Circuit cavity electromechanics in the strong-coupling

Nature 471, 204-208 DOI: 10.1038/nature09898

Citation Report

#	Article	IF	CITATIONS
1	A PROBLEM OF FLACHSMEYER AND TERPE. Russian Mathematical Surveys, 1979, 34, 182-182.	0.6	0
2	Layered synchronization in star configuration of chaotic systems. Europhysics Letters, 2004, 67, 921-927.	2.0	6
3	Dissipative Optomechanics in a Michelson-Sagnac Interferometer. Physical Review Letters, 2011, 107, 213604.	7.8	122
4	Optomechanics with electromechanical parametric amplification. , 2011, , .		0
5	All-optical transistor based on a cavity optomechanical system with a Bose-Einstein condensate. Physical Review A, 2011, 84, .	2.5	24
6	The Diamond Superconducting Quantum Interference Device. ACS Nano, 2011, 5, 7144-7148.	14.6	54
7	Storing Optical Information as a Mechanical Excitation in a Silica Optomechanical Resonator. Physical Review Letters, 2011, 107, 133601.	7.8	301
8	Steady-state entanglement and normal-mode splitting in an atom-assisted optomechanical system with intensity-dependent coupling. Physical Review A, 2011, 84, .	2.5	36
9	Single-Photon Optomechanics. Physical Review Letters, 2011, 107, 063602.	7.8	408
10	Wide-band idler generation in a GaAs electromechanical resonator. Physical Review B, 2011, 84, .	3.2	22
11	Photon Blockade Effect in Optomechanical Systems. Physical Review Letters, 2011, 107, 063601.	7.8	590
12	Selective Linear or Quadratic Optomechanical Coupling via Measurement. Physical Review X, 2011, 1, .	8.9	51
13	Microwave amplification with nanomechanical resonators. Nature, 2011, 480, 351-354.	27.8	253
14	Coupling ultracold atoms to mechanical oscillators. Comptes Rendus Physique, 2011, 12, 871-887.	0.9	57
15	Tunable all-optical Kerr switch based on a cavity optomechanical system with a Bose–Einstein condensate. Journal of the Optical Society of America B: Optical Physics, 2011, 28, 2007.	2.1	15
16	Adiabaticity in semiclassical nanoelectromechanical systems. Physical Review B, 2011, 84, .	3.2	26
17	Quantum superposition of a single microwave photon in two different 'colour' states. Nature Physics, 2011, 7, 599-603.	16.7	93
18	Hybridization Induced Transparency in composites of metamaterials and atomic media. Optics Express, 2011, 19, 23573.	3.4	54

ITATION REDO

#	Article	IF	Citations
19	A chip-scale integrated cavity-electro-optomechanics platform. Optics Express, 2011, 19, 24905.	3.4	93
20	Detecting phonon blockade with photons. Physical Review B, 2011, 84, .	3.2	77
21	Sideband cooling of micromechanical motion to the quantum ground state. Nature, 2011, 475, 359-363.	27.8	1,701
22	Dynamic manipulation of nanomechanical resonators in the high-amplitude regime and non-volatile mechanical memory operation. Nature Nanotechnology, 2011, 6, 726-732.	31.5	216
23	Slow light in a cavity optomechanical system with a Bose-Einstein condensate. Physical Review A, 2011, 83, .	2.5	88
24	Laser cooling of a nanomechanical oscillator into its quantum ground state. Nature, 2011, 478, 89-92.	27.8	1,866
25	An Introduction to Quantum Optomechanics. Acta Physica Slovaca, 2011, 61, .	1.4	56
26	Tunable pulse delay and advancement device based on a cavity electromechanical system. Europhysics Letters, 2011, 94, 38002.	2.0	21
27	Electromagnetically induced transparency and slow light with optomechanics. Nature, 2011, 472, 69-73.	27.8	1,259
28	A light sounding drum. Nature, 2011, 471, 168-169.	27.8	5
29	Macroscopic quantum tunneling in nanoelectromechanical systems. Physical Review B, 2011, 84, .	3.2	13
30	Laser Cooling and Optical Detection of Excitations in aLCElectrical Circuit. Physical Review Letters, 2011, 107, 273601.	7.8	68
31	Forced and self-excited oscillations of an optomechanical cavity. Physical Review E, 2011, 84, 046605.	2.1	67
32	Quantum entanglement and teleportation in pulsed cavity optomechanics. Physical Review A, 2011, 84, .	2.5	199
33	Entangling optical and microwave cavity modes by means of a nanomechanical resonator. Physical Review A, 2011, 84, .	2.5	168
34	Optomechanical transducers for quantum-information processing. Physical Review A, 2011, 84, .	2.5	119
35	Effect of phase noise on the generation of stationary entanglement in cavity optomechanics. Physical Review A, 2011, 84, .	2.5	62
36	Distributing fully optomechanical quantum correlations. Physical Review A, 2011, 83, .	2.5	56

