High-frequency, scaled graphene transistors on diamon

Nature

472, 74-78

DOI: 10.1038/nature09979

Citation Report

#	Article	IF	CITATIONS
2	Role of dissipative quantum transport in DC, RF, and self-heating characteristics of short channel graphene FETs. , 2011 , , .		6
3	110 GHz measurement of large-area graphene integrated in low-loss microwave structures. Applied Physics Letters, 2011, 99, .	1.5	96
4	In Situ Electronic Characterization of Graphene Nanoconstrictions Fabricated in a Transmission Electron Microscope. Nano Letters, 2011, 11, 5184-5188.	4.5	56
5	Top-Gated Chemical Vapor Deposition Grown Graphene Transistors with Current Saturation. Nano Letters, 2011, 11, 2555-2559.	4.5	88
6	Epitaxial Graphene Transistors: Enhancing Performance via Hydrogen Intercalation. Nano Letters, 2011, 11, 3875-3880.	4.5	150
7	Ultrathin Single Crystal Diamond Nanomechanical Dome Resonators. Nano Letters, 2011, 11, 4304-4308.	4.5	39
8	Nanofabrication down to 10 nm on a plastic substrate. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2011, 29, 06FG07.	0.6	12
9	Negative Differential Resistance in Mono and Bilayer Graphene p-n Junctions. IEEE Electron Device Letters, 2011, 32, 1334-1336.	2.2	37
10	The long and winding road. Nature Materials, 2011, 10, 566-567.	13.3	15
11	Graphene microwave transistors on sapphire substrates. Applied Physics Letters, 2011, 99, 113502.	1.5	42
12	Ultimate RF Performance Potential of Carbon Electronics. IEEE Transactions on Microwave Theory and Techniques, 2011, 59, 2739-2750.	2.9	107
13	Toward Tunable Band Gap and Tunable Dirac Point in Bilayer Graphene with Molecular Doping. Nano Letters, 2011, 11, 4759-4763.	4.5	142
14	Record high RF performance for epitaxial graphene transistors. , 2011, , .		25
15	Wafer-Scale Graphene Integrated Circuit. Science, 2011, 332, 1294-1297.	6.0	812
16	Electrical properties of CVD-graphene FETs., 2011,,.		2
17	Simulation of graphene nanoscale RF transistors including scattering and generation/recombination mechanisms. , $2011,\ldots$		7
18	High-frequency performance of graphene field effect transistors with saturating IV-characteristics. , $2011, , .$		32
19	Enhanced Performance in Epitaxial Graphene FETs With Optimized Channel Morphology. IEEE Electron Device Letters, 2011, 32, 1343-1345.	2.2	80

#	Article	IF	Citations
20	Information capacity of pulse-based Wireless Nanosensor Networks., 2011,,.		87
21	Atomic Layer Deposition of High-k Oxides on Graphene. , 0, , .		4
22	Industry-compatible graphene transistors. Nature, 2011, 472, 41-42.	13.7	87
23	DIY eye. Nature, 2011, 472, 42-43.	13.7	22
24	Graphene-Driven Revolutions in ICT and Beyond. Procedia Computer Science, 2011, 7, 30-33.	1.2	10
25	Flame synthesis of graphene films in open environments. Carbon, 2011, 49, 5064-5070.	5.4	90
26	Explicit Drain Current, Charge and Capacitance Model of Graphene Field-Effect Transistors. IEEE Transactions on Electron Devices, 2011, 58, 4377-4383.	1.6	55
27	Optical properties and morphology of diamond-like films obtained in a supersonic flow of a hydrocarbon plasma. Optoelectronics, Instrumentation and Data Processing, 2011, 47, 465-471.	0.2	3
28	Plasmon resonance enhanced multicolour photodetection by graphene. Nature Communications, 2011, 2, 579.	5.8	639
29	Interfacial electronic structures between fullerene and multilayer graphene for n-type organic semiconducting devices. Carbon, 2011, 49, 4936-4939.	5 . 4	14
31	Graphene and graphene nanoribbons on InAs(110) and Au/InAs(110) surfaces: An <i>ab initio</i> study. Physical Review B, 2011, 84, .	1.1	7
32	Quantum transport in chemically modified two-dimensional graphene: From minimal conductivity to Anderson localization. Physical Review B, 2011, 84, .	1.1	84
33	Generation-recombination noise in bipolar graphene. Journal of Applied Physics, 2011, 110, 044327.	1.1	5
34	Process Optimization for Synthesis of High-Quality Graphene Films by Low-Pressure Chemical Vapor Deposition. Japanese Journal of Applied Physics, 2012, 51, 06FD21.	0.8	2
35	Field emissions of graphene films deposited on different substrates by CVD system. Chinese Physics B, 2012, 21, 128102.	0.7	2
36	Chemical Vapour Deposition Graphene Radio-Frequency Field-Effect Transistors. Chinese Physics Letters, 2012, 29, 057302.	1.3	4
37	Shifting of surface plasmon resonance due to electromagnetic coupling between graphene and Au nanoparticles. Optics Express, 2012, 20, 19690.	1.7	43
38	Spatially resolved pump-probe study of single-layer graphene produced by chemical vapor deposition [Invited]. Optical Materials Express, 2012, 2, 708.	1.6	47

#	Article	IF	Citations
39	High field carrier transport in graphene: Insights from fast current transient. Applied Physics Letters, 2012, 101, .	1.5	21
40	Low bias short channel impurity mobility in graphene from first principles. Applied Physics Letters, 2012, 101, 093102.	1.5	9
41	Magnetic properties of MoS2: Existence of ferromagnetism. Applied Physics Letters, 2012, 101, .	1.5	249
42	Mechanism of near-field Raman enhancement in two-dimensional systems. Physical Review B, 2012, 85, .	1.1	52
43	Probing transconductance spatial variations in graphene nanoribbon field-effect transistors using scanning gate microscopy. Applied Physics Letters, 2012, 100, .	1.5	17
44	Designing a symmetry-protected molecular device. Physical Review B, 2012, 86, .	1.1	5
45	Contactless impedance measurement of large-area high-quality graphene. , 2012, , .		5
46	Disorder-free sputtering method on graphene. AIP Advances, 2012, 2, .	0.6	31
47	Graphene for future electronics. Physica Scripta, 2012, T146, 014025.	1.2	30
48	Low-voltage graphene transistors based on self-assembled monolayer nanodielectrics. Materials Research Society Symposia Proceedings, 2012, 1451, 179-184.	0.1	0
49	A doping-free approach to carbon nanotube electronics and optoelectronics. AIP Advances, 2012, 2, .	0.6	25
50	Towards transfer-free fabrication of graphene NEMS grown by chemical vapour deposition. Micro and Nano Letters, 2012, 7, 749.	0.6	7
51	Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nature Nanotechnology, 2012, 7, 699-712.	15.6	13,346
52	Graphene-GaAs/AlxGa1â^'xAs heterostructure dual-function field-effect transistor. Applied Physics Letters, 2012, 101, .	1.5	19
53	Current Saturation and Voltage Gain in Bilayer Graphene Field Effect Transistors. Nano Letters, 2012, 12, 1324-1328.	4.5	111
54	Graphene applications in electronics and photonics. MRS Bulletin, 2012, 37, 1225-1234.	1.7	186
55	Cutting forces related with lattice orientations of graphene using an atomic force microscopy based nanorobot. Applied Physics Letters, 2012, 101, .	1.5	23
56	Extreme sensitivity of graphene photoconductivity to environmental gases. Nature Communications, 2012, 3, 1228.	5.8	120

#	Article	IF	CITATIONS
57	Layer-by-Layer Graphene/TCNQ Stacked Films as Conducting Anodes for Organic Solar Cells. ACS Nano, 2012, 6, 5031-5039.	7.3	199
58	Detection beyond the Debye Screening Length in a High-Frequency Nanoelectronic Biosensor. Nano Letters, 2012, 12, 719-723.	4.5	178
59	Encapsulating graphene by ultraâ€ŧhin alumina for reducing process contaminations. Physica Status Solidi (B): Basic Research, 2012, 249, 2526-2529.	0.7	2
60	Large-Scale Graphene Micropatterns via Self-Assembly-Mediated Process for Flexible Device Application. Nano Letters, 2012, 12, 743-748.	4.5	68
61	Carbonaceous field effect transistor with graphene and diamondlike carbon. Diamond and Related Materials, 2012, 22, 118-123.	1.8	21
62	Effect of initial sp3 content on bonding structure evolution of amorphous carbon upon pulsed laser annealing. Diamond and Related Materials, 2012, 30, 48-52.	1.8	16
63	Multilayer graphene growth by a metal-catalyzed crystallization of diamond-like carbon., 2012,,.		0
64	Unipolar to ambipolar conversion in graphene field-effect transistors. Applied Physics Letters, 2012, 101, .	1.5	17
65	Gate-Controlled Nonlinear Conductivity of Dirac Fermion in Graphene Field-Effect Transistors Measured by Terahertz Time-Domain Spectroscopy. Nano Letters, 2012, 12, 551-555.	4.5	161
66	Insights on radio frequency bilayer graphene FETs. , 2012, , .		15
67	An overview on the state-of-the-art of Carbon-based radio-frequency electronics., 2012,,.		6
68	Graphene-diamond interface: Gap opening and electronic spin injection. Physical Review B, 2012, 85, .	1.1	95
69	High Performance RF FETs Using High-k Dielectrics on Wafer-Scale Quasi-Free-Standing Epitaxial Graphene. Materials Science Forum, 2012, 717-720, 669-674.	0.3	0
70	Graphitic Carbon Growth on MgO(100) by Molecular Beam Epitaxy. Journal of Physical Chemistry C, 2012, 116, 7380-7385.	1.5	23
71	Short channel effects on gallium nitride/gallium oxide nanowire transistors. Applied Physics Letters, 2012, 101, 183501.	1.5	20
72	Molecular dynamics modeling and simulations to understand gate-tunable graphene-nanoribbon-resonator. Physica E: Low-Dimensional Systems and Nanostructures, 2012, 45, 194-200.	1.3	23
73	Nanoscale investigation of charge transport at the grain boundaries and wrinkles in graphene film. Nanotechnology, 2012, 23, 285705.	1.3	34
74	Graphene review: An emerging RF technology. , 2012, , .		4

#	ARTICLE	IF	Citations
75	Self-Aligned, Extremely High Frequency Ill–V Metal-Oxide-Semiconductor Field-Effect Transistors on Rigid and Flexible Substrates. Nano Letters, 2012, 12, 4140-4145.	4.5	73
76	Hydrogenation and Fluorination of Graphene Models: Analysis via the Average Local Ionization Energy. Journal of Physical Chemistry A, 2012, 116, 8644-8652.	1.1	54
77	Flexible and transparent all-graphene circuits for quaternary digital modulations. Nature Communications, 2012, 3, 1018.	5.8	87
78	MoS2-based devices and circuits., 2012,,.		2
79	Self-Assembly and Photopolymerization of Sub-2 nm One-Dimensional Organic Nanostructures on Graphene. Journal of the American Chemical Society, 2012, 134, 16759-16764.	6.6	63
80	Plasmon-Induced Doping of Graphene. ACS Nano, 2012, 6, 10222-10228.	7.3	356
81	Surface modification of diamond-like carbon films to graphene under low energy ion beam irradiation. Applied Surface Science, 2012, 258, 2931-2934.	3.1	27
82	Graphene: An Emerging Electronic Material. Advanced Materials, 2012, 24, 5782-5825.	11.1	718
83	Field-Effect Tunneling Transistor Based on Vertical Graphene Heterostructures. Science, 2012, 335, 947-950.	6.0	2,268
84	Single layer MoS <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow></mml:mrow><mml:mn>2</mml:mn></mml:msub></mml:math> on the Cu(111) surface: First-principles electronic structure calculations. Physical Review B, 2012, 85, .	1.1	26
85	<i>Ab initio</i> and semi-empirical van der Waals study of grapheneâ€"boron nitride interaction from a molecular point of view. Journal of Physics Condensed Matter, 2012, 24, 424214.	0.7	26
86	Electrically controllable energy gaps in graphene quantum dots. Applied Physics Letters, 2012, 100, .	1.5	22
87	HALF-METALLIC SILICENE AND GERMANENE NANORIBBONS: TOWARDS HIGH-PERFORMANCE SPINTRONICS DEVICE. Nano, 2012, 07, 1250037.	0.5	105
88	Kinetics of Low-Pressure, Low-Temperature Graphene Growth: Toward Single-Layer, Single-Crystalline Structure. ACS Nano, 2012, 6, 10276-10286.	7.3	54
89	Theory of graphene-field effect transistors. , 2012, , .		4
90	A computational study of high-frequency behavior of graphene field-effect transistors. Journal of Applied Physics, 2012, 111, 094313.	1.1	15
91	Can quasi-saturation in the output characteristics of short-channel graphene field-effect transistors be engineered?., 2012,,.		1
92	Hot Phonon Dynamics in Graphene. Nano Letters, 2012, 12, 5495-5499.	4.5	66

#	ARTICLE	IF	CITATIONS
93	Electrical transport in suspended and double gated trilayer graphene. Applied Physics Letters, 2012, 100, .	1.5	35
94	Transfer-free fabrication of suspended graphene grown by chemical vapor deposition. , 2012, , .		4
95	Graphene nanoelectronics: Overview from post-silicon perspective. , 2012, , .		1
96	Graphene for radio frequency electronics. Materials Today, 2012, 15, 328-338.	8.3	112
97	Molecular dynamics study on vibrational properties of graphene nanoribbon resonator under tensile loading. Computational Materials Science, 2012, 65, 216-220.	1.4	19
98	Graphene Electronics for RF Applications. IEEE Microwave Magazine, 2012, 13, 114-125.	0.7	39
99	Thermally Driven Crossover from Indirect toward Direct Bandgap in 2D Semiconductors: MoSe ₂ versus MoS ₂ . Nano Letters, 2012, 12, 5576-5580.	4.5	1,206
100	Site-Specific Growth of Width-Tailored Graphene Nanoribbons on Insulating Substrates. Journal of Physical Chemistry C, 2012, 116, 20023-20029.	1.5	14
101	Transport properties of graphene nanoribbon transistors on chemical-vapor-deposition grown wafer-scale graphene. Applied Physics Letters, 2012, 100, .	1.5	55
102	Plasmonics of coupled graphene micro-structures. New Journal of Physics, 2012, 14, 125001.	1.2	68
103	Graphene-on-Diamond Devices with Increased Current-Carrying Capacity: Carbon sp ² -on-sp ³ Technology. Nano Letters, 2012, 12, 1603-1608.	4.5	163
104	Characteristics and effects of diffused water between graphene and a SiO2 substrate. Nano Research, 2012, 5, 710-717.	5.8	91
105	The Internet of Multimedia Nano-Things. Nano Communication Networks, 2012, 3, 242-251.	1.6	66
106	Direct writing of electronic devices on graphene oxide by catalytic scanning probe lithography. Nature Communications, 2012, 3, 1194.	5.8	85
107	Structural and Electronic Characterization of Nanocrystalline Diamondlike Carbon Thin Films. ACS Applied Materials & Diamondlike Carbon Thin Films.	4.0	45
108	Iron-mediated growth of epitaxial graphene on SiC and diamond. Carbon, 2012, 50, 5099-5105.	5.4	34
109	Microwave- and Nitronium Ion-Enabled Rapid and Direct Production of Highly Conductive Low-Oxygen Graphene. Journal of the American Chemical Society, 2012, 134, 5850-5856.	6.6	115
110	Graphene-based ambipolar electronics for radio frequency applications. Science Bulletin, 2012, 57, 2956-2970.	1.7	22

