019, , .		0.3	10
1614	Enhancing thermoelectric performance of SnTe via stepwisely optimizing electrical and t transport properties. Journal of Alloys and Compounds, 2019, 773, 571-584.	hermal	5.5	37
1615	Free-standing highly conducting PEDOT films for flexible thermoelectric generator. Energ 53-61.	;y, 2019, 170,	8.8	81
1616	Electronic structure, elastic, mechanical, thermodynamic and thermoelectric investigatic Mn2PtX (X=Rh, Pd) Heusler alloys. Solid State Communications, 2019, 290, 12-21.	ns of	1.9	20
1617	High-Temperature Structural and Thermoelectric Study of Argyrodite Ag ₈ GeSe ₆ . ACS Applied Materials & Interfaces, 2019, 11	, 2168-2176.	8.0	51
1618	Multifold improvement of thermoelectric power factor by tuning bismuth and antimony nanostructured n-type bismuth antimony telluride thin films. Materials and Design, 2019	in 9, 163, 107549.	7.0	61
1619	Enhancement of Power Factor for Inherently Poor Thermal Conductor Ag ₈ GeSe ₆ by Replacing Ge with Sn. ACS Applied Energy Mate 654-660.	rials, 2019, 2,	5.1	26
1620	Thermoelectric Material SnPb2Bi2S6: The 4,4L Member of Lillianite Homologous Series v Lattice Thermal Conductivity. Inorganic Chemistry, 2019, 58, 1339-1348.	vith Low	4.0	10
1621	Strong Phonon–Phonon Interactions Securing Extraordinary Thermoelectric Ge _{1–<i>x</i>} Sb _{<i>x</i>} Te with Zn-Alloying-Induced Band A of the American Chemical Society, 2019, 141, 1742-1748.	lignment. Journal	13.7	199
1622	TiNiSn half-Heusler crystals grown from metallic flux for thermoelectric applications. Jour Alloys and Compounds, 2019, 781, 1132-1138.	nal of	5.5	61
1623	High Thermoelectric Performance in the Wide Bandâ€Gap AgGa _{1â€} <i>_x</i> Te ₂ Compounds: Directional Ne Expansion and Intrinsically Low Thermal Conductivity. Advanced Functional Materials, 20 1806534.		14.9	65
1624	Triple-phase ceramic 2D nanocomposite with enhanced thermoelectric properties. Journa European Ceramic Society, 2019, 39, 1237-1244.	al of the	5.7	16
1625	Band manipulation for high thermoelectric performance in SnTe through heavy CdSe-allo of Materiomics, 2019, 5, 111-117.	ying. Journal	5.7	17
1626	High Thermoelectric Performance in Polycrystalline SnSe Via Dualâ€Doping with Ag/Na a Nanostructuring With Ag ₈ SnSe ₆ . Advanced Energy Materials,		19.5	98

#	Article	IF	CITATIONS
1627	Recent progresses on thermoelectric Zintl phases: Structures, materials and optimization. Journal of Solid State Chemistry, 2019, 270, 252-264.	2.9	65
1628	Synergistic effects on thermoelectric properties of Sn0.5Ge0.4875Te with Pb alloying. Journal of Alloys and Compounds, 2019, 777, 1334-1339.	5.5	7
1629	Thermoelectric properties of silicon and recycled silicon sawing waste. Journal of Materiomics, 2019, 5, 15-33.	5.7	24
1630	Multiple-valley effect on modulation of thermoelectric properties of n-type ZrCuSiAs-structure oxyantimonides LnTSbO (Ln= lanthanides and T=Zn, Mn). Journal of Materiomics, 2019, 5, 51-55.	5.7	4
1631	Synergetic tuning of electrical/thermal transport via dualâ€doping in Bi _{0.96â~<i>x</i>} CuSeO. Journal of the American Ceramic Society, 2019, 102, 1541-1547.	3.8	5
1632	A comprehensive study on improved power materials for high-temperature thermoelectric generators. Journal of Power Sources, 2019, 410-411, 143-151.	7.8	42
1633	Recent Progress in Thermoelectric Materials Based on Conjugated Polymers. Polymers, 2019, 11, 107.	4.5	176
1634	Electronic structure and transport properties of TlInSe2 and TlO·5LiO·5InSe2. Materials Today Energy, 2019, 12, 95-106.	4.7	7
1635	Discovery of TaFeSb-based half-Heuslers with high thermoelectric performance. Nature Communications, 2019, 10, 270.	12.8	227
1636	Realizing High Thermoelectric Performance in BaCu _{2–<i>x</i>} Ag _{<i>x</i>} Te ₂ through Enhanced Carrier Effective Mass and Point-Defect Scattering. ACS Applied Energy Materials, 2019, 2, 889-895.	5.1	26
1637	Enhanced thermoelectric performance of BiSbTe alloy: Energy filtering effect of nanoprecipitates and the effect of SiC nanoparticles. Journal of Alloys and Compounds, 2019, 784, 1276-1283.	5.5	40
1638	Tuning phonon transport spectrum for better thermoelectric materials. Science and Technology of Advanced Materials, 2019, 20, 10-25.	6.1	36
1639	Convergence of iron resonant level with heavy-hole valence band in Pb1-xSnxTe alloys. Journal of Alloys and Compounds, 2019, 775, 769-775.	5.5	7
1640	Thermoelectric properties and EPR analysis of Fe doped Cu12Sb4S13. Journal of Solid State Chemistry, 2019, 269, 547-552.	2.9	5
1641	Thermoelectrics: From history, a window to the future. Materials Science and Engineering Reports, 2019, 138, 100501.	31.8	341
1642	Pressure induced convergence of conduction bands in Al doped Mg2Si: Experiment and theory. Journal of Materiomics, 2019, 5, 81-87.	5.7	7
1643	Exploring the best scenario for understanding the high temperature thermoelectric behaviour of Fe ₂ VAl. Materials Research Express, 2019, 6, 026302.	1.6	17
1644	Strain-mediated point defects in thermoelectric p-type bismuth telluride polycrystalline. Nano Energy, 2019, 55, 486-493.	16.0	32

#	Article	IF	CITATIONS
1645	Copper Sulfides: Earthâ€Abundant and Lowâ€Cost Thermoelectric Materials. Energy Technology, 2019, 7, 1800850.	3.8	45
1646	Tunable thermoelectric properties of SnS2 under high pressure at room temperature. Physica B: Condensed Matter, 2019, 556, 97-102.	2.7	13
1647	Phase structure analysis and pyroelectric energy harvesting performance of Ba(Hf _{<i>x</i>} Ti _{1<i>â€x</i>})O ₃ ceramics. Journal of the American Ceramic Society, 2019, 102, 3623-3629.	3.8	9
1648	Realizing High Thermoelectric Performance in p-Type SnSe through Crystal Structure Modification. Journal of the American Chemical Society, 2019, 141, 1141-1149.	13.7	137
1649	Investigations on distinct thermoelectric transport behaviors of Cu in n-type PbS. Journal of Alloys and Compounds, 2019, 781, 820-830.	5.5	32
1650	Thermoelectric performance of monolayer InSe improved by convergence of multivalley bands. Journal of Applied Physics, 2019, 125, .	2.5	47
1651	Thermoelectric properties of nano-bulk bismuth telluride prepared with spark plasma sintered nano-plates. Current Applied Physics, 2019, 19, 97-101.	2.4	8
1652	Thicknessâ€Dependent Inâ€Plane Thermal Conductivity and Enhanced Thermoelectric Performance in pâ€Type ZrTe ₅ Nanoribbons. Physica Status Solidi - Rapid Research Letters, 2019, 13, 1800529.	2.4	22
1653	Role of crystal transformation on the enhanced thermoelectric performance in Mn-doped Cu2SnS3. Journal of Alloys and Compounds, 2019, 780, 618-625.	5.5	34
1654	Rapid preparation of Ge0.9Sb0.1Te1+ via unique melt spinning: Hierarchical microstructure and improved thermoelectric performance. Journal of Alloys and Compounds, 2019, 774, 129-136.	5.5	16
1655	Synthesis and thermoelectric properties of Ti-substituted (Hf0.5Zr0.5)1-xTixNiSn0.998Sb0.002 Half-Heusler compounds. Journal of Alloys and Compounds, 2019, 773, 1141-1145.	5.5	13
1656	An Integrated Approach to Thermoelectrics: Combining Phonon Dynamics, Nanoengineering, Novel Materials Development, Module Fabrication, and Metrology. Advanced Energy Materials, 2019, 9, 1801304.	19.5	26
1657	Energy Filtering of Charge Carriers: Current Trends, Challenges, and Prospects for Thermoelectric Materials. Advanced Functional Materials, 2020, 30, 1901789.	14.9	266
1658	Synergistically optimizing charge and phonon transport properties in n-type PbTe via introducing ternary compound AgSb(Se, Te)2. Journal of Alloys and Compounds, 2020, 815, 152463.	5.5	15
1659	Synthesis of FeVSb1â^'xSex Half-Heusler Alloys via Mechanical Alloying and Evaluation of Transport and Thermoelectric Properties. Journal of Electronic Materials, 2020, 49, 2719-2725.	2.2	3
1660	zT = 1.1 in CuInTe2 Solid Solutions Enabled by Rational Defect Engineering. ACS Applied Energy Materials, 2020, 3, 2039-2048.	5.1	16
1661	Thermoelectric properties of strontium sulfide via first-principles calculations. Solid State Communications, 2020, 305, 113755.	1.9	10
1662	Materials selection rules for optimum power factor in two-dimensional thermoelectrics. JPhys Materials, 2020, 3, 015005.	4.2	4

#	Article	IF	CITATIONS
1663	High thermoelectric performance in Cu2Se/CDs hybrid materials. Journal of Alloys and Compounds, 2020, 813, 152204.	5.5	43
1664	High thermoelectric performance can be achieved in two-dimensional (PbTe)2 layer. Physics Letters, Section A: General, Atomic and Solid State Physics, 2020, 384, 126044.	2.1	10
1665	High performance in room temperature and thermoelectric properties of PbSe single crystal prepared by Pb-flux method. Physica B: Condensed Matter, 2020, 578, 411797.	2.7	3
1666	Thermoelectric figure of merit in transverse magnetic field under adiabatic and isothermal conditions. Journal of Magnetism and Magnetic Materials, 2020, 493, 165660.	2.3	2
1667	Chalcogenide Thermoelectrics Empowered by an Unconventional Bonding Mechanism. Advanced Functional Materials, 2020, 30, 1904862.	14.9	148
1668	Recent Advances in Liquidâ€Like Thermoelectric Materials. Advanced Functional Materials, 2020, 30, 1903867.	14.9	148
1669	High-Resolution THz Spectroscopy and Solid-State Density Functional Theory Calculations of Polycyclic Aromatic Hydrocarbons. Journal of Infrared, Millimeter, and Terahertz Waves, 2020, 41, 1378-1392.	2.2	15
1670	Preparation and Characterization of Ni/Bi0.5Sb1.5Te3 Heterogeneous Multilayered Thermoelectric Materials. Journal of Electronic Materials, 2020, 49, 2689-2697.	2.2	3
1671	Excellent Thermoelectric Performance Realized in p-Type Pseudolayered Sb ₂ Te ₃ (GeTe) ₁₂ via Rhenium Doping. ACS Applied Energy Materials, 2020, 3, 2063-2069.	5.1	17
1672	Enhanced out-of-plane thermoelectric performance of Cmcm SnSe phase by uniaxial strain. Physics Letters, Section A: General, Atomic and Solid State Physics, 2020, 384, 126002.	2.1	9
1673	Enhanced thermoelectric and mechanical properties in hierarchical tubular porous cuprous selenide. Scripta Materialia, 2020, 176, 104-107.	5.2	22
1674	Dynamic modeling and experimental investigation of self-powered sensor nodes for freight rail transport. Applied Energy, 2020, 257, 113969.	10.1	90
1675	Materials Strategies and Device Architectures of Emerging Power Supply Devices for Implantable Bioelectronics. Small, 2020, 16, e1902827.	10.0	86
1676	Nanoscale Organic Thermoelectric Materials: Measurement, Theoretical Models, and Optimization Strategies. Advanced Functional Materials, 2020, 30, 1903873.	14.9	97
1677	Investigation of Thermoelectric Properties of Ag2SxSe1â^'x (x = 0.0, 0.2 and 0.4). Journal of Electronic Materials, 2020, 49, 2846-2854.	2.2	31
1678	Sn Doped FeNbSb Half-Heusler Compounds for Tuning Thermoelectric Performance. Journal of Electronic Materials, 2020, 49, 2862-2871.	2.2	8
1679	Thermoelectric Properties of Zintl Phase YbMg ₂ Sb ₂ . Chemistry of Materials, 2020, 32, 776-784.	6.7	40
1680	Facile <i>in situ</i> solution synthesis of SnSe/rGO nanocomposites with enhanced thermoelectric performance. Journal of Materials Chemistry A, 2020, 8, 1394-1402.	10.3	117

#	Article	IF	Citations
1681	Anisotropic Thermoelectric Properties of <i>n</i> -Type Te-Free (Bi, Sb) ₂ Se ₃ with Orthorhombic Structure. ACS Applied Energy Materials, 2020, 3, 2070-2077.	5.1	7
1682	Realizing high-efficiency power generation in low-cost PbS-based thermoelectric materials. Energy and Environmental Science, 2020, 13, 579-591.	30.8	101
1683	Outstanding thermoelectric properties of solvothermal-synthesized Sn _{1â^{^,}3x} In _x Ag _{2x} Te micro-crystals through defect engineering and band tuning. Journal of Materials Chemistry A, 2020, 8, 3978-3987.	10.3	25
1684	Effective Mass Enhancement and Thermal Conductivity Reduction for Improving the Thermoelectric Properties of Pseudoâ€Binary Ge ₂ Sb ₂ Te ₅ . Annalen Der Physik, 2020, 532, 1900390.	2.4	8
1685	Synergistically optimizing the thermoelectric properties of polycrystalline Ag ₈ SnSe ₆ by introducing additional Sn. CrystEngComm, 2020, 22, 248-256.	2.6	19
1686	Core–shell nanostructures introduce multiple potential barriers to enhance energy filtering for the improvement of the thermoelectric properties of SnTe. Nanoscale, 2020, 12, 1904-1911.	5.6	43
1687	Impurity states in Mo _{1â^'x} M _x Se ₂ compounds doped with group VB elements and their electronic and thermal transport properties. Journal of Materials Chemistry C, 2020, 8, 619-629.	5.5	11
1688	Tin(IV) Methylselenolate as a Low Temperature SnSe Precursor and Conductive "Glue―Between Colloidal Nanocrystals. ChemNanoMat, 2020, 6, 442-450.	2.8	2
1689	Ternary thermoelectric AB2C2 Zintls. Journal of Alloys and Compounds, 2020, 821, 153497.	5.5	19
1690	Revealing nano-chemistry at lattice defects in thermoelectric materials using atom probe tomography. Materials Today, 2020, 32, 260-274.	14.2	73
1691	Band Structure Modification and Mass Fluctuation Effects of Isoelectronic Germanium-Doping on Thermoelectric Properties of ZrNiSn. ACS Applied Energy Materials, 2020, 3, 1349-1357.	5.1	27
1692	Methodology of Thermoelectric Power Factor Enhancement by Nanoscale Thermal Management in Bulk SiGe Composites. ACS Applied Energy Materials, 2020, 3, 1235-1241.	5.1	14
1693	Possible Charge Density Wave and Enhancement of Thermoelectric Properties at Mild-Temperature Range in n-Type Cul-Doped Bi ₂ Te _{2.1} Se _{0.9} Compounds. ACS Applied Materials & Interfaces, 2020, 12, 925-933.	8.0	23
1694	Enhanced thermoelectric properties in MgAgSb composite with Ag ₃ Sb fabricated by the microwave-assisted process and subsequent spark plasma sintering. Advances in Applied Ceramics, 2020, 119, 107-113.	1.1	4
1695	Realizing Excellent Thermoelectric Performance of Sb ₂ Te ₃ Based Segmented Leg with a Wide Temperature Range Using Oneâ€Step Sintering. Advanced Electronic Materials, 2020, 6, 1901178.	5.1	18
1696	Rapid One‣tep Synthesis and Compaction of Highâ€Performance nâ€Type Mg ₃ Sb ₂ Thermoelectrics. Angewandte Chemie, 2020, 132, 4308-4312.	2.0	6
1697	Tuning the Thermoelectric Material's Parameter: A Comprehensive Review. Journal of Nanoscience and Nanotechnology, 2020, 20, 3636-3646.	0.9	24
1698	Unraveling the Structure-Valence-Property Relationships in AMM′Q ₃ Chalcogenides with Promising Thermoelectric Performance. ACS Applied Energy Materials, 2020, 3, 2110-2119.	5.1	23

ARTICLE IF CITATIONS Polycrystalline SnSeâ€"Sn1â€"vS solid solutions: Vacancy engineering and nanostructuring leading to 1699 16.0 25 high thermoelectric performance. Nano Energy, 2020, 69, 104393. Exploring the thermoelectric behavior of spark plasma sintered Fe7-xCoxS8 compounds. Journal of Alloys and Compounds, 2020, 819, 152999. 1700 5.5 Long-Term Stability of the Colossal Seebeck Effect in Metallic Cu2Se. Journal of Electronic Materials, 1701 2.2 11 2020, 49, 2855-2861. Preparation and thermoelectric properties of Al and Ti co-doped non-stoichiometric TiAl0.02O1.78 1702 4.8 under different synthesis pressures. Ceramics International, 2020, 46, 6878-6881. First-principles investigation of low-dimension MSe<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" id="d1e2111" altimg="si62.svg"><mml:msub><mml:mrow 1703 4.0 8 /><mml:mrow></mml:mn>2</mml:mrow></mml:msub></mml:math>(M = Ti, Hf, Zr) configurations as promising thermoelectric materials. Journal of Physics and Chemistry of Solids, 2020, 139, 109322 Boosting High Thermoelectric Performance of Ni-Doped Cu1.9S by Significantly Reducing Thermal Conductivity. ACS Applied Materials & amp; Interfaces, 2020, 12, 8385-8391. 8.0 Eutectoid nano-precipitates inducing remarkably enhanced thermoelectric performance in 1705 (Sn_{1â^'x}Cd_xTe)_{1â^'y}(Cu₂Te)_y. Journal of 10.3 49 Materials Chemistry A, 2020, 8, 2798-2808. Electronic structure and thermoelectric properties of PbTe1â[^]xSex from first-principles calculations. 1706 Computational Materials Science, 2020, 173, 109404. The Mechanism of Deformation and Failure of In4Se3 Based Thermoelectric Materials. ACS Applied 1707 5.1 3 Energy Materials, 2020, 3, 1054-1062. Rapid Oneâ€Step Synthesis and Compaction of Highâ€Performance nâ€Type Mg₃Sb₂ 1708 13.8 Thermoelectrics. Angewandte Chemie - International Edition, 2020, 59, 4278-4282. High thermoelectric figure of merit ZT > 1 in SnS polycrystals. Journal of Materiomics, 2020, 6, 1709 5.746 77-85. Band inversion induced multiple electronic valleys for high thermoelectric performance of SnTe with 1710 16.0 strong lattice softening. Nano Energy, 2020, 69, 104395. Sulfur simultaneously act as pore-forming agent and doping agent to improve the thermoelectric 1711 5.5 8 properties of Bi2Te2.7Se0.3. Journal of Alloys and Compounds, 2020, 819, 153384. Optimization of sodium hydroxide for securing high thermoelectric performance in polycrystalline 1712 17.3 46 Sn < sub>1 â[^] <i>x</i>/sub>Se via anisotropy and vacancy synergy. InformaÄnÃ-MateriÃily, 2020, 2, 1201-1215. Preparation and Thermoelectric Performance of BaTiO3/Bi0.5Sb1.5Te3 Composite Materials. Journal of 1713 2.2 4 Electronic Materials, 2020, 49, 2794-2801. Fabrication and thermoelectric properties of Pb (Zn0.85Al0.15) Te-Te (y = 0, 0.04, 0.06, 0.08, and 0.11) 1714 4.8 nanocomposites. Ceramics International, 2020, 46, 6443-6453. High-Performance Thermoelectrics from Cellular Nanostructured Sb2Si2Te6. Joule, 2020, 4, 159-175. 1715 24.0 103 Enhanced thermoelectric power factor in wet chemical synthesized Sb2Te3 by the incorporation of 1716 (GO/r-GO). Physica B: Condensed Matter, 2020, 577, 411795.

#	Article	IF	Citations
1717	Enhanced Thermoelectric Performance and Service Stability of Cu ₂ Se Via Tailoring Chemical Compositions at Multiple Atomic Positions. Advanced Functional Materials, 2020, 30, 1908315.	14.9	46
1718	Stacking faults modulation for scattering optimization in GeTe-based thermoelectric materials. Nano Energy, 2020, 68, 104347.	16.0	77
1719	Near-room-temperature thermoelectric materials and their application prospects in geothermal power generation. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 2020, 6, 1.	2.9	24
1720	Artificial porous structure: An effective method to improve thermoelectric performance of Bi2Te3 based alloys. Journal of Solid State Chemistry, 2020, 282, 121060.	2.9	17
1721	Synergetic Approach for Superior Thermoelectric Performance in PbTe-PbSe-PbS Quaternary Alloys and Composites. Energies, 2020, 13, 72.	3.1	9
1722	Synergistically Enhancing Thermoelectric Performance of nâ€Type PbTe with Indium Doping and Sulfur Alloying. Annalen Der Physik, 2020, 532, 1900421.	2.4	19
1723	Anomalous electronic and thermoelectric transport properties in cubic <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>Rb</mml:mi><mml:r antiperovskite. Physical Review B, 2020, 102, .</mml:r </mml:msub></mml:mrow></mml:math 	nn 83 ∞/mn	nl:n₂n₄ > < /mml:
1724	Rashba Effect Maximizes Thermoelectric Performance of GeTe Derivatives. Joule, 2020, 4, 2030-2043.	24.0	138
1725	High-throughput prediction of the carrier relaxation time via data-driven descriptor. Npj Computational Materials, 2020, 6, .	8.7	13
1726	Lowâ€Symmetry PdSe ₂ for High Performance Thermoelectric Applications. Advanced Functional Materials, 2020, 30, 2004896.	14.9	49
1727	Remarkable intrinsic ZT in the 2D PtX2(XÂ=ÂO, S, Se, Te) monolayers at room temperature. Applied Surface Science, 2020, 532, 147387.	6.1	27
1728	Suppressed phase transition and enhanced thermoelectric performance in iodine-doped AgCuTe. Nano Energy, 2020, 77, 105297.	16.0	21
1729	Electron-phonon scattering and thermoelectric transport in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>p</mml:mi> -type PbTe from first principles. Physical Review B, 2020, 102, .</mml:math 	3.2	36
1730	High Power Factor and Enhanced Thermoelectric Performance in Sc and Bi Codoped GeTe: Insights into the Hidden Role of Rhombohedral Distortion Degree. Advanced Energy Materials, 2020, 10, 2002588.	19.5	75
1731	Enhancement of thermoelectric performance of PbTe by embedding NaCl. Materialia, 2020, 14, 100912.	2.7	3
1732	An extensive investigation of structural, electronic, thermoelectric and optical properties of bi-based half-Huesler alloys by first principles calculations. Materials Today Communications, 2020, 25, 101647.	1.9	9
1734	Thermoelectric properties of hydrogenated Sn2Bi monolayer under mechanical strain: a DFT approach. Physical Chemistry Chemical Physics, 2020, 22, 23246-23257.	2.8	10
1735	Enhancement of Thermoelectric Figure of Merit of p‶ype Nb 0.9 Ti 0.1 FeSb Halfâ€Heusler Compound by Nanostructuring. Physica Status Solidi (A) Applications and Materials Science, 2020, 217, 2000419.	1.8	2

C		REPO	דתר
	IAL	NEPU	ואכ

#	Article	IF	CITATIONS
1736	Shaping the role of germanium vacancies in germanium telluride: metastable cubic structure stabilization, band structure modification, and stable N-type conduction. NPG Asia Materials, 2020, 12, .	7.9	32
1737	A Device-to-Material Strategy Guiding the "Double-High―Thermoelectric Module. Joule, 2020, 4, 2475-2483.	24.0	64
1738	Near-room-temperature rhombohedral Ge1-Pb Te thermoelectrics. Materials Today Physics, 2020, 15, 100260.	6.0	20
1739	Anisotropic quasi-one-dimensional layered transition-metal trichalcogenides: synthesis, properties and applications. RSC Advances, 2020, 10, 36413-36438.	3.6	58
1740	Optimizing thermoelectric properties of BiSe through Cu additive enhanced effective mass and phonon scattering. Rare Metals, 2020, 39, 1374-1382.	7.1	33
1741	Analyzing thermoelectric transport in n-type Mg2Si0.4Sn0.6 and correlation with microstructural effects: An insight on the role of Mg. Acta Materialia, 2020, 199, 85-95.	7.9	23
1742	Thermoelectric properties of n-type half-Heusler NbCoSn with heavy-element Pt substitution. Journal of Materials Chemistry A, 2020, 8, 14822-14828.	10.3	44
1743	High thermoelectric performance of half-Heusler compound BiBaK with intrinsically low lattice thermal conductivity. Journal of Physics Condensed Matter, 2020, 32, 425704.	1.8	7
1744	Enhancing power factor of SnSe sheet with grain boundary by doping germanium or silicon. Npj Computational Materials, 2020, 6, .	8.7	9
1745	Defects engineering driven high power factor of ZrNiSn-based Half-Heusler thermoelectric materials. Chemical Physics Letters, 2020, 755, 137770.	2.6	17
1746	Dynamical variation of carrier concentration and colossal Seebeck effect in Cu2S low-temperature phase. Journal of Alloys and Compounds, 2020, 826, 154155.	5.5	11
1747	Facile synthesis and thermoelectric properties of Cu7Te4 compounds. Physica B: Condensed Matter, 2020, 595, 412384.	2.7	1
1748	Size-Controlled Au–Cu ₂ Se Core–Shell Nanoparticles and Their Thermoelectric Properties. ACS Applied Materials & Interfaces, 2020, 12, 36589-36599.	8.0	9
1749	Effect of scandium doping and of matrix composition variation on galvanomagnetic properties and electronic structure of Pb1-x-ySnxScyTe alloys. Materials Research Bulletin, 2020, 132, 111002.	5.2	2
1750	Perfect short-range ordered alloy with line-compound-like properties in the ZnSnN2:ZnO system. Npj Computational Materials, 2020, 6, .	8.7	20
1751	Enhanced Thermoelectric Properties of p-Type Bi _{0.48} Sb _{1.52} Te ₃ /Sb ₂ Te ₃ Composite. ACS Applied Materials & Interfaces, 2020, 12, 52922-52928.	8.0	18
1752	Copper(I)-Based Flexible Organic–Inorganic Coordination Polymer and Analogues: High-Power Factor Thermoelectrics. ACS Applied Materials & Interfaces, 2020, 12, 53841-53851.	8.0	14
1753	Ecofriendly Highly Robust Ag ₈ SiSe ₆ -Based Thermoelectric Composites with Excellent Performance Near Room Temperature. ACS Applied Materials & Interfaces, 2020, 12, 54653-54661.	8.0	18

#	Article	IF	CITATIONS
1754	Ultralow Thermal Conductivity, Enhanced Mechanical Stability, and High Thermoelectric Performance in (GeTe) _{1–2<i>x</i>} (SnSe) _{<i>x</i>} (SnS) _{<i>x</i>} (SnS) _{<i>x</i>} . Journal of the American Chemical Society, 2020, 142, 20502-20508.	13.7	61
1755	Hierarchically nanostructured thermoelectric materials: challenges and opportunities for improved power factors. European Physical Journal B, 2020, 93, 1.	1.5	12
1756	Crystal Structure and Atomic Vacancy Optimized Thermoelectric Properties in Gadolinium Selenides. Chemistry of Materials, 2020, 32, 10130-10139.	6.7	36
1757	Thermoelectric power factor of doped Bi ₂ O ₂ Se: a computational study. Physical Chemistry Chemical Physics, 2020, 22, 27096-27104.	2.8	5
1758	Effective enhancement of thermoelectric and mechanical properties of germanium telluride <i>via</i> rhenium-doping. Journal of Materials Chemistry C, 2020, 8, 16940-16948.	5.5	38
1759	Electronic quality factor for thermoelectrics. Science Advances, 2020, 6, .	10.3	88
1760	Quantized thermoelectric Hall effect induces giant power factor in a topological semimetal. Nature Communications, 2020, 11, 6167.	12.8	43
1761	Binary treatment of PEDOT:PSS films with nitric acid and imidazolium-based ionic liquids to improve the thermoelectric properties. Materials Advances, 2020, 1, 3233-3242.	5.4	18
1762	High Quality Factor Enabled by Multiscale Phonon Scattering for Enhancing Thermoelectrics in Low-Solubility n-Type PbTe–Cu ₂ Te Alloys. ACS Applied Materials & Interfaces, 2020, 12, 52952-52958.	8.0	11
1763	Orbital Chemistry That Leads to High Valley Degeneracy in PbTe. Chemistry of Materials, 2020, 32, 9771-9779.	6.7	30
1764	Exploring the possibility of enhancing the figure-of-merit (> 2) of Na0.74CoO2: A combined experimental and theoretical study. European Physical Journal B, 2020, 93, 1.	1.5	4
1765	Ultrafine Interwoven Dendritic Cu2Se/CuFeSe2 Composites with Enhanced Thermoelectric Performance. ACS Applied Energy Materials, 2020, 3, 9133-9142.	5.1	10
1766	Na Doping in PbTe: Solubility, Band Convergence, Phase Boundary Mapping, and Thermoelectric Properties. Journal of the American Chemical Society, 2020, 142, 15464-15475.	13.7	101
1767	Thermoelectric performance in pseudo-ternary (PbTe)0.95-x(Sb2Se3)x(PbS)0.05 system with ultra-low thermal conductivity via multi-scale phonon scattering. Current Applied Physics, 2020, 20, 1008-1012.	2.4	4
1768	The nature of 2D:3D SnS:Bi2Te3 interface and its effect on enhanced electrical and thermoelectric properties. Journal of Alloys and Compounds, 2020, 847, 156233.	5.5	12
1769	Role of excess Te in Bi0.5Sb1.5Te3+x(x= 0, 0.01, 0.015 and 0.020) on the optimization of thermoelectric properties. Materials Science in Semiconductor Processing, 2020, 120, 105292.	4.0	9
1770	Temperature dependence of dynamic dipole formation in PbTe. Physical Review B, 2020, 102, .	3.2	14
1771	Enhanced Average Thermoelectric Figure of Merit of p-Type Zintl Phase Mg ₂ ZnSb ₂ via Zn Vacancy Tuning and Hole Doping. ACS Applied Materials & Interfaces, 2020, 12, 37330-37337.	8.0	10

	CHAHON R		
#	Article	IF	Citations
1772	Symmetry and asymmetry in thermoelectrics. Journal of Materials Chemistry C, 2020, 8, 12054-12061.	5.5	14
1773	Enhancement of thermoelectric properties by partial substitution of Ge sites in anion ring [Ge2S2]4- found in Co2Ge3S3 skutterudite-based material. Journal of Solid State Chemistry, 2020, 292, 121590.	2.9	1
1774	Enhanced thermoelectric performance of PbTe based materials by Bi doping and introducing MgO nanoparticles. Applied Physics Letters, 2020, 117, .	3.3	18
1775	Ultralow thermal conductivity and high thermoelectric figure of merit in Cu2Te–Ag2Te composites. Journal of Alloys and Compounds, 2020, 848, 156540.	5.5	13
1776	Rational structural design and manipulation advance SnSe thermoelectrics. Materials Horizons, 2020, 7, 3065-3096.	12.2	73
1777	Micro-Structural and Thermoelectric Characterization of Zinc-Doped In0.6Se0.4 Crystal Grown by Direct Vapour Transport Method. Semiconductors, 2020, 54, 923-928.	0.5	6
1778	Realizing High Thermoelectric Performance in Sb-Doped Ag ₂ Te Compounds with a Low-Temperature Monoclinic Structure. ACS Applied Materials & Interfaces, 2020, 12, 39425-39433.	8.0	35
1779	Routes for advancing SnTe thermoelectrics. Journal of Materials Chemistry A, 2020, 8, 16790-16813.	10.3	87
1780	Decoupling phonon and carrier scattering at carbon nanotube/Bi2Te3 interfaces for improved thermoelectric performance. Carbon, 2020, 170, 191-198.	10.3	33
1781	Ternary Compounds Cu ₃ <i>R</i> Te ₃ (<i>R</i> = Y, Sm, and Dy): A Family of New Thermoelectric Materials with Trigonal Structures. ACS Applied Materials & Interfaces, 2020, 12, 40486-40494.	8.0	3
1782	Molecular Dynamics Simulations on the Tensile Failure of Crystalline CoSb3 Along Different Orientations. Journal of Materials Engineering and Performance, 2020, 29, 4659-4668.	2.5	3
1783	Optimized Strategies for Advancing n-Type PbTe Thermoelectrics: A Review. ACS Applied Materials & Interfaces, 2020, 12, 49323-49334.	8.0	51
1784	Effect of a Nickel Impurity on the Galvanomagnetic Properties and Electronic Structure of PbTe. Semiconductors, 2020, 54, 1171-1179.	0.5	1
1785	Characterization and thermoelectric properties of polyol method-synthesized (Cu7Te4)1Ââ^'Âx(Ag2Te)x (x = 0, 0.03) nanocomposites. Journal of Materials Science: Materials in Electronics, 2020, 31, 20964-20971.	2.2	3
1786	Significant off-stoichiometry effect leading to the N-type conduction and ferromagnetic properties in titanium doped Fe2VAl thin films. Acta Materialia, 2020, 200, 848-856.	7.9	17
1787	Dynamic disorder phonon scattering mediated by Cu atomic hopping and diffusion in Cu3SbSe3. Npj Computational Materials, 2020, 6, .	8.7	7
1788	Zn ₄ B ₆ O ₁₃ : Efficient Borate Photocatalyst with Fast Carrier Separation for Photodegradation of Tetracycline. Inorganic Chemistry, 2020, 59, 13136-13143.	4.0	29
1789	Modulation of Band Alignment and Electron–Phonon Scattering in Mg3Sb2 via Pressure. ACS Applied Electronic Materials, 2020, 2, 2745-2749.	4.3	8

#	Article	IF	CITATIONS
1790	Two Steps to Improve the Thermoelectric Performance of the Ca _{5–<i>x</i>} Yb _{<i>x</i>} Al _{2–<i>y</i>} In _{<i>y</i>} Sb _{ System. Inorganic Chemistry, 2020, 59, 13572-13582.}	6≪4 so ub>	9
1791	Ultraâ€High Thermoelectric Performance in Bulk BiSbTe/Amorphous Boron Composites with Nanoâ€Defect Architectures. Advanced Energy Materials, 2020, 10, 2000757.	19.5	67
1792	Synergistic effect of CuInSe ₂ alloying on enhancing the thermoelectric performance of Cu ₂ SnSe ₃ compounds. Journal of Materials Chemistry A, 2020, 8, 21181-21188.	10.3	10
1793	Improvement in the thermoelectric properties of porous networked Al-doped ZnO nanostructured materials synthesized <i>via</i> an alternative interfacial reaction and low-pressure SPS processing. Inorganic Chemistry Frontiers, 2020, 7, 4118-4132.	6.0	46
1794	In Situ Synthesis of Conducting Polymers: A Novel Approach toward Polymer Thermoelectrics. Journal of Physical Chemistry C, 2020, 124, 22884-22892.	3.1	2
1795	Revealing the origin of dislocations in Pb _{1â^'x} Sb _{2x/3} Se (0 < <i>x</i> ≤0.07). Nanoscale, 2020, 12, 19165-19169.	5.6	3
1796	Bi–Zn codoping in GeTe synergistically enhances band convergence and phonon scattering for high thermoelectric performance. Journal of Materials Chemistry A, 2020, 8, 21642-21648.	10.3	36
1797	Power Conversion and Its Efficiency in Thermoelectric Materials. Entropy, 2020, 22, 803.	2.2	18
1798	Surprisingly good thermoelectric performance of a black phosphorus/blue phosphorus van der Waals heterostructure. Physical Chemistry Chemical Physics, 2020, 22, 22390-22398.	2.8	20
1799	Low-temperature transport properties of n-type layered homologous compounds Bi _{8â^'x} Sb _x Se ₇ . Journal of Materials Chemistry C, 2020, 8, 14037-14048.	5.5	5
1800	Ultralow thermal conductivity in diamondoid lattices: high thermoelectric performance in chalcopyrite Cu _{0.8+y} Ag _{0.2} In _{1â^'y} Te ₂ . Energy and Environmental Science, 2020, 13, 3693-3705.	30.8	52
1801	From Dislocation to Nanoâ€Precipitation: Evolution to Low Thermal Conductivity and High Thermoelectric Performance in <i>n</i> â€Type PbTe. Advanced Functional Materials, 2020, 30, 2005479.	14.9	36
1802	Achieving Enhanced Thermoelectric Performance in (SnTe) _{1-<i>x</i>} (Sb ₂ Te ₃) <i>_x</i> and (SnTe) _{1-<i>y</i>} (Sb ₂ Se ₃) <i>_y</i> Synthesized via Solvothermal Reaction and Sintering, ACS Applied Materials & Interfaces, 2020, 12, 44805-44814.	8.0	26
1803	Boosted carrier mobility and enhanced thermoelectric properties of polycrystalline Na _{0.03} Sn _{0.97} Se by liquid-phase hot deformation. Materials Advances, 2020, 1, 1092-1098.	5.4	3
1804	Ensemble-machine-learning-based correlation analysis of internal and band characteristics of thermoelectric materials. Journal of Materials Chemistry C, 2020, 8, 13079-13089.	5.5	9
1805	Computational Discovery of Stable Heteroanionic Oxychalcogenides ABXO (A, B = Metals; X = S, Se, and) Tj ETQo	1 1 0.784 6.7	- 314 rgBT /
1806	A review of CoSb3-based skutterudite thermoelectric materials. Journal of Advanced Ceramics, 2020, 9, 647-673.	17.4	105
1807	Screening of transition (Y, Zr, Hf, V, Nb, Mo, and Ru) and rare-earth (La and Pr) elements as potential effective dopants for thermoelectric GeTe – an experimental and theoretical appraisal. Journal of Materials Chemistry A, 2020, 8, 19805-19821.	10.3	43