#	Article	IF	CITATIONS
37	A micropillar for cavity optomechanics. Applied Physics Letters, 2011, 99, 121103.	3.3	23
38	Macrorealism inequality for optoelectromechanical systems. Physical Review B, 2011, 84, .	3.2	42
39	Nanometer optomechanical transistor based on nanometer cavity optomechanics with a single quantum dot. Journal of Applied Physics, 2011, 110, .	2.5	12
40	Mechanical Squeezing via Parametric Amplification and Weak Measurement. Physical Review Letters, 2011, 107, 213603.	7.8	139
41	Mass sensing based on a circuit cavity electromechanical system. Journal of Applied Physics, 2011, 110, 083107.	2.5	10
42	Quantum optomechanics with a high-frequency dilational mode in thin dielectric membranes. New Journal of Physics, 2012, 14, 085016.	2.9	14
43	Phonon number measurements using single photon opto-mechanics. New Journal of Physics, 2012, 14, 085017.	2.9	38
44	Quantum noise properties of multiphoton transitions in driven nonlinear resonators. New Journal of Physics, 2012, 14, 093024.	2.9	5
45	Using dark modes for high-fidelity optomechanical quantum state transfer. New Journal of Physics, 2012, 14, 105010.	2.9	89
46	Electrical Field Gradient Pumping of Parametric Oscillation in a High-Frequency Nanoelectromechanical Resonator. Japanese Journal of Applied Physics, 2012, 51, 074003.	1.5	Ο
47	Tunable slow and fast light device based on a carbon nanotube resonator. Optics Express, 2012, 20, 5840.	3.4	21
48	Controllable nonlinear responses in a cavity electromechanical system. Journal of the Optical Society of America B: Optical Physics, 2012, 29, 220.	2.1	12
49	A reversible optical to microwave quantum interface. , 2012, , .		1
50	Optical propagation properties in a quantum dot–DNA coupling system. Journal of the Optical Society of America B: Optical Physics, 2012, 29, 3371.	2.1	1
51	Optically Driven Quantum Dots as Source of Coherent Cavity Phonons: A Proposal for a Phonon Laser Scheme. Physical Review Letters, 2012, 109, 054301.	7.8	78
52	Macroscopic Tunneling of a Membrane in an Optomechanical Double-Well Potential. Physical Review Letters, 2012, 108, 210403.	7.8	56
53	Entanglement of distant optomechanical systems. Physical Review A, 2012, 85, .	2.5	101
54	Linear amplifier model for optomechanical systems. Physical Review A, 2012, 85, .	2.5	33

#	Article	IF	CITATIONS
55	Optomechanical Quantum Information Processing with Photons and Phonons. Physical Review Letters, 2012, 109, 013603.	7.8	374
56	Frequency and phase noise of ultrahigh <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>Q</mml:mi>silicon nitride nanomechanical resonators. Physical Review B. 2012. 85</mml:math 	3.2	50
57	Predictions for cooling a solid to its ground state. Quarterly of Applied Mathematics, 2013, 71, 331-338.	0.7	1
58	Weighing a single atom using a coupled plasmon–carbon nanotube system. Science and Technology of Advanced Materials, 2012, 13, 025006.	6.1	18
59	Delocalized single-photon Dicke states and the Leggett-Garg inequality in solid state systems. Scientific Reports, 2012, 2, 869.	3.3	16
60	Coherent Control of Micro/Nanomechanical Oscillation Using Parametric Mode Mixing. Applied Physics Express, 2012, 5, 014001.	2.4	21
61	Optical mass sensing with coupled nanomechanical resonator systems. , 2012, , .		0
62	Optomechanical Dark Mode. Science, 2012, 338, 1609-1613.	12.6	365
63	Microwave quantum photonics in superconducting circuits. , 2012, , .		0
64	Optically mediated nonlinear quantum optomechanics. Physical Review A, 2012, 86, .	2.5	41
65	Backaction limits on self-sustained optomechanical oscillations. Physical Review A, 2012, 86, .	2.5	34
66	Precision measurement of electrical charge with optomechanically induced transparency. Physical Review A, 2012, 86, .	2.5	203
67	Electromechanically induced absorption in a circuit nano-electromechanical system. New Journal of Physics, 2012, 14, 123037.	2.9	60
68	Multimode circuit optomechanics near the quantum limit. Nature Communications, 2012, 3, 987.	12.8	193
68 69	Multimode circuit optomechanics near the quantum limit. Nature Communications, 2012, 3, 987. Adiabatic State Conversion and Pulse Transmission in Optomechanical Systems. Physical Review Letters, 2012, 108, 153604.	12.8 7.8	193 260
68 69 70	Multimode circuit optomechanics near the quantum limit. Nature Communications, 2012, 3, 987. Adiabatic State Conversion and Pulse Transmission in Optomechanical Systems. Physical Review Letters, 2012, 108, 153604. Optomechanical systems as single-photon routers. Physical Review A, 2012, 85, .	12.8 7.8 2.5	193 260 166
68697071	Multimode circuit optomechanics near the quantum limit. Nature Communications, 2012, 3, 987. Adiabatic State Conversion and Pulse Transmission in Optomechanical Systems. Physical Review Letters, 2012, 108, 153604. Optomechanical systems as single-photon routers. Physical Review A, 2012, 85, . Thermally Induced Parametric Instability in a Back-Action Evading Measurement of a Micromechanical Quadrature near the Zero-Point Level. Nano Letters, 2012, 12, 6260-6265.	12.8 7.8 2.5 9.1	193 260 166 29