#	Article	IF	Citations
111	Soft X-ray Absorption Spectroscopy Studies of the Electronic Structure Recovery of Graphene Oxide upon Chemical Defunctionalization. Journal of Physical Chemistry C, 2012, 116, 20591-20599.	1.5	65
112	Graphene induced tunability of the surface plasmon resonance. Applied Physics Letters, 2012, 100, .	1.5	97
113	Rapid thermal annealing of graphene-metal contact. Applied Physics Letters, 2012, 101, .	1.5	75
114	Electronic Structure of Spatially Aligned Graphene Nanoribbons on Au(788). Physical Review Letters, 2012, 108, 216801.	2.9	212
115	Wave-Function Mapping of Graphene Quantum Dots with Soft Confinement. Physical Review Letters, 2012, 108, 046801.	2.9	110
116	Highly selective CO2 capture on N-doped carbon produced by chemical activation of polypyrrole functionalized graphene sheets. Chemical Communications, 2012, 48, 735-737.	2.2	328
117	Cooling of photoexcited carriers in graphene by internal and substrate phonons. Physical Review B, 2012, 86, .	1.1	100
118	Self-Aligned Fabrication of Graphene RF Transistors with T-Shaped Gate. ACS Nano, 2012, 6, 3371-3376.	7.3	66
119	Current Saturation in Submicrometer Graphene Transistors with Thin Gate Dielectric: Experiment, Simulation, and Theory. ACS Nano, 2012, 6, 5220-5226.	7.3	57
120	Controlling the Electrical Behavior of Semiconducting Carbon Nanotubes via Tube Contact. Small, 2012, 8, 220-224.	5.2	7
121	Graphene Audio Voltage Amplifier. Small, 2012, 8, 357-361.	5.2	59
122	Biological and chemical sensors based on graphene materials. Chemical Society Reviews, 2012, 41, 2283-2307.	18.7	1,591
123	Vertical Graphene Base Transistor. IEEE Electron Device Letters, 2012, 33, 691-693.	2.2	141
124	State-of-the-Art Graphene High-Frequency Electronics. Nano Letters, 2012, 12, 3062-3067.	4.5	371
125	Plasmon-polaritons on graphene-metal surface and their use in biosensors. Applied Physics Letters, 2012, 100, .	1.5	169
126	Plasmon enhanced near-field radiative heat transfer for graphene covered dielectrics. Physical Review B, 2012, 85, .	1.1	115
127	Quantum Behavior of Graphene Transistors near the Scaling Limit. Nano Letters, 2012, 12, 1417-1423.	4.5	77
128	Structure and Electronic Transport in Graphene Wrinkles. Nano Letters, 2012, 12, 3431-3436.	4.5	540

#	Article	IF	CITATIONS
129	Superhard behaviour, low residual stress, and unique structure in diamond-like carbon films by simple bilayer approach. Journal of Applied Physics, 2012, 112, .	1.1	46
130	Broadband graphene terahertz modulators enabled by intraband transitions. Nature Communications, 2012, 3, 780.	5.8	893
131	Flexible Gigahertz Transistors Derived from Solution-Based Single-Layer Graphene. Nano Letters, 2012, 12, 1184-1188.	4.5	133
132	Three-Terminal Graphene Negative Differential Resistance Devices. ACS Nano, 2012, 6, 2610-2616.	7.3	153
133	Scalable Fabrication of Self-Aligned Graphene Transistors and Circuits on Glass. Nano Letters, 2012, 12, 2653-2657.	4.5	74
134	High-frequency self-aligned graphene transistors with transferred gate stacks. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 11588-11592.	3.3	312
135	Top-gated graphene field-effect transistors on SiC substrates. Science Bulletin, 2012, 57, 2401-2403.	1.7	5
136	The effects of interlayer mismatch on electronic properties of bilayer armchair graphene nanoribbons. Carbon, 2012, 50, 1659-1666.	5.4	9
137	Graphene: synthesis and applications. Materials Today, 2012, 15, 86-97.	8.3	798
138	A physics-based, small-signal model for graphene field effect transistors. Solid-State Electronics, 2012, 67, 53-62.	0.8	18
139	Scanning probe microscopy of graphene. Physica E: Low-Dimensional Systems and Nanostructures, 2012, 44, 743-759.	1.3	30
140	Chemical functionalization of graphene and its applications. Progress in Materials Science, 2012, 57, 1061-1105.	16.0	1,612
141	Singleâ€Gate Bandgap Opening of Bilayer Graphene by Dual Molecular Doping. Advanced Materials, 2012, 24, 407-411.	11.1	228
142	Atomic Carbide Bonding Leading to Superior Graphene Networks. Advanced Materials, 2013, 25, 4668-4672.	11.1	27
143	Electronic properties of graphene-single crystal diamond heterostructures. Journal of Applied Physics, 2013, 114, 053709.	1.1	12
144	Optical Third-Harmonic Generation in Graphene. Physical Review X, 2013, 3, .	2.8	159
145	Coupled Electro–Thermal Simulation for Self-Heating Effects in Graphene Transistors. IEEE Transactions on Electron Devices, 2013, 60, 2598-2603.	1.6	5
146	Large Current Modulation and Spin-Dependent Tunneling of Vertical Graphene/MoS ₂ Heterostructures. ACS Nano, 2013, 7, 7021-7027.	7.3	88

#	Article	IF	CITATIONS
147	Speed limit of the insulator–metal transition inÂmagnetite. Nature Materials, 2013, 12, 882-886.	13.3	121
148	Violation of Hund's rule and quenching of long-range electron-electron interactions in graphene nanoflakes. Physical Review B, 2013, 88, .	1.1	16
149	Variability Effects in Graphene: Challenges and Opportunities for Device Engineering and Applications. Proceedings of the IEEE, 2013, 101, 1670-1688.	16.4	29
150	Effect of back-gate on contact resistance and on channel conductance in graphene-based field-effect transistors. Diamond and Related Materials, 2013, 38, 19-23.	1.8	57
151	Electrical linear control of the electronic structure of graphene quantum dots. Journal of Applied Physics, 2013, 113, .	1.1	10
152	Tunable Superlattice in Graphene To Control the Number of Dirac Points. Nano Letters, 2013, 13, 3990-3995.	4.5	76
153	The structural and electrical evolution of chemical vapor deposition grown graphene by electron beam irradiation induced disorder. Carbon, 2013, 59, 366-371.	5.4	39
154	Heterodyne and subharmonic mixing at 0.6 THz in an AlGaAs/InGaAs/AlGaAs heterostructure field effect transistor. Applied Physics Letters, 2013, 103, 093505.	1.5	15
155	Tunable doping and band gap of graphene on functionalized hexagonal boron nitride with hydrogen and fluorine. Physical Chemistry Chemical Physics, 2013, 15, 5067.	1.3	70
156	Magnetic properties of 3d transition metals and nitrogen functionalized armchair graphene nanoribbon. RSC Advances, 2013, 3, 21110.	1.7	10
157	Graphene Base Transistors: A Simulation Study of DC and Small-Signal Operation. IEEE Transactions on Electron Devices, 2013, 60, 3584-3591.	1.6	23
158	Contact-Induced Negative Differential Resistance in Short-Channel Graphene FETs. IEEE Transactions on Electron Devices, 2013, 60, 140-146.	1.6	23
160	High performance thin film electronics based on inorganic nanostructures and composites. Nano Today, 2013, 8, 514-530.	6.2	33
161	Effective Piezoelectric Response of Substrate-Integrated ZnO Nanowire Array Devices on Galvanized Steel. ACS Applied Materials & Devices, 2013, 5, 10650-10657.	4.0	26
162	Atomic-layer triangular WSe ₂ sheets: synthesis and layer-dependent photoluminescence property. Nanotechnology, 2013, 24, 465705.	1.3	120
163	Graphene applications in electronic and optoelectronic devices and circuits. Chinese Physics B, 2013, 22, 098106.	0.7	58
164	Field-effect transistors based on two-dimensional materials for logic applications. Chinese Physics B, 2013, 22, 098505.	0.7	32
165	Graphene nanomesh transistor with high on/off ratio and good saturation behavior. Applied Physics Letters, 2013, 103, .	1.5	39

#	Article	IF	CITATIONS
166	Introduction to graphene electronics $\hat{a} \in \hat{a}$ a new era of digital transistors and devices. Contemporary Physics, 2013, 54, 233-251.	0.8	52
167	Substrate effects on quasiparticles and excitons in graphene nanoflakes. Applied Physics Letters, 2013, 103, 143109.	1.5	24
168	Effect of dual gate control on the alternating current performance of graphene radio frequency device. Journal of Applied Physics, 2013, 114, 044307.	1.1	5
169	Chemical Functionalization of Exfoliated Graphene. Chemistry - A European Journal, 2013, 19, 12930-12936.	1.7	41
170	Flexible electrostatic nanogenerator using graphene oxide film. Nanoscale, 2013, 5, 8951.	2.8	80
171	Rapid Large-Area Multiphoton Microscopy for Characterization of Graphene. ACS Nano, 2013, 7, 8441-8446.	7.3	81
172	A quantum statistical model for graphene FETs on SiC. Physica Status Solidi (B): Basic Research, 2013, 250, 1857-1863.	0.7	0
173	Graphene based field effect transistors: Efforts made towards flexible electronics. Solid-State Electronics, 2013, 89, 177-188.	0.8	85
174	Theoretical model: Disorder and transport in amorphous nitrogenated carbon ribbons. Journal of Applied Physics, 2013, 113, 183712.	1.1	4
175	Graphene-based semiconductor nanostructures. Physics-Uspekhi, 2013, 56, 105-122.	0.8	61
176	Molecular Doping of Multilayer \${m MoS}_{2}\$ Field-Effect Transistors: Reduction in Sheet and Contact Resistances. IEEE Electron Device Letters, 2013, 34, 1328-1330.	2.2	231
177	Strain sensing and far-infrared absorption in strained graphene quantum dots. Journal of Applied Physics, 2013, 114, .	1.1	8
178	Heavily p-type doped chemical vapor deposition graphene field-effect transistor with current saturation. Applied Physics Letters, 2013, 103, .	1.5	13
179	Formation of thick textured carbon film using filtered cathodic vacuum arc technique. , 2013, , .		0
180	DC and small-signal numerical simulation of graphene base transistor for terahertz operation. , 2013, , .		5
181	Layer-dependent supercapacitance of graphene films grown by chemical vapor deposition on nickel foam. Journal of Power Sources, 2013, 225, 251-256.	4.0	41
182	Applications of Graphene. , 2013, , 333-437.		9
183	Going active. Nature Materials, 2013, 12, 93-94.	13.3	23

#	Article	IF	CITATIONS
184	A novel flexible capacitive touch pad based on graphene oxide film. Nanoscale, 2013, 5, 890-894.	2.8	38
185	Graphene Field-Effect Transistors with Gigahertz-Frequency Power Gain on Flexible Substrates. Nano Letters, 2013, 13, 121-125.	4.5	117
186	Carbon nanomaterials for electronics, optoelectronics, photovoltaics, and sensing. Chemical Society Reviews, 2013, 42, 2824-2860.	18.7	1,105
188	Covalent chemistry on graphene. Chemical Society Reviews, 2013, 42, 3222.	18.7	335
189	Vertically stacked multi-heterostructures of layered materials for logic transistors and complementary inverters. Nature Materials, 2013, 12, 246-252.	13.3	812
190	Tunable transport gap in narrow bilayer graphene nanoribbons. Scientific Reports, 2013, 3, 1248.	1.6	49
191	Molecular dynamics simulation study on graphene-nanoribbon-resonators tuned by adjusting axial strain. Current Applied Physics, 2013, 13, 360-365.	1.1	23
192	Molecular dynamics simulation study on mechanical responses of nanoindented monolayer-graphene-nanoribbon. Physica E: Low-Dimensional Systems and Nanostructures, 2013, 54, 118-124.	1.3	18
193	Record Maximum Oscillation Frequency in C-Face Epitaxial Graphene Transistors. Nano Letters, 2013, 13, 942-947.	4.5	145
194	Pseudosaturation and Negative Differential Conductance in Graphene Field-Effect Transistors. IEEE Transactions on Electron Devices, 2013, 60, 985-991.	1.6	25
195	Fabrication of coupled graphene–nanotube quantum devices. Nanotechnology, 2013, 24, 035204.	1.3	15
196	Ballistic \$1\$– \$V\$ Characteristics of Short-Channel Graphene Field-Effect Transistors: Analysis and Optimization for Analog and RF Applications. IEEE Transactions on Electron Devices, 2013, 60, 958-964.	1.6	19
197	Nanostructured graphene/Fe3O4 incorporated polyaniline as a high performance shield against electromagnetic pollution. Nanoscale, 2013, 5, 2411.	2.8	502
198	Damping pathways of mid-infrared plasmons in graphene nanostructures. Nature Photonics, 2013, 7, 394-399.	15.6	815
199	The Role of External Defects in Chemical Sensing of Graphene Field-Effect Transistors. Nano Letters, 2013, 13, 1962-1968.	4.5	125
200	Reduction of $1/\langle i \rangle f \langle i \rangle$ noise in graphene after electron-beam irradiation. Applied Physics Letters, 2013, 102, .	1.5	65
201	Carbon clusters near the step of Rh surface: implication for the initial stage of graphene nucleation. European Physical Journal D, 2013, 67, 1.	0.6	6
202	Large Area Resistâ€Free Soft Lithographic Patterning of Graphene. Small, 2013, 9, 711-715.	5.2	28