#	Article	IF	CITATIONS
1808	Cu ₂ Se-Based liquid-like thermoelectric materials: looking back and stepping forward. Energy and Environmental Science, 2020, 13, 3307-3329.	30.8	106
1809	High Thermoelectric Performance and Defect Energetics of Multipocketed Full Heusler Compounds. Physical Review Applied, 2020, 14, .	3.8	25
1810	High Thermoelectric Performance of AgSb _{1–<i>x</i>} Pb _{<i>x</i>} Se ₂ Prepared by Fast Nonequilibrium Synthesis. ACS Applied Materials & Interfaces, 2020, 12, 41333-41341.	8.0	15
1811	First Principles Study on the Thermoelectric Performance of CaAl ₂ Si ₂ -type Zintl Phase Compounds. Journal of the Physical Society of Japan, 2020, 89, 124707.	1.6	7
1812	Spin–orbit coupling effect on electronic, optical, and thermoelectric properties of Janus Ga ₂ SSe. RSC Advances, 2020, 10, 44785-44792.	3.6	32
1813	Anomalous Lorenz number in massive and tilted Dirac systems. Applied Physics Letters, 2020, 117, 223103.	3.3	4
1814	CuAlSe2 Inclusions Trigger Dynamic Cu+ Ion Depletion from the Cu2Se Matrix Enabling High Thermoelectric Performance. ACS Applied Materials & Interfaces, 2020, 12, 58018-58027.	8.0	6
1815	Investigating the thermoelectric properties of Na0.74Co1â^'xNb O2 (x = 0.05,0.10) at high temperature region. Physics Letters, Section A: General, Atomic and Solid State Physics, 2020, 384, 126893.	2.1	0
1816	High-Performance n-type SnSe Thermoelectric Polycrystal Prepared by Arc-Melting. Cell Reports Physical Science, 2020, 1, 100263.	5.6	23
1817	New n-Type Zintl Phases for Thermoelectrics: Discovery, Structural Characterization, and Band Engineering of the Compounds A ₂ CdP ₂ (A = Sr, Ba, Eu). Chemistry of Materials, 2020, 32, 10697-10707.	6.7	21
1818	Effect of densification technique and carrier concentration on the thermoelectric properties of n-type Cu1.45Ni1.45Te2 ternary compound. CrystEngComm, 2020, 22, 8100-8109.	2.6	2
1819	High-Throughput Study of Lattice Thermal Conductivity in Binary Rocksalt and Zinc Blende Compounds Including Higher-Order Anharmonicity. Physical Review X, 2020, 10, .	8.9	55
1820	Constructing van der Waals gaps in cubic-structured SnTe-based thermoelectric materials. Energy and Environmental Science, 2020, 13, 5135-5142.	30.8	53
1821	Realization of high thermoelectric power factor in Ta-doped ZnO by grain boundary engineering. Journal of Applied Physics, 2020, 128, .	2.5	3
1822	High <i>zT</i> and Its Origin in Sbâ€doped GeTe Single Crystals. Advanced Science, 2020, 7, 2002494.	11.2	36
1823	Defect Compensation Weakening Induced Mobility Enhancement in Thermoelectric BiTel by Iodine Deficiency. Chemistry - an Asian Journal, 2020, 15, 4124-4129.	3.3	3
1824	Mg ₃ (Bi,Sb) ₂ single crystals towards high thermoelectric performance. Energy and Environmental Science, 2020, 13, 1717-1724.	30.8	91
1825	Synergetic enhancement of thermoelectric performance in a Bi _{0.5} Sb _{1.5} Te ₃ /SrTiO ₃ heterostructure. Journal of Materials Chemistry A, 2020, 8, 10839-10844.	10.3	15

#	Article	IF	CITATIONS
1826	Composition Tuning of Nanostructured Binary Copper Selenides through Rapid Chemical Synthesis and Their Thermoelectric Property Evaluation. Nanomaterials, 2020, 10, 854.	4.1	17
1827	Thermal Conductivity of High-Temperature Phases of Cu2S from Ab Initio Molecular Dynamics: Advent of Lattice-Site Hopping. Journal of Physical Chemistry C, 2020, 124, 12318-12323.	3.1	Ο
1828	Enhanced Thermoelectric Properties in pâ€Type Double Halfâ€Heusler Ti _{2â^'<i>y</i>} Hf _{<i>y</i>} FeNiSb _{2â^'<i>x</i>} Sn _{<i>x</i>} Compounds. Physica Status Solidi (A) Applications and Materials Science, 2020, 217, 2000096.	1.8	22
1829	Understanding the Band Engineering in Mg ₂ Siâ€Based Systems from Wannierâ€Orbital Analysis. Annalen Der Physik, 2020, 532, 1900543.	2.4	5
1830	Investigation on carrier mobility when comparing nanostructures and bands manipulation. Nanoscale, 2020, 12, 12741-12747.	5.6	13
1831	Improving near-room-temperature thermoelectrics in SnTe–MnTe alloys. Applied Physics Letters, 2020, 116, .	3.3	16
1832	Thermoelectric properties of polycrystalline Bi2Se3â^'x by powder compaction sintering. Modern Physics Letters B, 2020, 34, 2050206.	1.9	2
1833	Enhanced Thermoelectric Performance of Bi _{0.46} Sb _{1.54} Te ₃ Nanostructured with CdTe. ACS Applied Materials & Interfaces, 2020, 12, 26330-26341.	8.0	26
1834	Thermoelectric Enhancements in PbTe Alloys Due to Dislocationâ€Induced Strains and Converged Bands. Advanced Science, 2020, 7, 1902628.	11.2	78
1835	New paradigm for efficient thermoelectrics. , 2020, , 183-196.		5
1836	The comprehensive first-principle study of the thermoelectric performance of p- and n-type SnS. Materials Today Communications, 2020, 24, 101167.	1.9	8
1837	Realizing high thermoelectricity in polycrystalline tin sulfide via manipulating fermi surface anisotropy and phonon dispersion. Materials Today Physics, 2020, 14, 100221.	6.0	21
1838	Interfacial Stability in Bi ₂ Te ₃ Thermoelectric Joints. ACS Applied Materials & Interfaces, 2020, 12, 27001-27009.	8.0	34
1838 1839		8.0 5.6	34 16
	& Interfaces, 2020, 12, 27001-27009. Graphene inclusion induced ultralow thermal conductivity and improved figure of merit in		
1839	<pre>& Interfaces, 2020, 12, 27001-27009. Graphene inclusion induced ultralow thermal conductivity and improved figure of merit in <i>></i></pre> <pre></pre> <pre></pre> <pre>Ca_{11â€"}</pre> <pre>Site-Selective <i>></i></pre> <pre>/i>-Type "Heavy―Rare-Earth-Metal Doping in the Complex Zintl Phase Ca_{11â€"<i>>x</i>}</pre> <pre>/i></pre> <pre>/ii</pre> <pre>/i></pre> <pre>/i</pre> <	5.6	16
1839 1840	 & Interfaces, 2020, 12, 27001-27009. Graphene inclusion induced ultralow thermal conductivity and improved figure of merit in <i>></i> <i>></i> Site-Selective <i>></i> <!--</td--><td>5.6 3.0</td><td>16 11</td>	5.6 3.0	16 11

#	Article	IF	CITATIONS
1844	Enhanced thermoelectric performance of variable-valence element Sm-doped BiCuSeO oxyselenides. Materials Research Bulletin, 2020, 126, 110841.	5.2	13
1845	Achieving high thermoelectric quality factor toward high figure of merit in GeTe. Materials Today Physics, 2020, 14, 100239.	6.0	61
1846	Phonon Engineering for Thermoelectric Enhancement of p-Type Bismuth Telluride by a Hot-Pressing Texture Method. ACS Applied Materials & Interfaces, 2020, 12, 31612-31618.	8.0	41
1847	n-Bi _{2–<i>x</i>} Sb <i>_x</i> Te ₃ : A Promising Alternative to Mainstream Thermoelectric Material n-Bi ₂ Te _{3<i>–x</i>} Se <i>_x</i> near Room Temperature. ACS Applied Materials & Interfaces, 2020, 12, 31619-31627.	8.0	33
1848	Strong lattice anharmonicity securing intrinsically low lattice thermal conductivity and high performance thermoelectric SnSb2Te4 via Se alloying. Nano Energy, 2020, 76, 105084.	16.0	39
1849	Ferroelectric Instability Induced Ultralow Thermal Conductivity and High Thermoelectric Performance in Rhombohedral <i>p</i> -Type GeSe Crystal. Journal of the American Chemical Society, 2020, 142, 12237-12244.	13.7	69
1850	Thermoelectric properties of monolayer GeAsSe and SnSbTe. Journal of Materials Chemistry C, 2020, 8, 9763-9774.	5.5	22
1851	Thermoelectric Properties of Off-Stoichiometric Bi2Te2Se Compounds. Journal of Electronic Materials, 2020, 49, 5308-5316.	2.2	4
1852	Large valley degeneracy and high thermoelectric performance in p-type Ba8Cu6Ge40-based clathrates. Applied Physics Letters, 2020, 116, .	3.3	8
1853	From microstructure evolution to thermoelectric and mechanical properties enhancement of SnSe. Journal of Materials Science and Technology, 2020, 58, 10-15.	10.7	16
1854	High-performance p-type elemental Te thermoelectric materials enabled by the synergy of carrier tuning and phonon engineering. Journal of Materials Chemistry A, 2020, 8, 12156-12168.	10.3	12
1855	Microscopic origin of the extremely low thermal conductivity and outstanding thermoelectric performance of BiSbX ₃ (X = S, Se) revealed by first-principles study. Physical Chemistry Chemical Physics, 2020, 22, 15559-15566.	2.8	12
1856	Functional properties and promising applications of high entropy alloys. Scripta Materialia, 2020, 187, 188-193.	5.2	163
1857	Comparison of Structural, Electrical and Thermoelectric Properties of Vacuum Evaporated SnTe Films of Varied Thickness. Journal of Nanoscience and Nanotechnology, 2020, 20, 3879-3887.	0.9	2
1858	Crowding-out effect strategy using AgCl for realizing a super low lattice thermal conductivity of SnTe. Sustainable Materials and Technologies, 2020, 25, e00183.	3.3	6
1859	Advances in Atomic Layer Deposition (ALD) Nanolaminate Synthesis of Thermoelectric Films in Porous Templates for Improved Seebeck Coefficient. Materials, 2020, 13, 1283.	2.9	12
1860	Identifying the Origins of High Thermoelectric Performance in Group IIIA Element Doped PbS. ACS Applied Materials & Interfaces, 2020, 12, 14203-14212.	8.0	12
1861	Thermoelectric transport properties in Bi-doped SnTe–SnSe alloys. Applied Physics Letters, 2020, 116, .	3.3	20

#	Article	IF	CITATIONS
1862	Scattering Mechanisms and Compositional Optimization of Highâ€Performance Elemental Te as a Thermoelectric Material. Advanced Electronic Materials, 2020, 6, 2000038.	5.1	13
1863	Inorganic thermoelectric materials: A review. International Journal of Energy Research, 2020, 44, 6170-6222.	4.5	119
1864	Low-cost p-type Bi2Te2.7Se0.3 zone-melted thermoelectric materials for solid-state refrigeration. Journal of Alloys and Compounds, 2020, 831, 154732.	5.5	20
1865	α-Ag ₂ S: A Ductile Thermoelectric Material with High <i>ZT</i> . ACS Omega, 2020, 5, 5796-5804.	3.5	64
1866	Metallization and Diffusion Bonding of CoSb3-Based Thermoelectric Materials. Materials, 2020, 13, 1130.	2.9	11
1867	Synergistic modulation of power factor and thermal conductivity in Cu3SbSe4 towards high thermoelectric performance. Nano Energy, 2020, 71, 104658.	16.0	36
1868	Bulk and Monolayer ZrS ₃ as Promising Anisotropic Thermoelectric Materials: A Comparative Study. Journal of Physical Chemistry C, 2020, 124, 6536-6543.	3.1	50
1869	Trace bismuth and iodine co-doping enhanced thermoelectric performance of PbTe alloys. Journal Physics D: Applied Physics, 2020, 53, 245501.	2.8	29
1870	Synergistically improving thermoelectric and mechanical properties of Ge0.94Bi0.06Te through dispersing nano-SiC. Scripta Materialia, 2020, 183, 22-27.	5.2	29
1871	Rapid synthesis of PbSe by MA and HPS and its thermoelectric properties. Journal of Materials Science: Materials in Electronics, 2020, 31, 6855-6860.	2.2	2
1872	Highly Converged Valence Bands and Ultralow Lattice Thermal Conductivity for Highâ€Performance SnTe Thermoelectrics. Angewandte Chemie - International Edition, 2020, 59, 11115-11122.	13.8	71
1873	Highly Converged Valence Bands and Ultralow Lattice Thermal Conductivity for Highâ€Performance SnTe Thermoelectrics. Angewandte Chemie, 2020, 132, 11208-11215.	2.0	7
1874	Realizing a High <i>ZT</i> of 1.6 in N-Type Mg ₃ Sb ₂ -Based Zintl Compounds through Mn and Se Codoping. ACS Applied Materials & Interfaces, 2020, 12, 21799-21807.	8.0	26
1875	Na-doping enables both dislocations and holes in EuMg ₂ Sb ₂ for thermoelectric enhancements. Journal of Materials Chemistry A, 2020, 8, 8345-8351.	10.3	20
1876	Enhancing the thermoelectric performance of Sn _{0.5} Ge _{0.5} Te <i>via</i> doping with Sb/Bi and alloying with Cu ₂ Te: Optimization of transport properties and thermal conductivities. Dalton Transactions, 2020, 49, 6135-6144.	3.3	5
1877	Enhanced thermoelectric performance in polycrystalline N-type Pr-doped SnSe by hot forging. Acta Materialia, 2020, 190, 1-7.	7.9	35
1878	Redox-Promoted Tailoring of the High-Temperature Electrical Performance in Ca3Co4O9 Thermoelectric Materials by Metallic Cobalt Addition. Materials, 2020, 13, 1060.	2.9	11
1879	Study on thermoelectric properties of CrI3 monolayer. Applied Physics Express, 2020, 13, 045001.	2.4	10

#	Article	IF	CITATIONS
1880	Thermoelectric Penta-Silicene with a High Room-Temperature Figure of Merit. ACS Applied Materials & Interfaces, 2020, 12, 14298-14307.	8.0	71
1881	Effect of nanocrystallization of magnetic amorphous ribbon on thermoelectric and magnetic properties. Journal of Non-Crystalline Solids, 2020, 535, 119990.	3.1	2
1882	Ultrahigh Average <i>ZT</i> Realized in p-Type SnSe Crystalline Thermoelectrics through Producing Extrinsic Vacancies. Journal of the American Chemical Society, 2020, 142, 5901-5909.	13.7	94
1883	Contrasting roles of small metallic elements M (M = Cu, Zn, Ni) in enhancing the thermoelectric performance of n-type PbM _{0.01} Se. Journal of Materials Chemistry A, 2020, 8, 5699-5708.	10.3	32
1884	Enhanced thermoelectric properties of Zintl phase YbMg2Bi1.98 through Bi site substitution with Sb. Journal of Materials Science and Technology, 2020, 59, 189-194.	10.7	16
1885	Enhancing thermoelectric performance of BiSbSe3 through improving carrier mobility via percolating carrier transports. Journal of Alloys and Compounds, 2020, 836, 155473.	5.5	13
1886	Atomic disordering advances thermoelectric group IV telluride alloys with a multiband transport. Materials Today Physics, 2020, 15, 100247.	6.0	22
1887	Advanced Thermoelectric Design: From Materials and Structures to Devices. Chemical Reviews, 2020, 120, 7399-7515.	47.7	1,248
1888	Electronic origin of the enhanced thermoelectric efficiency of Cu2Se. Science Bulletin, 2020, 65, 1888-1893.	9.0	11
1889	A Comprehensive Review of Strategies and Approaches for Enhancing the Performance of Thermoelectric Module. Energies, 2020, 13, 3142.	3.1	38
1890	High thermoelectric performance of rapidly microwave-synthesized Sn _{1â^îî} S. Materials Advances, 2020, 1, 845-853.	5.4	8
1891	Promoted application potential of p-type Mg3Sb1.5Bi0.5 for the matched thermal expansion with its n-type counterpart. Journal of Materiomics, 2020, 6, 729-735.	5.7	13
1892	Theoretical Study of Thermoelectric Properties of Covalent Organic Frameworks with Slipped Arrangement. Journal of Electronic Materials, 2020, 49, 5498-5507.	2.2	1
1893	Effects of isovalent doping on the thermoelectric properties of environmentally-friendly phosphide Ag6Ge10P12. Japanese Journal of Applied Physics, 2020, 59, 075508.	1.5	3
1894	Remarkable Improvement of Thermoelectric Figure-of-Merit in SnTe through In Situ-Created Te Nanoinclusions. ACS Applied Energy Materials, 2020, 3, 7113-7120.	5.1	14
1895	Antisite Defectâ€Enhanced Thermoelectric Performance of Topological Crystalline Insulators. Advanced Functional Materials, 2020, 30, 2003162.	14.9	8
1896	Nanoscale defect structures advancing high performance n-type PbSe thermoelectrics. Coordination Chemistry Reviews, 2020, 421, 213437.	18.8	41
1897	Contrasting SnTe–NaSbTe ₂ and SnTe–NaBiTe ₂ Thermoelectric Alloys: High Performance Facilitated by Increased Cation Vacancies and Lattice Softening. Journal of the American Chemical Society, 2020, 142, 12524-12535.	13.7	51

#	Article	IF	Citations
1898	Anion-site-modulated thermoelectric properties in Ge2Sb2Te5-based compounds. Rare Metals, 2020, 39, 1127-1133.	7.1	12
1899	Manipulating the Ge Vacancies and Ge Precipitates through Cr Doping for Realizing the Highâ€Performance GeTe Thermoelectric Material. Small, 2020, 16, e1906921.	10.0	129
1900	Effects of AgBiSe2 on thermoelectric properties of SnTe. Chemical Engineering Journal, 2020, 390, 124585.	12.7	24
1901	Joint properties enhancement for PbTe thermoelectric materials by addition of diffusion barrier. Materials Chemistry and Physics, 2020, 246, 122848.	4.0	17
1902	Confinement Effect in Thermoelectric Properties of Two–Dimensional Materials. MRS Advances, 2020, 5, 469-479.	0.9	16
1903	Sodium formaldehyde sulfoxylate, an ionic-type, water-soluble reducing reagent to effectively improve seebeck coefficient of PEDOT:PSS film. Organic Electronics, 2020, 81, 105682.	2.6	21
1904	α-CsCu ₅ Se ₃ : Discovery of a Low-Cost Bulk Selenide with High Thermoelectric Performance. Journal of the American Chemical Society, 2020, 142, 5293-5303.	13.7	46
1905	Two-dimensional boron monochalcogenide monolayer for thermoelectric material. Sustainable Energy and Fuels, 2020, 4, 2363-2369.	4.9	62
1906	Excellent thermoelectric performance of BaMgSi driven by low lattice thermal conductivity: A promising thermoelectric material. Journal of Alloys and Compounds, 2020, 827, 154342.	5.5	10
1907	Suppressing the dynamic precipitation and lowering the thermal conductivity for stable and high thermoelectric performance in BaCu2Te2 based materials. Journal of Materials Chemistry A, 2020, 8, 5323-5331.	10.3	16
1908	Anomalously Large Seebeck Coefficient of CuFeS ₂ Derives from Large Asymmetry in the Energy Dependence of Carrier Relaxation Time. Chemistry of Materials, 2020, 32, 2639-2646.	6.7	26
1909	Screening Promising Thermoelectric Materials in Binary Chalcogenides through High-Throughput Computations. ACS Applied Materials & Interfaces, 2020, 12, 11852-11864.	8.0	51
1910	Thermoelectric performance of nanostructured In/Pb codoped SnTe with band convergence and resonant level prepared <i>via</i> a green and facile hydrothermal method. Nanoscale, 2020, 12, 5857-5865.	5.6	21
1911	Cu Interstitials Enable Carriers and Dislocations for Thermoelectric Enhancements in n-PbTe0.75Se0.25. CheM, 2020, 6, 523-537.	11.7	69
1912	New insight into the structure-property relationships from chemical bonding analysis: Application to thermoelectric materials. Journal of Solid State Chemistry, 2020, 286, 121266.	2.9	11
1913	Si2Ge: A New VII-Type Clathrate with Ultralow Thermal Conductivity and High Thermoelectric Property. Scientific Reports, 2020, 10, 3068.	3.3	6
1914	Band Engineering and Thermoelectric Performance Optimization of p-Type GeTe-Based Alloys through Ti/Sb Co-Doping. Journal of Physical Chemistry C, 2020, 124, 5583-5590.	3.1	16
1915	Enhancing the Thermoelectric Performance of Polycrystalline SnSe by Decoupling Electrical and Thermal Transport through Carbon Fiber Incorporation. ACS Applied Materials & Interfaces, 2020, 12, 12910-12918.	8.0	22

#	Article	IF	CITATIONS
1916	Enhanced Thermoelectric and Mechanical Performance in n-Type Yb-Filled Skutterudites through Aluminum Alloying. ACS Applied Materials & Interfaces, 2020, 12, 12930-12937.	8.0	23
1917	Evaluation of Thermoelectric Properties of Ag _{0.366} Sb _{0.558} Te. Annalen Der Physik, 2020, 532, 1900561.	2.4	5
1918	Thermoelectric Transport in p-Type (Pb0.98Na0.02Te)1â^'x(Zn0.85Al0.15Te)x-Te Composites Fabricated Using a Combination of Hydrothermal Synthesis and Evacuating-and-Encapsulating Sintering. Journal of Electronic Materials, 2020, 49, 2954-2961.	2.2	2
1919	Preparation and Enhanced Thermoelectric Properties of Cu/Bi0.5Sb1.5Te3 Composite Materials. Journal of Electronic Materials, 2020, 49, 2962-2967.	2.2	5
1920	Laser processing as a tool for designing donor-substituted calcium manganite-based thermoelectrics. Journal of Alloys and Compounds, 2020, 829, 154466.	5.5	10
1921	Growth of SnSe single crystal via vertical vapor deposition method and characterization of its thermoelectric performance. Materials Research Bulletin, 2020, 126, 110819.	5.2	9
1922	A new defective 19-electron TiPtSb half-Heusler thermoelectric compound with heavy band and low lattice thermal conductivity. Materials Today Physics, 2020, 13, 100200.	6.0	21
1923	Synergistic Regulation of Phonon and Electronic Properties to Improve the Thermoelectric Performance of Chalcogenide Culn _{1â^'} <i>_x</i> Ga <i>_x</i> Te ₂ : <i>y</i> InTe (<i>x</i> =) Tj I	т. <mark>ð</mark> ; <mark>1</mark> 11	0.784314 rg ^{B1}
1924	Synergistic optimization of thermoelectric performance of Sb doped GeTe with a strained domain and domain boundaries. Journal of Materials Chemistry A, 2020, 8, 5332-5341.	10.3	42
1925	Theory and Simulation in Physics for Materials Applications. Springer Series in Materials Science, 2020, , .	0.6	4
1926	Defect and Dopant Mediated Thermoelectric Power Factor Tuning in βâ€Zn ₄ Sb ₃ . Advanced Electronic Materials, 2020, 6, 1901284.	5.1	14
1927	Thermoelectric performance of thermally aged nanostructured bulk materials—a case study of lead chalcogenides. Materials Today Physics, 2020, 13, 100190.	6.0	11
1928	Enhanced Thermoelectric Properties of p-Type CaMg ₂ Bi ₂ via a Synergistic Effect Originated from Zn and Alkali-Metal Co-doping. ACS Applied Materials & Interfaces, 2020, 12, 6015-6021.	8.0	20
1929	Establishing the Golden Range of Seebeck Coefficient for Maximizing Thermoelectric Performance. Journal of the American Chemical Society, 2020, 142, 2672-2681.	13.7	137
1930	Modulation of the doping level of PEDOT:PSS film by treatment with hydrazine to improve the Seebeck coefficient. RSC Advances, 2020, 10, 1786-1792.	3.6	77
1931	Recent Progress of Two-Dimensional Thermoelectric Materials. Nano-Micro Letters, 2020, 12, 36.	27.0	218
1932	Achieving high-performance p-type SmMg ₂ Bi ₂ thermoelectric materials through band engineering and alloying effects. Journal of Materials Chemistry A, 2020, 8, 15760-15766.	10.3	21
1933	First-principles Study of LaOPbBiS ₃ and Its Analogous Compounds as Thermoelectric Materials. Journal of the Physical Society of Japan, 2020, 89, 024702.	1.6	8

#	Article	IF	CITATIONS
1934	Rational Design of Spinel-Type Cu ₄ Mn ₂ Te ₄ /TMTe (TM = Co, Ni) Composites with Synergistically Manipulated Electrical and Thermal Transport Properties. ACS Applied Energy Materials, 2020, 3, 2096-2102.	5.1	5
1935	Investigation of electronic, magnetic, elastic, mechanical, thermodynamic, and thermoelectronic properties of Mn2PtV Heusler alloy: ab initio study. Journal of Molecular Modeling, 2020, 26, 35.	1.8	11
1936	Band Convergence in Thermoelectric Materials: Theoretical Background and Consideration on Bi–Sb–Te Alloys. ACS Applied Energy Materials, 2020, 3, 2214-2223.	5.1	46
1937	Toward Accelerated Thermoelectric Materials and Process Discovery. ACS Applied Energy Materials, 2020, 3, 2240-2257.	5.1	75
1938	Cu3ErTe3: a new promising thermoelectric material predicated by high-throughput screening. Materials Today Physics, 2020, 12, 100180.	6.0	20
1939	Achieving high room-temperature thermoelectric performance in cubic AgCuTe. Journal of Materials Chemistry A, 2020, 8, 4790-4799.	10.3	46
1940	Enhanced thermoelectric performance of PbTe-based nanocomposites through element doping and SiC nanoparticles dispersion. Scripta Materialia, 2020, 179, 86-91.	5.2	20
1941	Thermoelectric properties of Cu4Ge3Se5 with an intrinsic disordered zinc blende structure. Journal of Materials Chemistry A, 2020, 8, 3431-3437.	10.3	9
1942	Enhanced thermoelectric performance of n-type PbTe through the introduction of low-dimensional C60 nanodots. Journal of Alloys and Compounds, 2020, 823, 153863.	5.5	15
1943	Thermoelectric p-Type Ag ₉ GaTe ₆ with an Intrinsically Low Lattice Thermal Conductivity. ACS Applied Energy Materials, 2020, 3, 1892-1898.	5.1	19
1944	Texture-dependent thermoelectric properties of nano-structured Bi2Te3. Chemical Engineering Journal, 2020, 388, 124295.	12.7	142
1945	Realizing Improved Thermoelectric Performance in Bil ₃ -Doped Sb ₂ Te ₃ (GeTe) ₁₇ via Introducing Dual Vacancy Defects. Chemistry of Materials, 2020, 32, 1693-1701.	6.7	36
1946	Enhancing the Thermoelectric Performance of p-Type Mg ₃ Sb ₂ via Codoping of Li and Cd. ACS Applied Materials & Interfaces, 2020, 12, 8359-8365.	8.0	54
1947	Band Sharpening and Band Alignment Enable High Quality Factor to Enhance Thermoelectric Performance in <i>n</i> -Type PbS. Journal of the American Chemical Society, 2020, 142, 4051-4060.	13.7	130
1948	Large effective mass and low lattice thermal conductivity contributing to high thermoelectric performance of Zn-doped Cu5Sn2Se7. Journal of Alloys and Compounds, 2020, 826, 154154.	5.5	11
1949	High Thermoelectric Power Factor of Si–Mg ₂ Si Nanocomposite Ribbons Synthesized by Melt Spinning. ACS Applied Energy Materials, 2020, 3, 1962-1968.	5.1	17
1950	Toppling the Transport Properties with Cationic Overstoichiometry in Thermoelectric Colusite: [Cu ₂₆ Cr ₂ Ge ₆] _{1+δ} S ₃₂ . ACS Applied Energy Materials, 2020, 3, 4180-4185.	5.1	14
1951	Nonâ€Rigid Band Structure in Mg ₂ Ge for Improved Thermoelectric Performance. Advanced Science, 2020, 7, 2000070.	11.2	13

#	Article	IF	CITATIONS
1952	Electron-phonon interactions using the projector augmented-wave method and Wannier functions. Physical Review B, 2020, 101, .	3.2	10
1953	PbTe nanodots confined on ternary B2O3/BC2O/C nanosheets as electrode for efficient sodium storage. Journal of Power Sources, 2020, 461, 228110.	7.8	16
1954	Effect of intrinsic defects on the thermal conductivity of PbTe from classical molecular dynamics simulations. Journal of Physics Condensed Matter, 2020, 32, 045701.	1.8	11
1955	Enhancing thermoelectric properties of monolayer GeSe via strain-engineering: A first principles study. Applied Surface Science, 2020, 521, 146256.	6.1	27
1956	Structure, microstructure and thermoelectric properties of germanite-type Cu22Fe8Ge4S32 compounds. Journal of Alloys and Compounds, 2020, 831, 154767.	5.5	16
1957	GeTe Thermoelectrics. Joule, 2020, 4, 986-1003.	24.0	215
1958	A review of multi-physical fields induced phenomena and effects in spark plasma sintering: Fundamentals and applications. Materials and Design, 2020, 191, 108662.	7.0	286
1959	Understanding the thermally activated charge transport in NaPb _m SbQ _{m+2} (Q) Tj ETQc carrier scattering. Energy and Environmental Science, 2020, 13, 1509-1518.	1 1 0.784 30.8	314 rgBT /O 63
1960	Enhancing the average thermoelectric figure of merit of elemental Te by suppressing grain boundary scattering. Journal of Materials Chemistry A, 2020, 8, 8455-8461.	10.3	26
1961	High thermoelectric figure of merit and thermopower of HfTe ₅ at room temperature. Journal of Physics Condensed Matter, 2020, 32, 345501.	1.8	3
1962	Significant role of nanoscale Bi-rich phase in optimizing thermoelectric performance of Mg ₃ Sb ₂ *. Chinese Physics B, 2020, 29, 067201.	1.4	6
1963	Thermoelectric Performance Enhancement of Naturally Occurring Bi and Chitosan Composite Films Using Energy Efficient Method. Electronics (Switzerland), 2020, 9, 532.	3.1	6
1964	Wearable and flexible thin film thermoelectric module for multi-scale energy harvesting. Journal of Power Sources, 2020, 455, 227983.	7.8	85
1965	Band Engineering for Realizing Large Effective Mass in Cu ₃ SbSe ₄ by Sn/La Codoping. Journal of Physical Chemistry C, 2020, 124, 10336-10343.	3.1	22
1966	Thermoelectric Properties of Nanoâ€grained Mooihoekite Cu ₉ Fe ₉ S ₁₆ . Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2020, 646, 1116-1121.	1.2	11
1967	Vacancy-Based Defect Regulation for High Thermoelectric Performance in Ge ₉ Sb ₂ Te _{12–<i>x</i>} Compounds. ACS Applied Materials & Interfaces, 2020, 12, 19664-19673.	8.0	47
1968	All-Inorganic Halide Perovskites as Potential Thermoelectric Materials: Dynamic Cation off-Centering Induces Ultralow Thermal Conductivity. Journal of the American Chemical Society, 2020, 142, 9553-9563.	13.7	155
1969	Room temperature Bi2Te3-based thermoelectric materials with high performance. Journal of Materials Science: Materials in Electronics, 2020, 31, 8607-8617.	2.2	16

#	Article	IF	CITATIONS
1970	Energy-Efficient Synthesis and Superior Thermoelectric Performance of Sb-doped Mg2Si0.3Sn0.7 Solid Solutions by Rapid Thermal Explosion. Materials Research Bulletin, 2020, 128, 110885.	5.2	6
1971	Anisotropic thermoelectric figure-of-merit in Mg3Sb2. Materials Today Physics, 2020, 13, 100217.	6.0	36
1972	Realizing high thermoelectric performance in eco-friendly SnTe via synergistic resonance levels, band convergence and endotaxial nanostructuring with Cu2Te. Nano Energy, 2020, 73, 104832.	16.0	81
1973	Improved Figure of Merit of Cu ₂ SnSe ₃ via Band Structure Modification and Energy-Dependent Carrier Scattering. ACS Applied Materials & Interfaces, 2020, 12, 19693-19700.	8.0	27
1974	Analysis of simple scattering models on the thermoelectric performance of analytical electron dispersions. Journal of Applied Physics, 2020, 127, .	2.5	13
1975	Electronic structure modulation strategies in high-performance thermoelectrics. APL Materials, 2020, 8, .	5.1	52
1976	Topological thermoelectrics. APL Materials, 2020, 8, .	5.1	84
1977	Enhanced Thermoelectric Properties of Electrodeposited Cu-Doped Te Films. ACS Applied Energy Materials, 2020, 3, 3262-3268.	5.1	8
1978	Efficient interlayer charge release for high-performance layered thermoelectrics. National Science Review, 2021, 8, nwaa085.	9.5	15
1979	Boosting thermoelectric performance of n-type PbS through synergistically integrating In resonant level and Cu dynamic doping. Journal of Physics and Chemistry of Solids, 2021, 148, 109640.	4.0	26
1980	Topological Quantum Materials from the Viewpoint of Chemistry. Chemical Reviews, 2021, 121, 2780-2815.	47.7	70
1981	Improved thermoelectric performance of n-type Mg3Sb2–Mg3Bi2 alloy with Co element doping. Current Applied Physics, 2021, 21, 25-30.	2.4	13
1982	Enhancing the thermoelectric performance of Cu–Ni alloys by introducing carbon nanotubes. Materials Today Physics, 2021, 16, 100311.	6.0	15
1983	Poly(3,4-ethylenedioxythiophene) (PEDOT) as promising thermoelectric materials and devices. Chemical Engineering Journal, 2021, 404, 126552.	12.7	64
1984	Exploring the potential of lead-chalcogenide monolayers for room-temperature thermoelectric applications. Ceramics International, 2021, 47, 3380-3388.	4.8	18
1985	Synergistic effect of indium nano-inclusions to enhance interface phonon scattering in polycrystalline SnSe for thermoelectric applications. Journal of Alloys and Compounds, 2021, 856, 157358.	5.5	8
1986	Thermoelectric and lattice dynamics properties of layered MX (MÂ=ÂSn, Pb; X Â=ÂS, Te) compounds. Applied Surface Science, 2021, 538, 147911.	6.1	24
1987	Incorporating element doping and quantum dot embedding effects to enhance the thermoelectric properties of higher manganese silicides. Journal of Materiomics, 2021, 7, 377-387.	5.7	7

#	Article	IF	CITATIONS
1988	Achieving enhanced thermoelectric performance of Ca1â^'xâ^'yLaxSryMnO3 via synergistic carrier concentration optimization and chemical bond engineering. Chemical Engineering Journal, 2021, 408, 127364.	12.7	23
1989	High thermoelectric performance of Na-doped β-Zn4Sb3 prepared by NaCl-flux method. Journal of Alloys and Compounds, 2021, 856, 157345.	5.5	4
1990	Band flattening and phonon-defect scattering in cubic SnSe–AgSbTe2 alloy for thermoelectric enhancement. Materials Today Physics, 2021, 16, 100298.	6.0	20
1991	A Review of the Mg2(Si,Sn) Alloy System as Emerging Thermoelectric Material: Experimental and Modeling Aspects. Journal of Electronic Materials, 2021, 50, 25-51.	2.2	7
1992	Thermoelectric Properties of Novel Semimetals: A Case Study of YbMnSb ₂ . Advanced Materials, 2021, 33, e2003168.	21.0	34
1993	The structures and thermoelectric properties of Zn-Sb alloy films fabricated by electron beam evaporation through an ion beam assisted deposition. Applied Surface Science, 2021, 540, 148264.	6.1	4
1994	Realizing widespread resonance effects to enhance thermoelectric performance of SnTe. Journal of Alloys and Compounds, 2021, 852, 156989.	5.5	12
1995	Realizing enhanced thermoelectric properties in Cu2S-alloyed SnSe based composites produced via solution synthesis and sintering. Journal of Materials Science and Technology, 2021, 78, 121-130.	10.7	38
1996	The Effect of Crystal Mismatch on the Thermoelectric Performance Enhancement of Nano Cu2Se. Frontiers in Materials, 2021, 7, .	2.4	4
1997	Metavalent Bonding in Solids: Characteristic Representatives, Their Properties, and Design Options. Physica Status Solidi - Rapid Research Letters, 2021, 15, 2000482.	2.4	28
1998	On the applicability of the single parabolic band model to advanced thermoelectric materials with complex band structures. Journal of Materiomics, 2021, 7, 603-611.	5.7	11
1999	Strategies to optimize thermoelectric performance. , 2021, , 19-50.		1
2000	The reduction of thermal conductivity in Cd and Sn co-doped Cu3SbSe4-based composites with a secondary-phase CdSe. Journal of Materials Science, 2021, 56, 4727-4740.	3.7	13
2001	Electronic fitness function, effective mass and thermoelectric properties of Rh-based (-ScTe; -TiSb;) Tj ETQq1 1 0.7 e00523.	'84314 rgi 2.1	BT /Overloc 6
2002	Thermoelectric performance of copper-rich β-Cu2Se films with Ag-doping by magnetron sputtering. Materials Chemistry and Physics, 2021, 260, 124143.	4.0	12
2003	Embedded in-situ nanodomains from chemical composition fluctuation in thermoelectric A2Cu3In3Te8 (AÂ= Zn, Cd). Materials Today Physics, 2021, 17, 100333.	6.0	8
2004	Thermoelectric cooling materials. Nature Materials, 2021, 20, 454-461.	27.5	360
2005	Wearable fiber-based thermoelectrics from materials to applications. Nano Energy, 2021, 81, 105684.	16.0	92

#	Article	IF	CITATIONS
2006	Gateâ€Tunable Polar Optical Phonon to Piezoelectric Scattering in Few‣ayer Bi ₂ O ₂ Se for Highâ€Performance Thermoelectrics. Advanced Materials, 2021, 33, e2004786.	21.0	48
2007	Realizing ultralow thermal conductivity in Cu3SbSe4 via all-scale phonon scattering by co-constructing multiscale heterostructure and IIIB element doping. Materials Today Energy, 2021, 19, 100620.	4.7	9
2008	High thermoelectric performance by chemical potential tuning and lattice anharmonicity in GeTe _{1â^'x} I _x compounds. Inorganic Chemistry Frontiers, 2021, 8, 1205-1214.	6.0	4
2009	Interfacial advances yielding high efficiencies for thermoelectric devices. Journal of Materials Chemistry A, 2021, 9, 3209-3230.	10.3	12
2010	Entropy Engineered Cubic nâ€Type AgBiSe ₂ Alloy with High Thermoelectric Performance in Fully Extended Operating Temperature Range. Advanced Energy Materials, 2021, 11, 2003304.	19.5	51
2011	Order-disorder transition-induced band nestification in AgBiSe ₂ –CuBiSe ₂ solid solutions for superior thermoelectric performance. Journal of Materials Chemistry A, 2021, 9, 4648-4657.	10.3	22
2012	Boosting the thermoelectric performance of p-type polycrystalline SnSe with high doping efficiency <i>via</i> precipitation design. Journal of Materials Chemistry A, 2021, 9, 2991-2998.	10.3	10
2013	Recent developments in high-performance thermoelectric sulphides: an overview of the promising synthetic colusites. Journal of Materials Chemistry C, 2021, 9, 773-795.	5.5	33
2014	Electrical conductivity increase by order of magnitude through controlling sintering to tune hierarchical structure of oxide ceramics. Journal of Solid State Chemistry, 2021, 294, 121831.	2.9	4
2015	Coherent Sb/CuTe Core/Shell Nanostructure with Large Strain Contrast Boosting the Thermoelectric Performance of nâ€Type PbTe. Advanced Functional Materials, 2021, 31, 2007340.	14.9	30
2016	Enhanced thermoelectric performance of p-type sintered BiSbTe-based composites with AgSbTe2 addition. Ceramics International, 2021, 47, 725-731.	4.8	22
2017	Strong Valence Band Convergence to Enhance Thermoelectric Performance in PbSe with Two Chemically Independent Controls. Angewandte Chemie, 2021, 133, 272-277.	2.0	7
2018	Strong Valence Band Convergence to Enhance Thermoelectric Performance in PbSe with Two Chemically Independent Controls. Angewandte Chemie - International Edition, 2021, 60, 268-273.	13.8	28
2019	Strategies for improving efficiency of thermoelectric materials. , 2021, , 117-138.		0
2020	Drastic Modification of Lattice Thermal Conductivity in Thermoelectrics Induced by Electron–Hole Pairs. ACS Applied Materials & Interfaces, 2021, 13, 3911-3918.	8.0	2
2021	Novel IV–V–VI semiconductors with ultralow lattice thermal conductivity. Journal of Materials Chemistry C, 2021, 9, 4189-4199.	5.5	14
2022	Synthesis and physical properties of single-crystalline InTe: towards high thermoelectric performance. Journal of Materials Chemistry C, 2021, 9, 5250-5260.	5.5	18
2023	Review of inorganic thermoelectric materials. , 2021, , 81-145.		1