#	Article	IF	Citations
73	Quantum optomechanics. Physics Today, 2012, 65, 29-35.	0.3	504
74	Quantum-state transfer between a Bose-Einstein condensate and an optomechanical mirror. Physical Review A, 2012, 86, .	2.5	50
75	Reversible Optical-to-Microwave Quantum Interface. Physical Review Letters, 2012, 109, 130503.	7.8	222
76	Non-classical light generated by quantum-noise-driven cavity optomechanics. Nature, 2012, 488, 476-480.	27.8	307
77	Electromagnetically controlled storage and retrieval for pulses propagating through a line of atoms. , 2012, , .		0
78	Optomechanics with Silicon Nanowires by Harnessing Confined Electromagnetic Modes. Nano Letters, 2012, 12, 932-937.	9.1	40
79	Quantum Optical Transistor and Other Devices Based on Nanostructures. , 2012, , 173-195.		0
80	Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode. Nature, 2012, 482, 63-67.	27.8	747
81	Electrostatic clocks. American Journal of Physics, 2012, 80, 36-42.	0.7	0
82	Single Photon Router in the Optical Regime Based on a Cavity Optomechanical System With a Bose–Einstein Condensate. IEEE Photonics Technology Letters, 2012, 24, 766-768.	2.5	5
83	Putting mechanics into circuit quantum electrodynamics. Comptes Rendus Physique, 2012, 13, 470-479.	0.9	7
84	Decoherence suppression by cavity optomechanical cooling. Comptes Rendus Physique, 2012, 13, 454-469.	0.9	4
85	Nanoscale solid-state single photon router. Photonics and Nanostructures - Fundamentals and Applications, 2012, 10, 553-559.	2.0	5
86	Cavity-mediated stationary atom–mirror entanglement in the presence of photothermal effects. Physics Letters, Section A: General, Atomic and Solid State Physics, 2012, 376, 2955-2961.	2.1	3
87	Nonlinear optical mass sensor with an optomechanical microresonator. Applied Physics Letters, 2012, 101, .	3.3	47
88	Tunable optical Kerr effects of DNAs coupled to quantum dots. Nanoscale Research Letters, 2012, 7, 660.	5.7	2
89	Transparency and amplification in a hybrid system of the mechanical resonator and circuit QED. Science China: Physics, Mechanics and Astronomy, 2012, 55, 2264-2272.	5.1	20
90	Pulsed Laser Cooling for Cavity Optomechanical Resonators. Physical Review Letters, 2012, 108, 153601.	7.8	94