#	Article	IF	CITATIONS
203	Label-free detection of alanine aminotransferase using a graphene field-effect biosensor. Sensors and Actuators B: Chemical, 2013, 182, 396-400.	4.0	25
204	Direct Exfoliation of Graphite to Graphene in Aqueous Media with Diazaperopyrenium Dications. Advanced Materials, 2013, 25, 2740-2745.	11.1	84
205	Graphene Field-Effect Transistors Based on Boron–Nitride Dielectrics. Proceedings of the IEEE, 2013, 101, 1609-1619.	16.4	137
206	Large-Area 2-D Electronics: Materials, Technology, and Devices. Proceedings of the IEEE, 2013, 101, 1638-1652.	16.4	46
207	Small-Signal Capacitance and Current Parameter Modeling in Large-Scale High-Frequency Graphene Field-Effect Transistors. IEEE Transactions on Electron Devices, 2013, 60, 1799-1806.	1.6	30
208	Quantitatively Enhanced Reliability and Uniformity of High- \hat{l}^{α} Dielectrics on Graphene Enabled by Self-Assembled Seeding Layers. Nano Letters, 2013, 13, 1162-1167.	4.5	67
209	Statistical Study of Deep Submicron Dual-Gated Field-Effect Transistors on Monolayer Chemical Vapor Deposition Molybdenum Disulfide Films. Nano Letters, 2013, 13, 2640-2646.	4.5	197
210	Vertical Graphene-Base Hot-Electron Transistor. Nano Letters, 2013, 13, 2370-2375.	4.5	112
211	Graphene Transistors: Status, Prospects, and Problems. Proceedings of the IEEE, 2013, 101, 1567-1584.	16.4	392
212	Facile one-step hydrazine-assisted solvothermal synthesis of nitrogen-doped reduced graphene oxide: reduction effect and mechanisms. RSC Advances, 2013, 3, 1194-1200.	1.7	140
213	Multiscale Modeling for Graphene-Based Nanoscale Transistors. Proceedings of the IEEE, 2013, 101, 1653-1669.	16.4	138
214	Molecular adsorption induces the transformation of rhombohedral- to Bernal-stacking order in trilayer graphene. Nature Communications, 2013, 4, 2074.	5.8	34
215	Cyclodextrin-reduced graphene oxide hybrid nanosheets for the simultaneous determination of lead(II) and cadmium(II) using square wave anodic stripping voltammetry. Electrochimica Acta, 2013, 108, 412-420.	2.6	90
216	High-Performance Graphene Field-Effect Transistors With Extremely Small Access Length Using Self-Aligned Source and Drain Technique. Proceedings of the IEEE, 2013, 101, 1603-1608.	16.4	15
217	Sub-10 nm Gate Length Graphene Transistors: Operating at Terahertz Frequencies with Current Saturation. Scientific Reports, 2013, 3, 1314.	1.6	98
218	Photo-thermal chemical vapor deposition of graphene on copper. Carbon, 2013, 62, 43-50.	5.4	32
219	Graphene radio frequency devices on flexible substrate. Applied Physics Letters, 2013, 102, .	1.5	44
220	Crown Graphene Nanomeshes: Highly Stable Chelation-Doped Semiconducting Materials. Journal of Chemical Theory and Computation, 2013, 9, 2398-2403.	2.3	18

#	ARTICLE	IF	CITATIONS
221	Graphene-Base Heterojunction Transistor: An Attractive Device for Terahertz Operation. IEEE Transactions on Electron Devices, 2013, 60, 4263-4268.	1.6	39
222	Electron tunneling in a vertical graphene heterostructure. European Physical Journal B, 2013, 86, 1.	0.6	3
223	Electronic properties and structure of carbon nanocomposite films deposited from accelerated C ₆₀ ion beam. Journal Physics D: Applied Physics, 2013, 46, 485305.	1.3	5
224	Diamond as an inert substrate of graphene. Journal of Chemical Physics, 2013, 138, 054701.	1.2	46
225	Graphene Electronics: Materials, Devices, and Circuits. Proceedings of the IEEE, 2013, 101, 1620-1637.	16.4	104
226	Highly tunable local gate controlled complementary graphene device performing as inverter and voltage controlled resistor. Nanotechnology, 2013, 24, 395202.	1.3	7
228	Formation of Graphene-on-Diamond Structure by Graphitization of Atomically Flat Diamond (111) Surface. Japanese Journal of Applied Physics, 2013, 52, 110121.	0.8	37
229	Formation of Diamond-Like Carbon Films by Photoemission-Assisted Plasma-Enhanced Chemical Vapor Deposition. Japanese Journal of Applied Physics, 2013, 52, 110123.	0.8	10
230	Contact resistance in graphene channel transistors. Carbon Letters, 2013, 14, 162-170.	3.3	37
231	All-carbon-based field effect transistors fabricated by aerosol jet printing on flexible substrates. Journal of Micromechanics and Microengineering, 2013, 23, 065027.	1.5	32
232	Investigation of ripple-limited low-field mobility in large-scale graphene nanoribbons. Applied Physics Letters, 2013, 102, .	1.5	4
233	Terahertz conductivity of reduced graphene oxide films. Optics Express, 2013, 21, 7633.	1.7	54
234	Graphene RF transistors with buried bottom gate. , 2013, , .		2
235	Curling graphene ribbons through thermal annealing. Applied Physics Letters, 2013, 103, 183103.	1.5	9
236	Dynamical processes of low-energy carbon ion collision with the graphene supported by diamond. EPJ Applied Physics, 2014, 67, 30402.	0.3	1
237	Realization of Atomically Controlled Diamond Surfaces. Journal of the Japan Society for Precision Engineering, 2014, 80, 433-438.	0.0	0
238	Low frequency 1/f noise in graphene FETs. , 2014, , .		0
239	Electronic and optical properties of superhard nanocomposite films obtained from C ₆₀ ion beam. Materials Research Express, 2014, 1, 035049.	0.8	9

#	Article	IF	CITATIONS
240	Radio-frequency transistors from millimeter-scale graphene domains. Chinese Physics B, 2014, 23, 117201.	0.7	7
241	Scalability of the Channel Capacity in Graphene-enabled Wireless Communications to the Nanoscale. IEEE Transactions on Communications, 2014, , 1-1.	4.9	13
242	Inelastic carrier lifetime in a coupled graphene/electron-phonon system: Role of plasmon-phonon coupling. Physical Review B, 2014, 90, .	1.1	10
243	Stability and electronic properties of hexagonal boron nitride monolayer with irregular graphene domains embedded. Modern Physics Letters B, 2014, 28, 1450144.	1.0	4
244	Molecular beam epitaxy of graphene on ultra-smooth nickel: growth mode and substrate interactions. New Journal of Physics, 2014, 16, 093055.	1.2	16
245	Nanofocusing of mid-infrared electromagnetic waves on graphene monolayer. Applied Physics Letters, 2014, 104, 041109.	1.5	24
246	Trifluoromethylation of graphene. APL Materials, 2014, 2, .	2.2	5
247	Size-dependent hot-phonon dynamics in graphene flakes. Applied Physics Letters, 2014, 104, 181907.	1.5	4
248	Impact of graphene polycrystallinity on the performance of graphene field-effect transistors. Applied Physics Letters, 2014, 104, 043509.	1.5	7
249	P3HT:PCBM blend based photo organic field effect transistor. Microelectronic Engineering, 2014, 130, 13-17.	1.1	37
250	Contact research strategy for emerging molybdenum disulfide and other two-dimensional field-effect transistors. APL Materials, 2014, 2, .	2.2	44
251	Designed Three-Dimensional Freestanding Single-Crystal Carbon Architectures. ACS Nano, 2014, 8, 11657-11665.	7.3	12
252	Graphene inductors for high-frequency applications - design, fabrication, characterization, and study of skin effect. , 2014, , .		11
253	Novel graphene FETs with field-controlling electrodes to improve RF performance. , 2014, , .		0
254	Impact of crystallographic orientation and impurity scattering in Graphene-Base Heterojunction Transistors for Terahertz Operation. , 2014, , .		2
255	Transition from Tubes to Sheetsâ€"A Comparison of the Properties and Applications of Carbon Nanotubes and Graphene. , 2014, , 519-568.		2
256	Grapheneâ€Based Materials for Solar Cell Applications. Advanced Energy Materials, 2014, 4, 1300574.	10.2	398
257	Investigation of the properties of amorphous carbon films obtained in a supersonic gas jet. Surface and Coatings Technology, 2014, 246, 46-51.	2.2	2

#	Article	IF	Citations
258	Ambipolarity of large-area Pt-functionalized graphene observed in H2 sensing. Sensors and Actuators B: Chemical, 2014, 190, 134-140.	4.0	20
259	Trends in nanoscience, nanotechnology, and carbon nanotubes: a bibliometric approach. Journal of Nanoparticle Research, 2014, $16,1.$	0.8	15
260	Friction anisotropy dependence on lattice orientation of graphene. Science China: Physics, Mechanics and Astronomy, 2014, 57, 663-667.	2.0	11
261	Tunable terahertz left-handed metamaterial based on multi-layer graphene-dielectric composite. Applied Physics Letters, 2014, 104, 051902.	1.5	94
262	Simulation of the Performance of Graphene FETs With a Semiclassical Model, Including Band-to-Band Tunneling. IEEE Transactions on Electron Devices, 2014, 61, 1567-1574.	1.6	15
263	Exploiting Negative Differential Resistance in Monolayer Graphene FETs for High Voltage Gains. IEEE Transactions on Electron Devices, 2014, 61, 617-624.	1.6	13
264	Bilayer Graphene Transistors for Analog Electronics. IEEE Transactions on Electron Devices, 2014, 61, 729-733.	1.6	38
265	High performance graphene field effect transistors on an aluminum nitride substrate with high surface phonon energy. Applied Physics Letters, 2014, 104, 193112.	1.5	18
266	Understanding the Electrical Impact of Edge Contacts in Few-Layer Graphene. ACS Nano, 2014, 8, 3584-3589.	7.3	51
267	A convergent 2D finite-difference scheme for the Dirac–Poisson system and the simulation of graphene. Journal of Computational Physics, 2014, 257, 318-332.	1.9	24
268	Graphene materials-based energy acceptor systems and sensors. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2014, 18, 1-17.	5.6	38
269	Black Phosphorus Radio-Frequency Transistors. Nano Letters, 2014, 14, 6424-6429.	4.5	307
270	Relationship between the structure and electrical characteristics of diamond-like carbon films. Journal of Applied Physics, 2014, 116, .	1.1	23
271	Semianalytical quantum model for graphene field-effect transistors. Journal of Applied Physics, 2014, 116, .	1.1	3
272	Sheet resistance variation of graphene grown on annealed and mechanically polished Cu films. RSC Advances, 2014, 4, 62453-62456.	1.7	15
273	Electric control of tunneling energy in graphene double dots. Physical Review B, 2014, 89, .	1.1	6
274	How good can CVD-grown monolayer graphene be?. Nanoscale, 2014, 6, 15255-15261.	2.8	48
275	High concentration of nitrogen doped into graphene using N ₂ plasma with an aluminum oxide buffer layer. Journal of Materials Chemistry C, 2014, 2, 933-939.	2.7	62

#	Article	IF	CITATIONS
276	Highly conductive carbon–CoO hybrid nanostructure arrays with enhanced electrochemical performance for asymmetric supercapacitors. Journal of Materials Chemistry A, 2014, 2, 11776-11783.	5.2	147
277	Graphene nanosensor for highly sensitive fluorescence turn-on detection of Hg2+based on target recycling amplification. RSC Advances, 2014, 4, 39082.	1.7	6
278	Nanoelectronic circuits based on two-dimensional atomic layer crystals. Nanoscale, 2014, 6, 13283-13300.	2.8	49
279	Graphene–Environmental and Sensor Applications. Lecture Notes in Nanoscale Science and Technology, 2014, , 159-224.	0.4	3
280	Label free selective detection of estriol using graphene oxide-based fluorescence sensor. Journal of Applied Physics, 2014, 116, 034701.	1.1	13
281	Highly Flexible Electronics from Scalable Vertical Thin Film Transistors. Nano Letters, 2014, 14, 1413-1418.	4.5	131
282	MoS ₂ Transistors Operating at Gigahertz Frequencies. Nano Letters, 2014, 14, 5905-5911.	4.5	161
283	Graphene Fieldâ€Effect Transistor and Its Application for Electronic Sensing. Small, 2014, 10, 4042-4065.	5.2	184
284	Graphene's potential in materials science and engineering. RSC Advances, 2014, 4, 28987-29011.	1.7	60
285	Polarized photocurrent response in black phosphorus field-effect transistors. Nanoscale, 2014, 6, 8978-8983.	2.8	308
286	Bilayer Phosphorene: Effect of Stacking Order on Bandgap and Its Potential Applications in Thin-Film Solar Cells. Journal of Physical Chemistry Letters, 2014, 5, 1289-1293.	2.1	762
287	Crack-Free Growth and Transfer of Continuous Monolayer Graphene Grown on Melted Copper. Chemistry of Materials, 2014, 26, 4984-4991.	3.2	54
288	Tri-Gate Graphene Nanoribbon Transistors With Transverse-Field Bandgap Modulation. IEEE Transactions on Electron Devices, 2014, 61, 3329-3334.	1.6	8
289	Interface Engineering for CVD Graphene: Current Status and Progress. Small, 2014, 10, 4443-4454.	5.2	29
290	Contact properties to CVD-graphene on GaAs substrates for optoelectronic applications. Nanotechnology, 2014, 25, 335707.	1.3	17
291	Surface-Induced Hybridization between Graphene and Titanium. ACS Nano, 2014, 8, 7704-7713.	7.3	38
292	Boosting the voltage gain of graphene FETs through a differential amplifier scheme with positive feedback. Solid-State Electronics, 2014, 100, 54-60.	0.8	7
293	Current self-amplification effect of graphene-based transistor in high-field transport. Carbon, 2014, 77, 1090-1094.	5.4	10

#	Article	IF	CITATIONS
294	Chemically enhanced double-gate bilayer graphene field-effect transistor with neutral channel for logic applications. Nanotechnology, 2014, 25, 345203.	1.3	4
295	Device Perspective for Black Phosphorus Field-Effect Transistors: Contact Resistance, Ambipolar Behavior, and Scaling. ACS Nano, 2014, 8, 10035-10042.	7.3	400
296	On Transport in Vertical Graphene Heterostructures. IEEE Electron Device Letters, 2014, 35, 966-968.	2.2	13
297	Feasible Catalytic Strategy for Writing Conductive Nanoribbons on a Single-Layer Graphene Fluoride. Journal of Physical Chemistry C, 2014, 118, 22643-22648.	1.5	O
298	Three-Dimensional Bicomponent Supramolecular Nanoporous Self-Assembly on a Hybrid All-Carbon Atomically Flat and Transparent Platform. Nano Letters, 2014, 14, 4486-4492.	4.5	20
299	Generic epitaxial graphene biosensors for ultrasensitive detection of cancer risk biomarker. 2D Materials, 2014, 1, 025004.	2.0	107
300	Carbon nanotubes and graphene towards soft electronics. Nano Convergence, 2014, 1, 15.	6.3	112
301	<inline-formula> <tex-math notation="TeX">\${m MoS}_{2}\$ </tex-math></inline-formula> Field-Effect Transistors With Graphene/Metal Heterocontacts. IEEE Electron Device Letters, 2014, 35, 599-601.	2.2	133
302	Nanotechnology for Water Treatment and Purification. Lecture Notes in Nanoscale Science and Technology, 2014, , .	0.4	29
303	ls quantum capacitance in graphene a potential hurdle for device scaling?. Nano Research, 2014, 7, 453-461.	5.8	9
304	An Ambipolar Virtual-Source-Based Charge-Current Compact Model for Nanoscale Graphene Transistors. IEEE Nanotechnology Magazine, 2014, 13, 1005-1013.	1.1	49
305	Graphene-based gas sensor: metal decoration effect and application to a flexible device. Journal of Materials Chemistry C, 2014, 2, 5280-5285.	2.7	198
306	Modelling of Plasmonic and Graphene Nanodevices. Springer Theses, 2014, , .	0.0	9
307	Low-Frequency Noise in Bilayer MoS ₂ Transistor. ACS Nano, 2014, 8, 5633-5640.	7.3	89
308	Graphene surface plasmon waveguides incorporating high-index dielectric ridges for single mode transmission. Optics Communications, 2014, 328, 124-128.	1.0	27
309	The effect of structure on the photoactivity of a graphene/TiO2 composite. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2014, 184, 72-79.	1.7	15
310	Study of depth profile of hydrogen in hydrogenated diamond like carbon thin film using ion beam analysis techniques. Nuclear Instruments & Methods in Physics Research B, 2014, 328, 27-32.	0.6	12
311	Novel graphene-based nanostructures: physicochemical properties and applications. Russian Chemical Reviews, 2014, 83, 251-279.	2.5	49