#	Article	IF	CITATIONS
2024	Electronic transport descriptors for the rapid screening of thermoelectric materials. Materials Horizons, 2021, 8, 2463-2474.	12.2	16
2025	Anomalous enhancement of thermoelectric power factor by thermal management with resonant level effect. Journal of Materials Chemistry A, 2021, 9, 4851-4857.	10.3	20
2026	Complementary effect of co-doping aliovalent elements Bi and Sb in self-compensated SnTe-based thermoelectric materials. Journal of Materials Chemistry C, 2021, 9, 9922-9931.	5.5	33
2027	Modulation of the electronic structure and thermoelectric properties of orthorhombic and cubic SnSe by AgBiSe ₂ alloying. Chemical Science, 2021, 12, 13074-13082.	7.4	20
2028	First-principles study of strain effect on the thermoelectric properties of LaP and LaAs. Physical Chemistry Chemical Physics, 2021, 23, 18189-18196.	2.8	7
2029	Temperature-Dependent Band Renormalization in CoSb ₃ Skutterudites Due to Sb-Ring-Related Vibrations. Chemistry of Materials, 2021, 33, 1046-1052.	6.7	16
2030	Design guidelines for chalcogenide-based flexible thermoelectric materials. Materials Advances, 2021, 2, 2584-2593.	5.4	18
2031	Achieving superior performance in thermoelectric Bi0.4Sb1.6Te3.72 by enhancing texture and inducing high-density line defects. Science China Materials, 2021, 64, 1507-1520.	6.3	20
2032	Novel metal oxides with promising high-temperature thermoelectric performance. Journal of Materials Chemistry C, 2021, 9, 12884-12894.	5.5	14
2033	SnSe, the rising star thermoelectric material: a new paradigm in atomic blocks, building intriguing physical properties. Materials Horizons, 2021, 8, 1847-1865.	12.2	29
2034	Ultralow Thermal Conductivity and Enhanced Figure of Merit for CuSbSe ₂ via Cd-Doping. ACS Applied Energy Materials, 2021, 4, 1637-1643.	5.1	16
2035	Nanostructured thermoelectric materials. , 2021, , 261-311.		1
2036	Synergistic manifestation of band and scattering engineering in single aliovalent Sb alloyed anharmonic SnTe alloy in concurrence with rule of parsimony. Materials Advances, 0, , .	5.4	4
2037	Controlling phase separation in thermoelectric Pb1â [~] 'xGexTe to minimize thermal conductivity. Journal of Materials Chemistry A, 2021, 9, 12340-12349.	10.3	2
2038	Traditional thermoelectric materials and challenges. , 2021, , 139-161.		0
2039	Application of Entropy Engineering in Thermoelectrics. Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2021, 36, 347.	1.3	11
2040	Bonding heterogeneity in mixed-anion compounds realizes ultralow lattice thermal conductivity. Journal of Materials Chemistry A, 2021, 9, 22660-22669.	10.3	14
2041	Printed flexible thermoelectric materials and devices. Journal of Materials Chemistry A, 2021, 9, 19439-19464.	10.3	23

#	Article	IF	CITATIONS
2042	CALPHAD as a powerful technique for design and fabrication of thermoelectric materials. Journal of Materials Chemistry A, 2021, 9, 6634-6649.	10.3	16
2043	Enhanced thermoelectric performance of band structure engineered GeSe _{1â^x} Te _x alloys. Sustainable Energy and Fuels, 2021, 5, 1734-1746.	4.9	20
2044	Novel optimization perspectives for thermoelectric properties based on Rashba spin splitting: a mini review. Nanoscale, 2021, 13, 18032-18043.	5.6	10
2045	Significant improvement in thermoelectric performance of SnSe/SnS <i>via</i> nano-heterostructures. Physical Chemistry Chemical Physics, 2021, 23, 3794-3801.	2.8	13
2046	Ultralow Thermal Conductivity and High Thermoelectric Performance in AgCuTe _{1–<i>x</i>} Se _{<i>x</i>} through Isoelectronic Substitution. ACS Applied Materials & Interfaces, 2021, 13, 868-877.	8.0	28
2047	Anion exchanged Cl doping achieving band sharpening and low lattice thermal conductivity for improving thermoelectric performance in SnTe. Inorganic Chemistry Frontiers, 2021, 8, 4666-4675.	6.0	5
2048	Orbital chemistry of high valence band convergence and low-dimensional topology in PbTe. Journal of Materials Chemistry A, 2021, 9, 12119-12139.	10.3	15
2049	<pre>xmlns:mml="http://www.w3.org/1998/Math/MathML"> < mml:msub> < mml:mi>z < /mml:mi> < mml:mi> N < /mml:mi> mathvariant="normal">T < /mml:mi> < /mml:math> in < mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> < mml:msub> < mml:mi mathvariant="normal">ZrTe < /mml:mi> < mml:mn> 5 < /mml:msub> < /mml:msub> < /mml:math>. Physical Review</pre>	3.2	ub> <mml:mi 16</mml:mi
2050	Renormalized thermoelectric figure of merit in a band-convergent Sb ₂ Te ₂ Se monolayer: full electron–phonon interactions and selection rules. Journal of Materials Chemistry A, 2021, 9, 16108-16118.	10.3	4
2051	Progress of hybrid nanocomposite materials for thermoelectric applications. Materials Advances, 2021, 2, 1927-1956.	5.4	22
2052	Early stage of the single-crystal growth and tipping point of the cationic site preference in Gd-doped Zintl phase thermoelectric materials. CrystEngComm, 2021, 23, 7097-7107.	2.6	2
2053	Boosting the thermoelectric performance of GeTe by manipulating the phase transition temperature <i>via</i> Sb doping. Journal of Materials Chemistry C, 2021, 9, 6484-6490.	5.5	19
2054	Advances in thermal conductivity for energy applications: a review. Progress in Energy, 2021, 3, 012002.	10.9	24
2055	Novel Organic Polymer Composite-Based Thermoelectrics. , 2021, , 123-153.		0
2056	Highly efficient Mg2Si-based thermoelectric materials: A review on the micro- and nanostructure properties and the role of alloying. , 2021, , 429-466.		0
2057	Materials development and module fabrication in highly efficient lead tellurides. , 2021, , 247-267.		0
2059	In Situ Observation of Electron-Beam-Induced Formation of Nano-Structures in PbTe. Nanomaterials, 2021, 11, 163.	4.1	0
2060	Excited state dynamics in a sodium and iodine co-doped lead telluride nanowire. Molecular Physics, 2021, 119, e1874557.	1.7	0

ARTICLE IF CITATIONS Thermodynamic criterions of the thermoelectric performance enhancement in Mg2Sn through the 2061 6.0 22 self-compensation vacancy. Materials Today Physics, 2021, 16, 100327. Intrinsically ultralow thermal conductive inorganic solids for high thermoelectric performance. 2062 4.1 Chemical Ćommunications, 2021, 57, 4751-4767. Mn-In-Cu co-doping to optimize the thermoelectric properties of SnTe-based materials. Wuli 2063 0.53 Xuebao/Acta Physica Sinica, 2021, . Remarkable thermoelectric property enhancement in Cu₂SnS₃–CuCo₂S₄ nanocomposites <i>via</i> 3D modulation doping. Journal of Materials Chemistry A, 2021, 9, 16928-16935. 2064 A synergistic approach to achieving the high thermoelectric performance of La-doped SnTe using 2065 5.4 8 resonance state and partial band convergence. Materials Advances, 2021, 2, 4352-4361. Ionic thermoelectric materials for near ambient temperature energy harvesting. Applied Physics 3.3 Letters, 2021, 118, . Discovery of multivalley Fermi surface responsible for the high thermoelectric performance in Yb 2067 ₁₄ MnSb ₁₁ and Yb ₁₄ MgSb ₁₁. Science Advances, 2021, 10.3 34 7, . Improved thermoelectric transport properties of Ge₄Se₃Te through 2068 5.5 dimensionality reduction. Journal of Materials Chemistry C, 2021, 9, 1804-1813. Thermoelectric performance of 2D materials: the band-convergence strategy and strong intervalley 2069 12.2 25 scatterings. Materials Horizons, 2021, 8, 1253-1263. Hydrostatic Pressure Tuning of Thermal Conductivity for PbTe and PbSe Considering Pressure-Induced 3.5 Phase Transitions. ACS Omega, 2021, 6, 3980-3990 High efficiency GeTe-based materials and modules for thermoelectric power generation. Energy and 2071 30.8 101 Environmental Science, 2021, 14, 995-1003. Refined band structure plus enhanced phonon scattering realizes thermoelectric performance 10.3 30 optimization in Cul–Mn codoped SnTe. Journal of Materials Chemistry A, 2021, 9, 13065-13070. Revealing self-aligned l³-SnTe ultrathin nanosheets in thermoelectric l²-SnTe. Nanoscale, 2021, 13, 2073 5.6 3 15205-15209. Dissociation of GaSb in n-Type PbTe: off-Centered Gallium Atom and Weak Electronâ€"Phonon Coupling 2074 6.7 23 Provide High Thermoelectric Performance. Chemistry of Materials, 2021, 33, 1842-1851. Enhanced atomic ordering leads to high thermoelectric performance in AgSbTe ₂. Science, 2075 12.6 306 2021, 371, 722-727. Enhanced thermoelectric performance of hydrothermally synthesized polycrystalline Te-doped SnSe. Chinese Chemical Letters, 2021, 32, 811-815. Enhanced Power Factor and Figure of Merit of Cu₂ZnSnSe₄-Based 2077 4.0 18 Thermoelectric Composites by Ag Alloying. Inorganic Chemistry, 2021, 60, 3452-3459. monolayers < mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>In</mml:mi><mml:mn>2</mml:mn></mm 2078

# 2079	ARTICLE Directional Design of Materials Based on Multi-Objective Optimization: A Case Study of Two-Dimensional Thermoelectric SnSe. Chinese Physics Letters, 2021, 38, 027301.	IF 3.3	Citations
2080	Ultra-high Seebeck coefficient of nanostructured Sb-substituted PbTe and fabrication of a thermoelectric generator module. Bulletin of Materials Science, 2021, 44, 1.	1.7	4
2081	Ductile Ag ₂₀ S ₇ Te ₃ with Excellent Shape onformability and High Thermoelectric Performance. Advanced Materials, 2021, 33, e2007681.	21.0	65
2082	PEDOT:PSS-polyethylene oxide composites for stretchable and 3D-Printed thermoelectric devices. Composites Communications, 2021, 23, 100599.	6.3	18
2083	First-Principles Calculations on Thermoelectric Properties of Layered Transition Metal Phosphides MP2 (M = Ni, Pd, Pt). Journal of Electronic Materials, 2021, 50, 2510-2520.	2.2	6
2085	Realizing zT Values of 2.0 in Cubic GeTe. ChemNanoMat, 2021, 7, 476-482.	2.8	35
2086	Multivalley Band Structure and Phonon-Glass Behavior of TlAgTe. ACS Applied Energy Materials, 2021, 4, 2174-2180.	5.1	5
2087	Thermally insulative thermoelectric argyrodites. Materials Today, 2021, 48, 198-213.	14.2	52
2088	High-entropy-stabilized chalcogenides with high thermoelectric performance. Science, 2021, 371, 830-834.	12.6	546
2089	Electronic structure and thermoelectric properties of half-Heusler alloys NiTZ. AIP Advances, 2021, 11,	1.3	26
2090	The promising thermoelectric performance of newly synthesized bulk SrCu2GeSe4 and BaCu2SnSe4 associated with superior band degeneracy. Applied Physics Express, 2021, 14, 045502.	2.4	1
2091	Thermodynamic, mechanical stabilities and thermoelectric behavior of the XVSi (X = Co, Rh) half-Heuslers. Indian Journal of Physics, 2022, 96, 1045-1057.	1.8	1
2092	Optimal band structure for thermoelectrics with realistic scattering and bands. Npj Computational Materials, 2021, 7, .	8.7	25
2093	Sulfide Perovskites for Thermoelectricity. ACS Applied Materials & amp; Interfaces, 2021, 13, 14189-14197.	8.0	12
2094	Metavalent Bonding in GeSe Leads to High Thermoelectric Performance. Angewandte Chemie - International Edition, 2021, 60, 10350-10358.	13.8	58
2095	Composition-segmented BiSbTe thermoelectric generator fabricated by multimaterial 3D printing. Nano Energy, 2021, 81, 105638.	16.0	43
2096	Discordant Gd and Electronic Band Flattening Synergistically Induce High Thermoelectric Performance in n-type PbTe. ACS Energy Letters, 0, , 1625-1632.	17.4	37
2097	Enhanced thermoelectric performance of Bi0.5Sb1.5Te3 via Ni-doping: A Shift of peak ZT at elevated temperature via suppressing intrinsic excitation. Journal of Materiomics, 2021, 7, 1264-1274.	5.7	9

#	Article	IF	CITATIONS
2098	Improved Thermoelectric Properties of BiSbTe-AgBiSe ₂ Alloys by Suppressing Bipolar Excitation. ACS Applied Energy Materials, 2021, 4, 2944-2950.	5.1	17
2099	Intrinsic contribution to nonlinear thermoelectric effects in topological insulators. Physical Review B, 2021, 103, .	3.2	9
2100	Chemical Composition Engineering Leading to the Significant Improvement in the Thermoelectric Performance of AgBiSe ₂ -Based n-Type Solid Solutions. ACS Applied Energy Materials, 2021, 4, 2899-2907.	5.1	5
2101	Modifying the Thermoelectric Transport of Sb ₂ Te ₃ Thin Films via the Carrier Filtering Effect by Incorporating Size-Selected Gold Nanoparticles. ACS Applied Materials & Interfaces, 2021, 13, 13226-13234.	8.0	15
2102	Identifying the Manipulation of Individual Atomic-Scale Defects for Boosting Thermoelectric Performances in Artificially Controlled Bi ₂ Te ₃ Films. ACS Nano, 2021, 15, 5706-5714.	14.6	38
2103	Cu ₂ Se as Textured Adjuvant for Pb-Doped BiCuSeO Materials Leading to High Thermoelectric Performance. ACS Applied Materials & Interfaces, 2021, 13, 11977-11984.	8.0	14
2104	Substitutions and dislocations enabled extraordinary n-type thermoelectric PbTe. Materials Today Physics, 2021, 17, 100355.	6.0	44
2105	Buckled hexagonal carbon selenium nanosheet for thermoelectric performance. Applied Physics A: Materials Science and Processing, 2021, 127, 1.	2.3	1
2106	Anomalous Thermopower and High <i>ZT</i> in GeMnTe ₂ Driven by Spin's Thermodynamic Entropy. Research, 2021, 2021, 1949070.	5.7	4
2107	Weighted Mobility Ratio Engineering for Highâ€Performance Bi–Teâ€Based Thermoelectric Materials via Suppression of Minority Carrier Transport. Advanced Materials, 2021, 33, e2005931.	21.0	39
2108	Thermoelectric materials for space applications. CEAS Space Journal, 2021, 13, 325-340.	2.3	13
2109	Progress on material characterization methods under big data environment. Advanced Composites and Hybrid Materials, 2021, 4, 235-247.	21.1	16
2110	Semiconducting Chalcogenide Alloys Based on the (Ge, Sn, Pb) (S, Se, Te) Formula with Outstanding Properties: A First-Principles Calculation Study. ACS Omega, 2021, 6, 9433-9441.	3.5	20
2111	Atomic-scale chemical mapping of copper dopants in Bi2Te2.7Se0.3 thermoelectric alloy. Materials Today Physics, 2021, 17, 100347.	6.0	13
2112	Parallel Dislocation Networks and Cottrell Atmospheres Reduce Thermal Conductivity of PbTe Thermoelectrics. Advanced Functional Materials, 2021, 31, 2101214.	14.9	41
2113	Achieving High Thermoelectric Performance of n-Type Bi ₂ Te _{2.79} Se _{0.21} Sintered Materials by Hot-Stacked Deformation. ACS Applied Materials & Interfaces, 2021, 13, 15429-15436.	8.0	18
2114	Metavalent Bonding in GeSe Leads to High Thermoelectric Performance. Angewandte Chemie, 2021, 133, 10438-10446.	2.0	12
2115	Enhanced thermoelectric properties in two-dimensional monolayer Si ₂ BN by adsorbing halogen atoms*. Chinese Physics B, 2021, 30, 037304.	1.4	6

	CITATION R	CITATION REPORT	
#	Article	IF	CITATIONS
2116	Computationally Guided Synthesis of High Performance Thermoelectric Materials: Defect Engineering in AgGaTe ₂ . Advanced Electronic Materials, 2021, 7, 2001262.	5.1	10
2117	Mechanical alloying boosted SnTe thermoelectrics. Materials Today Physics, 2021, 17, 100340.	6.0	28
2118	Effect of Cationic and Anionic Doping in the Quinary Zintl Phase Thermoelectric Material <scp>Ca_{5â€<i>x</i>}Yb_{<i>x</i>}Al_{2â€<i>y</i>}In_{<i>y</i>}Sb< System. Bulletin of the Korean Chemical Society, 2021, 42, 563-566.</scp>	subuxs6â€≺i	i>z 8/i >
2119	Fracture toughness of thermoelectric materials. Materials Science and Engineering Reports, 2021, 144, 100607.	31.8	39
2120	Enhanced Thermoelectric Performance in High Entropy Alloys Sn _{0.25} Pb _{0.25} Mn _{0.25} Ge _{0.25} Te. ACS Applied Materials & Interfaces, 2021, 13, 18638-18647.	8.0	43
2121	First-principles study of anisotropic thermoelectric properties of hexagonal KBaBi. Journal of Solid State Chemistry, 2021, 296, 121961.	2.9	4
2122	Enhanced thermoelectric properties of n-type Cl doped PbS-based materials via Bi alloying. Journal of Alloys and Compounds, 2021, 859, 157788.	5.5	15
2123	First-principles investigation of the electronic and thermoelectric properties of SiGe doped with Sn and one percent B. IOP Conference Series: Earth and Environmental Science, 2021, 730, 012001.	0.3	0
2124	Datos administrativos agregados y estimación a partir de muestras no probabilÃsticas. Revista Internacional De Sociologia, 2021, 79, e180.	0.3	0
2125	Synthesis, crystal structure, and thermoelectric properties of ternary phosphide BaCu5P3. Journal of Solid State Chemistry, 2021, 296, 122017.	2.9	4
2126	Insight into the transport properties and enhanced thermoelectric performance of n-type Pb1â^'xSbxTe. Journal of Alloys and Compounds, 2021, 860, 158355.	5.5	27
2127	Ultralow Thermal Conductivity in Diamondoid Structures and High Thermoelectric Performance in (Cu _{1–<i>x</i>} Ag _{<i>x</i>})(In _{1–<i>y</i>} Ga _{<i>y</i>})Te< Journal of the American Chemical Society, 2021, 143, 5978-5989.	sub1827 <td>b>49</td>	b> 4 9
2129	Rational Electronic and Structural Designs Advance BiCuSeO Thermoelectrics. Advanced Functional Materials, 2021, 31, 2101289.	14.9	48
2130	Electronic properties of co-doped nonstoichiometric germanium telluride. Intermetallics, 2021, 131, 107118.	3.9	2
2131	Simultaneous Regulation of Electrical and Thermal Transport Properties of N-Type Bi ₂ Te ₃ via Adding Excessive Te Followed by Se Doping. ACS Applied Energy Materials, 2021, 4, 4986-4992.	5.1	17
2132	Structural features and thermoelectric performance of Sb- and Bi-doped Cu2SnSe3 compounds. Rare Metals, 2021, 40, 2474-2485.	7.1	13
2133	High Power Density Thermoelectric Generators with Skutterudites. Advanced Energy Materials, 2021, 11, 2100580.	19.5	25
2134	<i>Ab initio</i> thermoelectric calculations of ring-shaped bands in two-dimensional <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:msub> <mml:mi>Bi</mml:mi> <mml:r width="0.28em" /> <mml:msub> <mml:mi>Bi</mml:mi> <mml:mn>2</mml:mn> </mml:msub> <mml:msub> <mml:mi>Se</mml:mi> , and </mml:msub></mml:r </mml:msub></mml:mrow></mml:math 		

#	Article	IF	CITATIONS
2135	Lattice Strain Leads to High Thermoelectric Performance in Polycrystalline SnSe. ACS Nano, 2021, 15, 8204-8215.	14.6	66
2136	Enhanced Thermoelectric Performance of LiZnSb-Alloyed CaZn0.4Ag0.2Sb by Band Engineering. ACS Applied Materials & Interfaces, 2021, 13, 17809-17816.	8.0	4
2137	Manipulation of Defects for Highâ€Performance Thermoelectric PbTeâ€Based Alloys. Small Structures, 2021, 2, 2100016.	12.0	10
2138	Exceptional Performance Driven by Planar Honeycomb Structure in a New High Temperature Thermoelectric Material BaAgAs. Advanced Functional Materials, 2021, 31, 2100583.	14.9	25
2139	Dual occupations of sulfur induced band flattening and chemical bond softening in p-type S Co4Sb12-2S2 skutterudites. Journal of Materiomics, 2022, 8, 88-95.	5.7	6
2140	Optimization of the thermoelectric performance of α-MgAgSb-based materials by Zn-doping. Journal of Materials Science, 2021, 56, 13715-13722.	3.7	6
2141	Using materials quality factor BΔΕâ^— for design of thermoelectric materials with multiple bands. Materials Today Physics, 2021, 18, 100371.	6.0	8
2142	Soft anharmonic phonons and ultralow thermal conductivity in Mg ₃ (Sb, Bi) ₂ thermoelectrics. Science Advances, 2021, 7, .	10.3	52
2143	n-Type thermoelectric metal chalcogenide (Ag,Pb,Bi)(S,Se,Te) designed by multi-site-type high-entropy alloying. Materials Research Letters, 2021, 9, 366-372.	8.7	13
2144	Realizing high thermoelectric properties in p-type polycrystalline SnSe by inducing DOS distortion. Rare Metals, 2021, 40, 2819-2828.	7.1	33
2145	Enhanced Thermoelectric Performance in Ge _{0.955â^'} <i>_xxx</i> Bo <i>_x</i> Te/FeGe ₂ Composites Enabled by Hierarchical Defects. Small, 2021, 17, e2100915.	10.0	8
2146	Medium Entropyâ€Enabled High Performance Cubic GeTe Thermoelectrics. Advanced Science, 2021, 8, 2100220.	11.2	51
2147	Realizing a 14% single-leg thermoelectric efficiency in GeTe alloys. Science Advances, 2021, 7, .	10.3	91
2148	Compromise between band structure and phonon scattering in efficient n-Mg3Sb2-Bi thermoelectrics. Materials Today Physics, 2021, 18, 100362.	6.0	41
2149	Thermoelectric properties of p-type polycrystalline Bi0.8Sb0.8In0.4Se3. Applied Physics Letters, 2021, 118,	3.3	5
2150	Dimensionality effects in highâ€performance thermoelectric materials: Computational and experimental progress in energy harvesting applications. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2022, 12, e1547.	14.6	20
2151	Bottom-Up Engineering Strategies for High-Performance Thermoelectric Materials. Nano-Micro Letters, 2021, 13, 119.	27.0	48
2152	Improved thermoelectric performance in n-type BiTe facilitated by defect engineering. Rare Metals, 2021, 40, 2829-2837.	7.1	24

#	Article	IF	CITATIONS
2153	Entropy engineering promotes thermoelectric performance in p-type chalcogenides. Nature Communications, 2021, 12, 3234.	12.8	105
2154	Mixedâ€Anion Compounds: An Unexplored Playground for ALD Fabrication. Advanced Materials Interfaces, 2021, 8, 2100146.	3.7	11
2155	Optimization of the Thermoelectric Properties of p-Type $Mg < sub > 2a \in (i > y < i > (sub > Li < i > (sub > y < sub > < i > Ge < sub > 1a \in (i > x < i > (sub > Sn < i > (sub > x < sub > < i > and Mg < sub > 2a \in (i > y < i > (sub > Li < i > (sub > y < sub > < i > Ge < sub > 1a \in (i > x < i > (sub > Si < i > (sub > z < sub > (i > with < (sub > z < > (sub > Li < sub > y < sub > (sub > z < sub > Si < sub > z < sub > z < sub > z < sub > z < sub > z < sub > z < sub > z < sub > z < sub > z < sub > z < sub > z < sub > z < sub > z < sub > z < sub > z < sub > z < sub > z < sub > z < sub > z < sub > z < sub > z < sub > z < sub > z < sub > z < sub > z < sub > z < sub > z < sub > z < sub > z < sub > z < sub > z < sub > z < sub > z < sub > z < sub > z < sub > z < sub > z < sub > z < sub > z < sub > z < sub > z < sub > z < sub > z < sub > z < sub > z < sub > z < sub > z < sub > z < sub > z < sub > z < sub > z < sub > z < sub > z < sub > z < sub > z < sub > z < sub > z < sub > z < sub > z < sub > z < sub > z < sub > z < sub > z < sub > z < sub > z < sub > z < sub > z < sub > z < sub > z < sub > z < sub > z < sub > z < sub > z < sub > z < sub > z < sub > z < sub > z < sub > z < sub > z < sub > z < sub > z < sub > z < sub > z < sub > z < sub > z < sub > z < sub > z < sub > z < sub > z < sub > z < sub > z < sub > z < sub > z < sub > z < sub > z < sub > z < sub > z < sub > z < sub > z < sub > z < sub > z < sub > z < sub > z < sub > z < sub > z < sub > sub > sub > z < sub > z < sub > z < sub > sub > $	5.1	3
2156	Recent Developments in Flexible Thermoelectric Devices. Small Science, 2021, 1, 2100005.	9.9	74
2157	Electronic, optical, and thermoelectric properties of Janus In-based monochalcogenides. Journal of Physics Condensed Matter, 2021, 33, 225503.	1.8	24
2158	Surprisingly high in-plane thermoelectric performance in a-axis-oriented epitaxial SnSe thin films. Materials Today Physics, 2021, 18, 100399.	6.0	17
2159	Dependency of XC functionals and role of 3s(2p) orbitals of Co(Si) as core/valence states on the vibrational and thermodynamic properties of CoSi. Physica B: Condensed Matter, 2021, 608, 412804.	2.7	2
2160	Thermoelectric Materials for Textile Applications. Molecules, 2021, 26, 3154.	3.8	16
2161	Excellent thermoelectric performance is predicted in Sb2Te with natural superlattice structure. Chinese Physics B, O, , .	1.4	0
2162	Thermoelectric materials with crystal-amorphicity duality induced by large atomic size mismatch. Joule, 2021, 5, 1183-1195.	24.0	27
2163	Eliciting Highâ€Performance Thermoelectric Materials via Phase Diagram Engineering: A Review. Advanced Energy and Sustainability Research, 2021, 2, 2100054.	5.8	10
2164	Structural Evolution of Highâ€Performance Mnâ€Alloyed Thermoelectric Materials: A Case Study of SnTe. Small, 2021, 17, e2100525.	10.0	21
2165	Fe–Al–Si Thermoelectric (FAST) Materials and Modules: Diffusion Couple and Machine-Learning-Assisted Materials Development. ACS Applied Materials & Interfaces, 2021, 13, 53346-53354.	8.0	10
2166	Significant enhancement of the power factor in Ca3Co4O9 by incorporating Cu2Se. Journal of Alloys and Compounds, 2021, 863, 158749.	5.5	6
2167	Enhanced Thermoelectric and Mechanical Performances in Sintered Bi _{0.48} Sb _{1.52} Te ₃ –AgSbSe ₂ Composite. ACS Applied Materials & Interfaces, 2021, 13, 24937-24944.	8.0	23
2168	Alloying Cr2/3Te in AgCrSe2 compound for improving thermoelectrics. Applied Physics Letters, 2021, 118, 193902.	3.3	3
2169	Enhanced thermoelectric performance of van der Waals Tellurium via vacancy engineering. Materials Today Physics, 2021, 18, 100379.	6.0	10
2170	Effects of NbCl5-doping on the thermoelectric properties of polycrystalline Bi2S3. Journal of Solid State Chemistry, 2021, 297, 122043.	2.9	22

#	Article	IF	CITATIONS
2171	Magneto-enhanced electro-thermal conversion performance. Science China Materials, 2021, 64, 2835-2845.	6.3	14
2172	Thermally Strain-Induced Band Gap Opening on Platinum Diselenide-Layered Films: A Promising Two-Dimensional Material with Excellent Thermoelectric Performance. Chemistry of Materials, 2021, 33, 3490-3498.	6.7	18
2173	Realizing high thermoelectric performance in n-type SnSe polycrystals via (Pb, Br) co-doping and multi-nanoprecipitates synergy. Journal of Alloys and Compounds, 2021, 864, 158401.	5.5	19
2174	High Entropy Semiconductor AgMnGeSbTe ₄ with Desirable Thermoelectric Performance. Advanced Functional Materials, 2021, 31, 2103197.	14.9	50
2175	Cost-efficient nickel-based thermo-electrochemical cells for utilizing low-grade thermal energy. Journal of Power Sources, 2021, 494, 229705.	7.8	23
2176	Investigation of thermoelectric properties in binary Sb-Te and Sn-Te alloys during crystallization process. Journal of Non-Crystalline Solids, 2021, 562, 120767.	3.1	1
2177	Enhanced power factor of Bi0.5Sb1.5Te3 thin films via PbTe incorporating and annealing. Surfaces and Interfaces, 2021, 24, 101099.	3.0	3
2178	Thermal transport properties of semimetal scandium antimonide: a first-principles study. Applied Physics A: Materials Science and Processing, 2021, 127, 1.	2.3	5
2179	Contrasting Thermoelectric Transport Properties of n-Type PbS Induced by Adding Ni and Zn. ACS Applied Energy Materials, 2021, 4, 6284-6289.	5.1	5
2180	New Type of Thermoelectric CdSSe Nanowire Chip. ACS Applied Materials & Interfaces, 2021, 13, 30959-30966.	8.0	8
2181	Structural features and thermoelectric performance of chalcopyrite Cu(In, Ga)Te2 system by isoelectronic substitution. Current Applied Physics, 2021, 26, 24-34.	2.4	5
2182	Tuning thermoelectric efficiency of monolayer indium nitride by mechanical strain. Journal of Applied Physics, 2021, 129, 234302.	2.5	3
2183	Magnetic Ni doping induced high power factor of Cu2GeSe3-based bulk materials. Journal of the European Ceramic Society, 2021, 41, 3473-3479.	5.7	11
2184	Investigation of the thermoelectric properties of Lithium-Aluminium-Silicide (LiAlSi) compound from first-principles calculations. Computational Condensed Matter, 2021, 27, e00551.	2.1	10
2185	Enhanced Thermoelectric Properties of Cu3SbSe4 Compounds by Isovalent Bismuth Doping. Journal of Materials Science: Materials in Electronics, 2021, 32, 18849-18861.	2.2	3
2186	Anharmonicity and correlated dynamics of PbTe and PbS studied by single crystal x-ray scattering. Physical Review B, 2021, 103, .	3.2	7
2187	The strain-induced excellent thermoelectric performance of PbTe. Physica E: Low-Dimensional Systems and Nanostructures, 2021, 130, 114685.	2.7	18
2188	Boosting Thermoelectric Performance of Cu ₂ SnSe ₃ <i>via</i> Comprehensive Band Structure Regulation and Intensified Phonon Scattering by Multidimensional Defects. ACS Nano, 2021, 15, 10532-10541.	14.6	40

#	Article	IF	CITATIONS
2189	Chemical Bonding Origin of the Thermoelectric Power Factor in Half-Heusler Semiconductors. Chemistry of Materials, 2021, 33, 5308-5316.	6.7	25
2190	Exceptionally high open circuit thermoelectric figure of merit in two-dimensional tin sulphide. Journal of Physics Condensed Matter, 2021, 33, 315705.	1.8	4
2191	The thermoelectric performance of new structure SnSe studied by quotient graph and deep learning potential. Materials Today Energy, 2021, 20, 100665.	4.7	11
2192	Effect of spin-orbital coupling on the electronic, mechanical, thermoelectric, and vibrational properties of XPtBi (X = Sc and Y): A first-principles study. Journal of Physics and Chemistry of Solids, 2021, 153, 110024.	4.0	15
2193	Leveraging bipolar effect to enhance transverse thermoelectricity in semimetal Mg2Pb for cryogenic heat pumping. Nature Communications, 2021, 12, 3837.	12.8	24
2194	When band convergence is not beneficial for thermoelectrics. Nature Communications, 2021, 12, 3425.	12.8	51
2195	Grain size-induced enhancement of thermoelectric performance of Cu3Sb1â^'xInxSe4 materials. Functional Materials Letters, 2021, 14, 2151026.	1.2	0
2196	<pre><i>><i>><i>><i>><i>><i>><i>><i>><i>><i< td=""><td>TjÆTQq1 I</td><td>1 @.784314</td></i<></i></i></i></i></i></i></i></i></i></pre>	Tj ÆT Qq1 I	1 @.784314
2197	Chemistry, 2021, 50, 10129–10136. A Colossal Enhancement of Thermoelectric Performance of Monolayer SbAs Using Strain Engineering. Physica Status Solidi - Rapid Research Letters, 2021, 15, 2100175.	2.4	1
2198	Melt-spun Sn1â^'â^'Sb Mn Te with unique multiscale microstructures approaching exceptional average thermoelectric zT. Nano Energy, 2021, 84, 105879.	16.0	46
2199	Slowing down the heat in thermoelectrics. InformaÄnÃ-Materiály, 2021, 3, 755-789.	17.3	57
2200	Controlled thermal expansion and thermoelectric properties of Mg2Si/Si composites. Journal of Applied Physics, 2021, 130, 035105.	2.5	1
2201	Synthesis and thermoelectric properties of Bi-doped SnSe thin films*. Chinese Physics B, 2021, 30, 116302.	1.4	7
2202	Remarkable Improvement of Thermoelectric Performance in Ga and Te Cointroduced Cu ₃ SnS ₄ . Inorganic Chemistry, 2021, 60, 11120-11128.	4.0	12
2203	Ionic transport properties and their empirical correlations for thermal-to-electrical energy conversion. Materials Today Physics, 2021, 19, 100433.	6.0	12
2204	Lead-free SnTe-based compounds as advanced thermoelectrics. Materials Today Physics, 2021, 19, 100405.	6.0	38
2205	Thermoelectric CoGeTe with an Orthorhombic Crystal Symmetry and Balance of the Electrical and Thermal Properties. Inorganic Chemistry, 2021, 60, 12331-12338.	4.0	1
2206	Rationalizing the enhancement of the thermoelectric properties of PEDOT:PSS by secondary doping. Applied Physics Letters, 2021, 119, .	3.3	10

#	Article	IF	CITATIONS
2207	First principles investigation of intrinsic and Na defects in XTe (X=Ca, Sr, Ba) nanostructured PbTe. Materials Today Physics, 2021, 19, 100415.	6.0	6
2208	Power generation and thermoelectric cooling enabled by momentum and energy multiband alignments. Science, 2021, 373, 556-561.	12.6	270
2209	Ab-initio investigation on the electronic and thermoelectric properties of new half-Heusler compounds KBiX (X = Ba and Sr). Journal of Physics Condensed Matter, 2021, 33, 395701.	1.8	13
2210	Optimization of Thermoelectric Properties Based on Rashba Spin Splitting. , 0, , .		0
2211	Thermoelectrics by Computational Design: Progress and Opportunities. Annual Review of Materials Research, 2021, 51, 565-590.	9.3	23
2212	Effect of Pressure on Mechanical and Thermal Properties of SnSe2. International Journal of Thermophysics, 2021, 42, 1.	2.1	3
2213	Suppression of secondary phase in CrN matrix to boost the high-temperature thermoelectric performance. Materials Today Physics, 2021, 19, 100420.	6.0	5
2214	Thermoelectric Transport Properties of TmAg Cu1-Te2 solid solutions. Journal of Materiomics, 2021, 7, 886-893.	5.7	3
2215	Ultra-low lattice thermal conductivity and high thermoelectric efficiency of K3AuO. Journal of Applied Physics, 2021, 130, 045101.	2.5	2
2216	Realizing high thermoelectric performance in hot-pressed polycrystalline AlxSn1-xSe through band engineering tuning. Journal of Materiomics, 2022, 8, 475-488.	5.7	9
2217	Enhanced Stability and Thermoelectric Performance in Cu _{1.85} Se-Based Compounds. ACS Applied Materials & Interfaces, 2021, 13, 37862-37872.	8.0	5
2218	Enhanced thermoelectric performance in Ti(Fe, Co, Ni)Sb pseudo-ternary Half-Heusler alloys. Journal of Materiomics, 2021, 7, 756-765.	5.7	29
2219	Fine-grained polycrystalline MoTe2 with enhanced thermoelectric properties through iodine doping. Journal of Materials Science: Materials in Electronics, 2021, 32, 20093-20103.	2.2	2
2220	Enhancing Near-Room-Temperature GeTe Thermoelectrics through In/Pb Co-doping. ACS Applied Materials & amp; Interfaces, 2021, 13, 37273-37279.	8.0	15
2221	Thermoelectric performance of binary lithium-based compounds: Li3Sb and Li3Bi. Applied Physics Letters, 2021, 119, .	3.3	7
2222	Predicting thermoelectric properties from chemical formula with explicitly identifying dopant effects. Npj Computational Materials, 2021, 7, .	8.7	24
2223	Doping-mediated stabilization of copper vacancies to promote thermoelectric properties of Cu2â^'xS. Nano Energy, 2021, 85, 105991.	16.0	26
2224	Optoelectronic and thermoelectric properties of A3AsN (A = Mg, Ca, Sr and Ba) in cubic and orthorhombic phase. Journal of Materials Research and Technology, 2021, 13, 1485-1495.	5.8	16