#	Article	IF	CITATIONS
91	Spin-based Optomechanics with Carbon Nanotubes. Scientific Reports, 2012, 2, 903.	3.3	14
92	Quantum Dot Devices. , 2012, , .		13
93	Using Interference for High Fidelity Quantum State Transfer in Optomechanics. Physical Review Letters, 2012, 108, 153603.	7.8	376
94	Local probing of propagating acoustic waves in a gigahertz echo chamber. Nature Physics, 2012, 8, 338-343.	16.7	61
95	Probing Planck-scale physics with quantum optics. Nature Physics, 2012, 8, 393-397.	16.7	473
96	Phonon-cavity electromechanics. Nature Physics, 2012, 8, 387-392.	16.7	127
97	Nonlinear dynamics of a microelectromechanical mirror in an optical resonance cavity. Nonlinear Dynamics, 2012, 69, 1589-1610.	5.2	35
98	Mechanical systems in the quantum regime. Physics Reports, 2012, 511, 273-335.	25.6	398
99	Coherent optical spectroscopy in a biological semiconductor quantum dot-DNA hybrid system. Nanoscale Research Letters, 2012, 7, 133.	5.7	7
100	Tunable slow light in a quadratically coupled optomechanical system. Journal of Physics B: Atomic, Molecular and Optical Physics, 2013, 46, 025501.	1.5	39
101	Nonlinear Interaction Effects in a Strongly Driven Optomechanical Cavity. Physical Review Letters, 2013, 111, 053602.	7.8	124
102	Signatures of Nonlinear Cavity Optomechanics in the Weak Coupling Regime. Physical Review Letters, 2013, 111, 053603.	7.8	141
103	Coherent phonon manipulation in coupled mechanical resonators. Nature Physics, 2013, 9, 480-484.	16.7	274
104	Optomechanics assisted by a qubit: From dissipative state preparation to many-partite systems. Physical Review A, 2013, 88, .	2.5	29
105	Limiting effects of geometrical and optical nonlinearities on the squeezing in optomechanics. Physica B: Condensed Matter, 2013, 422, 72-77.	2.7	8
106	Controllability of optical bistability, cooling and entanglement in hybrid cavity optomechanical systems by nonlinear atom–atom interaction. Journal of Physics B: Atomic, Molecular and Optical Physics, 2013, 46, 235502.	1.5	41
107	Scattering-Free Optical Levitation of a Cavity Mirror. Physical Review Letters, 2013, 111, 183001.	7.8	39
108	Photon-photon interactions in a largely detuned optomechanical cavity. Physical Review A, 2013, 88, .	2.5	38

#	Article	IF	CITATIONS
109	Inducing and detecting geometric phases with superconducting quantum circuits. Physica C: Superconductivity and Its Applications, 2013, 492, 138-143.	1.2	11
110	Macroscopic quantum mechanics: theory and experimental concepts of optomechanics. Journal of Physics B: Atomic, Molecular and Optical Physics, 2013, 46, 104001.	1.5	195
111	Strong-coupling effects in dissipatively coupled optomechanical systems. New Journal of Physics, 2013, 15, 045017.	2.9	61
112	Controllable optical bistability based on photons and phonons in a two-mode optomechanical system. Physical Review A, 2013, 88, .	2.5	49
113	Engineering of nonclassical motional states in optomechanical systems. Physical Review A, 2013, 88, .	2.5	44
114	Nonlinear effects of atomic collisions on the optomechanical properties of a Bose-Einstein condensate in an optical cavity. Physical Review A, 2013, 87, .	2.5	34
115	All-optical mass sensing with coupled mechanical resonator systems. Physics Reports, 2013, 525, 223-254.	25.6	120
116	Fano resonances and their control in optomechanics. Physical Review A, 2013, 87, .	2.5	82
117	Optomechanical light storage in a silica microresonator. Physical Review A, 2013, 87, .	2.5	78
118	Nonlinear Optics Quantum Computing with Circuit QED. Physical Review Letters, 2013, 110, 060503.	7.8	17
119	Coherent state transfer between itinerant microwave fields and a mechanical oscillator. Nature, 2013, 495, 210-214.	27.8	358
120	Single-photon transport and mechanical NOON-state generation in microcavity optomechanics. Physical Review A, 2013, 87, .	2.5	32
121	Slowing, advancing and switching of microwave signals using circuit nanoelectromechanics. Nature Physics, 2013, 9, 179-184.	16.7	150
122	Photon-induced tunneling in optomechanical systems. Physical Review A, 2013, 87, .	2.5	91
123	Single-photon nonlinearities in two-mode optomechanics. Physical Review A, 2013, 87, .	2.5	146
124	Phonon-mediated electromagnetically induced absorption in hybrid opto-electromechanical systems. Physical Review A, 2013, 87, .	2.5	115
125	Hybrid quantum circuits: Superconducting circuits interacting with other quantum systems. Reviews of Modern Physics, 2013, 85, 623-653.	45.6	1,212
126	Cavity-enhanced optical detection of carbon nanotube Brownian motion. Applied Physics Letters, 2013, 102, .	3.3	58