#	Article	IF	CITATIONS
312	Phosphorene: An Unexplored 2D Semiconductor with a High Hole Mobility. ACS Nano, 2014, 8, 4033-4041.	7.3	5,474
313	Graphene for Electron Devices: The Panorama of a Decade. IEEE Journal of the Electron Devices Society, 2014, 2, 77-104.	1.2	25
314	Microscopic model for the strain-driven direct to indirect band-gap transition in monolayer <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>MoS</mml:mi><mml:mn>2<td>mn><td>nl:26 nl:msub></td></td></mml:mn></mml:msub></mml:math>	m n> <td>nl:26 nl:msub></td>	nl:26 nl:msub>
315	Electrical transport and low-frequency noise in chemical vapor deposited single-layer MoS ₂ devices. Nanotechnology, 2014, 25, 155702.	1.3	43
316	Graphene Overview. Electrochemical Energy Storage and Conversion, 2014, , 1-20.	0.0	1
317	Layer Dependent Wetting in Parahexaphenyl Thin Film Growth on Graphene. E-Journal of Surface Science and Nanotechnology, 2014, 12, 31-39.	0.1	8
318	A model for the direct-to-indirect band-gap transition in monolayer MoSe2 under strain. Pramana - Journal of Physics, 2015, 84, 1033-1040.	0.9	3
319	The challenging promise of 2D materials for electronics. , 2015, , .		4
320	Significant effect of stacking on the electronic and optical properties of few-layer black phosphorus. Physical Review B, 2015, 92, .	1.1	152
321	Velocity renormalization and Dirac cone multiplication in graphene superlattices with various barrier-edge geometries. Physical Review B, 2015, 91, .	1.1	7
322	Stacked bilayer phosphorene: strain-induced quantum spin Hall state and optical measurement. Scientific Reports, 2015, 5, 13927.	1.6	64
323	Graphene/Conjugated Polymer Nanocomposites for Optoelectronic and Biological Applications. , 2015, , 229-279.		1
324	Water: Promising Opportunities For Tunable All-dielectric Electromagnetic Metamaterials. Scientific Reports, 2015, 5, 13535.	1.6	176
325	Graphene-Nanodiamond Heterostructures and their application to High Current Devices. Scientific Reports, 2015, 5, 13771.	1.6	51
326	Graphene Distributed Amplifiers: Generating Desirable Gain for Graphene Field-Effect Transistors. Scientific Reports, 2015, 5, 17649.	1.6	10
327	Electrolyteâ€Gated Graphene Schottky Barrier Transistors. Advanced Materials, 2015, 27, 5875-5881.	11.1	47
329	Large area suspended graphene for nano-mechanical devices. Physica Status Solidi (B): Basic Research, 2015, 252, 2429-2432.	0.7	16
330	Titanium Trisulfide Monolayer: Theoretical Prediction of a New Directâ€Gap Semiconductor with High and Anisotropic Carrier Mobility. Angewandte Chemie - International Edition, 2015, 54, 7572-7576.	7.2	239

#	ARTICLE	IF	CITATIONS
331	Fabrication of SWCNT-Graphene Field-Effect Transistors. Micromachines, 2015, 6, 1317-1330.	1.4	19
332	GRAPHENE ASSISTED RADIATION ADJUSTABLE OAM GENERATOR. Progress in Electromagnetics Research M, 2015, 42, 31-38.	0.5	3
334	Lowering contact resistance of graphene FETs with capacitive extension of ohmic contacts for enhanced RF performance. Proceedings of SPIE, 2015 , , .	0.8	1
335	Molecular dynamics simulations of defect production in graphene by carbon irradiation. Nuclear Instruments & Methods in Physics Research B, 2015, 352, 225-228.	0.6	9
336	Photochemistry of Graphene. Structure and Bonding, 2015, , 213-238.	1.0	0
337	Photofunctional Layered Materials. Structure and Bonding, 2015, , .	1.0	10
339	Communication: Generalization of Koopmans' theorem to optical transitions in the Hubbard model of graphene nanodots. Journal of Chemical Physics, 2015, 142, 021102.	1.2	14
340	Relevance of the physics of off-plane transport through 2D materials on the design of vertical transistors. , 2015, , .		2
341	Application of Graphene Within Optoelectronic Devices and Transistors. Progress in Optical Science and Photonics, 2015, , 191-221.	0.3	23
342	Radioâ€frequency transport Electromagnetic Properties of chemical vapour deposition graphene from direct current to 110 MHz. IET Circuits, Devices and Systems, 2015, 9, 46-51.	0.9	2
343	Spotting 2D atomic layers on aluminum nitride thin films. Nanotechnology, 2015, 26, 425202.	1.3	7
344	RF Linearity Performance Potential of Short-Channel Graphene Field-Effect Transistors. IEEE Transactions on Microwave Theory and Techniques, 2015, 63, 3874-3887.	2.9	12
345	Advances in MoS2-Based Field Effect Transistors (FETs). Nano-Micro Letters, 2015, 7, 203-218.	14.4	143
346	Magnetotransport across the metal–graphene hybrid interface and its modulation by gate voltage. Nanoscale, 2015, 7, 5516-5524.	2.8	5
347	Mussel-inspired biopolymer modified 3D graphene foam for enzyme immobilization and high performance biosensor. Electrochimica Acta, 2015, 161, 17-22.	2.6	37
348	Native point defects in few-layer phosphorene. Physical Review B, 2015, 91, .	1.1	104
349	Modulation of the Dirac Point Voltage of Graphene by Ion-Gel Dielectrics and Its Application to Soft Electronic Devices. ACS Nano, 2015, 9, 602-611.	7.3	28
350	A Versatile Platform of 2â€(3,4â€Dihydroxyphenyl) Pyrrolidine Grafted Graphene for Preparation of Various Grapheneâ€derived Materials. Chemistry - an Asian Journal, 2015, 10, 1177-1183.	1.7	13

#	Article	IF	CITATIONS
351	Graphene synthesis, characterization and its applications in nanophotonics, nanoelectronics, and nanosensing. Journal of Materials Science: Materials in Electronics, 2015, 26, 4347-4379.	1.1	135
352	Adhesion improvement of graphene/copper interface using UV/ozone treatments. Thin Solid Films, 2015, 584, 170-175.	0.8	28
353	Highly air stable passivation of graphene based field effect devices. Nanoscale, 2015, 7, 3558-3564.	2.8	120
354	Graphene for nanoelectronics. Japanese Journal of Applied Physics, 2015, 54, 040102.	0.8	31
355	Advances in Computational Modeling of Electronic Devices Based on Graphene. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2015, 5, 109-116.	2.7	11
356	Redistribution of carbon atoms in Pt substrate for high quality monolayer graphene synthesis. Journal of Semiconductors, 2015, 36, 013005.	2.0	4
357	Simultaneous voltammetric determination of paracetamol and domperidone based on a graphene/platinum nanoparticles/nafion composite modified glassy carbon electrode. Sensors and Actuators B: Chemical, 2015, 213, 285-294.	4.0	99
358	Analysis of Graphene Tunnel Field-Effect Transistors for Analog/RF Applications. IEEE Transactions on Electron Devices, 2015, 62, 2663-2669.	1.6	22
359	Graphene base heterojunction transistor: An explorative study on device potential, optimization, and base parasitics. Solid-State Electronics, 2015, 114, 23-29.	0.8	7
360	Thermodynamic picture of ultrafast charge transport in graphene. Nature Communications, 2015, 6, 7655.	5.8	147
361	Resistance analysis and device design guideline for graphene RF transistors. 2D Materials, 2015, 2, 034011.	2.0	4
362	Controlled oxygen-doped diamond-like carbon film synthesized by photoemission-assisted plasma. Diamond and Related Materials, 2015, 53, 11-17.	1.8	10
363	Morphology engineering of monolayer MoS 2 by adjusting chemical environment during growth. Physica E: Low-Dimensional Systems and Nanostructures, 2015, 74, 292-296.	1.3	10
364	Boosting Photon Harvesting in Organic Solar Cells with Highly Oriented Molecular Crystals <i>via</i> Graphene–Organic Heterointerface. ACS Nano, 2015, 9, 8206-8219.	7.3	77
365	Graphene Anodes and Cathodes: Tuning the Work Function of Graphene by Nearly 2 eV with an Aqueous Intercalation Process. ACS Applied Materials & Samp; Interfaces, 2015, 7, 17155-17161.	4.0	40
366	Interface engineering for high performance graphene electronic devices. Nano Convergence, 2015, 2, .	6.3	22
367	First-principle study on the optical response of phosphorene. Frontiers of Physics, 2015, 10, 1-9.	2.4	28
368	Silicene nanomesh. Scientific Reports, 2015, 5, 9075.	1.6	42

#	Article	IF	CITATIONS
369	Sharp Switching by Field-Effect Bandgap Modulation in All-Graphene Side-Gate Transistors. IEEE Journal of the Electron Devices Society, 2015, 3, 144-148.	1.2	5
370	Terahertz conductivity characterization of nanostructured graphene-like films for optoelectronic applications. Journal of Nanophotonics, 2015, 9, 093598.	0.4	9
371	RF Operation of Hydrogen-Terminated Diamond Field Effect Transistors: A Comparative Study. IEEE Transactions on Electron Devices, 2015, 62, 751-756.	1.6	36
372	Graphene diamond-like carbon films heterostructure. Applied Physics Letters, 2015, 106, .	1.5	12
373	Three dimensional monolayer graphene foam for ultra-sensitive pH sensing. , 2015, , .		3
374	Seamless lamination of a concave–convex architecture with single-layer graphene. Nanoscale, 2015, 7, 18138-18146.	2.8	1
375	Effect of source-gate spacing on direct current and radio frequency characteristic of graphene field effect transistor. Applied Physics Letters, 2015, 106, .	1.5	11
376	Electrostatically transparent graphene quantum-dot trap layers for efficient nonvolatile memory. Applied Physics Letters, 2015, 106, .	1.5	13
377	Two-Dimensional Atomic Crystals: Paving New Ways for Nanoelectronics. Journal of Electronic Materials, 2015, 44, 4080-4097.	1.0	6
378	Localized charge carriers in graphene nanodevices. Applied Physics Reviews, 2015, 2, .	5.5	81
379	Adsorptive stripping differential pulse voltammetry determination of rivastigmine at graphene nanosheet-gold nanoparticle/carbon paste electrode. Journal of Electroanalytical Chemistry, 2015, 757, 150-158.	1.9	33
380	Noise in Graphene Superlattices Grown on Hexagonal Boron Nitride. ACS Nano, 2015, 9, 11382-11388.	7.3	15
381	Ultrashort Channel Length Black Phosphorus Field-Effect Transistors. ACS Nano, 2015, 9, 9236-9243.	7.3	138
382	Fabrication of graphene interdigitated electrodes and all-carbon electronic devices., 2015,,.		0
383	Graphene FETs With Aluminum Bottom-Gate Electrodes and Its Natural Oxide as Dielectrics. IEEE Transactions on Electron Devices, 2015, 62, 2769-2773.	1.6	36
384	Unique electron transport in ultrathin black phosphorene: Ab-initio study. Applied Surface Science, 2015, 356, 881-887.	3.1	33
385	DLC integrated GHz antenna for aerospace. , 2015, , .		2
386	Versatile Wafer-Scale Technique for the Formation of Ultrasmooth and Thickness-Controlled Graphene Oxide Films Based on Very Large Flakes. ACS Applied Materials & Interfaces, 2015, 7, 21270-21277.	4.0	12

#	Article	IF	Citations
387	Fabrication of fast mid-infrared range photodetector based on hybrid graphene–PbSe nanorods. Applied Optics, 2015, 54, 6386.	2.1	25
388	Position-dependent mechanical responses of nanoindented graphene nanoribbons: Molecular dynamics study. Journal of the Korean Physical Society, 2015, 67, 625-633.	0.3	2
389	Modeling Radiation-Induced Scattering in Graphene. IEEE Transactions on Nuclear Science, 2015, 62, 2906-2911.	1.2	6
390	From graphene oxide to pristine graphene: revealing the inner workings of the full structural restoration. Nanoscale, 2015, 7, 2374-2390.	2.8	95
391	The sheet resistance of graphene under contact and its effect on the derived specific contact resistivity. Carbon, 2015, 82, 500-505.	5.4	57
392	Synergy of oxygen and a piranha solution for eco-friendly production of highly conductive graphene dispersions. Green Chemistry, 2015, 17, 869-881.	4.6	27
393	All-Graphene Planar Self-Switching MISFEDs, Metal-Insulator-Semiconductor Field-Effect Diodes. Scientific Reports, 2014, 4, 3983.	1.6	42
394	Mechanical properties of graphene nanoribbons with disordered edges. Computational Materials Science, 2015, 96, 10-19.	1.4	49
395	Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. Nanoscale, 2015, 7, 4598-4810.	2.8	2,452
396	Photonic Structure-Integrated Two-Dimensional Material Optoelectronics. Electronics (Switzerland), 2016, 5, 93.	1.8	19
397	Intelligent Packaging Systems: Sensors and Nanosensors to Monitor Food Quality and Safety. Journal of Sensors, 2016, 2016, 1-8.	0.6	84
398	Online Determination of Graphene Lattice Orientation Through Lateral Forces. Nanoscale Research Letters, 2016, 11, 353.	3.1	6
399	Dumbbell silicene: a strain-induced room temperature quantum spin Hall insulator. New Journal of Physics, 2016, 18, 043001.	1.2	24
400	A charge-density-wave oscillator based on an integrated tantalum disulfide–boron nitride–graphene device operating at room temperature. Nature Nanotechnology, 2016, 11, 845-850.	15.6	170
401	Tunable Graphene–GaSe Dual Heterojunction Device. Advanced Materials, 2016, 28, 1845-1852.	11.1	90
402	Tuning the Schottky contacts in the phosphorene and graphene heterostructure by applying strain. Physical Chemistry Chemical Physics, 2016, 18, 19918-19925.	1.3	62
403	Black Phosphorus Schottky Diodes: Channel Length Scaling and Application as Photodetectors. Advanced Electronic Materials, 2016, 2, 1500346.	2.6	51
404	SYNTHESIS OF GRAPHENE/DIAMOND DOUBLE-LAYERED STRUCTURE FOR IMPROVING ELECTRON FIELD EMISSION PROPERTIES. Surface Review and Letters, 2016, 23, 1650011.	0.5	1