#	Article	IF	Citations
2225	Abnormal thermal conduction in argyrodite-type Ag9FeS6-Te materials. Materials Today Physics, 2021, 19, 100410.	6.0	8
2226	Enhancing Thermoelectric Performance of Yb _{0.3} Co ₄ Sb ₁₂ by Synergistically Optimized Carrier Concentration and Ionized Impurity Scattering. ACS Applied Materials & Interfaces, 2021, 13, 39533-39540.	8.0	8
2227	Low Thermal Conductivity and Magneto-suppressed Thermal Transport in a Highly Oriented FeSb2 Single Crystal. ACS Omega, 2021, 6, 22681-22687.	3.5	2
2228	Novel thermoelectric performance of 2D 1T- Se ₂ Te and SeTe ₂ with ultralow lattice thermal conductivity but high carrier mobility. Nanotechnology, 2021, 32, 455401.	2.6	18
2229	High thermoelectric performance enabled by convergence of nested conduction bands in Pb7Bi4Se13 with low thermal conductivity. Nature Communications, 2021, 12, 4793.	12.8	53
2230	Regulating Te Vacancies through Dopant Balancing via Excess Ag Enables Rebounding Power Factor and High Thermoelectric Performance in pâ€īype PbTe. Advanced Science, 2021, 8, e2100895.	11.2	18
2231	Effect of hydrostatic pressure on thermoelectric performance of topological half-Heusler LuPdBi compound. Physica Scripta, 2021, 96, 125702.	2.5	1
2232	Strain tuned low thermal conductivity in Indium Antimonide (InSb) through increase in anharmonic phonon scattering - A first-principles study. Solid State Communications, 2021, 334-335, 114378.	1.9	3
2233	Anharmonic lattice dynamics of SnS across phase transition: A study using high-dimensional neural network potential. Applied Physics Letters, 2021, 119, .	3.3	5
2234	Research status and performance optimization of medium-temperature thermoelectric material SnTe. Chinese Physics B, 2022, 31, 047307.	1.4	6
2235	High Thermoelectric Performance Achieved in Bulk Selenium with Nanostructural Building Blocks. ACS Applied Electronic Materials, 2021, 3, 3824-3834.	4.3	5
2236	High band degeneracy and weak chemical bonds leading to enhanced thermoelectric transport properties in 2H–MoTe2. Journal of Solid State Chemistry, 2021, 300, 122227.	2.9	2
2237	Low lattice thermal conductivity and enhanced thermoelectric performance of SnTe via chemical electroless plating of Ag. Rare Metals, 2022, 41, 86-95.	7.1	18
2238	A comparative study of thermoelectric Cu2TrTi3S8 (Tr = Co and Sc) thiospinels: Enhanced Seebeck coefficient via electronic structure modification. Journal of Alloys and Compounds, 2021, 871, 159548.	5.5	1
2239	Electronic structure modulation of Pb0.6Sn0.4Te via zinc doping and its effect on the thermoelectric properties. Journal of Alloys and Compounds, 2021, 872, 159681.	5.5	24
2240	A GPU-Accelerated ray-tracing method for determining radiation view factors in multi-junction thermoelectric generators. Energy, 2021, 228, 120438.	8.8	4
2241	Construction and characterization of a solar refrigeration system based on nano-graphene. Journal of Physics: Conference Series, 2021, 1950, 012004.	0.4	0
2242	Strain tuned thermal conductivity reduction in Indium Arsenide (InAs) – A first-principles study. Computational Materials Science, 2021, 196, 110531.	3.0	4

#	Article	IF	CITATIONS
2243	Investigation on Low-Temperature Thermoelectric Properties of Ag ₂ Se Polycrystal Fabricated by Using Zone-Melting Method. Journal of Physical Chemistry Letters, 2021, 12, 8246-8255.	4.6	37
2244	Realize High Thermoelectric Properties in n-Type Bi ₂ Te _{2.7} Se _{0.3} /Y ₂ O ₃ Nanocomposites by Constructing Heterointerfaces. ACS Applied Materials & Interfaces, 2021, 13, 38526-38533.	8.0	38
2245	Thermoelectric materials taking advantage of spin entropy: lessons from chalcogenides and oxides. Science and Technology of Advanced Materials, 2021, 22, 583-596.	6.1	27
2246	Magnetically enhanced thermoelectrics: a comprehensive review. Reports on Progress in Physics, 2021, 84, 096501.	20.1	14
2247	Tuning Ag content to achieve high thermoelectric properties of Bi-doped p-type Cu3SbSe4-based materials. Journal of Alloys and Compounds, 2021, 872, 159659.	5.5	14
2248	Hidden role of intrinsic Sb-rich nano-precipitates for high-performance Bi2-Sb Te3 thermoelectric alloys. Acta Materialia, 2021, 215, 117058.	7.9	13
2249	Current Stateâ€ofâ€theâ€Art in the Interface/Surface Modification of Thermoelectric Materials. Advanced Energy Materials, 2021, 11, 2101877.	19.5	37
2250	Improved thermoelectric performance of Cu2O-Cr/Sn composite powder. Chemical Physics Letters, 2021, 777, 138722.	2.6	6
2251	Phase Composition Manipulation and Twin Boundary Engineering Lead to Enhanced Thermoelectric Performance of Cu ₂ SnS ₃ . ACS Applied Energy Materials, 2021, 4, 9240-9247.	5.1	17
2252	AICON2: A program for calculating transport properties quickly and accurately. Computer Physics Communications, 2021, 266, 108027.	7.5	22
2253	Microscopic origin of the high thermoelectric figure of merit of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>n</mml:mi> -doped SnSe. Physical Review B, 2021, 104, .</mml:math 	3.2	7
2254	Ternary Ag ₂ Se _{1–<i>x</i>} Te _{<i>x</i>} : A Near-Room-Temperature Thermoelectric Material with a Potentially High Figure of Merit. Inorganic Chemistry, 2021, 60, 14165-14173.	4.0	15
2255	Synergistic Texturing and Bi/Sbâ€Te Antisite Doping Secure High Thermoelectric Performance in Bi _{0.5} Sb _{1.5} Te ₃ â€Based Thin Films. Advanced Energy Materials, 2021, 11, 2102578.	19.5	35
2256	Revisiting the thermoelectric properties of lead telluride. Materials Today Energy, 2021, 21, 100713.	4.7	28
2257	Strong electron–phonon coupling influences carrier transport and thermoelectric performances in group-IV/V elemental monolayers. Npj Computational Materials, 2021, 7, .	8.7	19
2258	A Review on Fundamentals, Design and Optimization to High ZT of Thermoelectric Materials for Application to Thermoelectric Technology. Journal of Electronic Materials, 2021, 50, 6037-6059.	2.2	20
2259	Stabilizing the Optimal Carrier Concentration in Al/Sb-Codoped GeTe for High Thermoelectric Performance. ACS Applied Materials & amp; Interfaces, 2021, 13, 45717-45725.	8.0	16
2260	Demonstration of valley anisotropy utilized to enhance the thermoelectric power factor. Nature Communications, 2021, 12, 5408.	12.8	66

#	Article	IF	CITATIONS
2261	Manipulation of hole and band for thermoelectric enhancements in SrCd2Sb2 Zintl compound. Chemical Engineering Journal, 2021, 420, 130530.	12.7	19
2262	Superior room-temperature power factor in GeTe systems via multiple valence band convergence to a narrow energy range. Materials Today Physics, 2021, 20, 100484.	6.0	5
2263	Band structure and microstructure modulations enable high quality factor to elevate thermoelectric performance in Ge0.9Sb0.1Te-x%FeTe2. Materials Today Physics, 2021, 20, 100444.	6.0	16
2264	Cumulative defect structures for experimentally attainable low thermal conductivity in thermoelectric (Bi,Sb)2Te3 alloys. Materials Today Energy, 2021, 21, 100795.	4.7	27
2265	Thermoelectric degrees of freedom determining thermoelectric efficiency. IScience, 2021, 24, 102934.	4.1	15
2266	Materials informatics platform with three dimensional structures, workflow and thermoelectric applications. Scientific Data, 2021, 8, 236.	5.3	27
2267	Synergistic effects of B-In codoping in zone-melted Bi0.48Sb1.52Te3-based thermoelectric. Chemical Engineering Journal, 2021, 420, 130381.	12.7	20
2268	Fully printed and flexible carbon nanotube-based thermoelectric generator capable for high-temperature applications. Journal of Power Sources, 2021, 507, 230323.	7.8	18
2269	Facile Fabrication of a Cu2O Thin Film with a High Seebeck Coefficient. JETP Letters, 2021, 114, 326-331.	1.4	3
2270	Thermoelectric properties of (GeTe)1-x[(Ag2Te)0.4(Sb2Te3)0.6]x alloys. Rare Metals, 2022, 41, 921-930.	7.1	15
2271	n-Type thermoelectric properties of a hexagonal SiGe polymorph superior to a cubic SiGe. Journal of Alloys and Compounds, 2021, 874, 160007.	5.5	5
2272	Ultralow Thermal Conductivity, Multiband Electronic Structure and High Thermoelectric Figure of Merit in TlCuSe. Advanced Materials, 2021, 33, e2104908.	21.0	29
2273	Thermoelectric Cu ₁₂ Sb ₄ S ₁₃ â€Based Synthetic Minerals with a Sublimationâ€Derived Porous Network. Advanced Materials, 2021, 33, e2103633.	21.0	46
2274	High thermoelectric performance of half-Heusler ZrXPb (X = Ni, Pd, and Pt) compounds from first principle calculation. Journal of Physics Condensed Matter, 2021, 33, 465501.	1.8	6
2275	Enhancing thermoelectric performance of BaMg ₂ -based compounds by forming solid solutions and biaxial strain. Journal Physics D: Applied Physics, 2021, 54, 485301.	2.8	1
2276	Efficiency as a performance metric for material optimization in thermoelectric generators. JPhys Energy, 2021, 3, 044006.	5.3	4
2277	Anisotropic thermoelectric transport properties in polycrystalline SnSe ₂ *. Chinese Physics B, 2021, 30, 067101.	1.4	5
2278	Enhanced thermoelectric performance of BiSe by Sn doping and ball milling. Ceramics International, 2021, 47, 26375-26382.	4.8	10

#	Article	lF	Citations
2279	Understanding bipolar thermal conductivity in terms of concentration ratio of minority to majority carriers. Journal of Materials Research and Technology, 2021, 14, 639-646.	5.8	6
2280	Effect of exchange-correlation functional type and spin-orbit coupling on thermoelectric properties of ZrTe2. Journal of Solid State Chemistry, 2021, 302, 122414.	2.9	6
2281	Synthesis, phase evolutions, microstructures, and compaction behavior of four copper-chalcogenide micron-thermoelectric powders (Cu2ZnSnS4/Se4, Cu2MnSiS4/Se4, Cu2MnSnS4/Se4, and Cu2ZnSiS4/Se4) prepared by mechanical alloying. Materials Chemistry and Physics, 2021, 271, 124943.	4.0	3
2282	High electrical transport performance and ultralow thermal conductivity realized in Ga doped single-layer octagon-square nitrogene. Applied Surface Science, 2021, 563, 150244.	6.1	0
2283	Boosting thermoelectrics by alloying Cu2Se in SnTe-CdTe compounds. Journal of Materials Science and Technology, 2021, 89, 45-51.	10.7	9
2284	Improvement of thermoelectric properties of SnTe by Mn Bi codoping. Chemical Engineering Journal, 2021, 421, 127795.	12.7	20
2285	Expand band gap and suppress bipolar excitation to optimize thermoelectric performance of Bi0.35Sb1.65Te3 sintered materials. Materials Today Physics, 2021, 21, 100544.	6.0	15
2286	Nearly isotropic transport properties in anisotropically structured n-type single-crystalline Mg3Sb2. Materials Today Physics, 2021, 21, 100508.	6.0	17
2287	High temperature Si–Ge alloy towards thermoelectric applications: A comprehensive review. Materials Today Physics, 2021, 21, 100468.	6.0	38
2288	Strain-induced structural phase transition in GeN monolayer. Applied Surface Science, 2021, 567, 150793.	6.1	9
2289	Band convergence and nanostructure modulations lead to high thermoelectric performance in SnPb0.04Te-y% AgSbTe2. Materials Today Physics, 2021, 21, 100505.	6.0	17
2290	Enhanced thermoelectric performance in GeTe-Sb2Te3 pseudo-binary via lattice symmetry regulation and microstructure stabilization. Materials Today Physics, 2021, 21, 100507.	6.0	12
2291	Magnetic constitution of topologically trivial thermoelectric PbTe:Cr. Journal of Magnetism and Magnetic Materials, 2021, 537, 168154.	2.3	5
2292	Thermoelectric materials and transport physics. Materials Today Physics, 2021, 21, 100519.	6.0	77
2293	Enhanced thermoelectric power factor in in-situ high-vacuum annealed Bi1-xSbx films with compact morphology by magnetron sputtering. Thin Solid Films, 2021, 737, 138948.	1.8	1
2294	High thermoelectric performance of tellurium-free n-type AgBi1-Sb Se2 with stable cubic structure enabled by entropy engineering. Acta Materialia, 2021, 220, 117291.	7.9	18
2295	Effects of aluminum content on thermoelectric performance of Al CoCrFeNi high-entropy alloys. Journal of Alloys and Compounds, 2021, 883, 160811.	5.5	12
2296	Broadening the optimum thermoelectric power generation range of p-type sintered Bi0.4Sb1.6Te3 by suppressing bipolar effect. Chemical Engineering Journal, 2021, 426, 131853.	12.7	16

#	Article	IF	CITATIONS
2297	Optimized thermoelectric properties and geometry parameters of annular thin-film thermoelectric generators using n-type Bi2Te2.7Se0.3 and p-type Bi0.5Sb1.5Te3 thin films for energy harvesting. Sensors and Actuators A: Physical, 2021, 332, 113030.	4.1	11
2298	Double perovskite Pr2CoFeO6 thermoelectric oxide: Roles of Sr-doping and Micro/nanostructuring. Chemical Engineering Journal, 2021, 425, 130668.	12.7	39
2299	Exploring the structural, elastic, lattice dynamical stability and thermoelectric properties of semiconducting novel quaternary Heusler alloy LiScPdPb. Journal of Solid State Chemistry, 2021, 304, 122601.	2.9	16
2300	Appealing perspectives of structural, electronic, mechanical, and thermoelectric properties of Tl2(Se,) Tj ETQq1 1 110258.	0.784314 4.0	rgBT /Over 34
2301	Mechanical and thermoelectric properties of FeVSb-based half-Heusler alloys. Journal of Alloys and Compounds, 2021, 886, 161308.	5.5	17
2302	Decoupling of thermoelectric transport performance of Ag doped and Se alloyed tellurium induced by carrier mobility compensation. Journal of Materials Science and Technology, 2022, 101, 71-79.	10.7	2
2303	Thermoelectricity. , 2022, , 187-247.		2
2304	Mixed-phase effect of a high Seebeck coefficient and low electrical resistivity in Ag ₂ S. Journal Physics D: Applied Physics, 2021, 54, 115503.	2.8	10
2305	Synergistically Optimized Thermoelectric and Mechanical Properties in p â€Type BiSbTe by a Microdroplet Deposition Technique. Energy Technology, 2021, 9, 2001024.	3.8	1
2306	Thermoelectric performance of Dy/Y co-doped SrTiO ₃ ceramic composites with submicron A ₂ Ti ₂ O ₇ (A = Dy, Y) pyrochlore. Journal Physics D: Applied Physics, 2021, 54, 155501.	2.8	5
2307	Thermoelectric properties of CZTS thin films: effect of Cu–Zn disorder. Physical Chemistry Chemical Physics, 2021, 23, 13148-13158.	2.8	15
2308	Improving the thermoelectric performance of Cu ₂ SnSe ₃ <i>via</i> regulating micro- and electronic structures. Nanoscale, 2021, 13, 4233-4240.	5.6	11
2309	Effect of the polar distortion on the thermoelectric properties of GeTe. European Physical Journal B, 2021, 94, 1.	1.5	5
2310	Unveiling the Intrinsic Low Thermal Conductivity of BiAgSeS through Entropy Engineering in SHS Kinetic Process. Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2021, 36, 991.	1.3	5
2311	Dramatically enhanced Seebeck coefficient in GeMnTe2–NaBiTe2 alloys by tuning the Spin's thermodynamic entropy. Physical Chemistry Chemical Physics, 2021, 23, 17866-17872.	2.8	5
2312	Rationally optimized carrier effective mass and carrier density leads to high average <i>ZT</i> value in n-type PbSe. Journal of Materials Chemistry A, 2021, 9, 23011-23018.	10.3	15
2313	Defect engineering in thermoelectric materials: what have we learned?. Chemical Society Reviews, 2021, 50, 9022-9054.	38.1	201
2314	Boosting Thermoelectric Properties of AgBi ₃ (Se _{<i>y</i>} S _{1–<i>y</i>}) ₅ Solid Solution via Entropy Engineering. ACS Applied Materials & Interfaces, 2021, 13, 4185-4191.	8.0	13

#	Article	IF	CITATIONS
2315	Introduction and brief history of thermoelectric materials. , 2021, , 1-19.		1
2316	The variation of intrinsic defects in XTe (X = Ge, Sn, and Pb) induced by the energy positions of valence band maxima. Journal of Materials Chemistry C, 2021, 9, 5765-5770.	5.5	19
2317	Synergistic Strategies to Boost Lead Telluride as Prospective Thermoelectrics. , 2021, , 155-189.		2
2318	Recent Advances in Functional Thermoelectric Materials for Printed Electronics. , 2021, , 79-122.		0
2319	Overview of Thermoelectric Materials. , 2022, , 319-325.		5
2320	Electronic correlations in the semiconducting half-Heusler compound FeVSb. Physical Review B, 2021, 103, .	3.2	7
2321	Engineering the electronic structure and transport coefficients of Janus MoSSe monolayer by applying z-axial strain. Materials Today: Proceedings, 2021, 45, 5597-5601.	1.8	1
2322	Resonant impurity level of Ni in the valence band of Pb1â^xSnxTe alloys. Low Temperature Physics, 2021, 47, 24-31.	0.6	1
2323	Effect of iodine doping on the electrical, thermal and mechanical properties of SnSe for thermoelectric applications. Physical Chemistry Chemical Physics, 2021, 23, 4230-4239.	2.8	13
2324	Enhancing the thermoelectric efficiency in p-type Mg ₃ Sb ₂ <i>via</i> Mg site co-doping. Sustainable Energy and Fuels, 2021, 5, 4104-4114.	4.9	19
2325	Suppressing Ge-vacancies to achieve high single-leg efficiency in GeTe with an ultra-high room temperature power factor. Journal of Materials Chemistry A, 2021, 9, 23335-23344.	10.3	38
2326	Band degeneracy enhanced thermoelectric performance in layered oxyselenides by first-principles calculations. Npj Computational Materials, 2021, 7, .	8.7	62
2327	Enhanced thermoelectric performance of InTe through Pb doping. Journal of Materials Chemistry C, 2021, 9, 14490-14496.	5.5	13
2328	Enhanced Thermoelectric Performance of Ba 8 Ga 16 Ge 30 Clathrate by Modulation Doping and Improved Carrier Mobility. Advanced Electronic Materials, 2021, 7, 2000782.	5.1	10
2329	Material Design Considerations Based on Thermoelectric Quality Factor. Springer Series in Materials Science, 2013, , 3-32.	0.6	73
2330	Inorganic Clathrates for Thermoelectric Applications. Springer Series in Materials Science, 2014, , 169-191.	0.6	15
2331	Monolayer enhanced thermoelectric properties compared with bulk for BiTeBr. Computational Materials Science, 2017, 139, 361-367.	3.0	21
2332	Enhanced thermoelectric performance of Se-doped PbTe bulk materials via nanostructuring and multi-scale hierarchical architecture, Journal of Alloys and Compounds, 2017, 725, 563-572	5.5	40

#	Article	IF	CITATIONS
2333	One-step rapid synthesis of Cu2Se with enhanced thermoelectric properties. Journal of Alloys and Compounds, 2019, 786, 557-564.	5.5	40
2334	Anisotropic thermoelectric transport properties of Bi0.5Sb1.5Te2.96+x zone melted ingots. Journal of Solid State Chemistry, 2020, 288, 121433.	2.9	8
2335	The electronic-thermal transport properties and the exploration of magneto-thermoelectric properties and the Nernst thermopower of Ag2(1+)Se. Journal of Solid State Chemistry, 2020, 288, 121453.	2.9	11
2336	Phase structure, phase transition and thermoelectric properties of pristine and Br doped SnSe2. Journal of Solid State Chemistry, 2020, 289, 121468.	2.9	15
2337	Cu2Se thermoelectrics: property, methodology, and device. Nano Today, 2020, 35, 100938.	11.9	119
2338	Discovery of ZrCoBi based half Heuslers with high thermoelectric conversion efficiency. Nature Communications, 2018, 9, 2497.	12.8	243
2339	Zintl Phases: Recent Developments in Thermoelectrics and Future Outlook. RSC Energy and Environment Series, 2016, , 1-26.	0.5	21
2340	Chalcogenide Thermoelectric Materials. RSC Energy and Environment Series, 2016, , 27-59.	0.5	8
2341	Enhancement of the anisotropic thermoelectric power factor of topological crystalline insulator SnTe and related alloys via external perturbations. Journal of Materials Chemistry A, 2019, 7, 25573-25585.	10.3	20
2342	The unique evolution of transport bands and thermoelectric performance enhancement by extending low-symmetry phase to high temperature in tin selenide. Journal of Materials Chemistry C, 2020, 8, 9345-9351.	5.5	8
2343	Synergistic tuning of carrier mobility, effective mass, and point defects scattering triggered high thermoelectric performance in n-type Ge-doped PbTe. Journal of Applied Physics, 2019, 125, 055104.	2.5	6
2344	Synthesis, structure, and transport properties of Ba8Cu16 – xAuxP30 clathrate solid solution. Journal of Applied Physics, 2020, 127, 055104.	2.5	3
2345	Colossal variations in the thermopower and <i>n–p</i> conductivity switching in topological tellurides under pressure. Journal of Applied Physics, 2020, 128, .	2.5	5
2346	Variation of thermoelectric figure-of-merits for Mg2Si x Sn1-x solid solutions. Journal Physics D: Applied Physics, 2021, 54, 055504.	2.8	6
2347	First-principles investigation on the thermoelectric performance of half-Heusler compound CuLiX(X = Se, Te). Journal of Physics Condensed Matter, 2021, 33, 095501.	1.8	12
2348	Fully stoichiometric Cu ₂ BaSn(S _{1â^²<i>x</i>} Se <i> _x) Tj ETQq1 1 0.784314</i>	rgBT /Ov	erlock 10 Tf
2349	Low lattice thermal conductivity and high figure of merit in p-type doped K ₃ IO*. Chinese Physics B, 2020, 29, 126501.	1.4	7
2350	Origin of a Simultaneous Suppression of Thermal Conductivity and Increase of Electrical Conductivity and Seebeck Coefficient in Disordered Cubic Cu ₂ ZnSnS ₄ . Physical Review Applied, 2020, 14, .	3.8	17

#	Article	IF	Citations
2351	Electronic fitness function for screening semiconductors as thermoelectric materials. Physical Review Materials, 2017, 1, .	2.4	98
2352	Widely tunable band gap in a multivalley semiconductor SnSe by potassium doping. Physical Review Materials, 2018, 2, .	2.4	17
2353	Thermoelectric performance of materials with CuCh4 (Ch= S, Se) tetrahedra: Similarities and differences among their low-dimensional electronic structure from first principles. Physical Review Materials, 2018, 2, .	2.4	8
2354	Correlated local dipoles in PbTe. Physical Review Materials, 2018, 2, .	2.4	43
2355	<i>Ab initio</i> calculations of electronic band structure and effective-mass parameters of thermoelectric <mml:math< td=""><td></td><td></td></mml:math<>		

#	Article	IF	Citations
	High-Performance Mg ₃ Sb _{2- <i>x</i>>} Bi <i> _x </i>		
2369	Thermoelectrics: Progress and Perspective. Research, 2020, 2020, 1934848.	5.7	63
2370	Largely Suppressed Magneto-Thermal Conductivity and Enhanced Magneto-Thermoelectric Properties in PtSn ₄ . Research, 2020, 2020, 4643507.	5.7	26
2371	Manipulation of Band Degeneracy and Lattice Strain for Extraordinary PbTe Thermoelectrics. Research, 2020, 2020, 8151059.	5.7	23
2372	Thermoelectric Properties of Ni-doped ZnO Synthesized by Sol-Gel Processing. Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2013, 28, 921-924.	1.3	2
2373	Computational Simulations of Thermoelectric Transport Properties. Journal of the Korean Ceramic Society, 2016, 53, 273-281.	2.3	52
2374	Effect of Density-of-States Effective Mass on Transport Properties of Two Converging Valence Bands. Journal of the Korean Ceramic Society, 2019, 56, 325-330.	2.3	8
2375	The effects of Ag-doping on thermoelectric properties of p-type Pb0.5Sn0.5Te compound. Wuli Xuebao/Acta Physica Sinica, 2012, 61, 217104.	0.5	2
2376	Effect of Ga doping on the thermoelectric performance of Cu3SbSe4. Wuli Xuebao/Acta Physica Sinica, 2017, 66, 167201.	0.5	2
2377	Effects of Se substitution for Te on electrical and thermal transport properties of BiCuTeO. Wuli Xuebao/Acta Physica Sinica, 2019, 68, 077201.	0.5	3
2378	Thermoelectric properties of Ag ₂ S superionic conductor with intrinsically low lattice thermal conductivity. Wuli Xuebao/Acta Physica Sinica, 2019, 68, 090201.	0.5	25
2379	Comparative study of thermoelectric properties of Mg ₂ Si _{0.3} Sn _{0.7} doped by Ag or Li. Wuli Xuebao/Acta Physica Sinica, 2019, 68, 117201.	0.5	3
2380	Efficient lanthanide Gd doping promoting the thermoelectric performance of Mg ₃ Sb ₂ -based materials. Journal of Materials Chemistry A, 2021, 9, 25944-25953.	10.3	19
2381	Structural Dynamics and Thermal Transport in Bismuth Chalcogenide Alloys. Chemistry of Materials, 2021, 33, 8404-8417.	6.7	10
2382	The Electrical and Thermal Transport Properties of La-Doped SrTiO3 with Sc2O3 Composite. Materials, 2021, 14, 6279.	2.9	1
2383	Improved Thermoelectric Performance of Monolayer HfS ₂ by Strain Engineering. ACS Omega, 2021, 6, 29820-29829.	3.5	22
2384	High Thermoelectric Properties in the Sodalite Compounds BaGe8As14 and AGe7As15 (A = Rb, Cs). Chemistry of Materials, 0, , .	6.7	0
2385	Enhancement of Thermoelectric Properties in n-type NbCoSn Half-Heusler Compounds via Ta Alloying. ACS Applied Energy Materials, 2021, 4, 12458-12465.	5.1	11
2386	Metal Halide Perovskites as Emerging Thermoelectric Materials. ACS Energy Letters, 2021, 6, 3882-3905.	17.4	40

#	Article	IF	CITATIONS
2387	High-performance thermoelectrics and challenges for practical devices. Nature Materials, 2022, 21, 503-513.	27.5	248
2388	A Flash Vacuumâ€Induced Reaction in Preparing High Performance Thermoelectric Cu ₂ S. Advanced Functional Materials, 2022, 32, 2107284.	14.9	11
2389	First-principles study of the structural, optoelectronic and thermophysical properties of the π-SnSe for thermoelectric applications. Beilstein Journal of Nanotechnology, 2021, 12, 1101-1114.	2.8	4
2390	Colloidal Two-Dimensional Metal Chalcogenides: Realization and Application of the Structural Anisotropy. Accounts of Chemical Research, 2021, 54, 3792-3803.	15.6	15
2391	Construction and Characterization of Graphene-Polyvinyl Alcohol Nanocomposite as Thermoelement With High ZT Factor. Advances in Sustainability Science and Technology, 2022, , 647-661.	0.6	0
2392	Recent Progress in Multiphase Thermoelectric Materials. Materials, 2021, 14, 6059.	2.9	23
2393	Enhanced Thermoelectric Performance Achieved in SnTe via the Synergy of Valence Band Regulation and Fermi Level Modulation. ACS Applied Materials & amp; Interfaces, 2021, 13, 50037-50045.	8.0	18
2394	Enhancement of monolayer HfSe2 thermoelectric performance by strain engineering: A DFT calculation. Chemical Physics Letters, 2021, 784, 139109.	2.6	10
2395	Strained Endotaxial PbS Nanoprecipitates Boosting Ultrahigh Thermoelectric Quality Factor in nâ€Type PbTe As ast Ingots. Small, 2021, 17, e2104496.	10.0	20
2396	Realizing Cd and Ag codoping in p-type Mg3Sb2 toward high thermoelectric performance. Journal of Magnesium and Alloys, 2023, 11, 2486-2494.	11.9	19
2397	Decoupling thermoelectric transport coefficients of Dirac semimetal Na2AgSb with intrinsically ultralow lattice thermal conductivity. Materials Today Physics, 2021, 21, 100560.	6.0	5
2398	PbTe(core)/PbS(shell) Nanowire: Electronic Structure, Thermodynamic Stability, and Mechanical and Optical Properties. Journal of Physical Chemistry C, 2021, 125, 22660-22667.	3.1	5
2399	High Thermoelectric Performance through Crystal Symmetry Enhancement in Triply Doped Diamondoid Compound Cu ₂ SnSe ₃ . Advanced Energy Materials, 2021, 11, 2100661.	19.5	39
2400	Bismuth induced Cu7Te4/Sb2Te3 nanocomposites for higher thermoelectric power factor and carrier properties. Journal of Materials Science: Materials in Electronics, 2022, 33, 8804-8814.	2.2	1
2401	Thermoelectric properties and service stability of Ag-containing Cu2Se. Materials Today Physics, 2021, 21, 100550.	6.0	15
2402	Electronic, mechanical, vibrational and thermodynamic properties of FeXSb (XÂ=ÂHf and Nb) Half-Heusler alloys from first-principles approach. Solid State Sciences, 2021, 122, 106755.	3.2	6
2403	Thermoelectric properties of chalcopyrite Cu3Ga5Te9 with Sb non-isoelectronic substitution for Cu and Te. Wuli Xuebao/Acta Physica Sinica, 2014, 63, 057201.	0.5	5
2404	Isotropic and Uniaxial Strain Induced Band Modulation of PbTe. , 0, , .		0

#	Article	IF	CITATIONS
2405	Room-temperature thermoelectric properties of GaN thin films grown by metal organic chemical vapor deposition. Wuli Xuebao/Acta Physica Sinica, 2015, 64, 047202.	0.5	0
2406	Defects and thermoelectric performance of ternary chalcopyrite CuInTe2-based semiconductors doped with Mn. Wuli Xuebao/Acta Physica Sinica, 2016, 65, 067201.	0.5	1
2407	Microstructures and thermoelectric transports in PbSe-MnSe nano-composites. Wuli Xuebao/Acta Physica Sinica, 2016, 65, 107201.	0.5	4
2408	Nanosilicon and thermoelectricity. , 2017, , 555-574.		0
2409	Nanosilicon and thermoelectricity. Series in Materials Science and Engineering, 2017, , 555-574.	0.1	0
2410	The Electronic and Thermoelectric Properties of Si1-xVxAlloys from First Principles. Applied Microscopy, 2017, 47, 105-109.	1.4	3
2411	Quick Fabrication and Thermoelectric Properties of Doped Tetrahedrites. Springer Proceedings in Energy, 2018, , 49-56.	0.3	0
2413	Thermoelectrics: Material Candidates and Structures I – Chalcogenides and Silicon-Germanium Alloys. SpringerBriefs in Materials, 2019, , 69-89.	0.3	0
2414	Lead Chalcogenide Thermoelectric Materials. , 2019, , 83-104.		1
2415	High Thermoelectric Performance due to Nanoprecipitation, Band Convergence, and Interface Potential Barrier in PbTe-PbSe-PbS Quaternary Alloys and Composites. , 2019, , 105-136.		0
2416	Double Half-Heuslers. SSRN Electronic Journal, 0, , .	0.4	2
2417	SnTe-Based Thermoelectrics. , 2019, , 63-81.		1
2418	Structure and thermoelectric characteristics of thin composite films based on lead telluride. Journal of Physical Studies, 2019, 23, .	0.5	0
2419	Study on the Growth Behavior of Te/Pb _{0.985} Mn _{0.015} Te Heterojunction. Material Sciences, 2020, 10, 916-920.	0.0	0
2420	Optimization of the Intrinsic Electrical and Thermal Transport Properties of Sb ₂ Si ₂ Te ₆ via Tensile Strain: A First-Principles Study. ACS Applied Energy Materials, 2021, 4, 12285-12289.	5.1	3
2421	Prediction of thermoelectric performance for layered IV-V-VI semiconductors by high-throughput ab initio calculations and machine learning. Npj Computational Materials, 2021, 7, .	8.7	33
2422	Giant thermoelectric power factor in charged ferroelectric domain walls of GeTe with Van Hove singularities. Npj Computational Materials, 2020, 6, .	8.7	11
2423	Research Advances of Typical Two Dimensional Layered Thermoelectric Materials. Research and Application of Materials Science, 2020, 2, .	0.2	1

#	Article	IF	CITATIONS
2424	Significant Improvement in Thermoelectric Performance of AgInSe ₂ -Based Composites through <i>In Situ</i> Formation of Ag ₂ Se. ACS Applied Energy Materials, 2020, 3, 12468-12474.	5.1	7
2425	Performance improvement of variable-angle annular thermoelectric generators considering different boundary conditions. Applied Energy, 2022, 306, 118005.	10.1	17
2426	The room-temperature thermoelectric property of PbTe enhanced by mean-free-path filtering. Journal of Alloys and Compounds, 2022, 893, 162296.	5.5	5
2427	Quasi-commercial production of SnS-based nanosheets with enhanced thermoelectric performance via a wet chemical synthesis. Chemical Engineering Journal, 2022, 430, 133049.	12.7	4
2428	Effects of La doping induced carrier concentration regulation and band structure modification on thermoelectric properties of PbSe. Scripta Materialia, 2022, 208, 114360.	5.2	12
2429	Theoretical prediction of layered boron-rich ZnB12O14(OH)10 with higher carrier separation and strong oxidation potential for photocatalysis. Journal of Physics and Chemistry of Solids, 2022, 161, 110431.	4.0	3
2430	Promising thermoelectric candidate based on a CaAs ₃ monolayer: A first principles study. Physical Chemistry Chemical Physics, 2021, 23, 24039-24046.	2.8	2
2431	Effect of In As Sb substitute on thermoelectric properties of Yb filled CoSb3 skutterudite. AIP Conference Proceedings, 2020, , .	0.4	1
2432	Thermoelectric Power Factor Under Strain-Induced Band-Alignment in the Half-Heuslers NbCoSn and TiCoSb. Springer Series in Materials Science, 2020, , 181-194.	0.6	1
2433	Cation vacancy related crystal structure and bandgap and their effects on the thermoelectric performance of Cu-ternary systems Cu _{3+Î′} In ₅ Te ₉ (<i>Î′</i> = 0–0.175). Physical Chemistry Chemical Physics, 2020, 22, 7004-7011.	2.8	0
2434	Growth and Thermoelectric Properties of Cl Doped SnSe Single Crystal. Material Sciences, 2020, 10, 877-884.	0.0	0
2435	Effect of Rare-earth Variable-valence Element Eu doping on Thermoelectric Property of BiCuSeO. Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2020, 35, 1041.	1.3	2
2436	Optimization of Thermoelectric Transport Properties of Nb-doped Mo ₁₋ <i>_x<ii>W<i>_x</i></ii>SeTe Solid Solutions. Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2020, 35, 1373.</i>	1.3	5
2437	Role of lone pair electrons in n-type thermoelectric properties of tin oxides ^{**} . Journal of Physics Condensed Matter, 2020, 33, 065504.	1.8	1
2438	Enhanced Thermoelectric and Mechanical Properties of BaO-Doped BiCuSeO _δ Ceramics. ACS Applied Energy Materials, 2021, 4, 13077-13084.	5.1	7
2439	Realizing Enhanced Thermoelectric Performance and Hardness in Icosahedral Cu ₅ FeS _{4â°'} <i>_x</i> Se <i>_x</i> With Highâ€Density Twin Boundaries. Small, 2022, 18, e2104592.	10.0	15
2440	Ultralow lattice thermal conductivity and high thermoelectric performance of penta-Sb2C monolayer: A first principles study. Journal of Applied Physics, 2021, 130, 185104.	2.5	7
2441	Enhancement in thermoelectric properties of n-type (La _{0.7} Sr _{0.3} MnO ₃) _{0.5} .(NiO) _{0.5} : composite and nano-structure effect. Journal Physics D: Applied Physics, 2022, 55, 065503.	2.8	6

#	Article	IF	CITATIONS
2442	The challenge of tuning the ratio of lattice/total thermal conductivity toward conversion efficiency vs power density. Applied Physics Letters, 2021, 119, .	3.3	9
2443	Extremely Low Thermal Conductivity and Enhanced Thermoelectric Performance of Porous Gallium-Doped In ₂ O ₃ . ACS Applied Energy Materials, 2021, 4, 12943-12953.	5.1	5
2444	The Highâ€Pressure Processed Cu ₂ S: Phase Intergrowth with Strained Lamella Leading to an Improved Thermoelectric Performance. Advanced Electronic Materials, 2022, 8, 2100835.	5.1	5
2445	The Quest for High-Efficiency Thermoelectric Generators for Extracting Electricity from Waste Heat. Jom, 2021, 73, 4070-4084.	1.9	2
2446	Thermoelectric converter: Strategies from materials to device application. Nano Energy, 2022, 91, 106692.	16.0	127
2447	Ba _{2–<i>x</i>} Bi _{<i>x</i>} CoRuO ₆ (0.0 ≤i>x â‰ฃ.6) Hexagonal Double-Perovskite-Type Oxides as Promising p-Type Thermoelectric Materials. Inorganic Chemistry, 2021, 60, 17824-17836.	4.0	4
2448	High figure-of-merit in the heavy-fermion UN ₂ system for radioisotope thermoelectric applications. Journal of Physics Condensed Matter, 2021, 33, 015601.	1.8	0
2449	Probing the martensite transition and thermoelectric properties of Co $<$ sub $>$ x $sub>TaZ (Z = Si, Ge, Sn) Tj ETQq1 045402.$	1 0.78431 1.8	14 rgBT /O 5
2450	Strong interlayer coupling in two-dimensional PbSe with high thermoelectric performance. Journal of Physics Condensed Matter, 2021, 33, 325701.	1.8	4
2451	Strain-induced enhancement in the electronic and thermal transport properties of the tin sulphide bilayer. Physical Chemistry Chemical Physics, 2021, 24, 211-221.	2.8	2
2452	High-performance in n-type PbTe-based thermoelectric materials achieved by synergistically dynamic doping and energy filtering. Nano Energy, 2022, 91, 106706.	16.0	107
2453	Identifying resonant dopants in BaCu2S2 for thermoelectric applications: A density functional theory based study. Solid State Communications, 2022, 342, 114592.	1.9	0
2454	An enhancement of thermoelectric performance in Na/Cd co-doped β-Zn4Sb3 prepared by NaCl flux. Journal of Solid State Chemistry, 2022, 306, 122754.	2.9	2
2455	Entropy engineering induced exceptional thermoelectric and mechanical performances in Cu2-Ag Te1-2S Se. Acta Materialia, 2022, 224, 117512.	7.9	36
2457	High near-room temperature figure of merit of n-type Bi2GeTe4-based thermoelectric materials via a stepwise optimization of carrier concentration. Chemical Engineering Journal, 2022, 433, 133775.	12.7	24
2458	Synergistically Enhanced Thermoelectric Performance of Cu ₂ SnSe ₃ -Based Composites <i>via</i> Ag Doping Balance. ACS Applied Materials & Interfaces, 2021, 13, 55178-55187.	8.0	9
2459	First-principle predictions of the electric and thermal transport performance on high-temperature thermoelectric semiconductor MnTe2. Journal of Alloys and Compounds, 2022, 898, 162813.	5.5	3
2460	Physical Intuition to Improve Electronic Properties of Thermoelectrics. Frontiers in Physics, 2021, 9, .	2.1	3