		Citation Re	PORT	
#	Article		IF	CITATIONS
127	A short walk through quantum optomechanics. Annalen Der Physik, 2013, 525, 215-23	3.	2.4	349
128	Electromagnetically-Induced Transparency in Optomechanical Systems with Bose–Eir Condensate. Journal of Russian Laser Research, 2013, 34, 159-165.	stein	0.6	10
129	A phonon transistor in an electromechanical resonator array. Applied Physics Letters, 20)13, 102, .	3.3	31
130	Electromagnetically Induced Transparency and Wideband Wavelength Conversion in Sil Microdisk Optomechanical Resonators. Physical Review Letters, 2013, 110, 223603.	icon Nitride	7.8	134
131	Transient optomechanically induced transparency in a silica microsphere. Physical Revie	w A, 2013, 87, .	2.5	52
132	Reservoir-Engineered Entanglement in Optomechanical Systems. Physical Review Letter 253601.	s, 2013, 110,	7.8	346
133	Optomechanical Cavity With a Buckled Mirror. Journal of Microelectromechanical Syste 430-437.	ms, 2013, 22,	2.5	16
134	Optomechanically dark state in hybrid BEC–optomechanical systems. Journal of Russi Research, 2013, 34, 278-287.	an Laser	0.6	11
135	Mechanical resonators for storage and transfer of electrical and optical quantum states Review A, 2013, 87, .	. Physical	2.5	64
136	Robust Photon Entanglement via Quantum Interference in Optomechanical Interfaces. Letters, 2013, 110, 233602.	Physical Review	7.8	200
137	Robust continuous-variable entanglement of microwave photons with cavity electrome Physical Review A, 2013, 88, .	chanics.	2.5	19
138	Continuous-variable dense coding by optomechanical cavities. Physical Review A, 2013,	88,.	2.5	34
139	Optomechanically Induced Transparency in the Nonlinear Quantum Regime. Physical Re 2013, 111, 133601.	view Letters,	7.8	182
140	Review of cavity optomechanical cooling. Chinese Physics B, 2013, 22, 114213.		1.4	104
141	Multimode strong-coupling quantum optomechanics. Physical Review A, 2013, 88, .		2.5	47
142	Generating robust optical entanglement in weak-coupling optomechanical systems. Phy 2013, 88, .	vsical Review A,	2.5	56
143	Entangled mechanical cat states via conditional single photon optomechanics. New Jou Physics, 2013, 15, 093007.	rnal of	2.9	57
144	Observation of electromagnetically induced transparency in evanescent fields. Optics E 21, 6880.	xpress, 2013,	3.4	14

#	Article	IF	CITATIONS
145	Electromagnetically induced transparency and slow light in two-mode optomechanics. Optics Express, 2013, 21, 12165.	3.4	86
146	High-order sideband optical properties of a DNA–quantum dot hybrid system [Invited]. Photonics Research, 2013, 1, 16.	7.0	19
147	Dynamics of levitated nanospheres: towards the strong coupling regime. New Journal of Physics, 2013, 15, 015001.	2.9	45
148	Parametric mode mixing in asymmetric doubly clamped beam resonators. New Journal of Physics, 2013, 15, 015023.	2.9	22
149	All-Optically Controlled Quantum Memory for Light with a Cavity-Optomechanical System. Entropy, 2013, 15, 434-444.	2.2	5
150	Laser noise in cavity-optomechanical cooling and thermometry. New Journal of Physics, 2013, 15, 035007.	2.9	76
151	A photonic transistor device based on photons and phonons in a cavity electromechanical system. Journal Physics D: Applied Physics, 2013, 46, 045303.	2.8	0
152	Antibunching photons in a cavity coupled to an optomechanical system. Journal of Physics B: Atomic, Molecular and Optical Physics, 2013, 46, 035502.	1.5	91
153	Miniaturization design and implementation of magnetic field coupled RFID antenna. , 2013, , .		0
154	Quantum-criticality-induced strong Kerr nonlinearities in optomechanical systems. Scientific Reports, 2013, 3, 2943.	3.3	150
155	Controllable four-wave mixing based on mechanical vibration in two-mode optomechanical systems. Europhysics Letters, 2013, 104, 34004.	2.0	25
156	Optical single photons on-demand teleported from microwave cavities. Physica Scripta, 2013, T153, 014004.	2.5	0
157	Normal-mode splitting in the atom-assisted optomechanical cavity. Physica Scripta, 2013, 88, 065401.	2.5	8
158	Quantum State Orthogonalization and a Toolset for Quantum Optomechanical Phonon Control. Physical Review Letters, 2013, 110, 010504.	7.8	67
159	Optomechanically induced transparency in a membrane-in-the-middle setup at room temperature. Physical Review A, 2013, 88, .	2.5	194
160	Dark states of a moving mirror in the single-photon strong-coupling regime. Physical Review A, 2013, 87, .	2.5	29
161	Multi-functional MEMS/NEMS for nanometrology applications. , 2013, , .		1
162	Multi-mode parametric coupling in an electromechanical resonator. Applied Physics Letters, 2013, 103, .	3.3	32