#	Article	IF	Citations
405	Manipulating spin polarization and carrier mobility in zigzag graphene ribbons using an electric field. , $2016, , .$		1
406	The study of ambipolar behavior in phosphorene field-effect transistors. Journal of Applied Physics, 2016, 120, .	1.1	8
407	Modification of the terahertz electromagnetic response of the semiconducting polymer polyfluorene by graphene oxide particles. Technical Physics Letters, 2016, 42, 1126-1129.	0.2	0
408	Magnetism and magnetocrystalline anisotropy in single-layer PtSe2: Interplay between strain and vacancy. Journal of Applied Physics, 2016, 120, .	1.1	51
409	Planar cold cathode based on a multilayer-graphene/SiO2/Si heterodevice. Applied Physics Express, 2016, 9, 105101.	1.1	5
410	Graphene grown out of diamond. Applied Physics Letters, 2016, 109, 162105.	1.5	16
411	High-performance self-aligned graphene transistors fabricated using contamination- and defect-free process. Japanese Journal of Applied Physics, 2016, 55, 06GF11.	0.8	1
412	Few-layer HfS2 transistors. Scientific Reports, 2016, 6, 22277.	1.6	131
413	Record low metal â€" (CVD) graphene contact resistance using atomic orbital overlap engineering. , 2016, , .		20
414	Toward transparent and self-activated graphene harmonic transponder sensors. Applied Physics Letters, 2016, 108, .	1.5	23
415	Black phosphorus nonvolatile transistor memory. Nanoscale, 2016, 8, 9107-9112.	2.8	39
416	Electronic and Optical Properties of the Narrowest Armchair Graphene Nanoribbons Studied by Density Functional Methods. Australian Journal of Chemistry, 2016, 69, 960.	0.5	10
417	Transport studies in 2D transition metal dichalcogenides and black phosphorus. Journal of Physics Condensed Matter, 2016, 28, 263002.	0.7	12
418	Transport conductivity of graphene at RF and microwave frequencies. 2D Materials, 2016, 3, 015010.	2.0	39
419	Device applications of epitaxial graphene on silicon carbide. Vacuum, 2016, 128, 186-197.	1.6	30
420	First principle study of the attachment of graphene onto non-doped and doped diamond (111). Diamond and Related Materials, 2016, 66, 52-60.	1.8	14
421	A facile method for the selective decoration of graphene defects based on a galvanic displacement reaction. NPG Asia Materials, 2016, 8, e262-e262.	3.8	15
422	Development of two-dimensional materials for electronic applications. Science China Information Sciences, 2016, 59, 1.	2.7	9

#	Article	IF	CITATIONS
423	Controlling the electronic properties of Gd: MoS2 monolayer with perpendicular electric field. Journal of Electroceramics, 2016, 37, 29-33.	0.8	6
424	200 GHz Maximum Oscillation Frequency in CVD Graphene Radio Frequency Transistors. ACS Applied Materials & Samp; Interfaces, 2016, 8, 25645-25649.	4.0	97
425	Observation of scattering parameters for bandgap-tuned graphene oxide under 488Ânm illumination. Carbon, 2016, 109, 453-460.	5.4	3
426	Silver Nanoparticles: Potential Hazards of Silver Nanoparticles to the Environment and Human Health., 2016,, 1011-1022.		0
427	Vertical MoS 2 / h BN/MoS 2 interlayer tunneling field effect transistor. Solid-State Electronics, 2016, 126, 96-103.	0.8	21
428	In-situ TEM study of the dynamic behavior of the graphene-metal interface evolution under Joule heating. Science China Technological Sciences, 2016, 59, 1080-1084.	2.0	11
429	Polymer Devices with Graphene: Solar Cells and Ultracapacitors., 2016,, 209-226.		1
430	Graphene quantum dots: wave function mapping by scanning tunneling spectroscopy and transport spectroscopy of quantum dots prepared by local anodic oxidation. Physica Status Solidi - Rapid Research Letters, 2016, 10, 24-38.	1.2	7
431	Simple fabrication of air-stable black phosphorus heterostructures with large-area hBN sheets grown by chemical vapor deposition method. 2D Materials, 2016, 3, 035010.	2.0	57
432	Deep-submicron Graphene Field-Effect Transistors with State-of-Art fmax. Scientific Reports, 2016, 6, 35717.	1.6	26
433	Resonant tunneling based graphene quantum dot memristors. Nanoscale, 2016, 8, 20074-20079.	2.8	18
434	Impact of Contact Resistance on the fT and fmax of Graphene vs. MoS2 Transistors. IEEE Nanotechnology Magazine, 2016, , 1-1.	1.1	9
435	Large-scale cellulose-assisted transfer of graphene toward industrial applications. Carbon, 2016, 110, 286-291.	5.4	38
436	Potential energy surfaces of mechanically induced reconstruction and doping of carbon sp2 lattice. Computational Materials Science, 2016, 125, 168-175.	1.4	1
437	Observing the evolution of graphene layers at high current density. Nano Research, 2016, 9, 3663-3670.	5.8	21
438	Synthesis of Few-Layer Graphene on Copper Using a Low-Cost Atmospheric Thermal Chemical Vapour Deposition System with Methane and Forming Gas. Nano Hybrids, 2016, 10, 1-13.	0.3	0
439	Scaling of excitons in graphene nanodots. Physical Chemistry Chemical Physics, 2016, 18, 28365-28369.	1.3	11
440	Surface Charge Transfer Doping of Lowâ€Dimensional Nanostructures toward Highâ€Performance Nanodevices. Advanced Materials, 2016, 28, 10409-10442.	11.1	144

#	Article	IF	CITATIONS
441	Electronic states in an atomistic carbon quantum dot patterned in graphene. Physical Review B, 2016, 93, .	1.1	8
442	Hybrid Integration of Graphene Analog and Silicon Complementary Metal–Oxide–Semiconductor Digital Circuits. ACS Nano, 2016, 10, 7142-7146.	7.3	16
443	Three dimensional graphene transistor for ultra-sensitive pH sensing directly in biological media. Analytica Chimica Acta, 2016, 934, 212-217.	2.6	14
444	Linac Coherent Light Source: The first five years. Reviews of Modern Physics, 2016, 88, .	16.4	477
445	Effect of the edge states on the conductance and thermopower in zigzag phosphorene nanoribbons. Physical Review B, 2016, 94, .	1.1	34
446	Coalescence of Immiscible Liquid Metal Drop on Graphene. Scientific Reports, 2016, 6, 34074.	1.6	34
447	Band narrowing and Mott localization in isotropically superstrained graphene. Physical Review B, 2016, 94, .	1.1	7
448	Improved Drain Current Saturation and Voltage Gain in Graphene–on–Silicon Field Effect Transistors. Scientific Reports, 2016, 6, 25392.	1.6	12
449	Metal-induced rapid transformation of diamond into single and multilayer graphene on wafer scale. Nature Communications, 2016, 7, 12099.	5.8	70
450	An Organic Vertical Fieldâ€Effect Transistor with Undersideâ€Doped Graphene Electrodes. Advanced Materials, 2016, 28, 4803-4810.	11.1	82
451	Lowâ€Voltage Complementary Electronics from Ionâ€Gelâ€Gated Vertical Van der Waals Heterostructures. Advanced Materials, 2016, 28, 3742-3748.	11.1	91
452	Investigation of black phosphorus field-effect transistors and its stability. Optical and Quantum Electronics, 2016, 48, 1.	1.5	8
453	Short channel effects in graphene-based field effect transistors targeting radio-frequency applications. 2D Materials, 2016, 3, 025036.	2.0	30
454	Vacancy-induced spin polarization in graphene and B–N nanoribbon heterojunctions. RSC Advances, 2016, 6, 56429-56434.	1.7	5
455	Superluminal light propagation in a monolayer graphene system under external magnetic field. Optik, 2016, 127, 8436-8442.	1.4	5
456	On the use of two dimensional hexagonal boron nitride as dielectric. Microelectronic Engineering, 2016, 163, 119-133.	1.1	96
457	Recent progress on carbon-based superconductors. Journal of Physics Condensed Matter, 2016, 28, 334001.	0.7	38
458	Why intracontinental basins subside longer: 3â€D feedback effects of lithospheric cooling and sedimentation on the flexural strength of the lithosphere. Journal of Geophysical Research: Solid Earth, 2016, 121, 3742-3761.	1.4	29

#	ARTICLE	IF	CITATIONS
459	Liquidâ€Exfoliated Black Phosphorous Nanosheet Thin Films for Flexible Resistive Random Access Memory Applications. Advanced Functional Materials, 2016, 26, 2016-2024.	7.8	161
460	Broadband Blackâ€Phosphorus Photodetectors with High Responsivity. Advanced Materials, 2016, 28, 3481-3485.	11.1	364
461	MBE growth of ultra-thin GeSn film with high Sn content and its infrared/terahertz properties. Journal of Alloys and Compounds, 2016, 665, 131-136.	2.8	16
462	Influence of Substrate Microstructure on the Transport Properties of CVD-Graphene. ACS Applied Materials & Company (Interfaces, 2016, 8, 240-246.	4.0	23
463	Symmetric complementary logic inverter using integrated black phosphorus and MoS ₂ transistors. 2D Materials, 2016, 3, 011006.	2.0	49
464	Laser micromachining of screen-printed graphene for forming electrode structures. Applied Surface Science, 2016, 374, 305-311.	3.1	8
465	Atomic-concentration diffusion governing integrated-territory graphene syntheses at catalyst–insulator interfaces. Carbon, 2016, 102, 403-408.	5.4	3
466	Nonlinear optical frequency mixing response of single and multilayer graphene. Optics Letters, 2016, 41, 1122.	1.7	9
467	Water Intercalation for Seamless, Electrically Insulating, and Thermally Transparent Interfaces. ACS Applied Materials & Electrically Insulating, and Thermally Transparent Interfaces. ACS Applied Materials & Electrically Insulating, and Thermally Transparent Interfaces. ACS Applied Materials & Electrically Insulating, and Thermally Transparent Interfaces. ACS Applied Materials & Electrically Insulating, and Thermally Transparent Interfaces. ACS Applied Materials & Electrically Insulating, and Thermally Transparent Interfaces. ACS Applied Materials & Electrically Insulating, and Thermally Transparent Interfaces. ACS Applied Materials & Electrically Insulating & Electrically & Elec	4.0	27
468	Low-Temperature and Ultrafast Synthesis of Patternable Few-Layer Transition Metal Dichacogenides with Controllable Stacking Alignment by a Microwave-Assisted Selenization Process. Chemistry of Materials, 2016, 28, 1147-1154.	3.2	22
469	Simultaneous CVD synthesis of graphene-diamond hybrid films. Carbon, 2016, 98, 99-105.	5.4	19
470	Highly efficient gas molecule-tunable few-layer GaSe phototransistors. Journal of Materials Chemistry C, 2016, 4, 248-253.	2.7	54
471	Transport in Disordered Graphene. Springer Theses, 2016, , 55-113.	0.0	0
472	Charge and Spin Transport in Disordered Graphene-Based Materials. Springer Theses, 2016, , .	0.0	26
473	Fabricating in-plane transistor and memory using atomic force microscope lithography towards graphene system on chip. Carbon, 2016, 96, 223-228.	5.4	14
474	Interlocked graphene–Prussian blue hybrid composites enable multifunctional electrochemical applications. Biosensors and Bioelectronics, 2017, 89, 570-577.	5. 3	62
475	Graphene Modulators and Switches Integrated on Silicon and Silicon Nitride Waveguide. IEEE Journal of Selected Topics in Quantum Electronics, 2017, 23, 94-100.	1.9	52
476	Interface Electrical Properties of Al ₂ O ₃ Thin Films on Graphene Obtained by Atomic Layer Deposition with an in Situ Seedlike Layer. ACS Applied Materials & Samp; Interfaces, 2017, 9, 7761-7771.	4.0	44

#	Article	IF	Citations
477	Spontaneous formation of graphene on diamond (111) driven by B-doping induced surface reconstruction. Carbon, 2017, 115, 388-393.	5.4	18
478	Magnetism and magnetocrystalline anisotropy in vacancy doped and (non)metal adsorbed single-layer PtSe2. Computational Materials Science, 2017, 129, 171-177.	1.4	14
479	First-principles study on structural, thermal, mechanical and dynamic stability of T'-MoS ₂ . Journal of Physics Condensed Matter, 2017, 29, 095702.	0.7	14
480	Finding Stable Graphene Conformations from Pull and Release Experiments with Molecular Dynamics. Scientific Reports, 2017, 7, 42356.	1.6	12
481	Fabrication of graphene on atomically flat diamond (111) surfaces using nickel as a catalyst. Diamond and Related Materials, 2017, 75, 105-109.	1.8	22
482	Excitonic absorption spectra in graphene nanoflakes: Tuning of exciton binding energy by dielectric environments. Journal of Chemical Physics, 2017, 146, 084705.	1.2	4
483	The Application of Graphene in Biosensors. , 2017, , 299-329.		2
484	Rhenium dichalcogenides (ReX $<$ sub $>2sub>, X = S or Se): an emerging class of TMDs family. Materials Chemistry Frontiers, 2017, 1, 1917-1932.$	3.2	51
485	Ambipolar Barristors for Reconfigurable Logic Circuits. Nano Letters, 2017, 17, 1448-1454.	4.5	29
486	Large-Area CVD-Grown Sub-2 V ReS ₂ Transistors and Logic Gates. Nano Letters, 2017, 17, 2999-3005.	4. 5	68
487	Identification of strained black phosphorous by Raman spectroscopy. Journal of Semiconductors, 2017, 38, 042003.	2.0	1
488	Magnetism in the p-type Monolayer II-VI semiconductors SrS and SrSe. Scientific Reports, 2017, 7, 45869.	1.6	17
489	Low-Voltage 2D Material Field-Effect Transistors Enabled by Ion Gel Capacitive Coupling. Chemistry of Materials, 2017, 29, 4008-4013.	3.2	14
490	The effective determination of Cd(<scp>ii</scp>) and Pb(<scp>ii</scp>) simultaneously based on an aluminum silicon carbide-reduced graphene oxide nanocomposite electrode. Analyst, The, 2017, 142, 2741-2747.	1.7	28
491	Two-Dimensional Oscillatory Neural Network Based on Room-Temperature Charge-Density-Wave Devices. IEEE Nanotechnology Magazine, 2017, 16, 860-867.	1.1	33
492	Functionalization of Graphene and Applications of the Derivatives. Journal of Inorganic and Organometallic Polymers and Materials, 2017, 27, 1129-1141.	1.9	51
493	Short-Channel Graphene Mixer With High Linearity. IEEE Electron Device Letters, 2017, 38, 1168-1171.	2.2	21
494	Evidence of electric field-tunable tunneling probability in graphene and metal contact. Nanoscale, 2017, 9, 9520-9528.	2.8	18