# 2461	ARTICLE Limits of thermoelectric performance with a bounded transport distribution. Physical Review B, 2021, 104, .	IF 3.2	CITATIONS 6
2462	Constructed Ge Quantum Dots and Sn Precipitate SiGeSn Hybrid Film with High Thermoelectric Performance at Low Temperature Region. Advanced Energy Materials, 2022, 12, .	19.5	22
2463	Thermoelectric Ag ₂ Se: Imperfection, Homogeneity, and Reproducibility. ACS Applied Materials & Interfaces, 2021, 13, 60192-60199.	8.0	28
2464	Isotropic Thermoelectric Performance of Layer-Structured n-Type Bi ₂ Te _{2.7} Se _{0.3} by Cu Doping. ACS Applied Materials & Interfaces, 2021, 13, 58781-58788.	8.0	17
2465	Engineering Electronic Band Structure of Binary Thermoelectric Nanocatalysts for Augmented Pyrocatalytic Tumor Nanotherapy. Advanced Materials, 2022, 34, e2106773.	21.0	42
2466	Achieving synergistic performance through highly compacted microcrystalline rods induced in Mo doped GeTe based compounds. Materials Today Physics, 2022, 22, 100571.	6.0	3
2467	Advances in thermoelectric (GeTe) x (AgSbTe2)100-x. Chinese Physics B, 0, , .	1.4	1
2468	Synergistically Optimizing Electrical and Thermal Transport Properties of ZrCoSb through Ru Doping. ACS Applied Energy Materials, 2021, 4, 13997-14003.	5.1	9
2469	Iterative design of a high <i>zT</i> thermoelectric material. Applied Physics Letters, 2021, 119, .	3.3	4
2470	Accurate and explainable machine learning for the power factors of diamond-like thermoelectric materials. Journal of Materiomics, 2022, 8, 633-639.	5.7	4
2471	Simultaneous enhancements of thermopower and electrical conductivity in quasi-one-dimensional α-YbAlB4 single crystal. Applied Physics Letters, 2021, 119, 223905.	3.3	4
2472	Phase-modulated mechanical and thermoelectric properties of Ag2S1-xTex ductile semiconductors. Journal of Materiomics, 2022, 8, 656-661.	5.7	31
2473	Ultrafast dynamics of photoexcited carriers and coherent phonons in ultrathin Bi2Te3 thermoelectric films. Science China: Physics, Mechanics and Astronomy, 2022, 65, 1.	5.1	2
2474	Thermoelectric properties of Janus AsSBr monolayer from first-principles study. Solid State Communications, 2022, 342, 114612.	1.9	4
2475	Achieving Highâ€Performance Ge _{0.92} Bi _{0.08} Te Thermoelectrics via LaB ₆ â€Alloyingâ€Induced Band Engineering and Multiâ€Scale Structure Manipulation. Small, 2022, 18, e2105923.	10.0	5
2476	Mind the Mines: Lapieite Minerals with Ultralow Lattice Thermal Conductivity and High Power Factor for Thermoelectricity. Chemistry of Materials, 2021, 33, 9393-9402.	6.7	5
2477	Multiband Transport Enables Thermoelectric Enhancements in SrMg ₂ Bi ₂ Compound. SSRN Electronic Journal, 0, , .	0.4	0
2478	Enhancing Thermoelectric Performance of AgSbTe ₂ -Based Compounds <i>via</i> Microstructure Modulation Combining with Entropy Engineering. ACS Applied Materials & Interfaces, 2022, 14, 3057-3065.	8.0	7

#	Article	IF	CITATIONS
2479	High thermoelectric performance of nanostructured Mg3Sb2 on synergistic Te-doping and Mg/Y interstitial. Journal of Materials Science, 2022, 57, 3183-3192.	3.7	8
2480	High Thermoelectric Performance Achieved in Sb-Doped GeTe by Manipulating Carrier Concentration and Nanoscale Twin Grains. Materials, 2022, 15, 406.	2.9	5
2481	Cation disorder and thermoelectric properties in layered ternary compounds MBi ₂ Te ₄ (M = Ge, Sn). Journal of Materials Chemistry C, 2022, 10, 854-859.	5.5	9
2482	Enhanced thermoelectric performance in Sb–Br codoped Bi ₂ Se ₃ with complex electronic structure and chemical bond softening. RSC Advances, 2022, 12, 1653-1662.	3.6	10
2483	Ultralow lattice thermal conductivity enables high thermoelectric performance in BaAg2Te2 alloys. Materials Today Physics, 2022, 22, 100591.	6.0	14
2484	Improved Thermoelectric Performance for β-Zn4Sb3 by Na/Zn Co-doping. Journal of Electronic Materials, 2022, 51, 522-531.	2.2	1
2485	Boosting the Thermoelectric Performance of PbSe from the Band Convergence Driven By Spinâ€Orbit Coupling. Advanced Energy Materials, 2022, 12, 2103287.	19.5	13
2486	Spin-orbit coupling locked robust thermoelectric performance of SrTe: A comparison with CaTe. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2022, 276, 115581.	3.5	0
2487	Synthesis and characterization of Ge-Ag-Sb-S-Se-Te high-entropy thermoelectric alloys. Materials Letters, 2022, 311, 131617.	2.6	2
2488	First-principle investigation on the thermoelectric properties of XCoGe (X = V, Nb, and Ta) half-Heusler compounds. Materials Science in Semiconductor Processing, 2022, 140, 106387.	4.0	9
2489	Thermoelectric properties of β-(Cu,Mn)2Se films with high (111) preferred orientation. Vacuum, 2022, 197, 110845.	3.5	7
2490	High thermoelectric performance of Cu2Se-based thin films with adjustable element ratios by pulsed laser deposition. Materials Today Energy, 2022, 24, 100929.	4.7	11
2491	The structural, electronic, optical, thermodynamical and thermoelectric properties of the BiAlSe compound for solar photovoltaic semiconductors. Materials Science in Semiconductor Processing, 2022, 141, 106415.	4.0	6
2492	Layered thermoelectric materials: Structure, bonding, and performance mechanisms. Applied Physics Reviews, 2022, 9, .	11.3	25
2493	Remarkable anisotropy in rhombohedral Ge2Sb2Te5 compound: a promising thermoelectric material with multiple conduction bands and acoustic-optical branches coupling. Journal of Alloys and Compounds, 2022, 900, 163471.	5.5	6
2494	Synergistic modulation of the thermoelectric performance of melt-spun p-type Mg ₂ Sn <i>via</i> Na ₂ S and Si alloying. Journal of Materials Chemistry A, 2022, 10, 5452-5459.	10.3	6
2495	Carrier grain boundary scattering in thermoelectric materials. Energy and Environmental Science, 2022, 15, 1406-1422.	30.8	145
2496	Harvesting Low-Grade Waste Heat to Electrical Power Using a Thermoelectrochemical Cell Based on a Titanium Carbide Electrode. ACS Applied Energy Materials, 2022, 5, 2130-2137.	5.1	8

#	Article	IF	CITATIONS
2497	Thermoelectric transport effects beyond single parabolic band and acoustic phonon scattering. Materials Advances, 2022, 3, 734-755.	5.4	21
2498	Synthesis of Copper Telluride Thin Films by Electrodeposition and Their Electrical and Thermoelectric Properties. Frontiers in Chemistry, 2022, 10, 799305.	3.6	2
2499	Realizing synergistic optimization of thermoelectric properties in n-type BiSbSe3 polycrystals via co-doping zirconium and halogen. Materials Today Physics, 2022, 22, 100608.	6.0	7
2500	Review of thermal transport in phononic crystals. Materials Today Physics, 2022, 22, 100613.	6.0	39
2501	Anomalous transverse optical phonons in SnTe and PbTe. Physical Review B, 2022, 105, .	3.2	7
2502	Tuning valley degeneracy with band inversion. Journal of Materials Chemistry A, 2022, 10, 1588-1595.	10.3	6
2503	Achieving High Thermoelectric Performance of SnTe Composites with 2D WSe2. Journal of Electronic Materials, 2022, 51, 486-494.	2.2	2
2504	Conduction band engineering of half-Heusler thermoelectrics using orbital chemistry. Journal of Materials Chemistry A, 2022, 10, 3051-3057.	10.3	25
2505	Thermoelectric performance of MoSi ₂ As ₄ monolayer. Europhysics Letters, 2022, 137, 16002.	2.0	6
2507	Enhanced covalency and nanostructured-phonon scattering lead to high thermoelectric performance in n-type PbS. Materials Today Energy, 2022, 24, 100953.	4.7	5
2508	Effects of electron-phonon intervalley scattering and band non-parabolicity on electron transport properties of high-temperature phase SnSe: An ab initio study. Materials Today Physics, 2022, 22, 100592.	6.0	5
2509	Enhanced Thermoelectric Properties of Cu ₂ SnSe ₃ -Based Materials with Ag ₂ Se Addition. ACS Applied Materials & amp; Interfaces, 2022, 14, 5439-5446.	8.0	7
2510	Low-cost pentagonal NiX ₂ (X = S, Se, and Te) monolayers with strong anisotropy as potential thermoelectric materials. Physical Chemistry Chemical Physics, 2022, 24, 5185-5198.	2.8	17
2511	Thermoelectric properties of polycrystalline (SnSe)1-x(AgSnSe2)x/2 alloys. Progress in Natural Science: Materials International, 2022, 32, 242-247.	4.4	7
2512	Key properties of inorganic thermoelectric materials—tables (version 1). JPhys Energy, 2022, 4, 022002.	5.3	51
2513	Outstanding CdSe with Multiple Functions Leads to High Performance of GeTe Thermoelectrics. Advanced Energy Materials, 2022, 12, .	19.5	21
2514	Next-generation thermoelectric cooling modules based on high-performance Mg3(Bi,Sb)2 material. Joule, 2022, 6, 193-204.	24.0	89
2515	Enhancement of the thermoelectric properties of Zintl phase SrMg ₂ Bi ₂ by Na-doping. Dalton Transactions, 2022, 51, 1513-1520.	3.3	3

#	Article	IF	CITATIONS
2516	Tuning the Carrier Scattering Mechanism by Rare-Earth Element Doping for High Average <i>zT</i> in Mg ₃ Sb ₂ -Based Compounds. ACS Applied Materials & Interfaces, 2022, 14, 7022-7029.	8.0	16
2517	Sintering pressure as a "scalpel―to enhance the thermoelectric performance of MgAgSb. Journal of Materials Chemistry C, 2022, 10, 3360-3367.	5.5	5
2518	Thermoelectric Performance of the 2D Bi ₂ Si ₂ Te ₆ Semiconductor. Journal of the American Chemical Society, 2022, 144, 1445-1454.	13.7	37
2519	ds-Block Element-Enabled Cooperative Regulation of Electrical and Thermal Transport for Extraordinary N- and P-Type PbSe Thermoelectrics near Room Temperature. Chemistry of Materials, 2022, 34, 1862-1874.	6.7	8
2520	Achieving high average power factor in tetrahedrite Cu12Sb4S13 via regulating electron-phonon coupling strength. Materials Today Physics, 2022, 22, 100590.	6.0	5
2521	Optimized thermoelectric properties of Bi _{0.48} Sb _{1.52} Te ₃ /BN composites. Journal of Materials Chemistry C, 2022, 10, 3172-3177.	5.5	5
2522	Seeking New Layered Oxyselenides with Promising Thermoelectric Performance. Advanced Functional Materials, 2022, 32, .	14.9	14
2523	Boosting thermoelectric performance in Cu3SbS4-based compounds through incorporating SiC nanoparticles. Journal of Materials Science: Materials in Electronics, 2022, 33, 5214-5223.	2.2	3
2524	Seeing Structural Mechanisms of Optimized Piezoelectric and Thermoelectric Bulk Materials through Structural Defect Engineering. Materials, 2022, 15, 487.	2.9	3
2525	Theoretical Study of Thermoelectric Transport Properties of Dicalcium Silicide and Dicalcium Germanide Compounds. EAI/Springer Innovations in Communication and Computing, 2022, , 43-52.	1.1	1
2526	Ultrahigh carrier mobility contributes to remarkably enhanced thermoelectric performance in n-type PbSe. Energy and Environmental Science, 2022, 15, 346-355.	30.8	45
2527	Understanding the Seebeck coefficient of LaNiO ₃ compound in the temperature range 300–620 K. Journal of Physics Condensed Matter, 2022, 34, 125702.	1.8	2
2528	Band convergence and phonon engineering to optimize the thermoelectric performance of CaCd2Sb2. Applied Physics Letters, 2022, 120, .	3.3	2
2529	Low interfacial resistivity in CoSi2/ZrCoSb thermoelectric junctions. Materials Today Energy, 2022, 25, 100960.	4.7	5
2530	Unconventional Doping Effect Leads to Ultrahigh Average Thermoelectric Power Factor in Cu ₃ SbSe ₄ â€Based Composites. Advanced Materials, 2022, 34, e2109952.	21.0	28
2531	Enhanced thermoelectric performance at elevated temperature via suppression of intrinsic excitation in p-type Bi0.5â^²xSnxSb1.5Te3 thermoelectric material. Journal of Materials Science: Materials in Electronics, 2022, 33, 6018-6030.	2.2	4
2532	Alloying of monolayer Zirconium Nitride with Magnesium and investigating its thermoelectric properties using DFT calculations. Solid State Communications, 2022, 343, 114642.	1.9	11
2533	Combined effects of indium nanoinclusion and Se-deficiency on thermoelectric performance of n-type indium selenide. Journal of Alloys and Compounds, 2022, 901, 163653.	5.5	2

#	Article	IF	CITATIONS
2534	An optimum thermoelectric figure of merit using Ge2Se2 monolayer: An ab-initio approach. Physica E: Low-Dimensional Systems and Nanostructures, 2022, 138, 115060.	2.7	5
2535	Enhanced thermoelectric performance of PbSe-graphene nanocomposite manufactured with acoustic cavitation induced defects. Nano Energy, 2022, 94, 106943.	16.0	11
2536	Enhancing the shear strength of single-crystalline In4Se3 through point defects. Scripta Materialia, 2022, 211, 114507.	5.2	2
2537	Electronic structure and engineered thermoelectric properties of SnSe. Physica B: Condensed Matter, 2022, 630, 413668.	2.7	1
2538	Promoted thermoelectric performance of (Ag, Na) co-doped polycrystalline BiSe by optimizing the thermal and electrical transports simultaneously. Journal of Alloys and Compounds, 2022, 901, 163652.	5.5	8
2539	Intrinsically low thermal conductivity of tetragonal-structured PbSe2. Materials Letters, 2022, 313, 131665.	2.6	1
2540	Thermoelectric property enhancement by merging bands in NbFeSb-based half-Heusler mixtures. Journal of Materials Chemistry A, 2022, 10, 5593-5604.	10.3	7
2541	High Thermoelectric Performance SnTe with a Segregated and Percolated Structure. ACS Applied Materials & Interfaces, 2022, , .	8.0	21
2542	In situ generation of flower-like and microspherical dendrites to improve thermoelectric properties of p-type Bi0.46Sb1.54Te3. Materials Today Physics, 2022, 23, 100633.	6.0	2
2543	Realizing Highâ€Performance BiSbTe Magnetic Flexible Films via Acceleration Movement and Hopping Migration of Carriers. Advanced Functional Materials, 2022, 32, .	14.9	6
2544	Thin films of topological nodal line semimetals as a candidate for efficient thermoelectric converters. Physical Review B, 2022, 105, .	3.2	9
2545	Off-Centered Pb Interstitials in PbTe. Materials, 2022, 15, 1272.	2.9	2
2546	The Importance of Avoided Crossings in Understanding High Valley Degeneracy in Halfâ€Heusler Thermoelectric Semiconductors. Advanced Electronic Materials, 2022, 8, .	5.1	11
2547	Study of electronic, thermoelectric and optical properties of environment friendly Mg doped CeO2 for energy harvesting devices. Chemical Physics Letters, 2022, 793, 139464.	2.6	6
2548	The Effect of Reactive Electric Field-Assisted Sintering of MoS2/Bi2Te3 Heterostructure on the Phase Integrity of Bi2Te3 Matrix and the Thermoelectric Properties. Materials, 2022, 15, 53.	2.9	11
2549	Effects of Different Lacl3 Doping Processes on the Thermoelectric Properties of Snse Bulk Materials. SSRN Electronic Journal, 0, , .	0.4	0
2550	Realizing high thermoelectric performance in non-nanostructured n-type PbTe. Energy and Environmental Science, 2022, 15, 1920-1929.	30.8	53
2552	Coupling Modification of Fermi Level, Band Flattening and Lattice Defects to Approach Outstanding Thermoelectric Performance of ZnO Films Via Tuning in and Ga Incorporation. SSRN Electronic Journal, 0, , .	0.4	0

#	Article	IF	Citations
2553	New Quaternary Sulfide LiGaSiS ₄ : Synthesis, Structure and Optical Properties . SSRN Electronic Journal, 0, , .	0.4	0
2554	Carriers: the Less, the Faster. , 0, 1, 1-3.		22
2555	General strategies to improve thermoelectric performance with an emphasis on tin and germanium chalcogenides as thermoelectric materials. Journal of Materials Chemistry A, 2022, 10, 6872-6926.	10.3	26
2556	BiSe啿™¶åŠå…¶Sb掺æ , 啿™¶çš"å^¶å ¤ å'Œçƒç"µè¾"è¿æ€§è↑. Scientia Sinica: Physica, Mechanica Et Astrono	m tica , 202	2,9.
2557	Remarkable electron and phonon transports in low-cost SnS: A new promising thermoelectric material. Science China Materials, 2022, 65, 1143-1155.	6.3	9
2558	High-Temperature Thermoelectric Monolayer Bi ₂ TeSe ₂ with High Power Factor and Ultralow Thermal Conductivity. ACS Applied Energy Materials, 2022, 5, 2564-2572.	5.1	35
2559	Micro-Thermoelectric Generators: Material Synthesis, Device Fabrication, and Application Demonstration. , 0, , .		3
2560	two-dimensional <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:msub> <mml:mi mathvariant="normal">Ge <mml:mn>2</mml:mn> </mml:mi </mml:msub> <mml:msub> <mml:mi> Y</mml:mi> <m family of materials with <mml:math< td=""><td>mi:mn>2<</td><td>/mml:mn><!--</td--></td></mml:math<></m </mml:msub></mml:mrow></mml:math 	mi:mn>2<	/mml:mn> </td
2561	xmlns:mml="http://www.w3.org/1998/Math/MathML"> cmml:mrow> cmml:mi>YY cmml:mo>=Band convergence boosted high thermoelectric performance of Zintl compound Mg3Sb2 achieved by biaxial strains. Journal of Materiomics, 2022, 8, 1086-1094.	> < mml:mi 5.7	11
2562	Characterization of Hall Factor with Seebeck Coefficient Measurement. ACS Applied Energy Materials, 0, , .	5.1	7
2563	Comprehensive review in waste heat recovery in different thermal energy-consuming processes using thermoelectric generators for electrical power generation. Chemical Engineering Research and Design, 2022, 162, 134-154.	5.6	37
2564	Sr ₃ [SnOSe ₃][CO ₃]: A Heteroanionic Nonlinear Optical Material Containing Planar Ï€â€conjugated [CO ₃] and Heteroleptic [SnOSe ₃] Anionic Groups. Angewandte Chemie, 0, , .	2.0	3
2565	Enhancing the thermoelectric properties through hierarchical structured materials fabricated through successive arrangement of different microstructure. Journal of Alloys and Compounds, 2022, , 164803.	5.5	1
2566	Thermoelectric Conversion From Interface Thermophoresis and Piezoelectric Effects. Frontiers in Physics, 2022, 10, .	2.1	2
2567	Antiâ€Fatigue and Highly Conductive Thermocells for Continuous Electricity Generation. Advanced Functional Materials, 2022, 32, .	14.9	31
2568	A Review on Doped/Composite Bismuth Chalcogenide Compounds for Thermoelectric Device Applications: Various Synthesis Techniques and Challenges. Journal of Electronic Materials, 2022, 51, 2014-2042.	2.2	12
2569	lmprovement of thermoelectric performance in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:msub> <mml:mi>Sb</mml:mi> <mml:m composites. Physical Review Materials, 2022, 6, .</mml:m </mml:msub></mml:mrow></mml:math 	ın 22ĸ/mm	l:man>
2570	Synergistically optimizing carrier and phonon transport properties in n-type PbTe through I doping and SnSe alloying. Materials Today Energy, 2022, 26, 100983.	4.7	5

#	Article	IF	CITATIONS
2571	Sr ₃ [SnOSe ₃][CO ₃]: A Heteroanionic Nonlinear Optical Material Containing Planar I€â€€onjugated [CO ₃] and Heteroleptic [SnOSe ₃] Anionic Groups. Angewandte Chemie - International Edition, 2022, 61, .	13.8	38
2572	Enhancing Thermoelectric Properties of (Cu2Te)1â^'x-(BiCuTeO)x Composites by Optimizing Carrier Concentration. Materials, 2022, 15, 2096.	2.9	0
2573	Significantly enhanced power factor for superior thermoelectric conversion efficiency in SnTe by doping elemental Indium. Journal of Alloys and Compounds, 2022, 910, 164827.	5.5	4
2574	Low thermal conductivity and high thermoelectric performance via Cd underbonding in half-Heusler PCdNa. Physical Review B, 2022, 105, .	3.2	15
2575	Maximizing the performance of n-type Mg3Bi2 based materials for room-temperature power generation and thermoelectric cooling. Nature Communications, 2022, 13, 1120.	12.8	101
2576	Super-structured defects modulation for synergistically optimizing thermoelectric property in SnTe-based materials. Materials Today Physics, 2022, 23, 100645.	6.0	8
2577	Synergistically Optimized Thermal Conductivity and Carrier Concentration in GeTe by Bi–Se Codoping. ACS Applied Materials & Interfaces, 2022, 14, 14359-14366.	8.0	9
2578	Anomalous Thermoelectric Performance in Asymmetric Dirac Semimetal BaAgBi. Journal of Physical Chemistry Letters, 2022, 13, 2291-2298.	4.6	19
2579	Imprints of interfaces in thermoelectric materials. Critical Reviews in Solid State and Materials Sciences, 2023, 48, 361-410.	12.3	6
2580	Highâ€Ranged <i>ZT</i> Value Promotes Thermoelectric Cooling and Power Generation in nâ€Type PbTe. Advanced Energy Materials, 2022, 12, .	19.5	36
2581	Electronic Topological Transition as a Route to Improve Thermoelectric Performance in Bi _{0.5} Sb _{1.5} Te ₃ . Advanced Science, 2022, 9, e2105709.	11.2	6
2582	First-principles phonon calculations for lattice dynamics, thermal expansion and lattice thermal conductivity of CoSi in the high temperature region. Europhysics Letters, 2022, 137, 66002.	2.0	2
2583	A promising thermoelectrics In4SnSe4 with a wide bandgap and cubic structure composited by layered SnSe and In4Se3. Journal of Materiomics, 2022, 8, 982-991.	5.7	5
2584	Multi-dimensional characteristic construction methods of computational materials under big data environment. ChemPhysMater, 2022, , .	2.8	0
2585	High thermoelectric performance realized through manipulating layered phonon-electron decoupling. Science, 2022, 375, 1385-1389.	12.6	194
2586	Multiband transport enables thermoelectric enhancements in the SrMg ₂ Bi ₂ compound. Journal of Applied Physics, 2022, 131, 135101.	2.5	0
2587	Experimental and computational approaches to study the high temperature thermoelectric properties of novel topological semimetal CoSi. Journal of Physics Condensed Matter, 2022, , .	1.8	3
2588	Structural Modularization of Cu ₂ Te Leading to High Thermoelectric Performance near the Mott–loffe–Regel Limit. Advanced Materials, 2022, 34, e2108573.	21.0	20

#	Article	IF	CITATIONS
2589	Electronic structure and thermoelectric properties of biaxial strained SnSe from first principles calculations. Physica Scripta, 0, , .	2.5	1
2590	Instrument for simultaneous measurement of Seebeck coefficient and thermal conductivity in the temperature range 300–800 K with Python interfacing. Review of Scientific Instruments, 2022, 93, 043902.	1.3	9
2591	Phase boundary mapping and suppressing Pb vacancies for enhanced thermoelectric properties in n-type Sb doped PbTe compounds. Materials Today Energy, 2022, 25, 100962.	4.7	4
2592	Electron delocalization enhances the thermoelectric performance of misfit layer compound (Sn _{1â^³x} Bi _x S) _{1.2} (TiS ₂) ₂ . Chinese Physics B, 2022, 31, 117202.	1.4	1
2593	Tuning the carrier scattering mechanism to improve the thermoelectric performance of p-type Mg3Sb1.5Bi0.5-based material by Ge doping. Materials Today Energy, 2022, 25, 100977.	4.7	3
2594	The role of Ge vacancies and Sb doping in GeTe: A Comparative Study of Thermoelectric Transport Properties in SbxGe1-1.5xTe and SbxGe1-xTe Compounds. Materials Today Physics, 2022, 24, 100682.	6.0	7
2595	Computational prediction of high thermoelectric performance in MPtSn (M = Ti, Zr, and Hf) half-Heusler compounds by first-principle study. Solid State Sciences, 2022, 127, 106859.	3.2	5
2596	Development of the high performance thermoelectric unicouple based on Bi2Te3 compounds. Journal of Power Sources, 2022, 530, 231301.	7.8	18
2597	Thermoelectric performance of Ge1-xSnxTe (0 ≤ ≤0.2) prepared by facile method. Journal of Solid State Chemistry, 2022, 310, 122995.	2.9	0
2598	Effects of different LaCl3 doping processes on the thermoelectric properties of SnSe bulk materials. Journal of Solid State Chemistry, 2022, 310, 123037.	2.9	6
2599	Relationship between the density of states effective mass and carrier concentration of thermoelectric phosphide Ag6Ge10P12 with strong mechanical robustness. Materials Today Sustainability, 2022, 18, 100116.	4.1	11
2600	Honeycomb-like puckered PbTe monolayer: A promising n-type thermoelectric material with ultralow lattice thermal conductivity. Journal of Alloys and Compounds, 2022, 907, 164439.	5.5	25
2601	Energy-dependent carrier scattering at weak localizations leading to decoupling of thermopower and conductivity. Carbon, 2022, 194, 62-71.	10.3	3
2602	Attaining enhanced thermoelectric performance in p-type (SnSe)1–(SnS2) produced via sintering their solution-synthesized micro/nanostructures. Journal of Materials Science and Technology, 2022, 120, 205-213.	10.7	5
2603	Thermoelectric Properties of Ti Doping in Bismuth Telluride prepared by Powder Metallurgy Process. , 2021, , .		1
2604	Thermoelectric performance of XI ₂ (X = Ge, Sn, Pb) bilayers. Chinese Physics B, 0, , .	1.4	1
2605	High thermoelectric performance of ZrTe2/SrTiO3 heterostructure. Journal of Materiomics, 2022, 8, 570-576.	5.7	4
2606	Research on the performance of two different porphin graphene nanoribbons coupled thermoelectric devices. International Journal of Modern Physics B, 2022, 36, .	2.0	Ο

#	Article	IF	CITATIONS
2607	Abnormally Low Lattice Thermal Conductivity in <i>ABX</i> Honeycomb Compounds. Physical Review Applied, 2021, 16, .	3.8	11
2608	Beneficial Effect of Na ₂ CO ₃ Additions on the Thermoelectric Performance of Meltâ€Route Cu ₂ Se. Advanced Electronic Materials, 2022, 8, . First-Principles Study of All Thermoelectric Properties of <mml:math< td=""><td>5.1</td><td>4</td></mml:math<>	5.1	4
2609	xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" overflow="scroll"> <mml:mi>Si</mml:mi> - <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" overflow="scroll"><mml:mi>Ge</mml:mi> Alloys Showing Large Phonon Drag from 150</mml:math 	3.8	8
2610	to 1100ÅK. Physical Review Applied, 2021, 16, . Achieving High Thermoelectric Performance by NaSbTe ₂ Alloying in GeTe for Simultaneous Suppression of Ge Vacancies and Band Tailoring. Advanced Energy Materials, 2022, 12, .	19.5	28
2611	Electronic and Thermoelectric Properties of Transition-Metal Dichalcogenides. Journal of Physical Chemistry C, 2021, 125, 27084-27097.	3.1	21
2612	Synergetic Enhancement of the Power Factor and Suppression of Lattice Thermal Conductivity via Electronic Structure Modification and Nanostructuring on a Ni- and B-Codoped <i>p</i> -Type Si–Ge Alloy for Thermoelectric Application. ACS Applied Electronic Materials, 2021, 3, 5621-5631.	4.3	15
2613	Band Engineering SnTe via Trivalent Substitutions for Enhanced Thermoelectric Performance. Chemistry of Materials, 2021, 33, 9624-9637.	6.7	17
2614	The Transport Properties of Quasi–One-Dimensional Ba3Co2O6(CO3)0.7. Frontiers in Physics, 2021, 9, .	2.1	0
2615	Effects of interfacial properties on conversion efficiency of Bi2Te3-based segmented thermoelectric devices. Applied Physics Letters, 2021, 119, .	3.3	7
2616	Lattice thermal conductivity including phonon frequency shifts and scattering rates induced by quartic anharmonicity in cubic oxide and fluoride perovskites. Physical Review B, 2021, 104, .	3.2	40
2617	Ultralow thermal conductivity of thermoelectric compound Ag ₂ BaGeSe ₄ . AIP Advances, 2021, 11, 125320.	1.3	1
2618	Accelerated Discovery and Design of Ultralow Lattice Thermal Conductivity Materials Using Chemical Bonding Principles. Advanced Functional Materials, 2022, 32, .	14.9	34
2619	Achieving Reliable CoSb3 based thermoelectric joints with low contact resistivity using a high-entropy alloy diffusion barrier layer. Journal of Materiomics, 2022, 8, 882-892.	5.7	2
2620	Challenges for Thermoelectric Power Generation: From a Material Perspective. , 0, 1, .		14
2621	SnSe/SnS: Multifunctions Beyond Thermoelectricity. , 0, 1, 1-20.		18
2622	A Solvothermal Synthetic Environmental Design for Highâ€Performance SnSeâ€Based Thermoelectric Materials. Advanced Energy Materials, 2022, 12, .	19.5	82
2623	Estimation of the Grüneisen Parameter of High-Entropy Alloy-Type Functional Materials: The Cases of REO0.7F0.3BiS2 and MTe. Condensed Matter, 2022, 7, 34.	1.8	0
2624	Hidden Local Symmetry Breaking in Silver Diamondoid Compounds is Root Cause of Ultralow Thermal Conductivity. Advanced Materials, 2022, 34, e2202255.	21.0	20

#	Article	IF	CITATIONS
2625	Thermoelectric properties and transport mechanism of Cu0.5In0.5Cr2Se4 and its Zn-doped samples. Journal of Alloys and Compounds, 2022, 910, 164955.	5.5	0
2626	First principle design of new thermoelectrics from TiNiSn based pentanary alloys based on 18 valence electron rule. Computational Materials Science, 2022, 209, 111396.	3.0	4
2627	Stepwise Ge vacancy manipulation enhances the thermoelectric performance of cubic GeSe. Chemical Engineering Journal, 2022, 442, 136332.	12.7	14
2629	Phonon anharmonicity in binary chalcogenides for efficient energy harvesting. Materials Horizons, 2022, 9, 1602-1622.	12.2	5
2630	Revealing Excellent Electronic, Optical, and Thermoelectric Behavior of EU Based Euag2y2 (Y= S/Se): For Solar Cell Applications. SSRN Electronic Journal, 0, , .	0.4	0
2631	Routes to High-Ranged Thermoelectric Performance. , 0, 1, .		10
2632	Telluride semiconductor nanocrystals: progress on their liquid-phase synthesis and applications. Rare Metals, 2022, 41, 2527-2551.	7.1	10
2633	Monolayer SnI2: An Excellent p-Type Thermoelectric Material with Ultralow Lattice Thermal Conductivity. Materials, 2022, 15, 3147.	2.9	11
2634	Electronic Orbital Alignment and Hierarchical Phonon Scattering Enabling High Thermoelectric Performance p-Type Mg ₃ Sb ₂ Zintl Compounds. Research, 2022, 2022, 9842949.	5.7	5
2635	Enhancement of the Thermoelectric Performance of Cu ₂ GeSe ₃ via Isoelectronic (Ag, S)-co-substitution. ACS Applied Materials & Interfaces, 2022, 14, 20972-20980.	8.0	5
2636	Modulation Doping Enables Ultrahigh Power Factor and Thermoelectric ZT in nâ€Type Bi ₂ Te _{2.7} Se _{0.3} . Advanced Science, 2022, 9, e2201353.	11.2	19
2637	Structural, microstructural, magnetic, and thermoelectric properties of bulk and nanostructured n-type CuFeS2 Chalcopyrite. Ceramics International, 2022, 48, 29039-29048.	4.8	11
2638	Achieving high thermoelectric performance through carrier concentration optimization and energy filtering in Cu3SbSe4-based materials. Journal of Materiomics, 2022, 8, 929-936.	5.7	7
2639	Enhancements of thermoelectric performance in n-type Bi2Te3-based nanocomposites through incorporating 2D Mxenes. Journal of the European Ceramic Society, 2022, 42, 4587-4593.	5.7	8
2640	Research Progress of Ionic Thermoelectric Materials for Energy Harvesting. , 0, , .		2
2641	High Thermoelectric Performance in Chalcopyrite Cu _{1–<i>x</i>} Ag _{<i>x</i>} GaTe ₂ –ZnTe: Nontrivial Band Structure and Dynamic Doping Effect. Journal of the American Chemical Society, 2022, 144, 9113-9125.	13.7	29
2642	High-performance lead-free cubic GeTe-based thermoelectric alloy. Cell Reports Physical Science, 2022, 3, 100902.	5.6	11
2643	Achieving High Thermoelectric Properties of Cu ₂ Se via Lattice Softening and Phonon Scattering Mechanism. ACS Applied Energy Materials, 2022, 5, 6453-6461.	5.1	9

#	Article	IF	CITATIONS
2644	Preparation of novel titanium-niobium-oxygen composite ceramic with excellent thermoelectric properties using the high-pressure and high-temperature method. Journal of the European Ceramic Society, 2022, 42, 4980-4986.	5.7	4
2645	New quaternary sulfide LiGaSiS4: Synthesis, structure and optical properties. Journal of Solid State Chemistry, 2022, , 123230.	2.9	0
2646	Polycrystalline NiSe-Alloyed SnSe with Improved Medium-Temperature Thermoelectric Performance. Energy & Fuels, 2022, 36, 5352-5359.	5.1	6
2647	3dâ€Transition metal doped two-dimensional SnTe: Modulation of thermoelectric properties. Materials Today Communications, 2022, 31, 103656.	1.9	2
2648	Out-of-plane thermoelectric performance for <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>p</mml:mi> -doped GeSe. Physical Review B, 2022, 105, .</mml:math 	3.2	6
2649	Unidentified major p-type source in SnSe: Multivacancies. NPG Asia Materials, 2022, 14, .	7.9	8
2650	Energy band and charge-carrier engineering in skutterudite thermoelectric materials. Chinese Physics B, 2022, 31, 107303.	1.4	3
2651	The stable behavior of low thermal conductivity in 1T-sandwich structure with different components. Journal of Applied Physics, 2022, 131, .	2.5	2
2652	Enhancement in thermoelectric properties of ZrNiSn-based alloys by Ta doping and Hf substitution. Acta Materialia, 2022, 233, 117976.	7.9	13
2653	Crystallographic design for half-Heuslers with low lattice thermal conductivity. Materials Today Physics, 2022, 25, 100704.	6.0	14
2654	Defect engineering synergistically modulates power factor and thermal conductivity of CuGaTe2 for ultra-high thermoelectric performance. Journal of Materials Science and Technology, 2022, 128, 213-220.	10.7	9
2655	Thermoelectric enhancement achieved by Y and La Co-doping in n-type Mg3.2Sb1.5Bi0.5. Chemical Engineering Journal, 2022, 446, 136981.	12.7	4
2656	Grain boundary engineered, multilayer graphene incorporated LaCoO3 composites with enhanced thermoelectric properties. Ceramics International, 2022, 48, 24454-24461.	4.8	5
2657	Realizing high thermoelectric performance in GeTe by defect engineering on cation sites. Journal of Materials Chemistry C, 2022, 10, 9052-9061.	5.5	5
2658	The ultra-low lattice thermal conductivity dominated by the quartic anharmonicity in Bi-based binary compounds A ₃ Bi (AÂ=ÂK, Rb). Europhysics Letters, 2022, 138, 56001.	2.0	3
2659	Towards Low Cost and Sustainable Thin Film Thermoelectric Devices Based on Quaternary Chalcogenides. Advanced Functional Materials, 2022, 32, .	14.9	26
2660	Temperature Induced Band Convergence, Intervalley Scattering, and Thermoelectric Transport in p-Type PbTe. ACS Applied Energy Materials, 2022, 5, 7260-7268.	5.1	6
2661	Possibility of N-type Doping in CaAl ₂ Si ₂ -type Zintl Phase Compound CaZn ₂ <i>X</i> ₂ (<i>X</i> = As, P). Journal of the Physical Society of Japan, 2022, 91, .	1.6	2