#	Article	IF	CITATIONS
163	Quantum interface between optics and microwaves with optomechanics. , 2013, , .		0
164	Control and manipulation of electromagnetically induced transparency in a nonlinear optomechanical system with two movable mirrors. Physical Review A, 2013, 88, .	2.5	104
165	Einstein-Podolsky-Rosen paradox and quantum steering in pulsed optomechanics. Physical Review A, 2013, 88, .	2.5	79
166	Equivalence between an optomechanical system and a Kerr medium. Physical Review A, 2013, 88, .	2.5	96
167	Nonclassical mechanical states in an optomechanical micromaser analog. Physical Review A, 2013, 88, .	2.5	43
168	Microwave amplification with nanomechanical resonators. , 2013, , .		0
169	Nonlinear optical effects of ultrahigh-Q silicon photonic nanocavities immersed in superfluid helium. Scientific Reports, 2013, 3, 1436.	3.3	26
170	Micromanipulation transfer of membrane resonators for circuit optomechanics. Journal of Micromechanics and Microengineering, 2013, 23, 125024.	2.6	1
172	Robust Quantum Computing in Decoherence-Free Subspaces with Double-Dot Spin Qubits. Communications in Theoretical Physics, 2014, 61, 181-186.	2.5	2
173	Selective entanglement in a two-mode optomechanical system. International Journal of Quantum Information, 2014, 12, 1450024.	1.1	12
174	Classical non-Gaussian state preparation through squeezing in an optoelectromechanical resonator. Physical Review A, 2014, 90, .	2.5	26
175	Dynamical localization of matter waves in optomechanics. Laser Physics, 2014, 24, 115503.	1.2	12
176	Strong coupling of an optomechanical system to an anomalously dispersive atomic medium. Laser Physics Letters, 2014, 11, 126003.	1.4	4
177	Cavity optomechanics. Reviews of Modern Physics, 2014, 86, 1391-1452.	45.6	4,064
178	Nanomechanical inverse electromagnetically induced transparency and confinement of light in normal modes. New Journal of Physics, 2014, 16, 033023.	2.9	56
179	Introduction to Microwave Cavity Optomechanics. , 2014, , 233-252.		2
180	An all-optical feedback assisted steady state of an optomechanical array. New Journal of Physics, 2014, 16, 023009.	2.9	19
181	Modulated electromechanics: large enhancements of nonlinearities. New Journal of Physics, 2014, 16, 072001.	2.9	31

#	Article	IF	Citations
182	Optomechanically induced transparency and self-induced oscillations with Bogoliubov mechanical modes. Optica, 2014, 1, 425.	9.3	41
183	Ultrasensitive nanomechanical mass sensor using hybrid opto-electromechanical systems. Optics Express, 2014, 22, 13773.	3.4	33
184	Controllable optomechanically induced transparency and ponderomotive squeezing in an optomechanical system assisted by an atomic ensemble. Optics Express, 2014, 22, 17979.	3.4	42
185	Formation and manipulation of optomechanical chaos via a bichromatic driving. Physical Review A, 2014, 90, .	2.5	42
186	Tunable double optomechanically induced transparency in an optomechanical system. Physical Review A, 2014, 90, .	2.5	201
187	Quantum-Limited Amplification and Parametric Instability in the Reversed Dissipation Regime of Cavity Optomechanics. Physical Review Letters, 2014, 113, 023604.	7.8	58
188	Si 3 N 4 optomechanical crystals in the resolved-sideband regime. Applied Physics Letters, 2014, 104, .	3.3	35
189	Optomechanical Ramsey interferometry. Physical Review A, 2014, 90, .	2.5	13
190	Oscillator tunneling dynamics in the Rabi model. Physical Review B, 2014, 89, .	3.2	26
191	Few-Electron Ultrastrong Light-Matter Coupling in a Quantum <i>LC</i> Circuit. Physical Review X, 2014, 4, .	8.9	38
192	Intermittency in an optomechanical cavity near a subcritical Hopf bifurcation. Physical Review A, 2014, 90, .	2.5	11
193	Applications of cavity optomechanics. Applied Physics Reviews, 2014, 1, 031105.	11.3	192
194	Strong coupling between whispering gallery modes and chromium ions in ruby. Physical Review B, 2014, 90, .	3.2	18
195	Narrowing the Filter-Cavity Bandwidth in Gravitational-Wave Detectors via Optomechanical Interaction. Physical Review Letters, 2014, 113, 151102.	7.8	51
196	Microwave-assisted coherent and nonlinear control in cavity piezo-optomechanical systems. Physical Review A, 2014, 90, .	2.5	32
197	Quantum-Limited Amplification via Reservoir Engineering. Physical Review Letters, 2014, 112, 133904.	7.8	94
198	Phase Space Distribution Near the Self-Excited Oscillation Threshold. Physical Review Letters, 2014, 112, .	7.8	7
199	Optically mediated spatial localization of collective modes of two coupled cantilevers for high sensitivity optomechanical transducer. Applied Physics Letters, 2014, 105, 014108.	3.3	24