#	Article	IF	Citations
495	Tuning the Schottky contacts at the graphene/WS ₂ interface by electric field. RSC Advances, 2017, 7, 29350-29356.	1.7	52
496	Broadband image sensor array based on graphene–CMOS integration. Nature Photonics, 2017, 11, 366-371.	15.6	523
497	Highly sensitive graphene biosensor by monomolecular self-assembly of receptors on graphene surface. Applied Physics Letters, 2017, 110, 203702.	1.5	18
498	Largeâ€Area Schottky Barrier Transistors Based on Vertically Stacked Graphene–Metal Oxide Heterostructures. Advanced Functional Materials, 2017, 27, 1700651.	7.8	26
499	Vertical edge graphite layer on recovered diamond (001) after highâ€dose ion implantation and highâ€temperature annealing. Physica Status Solidi (B): Basic Research, 2017, 254, 1700040.	0.7	4
500	All-angle negative refraction of highly squeezed plasmon and phonon polaritons in graphene–boron nitride heterostructures. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 6717-6721.	3.3	144
501	Thermal Transport in Supported Graphene: Substrate Effects on Collective Excitations. Physical Review Applied, 2017, 7, .	1.5	10
502	Fluorine effect on adhesion and adhesive transfer at iron/diamond interfaces. Computational Condensed Matter, 2017, 10, 39-42.	0.9	0
503	Performance Limit Projection of Germanane Field-Effect Transistors. IEEE Electron Device Letters, 2017, 38, 673-676.	2.2	12
504	Enhanced performance in graphene RF transistors via advanced process integration. Semiconductor Science and Technology, 2017, 32, 045009.	1.0	3
505	Carbon Materials. , 2017, , 429-462.		2
506	Ferroelectricâ€Gated Twoâ€Dimensionalâ€Materialâ€Based Electron Devices. Advanced Electronic Materials, 2017, 3, 1600400.	2.6	68
507	Schottkyâ€Barrierâ€Controllable Graphene Electrode to Boost Rectification in Organic Vertical P–N Junction Photodiodes. Advanced Functional Materials, 2017, 27, 1704475.	7.8	35
508	Theoretical investigation into the possibility of multiorbital magnetically ordered states in isotropically superstrained graphene. Physical Review B, 2017, 96, .	1.1	4
509	Excitonic effects and optical spectra of graphene nanoflakes. Journal of Applied Physics, 2017, 122, 084301.	1.1	2
510	First-principle calculations of structural, electronic, optical and thermal properties of hydrogenated graphene. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2017, 226, 64-71.	1.7	24
511	Graphene Nanoribbons for Electronic Devices. Annalen Der Physik, 2017, 529, 1700033.	0.9	39
512	A transistor based on 2D material and silicon junction. Journal of the Korean Physical Society, 2017, 71, 92-100.	0.3	1

#	Article	IF	CITATIONS
513	Graphene Electronics., 0, , 159-179.		0
514	Dark excitons and tunable optical gap in graphene nanodots. Physical Chemistry Chemical Physics, 2017, 19, 23131-23137.	1.3	13
515	Graphene Sensing Modulator: Toward Low-Noise, Self-Powered Wireless Microsensors. IEEE Sensors Journal, 2017, 17, 7239-7247.	2.4	24
516	Anisotropic Properties of Black Phosphorus. , 0, , 413-434.		3
517	Effect of molybdenum disulfide nanoribbon on quantum transport of graphene. Journal of Physics Condensed Matter, 2017, 29, 435001.	0.7	5
518	Applications of carbon nanotubes and graphene produced by chemical vapor deposition. MRS Bulletin, 2017, 42, 825-833.	1.7	14
519	Graphene: Fundamental research and potential applications. FlatChem, 2017, 4, 20-32.	2.8	120
520	The influence of strain on the energy band structures of phosphorene nanoribbons. Physics Letters, Section A: General, Atomic and Solid State Physics, 2017, 381, 2827-2831.	0.9	12
521	ESD behavior of large area CVD graphene RF transistors: Physical insights and technology implications. , $2017, \dots$		4
522	Assessment of High-Frequency Performance Limit of Black Phosphorus Field-Effect Transistors. IEEE Transactions on Electron Devices, 2017, 64, 2984-2991.	1.6	17
523	Bandgap engineering in semiconducting one to few layers of SnS and SnSe. Physica Status Solidi (B): Basic Research, 2017, 254, 1600379.	0.7	43
524	Nanostructured substrate effects on diamond-like Carbon films properties grown by pulsed laser deposition. Surface and Coatings Technology, 2017, 312, 55-60.	2.2	9
525	Tuning electronic properties of the S 2 /graphene heterojunction by strains from density functional theory. Chinese Physics B, 2017, 26, 127101.	0.7	1
526	Terahertz electromagnetic response of the semiconducting polymer polyfluorene modified with graphene oxide particles. , 2017 , , .		0
527	Strong field transient manipulation of electronic states and bands. Structural Dynamics, 2017, 4, 061505.	0.9	5
528	Bias induced ferromagnetism and half-metallicity in graphene nano-ribbons. Scientific Reports, 2017, 7, 17094.	1.6	1
529	An embedded gate graphene field effect transistor with natural Al oxidization dielectrics and its application to frequency doubler. IEICE Electronics Express, 2017, 14, 20170707-20170707.	0.3	2
530	Crown oxygen-doping graphene with embedded main-group metal atoms. European Physical Journal B, $2018, 91, 1.$	0.6	3

#	Article	IF	CITATIONS
531	Graphene Oxide/Poly(3-hexylthiophene) Nanocomposite Thin-Film Phototransistor for Logic Circuit Applications. Journal of Electronic Materials, 2018, 47, 2461-2467.	1.0	14
532	High Performance Black Phosphorus Electronic and Photonic Devices with HfLaO Dielectric. IEEE Electron Device Letters, 2018, 39, 127-130.	2.2	31
533	Analog Circuit Applications Based on Ambipolar Graphene/MoTe ₂ Vertical Transistors. Advanced Electronic Materials, 2018, 4, 1700662.	2.6	26
534	Graphene-based flexible and wearable electronics. Journal of Semiconductors, 2018, 39, 011007.	2.0	76
535	A DFT study on the catalytic ability of aluminum doped graphene for the initial steps of the conversion of methanol to gasoline. Computational and Theoretical Chemistry, 2018, 1127, 8-15.	1.1	9
536	Tunable Polarity Behavior and High-Performance Photosensitive Characteristics in Schottky-Barrier Field-Effect Transistors Based on Multilayer WS ₂ . ACS Applied Materials & mp; Interfaces, 2018, 10, 2745-2751.	4.0	17
537	Graphene Nanopapers. , 2018, , 27-58.		1
538	Graphene and its sensor-based applications: A review. Sensors and Actuators A: Physical, 2018, 270, 177-194.	2.0	475
539	Distinct impact behaviors of liquid metals featured by diffusion and microstructure on different substrates: Insights from molecular dynamics simulation. Computational Materials Science, 2018, 145, 174-183.	1.4	17
540	Significant band gap induced by uniaxial strain in graphene/blue phosphorene bilayer. Carbon, 2018, 130, 120-126.	5.4	31
541	Schottky barrier tuning of the graphene/SnS2 van der Waals heterostructures through electric field. Solid State Communications, 2018, 271, 56-61.	0.9	18
542	Tunable Charge Injection via Solution-Processed Reduced Graphene Oxide Electrode for Vertical Schottky Barrier Transistors. Chemistry of Materials, 2018, 30, 636-643.	3.2	31
543	Amorphous-InGaZnO Thin-Film Transistors Operating Beyond 1 GHz Achieved by Optimizing the Channel and Gate Dimensions. IEEE Transactions on Electron Devices, 2018, 65, 1377-1382.	1.6	32
544	Poly(aminohippuric acid)–sodium dodecyl sulfate/functionalized graphene oxide nanocomposite for amplified electrochemical sensing of gallic acid. Journal of the Iranian Chemical Society, 2018, 15, 1931-1938.	1.2	10
545	Strain engineering on electronic structure and carrier mobility in monolayer GeP ₃ . Journal Physics D: Applied Physics, 2018, 51, 235302.	1.3	47
546	Intriguing electronic insensitivity and high carrier mobility in monolayer hexagonal YN. Journal of Materials Chemistry C, 2018, 6, 4943-4951.	2.7	28
547	Near-zero hysteresis and near-ideal subthreshold swing in h-BN encapsulated single-layer MoS ₂ field-effect transistors. 2D Materials, 2018, 5, 031001.	2.0	104
548	Photosensitive Graphene P–N Junction Transistors and Ternary Inverters. ACS Applied Materials & lnterfaces, 2018, 10, 12897-12903.	4.0	28

#	Article	IF	CITATIONS
549	Stacking sequences of black phosphorous allotropes and the corresponding few-layer phosphorenes. Physical Chemistry Chemical Physics, 2018, 20, 10185-10192.	1.3	8
550	Study of Ni-Catalyzed Graphitization Process of Diamond by <i>in Situ</i> X-ray Photoelectron Spectroscopy. Journal of Physical Chemistry C, 2018, 122, 6629-6636.	1.5	22
551	Chemical synthesis of two-dimensional atomic crystals, heterostructures and superlattices. Chemical Society Reviews, 2018, 47, 3129-3151.	18.7	132
552	Graphene Electronic Devices. , 2018, , 103-155.		10
553	THz applications of 2D materials: Graphene and beyond. Nano Structures Nano Objects, 2018, 15, 107-113.	1.9	51
554	Display process compatible accurate graphene patterning for OLED applications. 2D Materials, 2018, 5, 014003.	2.0	17
555	Electronic properties of the coronene series from thermally-assisted-occupation density functional theory. RSC Advances, 2018, 8, 34350-34358.	1.7	21
557	High Performance Double-Gate Graphene Radio-Frequency Transistors. , 2018, , .		0
558	Scalable high performance radio frequency electronics based on large domain bilayer MoS2. Nature Communications, 2018, 9, 4778.	5.8	98
559	High-performance transistors based on monolayer CVD MoS2 grown on molten glass. Applied Physics Letters, 2018, 113, .	1.5	36
560	Micro-Machining of Nano-Polymer Composites Reinforced with Graphene and Nano-Clay Fillers. Key Engineering Materials, 2018, 786, 197-205.	0.4	14
561	A DFT study on the electronic and magnetic properties of triangular graphene antidot lattices. European Physical Journal B, 2018, 91, 1.	0.6	9
562	High-performance two-dimensional transistors and circuits. , 2018, , .		2
563	Strain Effect in Highlyâ€Doped nâ€Type 3Câ€SiCâ€onâ€Glass Substrate for Mechanical Sensors and Mobility Enhancement. Physica Status Solidi (A) Applications and Materials Science, 2018, 215, 1800288.	0.8	5
564	Defect-Assisted Safe Operating Area Limits and High Current Failure in Graphene FETs. , 2018, , .		3
566	A general and simple method for evaluating the electrical transport performance of graphene by the van der Pauw–Hall measurement. Science Bulletin, 2018, 63, 1521-1526.	4.3	15
567	Microwave imaging of etching-induced surface impedance modulation of graphene monolayer. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2018, 36, 05G508.	0.9	3
568	Infrared photodetectors based on graphene metal nano clusters. Photonics and Nanostructures - Fundamentals and Applications, 2018, 31, 173-179.	1.0	3

#	Article	IF	CITATIONS
569	Gigahertz Integrated Circuits Based on Complementary Black Phosphorus Transistors. Advanced Electronic Materials, 2018, 4, 1800274.	2.6	23
570	Black Phosphorus Radio Frequency Electronics at Cryogenic Temperatures. Advanced Electronic Materials, 2018, 4, 1800138.	2.6	15
571	How Do Contact and Channel Contribute to the Dirac Points in Graphene Fieldâ€Effect Transistors?. Advanced Electronic Materials, 2018, 4, 1800158.	2.6	18
572	Electron Transport Properties of Two-Dimensional Monolayer Films from Au-P-Au to Au-Si-Au Molecular Junctions. Chinese Physics Letters, 2018, 35, 017201.	1.3	1
573	Carbon-Based Nanomaterials/Allotropes: A Glimpse of Their Synthesis, Properties and Some Applications. Materials, 2018, 11, 295.	1.3	239
574	Nonlinear THz spectroscopy and simulation of gated graphene. Journal of Physics Communications, 2018, 2, 065016.	0.5	2
575	Optical properties of graphene under different hydrostatic pressures. , 2018, , .		0
576	Pinhole evolution of few-layer graphene during electron tunneling and electron transport. Carbon, 2018, 139, 688-694.	5.4	5
577	Abnormal blueshift of the absorption edge in graphene nanodots. Journal of Chemical Physics, 2018, 148, 214301.	1.2	2
578	Synthesis of Amorphous Carbon Film in Ethanol Inverse Diffusion Flames. Nanomaterials, 2018, 8, 656.	1.9	4
579	Size distribution of trilayer graphene flakes obtained by electrochemical exfoliation of graphite: Effect of the synthesis parameters. Materials Chemistry and Physics, 2018, 220, 87-97.	2.0	9
580	Terahertz optical bistability of graphene-coated cylindrical core–shell nanoparticles. Journal of Theoretical and Applied Physics, 2018, 12, 257-263.	1.4	13
581	Intelligent Packaging., 2018,, 203-247.		11
582	Polymeric Graphene Bulk Materials with a 3D Crossâ€Linked Monolithic Graphene Network. Advanced Materials, 2019, 31, e1802403.	11.1	74
583	Van der Waals heterostructures for optoelectronics: Progress and prospects. Applied Materials Today, 2019, 16, 435-455.	2.3	117
584	Survey of graphene-based nanotechnologies. , 2019, , 23-39.		6
585	Electronic structure of single-crystalline graphene grown on Cu/Ni (111) alloy film*. Chinese Physics B, 2019, 28, 086103.	0.7	4
586	Nanometre-thin indium tin oxide for advanced high-performance electronics. Nature Materials, 2019, 18, 1091-1097.	13.3	207