#	Article	IF	CITATIONS
2662	Low Thermal Conductivity and Enhancement in Figure of Merit in Na and Mg Co-Doped Î'-Zn4sb3. SSRN Electronic Journal, 0, , .	0.4	0
2663	Enhanced Thermoelectric Performance of Hydrothermal Synthesized Ag Incorporated Cu _{2-x} S Micro/Nano Composites. SSRN Electronic Journal, 0, , .	0.4	0
2664	Sb-Doped Snse2Â High-Performance Thermoelectric Material. SSRN Electronic Journal, 0, , .	0.4	0
2665	Phonon-drag thermopower and thermoelectric performance of MoS\$_2\$ monolayer in quantizing magnetic field. Journal of Physics Condensed Matter, 0, , .	1.8	0
2666	Enhanced thermoelectric properties of Ce–doped Bi2Sr2Co2O misfit–layer oxides. Journal of Materials Research and Technology, 2022, 19, 1873-1883.	5.8	4
2667	Development of a High Perfomance Gas Thermoelectric Generator (TEG) with Possibible Use of Waste Heat. Energies, 2022, 15, 3960.	3.1	9
2668	Strategies to Improve the Thermoelectric Figure of Merit in Thermoelectric Functional Materials. Frontiers in Chemistry, 2022, 10, .	3.6	22
2669	Macro-Micro-Coupling Simulation and Space Experiment Study on Zone Melting Process of Bismuth Telluride-Based Crystal Materials. Metals, 2022, 12, 886.	2.3	1
2670	Achieving High Thermoelectric Performance of Eco-Friendly SnTe-Based Materials by Selective Alloying and Defect Modulation. ACS Applied Materials & Interfaces, 2022, 14, 25802-25811.	8.0	9
2671	Monolayer Sc ₂ 1 ₂ S ₂ : An Excellent n-Type Thermoelectric Material with Significant Anisotropy. ACS Applied Energy Materials, 2022, 5, 7230-7239.	5.1	9
2672	Synergistic Effect of Band and Nanostructure Engineering on the Boosted Thermoelectric Performance of nâ€Type Mg ₃₊ <i>_δ</i> (Sb, Bi) ₂ Zintls. Advanced Energy Materials, 2022, 12, .	19.5	41
2673	Individualization of optimal operation currents for promoting multi-stage thermoelectric cooling. Materials Today Physics, 2022, 26, 100746.	6.0	3
2674	Large Thermopower Enhanced by Spin Entropy in Antiferromagnet EuMnSb ₂ . Advanced Functional Materials, 2022, 32, .	14.9	4
2675	Thermoelectric properties of monolayer and bilayer buckled XTe (XÂ=ÂGe, Sn, and Pb). Advances in Natural Sciences: Nanoscience and Nanotechnology, 2022, 13, 025008.	1.5	2
2676	Influence of Bi Substitution with Rare-Earth Elements on the Transport Properties of BiCuSeO Oxyselenides. ACS Applied Energy Materials, 2022, 5, 7830-7841.	5.1	2
2677	lsovalent Bi substitution induced low thermal conductivity and high thermoelectric performance in n-type InSb. Ceramics International, 2022, 48, 29284-29290.	4.8	4
2678	DFT insights on the electronic and thermoelectric properties of CuGaTe2 under pressure. Solid State Communications, 2022, 352, 114836.	1.9	1
2679	Entropy engineering: A simple route to both p- and n-type thermoelectrics from the same parent material. Materials Today Physics, 2022, 26, 100745.	6.0	6

#	Article	IF	CITATIONS
2680	Double–layered GeTe/Sb2Te heterostructures for enhancing thermoelectric performance. Scripta Materialia, 2022, 218, 114848.	5.2	9
2681	Simultaneously optimized thermoelectric and mechanical performance of p-type polycrystalline SnSe enabled by CNTs addition. Scripta Materialia, 2022, 218, 114846.	5.2	11
2682	Thermoelectricity: Phenomenon and applications. , 2022, , 267-293.		0
2683	Electronic structure and low-temperature thermoelectric transport of TiCoSb single crystals. Nanoscale, 0, , .	5.6	5
2684	Bi(2-x)SbxTe3 Thermoelectric Composites with High Average zT Values: From Materials to Devices. , 0, 1,		7
2685	Mg ₃ (Bi,Sb) ₂ -based thermoelectric modules for efficient and reliable waste-heat utilization up to 750 K. Energy and Environmental Science, 2022, 15, 3265-3274.	30.8	26
2686	Realizing an enhanced Seebeck coefficient and extremely low thermal conductivity in anharmonic Sb-substituted SnSe nanostructures. Journal of Alloys and Compounds, 2022, , 165961.	5.5	3
2687	Highâ€Performance Thermoelectric Material and Module Driven by Mediumâ€Entropy Engineering in SnTe. Advanced Functional Materials, 2022, 32, .	14.9	30
2688	Enhanced electrical transport properties of PbTe single crystal through Ga substitution synthesized by a Pb-flux method. Journal of Alloys and Compounds, 2022, 920, 165953.	5.5	3
2689	Nanoscale imaging of phonon dynamics by electron microscopy. Nature, 2022, 606, 292-297.	27.8	34
2690	Thermoelectric properties of semiconducting materials with parabolic and pudding-mold band structures. Materials Today Communications, 2022, 31, 103737.	1.9	3
2691	Modulating the valence of Ga and the deep level impurity for high thermoelectric performance of n-type Pb0.98Ga0.02Te1-xSex compounds. Materials Today Physics, 2022, 27, 100766.	6.0	3
2692	Cross-scale porous structure design leads to optimized thermoelectric performance and high output power for CaMnO3 ceramics and their uni-leg modules. Applied Materials Today, 2022, 29, 101557.	4.3	4
2693	Topological electronic structure of YbMg2Bi2 and CaMg2Bi2. Npj Quantum Materials, 2022, 7, .	5.2	7
2694	Ultralow In-Plane Thermal Conductivity in 2D Magnetic Mosaic Superlattices for Enhanced Thermoelectric Performance. ACS Nano, 2022, 16, 11152-11160.	14.6	4
2695	Synergistic Manipulation of Interdependent Thermoelectric Parameters in SnTe–AgBiTe ₂ Alloys by Mn Doping. ACS Applied Materials & Interfaces, 2022, 14, 29032-29038.	8.0	8
2696	Large thermoelectric power factors by opening the band gap in semimetallic Heusler alloys. Materials Today Physics, 2022, 27, 100742.	6.0	5
2697	Density functional study of thermodynamic properties, thermal expansion and lattice thermal conductivity of Fe ₂ VAl in the high-temperature region. Europhysics Letters, 2022, 139, 16001.	2.0	2

#	Article	IF	CITATIONS
2698	Waste heat recovery research – a systematic bibliometric analysis (1991 to 2020). Environmental Science and Pollution Research, 2023, 30, 72074-72100.	5.3	5
2699	Creating high-dense stacking faults and endo-grown nanoneedles to enhance phonon scattering and improve thermoelectric performance of Cu2SnSe3. Nano Energy, 2022, 100, 107510.	16.0	18
2700	Anion Size Effect of Ionic Liquids in Tuning the Thermoelectric and Mechanical Properties of PEDOT:PSS Films through a Counterion Exchange Strategy. ACS Applied Materials & Interfaces, 2022, 14, 27911-27921.	8.0	11
2701	Characterization of quaternary Heusler alloys CoFeYGe (<i>Y</i> Â= Ti, Cr) with respect to structural, electronic, magnetic, mechanical, and thermoelectric features. International Journal of Energy Research, 2022, 46, 13855-13873.	4.5	5
2702	Influence of temperatures on structure, thermoelectric, and mechanical properties of nanocrystalline SnSe thin films deposited by thermal evaporation. Materials Today Communications, 2022, 32, 103880.	1.9	5
2703	Decreased order-disorder transition temperature and enhanced phonon scattering in Ag-alloyed Cu3SbSe3. Journal of Alloys and Compounds, 2022, 919, 165829.	5.5	2
2704	Optimizing the thermoelectric transmission of monolayer HfSe2 by strain engineering. Journal of Physics and Chemistry of Solids, 2022, 169, 110834.	4.0	6
2705	Grain size and phonon thermal conductivity of sintered bulk undoped lead telluride compacts processed via mechanical grinding and alloying. Journal of Physics and Chemistry of Solids, 2022, 169, 110829.	4.0	1
2706	Structure, Magnetic and Thermoelectric Properties of High Entropy Selenides Bi0.6Sb0.6In0.4Cr0.4Se3. , 0, 1, .		2
2707	Manipulation of Phase Structure and Se Vacancy to Enhance the Average Thermoelectric Performance of AgBiSe ₂ . SSRN Electronic Journal, 0, , .	0.4	0
2708	Approach to Determine the Densityâ€ofâ€States Effective Mass with Carrier Concentrationâ€Dependent Seebeck Coefficient. Advanced Functional Materials, 2022, 32, .	14.9	49
2709	Efficient Si Doping Promoting Thermoelectric Performance of Yb-Filled CoSb ₃ -Based Skutterudites. ACS Applied Materials & Interfaces, 2022, 14, 30901-30906.	8.0	7
2710	Role of long-range interaction on the electrical transport and electron–phonon scattering in thermoelectric Mg ₂ Si. Applied Physics Letters, 2022, 120, 263901.	3.3	2
2711	Temperature-dependent phonon anharmonicity and thermal transport in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi mathvariant="normal">CuInTe<mml:mn>2</mml:mn></mml:mi </mml:msub>. Physical Review B, 2022, 105, .</mml:math 	3.2	16
2712	Optical and thermoelectric properties of NaNbO3 thin film deposed by spray pyrolysis: experimental and DFT study. European Physical Journal Plus, 2022, 137, . Chemical trends in the high thermoelectric performance of the participate byte dichalcogenides.	2.6	3
2713	<pre><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mi>ZnS </mml:mi> <mml:mn>2 <mml:msub> <mml:mi>CdSe </mml:mi> <mml:mn>2 </mml:mn></mml:msub></mml:mn></mml:msub></mml:math></pre>	0.2	U U
2714	Physical Review B, 2022, 105, . Avoiding Oxygen induced Pb vacancies for High Thermoelectric Performance of n-type Bi-doped Pb1-xBixTe Compounds. Materials Today Physics, 2022, , 100781.	6.0	3
2715	Synthesis and characterization of Eu ₂ InTe ₅ : A new layered multiâ€ŧelluride and its thermoelectric properties. Physica Status Solidi - Rapid Research Letters, 0, , .	2.4	0

#	Article	IF	CITATIONS
2716	High Thermoelectric Performance of Janus Monolayer and Bilayer HfSSe. Physica Status Solidi (B): Basic Research, 2022, 259, .	1.5	4
2717	Ultrahigh transverse thermoelectric power factor in flexible Weyl semimetal WTe2. Nature Communications, 2022, 13, .	12.8	26
2718	Enabling High Quality Factor and Enhanced Thermoelectric Performance in BiBr ₃ -Doped Sn _{0.93} Mn _{0.1} Te via Band Convergence and Band Sharpening. ACS Applied Materials & Interfaces, 2022, 14, 32236-32243.	8.0	9
2719	Anomalous Thermoelectric Transport Phenomena from Firstâ€Principles Computations of Interband Electron–Phonon Scattering. Advanced Functional Materials, 2022, 32, .	14.9	10
2720	Optimized Thermoelectric Properties of Sulfide Compound Bi2SeS2 by Iodine Doping. Nanomaterials, 2022, 12, 2434.	4.1	2
2721	Highâ€Performance Thermoelectrics αâ€Ag9Ga1â€xTe6 Compounds with Ultra″ow Lattice Thermal Conductivity Originating from Ag9Te2 Motifs. Angewandte Chemie, 0, , .	2.0	0
2722	Surface Functionalization of Surfactantâ€Free Particles: a Strategy to Tailor the Properties of Nanocomposites for Enhanced Thermoelectric Performance. Angewandte Chemie, O, , .	2.0	2
2723	Flexible thermoelectric generator with high Seebeck coefficients made from polymer composites and heat-sink fabrics. Communications Materials, 2022, 3, .	6.9	14
2724	Thermoelectric properties of 2D semiconducting Pt ₂ CO ₂ . Physica Scripta, 2022, 97, 085706.	2.5	5
2725	High-performance magnesium-based thermoelectric materials: Progress and challenges. Journal of Magnesium and Alloys, 2022, 10, 1719-1736.	11.9	29
2726	Highâ€Performance Thermoelectric αâ€Ag ₉ Ga _{1â^'<i>x</i>} Te ₆ Compounds with Ultralow Lattice Thermal Conductivity Originating from Ag ₉ Te ₂ Motifs. Angewandte Chemie - International Edition, 2022, 61, .	13.8	7
2727	Surface Functionalization of Surfactantâ€Free Particles: A Strategy to Tailor the Properties of Nanocomposites for Enhanced Thermoelectric Performance. Angewandte Chemie - International Edition, 2022, 61, .	13.8	15
2728	Ba _{1/3} CoO ₂ : A Thermoelectric Oxide Showing a Reliable <i>ZT</i> of â^¼0.55 at 600 °C in Air. ACS Applied Materials & Interfaces, 2022, 14, 33355-33360.	8.0	8
2729	Study of high-temperature electrical conductivity and thermoelectric performance in Mg2â^î îSi0.35â^xSn0.65Gex (δ〉= 0–0.04 and x = 0, 0.05) intermetallic alloys. Journal of Mat Materials in Electronics, 2022, 33, 17842-17854.	ertats Scie	næ:
2730	Designing Rashba systems for high thermoelectric performance based on the van der Waals heterostructure. Materials Today Physics, 2022, 27, 100788.	6.0	1
2731	Cubic Quaternary Silver Chalcogenide: A Promising Ductile Thermoelectric Inorganic. ACS Applied Energy Materials, 2022, 5, 8878-8884.	5.1	5
2732	Bistructural Pseudocontinuous Solid Solution with Hierarchical Microstructures from Ab initio Study: Application to the Mg2Snâ^'Mg3Sb2 System. Acta Materialia, 2022, 236, 118139.	7.9	3
2733	Suppressing lone-pair expression endows room-temperature cubic structure and high thermoelectric performance in GeTe-based materials. Materials Today Physics, 2022, 27, 100780.	6.0	5

#	Article	IF	CITATIONS
2734	Investigation of Ba2LnRuO6 (LnÂ=ÂNd, Er) for spin-optoelectronic and thermoelectric devices. Journal of Magnetism and Magnetic Materials, 2022, 560, 169657.	2.3	9
2735	Band engineering and improved thermoelectric performance in p-type SmMg2Sb2: A first-principles study. Materials Today Physics, 2022, 27, 100779.	6.0	1
2736	Dynamic doping and Cottrell atmosphere optimize the thermoelectric performance of n-type PbTe over a broad temperature interval. Nano Energy, 2022, 101, 107576.	16.0	16
2737	First-principle investigation on the thermoelectric and electronic properties of HfCoX (X=As, Sb, Bi) half-Heusler compounds. Journal of Solid State Chemistry, 2022, 314, 123386.	2.9	8
2738	Challenges and strategies to optimize the figure of merit: Keeping eyes on thermoelectric metamaterials. Materials Science in Semiconductor Processing, 2022, 150, 106944.	4.0	10
2739	Ni doping and rational annealing boost thermoelectric performance of nanostructured double perovskite Pr1.8Sr0.2CoFeO6. Applied Materials Today, 2022, 29, 101580.	4.3	7
2740	Continuous manufacture of stretchable and integratable thermoelectric nanofiber yarn for human body energy harvesting and self-powered motion detection. Chemical Engineering Journal, 2022, 450, 137937.	12.7	82
2741	Study of Thermoelectric Performance and Intrinsic Defect of Promising n- type half-Heusler FeGeW. Journal Physics D: Applied Physics, 0, , .	2.8	0
2742	Thermoelectric performance of multiphase <scp>GeSeâ€CuSe</scp> composites prepared by hydrogen decrepitation method. International Journal of Energy Research, 2022, 46, 17455-17464.	4.5	2
2743	Superior Thermoelectric Performance of Robust Column-Layer ITO Thin Films Tuning by Profuse Interfaces. ACS Applied Materials & Interfaces, 2022, 14, 36258-36267.	8.0	2
2744	Influence of biaxial strain on the electronic and thermoelectric properties of Sb2Te3 monolayer. Materials Research Bulletin, 2022, 156, 111979.	5.2	6
2745	Structural stability, electronic, optical, and thermoelectric properties of layered perovskite Bi ₂ LaO ₄ I. RSC Advances, 2022, 12, 24156-24162.	3.6	3
2746	Phase-engineered high-entropy metastable FCC Cu _{2â^'<i>y</i>} Ag _{<i>y</i>} (In _{<i>x</i>} Sn _{1â^'<i>x</i>})Se _{2 nanomaterials with high thermoelectric performance. Chemical Science, 2022, 13, 10461-10471.}	2.¶/∎ub>S	5
2747	Multiple valence bands convergence and strong phonon scattering lead to high thermoelectric performance in p-type PbSe. Nature Communications, 2022, 13, .	12.8	37
2748	Data-Driven Enhancement of ZT in SnSe-Based Thermoelectric Systems. Journal of the American Chemical Society, 2022, 144, 13748-13763.	13.7	16
2749	Computationally accelerated discovery of functional and structural Heusler materials. MRS Bulletin, 2022, 47, 559-572.	3.5	4
2750	Synchronously enhanced thermoelectric and mechanical properties of Ti doped NbFeSb based half-heusler alloys by carrier regulation and phonon engineering. Journal of the European Ceramic Society, 2022, 42, 7010-7016.	5.7	8
2751	Large thermopower in novel thermoelectric Yb(Si _{1â''<i>x</i>} Ge <i> _x</i>) ₂ induced by valence fluctuation. Journal of Applied Physics, 2022, 132, 065106.	2.5	1

		15	0
#	ARTICLE	IF	CITATIONS
2752	Explaining the electronic band structure of half-Heusler thermoelectric semiconductors for engineering high valley degeneracy. MRS Bulletin, 2022, 47, 573-583.	3.5	6
2753	Low Thermal Conductivity and High Thermoelectric Performance of Kagomeâ€Like As and Sb Monolayers: A Firstâ€Principles Study. Physica Status Solidi - Rapid Research Letters, 2022, 16, .	2.4	2
2754	Realizing a 10°C Cooling Effect in a Flexible Thermoelectric Cooler Using a Vortex Generator. Advanced Materials, 2022, 34, .	21.0	15
2755	Enhancing thermoelectric and mechanical properties of p-type Cu3SbSe4-based materials via embedding nanoscale Sb2Se3. Materials Chemistry and Physics, 2022, 292, 126669.	4.0	6
2756	Thermodynamic phase diagrams, thermoelectric, and half-metallic properties of KCaX2(X=N, O) and their [001] films. Indian Journal of Physics, 0, , .	1.8	0
2757	Advances and Challenges of AgSbSe ₂ â€based Thermoelectric Materials. ChemNanoMat, 2022, 8, .	2.8	6
2758	Electronic Quality Factor and Universal Electrical Conductivity of Thermoelectric ã€−Biã€−_2 ã€−Srã€−_(2-x) ã€−[Sr(BO_2)_2]_x Coã€−_(1.8) O_y. K'art'veli Mec'nierebi, 0, , .	0.0	0
2759	Resolution of the Cationic Distribution in Synthetic Germanite Cu ₂₂ Fe ₈ Ge ₄ S ₃₂ by an Experimental Combinatorial Approach Based on Synchrotron Resonant Powder Diffraction Data: A Case Study and Guidelines for Analogous Compounds, Chemistry of Materials, 2022, 34, 7434-7445.	6.7	0
2760	Dramatic Enhancement of Thermoelectric Performance in PbTe by Unconventional Grain Shrinking in the Sintering Process. Advanced Materials, 2022, 34, .	21.0	20
2761	<scp>Rare earth</scp> metalâ€doped Zintl phase thermoelectric materials: The <scp>Yb_{5â^'}</scp> <i>_{<i>x</i>}</i> <scp>RE</scp> <i>_{<i>x</i>}</i> <scp>Al- (<scp>RE</scp>=Pr, Nd, Sm) system. Bulletin of the Korean Chemical Society, 2022, 43, 1191-1199.</scp>	<sub9>2<td>sub»Sb<sub< td=""></sub<></td></s	sub»Sb <sub< td=""></sub<>
2762	Revealing excellent electronic, optical, and thermoelectric behavior of Eu based EuAg2Y2 (Y= S/Se): For solar cell applications. Computational Condensed Matter, 2022, 32, e00723.	2.1	13
2763	Global structure search for new 2D PtSSe allotropes and their potential for thermoelectirc and piezoelectric applications. Chemical Physics Letters, 2022, 805, 139913.	2.6	3
2764	Nanostructured CuFeSe2 Eskebornite: An efficient thermoelectric material with ultra-low thermal conductivity. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2022, 284, 115914.	3.5	4
2765	Thermoelectric properties of monolayer MoSi2N4 and MoGe2N4 with large Seebeck coefficient and high carrier mobility: A first principles study. Journal of Solid State Chemistry, 2022, 315, 123447.	2.9	13
2766	Characterization of polycrystalline SnSe2 thin films for thermoelectric applications grown by single-stage horizontal tube furnace (SSHTF). Optical Materials, 2022, 133, 112797.	3.6	0
2767	First-principles calculations to investigate strong half-metallic ferromagnetic and thermoelectric sensibility of LiCrX (XÂ=ÂS, Se, and Te) alloys. Journal of Magnetism and Magnetic Materials, 2022, 562, 169822.	2.3	10
2768	Decoupling trade-off thermoelectric relations and controlled out-plane lattice dynamics in few-layer MoS2. Applied Physics Letters, 2022, 121, .	3.3	1
2769	Incompletely Decomposed In ₄ SnSe ₄ Leads to Highâ€Ranged Thermoelectric Performance in nâ€Type PbTe. Advanced Energy Materials, 2022, 12, .	19.5	10

#	Article	IF	CITATIONS
2770	Manipulation of phase structure and Se vacancy to enhance the average thermoelectric performance of AgBiSe2. Materials Today Physics, 2022, 27, 100837.	6.0	5
2771	Identifying polymorphic lattice positioning of copper and the effects on the thermoelectric performance of δ-LAST. Materials Today Physics, 2022, 27, 100833.	6.0	2
2772	Highly tailorable, ultra-foldable, and resorbable thermoelectric paper for origami-enabled energy generation. Nano Energy, 2022, 103, 107824.	16.0	9
2773	The mechanical, dynamical, thermodynamical properties and elastic anisotropies of cubic YbAu compound under pressure. Materials Today Communications, 2022, 33, 104456.	1.9	2
2774	Boosting the thermoelectric performance of GeTe via vacancy control and engineering sintering parameters. Materials Today Communications, 2022, 33, 104411.	1.9	2
2775	Pressure-Induced Enhancement of Thermoelectric Performance of CoP ₃ By the Structural Phase Transition. SSRN Electronic Journal, 0, , .	0.4	0
2776	Breaking the sodium solubility limit for extraordinary thermoelectric performance in p-type PbTe. Energy and Environmental Science, 2022, 15, 3958-3967.	30.8	25
2777	Synergistic Optimizing Thermoelectric Performance of Snte by the Integrated Multi-Strategy. SSRN Electronic Journal, 0, , .	0.4	0
2778	Enhanced Thermoelectric Performance in High-Defect Snte Alloys: A Significant Role of Carrier Scattering. SSRN Electronic Journal, 0, , .	0.4	0
2779	Temperature-dependent Cu and Ag ion mobility and associated changes of transport properties in pavonite-type Cu _{1.4} Ag _{0.4} Bi _{5.4} Se ₉ . Dalton Transactions, 2022, 51, 14581-14589.	3.3	1
2780	Cs ₂ VOF ₄ (IO ₂ F ₂): Rationally designing a noncentrosymmetric early-transition-metal fluoroiodate. Journal of Materials Chemistry C, 2022, 10, 12197-12201.	5.5	13
2781	Highly Tailorable, Ultra-Foldable, and Resorbable Thermoelectric Paper for Origami-Enabled Energy Generation. SSRN Electronic Journal, 0, , .	0.4	0
2782	Raising the solubility of Gd yields superior thermoelectric performance in n-type PbSe. Journal of Materials Chemistry A, 2022, 10, 20386-20395.	10.3	8
2783	Manipulation of Rashba splitting and thermoelectric performance of MTe (M = Ge, Sn, Pb) <i>via</i> Te off-centering distortion. RSC Advances, 2022, 12, 26514-26526.	3.6	3
2784	Thermoelectric Properties of Two-Dimensional Materials with Combination of Linear and Nonlinear Band Structures. SSRN Electronic Journal, 0, , .	0.4	0
2785	Highly tailored gap-like structure for excellent thermoelectric performance. Energy and Environmental Science, 2022, 15, 4058-4068.	30.8	11
2786	Improvement of thermoelectric performance of SnTe-based solid solution by entropy engineering. Wuli Xuebao/Acta Physica Sinica, 2022, 71, 237302.	0.5	1
2787	Structural, Electronic and Mechanical Properties of Mo2gec Under Strain Engineering. SSRN Electronic Journal, 0, , .	0.4	0

#	Article	IF	CITATIONS
2788	Recent advances in designing thermoelectric materials. Journal of Materials Chemistry C, 2022, 10, 12524-12555.	5.5	33
2789	Ag ₂ Qâ€Based (QÂ=ÂS, Se, Te) Silver Chalcogenide Thermoelectric Materials. Advanced Materials, 2023, 35, .	21.0	39
2790	Entropy engineering enhances the thermoelectric performance and microhardness of (GeTe)1â^'x(AgSb0.5Bi0.5Te2)x. Science China Materials, 2023, 66, 696-706.	6.3	8
2791	Isovalent substitution in metal chalcogenide materials for improving thermoelectric power generation – A critical review. , 2022, , .		8
2792	Effects of Bi and Sb doping on the thermoelectric performance of n-type quaternary Mg2.18Ge0.1Si0.3Sn0.6 materials. Journal of Solid State Chemistry, 2022, , 123574.	2.9	0
2793	Thermal Management in Neuromorphic Materials, Devices, and Networks. Advanced Materials, 2023, 35,	21.0	5
2794	Tunable quantum gaps to decouple carrier and phonon transport leading to high-performance thermoelectrics. Nature Communications, 2022, 13, .	12.8	23
2795	Zero-point renormalization of the band gap of semiconductors and insulators using the projector augmented wave method. Physical Review B, 2022, 106, .	3.2	13
2796	Valley Degeneracy-Enhanced Thermoelectric Performance in In-Based FeOCl-Type Monolayers. ACS Applied Energy Materials, 2022, 5, 13042-13052.	5.1	2
2797	Effect of four-phonon interaction on phonon thermal conductivity and mean-free-path spectrum of high-temperature phase SnSe. Applied Physics Letters, 2022, 121, .	3.3	8
2798	Synergistically Optimized Carrier and Phonon Transport Properties in Bi–Cu ₂ S Coalloyed GeTe. ACS Applied Materials & Interfaces, 2022, 14, 45621-45627.	8.0	2
2799	Roles of Anion Sites in Highâ€Performance GeTe Thermoelectrics. Advanced Functional Materials, 2022, 32, .	14.9	11
2800	Engineering Interfacial Effects in Electron and Phonon Transport of Sb ₂ Te ₃ /MoS ₂ Multilayer for Thermoelectric <i>ZT</i> Above 2.0. Advanced Functional Materials, 2022, 32, .	14.9	6
2801	Observation of a Strong Decoupling Phenomenon in Pt/Si Hybrid Structures for In-Plane Thermoelectric Properties. Journal of Physical Chemistry C, 2022, 126, 17283-17290.	3.1	2
2802	Machine Learning for Harnessing Thermal Energy: From Materials Discovery to System Optimization. ACS Energy Letters, 2022, 7, 3204-3226.	17.4	11
2803	Lattice strain and band overlap of the thermoelectric composite <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>Mg</mml:mi><mml:r Physical Review B, 2022, 106, .</mml:r </mml:msub></mml:mrow></mml:math 	m rB.2 <td>nl:ann></td>	nl :a nn>
2805	Improved Solubility in Metavalently Bonded Solid Leads to Band Alignment, Ultralow Thermal Conductivity, and High Thermoelectric Performance in SnTe. Advanced Functional Materials, 2022, 32, .	14.9	30
2806	Vacancy-induced heterogeneity for regulating thermoelectrics in <i>n</i> -type PbTe. Applied Physics Letters, 2022, 121, .	3.3	1

#	Article	IF	CITATIONS
2807	In Situ Synthesis of Polythiophene and Silver Nanoparticles within a PMMA Matrix: A Nanocomposite Approach to Thermoelectrics. ACS Applied Energy Materials, 2022, 5, 11067-11076.	5.1	3
2808	Enhancing thermoelectric properties of p-type (Bi,Sb)2Te3 via porous structures. Ceramics International, 2023, 49, 4305-4312.	4.8	5
2809	Crystal Structure and Thermoelectric Properties of Layered Van der Waals Semimetal ZrTiSe ₄ . Chemistry of Materials, 2022, 34, 8858-8867.	6.7	5
2810	Engineering Thermoelectric Performance of <scp><i>α</i>â€GeTe</scp> by Ferroelectric Distortion. Energy and Environmental Materials, 0, , .	12.8	3
2811	Microstructure and thermoelectric properties of nanoparticled copper selenide alloys synthesized using a microwave-assisted hydrothermal method. ChemPhysMater, 2023, 2, 207-216.	2.8	1
2812	Solution-Processed Inorganic Thermoelectric Materials: Opportunities and Challenges. Chemistry of Materials, 2022, 34, 8471-8489.	6.7	12
2813	Thermoelectric properties of Rashba compounds KSnX (X = Sb, Bi). Journal of Applied Physics, 2022, 132, 135112.	' 2.5	0
2814	High Thermoelectric Performance of Cu ₃ SbSe ₄ Obtained by Synergistic Modulation of Power Factor and Thermal Conductivity. ACS Applied Energy Materials, 2022, 5, 13070-13078.	5.1	4
2815	Coupling modification of Fermi level, band flattening and lattice defects to approach outstanding thermoelectric performance of ZnO films via tuning In and Ga incorporation. Acta Materialia, 2022, 241, 118415.	7.9	9
2816	Emerging theory and phenomena in thermal conduction: A selective review. Science China: Physics, Mechanics and Astronomy, 2022, 65, .	5.1	37
2817	SnSe ₂ monolayer with square lattice structure: a promising p-type thermoelectric material with an indirect bandgap and low lattice thermal conductivity. Journal of Materials Chemistry C, 2022, 10, 16116-16125.	5.5	11
2818	Thermoelectric performance of novel single-layer ZrTeSe ₄ . Physical Chemistry Chemical Physics, 2022, 24, 28250-28256.	2.8	2
2819	Achieving higher thermoelectric performance of n-type PbTe by adjusting the band structure and enhanced phonon scattering. Nanoscale, 2022, 14, 17163-17169.	5.6	1
2820	Thermoelectric Materials. , 2022, , .		0
2821	Crystal Growth and Thermoelectric Properties of Zintl Phase Mg ₃ X ₂ (X=Sb,) Tj ETQq0 0	Q.ţgBT /O	verlock 10 T
2822	Enhanced thermoelectric performance in high-defect SnTe alloys: a significant role of carrier scattering. Journal of Materials Chemistry A, 2022, 10, 23521-23530.	10.3	7
2823	Metal chalcogenide materials: Synthesis, structure and properties. , 2022, , .		1
2824	Spin-Polarized Study of the Structural, Optoelectronic, and Thermoelectric Properties of the Melilite-Type Gd2Be2GeO7 Compound. Crystals, 2022, 12, 1397.	2.2	1

#	Article	IF	CITATIONS
2825	Achieving Low Lattice Thermal Conductivity in Halfâ€Heusler Compound LiCdSb via Zintl Chemistry. Small Science, 0, , 2200065.	9.9	4
2826	Preparation and Thermoelectric Properties of Nano-Bismuth Telluride Film by High-Temperature Thermal Shock. Materials Science Forum, 0, 1070, 165-171.	0.3	0
2827	Dense dislocations enable high-performance PbSe thermoelectric at low-medium temperatures. Nature Communications, 2022, 13, .	12.8	39
2828	High thermoelectric performance of intrinsic few-layers T-HfSe2. Materials Today Communications, 2022, 33, 104789.	1.9	0
2829	Large Magnetoâ€Transverse and Longitudinal Thermoelectric Effects in the Magnetic Weyl Semimetal TbPtBi. Advanced Materials, 2023, 35, .	21.0	6
2830	Enhanced Thermoelectric Performance of Ni _{<i>x</i>} Bi _{0.5} Sb _{1.5} Te ₃ <i>via In Situ</i> Formation of NiTe ₂ Channels. ACS Applied Energy Materials, 2022, 5, 14127-14135.	5.1	0
2831	Microstructure and thermoelectric properties of Al-doped ZnO ceramic prepared by spark plasma sintering. Journal of the European Ceramic Society, 2023, 43, 1009-1016.	5.7	11
2832	Band structure engineering in Fe–Sb based lanthanide filled p-type skutterudites RFe ₄ Sb ₁₂ (R = Nd, Sm) to enhance the Seebeck coefficient and thermoelectri- figure of merit. Journal of Applied Physics, 2022, 132, 155103.	C 2.5	1
2833	Evolution of defect structures leading to high ZT in GeTe-based thermoelectric materials. Nature Communications, 2022, 13, .	12.8	59
2834	Low Thermal Conductivity and Enhancement in Figure-of-Merit in Na and Mg Co-doped β-Zn4Sb3. Journal of Electronic Materials, 2023, 52, 559-568.	2.2	1
2835	Anomalous scaling law for thermoelectric transport of two-dimension-confined electrons in an organic molecular system. Physical Review Research, 2022, 4, .	3.6	2
2836	Roles of interface engineering in performance optimization of skutteruditeâ€based thermoelectric materials. , 2022, 1, 233-246.		6
2837	Thermoelectric Efficiency of Two-Dimensional Pentagonal-PdSe ₂ at High Temperatures and the Role of Strain. ACS Applied Energy Materials, 2022, 5, 14522-14530.	5.1	6
2838	Keynote Review of Latest Advances in Thermoelectric Generation Materials, Devices, and Technologies 2022. Energies, 2022, 15, 7307.	3.1	58
2839	Offâ€ S toichiometry Quaternary Heusler‣ike Semiconductors with Magnetism and Disorder. Advanced Functional Materials, 0, , 2209233.	14.9	0
2840	Enhanced thermoelectric performance of N-type Bi2Te2.7Se0.3-based materials by superparamagnetic Fe3O4 nanoparticles. Ceramics International, 2023, 49, 8271-8280.	4.8	5
2841	Enhanced thermoelectric performance of p-type Bi2Te3-based materials by suppressing bipolar thermal conductivity. Materials Today Physics, 2022, 29, 100904.	6.0	6
2842	Efficient Mg2Si0.3Sn0.7 thermoelectrics demonstrated for recovering heat of about 600ÂK. Materials Today Physics, 2022, 28, 100887.	6.0	7

~			_		
	ITAT	ION	12 F		DT
<u> </u>	LAL	ION	IN E	PU	IX I

#	Article	IF	CITATIONS
2843	Role of Eu-Doping in the Electron Transport Behavior in the Zintl Thermoelectric Ca _{5–<i>x</i>–<i>y</i>} Yb _{<i>x</i>} Eu _{<i>y</i>} Al ₂ Sb _{6 System. Chemistry of Materials, 2022, 34, 9903-9914.}	5 6/3 ub>	5
2844	Enhanced thermoelectric performance of skutterudite Co1â^'Ni Sn1.5Te1.5â^' with switchable conduction behavior. Materials Today Physics, 2022, 28, 100889.	6.0	3
2845	High performance piezotronic thermoelectric devices based on zigzag MoS2 nanoribbon. Nano Energy, 2022, 104, 107888.	16.0	6
2846	Incorporation of Te in enhancing thermoelectric response of AeAg2SeTe (Ae = Sr, Ba) compounds: A DFT insight. Computational Condensed Matter, 2022, 33, e00757.	2.1	16
2847	Fast preparation of AgxPb20SbTe20 (xÂ=Â0.5–3) component with high thermoelectric performance. Nano Energy, 2022, 104, 107911.	16.0	3
2848	Structural, electronic and mechanical properties of Mo2GeC under strain engineering. Materials Today Communications, 2022, 33, 104721.	1.9	0
2849	Thermoelectric properties of two-dimensional materials with combination of linear and nonlinear band structures. Materials Today Communications, 2022, 33, 104596.	1.9	2
2850	Improving thermoelectric properties of Cu2O powder via interface modification. Solid State Communications, 2022, 357, 114982.	1.9	1
2851	First principle studies on electronic and thermoelectric properties of Fe2TiSn based multinary Heusler alloys. Computational Materials Science, 2023, 216, 111856.	3.0	3
2852	Direct observation of multiple conduction-band minima in high-performance thermoelectric SnSe. Scripta Materialia, 2023, 223, 115081.	5.2	1
2853	Anharmonic phonon renormalization assisted acoustic branch scattering induces ultralow thermal conductivity and high thermoelectric performance of 2D SnSe. Journal of Alloys and Compounds, 2023, 932, 167525.	5.5	6
2854	Structural, electronic, optical, and thermoelectric response of zintl phase AAg2S2 (A= Sr/Ba) compounds for renewable energy applications. Physica B: Condensed Matter, 2023, 649, 414446.	2.7	22
2855	Synergistic optimizing thermoelectric performance of SnTe by the integrated Multi-strategy. Chemical Engineering Journal, 2023, 453, 139916.	12.7	6
2856	Controlling Defect Chemistry in InTe by Saturation Annealing. ACS Applied Energy Materials, 2022, 5, 13714-13722.	5.1	2
2857	Reduced Thermal Conductivity in Nanostructured AgSbTe2 Thermoelectric Material, Obtained by Arc-Melting. Nanomaterials, 2022, 12, 3910.	4.1	1
2858	Rare-earth silicides: the promising candidates for thermoelectric applications at near room temperature. Japanese Journal of Applied Physics, 2023, 62, SD0802.	1.5	3
2859	Regenerable aerogelâ€based thermogalvanic cells for efficient lowâ€grade heat harvesting from solar radiation and interfacial solar evaporation systems. EcoMat, 2023, 5, .	11.9	14
2860	Spin-Induced Switching of Electronic State Populations in Transition Metal Polyphthalocyanines. Materials, 2022, 15, 8098.	2.9	2

#	Article	IF	CITATIONS
2861	Reduced Graphene Oxides Modified Bi ₂ Te ₃ Nanosheets for Rapid Photoâ€Thermoelectric Catalytic Therapy of Bacteriaâ€Infected Wounds. Advanced Functional Materials, 2023, 33, .	14.9	10
2862	Improved Highâ€Temperature Material Stability and Mechanical Properties While Maintaining a High Figure of Merit in Nanostructured pâ€Type PbTeâ€Based Thermoelectric Elements. Advanced Materials Technologies, 2023, 8, .	5.8	5
2863	Advances in Versatile GeTe Thermoelectrics from Materials to Devices. Advanced Materials, 2023, 35, .	21.0	38
2864	Enhanced thermoelectric performance of hydrothermal synthesized Ag incorporated Cu2-xS micro/nano composites. Ceramics International, 2023, 49, 8428-8434.	4.8	2
2865	Simultaneous enhancement in electrical conductivity and Seebeck coefficient by single- to double-valley transition in a Dirac-like band. Npj Computational Materials, 2022, 8, .	8.7	4
2866	First-principles study on bilayer SnP ₃ as a promising thermoelectric material. Physical Chemistry Chemical Physics, 2022, 24, 29693-29699.	2.8	2
2867	Synergistic Approach Toward a Reproducible High zT in n-Type and p-Type Superionic Thermoelectric Ag ₂ Te. ACS Applied Materials & Interfaces, 0, , .	8.0	3
2868	First principle analysis of the structural, electrical and thermoelectric properties of YTe (Y Si, pb, sn,) Tj ETQq1 1 0.	.784314 rg	g&T /Overlo
2869	High thermoelectric performance of two-dimensional layered AB ₂ Te ₄ (A = Sn,) Tj ETQq	0 0 0 rgBT 2.8	/Qverlock 1
2870	Recent Advances in Ultrahigh Thermoelectric Performance Material SnSe. , 0, 1, .		1
2871	High thermoelectric properties of shear-exfoliation-derived TiS2-AgSnSe2 nano-composites via ionized impurity scattering. Acta Materialia, 2023, 244, 118564.	7.9	2
2872	High performance GeTe thermoelectrics enabled by lattice strain construction. Acta Materialia, 2023, 244, 118565.	7.9	11
2873	Extraordinary role of resonant dopant vanadium for improving thermoelectrics in n-type PbTe. Materials Today Physics, 2023, 30, 100955.	6.0	2
2874	Modification of the thermoelectric performance in Se alloyed CoSb1-xSexS. Solid State Sciences, 2023, 135, 107078.	3.2	1
2875	Strain engineering and thermoelectric performance of Janus monolayers of titanium dichalcogenides: A DFT study. Computational Materials Science, 2023, 218, 111925.	3.0	6
2876	Rare earth element Ce enables high thermoelectric performance in n-type SnSe polycrystals. Journal of Materials Science and Technology, 2023, 143, 234-241.	10.7	8
2877	Boosting thermoelectric performance of n-type Bi2Te2.7Se0.3 alloy by 3D printing induced in-situ texture engineering. Journal of Alloys and Compounds, 2023, 937, 168172.	5.5	1
2878	Transport and thermoelectric properties of strongly anharmonic Full-Heusler compounds CsK2M (M=As, Bi). Materials Today Communications, 2023, 34, 105134.	1.9	1