#	Article	IF	CITATIONS
200	Double electromagnetically induced transparency and narrowing of probe absorption in a ring cavity with nanomechanical mirrors. Journal of Physics B: Atomic, Molecular and Optical Physics, 2014, 47, 055504.	1.5	52
201	Cavity Optomechanics with Whispering-Gallery-Mode Microresonators. , 2014, , 121-148.		6
202	Superconducting nano-mechanical diamond resonators. Carbon, 2014, 72, 100-105.	10.3	26
203	Optical detection of radio waves through a nanomechanical transducer. Nature, 2014, 507, 81-85.	27.8	382
204	Analytical approach and reconstruction of the density matrix of coupled oscillators. Journal of Physics B: Atomic, Molecular and Optical Physics, 2014, 47, 045501.	1.5	2
205	Coherence properties of coupled optomechanical cavities. Journal of the Optical Society of America B: Optical Physics, 2014, 31, 1232.	2.1	6
206	A cavity-Cooper pair transistor scheme for investigating quantum optomechanics in the ultra-strong coupling regime. New Journal of Physics, 2014, 16, 055008.	2.9	59
207	Conditional phase gate using an optomechanical resonator. Physical Review A, 2014, 89, .	2.5	8
208	Continuous-variable-entanglement swapping and its local certification: Entangling distant mechanical modes. Physical Review A, 2014, 89, .	2.5	28
209	Optimal limits of cavity optomechanical cooling in the strong-coupling regime. Physical Review A, 2014, 89, .	2.5	38
210	Leggett–Garg inequalities. Reports on Progress in Physics, 2014, 77, 016001.	20.1	295
211	Recent Advances of Light Propagation in Surface Plasmon Enhanced Quantum Dot Devices. Critical Reviews in Solid State and Materials Sciences, 2014, 39, 25-45.	12.3	15
212	Determination of effective mechanical properties of a double-layer beam by means of a nano-electromechanical transducer. Applied Physics Letters, 2014, 105, .	3.3	13
213	Scalable quantum simulation of pulsed entanglement and Einstein-Podolsky-Rosen steering in optomechanics. Physical Review A, 2014, 90, .	2.5	58
214	Optomechanical-like coupling between superconducting resonators. Physical Review A, 2014, 90, .	2.5	66
215	Single-layer graphene on silicon nitride micromembrane resonators. Journal of Applied Physics, 2014, 115, 054513.	2.5	33
216	Possibility of Majorana signature detecting via a single-electron spin implanted in a suspended carbon nanotube resonator. RSC Advances, 2014, 4, 47587-47592.	3.6	5
217	Cavity quantum optomechanics: Coupling light and micromechanical oscillators. , 2014, , .		2

#	Article	IF	CITATIONS
218	Role of thermal noise in tripartite quantum steering. Physical Review A, 2014, 90, .	2.5	27
219	Ground-state cooling of mechanical motion in the unresolved sideband regime by use of optomechanically induced transparency. Physical Review A, 2014, 90, .	2.5	76
220	Photon propagation in a one-dimensional optomechanical lattice. Physical Review A, 2014, 89, .	2.5	36
221	Optomechanical analog of two-color electromagnetically induced transparency: Photon transmission through an optomechanical device with a two-level system. Physical Review A, 2014, 90, .	2.5	169
222	Optomechanical coupling between a multilayer graphene mechanical resonator and a superconducting microwave cavity. Nature Nanotechnology, 2014, 9, 820-824.	31.5	217
223	Dynamical behavior of optomechanical induced transparency in a silica microresonator. , 2014, , .		0
224	<mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi mathvariant="script">PT</mml:mi </mml:mrow></mml:math> -Symmetric Phonon Laser. Physical Review Letters, 2014, 113, 053604.	7.8	502
225	Exponential localization of moving end mirror in optomechanics. Journal of Modern Optics, 2014, 61, 1318-1323.	1.3	18
226	Preparing ground states and squeezed states of nanomechanical cantilevers by fast dissipation. Physical Review A, 2014, 90, .	2.5	13
227	On-chip cavity optomechanical coupling. EPJ Techniques and Instrumentation, 2014, 1, .	1.3	25
228	Double optomechanically induced transparency in coupled-resonator system. Optics Communications, 2014, 333, 261-264.	2.1	35
229	Pulse Transmission and State Conversion in Two-mode Optomechanical Cavity Coupled with Atomic Medium. International Journal of Theoretical Physics, 2014, 53, 2810-2818.	1.2	1
230	Dissipative optomechanical squeezing of light. New Journal of Physics, 2014, 16, 063058.	2.9	64
231	Dynamics and transmission of single two-level atom in an optomechanical system. European Physical Journal Plus, 2014, 129, 1.	2.6	6
232	Scheme for steady-state preparation of a harmonic oscillator in the first excited state. Physical Review A, 2014, 90, .	2.5	10
233	Theory of optomechanical interactions in superfluid He. Physical Review A, 2014, 90, .	2.5	12
234	Phonon waveguides for electromechanical circuits. Nature Nanotechnology, 2014, 9, 520-524.	31.5	118
235	Frequency-noise cancellation in optomechanical systems for ponderomotive squeezing. Physical Review A, 2014, 89, .	2.5	29