#	Article	IF	Citations
587	Electronic Properties of Triangle-Shaped Graphene Nanoflakes from TAO-DFT. ACS Omega, 2019, 4, 14202-14210.	1.6	18
588	Adhesion energy of as-grown graphene on nickel substrates via StereoDIC-based blister experiments. Carbon, 2019, 153, 699-706.	5.4	14
589	Microscopic origin of interaction between oxygen and fluorine adsorbates covalently bound to graphene. Surfaces and Interfaces, 2019, 17, 100354.	1.5	0
590	Improved contact resistivity and enhanced mobility of metal-graphene FET by inserting ultra-thin MoO $<$ i> $>$ x $<$ /i $>$ layer at source/drain region. AIP Advances, 2019, 9, .	0.6	4
591	Electron Traversal Times in Disordered Graphene Nanoribbons. Entropy, 2019, 21, 737.	1.1	8
592	The effect of pressure on the electronic and optical properties of hydrogenated graphene: a first-principles study. Journal of Computational Electronics, 2019, 18, 770-778.	1.3	7
593	All-Inkjet-Printed Vertical Heterostructure for Wafer-Scale Electronics. ACS Nano, 2019, 13, 8213-8221.	7.3	12
598	All-carbon hybrids for high-performance electronics, optoelectronics and energy storage. Science China Information Sciences, 2019, 62, 1.	2.7	6
599	Photocurrent Direction Control and Increased Photovoltaic Effects in All-2D Ultrathin Vertical Heterostructures Using Asymmetric h-BN Tunneling Barriers. ACS Applied Materials & Samp; Interfaces, 2019, 11, 40274-40282.	4.0	10
600	Recent Advances in Seeded and Seed-Layer-Free Atomic Layer Deposition of High-K Dielectrics on Graphene for Electronics. Journal of Carbon Research, 2019, 5, 53.	1.4	20
601	Spin transport in proximity-induced ferromagnetic phosphorene nanoribbons. Superlattices and Microstructures, 2019, 136, 106324.	1.4	6
602	The sp ² character of new two-dimensional AsB with tunable electronic properties predicted by theoretical studies. Physical Chemistry Chemical Physics, 2019, 21, 20981-20987.	1.3	5
603	Geometrically Enhanced Graphene Tunneling Diode With Lateral Nano-Scale Gap. IEEE Electron Device Letters, 2019, 40, 1840-1843.	2.2	5
604	Ultra-sensitive graphene–bismuth telluride nano-wire hybrids for infrared detection. Nanoscale, 2019, 11, 1579-1586.	2.8	28
605	Ecofriendly Long Life Nanocomposite Sensors for Determination of Carbachol in Presence of Choline: Application in Ophthalmic Solutions and Biological Fluids. Sensors, 2019, 19, 2357.	2.1	5
606	Remote Gating of Schottky Barrier for Transistors and Their Vertical Integration. ACS Nano, 2019, 13, 7877-7885.	7.3	14
607	Computationally predicting spin semiconductors and half metals from doped phosphorene monolayers. Frontiers of Physics, 2019, 14, 1.	2.4	14
608	Electronic Devices and Circuits Based on Waferâ€Scale Polycrystalline Monolayer MoS ₂ by Chemical Vapor Deposition. Advanced Electronic Materials, 2019, 5, 1900393.	2.6	57

#	Article	IF	CITATIONS
609	First Principle Study of the Attachment of Graphene onto Different Terminated Diamond (111) Surfaces. Advances in Condensed Matter Physics, 2019, 2019, 1-9.	0.4	7
610	Electrochemical Treatment of Graphene. Key Engineering Materials, 0, 799, 197-202.	0.4	1
611	Anisotropy of Graphene Nanoflake Diamond Interface Frictional Properties. Materials, 2019, 12, 1425.	1.3	11
612	Effect of interfacial defects on the electronic properties of graphene/g-GaN heterostructures. RSC Advances, 2019, 9, 13418-13423.	1.7	9
613	First-principles investigation of structural and electronic properties of oxygen adsorbing phosphorene. Progress in Natural Science: Materials International, 2019, 29, 316-321.	1.8	12
614	Systematic first-principles study on the Ni and X (Xâ€=‰C, N, O, F, P, S, Cl, Se, and Te) codoped monolayer WS2 (W15Ni1S26X6). Journal of Magnetism and Magnetic Materials, 2019, 486, 165255.	1.0	5
615	Nanoscale electronic devices based on transition metal dichalcogenides. 2D Materials, 2019, 6, 032004.	2.0	51
616	Voltammetric sensing performances of a carbon ionic liquid electrode modified with black phosphorene and hemin. Mikrochimica Acta, 2019, 186, 304.	2.5	21
617	Covalent Diamond–Graphite Bonding: Mechanism of Catalytic Transformation. ACS Nano, 2019, 13, 4621-4630.	7.3	38
619	Superconducting Diamond on Silicon Nitride for Device Applications. Scientific Reports, 2019, 9, 2911.	1.6	23
620	Carbon Nanostructure-based Sensors: A Brief Review on Recent Advances. Advances in Materials Science and Engineering, 2019, 2019, 1-21.	1.0	100
621	Structural, electronic, magnetic, and optical properties of monolayer WS2 doped with Co-X6 (X = S, N,) Tj	ETQ <u>9</u>] 1 C	0.784314 rgB
622	Self-power position-sensitive detector with fast optical relaxation time and large position sensitivity basing on the lateral photovoltaic effect in tin diselenide films. Journal of Alloys and Compounds, 2019, 790, 941-946.	2.8	24
624	Time-dependent quantum Monte Carlo simulation of electron devices with two-dimensional Dirac materials: A genuine terahertz signature for graphene. Physical Review B, 2019, 99, .	1.1	7
625	Delamination of 2D coordination polymers: The role of solvent and ultrasound. Ultrasonics Sonochemistry, 2019, 55, 186-195.	3.8	19
626	Wafer Scale Mapping and Statistical Analysis of Radio Frequency Characteristics in Highly Uniform CVD Graphene Transistors. Advanced Electronic Materials, 2019, 5, 1800711.	2.6	12
627	Key Roles of Plasmonics in Wireless THz Nanocommunicationsâ€"A Survey. Applied Sciences (Switzerland), 2019, 9, 5488.	1.3	15
628	A New Class of Scandium Carbide Nanosheet. Scientific Reports, 2019, 9, 16624.	1.6	1

#	Article	IF	CITATIONS
629	Recent advances in graphene based nano-composites for automotive and off-highway vehicle applications. Current Graphene Science, 2019, 03, .	0.5	7
630	Path towards graphene commercialization from lab to market. Nature Nanotechnology, 2019, 14, 927-938.	15.6	235
631	Uniform and ultrathin high- \hat{l}^2 gate dielectrics for two-dimensional electronic devices. Nature Electronics, 2019, 2, 563-571.	13.1	204
632	Bidirectional heterostructures consisting of graphene and lateral MoS ₂ /WS ₂ composites: a first-principles study. RSC Advances, 2019, 9, 34986-34994.	1.7	4
633	Raman analysis of graphene on SiC. Journal of Physics: Conference Series, 2019, 1410, 012061.	0.3	0
634	Grain boundary structure and migration in graphene via the displacement shift complete lattice. Acta Materialia, 2019, 166, 67-74.	3.8	10
635	Synthesis, Characterization, and Applications of Graphene and Derivatives., 2019, , 259-283.		20
636	Growth and Isolation of Large Area Boronâ€Doped Nanocrystalline Diamond Sheets: A Route toward Diamondâ€onâ€Graphene Heterojunction. Advanced Functional Materials, 2019, 29, 1805242.	7.8	22
637	Energyâ€Dependent Spectral Analysis of Photonâ€Assisted Carrier Transport at Resonance in Graphene Oxide. Advanced Optical Materials, 2019, 7, 1800861.	3.6	0
638	Graphene foam field-effect transistor for ultra-sensitive label-free detection of ATP. Sensors and Actuators B: Chemical, 2019, 284, 125-133.	4.0	49
639	CVD diamond film detectors for $\hat{l}\pm$ particles with a new electrode structure of reduced graphene oxide/Au. Materials Science in Semiconductor Processing, 2019, 91, 260-266.	1.9	5
640	Graphene–Metal Modified Electrochemical Sensors. , 2019, , 89-111.		1
641	Environment friendly chemical mechanical polishing of copper. Applied Surface Science, 2019, 467-468, 5-11.	3.1	214
642	Robust sandwiched fluorinated graphene for highly reliable flexible electronics. Applied Surface Science, 2020, 499, 143839.	3.1	11
643	Effects of Midâ€Infrared Graphene Plasmons on Photothermal Heating. Physica Status Solidi - Rapid Research Letters, 2020, 14, 1900656.	1.2	2
645	A prototype active-matrix OLED using graphene anode for flexible display application. Journal of Information Display, 2020, 21, 49-56.	2.1	24
646	Preparation of chemical vapor sensor by reduction graphene oxide doped with nanoparticles of gold on porous silicon using photoluminescence. Optik, 2020, 206, 163576.	1.4	5
647	Recent advances in preparation and application of laser-induced graphene in energy storage devices. Materials Today Energy, 2020, 18, 100569.	2.5	43

#	Article	IF	Citations
648	A Review of Inkjet Printed Graphene and Carbon Nanotubes Based Gas Sensors. Sensors, 2020, 20, 5642.	2.1	53
649	Aluminum oxide nucleation in the early stages of atomic layer deposition on epitaxial graphene. Carbon, 2020, 169, 172-181.	5.4	22
650	Color-Selective Schottky Barrier Modulation for Optoelectric Logic. ACS Nano, 2020, 14, 16036-16045.	7.3	14
651	Thermoelectric and optical properties of the SrS graphene by DFT. Philosophical Magazine, 2020, 100, 3108-3124.	0.7	8
652	Theoretical investigation of the interaction of gas molecules with Pt-adsorbed arsenene monolayers. Computational and Theoretical Chemistry, 2020, 1190, 112977.	1.1	7
653	Wide application feasibility report on graphene. Emerging Materials Research, 2020, 9, 1168-1194.	0.4	1
654	Two-dimensional BN buffer for plasma enhanced atomic layer deposition of Al2O3 gate dielectrics on graphene field effect transistors. Scientific Reports, 2020, 10, 14699.	1.6	10
655	Effect of Graphene Doping Level near the Metal Contact Region on Electrical and Photoresponse Characteristics of Graphene Photodetector. Sensors, 2020, 20, 4661.	2.1	3
656	2D Materials as THz Generators, Detectors, and Modulators: Potential Candidates for Biomedical Applications., 2020,, 75-87.		4
657	Spin-polarized current in wide bandgap hexagonal boron nitrides containing 4 8 line defects. Computational Materials Science, 2020, 183, 109799.	1.4	4
658	Carrier concentration variety over multisectoral boron-doped HPHT diamond. Semiconductor Science and Technology, 2020, 35, 095005.	1.0	8
659	Optical identification of point defects in monolayer beryllium oxide by ab initio calculations. Materials Today Communications, 2020, 24, 101344.	0.9	4
660	High temperature RF performances of epitaxial bilayer graphene field-effect transistors on SiC substrate. Carbon, 2020, 164, 435-441.	5.4	12
661	Schottky junction photodiode based on grapheneâ€"organic semiconductor heterostructure. Journal of Industrial and Engineering Chemistry, 2020, 89, 233-238.	2.9	12
662	Studying the Sensitivity of Graphene for Biosensor Applications. Technical Physics Letters, 2020, 46, 462-465.	0.2	3
663	Semiconductor Quantum Dots for Memories and Neuromorphic Computing Systems. Chemical Reviews, 2020, 120, 3941-4006.	23.0	203
664	Ni-mediated reactions in nanocrystalline diamond on Si substrates: the role of the oxide barrier. RSC Advances, 2020, 10, 8224-8232.	1.7	6
665	Two-dimensional materials-based radio frequency wireless communication and sensing systems for Internet-of-things applications. , 2020, , 29-57.		9

#	Article	IF	CITATIONS
666	Deep Learning for the Inverse Design of Mid-Infrared Graphene Plasmons. Crystals, 2020, 10, 125.	1.0	10
667	A generic method to control hysteresis and memory effect in Van der Waals hybrids. Materials Research Express, 2020, 7, 014004.	0.8	12
668	Mathematical Modeling for the Design and Scale-Up of a Large Industrial Aerosol-Assisted Chemical Vapor Deposition Process under Uncertainty. Industrial & Engineering Chemistry Research, 2020, 59, 1249-1260.	1.8	16
669	Modulation of Si on microstructure and tribo-mechanical properties of hydrogen-free DLC films prepared by magnetron sputtering. Applied Surface Science, 2020, 509, 145381.	3.1	29
670	Engineering spin-valley physics in bilayers of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>MoSe</mml:mi><mml:mn>2<td>ıml:mın> <td>nmlsmsub></td></td></mml:mn></mml:msub></mml:math>	ım l:mın > <td>nmlsmsub></td>	nml s msub>
671	Atomic Layer Deposition of High-k Insulators on Epitaxial Graphene: A Review. Applied Sciences (Switzerland), 2020, 10, 2440.	1.3	15
672	Tuning the structural and electronic properties of arsenene monolayers by germanene, silicene, and stanene domain doping. Physica E: Low-Dimensional Systems and Nanostructures, 2020, 122, 114152.	1.3	4
673	Towards large-scale graphene transfer. Nanoscale, 2020, 12, 10890-10911.	2.8	59
674	Analysis of interactions between proteins and small-molecule drugs by a biosensor based on a graphene field-effect transistor. Sensors and Actuators B: Chemical, 2021, 326, 128991.	4.0	30
675	Tailoring the electronic and optical properties of layered blue phosphorene/ XC (X=Ge, Si) vdW heterostructures by strain engineering. Physica E: Low-Dimensional Systems and Nanostructures, 2021, 127, 114460.	1.3	7
676	Boron-nitride and boron-phosphide doped twin-graphene: Applications in electronics and optoelectronics. Applied Surface Science, 2021, 541, 148657.	3.1	53
677	Ultrahigh carrier mobility of penta-graphene: A first-principle study. Physica E: Low-Dimensional Systems and Nanostructures, 2021, 127, 114507.	1.3	50
678	Adsorption of NH3 and NO2 molecules on the carbon doped C3N monolayer: A first principles study. Computational and Theoretical Chemistry, 2021, 1195, 113075.	1.1	9
679	Notes on useful materials and synthesis through various chemical solution techniques. , 2021, , 29-78.		1
680	Biosensors based on two-dimensional materials. , 2021, , 245-312.		1
681	Synthesis of Diamond-like Carbon as a Dielectric Platform for Graphene Field Effect Transistors. ACS Applied Nano Materials, 2021, 4, 1385-1393.	2.4	7
682	Thermoelectric effect and devices on <scp>IVA</scp> and <scp>VA</scp> Xenes. InformaÄnÃ-Materiály, 2021, 3, 271-292.	8.5	17
683	Graphene synthesis, characterization and its applications: A review. Results in Chemistry, 2021, 3, 100163.	0.9	117