#	Article	IF	CITATIONS
2879	Realizing n-type CdSb with promising thermoelectric performance. Journal of Materials Science and Technology, 2023, 144, 54-61.	10.7	2
2880	HfSe ₂ /GaSe Heterostructure as a Promising Near-Room-Temperature Thermoelectric Material. Journal of Physical Chemistry C, 2022, 126, 20326-20331.	3.1	3
2881	Grain Boundary Complexions Enable a Simultaneous Optimization of Electron and Phonon Transport Leading to Highâ€₽erformance GeTe Thermoelectric Devices. Advanced Energy Materials, 2023, 13, .	19.5	22
2882	Intrinsic properties and dopability effects on the thermoelectric performance of binary Sn chalcogenides from first principles. Frontiers in Electronic Materials, 0, 2, .	3.1	0
2883	Lattice Distortions and Multiple Valence Band Convergence Contributing to High Thermoelectric Performance in MnTe. Small, 2023, 19, .	10.0	8
2884	The thermoelectric properties of XTe (X = Ge, Sn and Pb) monolayers from first-principles calculations. Physica Scripta, 2022, 97, 125709.	2.5	1
2885	The effect of interdiffusion during formation of epitaxial Ca intercalated layered silicene film on its thermoelectric power factor. Japanese Journal of Applied Physics, 2023, 62, SD1004.	1.5	1
2886	Improving thermoelectric performance of half-Heusler Ti0.2Hf0.8CoSb0.8Sn0.2 compounds via the introduction of excessive Ga and Co-deficiencies. Ceramics International, 2023, 49, 24414-24421.	4.8	0
2887	Improved thermoelectric performance of Cu ₂ SnSe ₄ by proper decoupling between electron and phonon through replacement of Sn with In. Advanced Engineering Materials, 0, ,	3.5	0
2888	Theoretical study of Cr ₂ X ₃ S ₃ (X = Br, I) monolayers for thermoelectric and spin caloritronics properties. Nanotechnology, 2023, 34, 095704.	2.6	3
2889	n―to pâ€ŧype Sr2Fe1+xRe1â€xO6 double perovskites: magnetoresistance and magnetoSeebeck. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 0, , .	1.2	1
2890	Predicting the Thermoelectric Performance of p-type VFeBi Based on Scattering Mechanisms. Journal of Electronic Materials, 2023, 52, 980-988.	2.2	2
2891	Charge Balanced Vacancy Engineering to Enhance the Thermoelectric Properties of GeMnTe ₂ . Physica Status Solidi (B): Basic Research, 2023, 260, .	1.5	1
2892	Vacancy-Ordered Double Perovskites Cs ₂ Bl ₆ (B = Pt, Pd, Te, Sn): An Emerging Class of Thermoelectric Materials. Journal of Physical Chemistry Letters, 2022, 13, 11655-11662.	4.6	14
2893	Effect of Large Uniaxial Stress on the Thermoelectric Properties of Microcrystalline Silicon Thin Films. Electronics (Switzerland), 2022, 11, 4085.	3.1	0
2894	Symmetryâ€Guaranteed High Carrier Mobility in Quasiâ€2D Thermoelectric Semiconductors. Advanced Materials, 2023, 35, .	21.0	25
2895	Realization of Band Convergence in p-Type TiCoSb Half-Heusler Alloys Significantly Enhances the Thermoelectric Performance. ACS Applied Materials & Interfaces, 2023, 15, 942-952.	8.0	7
2896	Atomic site-targeted doping in Ti2FeNiSb2 double half-Heusler alloys: zT improvement via selective band engineering and point defect scattering. Journal of Alloys and Compounds, 2023, 938, 168572.	5.5	4

CITATI		пΤ
CHAID	LEPU	K I

#	Article	IF	CITATIONS
2897	Antibonding p-d and s-p Hybridization Induce the Optimization of Thermal and Thermoelectric Performance of MGeTe ₃ (M = In and Sb). ACS Applied Energy Materials, 2022, 5, 15566-15577.	5.1	4
2899	Tellurium/polymers for flexible thermoelectrics: status and challenges. Journal of Materials Chemistry A, 2023, 11, 3771-3788.	10.3	9
2900	Thermoelectric performance of Fe2ALV/CNT-based alloys. Thermal Science, 2023, 27, 389-396.	1.1	2
2901	Improved thermoelectric figure of merit in polyol method prepared (Cu7Te4)1â^'x(MnTe2)x (x â‰ 8 €‰0.06) nanocomposites. Journal of Materials Science: Materials in Electronics, 2023, 34, .	2.2	2
2902	Intrinsically Low Lattice Thermal Conductivity and Anisotropic Thermoelectric Performance in Inâ€doped GeSb ₂ Te ₄ Single Crystals. Advanced Functional Materials, 2023, 33, .	14.9	11
2903	Revealing the Enhanced Thermoelectric Properties of Controllably Doped Donorâ€Acceptor Copolymer: The Impact of Regioregularity. Small, 2023, 19, .	10.0	3
2904	Realization of an ultra-low lattice thermal conductivity in Bi2AgxSe3 nanostructures for enhanced thermoelectric performance. Journal of Colloid and Interface Science, 2023, 637, 340-353.	9.4	9
2905	Theoretical determination of superior high-temperature thermoelectricity in an n-type doped 2H-Zrl ₂ monolayer. Nanoscale, 2023, 15, 4397-4407.	5.6	5
2906	Improved Thermoelectric Performance of NbCoSb with Intrinsic Nb Vacancies and Ni-Doping-Induced Band Degeneracy. ACS Applied Energy Materials, 0, , .	5.1	1
2907	Enhanced Thermoelectric Performance and Mechanical Property in Layered Chalcostibite CuSb _{1–<i>x</i>} Pb _{<i>x</i>} Se ₂ . ACS Applied Energy Materials, 2023, 6, 723-733.	5.1	6
2908	The Importance of Mg–Sb Interactions in Achieving High Conduction Band Degeneracy in Mg3Sb2 for High n-Type Thermoelectric Performance. Materials Today Physics, 2023, 31, 100959.	6.0	4
2909	Investigation of PbSnTeSe High-Entropy Thermoelectric Alloy: A DFT Approach. Materials, 2023, 16, 235.	2.9	2
2910	Enhanced Thermoelectric Performance in GeTe by Synergy of Midgap state and Band Convergence. Advanced Functional Materials, 2023, 33, .	14.9	7
2911	Enhanced Density of States Facilitates High Thermoelectric Performance in Solution-Grown Ge- and In-Codoped SnSe Nanoplates. ACS Nano, 2023, 17, 801-810.	14.6	9
2912	High thermoelectric performance in entropy-driven Ge _{1â^2<i>x</i>â^2<i>y</i>} Pb _{<i>x</i>} Sn _{<i>x</i>} Sb _{<i>y</i>} Te Journal of Materials Chemistry A, 2023, 11, 12793-12801.	. 10.3	3
2913	Silver Atom Off-Centering in Diamondoid Solid Solutions Causes Crystallographic Distortion and Suppresses Lattice Thermal Conductivity. Journal of the American Chemical Society, 2023, 145, 3211-3220.	13.7	14
2914	NaBeAs and NaBeSb: Novel Ternary Pnictides with Enhanced Thermoelectric Performance. Journal of Physical Chemistry C, 2023, 127, 1733-1743.	3.1	5
2915	In Situ Design of Highâ€Performance Dualâ€Phase GeSe Thermoelectrics by Tailoring Chemical Bonds. Advanced Functional Materials, 2023, 33, .	14.9	9

#	Article	IF	CITATIONS
2916	<i>Operando</i> X-ray scattering study of segmented thermoelectric Zn ₄ Sb ₃ . Journal of Materials Chemistry A, 2023, 11, 5819-5829.	10.3	0
2917	Accessing the thermal conductivities of Sb ₂ Te ₃ and Bi ₂ Te ₃ /Sb ₂ Te ₃ superlattices by molecular dynamics simulations with a deep neural network potential. Physical Chemistry Chemical Physics, 2023, 25, 6164-6174.	2.8	4
2918	Screening Metal Electrodes for Thermoelectric PbTe. ACS Applied Materials & Interfaces, 2023, 15, 6169-6176.	8.0	5
2919	Electrical property enhancement and lattice thermal conductivity reduction of n-type Mg3Sb1.5Bi0.5-based Zintl compound by In&Se co-doping. Journal of Materiomics, 2023, 9, 431-437.	5.7	3
2920	In-gap states and strain-tuned band convergence in layered structure trivalent iridate K0.75Na0.25IrO2. Physical Chemistry Chemical Physics, 0, , .	2.8	1
2921	Interface design of transparent thermoelectric epitaxial ZnO/SnO2 multilayer film for simultaneous realization of low thermal conductivity and high optical transmittance. Applied Physics Letters, 2023, 122, .	3.3	4
2922	First-principles analysis of intravalley and intervalley electron-phonon scattering in thermoelectric materials. Physical Review B, 2023, 107, .	3.2	4
2923	Mechanism of Reductive Fluorination by PTFE-Decomposition Fluorocarbon Gases for WO ₃ . Inorganic Chemistry, 2023, 62, 2116-2127.	4.0	1
2924	Intelligent Failure Analysis of High Temperature Energy Conversion Devices. , 2022, , .		0
2925	High thermoelectric performance and compatibility in Cu ₃ SbSe ₄ –CuAlS ₂ composites. Energy and Environmental Science, 2023, 16, 1763-1772.	30.8	13
2926	Ga ₄ C-family crystals, a new generation of star thermoelectric materials, achieved by band degeneracies, valley anisotropy, and strong phonon scattering among others. Journal of Materials Chemistry A, 2023, 11, 8013-8023.	10.3	3
2927	Electron-phonon coupling, bipolar effect, and thermoelectric performance of the CuSbS ₂ monolayer. Physical Chemistry Chemical Physics, 0, , .	2.8	2
2928	Microstructural Manipulation for Enhanced Average Thermoelectric Performance: A Case Study of Tin Telluride. ACS Applied Materials & Interfaces, 2023, 15, 9656-9664.	8.0	8
2929	Topological states of thermoelectric Yb-filled skutterudites. Physical Review B, 2023, 107, .	3.2	3
2930	Accelerated Discovery of Advanced Thermoelectric Materials via Transfer Learning. Advanced Energy Materials, 0, , .	19.5	0
2931	Raising the Thermoelectric Performance in Pb/In-Codoped BiCuSeO by Alleviating the Contradiction between Carrier Mobility and Lattice Thermal Conductivity. Materials Today Physics, 2023, , 101084.	6.0	2
2932	High symmetry structure and large strain field fluctuation lead enhancement of thermoelectric performance of quaternary alloys by tuning configurational entropy. Chemical Engineering Journal, 2023, 462, 142185.	12.7	2
2933	Improved thermoelectric performance by microwave wet chemical synthesis of low thermal conductivity SnTe. Physica B: Condensed Matter, 2023, , 414894.	2.7	0

#	Article	IF	CITATIONS
2934	Pressure-induced enhancement of thermoelectric performance of CoP3 by the structural phase transition. Acta Materialia, 2023, 248, 118773.	7.9	4
2935	Morphology, electrical and linear and nonlinear optical properties of Pb0.85Sn0.15Se thin film. Results in Optics, 2023, 11, 100369.	2.0	1
2936	First-principles calculations to investigate probing the influence of Mn and Mg doping concentration on electronic structures and transport properties of SnTe alloys. Results in Physics, 2023, 48, 106443.	4.1	1
2937	Enhancement in the thermoelectric performance of ZrNiSn-based alloys through extra Zr-rich nanoprecipitates with superstructures. Chemical Engineering Journal, 2023, 464, 142531.	12.7	2
2938	High-performance thermoelectrics of p-type PbTe via synergistic regulation of band and microstructure engineering. Materials Today Physics, 2023, 34, 101061.	6.0	5
2939	Contrasting roles of trivalent dopants M (MÂ=ÂIn, Sb, Bi) in enhancing the thermoelectric performance of Ge0.94M0.06Te. Acta Materialia, 2023, 252, 118926.	7.9	3
2940	VTAnDeM: A python toolkit for simultaneously visualizing phase stability, defect energetics, and carrier concentrations of materials. Computer Physics Communications, 2023, 287, 108691.	7.5	1
2941	Topological thermoelectrics: New opportunities and challenges. Materials Today Chemistry, 2023, 30, 101488.	3.5	2
2942	Strategies to advance earth-abundant PbS thermoelectric. Chemical Engineering Journal, 2023, 465, 142785.	12.7	7
2943	Crystal structure modulation of SnSe thermoelectric material by AgBiSe2 solid solution. Journal of the European Ceramic Society, 2023, 43, 3383-3389.	5.7	6
2944	The impact of sintering temperature on the thermoelectric performance of Cu2Se synthesized by solid state reaction method. Journal of Solid State Chemistry, 2023, 322, 123998.	2.9	1
2945	Estimating the upper limit of the thermoelectric figure of merit in n- and p-type PbTe. Materials Science in Semiconductor Processing, 2023, 160, 107428.	4.0	1
2946	Significant enhancement of the thermoelectric properties for MnSb2Se4 through Ag doping. Materials Today Communications, 2023, 35, 105881.	1.9	0
2947	Band modification towards high thermoelectric performance of SnSb2Te4 with strong anharmonicity driven by cation disorder. Journal of Materials Science and Technology, 2023, 154, 140-148.	10.7	9
2948	Strain driven anomalous anisotropic enhancement in the thermoelectric performance of monolayer MoS2. Applied Surface Science, 2023, 626, 157139.	6.1	12
2949	SnS/PEDOT:PSS composite films with enhanced surface conductivities induced by solution post-treatment and their application in flexible thermoelectric. Organic Electronics, 2023, 118, 106799.	2.6	1
2950	Band Effective Masses of Cubic (GeTe) ₁₀ Sb ₂ Te ₃ and Its Anisotropy. Materials Transactions, 2023, 64, 522-526.	1.2	0
2951	Flexible oriented α-Cu2Se films and devices with remarkable power factor and output power at near-room temperature. Materials Today Physics, 2023, 31, 100994.	6.0	1

#	Article	IF	CITATIONS
2952	Enhancement of thermoelectric performances in n-type RbCrZ (Z = S, Se, Te) half-metallic ferromagnetic alloys via charge carrier concentration or chemical potential. Physica B: Condensed Matter, 2023, 653, 414678.	2.7	2
2953	Enhanced Thermoelectric Performance of Mg-Doped AgSbTe ₂ by Inhibiting the Formation of Ag ₂ Te. ACS Applied Materials & Interfaces, 2023, 15, 9508-9516.	8.0	2
2954	Roomâ€Temperature Highâ€Performance Thermoelectric Bi _{0.6} Sb _{0.4} Te: Elimination of Detrimental Band Inversion in BiTe. Angewandte Chemie - International Edition, 2023, 62, .	13.8	2
2955	Impeded thermal transport in aperiodic BN/C nanotube superlattices due to phonon Anderson localization. Chinese Physics B, 2023, 32, 056301.	1.4	2
2956	Roomâ€Temperature Highâ€Performance Thermoelectric Bi _{0.6} Sb _{0.4} Te: Elimination of Detrimental Band Inversion in BiTe. Angewandte Chemie, 2023, 135, .	2.0	1
2957	A simple Pb-doping to achieve bonding evolution, VSn and resonant level shifting for regulating thermoelectric transport behavior of SnTe. Journal of Materials Science and Technology, 2023, 151, 66-72.	10.7	6
2958	First-principles study on the thermoelectric properties of Sr2Si and Sr2Ge. Materials Today Physics, 2023, 32, 101015.	6.0	5
2959	Effects of hydrostatic pressure on the thermoelectric performance of BaZrS3. European Physical Journal Plus, 2023, 138, .	2.6	Ο
2960	Rational Manipulation of Epitaxial Strains Enabled Valence Band Convergence and High Thermoelectric Performances in Mg ₃ Sb ₂ Films. Advanced Functional Materials, 2023, 33, .	14.9	6
2961	Preparation and thermoelectric properties of Sc-doped Ti _{1–<i>x</i>} NiSb half-Heusler alloys. Wuli Xuebao/Acta Physica Sinica, 2023, 72, 087201.	0.5	Ο
2962	Grain Boundary Phases in NbFeSb Halfâ€Heusler Alloys: A New Avenue to Tune Transport Properties of Thermoelectric Materials. Advanced Energy Materials, 2023, 13, .	19.5	20
2963	Properties of the double half-heusler alloy ScNbNi2Sn2 with respect to structural, electronic, optical, and thermoelectric aspects. Solid State Communications, 2023, 363, 115103.	1.9	5
2964	High thermoelectric and mechanical performance achieved by a hyperconverged electronic structure and low lattice thermal conductivity in GeTe through CuInTe ₂ alloying. Journal of Materials Chemistry A, 2023, 11, 8119-8130.	10.3	11
2965	Tailoring 5s2 lone pair-antibonding orbital interaction by Zr-doping to realize ultrahigh power factor in thermoelectric GeTe. Chemical Engineering Journal, 2023, 461, 142069.	12.7	3
2966	Monolayer Cu ₂ X (X=S, Se): excellent thermoelectric material with low lattice thermal conductivity. Wuli Xuebao/Acta Physica Sinica, 2023, .	0.5	0
2967	High Thermoelectric Performance and Oxidation Resistance of (Na, Ga) Codoped β-Zn ₄ Sb ₃ Thermoelectric Materials Prepared by the NaCl Flux. Crystal Growth and Design, 2023, 23, 2375-2383.	3.0	0
2968	Chemical bonding engineering for high-symmetry Cu2S-based materials with high thermoelectric performance. Materials Today Physics, 2023, 32, 101028.	6.0	3
2969	Significantly reinforced thermoelectric performance in the novel 1T-Au6Se2 monolayer. APL Materials, 2023, 11, .	5.1	5

#	Article	IF	CITATIONS
2970	Enhanced Thermoelectric Performance of n-Type PbTe <i>via</i> Carrier Concentration Optimization over a Broad Temperature Range. ACS Applied Materials & Interfaces, 0, , .	8.0	1
2971	Synergistic effect of alloying on thermoelectric properties of two-dimensional PdPQ (Q = S, Se). Physical Chemistry Chemical Physics, 2023, 25, 9617-9625.	2.8	2
2972	Bilayer MSe ₂ (M = Zr, Hf, Mo, W) performance as a hopeful thermoelectric materials. Journal of Semiconductors, 2023, 44, 032001.	3.7	2
2973	Modulation of Vacancy Defects and Texture for High Performance nâ€Type Bi ₂ Te ₃ via High Energy Refinement. Small, 2023, 19, .	10.0	5
2974	First-Principles Study on Thermoelectric Properties of Bi\$\$_2\$\$O\$\$_2\$\$Se. Journal of Electronic Materials, 0, , .	2.2	0
2975	Superior Thermoelectric Properties of Twistâ€Angle Superlattice Borophene Induced by Interlayer Electrons Transport. Small, 2023, 19, .	10.0	16
2976	Doping by Design: Enhanced Thermoelectric Performance of GeSe Alloys Through Metavalent Bonding. Advanced Materials, 2023, 35, .	21.0	22
2977	Biâ€Deficiency Leading to Highâ€Performance in Mg ₃ (Sb,Bi) ₂ â€Based Thermoelectric Materials. Advanced Materials, 2023, 35, .	21.0	6
2978	Reversible Room Temperature Brittleâ€Plastic Transition in Ag ₂ Te _{0.6} S _{0.4} Inorganic Thermoelectric Semiconductor. Advanced Functional Materials, 2023, 33, .	14.9	13
2979	Highly deformable Ag2Te1-xSex-based thermoelectric compounds. Materials Today Physics, 2023, 33, 101051.	6.0	1
2980	Roadmap on energy harvesting materials. JPhys Materials, 2023, 6, 042501.	4.2	19
2981	Enhancement of Thermoelectric Performance for CuCl Doped P-Type Cu2Sn0.7Co0.3S3. Materials, 2023, 16, 2395.	2.9	2
2982	Advances in Ag ₂ Se-based thermoelectrics from materials to applications. Energy and Environmental Science, 2023, 16, 1870-1906.	30.8	35
2983	Enhanced thermoelectric properties of n-type CoSb3-based composites by incorporating In particles. Ceramics International, 2023, , .	4.8	3
2984	Fine electron and phonon transports manipulation by Mn compensation for high thermoelectric performance of Sb2Te3(SnTe)n materials. Materials Today Physics, 2023, 33, 101055.	6.0	2
2985	First-Principle Calculations to Investigate the Elastic, Thermoelectric, and Electronic Performances of XRhSn (X = V, Nb, Ta) Half-Heusler Compounds. Journal of Superconductivity and Novel Magnetism, O, , .	, 1.8	1
2986	Multiple electron & phonon scattering effect achieves highly efficient thermoelectricity due to nanostructuring. Materials Today Physics, 2023, 33, 101053.	6.0	0
2987	High thermoelectric efficiency realized in SnSe crystals via structural modulation. Nature Communications, 2023, 14, .	12.8	20

ARTICLE IF CITATIONS Best thermoelectric efficiency of ever-explored materials. IScience, 2023, 26, 106494. 2988 6 4.1 Toughening Thermoelectric Materials: From Mechanisms to Applications. International Journal of 2989 4.1 Molecular Sciences, 2023, 24, 6325. Band Modification and Localized Lattice Engineering Leads to High Thermoelectric Performance in Ge 2990 10.0 4 and Bi Codoped SnTe–AgBiTe₂ Alloys. Small, 2023, 19, . Alloyed triple half-Heuslers: a route toward high-performance thermoelectrics with intrinsically 2991 low lattice thermal conductivity. Journal of Materials Chemistry A, O, , . Ab initio study of fundamental properties of ACdX3 (A = K, Rb, Cs; and X = F, Cl, Br) halide perovskite 2992 5.7 2 compounds. Émergent Materials, 2023, 6, 1009-1025. Balancing electron and phonon scatterings while tailoring carrier concentration in SnTe for enhancing thermoelectric performance. Journal of the European Ceramic Society, 2023, 43, 4791-4798. 2993 5.7 Thermoelectric properties of monolayer Cu<sub>2</sub><i>X</i>. Wuli 2994 0.5 0 Xuebao/Acta Physica Sinica, 2023, 72, 086301. Fast fabrication of SnTe <i>via</i> a non-equilibrium method and enhanced thermoelectric properties 2995 5.5 by medium-entropy engineering. Journal of Materials Chemistry C, 2023, 11, 5363-5370. High thermoelectric performance of two-dimensional SiPGaS/As heterostructures. Nanoscale, 2023, 2996 5.6 3 15, 7302-7310. Physics and technology of thermoelectric materials and devices. Journal Physics D: Applied Physics, 2.8 2023, 56, 333001. High thermoelectric performance of TlInSe3 with ultra-low lattice thermal conductivity. Frontiers in 2998 0 2.1 Physics, 0, 11, . Realizing Plain Optimization of the Thermoelectric Properties in BiCuSeO Oxide via 2999 5.7 Self-Substitution-Induced Lattice Dislocations. Research, 2023, 6, . Unraveling the Role of Entropy in Thermoelectrics: Entropy-Stabilized Quintuple Rock Salt 3000 13.7 3 PbGeSnCd_{<i>x</i>}Te_{3+<i>x</i>}. Journal of the American Chemical Society, 0, , . Origin of improved average power factor and mechanical properties of SnTe with high-dose Bi2Te3 alloying. Ceramics International, 2023, 49, 21916-21922. 4.8 Flexible Thermoelectrics Based on Plastic Inorganic Semiconductors. Advanced Materials 3002 5.89 Technologies, 2023, 8, . cfc^{μ} eme $-Mä^{1}cc^{\mu}\mu\delta c$ » "æž,.. Scientia Sinica: Physica, Mechanica Et Astronomica, 2023, , . 0.4 Spinâ€"Orbit-Coupling-Induced Topological Transition and Anomalously Strong Intervalley Scattering 3004 in Two-Dimensional Bismuth Allotropes with Enhanced Thermoelectric Performances. ACS Applied 8.0 1 Materials & amp; Interfaces, 2023, 15, 19545-19559. Layer-Structured GaGeTe Compound as a Promising Thermoelectric Material. ACS Applied Energy 5.1 Materials, 2023, 6, 4264-4270

#	Article	IF	CITATIONS
	Ultralow lattice thermal conductivity of binary compounds A ₂ B (A = Cs, Rb & B = Se,) Tj ETQqO	0 0 rgBT /	Overlock 10
3006	12157-12164.	2.8	5
3007	Metavalent Bonding-Mediated Dual 6s ² Lone Pair Expression Leads to Intrinsic Lattice Shearing in n-Type TlBiSe ₂ . Journal of the American Chemical Society, 2023, 145, 9292-9303.	13.7	18
3008	A machine learning methodology to investigate the lattice thermal conductivity of defected PbTe. Journal of Materials Chemistry A, 2023, 11, 10612-10627.	10.3	3
3009	Electronic properties and passivation mechanism of AlGaN/GaN heterojunction with vacancies: a DFT study. Physica Scripta, 2023, 98, 055405.	2.5	1
3010	Structural, electronic and thermoelectric properties of SnTe with dilute co-doping of Ag and Cu. Journal of Alloys and Compounds, 2023, 954, 170182.	5.5	3
3011	Reproducible high thermoelectric figure of merit in Ag2Se. Applied Physics Letters, 2023, 122, .	3.3	4
3012	A Deep Neural Network Potential to Study the Thermal Conductivity of MnBi2Te4 and Bi2Te3/MnBi2Te4 Superlattice. Journal of Electronic Materials, 0, , .	2.2	0
3013	Thermoelectric Performance of Surface-Engineered Cu _{1.5–<i>x</i>} Te–Cu ₂ Se Nanocomposites. ACS Nano, 2023, 17, 8442-8452.	14.6	6
3014	Unusual transport and impact of nonparabolic electronic band structure on the thermoelectric performance in <i>nâ€</i> type In ₄ Se ₃ based thermoelectric materials. Physica Status Solidi (B): Basic Research, 0, , .	1.5	2
3015	Characterizations of thermoelectric ceramics. , 2023, , 305-326.		0
3016	Ultralow Lattice Thermal Conductivity and High Thermoelectric Performance in Ge _{1–<i>x</i>–<i>y</i>} Bi _{<i>x</i>} Ca _{<i>y</i>} Te with Ultrafine Ferroelectric Domain Structure. ACS Applied Materials & Interfaces, 2023, 15, 21187-21197.	8.0	1
3017	Synthesis method of thermoelectrics. , 2023, , 283-303.		0
3018	Fundamentals of thermoelectrics. , 2023, , 259-281.		1
3019	Mechanistic Insights into the Formation of Thermoelectric TiNiSn from In Situ Neutron Powder Diffraction. Chemistry of Materials, 2023, 35, 3694-3704.	6.7	1
3020	Thermoelectric properties of SiC nanocomposite Mg2Si0.4Sn0.6 with Sb doping prepared by vacuum induction levitation melting and spark plasma sintering. Vacuum, 2023, 213, 112135.	3.5	2
3021	Simultaneous Enhancement of the Power Factor and Phonon Blocking in Nb-Doped WSe ₂ . ACS Applied Materials & Interfaces, 2023, 15, 22167-22175.	8.0	2
3022	Ab initio study of phononic thermal conduction in ScAgC half-Heusler. European Physical Journal B, 2023, 96, .	1.5	1
3023	Effects of nano-SiO ₂ on thermoelectric properties of Mg ₃ Sb ₂ -based materials. Wuli Xuebao/Acta Physica Sinica, 2023, 72, 117102.	0.5	0

#	Article	IF	Citations
3024	Co-alloying of Sn and Te enables high thermoelectric performance in Ag ₉ GaSe ₆ . Journal of Materials Chemistry A, 2023, 11, 10901-10911.	10.3	1
3025	Temperature dependences of thermoelectric properties of bulk SiGeAu composites. , 2023, 10, 011001-011001.		0
3026	High thermoelectric performance of Cu2Te1Ââ~Âx Sex alloys synthesized by mechanical alloying and hydrogen decrepitation method. Journal of Materials Science: Materials in Electronics, 2023, 34, .	2.2	0
3027	Charge transfer engineering to achieve extraordinary power generation in GeTe-based thermoelectric materials. Science Advances, 2023, 9, .	10.3	12
3028	High thermoelectric performance of mesostructured closely packed silicon powder. Chemical Physics Letters, 2023, 824, 140563.	2.6	0
3029	Quasi-random distribution of distorted nanostructures enhances thermoelectric performance of high-entropy chalcopyrite. Nano Energy, 2023, 112, 108493.	16.0	4
3030	Copper-Based Diamond-like Thermoelectric Compounds: Looking Back and Stepping Forward. Materials, 2023, 16, 3512.	2.9	0
3031	Effects of Sn and In Double-Doping on the Thermoelectric Performance of Cu3Sb1-x-ySnxInyS4 Famatinites. Journal of Korean Institute of Metals and Materials, 2023, 61, 355-362.	1.0	2
3032	Enhancing thermoelectric performance of n-type Bi2Te2.7Se0.3 through the incorporation of MnSb2Se4 nanoinclusions. Chemical Engineering Journal, 2023, 467, 143397.	12.7	4
3033	Tuning the lattice thermal conductivity of Sb ₂ Te ₃ by Cr doping: a deep potential molecular dynamics study. Physical Chemistry Chemical Physics, 2023, 25, 15422-15432.	2.8	2
3035	Tuning the Saturated Vapor Pressure of Solvothermal Synthesis to Boost the Thermoelectric Performance of Pristine Bi ₂ Te ₃ Polycrystals by Anisotropy Strengthening. ACS Applied Energy Materials, 2023, 6, 6227-6236.	5.1	3
3036	Lattice plainification advances highly effective SnSe crystalline thermoelectrics. Science, 2023, 380, 841-846.	12.6	75
3037	Modeling and property study of thermoelectric converter based on subwavelength photothermal absorption structure. Physica B: Condensed Matter, 2023, 664, 415024.	2.7	1
3038	Significant reduction of the lattice thermal conductivity in antifluorites via a split-anion approach. Physical Review B, 2023, 107, .	3.2	0
3039	A large-area bionic skin for high-temperature energy harvesting applications. Nano Research, 2023, 16, 10245-10255.	10.4	5
3040	Unveiling the mechanical and dynamical stability to the contribution of transport properties of FeNbSb: A first principle approach. Computational Condensed Matter, 2023, 36, e00821.	2.1	2
3041	Selective Scatterings of Phonons and Electrons in Defective Halfâ€Heusler Nb _{1â^`} _{<i>δ</i>} CoSb for the Figure of Merit <i>zT</i> > 1. Small, 0, , .	10.0	0
3042	Vacancy controlled nanoscale cation ordering leads to high thermoelectric performance. Energy and Environmental Science, 2023, 16, 3110-3118.	30.8	12

#	Article	IF	CITATIONS
3043	Enhancement of Thermoelectric Performance by Doping to Reduce Degeneracy. Physica Status Solidi - Rapid Research Letters, 2024, 18, .	2.4	0
3044	Substituted (P, As, Sb, S and Se) two-dimensional Bi ₂ Te ₃ monolayer under stress at high temperature: achieving high thermoelectric performance. New Journal of Chemistry, 2023, 47, 13309-13319.	2.8	1
3045	High Thermoelectric Performance in 2D Sb ₂ Te ₃ and Bi ₂ Te ₃ Nanoplate Composites Enabled by Energy Carrier Filtering and Low Thermal Conductivity. ACS Applied Electronic Materials, 0, , .	4.3	1
3046	Half-Heusler alloys as emerging high power density thermoelectric cooling materials. Nature Communications, 2023, 14, .	12.8	10
3047	Opening the Bandgap of Metallic Halfâ€Heuslers via the Introduction of d–d Orbital Interactions. Advanced Science, 2023, 10, .	11.2	4
3048	Anomalous thermal transport in MgSe with diamond phase under pressure. Physical Review B, 2023, 107, .	3.2	1
3049	Realizing the thermoelectric performance in cobalt doped p-CuO semiconductor by valance band flattening and effective phonon scattering approach. Physica B: Condensed Matter, 2023, 665, 415047.	2.7	1
3050	Surface Chemistry and Band Engineering in AgSbSe ₂ : Toward High Thermoelectric Performance. ACS Nano, 2023, 17, 11923-11934.	14.6	6
3051	Thermoelectric Properties of n-Type Bi4O4SeX2 (X = Cl, Br). Materials, 2023, 16, 4329.	2.9	0
3052	Disordered configuration leads to decoupled conductivity and thermopower. Cell Reports Physical Science, 2023, 4, 101457.	5.6	0
3053	Unravelling the regulating role of strain engineering on the phonon dispersion, mechanical behavior, and electronic transport properties of pentagonal PtTe2 monolayer. Vacuum, 2023, 215, 112343.	3.5	2
3054	The origin of shifted fermi level and improved thermoelectric performance of monolayer BiCuSeO under pressures. Solid State Communications, 2023, 371, 115261.	1.9	0
3056	Review of current ZT > 1 thermoelectric sulfides. Journal of Materiomics, 2024, 10, 218-233.	5.7	7
3057	Semiclassical electron and phonon transport from first principles: application to layered thermoelectrics. Journal of Computational Electronics, 0, , .	2.5	0
3059	Enhanced thermoelectric performance of Sb-doped Mg2Si0.4Sn0.6 via doping, alloying and nanoprecipitation. Journal of Materiomics, 2024, 10, 285-292.	5.7	0
3060	Anisotropic thermoelectric properties in hydrogenated nitrogen-doped porous graphene nanosheets. Physical Chemistry Chemical Physics, 0, , .	2.8	1
3061	Overdamped Phonon Diffusion and Nontrivial Electronic Structure Leading to a High Thermoelectric Figure of Merit in KCu ₅ Se ₃ . Journal of the American Chemical Society, 2023, 145, 14981-14993.	13.7	7
3062	Compositing effects for high thermoelectric performance of Cu2Se-based materials. Nature Communications, 2023, 14, .	12.8	26

#	Article	IF	CITATIONS
3063	Enhanced Thermoelectric Performance and Low Thermal Conductivity in Cu ₂ GeTe ₃ with Identified Localized Symmetry Breakdown. Inorganic Chemistry, 2023, 62, 7273-7282.	4.0	0
3064	Ultra-Low Lattice Thermal Conductivity Enables High Thermoelectric Properties in Cu and Y Codoped SnTe via Multi-Scale Composite Nanostructures. ACS Sustainable Chemistry and Engineering, 2023, 11, 7541-7551.	6.7	2
3065	Tuning Thermoelectric Properties of Spin-Coated Cu2SnS3 Thin Films by Annealing. Journal of Electronic Materials, 2023, 52, 5396-5400.	2.2	1
3066	Polarity switching via defect engineering in Cu doped SnSe _{0.75} S _{0.25} solid solution for mid-temperature thermoelectric applications. Materials Research Express, 2023, 10, 056507.	1.6	0
3067	In-doping induced resonant level and thermoelectric performance enhancement in n-type GeBi2Te4 single crystals with intrinsically low lattice thermal conductivity. Chemical Engineering Journal, 2023, 467, 143529.	12.7	4
3068	Boosting the power factor and thermoelectric performance in eco-friendly Cu3SbS4 by twin boundary and grain boundary phase. Chemical Engineering Journal, 2023, 468, 143559.	12.7	3
3069	Topological quantum magnets for transverse thermoelectric energy conversion. Materials Chemistry Frontiers, 0, , .	5.9	0
3070	Performance evolution of thermoelectric modules under constant heat flux. Materials Today Physics, 2023, 35, 101136.	6.0	2
3071	Extremely Low Lattice Thermal Conductivity Leading to Superior Thermoelectric Performance in Cu ₄ TiSe ₄ . ACS Applied Materials & Interfaces, 2023, 15, 32453-32462.	8.0	3
3072	Flexible Ag–S–Te System with Promising Room-Temperature Thermoelectric Performance. ACS Applied Materials & Interfaces, 2023, 15, 33605-33611.	8.0	5
3073	Two-channel thermal transport and scattering channel of high-temperature phase SnSe using temperature-dependent effective potential. Materials Today Communications, 2023, 36, 106590.	1.9	0
3074	Achieving significant enhancement of thermoelectric power factor of hexagonal PdTe2 monolayer by using strain engineering. Journal of Physics and Chemistry of Solids, 2023, 181, 111531.	4.0	0
3075	Remarkable average thermoelectric performance of the highly oriented Bi(Te, Se)-based thin films and devices. Journal of Materiomics, 2024, 10, 366-376.	5.7	0
3076	Advancing Thermoelectric Materials: A Comprehensive Review Exploring the Significance of One-Dimensional Nano Structuring. Nanomaterials, 2023, 13, 2011.	4.1	4
3077	Electrical and Thermal Transport Properties of Ge _{1–} <i>_x</i> Pb <i>_x</i> Cu <i>_y</i> Sb <i>_yAdvanced Functional Materials, 2023, 33, .</i>	>T ₽\$.@ <sul< td=""><td>o>2<i< td=""></i<></td></sul<>	o> 2 <i< td=""></i<>
3078	Heavy Rare Earth Element Gd Enhancing Thermoelectric Performance in p-Type Polycrystalline SnSe via Optimizing Carrier Transport and Density of States. Chemical Research in Chinese Universities, 2023, 39, 690-696.	2.6	0
3079	Beyond phase-change materials: Pseudo-binary (GeTe)n(Sb2Te3)m alloys as promising thermoelectric materials. Materials Today Physics, 2023, 36, 101167.	6.0	2
3080	Electronic transport computation in thermoelectric materials: from ab initio scattering rates to nanostructures. Journal of Computational Electronics, 0, , .	2.5	0