#	Article	lF	CITATIONS
684	Theoretical and Computational Investigations of Carbon Nanostructures. Advances in Sustainability Science and Technology, 2021, , 139-164.	0.4	0
685	Synthesis, characterization, and applications of graphene quantum dots., 2021,, 247-297.		0
686	Enhancing Structural Properties and Performance of Graphene-Based Devices Using Self-Assembled HMDS Monolayers. ACS Omega, 2021, 6, 4767-4775.	1.6	6
687	A dual-gate field-effect transistor in graphene heterojunctions. Superlattices and Microstructures, 2021, 150, 106778.	1.4	4
688	Strong Terahertz Absorption of Monolayer Graphene Embedded into a Microcavity. Nanomaterials, 2021, 11, 421.	1.9	3
689	Enhanced High-Frequency Performance of Top-Gated Graphene FETs Due to Substrate-Induced Improvements in Charge Carrier Saturation Velocity. IEEE Transactions on Electron Devices, 2021, 68, 899-902.	1.6	14
690	Structural Defects, Mechanical Behaviors, and Properties of Two-Dimensional Materials. Materials, 2021, 14, 1192.	1.3	48
691	Insights into the Mechanical and Electrical Properties of a Metal–Phosphorene Interface: An Ab Initio Study with a Wide Range of Metals. ACS Omega, 2021, 6, 7795-7803.	1.6	1
692	Nucleation and growth dynamics of graphene grown by radio frequency plasma-enhanced chemical vapor deposition. Scientific Reports, 2021, 11, 6007.	1.6	22
693	High-Performance CVD Bilayer MoS2 Radio Frequency Transistors and Gigahertz Mixers for Flexible Nanoelectronics. Micromachines, 2021, 12, 451.	1.4	11
694	Silica optical fiber integrated with two-dimensional materials: towards opto-electro-mechanical technology. Light: Science and Applications, 2021, 10, 78.	7.7	62
695	Effects of structural characteristics of Cu grain boundaries on graphene growth. Carbon, 2021, 176, 262-270.	5.4	4
696	Effect of Back-Gate Voltage on the High-Frequency Performance of Dual-Gate MoS2 Transistors. Nanomaterials, 2021, 11, 1594.	1.9	5
697	N, P-Codoped Carbon Film Derived from Phosphazenes and Its Printing Integration with a Polymer Carpet <i>Via</i> "Molecular Welding―for Flexible Electronics. ACS Applied Materials & Interfaces, 2021, 13, 29894-29905.	4.0	7
698	Turning electronic performance and Schottky barrier of graphene/ \hat{l}^2 -Si3N4 (0001) heterostructure by external strain and electric field. Vacuum, 2021, 188, 110208.	1.6	2
699	Probing trans-polyacetylene segments in a diamond film by tip-enhanced Raman spectroscopy. Diamond and Related Materials, 2021, 116, 108415.	1.8	8
700	Quantum tunneling in two-dimensional van der Waals heterostructures and devices. Science China Materials, 2021, 64, 2359-2387.	3.5	15
701	2D Electronics Based on Graphene Field Effect Transistors: Tutorial for Modelling and Simulation. Micromachines, 2021, 12, 979.	1.4	10

#	Article	IF	CITATIONS
702	Graphene-Based Nanocomposites: Synthesis, Mechanical Properties, and Characterizations. Polymers, 2021, 13, 2869.	2.0	79
703	Introduction of Carbon Nanostructures. Springer Series in Materials Science, 2022, , 1-26.	0.4	0
704	The Effect of Metal Contact Doping on the Scaled Graphene Field Effect Transistor. Advanced Engineering Materials, 2022, 24, 2100935.	1.6	12
705	Mixed sp2–sp3 Nanocarbon Materials: A Status Quo Review. Nanomaterials, 2021, 11, 2469.	1.9	22
706	Time-Resolved Raman Scattering in Exfoliated and CVD Graphene Crystals. Journal of Physical Chemistry C, 2021, 125, 21003-21010.	1.5	6
707	Temperature dependence of carrier mobility in chemical vapor deposited graphene on high-pressure, high-temperature hexagonal boron nitride. Applied Surface Science, 2021, 562, 150146.	3.1	9
708	Graphitization of synthetic diamond crystals: A morphological study. Diamond and Related Materials, 2021, 118, 108563.	1.8	12
709	Multi-band THz white light cavity in Landau-quantized graphene. Physica E: Low-Dimensional Systems and Nanostructures, 2021, 134, 114832.	1.3	0
710	Electronic, optical, magneto-optical, and thermoelectric properties of the SrS graphene-like under Cr impurity. Chemical Physics, 2021, 551, 111355.	0.9	9
711	Computational insights into electronic characteristics of 2D PtSe2 nanomaterials: Effects of vacancy defects and strain engineering. Vacuum, 2021, 194, 110585.	1.6	4
712	Carbon-based nanostructures and nanomaterials. , 2021, , 103-130.		1
713	Humidity nanosensors for smart manufacturing. , 2021, , 555-580.		10
714	Vibrational Properties of Silicene and Germanene. Springer Theses, 2014, , 61-93.	0.0	6
715	Characterization of the quality of metal–graphene contact with contact end resistance measurement. Applied Physics A: Materials Science and Processing, 2016, 122, 1.	1.1	5
716	Efficient covalent modification of graphene by diazo chemistry. RSC Advances, 2016, 6, 65422-65425.	1.7	4
717	Reviewâ€"A Review of Advanced Electronic Applications Based on Carbon Nanomaterials. ECS Journal of Solid State Science and Technology, 2020, 9, 071002.	0.9	7
718	Limiting factors for optical switching using nano-structured graphene-based field effect transistors. Applied Optics, 2019, 58, 571.	0.9	5
719	Understanding the Internet of Nano Things: overview, trends, and challenges. E-Ciencias De La Informaci \tilde{A}^3 n, 0, , .	0.1	5

#	Article	IF	CITATIONS
720	Gigahertz frequency doubler based on millimeter-scale single-crystal graphene. Wuli Xuebao/Acta Physica Sinica, 2017, 66, 217305.	0.2	1
721	Process Optimization for Synthesis of High-Quality Graphene Films by Low-Pressure Chemical Vapor Deposition. Japanese Journal of Applied Physics, 2012, 51, 06FD21.	0.8	5
722	Hydrogenated Borophene as a Promising Two-Dimensional Semiconductor for Nanoscale Field-Effect Transistors: A Computational Study. ACS Applied Nano Materials, 2021, 4, 11931-11937.	2.4	7
723	The design of a graphene nanoribbon field-effect transistor with reduced internal fringe capacitance for application in the gigahertz to terahertz frequency range. Journal of Computational Electronics, 2021, 20, 2483-2491.	1.3	2
724	Graphene nanoplatelets/epoxy nanocomposites: A review on functionalization, characterization techniques, properties, and applications. Journal of Reinforced Plastics and Composites, 2022, 41, 99-129.	1.6	31
725	Toward the commercialization of chemical vapor deposition graphene films. Applied Physics Reviews, 2021, 8, .	5 . 5	19
726	Research on synthesis of high-quality and large-scale graphene films by chemical vapor deposition. Wuli Xuebao/Acta Physica Sinica, 2012, 61, 038702.	0.2	10
727	Modification of zigzag graphene nanoribbons by patterning vacancies. Wuli Xuebao/Acta Physica Sinica, 2012, 61, 137101.	0.2	1
728	Carbon-Based Zero-, One-, and Two-Dimensional Materials for Device Application., 2013,, 655-676.		0
731	Graphene-Based Ultra-Broadband Slow-Light System and Plamonic Whispering-Gallery-Mode Nanoresonators. International Journal of Behavioral and Consultation Therapy, 2016, , 169-190.	0.4	0
732	Research progress of graphene radio frequency devices. Wuli Xuebao/Acta Physica Sinica, 2017, 66, 218502.	0.2	0
735	Plasmonic induced transparency in graphene oxide quantum dots. , 2018, , .		0
736	Recent progress of graphene orientation determination technology based on scanning probe microscopy. Micro and Nano Letters, 2020, 15, 519-523.	0.6	0
738	Two-Dimensional Crystals: Graphene, Silicene, Germanene, and Stanene. Springer Handbooks, 2020, , 243-266.	0.3	0
739	Performance Analysis of MoS2FET for Electronic and Spintronic Application. Lecture Notes in Electrical Engineering, 2021, , 489-495.	0.3	0
740	First-principle study on electronic and optical properties of (Al, P, Al-P) doped graphene. Materials Research Express, 2020, 7, 105013.	0.8	2
741	Chlorine-mediated atomic layer deposition of HfO2 on graphene. Journal of Materials Chemistry C, 0, ,	2.7	0
742	Numerical Evaluation of the Effect of Geometric Tolerances on the High-Frequency Performance of Graphene Field-Effect Transistors. Nanomaterials, 2021, 11, 3121.	1.9	10

#	Article	IF	CITATIONS
743	Direct growth of wafer-scale highly oriented graphene on sapphire. Science Advances, 2021, 7, eabk0115.	4.7	43
744	Manipulating the Electronic Properties of Gas-Adsorbed Monolayer GeSe by External Electric Field. Journal of Electronic Materials, 2022, 51, 1232-1240.	1.0	2
745	High-Frequency Performance of MoS ₂ Transistors at Cryogenic Temperatures., 2020,,.		0
746	van der Waals graphene/MoS ₂ heterostructures: tuning the electronic properties and Schottky barrier by applying a biaxial strain. Materials Advances, 2022, 3, 624-631.	2.6	18
747	Characteristics, properties, synthesis and advanced applications of 2D graphdiyne <i>versus</i> graphene. Materials Chemistry Frontiers, 2022, 6, 528-552.	3.2	14
748	Carbon nanomaterials for therapeutic applications. , 2022, , 293-325.		3
749	Milimeter-level MoS ₂ monolayers and WS ₂ -MoS ₂ heterojunctions grown on molten glass by pre-chemical vapor deposition. Wuli Xuebao/Acta Physica Sinica, 2022, 71, 048101.	0.2	0
750	Construction and physical properties of low-dimensional structures for nanoscale electronic devices. Physical Chemistry Chemical Physics, 2022, 24, 9082-9117.	1.3	3
751	Improving High Speed Switching Graphene Transistors Using Bandgap Engineering. Journal of Nano Research, 0, 72, 113-122.	0.8	0
7 53	Graphene-based nanocomposites for automotive and off-highway vehicle applications- A review. Current Mechanics and Advanced Materials, 2022, 02, .	0.1	0
754	Graphenization of Diamond. Chemistry of Materials, 2022, 34, 3941-3947.	3.2	22
755	Structural Design and Fabrication of Multifunctional Nanocarbon Materials for Extreme Environmental Applications. Advanced Materials, 2022, 34, e2201046.	11.1	26
756	Superior mechanical flexibility, lattice thermal conductivity and electron mobility of the hexagonal honeycomb carbon nitride monolayer. Physical Chemistry Chemical Physics, 2022, 24, 13951-13964.	1.3	2
757	Electricâ€Fieldâ€Tunable Bandgaps in the Inverseâ€Designed Nanoporous Graphene/Graphene Heterobilayers. Advanced Electronic Materials, 2022, 8, .	2.6	3
758	Diamond (111) surface reconstruction and epitaxial graphene interface. Physical Review B, 2022, 105, .	1.1	3
759	Nondestructive visualization of graphene on Pt with methylene blue surface modification. Science China Materials, 2022, 65, 2763-2770.	3.5	3
760	Tuning the structural, electronic, mechanical and optical properties of silicene monolayer by chemical functionalization: A first-principles study. Vacuum, 2022, 203, 111226.	1.6	14
761	Hexagonal Boron Nitride for Nextâ€Generation Photonics and Electronics. Advanced Materials, 2023, 35,	11.1	43

#	Article	IF	CITATIONS
762	Enhanced Spin Thermopower in Phosphorene Nanoribbons via Edge-State Modifications. Nanomaterials, 2022, 12, 2350.	1.9	4
763	Carbon-Related Materials: Graphene and Carbon Nanotubes in Semiconductor Applications and Design. Micromachines, 2022, 13, 1257.	1.4	40
764	2D materials, synthesis, characterization and toxicity: A critical review. Chemico-Biological Interactions, 2022, 365, 110081.	1.7	32
765	Direct observation of ultrafast carrier coupling dynamics in monolayer graphene/metal system. International Journal of Heat and Mass Transfer, 2022, 197, 123322.	2.5	2
766	Ultrahigh mechanical robustness of vertical graphene sheets covalently bonded to diamond. Carbon, 2023, 201, 390-398.	5.4	5
767	Design and simulation of a subwavelength 4-to-2 graphene-based plasmonic priority encoder. Optics and Laser Technology, 2023, 157, 108680.	2.2	19
768	Integrated biosensor platform based on graphene transistor arrays for real-time high-accuracy ion sensing. Nature Communications, 2022, 13 , .	5.8	28
769	Surface Passivation of Layered MoSe ₂ via van der Waals Stacking of Amorphous Hydrocarbon. Small, 2022, 18, 2202912.	5.2	0
770	Particlelike valleytronics in graphene. Physical Review B, 2022, 106, .	1.1	0
771	Graphene-Induced Performance Enhancement of Batteries, Touch Screens, Transparent Memory, and Integrated Circuits: A Critical Review on a Decade of Developments. Nanomaterials, 2022, 12, 3146.	1.9	5
772	Bio Polymers and Sensors Used in Food Packagingâ€"Present and Future Prospects. , 2023, , 211-226.		1
773	Introductory Chapter: Brief Scientific Description to Carbon Allotropes - Technological Perspective. , 0, , .		0
774	Three-dimensional printing of silver nanoparticle-decorated graphene microarchitectures. Additive Manufacturing, 2022, 60, 103249.	1.7	6
775	Probing the electronic properties of chemically synthesised doped and undoped graphene derivative. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2023, 287, 116145.	1.7	2
776	Complementary Transistors Based on Aligned Semiconducting Carbon Nanotube Arrays. ACS Nano, 2022, 16, 21482-21490.	7.3	16
777	SMM studies on high-frequency electrical properties of nanostructured materials., 2023,, 513-534.		0
778	Carbon-based nanomaterials., 2023,, 3-39.		3
779	Competition Pathways of Energy Relaxation of Hot Electrons through Coupling with Optical, Surface, and Acoustic Phonons. Journal of Physical Chemistry C, 2023, 127, 1929-1936.	1.5	40

#	Article	IF	CITATIONS
780	A type-II GaP/GaSe van der Waals heterostructure with high carrier mobility and promising photovoltaic properties. Applied Surface Science, 2023, 618, 156544.	3.1	8
781	Strain induced structural changes and magnetic ordering in thin MoS2 flakes as a consequence of 1.5ÂMeV proton ion irradiation. Journal of Alloys and Compounds, 2023, 951, 169882.	2.8	1
782	Surface-Dependent Adhesion Properties of Graphene on Diamonds for the Fabrication of Nanodevices: A Molecular Dynamics Investigation. ACS Applied Nano Materials, 2023, 6, 2942-2951.	2.4	4
783	Silicon-Germanium and carbon-based superconductors for electronic, industrial, and medical applications. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2023, 290, 116332.	1.7	4
784	Graphene Strain-Effect Transistor with Colossal ON/OFF Current Ratio Enabled by Reversible Nanocrack Formation in Metal Electrodes on Piezoelectric Substrates. Nano Letters, 2023, 23, 2536-2543.	4.5	6
785	CRISPR-Cas12a Biosensor Array for Ultrasensitive Detection of Unamplified DNA with Single-Nucleotide Polymorphic Discrimination. ACS Sensors, 2023, 8, 1489-1499.	4.0	3
786	Graphene: A Promising Material for Flexible Electronic Devices. Advanced Structured Materials, 2023, , 83-118.	0.3	0
803	Device parameters estimation of GFETs at temperatures below 300 K., 2023,,.		0
810	Emerging memory electronics for non-volatile radiofrequency switching technologies., 2024, 1, 10-23.		0
812	The Roadmap of 2D Materials and Devices Toward Chips. Nano-Micro Letters, 2024, 16, .	14.4	0