#	Article	IF	CITATIONS
3081	Ag ₂ Se Nanorod Arrays with Ultrahigh Room Temperature Thermoelectric Performance and Superior Mechanical Properties. ACS Applied Materials & Interfaces, 2023, 15, 35001-35013.	8.0	1
3082	Modeling of structural, electronic, optical, and thermoelectric properties of CsPb(I1-xBrx)3 (x=0, 1, 2,) Tj ETQq1 1	0,784314 3.9	rgBT /Overl
3083	A novel valence-balanced double half-Heusler Ti2Zr2Hf2NbVFe5Ni3Sb8 alloy by high entropy engineering. Materials Today Physics, 2023, 36, 101172.	6.0	2
3084	Effects of Dimensionality Reduction for High-Efficiency Mg-Based Thermoelectrics. , 0, , .		0
3085	Anomalous Ultralow Lattice Thermal Conductivity in Mixed-Anion Ba ₄ Sb ₂ Se and Ba ₄ Sb ₂ Te. ACS Applied Electronic Materials, 2023, 5, 4268-4274.	4.3	2
3086	Enhancing thermoelectric performance in P-type Mg3Sb2-based Zintls through optimization of band gap structure and nanostructuring. Journal of Materials Science and Technology, 2024, 170, 25-32.	10.7	2
3087	Enhanced Thermoelectric Performance of a HfS2 Bilayer by Strain Engineering. Journal of Electronic Materials, 2023, 52, 6537-6550.	2.2	3
3088	Enhancing the Thermoelectric Properties via Modulation of Defects in <i>P</i> â€Type MNiSnâ€Based (M =) Tj ETÇ	0q110.78	4314 rgB⊺ 1
3089	High-performance Sb2Si2Te6 thermoelectric device. Materials Today Energy, 2023, 37, 101370.	4.7	1
3090	Strengthened interlayer interaction and improved room-temperature thermoelectric performance of Ag-doped n-type Bi2Te2.7Se0.3. Science China Materials, 2023, 66, 3651-3658.	6.3	2
3091	The role of spin in thermoelectricity. Nature Reviews Physics, 2023, 5, 466-482.	26.6	5
3093	Significantly improved thermoelectric performance of SnSe originating from collaborative adjustment between valence and conduction bands, mass fluctuations, and local strain. Physical Chemistry Chemical Physics, 0, , .	2.8	1
3094	Interpretable Machine Learning Workflow for Evaluating and Analyzing the Performance of High-Entropy GeTe-Based Thermoelectric Materials. ACS Applied Electronic Materials, 2023, 5, 4523-4533.	4.3	2
3095	First principles quantum analysis of structural, electronic, optical and thermoelectric properties of XCu2GeQ4 (X = Ba, Sr and Q = S, Se) for energy applications. Optical and Quantum Electronics	, <mark>2</mark> 023, 55	,6 ,.
3096	Enhanced thermoelectric performance of p-type Bi2Si2Te6 enabled via synergistically optimizing carrier concentration and suppressing bipolar effect. Materials Today Physics, 2023, 37, 101185.	6.0	1
3097	Large Improvement of Thermoelectric Performance by Magnetism in Coâ€Based Fullâ€Heusler Alloys. Advanced Science, 2023, 10, .	11.2	2
3098	Lattice modulation and electronic band optimization in Q-doped SnTe-GeTe alloys (Q = Bi, Sb, and Ag). Science China Materials, 2023, 66, 3659-3669.	6.3	1
3099	Evolution of Thermoelectric Generators: From Application to Hybridization. Small, 2023, 19, .	10.0	6

ARTICLE IF CITATIONS 3D Printing of Bi₂Te₃-Based Thermoelectric Materials with High Performance 3100 8.0 0 and Shape Controllability. ACS Applied Materials & amp; Interfaces, 2023, 15, 38623-38632. Stacking fault-induced strengthening mechanism in thermoelectric semiconductor Bi2Te3. Matter, 10.0 2023, 6, 3087-3098. Correlation of rattlers with thermal transport and thermoelectric performance. Physical Chemistry 3102 2 2.8 Chemical Physics, 2023, 25, 22467-22476. A study of iron-doped SiGe growth for thermoelectric applications. Journal of Alloys and Compounds, 2023, 967, 171700. Charge transport and thermopower in the electron-doped narrow gap semiconductor <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>Ca</mml:mi><mml:mrow><mml:mn>1</mn mathvariant="normal">O</mml:mi><mml:mn>4</mml:mn></mml:msub></mml:mrow></mml:mrath>. 3104 Physical Review Materials, 2023, 7, Large mass field fluctuation and lattice anharmonicity effects promote thermoelectric and mechanical performances in NbFeSb half-Heusler alloys <i>via</i> Ti/Zr/Hf stepwise doping. Journal of Materials Chemistry A, 2023, 11, 19036-19045. 10.3 Improved figure of merit (z) at low temperatures for superior thermoelectric cooling in Mg3(Bi,Sb)2. 3106 12.8 7 Nature Communications, 2023, 14, . Manipulating lattice distortion to promote average thermoelectric power factor in metavalently 7.9 bonded AgBiSe2. Acta Materialia, 2023, 259, 119260. Chemical Bonding Tuned Lattice Anharmonicity Leads to a High Thermoelectric Performance in Cubic 3108 13.8 2 AgSnSbTe₃. Angewandte Chemie - International Edition, 2023, 62, . Chemical Bonding Tuned Lattice Anharmonicity Leads to a High Thermoelectric Performance in Cubic 3109 AgSnSbTe₃. Angewandte Chemie, 2023, 135, . Recent progress of thermoelectric applications for cooling/heating, power generation, heat flux sensor and potential prospect of their integrated applications. Thermal Science and Engineering 3110 4 2.7 Progress, 2023, 45, 102064. Unlocking the potential of metal halide perovskite thermoelectrics through electrical doping: A 11.9 critical review. EcoMat, 2023, 5, . Dimensionality reduction induced synergetic optimization of the thermoelectric properties in Bi₂Si₂X₆ (X=Se, Te) monolayers. Physical Chemistry Chemical 3112 2.8 0 Physics, 0, , . The synergy of Sb doping and vacancy equilibrium charge improves the thermoelectric properties of GeMnTe2. Materials Today Communications, 2023, 37, 107004. 1.9 Ab initio investigation of Co–Ta–Sn Heusler alloys for thermoelectric applications. Computational 3114 2.50 and Theoretical Chemistry, 2023, 1229, 114301. Thermoelectric performance of ternary Cu-based chalcogenide Cu2TiTe3. Applied Physics Letters, 2023, 123,. Entropy-driven structural transition from Tetragonal to Cubic phase: High Thermoelectric 3116 6.0 0 Performance of CuCdInSe3 compound. Materials Today Physics, 2023, 37, 101211. High thermoelectric performance in metallic NiAu alloys via interband scattering. Science Advances, 2023, 9, .

#	Article	IF	CITATIONS
3118	Progress and perspectives in thermoelectric generators for waste-heat recovery and space applications. Journal of Applied Physics, 2023, 134, .	2.5	1
3119	Graphene-assisted synergistic electronic DOS modulation and phonon scattering to improve the thermoelectric performance of Mg ₃ Sb ₂ -based materials. Journal of Materials Chemistry A, 2023, 11, 18811-18819.	10.3	2
3120	<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>β</mml:mi><mml:mtext>â^`: A superior intermediate temperature thermoelectric through complex band geometry and ultralow lattice thermal conductivity. Physical Review Materials, 2023, 7, .</mml:mtext></mml:mrow></mml:math 	l:mtext>< 2.4	mml:msub><
3122	Cubic phase stabilization and thermoelectric performance optimization in AgBiSe2–SnTe system. Materials Today Physics, 2023, 38, 101238.	6.0	1
3123	High-Throughput Screening of High-Performance Thermoelectric Materials with Gibbs Free Energy and Electronegativity. Materials, 2023, 16, 5399.	2.9	0
3124	xmIns:mml="http://www.w3.org/1998/Math/Math/MathML"altimg="si21.svg" display="inline" id="d1e1775"> <mml:mrow><mml:mi mathvariant="normal">Ba</mml:mi><mml:mn>2</mml:mn><mml:mi mathvariant="normal">MnX<mml:mn>3</mml:mn></mml:mi </mml:mrow> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si22.svg" display="inline"</mml:math 		

#	Article	IF	CITATIONS
3138	Reinforcing bond covalency for high thermoelectric performance in Cu3SbSe4-based thermoelectric material. Science China Materials, 2023, 66, 3644-3650.	6.3	2
3139	Remarkable Thermoelectric Efficiency of Cubic Antiperovskites Rb3X(Se & Te)I with Strong Anharmonicity. Journal of Materials Chemistry A, 0, , .	10.3	0
3140	Layered GaGeTe Thermoelectric Materials with Multivalley Conduction Bands. ACS Applied Energy Materials, 2023, 6, 8889-8898.	5.1	1
3141	Lattice dynamics and thermal transport of PbTe under high pressure. Physical Review B, 2023, 108, .	3.2	3
3142	Realizing high thermoelectric performance in p-type CaZn2Sb2-alloyed Mg3Sb2-based materials via band and point defect engineering. Chemical Engineering Journal, 2023, 475, 145988.	12.7	1
3143	An overview of environmental energy harvesting by thermoelectric generators. Renewable and Sustainable Energy Reviews, 2023, 187, 113723.	16.4	7
3144	Intrinsic conductivity as an indicator for better thermoelectrics. Energy and Environmental Science, 2023, 16, 5381-5394.	30.8	2
3145	Effect of Heat Treatment Temperature on the Crystallization Behavior and Microstructural Evolution of Amorphous NbCo _{1.1} Sn. ACS Applied Materials & amp; Interfaces, 2023, 15, 46064-46073.	8.0	0
3146	Thermoelectric Performance of Tetrahedrite (Cu ₁₂ Sb ₄ S ₁₃) Thin Films: The Influence of the Substrate and Interlayer. ACS Applied Electronic Materials, 0, , .	4.3	0
3147	Constructing quasi-layered and self-hole doped SnSe oriented films to achieve excellent thermoelectric power factor and output power density. Science Bulletin, 2023, 68, 2769-2778.	9.0	2
3148	Enhanced figure of merit for famatinite Cu3SbSe4 via band structure tuning and hierarchical architecture. Journal of Materiomics, 2023, 9, 1263-1272.	5.7	0
3149	Strong Electron–Phonon and Phonon–Phonon Interactions Lead to High Thermoelectric Performances in Lead Phosphorene via Symmetry Breaking. Advanced Theory and Simulations, 2023, 6, .	2.8	0
3150	p-type Sn0.98Ag0.02Se with low thermal conductivity synthesized by hydrothermal method. Journal of the European Ceramic Society, 2024, 44, 1636-1646.	5.7	1
3151	Realizing the Ultralow Lattice Thermal Conductivity of Cu3SbSe4 Compound via Sulfur Alloying Effect. Nanomaterials, 2023, 13, 2730.	4.1	0
3152	A homogeneous composite approach for improved thermoelectric performance: Repressing lattice thermal conductivity in substoichiometric WO2.90 and WO2.72. Ceramics International, 2023, , .	4.8	0
3153	High-throughput deformation potential and electrical transport calculations. Npj Computational Materials, 2023, 9, .	8.7	3
3154	Giant Thermoelectric Effect in Rare Earth Sulfoiodides. Journal of Physical Chemistry C, 2023, 127, 20572-20581.	3.1	1
3155	Enhanced thermoelectric performance of CoSbS via Se doping at dual Sb and S sites. Journal of Alloys and Compounds, 2024, 970, 172555.	5.5	Ο

#	Article	IF	CITATIONS
3156	N-Type Thermoelectric AgBiPbS ₃ with Nanoprecipitates and Low Thermal Conductivity. Inorganic Chemistry, 2023, 62, 17905-17912.	4.0	1
3158	Advances in thermoelectric AgBiSe2: Properties, strategies, and future challenges. Heliyon, 2023, 9, e21117.	3.2	0
3159	Crystal Structure, Electronic Transport, and Improved Thermoelectric Properties of Doped InTe. ACS Applied Electronic Materials, 0, , .	4.3	2
3160	Photoemission Study of the Thermoelectric Group IVâ€VI van der Waals Crystals (GeS, SnS, and SnSe). Advanced Optical Materials, 2024, 12, .	7.3	0
3161	Revealing the Chemical Instability of Mg ₃ Sb _{2–<i>x</i>} Bi _{<i>x</i>} -Based Thermoelectric Materials. ACS Applied Materials & Interfaces, 2023, 15, 50216-50224.	8.0	4
3163	Reduction of working temperature for the large magnitude in thermoelectric dimensionless figure of merit of Ag _{2â°x} Cu _x S. Japanese Journal of Applied Physics, 2023, 62, 111002.	1.5	1
3164	Magnetic frustration driven high thermoelectric performance in the kagome antiferromagnet <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>YMn</mml:mi><mml: Physical Review B, 2023, 108, .</mml: </mml:msub></mml:mrow></mml:math 	mii>6 <td>ml:mn></td>	ml:mn>
3165	Impressive Electronic and Thermal Transports in CsK ₂ Sb: A Thermoelectric Perspective. ACS Applied Energy Materials, 0, , .	5.1	0
3166	High-efficiency segmented thermoelectric power generation modules constructed from all skutterudites. Cell Reports Physical Science, 2023, 4, 101651.	5.6	1
3167	Rashba effect and point-defect engineering synergistically improve thermoelectric performance of the entropy-stabilized Sn _{0.8} Ge _{0.2} Te _{0.8} Se _{0.2} Alloy. Journal of Materials Chemistry A, 0, , .	10.3	0
3168	Adaptable sublattice stabilized high-entropy materials with superior thermoelectric performance. Energy and Environmental Science, 2023, 16, 6046-6057.	30.8	5
3169	Remarkably Weakened Atomic Bonds from Dimeric Antibonding Hybridization and Enhanced Thermoelectric Performance of CdTe ₂ . ACS Applied Energy Materials, 2023, 6, 11385-11395.	5.1	0
3170	Improved Thermoelectric Performance of Sb2Te3 Nanosheets by Coating Pt Particles in Wide Medium-Temperature Zone. Materials, 2023, 16, 6961.	2.9	0
3171	remperature-induced band gap renormalization in <mmi:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mmi:mrow> <mmi:msub> <mmi:mi>Mg </mmi:mi> <mmi:n and <mmi:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mmi:mrow> <mmi:msub> <mmi:mi>Mg </mmi:mi> <mmi:n< td=""><td>3.2</td><td>1</td></mmi:n<></mmi:msub></mmi:mrow></mmi:math </mmi:n </mmi:msub></mmi:mrow></mmi:math 	3.2	1
3173	Physical Review B, 2023, 108, . Mitochondria-targeting Cu ₃ VS ₄ nanostructure with high copper ionic mobility for photothermoelectric therapy. Science Advances, 2023, 9, .	10.3	6
3174	Using Machine Learning Techniques to Discover Novel Thermoelectric Materials. , 0, , .		0
3175	Hg Doping Induced Reduction in Structural Disorder Enhances the Thermoelectric Performance in AgSbTe ₂ . Journal of the American Chemical Society, 2023, 145, 25392-25400.	13.7	3
3176	Thermoelectric properties of binary Mg2Sn and ternary Mg2Sn1â^'xYx (Y = Si, Ge) with the addition of Cu2S. Journal of Alloys and Compounds, 2024, 975, 172915.	5.5	0

#	Article	IF	CITATIONS
3177	Hydrostatic Pressure-Induced Anomalous Enhancement in the Thermoelectric Performance of Monolayer MoS ₂ . ACS Applied Energy Materials, 2023, 6, 11694-11704.	5.1	1
3178	Thermoelectric Properties of LiYSi Half-Heusler Alloy. Springer Proceedings in Materials, 2024, , 89-94.	0.3	0
3179	Advances in n-type Bi2O2Se thermoelectric materials: Progress and perspective. Materials Today Physics, 2023, 39, 101292.	6.0	2
3180	Investigation of low bandgap Rb2InAsCl6 and Rb2InAsBr6 compounds for energy harvesting applications. Chemical Physics Letters, 2023, 833, 140933.	2.6	1
3181	High Performance Thermoelectric Power of Bi _{0.5} Sb _{1.5} Te ₃ Through Synergistic Cu ₂ GeSe ₃ and Se Incorporations. Small, 0, , .	10.0	2
3182	Suppressing Ag ₂ Te nanoprecipitates for enhancing thermoelectric efficiency of AgSbTe ₂ . Nanoscale, 2023, 15, 18283-18290.	5.6	0
3183	Achieving High Carrier Mobility And Thermal Stability in Plainified Rhombohedral GeTe Thermoelectric Materials with <i>zT</i> > 2. Advanced Functional Materials, 2024, 34, .	14.9	5
3184	Facile Synthesis and Enhancement of Thermoelectric Performance with Voltage Generation of Bulk Polycrystalline SnSe by Zn Doping. , 2023, 1, 2954-2964.		0
3185	The Role of Electronic Bandstructure Shape in Improving the Thermoelectric Power Factor of Complex Materials. ACS Applied Electronic Materials, 0, , .	4.3	0
3186	Ultralow Lattice Thermal Conductivity and Extraordinary Thermoelectric Performance in Highly Disordered Culn ₇ Se ₁₁ Layered Compound. Advanced Functional Materials, 2024, 34, .	14.9	0
3187	Large Mobility Enables Higher Thermoelectric Cooling and Power Generation Performance in <i>n</i> -type AgPb _{18+<i>x</i>} SbTe ₂₀ Crystals. Journal of the American Chemical Society, 0, , .	13.7	1
3188	Crystal structure, mechanical, electronic, optical and thermoelectric characteristics of Cs2MCl6 (MÂ=ÂSe, Sn, Te and Ti) cubic double perovskites. Results in Physics, 2024, 56, 107138.	4.1	0
3189	Engineering phonon thermal transport in few-layer PdSe2. Frontiers of Physics, 2024, 19, .	5.0	0
3190	Discovery of the Layered Thermoelectric Compound GeBi ₂ Se ₄ and Accelerating Its Performance Optimization by Machine Learning. Advanced Materials Technologies, 0, ,	5.8	0
3191	Closeâ€packed layer spacing as a practical guideline for structure symmetry manipulation of <scp>IVâ€VI</scp> / <scp>lâ€Vâ€VI₂</scp> thermoelectrics. InformaAnÃ-Materiály, 2024, 6, .	17.3	0
3192	Synergistic modulation of electrical and thermal transport toward promising n-type MgOCuSbSe ₂ thermoelectric performance by MO-intercalated CuSbSe ₂ . Physical Chemistry Chemical Physics, 2023, 25, 31974-31982.	2.8	0
3193	Rare three-valence-band convergence leading to ultrahigh thermoelectric performance in all-scale hierarchical cubic SnTe. Energy and Environmental Science, 2024, 17, 158-172.	30.8	5
3194	New Nanofibrous Structured CsAg ₅ Te ₃ Exhibiting Ultralow Thermal Conductivity and High Figure of Merit. ACS Omega, 2023, 8, 46182-46189.	3.5	0

	CHATION R		
#	Article	IF	CITATIONS
3195	Screening strategy for developing thermoelectric interface materials. Science, 2023, 382, 921-928.	12.6	12
3196	Ultra-low thermal conductivity and improved thermoelectric performance in La2O3-dispersed Bi2Sr2Co2Oy ceramics. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2024, 299, 116976.	3.5	3
3198	Energy-efficient synthesis of porous n-type Pb1â^'xSnxSe1â^'y/(AgCl)z/Pb with high zT. Journal of Alloys and Compounds, 2024, 971, 172748.	5.5	0
3199	Thermoelectric properties of Fe2VAl in the temperature range 300–800 K: A combined experimental and theoretical study. Physica B: Condensed Matter, 2024, 673, 415496.	2.7	0
3200	Wide-temperature-range thermoelectric n-type Mg3(Sb,Bi)2 with high average and peak zT values. Nature Communications, 2023, 14, .	12.8	4
3202	Pressure-induced remarkable four-phonon interaction and enhanced thermoelectric conversion efficiency in CuInTe2. Materials Today Physics, 2023, 39, 101283.	6.0	1
3203	Large power factor, anomalous Nernst effect, and temperature-dependent thermoelectric quantum oscillations in the magnetic Weyl semimetal NdAlSi. Physical Review B, 2023, 108, .	3.2	0
3204	Enhancing the electrical transport properties of two-dimensional semiconductors through interlayer interactions. Energy and Environmental Science, 0, , .	30.8	0
3205	High-Performance Paper-Based Thermoelectric Generator from Cu ₂ SnS ₃ Nanocubes and Bulk-Traced Bismuth. ACS Applied Materials & Interfaces, 2023, 15, 56022-56033.	8.0	1
3206	Enhancement of Thermoelectric Properties of p-Type Bi _{0.4} Sb _{1.6} Te ₃ Incorporated by BaFe ₁₂ O ₁₉ Magnetic Nanoparticles. ACS Applied Energy Materials, 2023, 6, 12013-12021.	5.1	0
3207	High Thermoelectric Performance in Phononâ€Glass Electronâ€Crystal Like AgSbTe ₂ . Advanced Materials, 2024, 36, .	21.0	4
3208	Effects of magnetic Fe doping on the thermoelectric properties of TiNiSn nanomaterials prepared via melt spinning method. Journal of Alloys and Compounds, 2024, 975, 172808.	5.5	0
3209	Enhanced Thermoelectric Performance of <i>P</i> â€Type (Bi,Sb) ₂ Te ₃ by Incorporating Nonâ€Stoichiometric Ag ₅ Te ₃ and Refining Teâ€Se Ratio. Small Methods, 0, , .	8.6	0
3210	Multifunctional GeMnTe ₂ Synergistically Optimizes Thermoelectric Properties of SnTe-In ₂ Te ₃ Alloys. ACS Applied Materials & Interfaces, 0, , .	8.0	0
3211	Enhancing Thermoelectric Performance in Cubic CuCdInSe ₃ Compounds via Pressure-Induced Twin Boundary Engineering. ACS Applied Energy Materials, 0, , .	5.1	0
3213	Influence of lattice strain on the mechanical properties of CoSb3 skutterudites. Materials Today Communications, 2024, 38, 107761.	1.9	0
3214	Unravelling the need for balancing band convergence and resonant level in Sn _{1â^'<i>x</i>â^'<i>y</i>} In _{<i>x</i>} Mn _{<i>y</i>} Te for high thermoelectric performance. Journal of Materials Chemistry A, 2024, 12, 1166-1175.	10.3	1
3215	Hierarchical Phonon Scattering from Nano to Macro Scale in Ag-Nano/TiO ₂ -Micro Particle-Decorated p-type Bismuth Telluride Bulk Composites. ACS Applied Materials & Interfaces, 0, , .	8.0	0

ITATION R

#	ARTICLE	IF	Citations
3217	High Thermoelectric Performance Related to PVDF Ferroelectric Domains in Pâ€Type Flexible PVDFâ€Bi _{0.5} Sb _{1.5} Te ₃ Composite Film. Small, 0, , .	10.0	0
3218	Strainâ€induced effects on thermoelectric performance of layered LaCuOSe. Journal of the American Ceramic Society, 2024, 107, 2973-2985.	3.8	0
3219	Structural, electronic, optical, and thermoelectric properties of CsPbI3-yBry (yÂ=Â0.5, 1.5, 2.5) compounds: First-principle study. Journal of the Taiwan Institute of Chemical Engineers, 2024, 155, 105304.	5.3	0
3220	Electron-hole dichotomy and enhancement of the thermoelectric power factor by electron-hole-asymmetric relaxation time: A model study on a two-valley system with strong intervalley scattering. Physical Review B, 2023, 108, .	3.2	0
3221	Weakening the spinâ \in "orbital coupling for band convergence. Applied Physics Letters, 2023, 123, .	3.3	0
3222	Estimation of the Highest Thermoelectric Performance of the Bi-Doped SnTe at Room Temperature. Journal of Korean Institute of Metals and Materials, 2023, 61, 915-922.	1.0	0
3223	Effective mass regulating of \hat{l} ±-PbSe under pressure. AIP Advances, 2023, 13, .	1.3	0
3224	Achieving high quality factor and enhanced thermoelectric performance in polycrystalline SnS by Ag doping and Se alloying. Applied Physics Letters, 2023, 123, .	3.3	0
3225	High power factor and ultra-low lattice thermal conductivity in Sn W Te alloys via interstitial defects modulation. Journal of Alloys and Compounds, 2024, 976, 173187.	5.5	0
3226	Enhanced thermoelectric performance and mechanical strength in <scp>GeTe</scp> enable power generation and cooling. InformaÄnÃ-Materiály, 0, , .	17.3	0
3227	Anomalous Thermal Conductivity and High Thermoelectric Performance of Cubic Antiperovskites K ₃ IX(Se & Te). Chemistry of Materials, 0, , .	6.7	0
3228	Realizing High Thermoelectric Properties in Bi ₂ S ₃ Bulk via Band Engineering and Nanorods Compositing. Small, 0, , .	10.0	1
3229	Highâ€Entropy Cubic Pseudoâ€Ternary Ag ₂ (S, Se, Te) Materials With Excellent Ductility and Thermoelectric Performance. Advanced Energy Materials, 2024, 14, .	19.5	2
3230	New Thermoelectric Material and Devices: Naphthol[1,3]oxazine and the Performance Compared with Bismuth Telluride. ACS Sustainable Chemistry and Engineering, 0, , .	6.7	0
3231	Additive manufacturing of thermoelectric materials: materials, synthesis and manufacturing: a review. Journal of Materials Science, 0, , .	3.7	0
3232	Ultrahigh thermoelectric power factor achieved in Yb filled CoSb3 skutterudites through additional Al doping. Chemical Engineering Journal, 2024, 481, 148457.	12.7	2
3233	Full-landscape selection rules of electrons and phonons and temperature-induced effects in 2D silicon and germanium allotropes. Npj Computational Materials, 2024, 10, .	8.7	0
3234	Lattice dynamics and thermoelectric properties of diamondoid materials. , 2024, 3, 5-28.		3

#	Article	IF	CITATIONS
3235	Anomalous enhancement of thermoelectric power factor in multiple two-dimensional electron gas system. Nature Communications, 2024, 15, .	12.8	0
3236	Germanium-telluride-based thermoelectrics. , 2024, 1, 109-123.		0
3237	Rattling vibrations and occupied antibonding states yield intrinsically low thermal conductivity of the Zintl-phase compound KSrBi. Physical Review B, 2023, 108, .	3.2	0
3238	Thermoelectric power factor of composites. Physical Review Applied, 2024, 21, .	3.8	0
3239	Highâ€Throughput Strategies in the Discovery of Thermoelectric Materials. Advanced Materials, 2024, 36, .	21.0	1
3240	Simultaneously Enhanced Thermoelectric and Mechanical Performance in SnSe-Based Nanocomposites Produced via Sintering SnSe and KCu ₇ S ₄ Nanomaterials. ACS Applied Materials & Interfaces, 2024, 16, 2240-2250.	8.0	0
3241	Efficient first-principles electronic transport approach to complex band structure materials: the case of n-type Mg3Sb2. Npj Computational Materials, 2024, 10, .	8.7	0
3242	Grand herringbone architecture securing the high thermoelectric performance of GeTe. Materials Today Physics, 2024, 41, 101329.	6.0	0
3243	Giant Band Convergence and High Thermoelectric Performance in <i>n</i> â€Type PbSe Induced by Spinâ€Orbit Coupling. Advanced Functional Materials, 2024, 34, .	14.9	1
3244	Modulating Thermoelectric Properties of the MoSe ₂ /WSe ₂ Superlattice Heterostructure by Twist Angles. ACS Applied Materials & Interfaces, 2024, 16, 3325-3333.	8.0	0
3245	Enhanced Thermoelectric Performance of Mg–Sn Thin Films: Role of Mg ₉ Sn ₅ Phase and One-Dimensional Electronic Structure. ACS Applied Materials & Interfaces, 2024, 16, 3520-3531.	8.0	0
3246	Intensified Phonon Scattering in ZrCoBi Half-Heusler by Noble Metals Doping. ACS Applied Materials & Interfaces, 2024, 16, 3502-3508.	8.0	0
3247	Hierarchical nano-/micro-architecture phonon scattering of p-type Bismuth telluride bulk composites with Ag-TiO2 nano particles synthesized by fluidized bed spray coating method. Journal of Alloys and Compounds, 2024, 979, 173503.	5.5	1
3248	Cold Sintering Mediated Engineering of Polycrystalline SnSe with High Thermoelectric Efficiency. ACS Applied Materials & Interfaces, 2024, 16, 4671-4678.	8.0	0
3249	Low Thermal Conductivity and High Thermoelectric Performance of Nb-Doped Quarternary Mixed Crystal Nb _{0.05} W _{0.95-x} Mo _{<i>x</i>} (Se _{1–<i>x</i>} S _{<i>x</i> ACS Applied Materials & amp; Interfaces, 2024, 16, 4836-4846.}	:/ <mark>8.0</mark> :/sub>) <si< td=""><td>ıb>2.</td></si<>	ıb>2.
3250	Heat pipe-based electric generator for waste heat harvesting. Applied Thermal Engineering, 2024, 242, 122482.	6.0	0
3251	Exceptional thermoelectric performance in AB ₂ Sb ₂ -type Zintl phases through band shaping. Energy and Environmental Science, 2024, 17, 1416-1425.	30.8	0
3252	Novel room-temperature full-Heusler thermoelectric material Li ₂ TISb. Physical Chemistry Chemical Physics, 2024, 26, 6774-6781.	2.8	0

#	Article	IF	CITATIONS
3253	Unveiling disparities and promises of Cu and Ag chalcopyrites for thermoelectrics. Physical Review B, 2024, 109, .	3.2	0
3254	Large effective mass and ultralow thermal conductivity lead to high thermoelectric performance in the high-entropy semiconductor MnGeAgBiTe ₄ . Journal of Materials Chemistry A, 2024, 12, 5464-5473.	10.3	0
3255	A multi-band refinement technique for analyzing electronic band structure of thermoelectric materials. Cell Reports Physical Science, 2024, 5, 101781.	5.6	0
3256	Elevating energy device potential: exploring optoelectronic and thermoelectric advantages in stable double perovskites K2NaInX6 (X = F, Cl, Br, I) via Ab initio analysis. Journal of Materials Science, 2024, 59 1989-2007.	,3.7	0
3257	Band and vacancy engineering in SnTe to improve its thermoelectric performance. Journal of Materials Chemistry A, 2024, 12, 5357-5365.	10.3	0
3258	Excellent high-pressure-sustainable thermoelectric performance driven by metal-insulator topological phase transition in semimetal CaCdGe. Physical Review B, 2024, 109, .	3.2	0
3259	Unlocking the potential of coinage-based quaternary chalcogenides for thermoelectricity. Journal of Materials Chemistry A, 2024, 12, 5846-5857.	10.3	0
3260	Exploring thermal properties of PbSnTeSe and PbSnTeS high entropy alloys with machine-learned potentials. Modelling and Simulation in Materials Science and Engineering, 2024, 32, 035008.	2.0	0
3261	CdSe Quantum Dots Enable High Thermoelectric Performance in Solutionâ€Processed Polycrystalline SnSe. Small, 0, , .	10.0	0
3262	New insight of thermodynamic cycle in thermoelectric power generation analyses: Literature review and perspectives. Energy, 2024, 292, 130553.	8.8	0
3263	Ultra-high thermoelectric performance achieved in only ternary lead sulfide through unconventional halogen element doping. Materials Today Physics, 2024, 42, 101364.	6.0	0
3264	Realization of low potential barrier in MoS ₂ /rGO heterojunction with enhanced electrical conductivity for thin film thermoelectric applications. Nanotechnology, 2024, 35, 205403.	2.6	0
3265	Strong Intervalley Scattering-Induced Renormalization of Electronic and Thermal Transport Properties and Selection Rule Analysis in 2D Tellurium. ACS Nano, 0, , .	14.6	0
3266	New Recipe for Enhancing the Thermoelectric Performance in Topological Materials Carrying Singleâ€Pair Weyl Points Fermions and Phonons. Advanced Electronic Materials, 0, , .	5.1	0
3267	Two-dimensional Li-based ternary chalcogenides LiMTe2 (M = Al, Ga, and In): Promising high-temperature thermoelectric materials. Vacuum, 2024, 222, 113023.	3.5	0
3268	Multiple conduction bands with strong valley anisotropy yielding ultrahigh thermoelectric power factors in n-type elemental Ge. Materials Today Physics, 2024, 42, 101366.	6.0	0
3269	Enhanced thermoelectric performance of n-type Bi2(Se, Te)3 bulk nanocomposites through Ti doping. Ceramics International, 2024, 50, 16301-16308.	4.8	0
3270	Gradient Nanotwins and Enhanced Weighted Mobility Synergistically Upgrade Bi _{0.5} Sb _{1.5} Te ₃ Thermoelectric and Mechanical Performance. Advanced Functional Materials, 0, , .	14.9	1

#	Article	IF	CITATIONS
3271	Abnormal Thicknessâ€Dependent Thermal Transport in Suspended 2D PdSe ₂ . Small, 0, , .	10.0	0
3272	Ultrahigh thermoelectric performance in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>RbGe</mml:mi><mml:msub><mml: mathvariant="normal">I<mml:mn>3</mml:mn></mml: </mml:msub></mml:mrow><mml:mo>/</mml:mo><mml:mo></mml:mo></mml:math 	mi 1 3n2 row><	a ro ml:mi>Cs
3273	Superlattices: Physical Review B, 2024, 109, . High thermoelectric performance near the Mott–loffe–Regel limit in Cu S0.6Te0.4 meta-phases. Materials Today Physics, 2024, 42, 101371.	6.0	0
3274	Topological Heusler Magnetsâ€Driven Highâ€Performance Transverse Nernst Thermoelectric Generators. Advanced Energy Materials, 0, , .	19.5	0
3275	Instability Mechanism in Thermoelectric Mg ₂ (Si,Sn) and the Role of Mg Diffusion at Room Temperature. Small Science, 0, , .	9.9	1
3276	Stoichiometric manipulation to enhance the thermoelectric and mechanical performance of Ag2Se1+x. Chemical Physics Letters, 2024, 840, 141132.	2.6	0
3277	Temperature and composition insensitivity of thermoelectric properties of high-entropy half-heusler compounds. Acta Materialia, 2024, 268, 119761.	7.9	0
3278	Highly effective solid solution towards high thermoelectric and mechanical performance in Bi–Sb–Te alloys <i>via</i> Trojan doping. Energy and Environmental Science, 2024, 17, 2326-2335.	30.8	0
3279	Progress in the study of binary chalcogenide-based thermoelectric compounds. Journal of Solid State Chemistry, 2024, 334, 124617.	2.9	0
3280	Enhanced thermoelectric properties of FeTe2 by Sb doping prepared by solid-state reaction. Materials Science in Semiconductor Processing, 2024, 174, 108212.	4.0	0
3281	Identifying the promising n-type SmMg2Sb2-based Zintl phase thermoelectric material. Acta Materialia, 2024, 268, 119777.	7.9	0
3282	A New N‶ype High Entropy Semiconductor AgBiPbSe ₂ S with High Thermoelectric and Mechanical Properties. Advanced Functional Materials, 0, , .	14.9	0
3283	Thermoelectric properties of iso-valent Bi substituted n-type Ti2NiCoSnSb high entropy alloys. Intermetallics, 2024, 167, 108233.	3.9	0
3284	Harvesting Thermal Energy through Pyroelectric and Thermoelectric Nanomaterials for Catalytic Applications. Catalysts, 2024, 14, 159.	3.5	0
3285	Comparative Study of the Orientation and Order Effects on the Thermoelectric Performance of 2D and 3D Perovskites. Nanomaterials, 2024, 14, 446.	4.1	0
3286	Effects of four-phonon interaction and vacancy defects on the thermal conductivity of the low-temperature phase of <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline" overflow="scroll"><mml:mi>Sn</mml:mi><mml:mi>Se</mml:mi></mml:math> . Physical Review Applied, 2024, 21, .	3.8	0
3287	Design, prototyping, and optimization of a handheld refrigeration probe system for dental pulp testing. Applied Thermal Engineering, 2024, 245, 122863.	6.0	0
3288	Unlocking the potential of Cu3SbSe3: Ultralow thermal conductivity and enhanced thermoelectric performance. Journal of Solid State Chemistry, 2024, 333, 124642.	2.9	0

#	Article	IF	CITATIONS
3289	High wide-temperature-range thermoelectric performance in n-PbSe integrated with quantum dots. Journal of Materials Chemistry A, 2024, 12, 8583-8591.	10.3	0
3290	Highly stabilized and efficient thermoelectric copper selenide. Nature Materials, 2024, 23, 527-534.	27.5	0
3291	Synergistic Entropy Engineering with Vacancies: Unraveling the Cocktail Effect for Extraordinary Thermoelectric Performance in SnTeâ€Based Materials. Advanced Functional Materials, 0, , .	14.9	0
3292	Microstructure Optimization in the Shearâ€Exfoliated Bi ₆ Cu ₂ Se ₄ O ₆ through Introducing Reduced Graphene Oxide Leads to Wideâ€Ranged Thermoelectric Performance. Advanced Functional Materials, 0, ,	14.9	0
3293	Realizing High Thermoelectric Performance in GeTeâ€Based Supersaturated Solid Solutions. Advanced Energy Materials, 2024, 14, .	19.5	0
3294	Temperature-dependent compression properties and failure mechanisms of ZrNiSn-based half-Heusler thermoelectric compounds. Journal of Materials Science and Technology, 2024, 193, 29-36.	10.7	0
3295	Direct Imaging of Atomic Rattling Motion in a Clathrate Compound. Small Science, 2024, 4, .	9.9	0
3296	Density functional theory prediction of thermoelectric properties of two-dimensional Janus HfXY (Xâ‰Y, X/Y=Cl, Br, I) monolayers with high carrier mobilities. Vacuum, 2024, 224, 113143.	3.5	0
3297	Boosting Thermoelectric Performance via Weakening Carrierâ€Phonon Coupling in BiCuSeOâ€Graphene Composites. Small Methods, 0, , .	8.6	0
3298	Synergistic strategy for enhancing the thermoelectric properties of Bi0.5Sb1.5Te3 with excess Te through low-temperature liquid phase sintering method. Journal of the European Ceramic Society, 2024, 44, 5765-5773.	5.7	0
3299	Boosting Thermoelectric Performance of PbBi ₂ Te ₄ via Reduced Carrier Scattering and Intensified Phonon Scattering. Small, 0, , .	10.0	0
3300	Doping-induced grain refinement contributes to enhanced thermoelectric performance of n-type PbSe at room temperature. Journal of Materials Chemistry A, 2024, 12, 9066-9074.	10.3	0
3301	Enhancing Electrical Transport Performance of Polycrystalline Tin Selenide by Doping Different Elements. Physica Status Solidi (A) Applications and Materials Science, 0, , .	1.8	0
3302	Dealing with the big data challenges in Al for thermoelectric materials. Science China Materials, 2024, 67, 1173-1182.	6.3	0
3303	A Route to High Thermoelectric Performance: Solutionâ€Based Control of Microstructure and Composition in Ag ₂ Se. Advanced Energy Materials, 0, , .	19.5	0
3304	Simultaneous manipulation of electrical and thermal properties to improve the thermoelectric performance of CulnTe2. Journal of Alloys and Compounds, 2024, 987, 174158.	5.5	0
3306	New thermoelectric semiconductors Pb5Sb12+Bi6â^'Se32 with ultralow thermal conductivity. , 2024, 43, 100268.		0