	CHAHON	REPORT	
# 236	ARTICLE Circuit electromechanics with a non-metallized nanobeam. Applied Physics Letters, 2014, 105, .	IF 3.3	Citations 5
237	Surface Plasmon Enhanced Sensitive Detection for Possible Signature of Majorana Fermions via a Hybrid Semiconductor Ouantum Dot-Metal Nanoparticle System. Scientific Reports, 2015, 5, 13518.	3.3	12
238	Optical nonreciprocity and optomechanical circulator in three-mode optomechanical systems. Physical Review A, 2015, 91, .	2.5	147
239	Tunable fast and slow light in a hybrid optomechanical system. Physical Review A, 2015, 92, .	2.5	105
240	Controllable optical output fields from an optomechanical system with mechanical driving. Physical Review A, 2015, 92, .	2.5	54
241	Generation of broadband two-mode squeezed light in cascaded double-cavity optomechanical systems. Physical Review A, 2015, 92, .	2.5	20
242	Coherent frequency up-conversion of microwaves to the optical telecommunications band in an Er:YSO crystal. Physical Review A, 2015, 92, .	2.5	84
243	Hybrid Quantum Device Based on <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mi>N</mml:mi><mml:mi>V</mml:mi></mml:math> Centers in Diamond Nanomechanical Resonators Plus Superconducting Waveguide Cavities. Physical Review Applied, 2015, 4	3.8	71
244	Optomechanical response of a nonlinear mechanical resonator. Physical Review B, 2015, 92, .	3.2	8
245	Energy Cost of Controlling Mesoscopic Quantum Systems. Physical Review Letters, 2015, 115, 130501.	7.8	18
246	Squeezing of Quantum Noise of Motion in a Micromechanical Resonator. Physical Review Letters, 2015, 115, 243601.	7.8	306
247	Electrical Signal Picks Up a Magnet's Heartbeat. Physics Magazine, 2015, 8, .	0.1	1
248	Generating quadrature squeezed light with dissipative optomechanical coupling. Physical Review A, 2015, 91, .	2.5	39
249	Enhancing the Bandwidth of Gravitational-Wave Detectors with Unstable Optomechanical Filters. Physical Review Letters, 2015, 115, 211104.	7.8	65
250	Quantum Nondemolition Measurement of a Nonclassical State of a Massive Object. Physical Review X, 2015, 5, 041037.	8.9	204
251	Superbunching and Nonclassicality as new Hallmarks of Superradiance. Scientific Reports, 2015, 5, 17335.	3.3	50
252	Optical wavelength conversion via optomechanical coupling in a silica resonator. Annalen Der Physik, 2015, 527, 100-106.	2.4	33
253	Diamond as a material for monolithically integrated optical and optomechanical devices. Physica Status Solidi (A) Applications and Materials Science, 2015, 212, 2385-2399.	1.8	47

#	Article	IF	CITATIONS
254	Synchronization in an optomechanical cavity. Physical Review E, 2015, 91, 032910.	2.1	34
255	Controllable optical response in hybrid opto-electromechanical systems. Chinese Physics B, 2015, 24, 054206.	1.4	6
256	Time-resolved phase-space tomography of an optomechanical cavity. Physical Review A, 2015, 91, .	2.5	6
257	Coherent-feedback-induced controllable optical bistability and photon blockade. Journal of Physics B: Atomic, Molecular and Optical Physics, 2015, 48, 105501.	1.5	12
258	Connecting microwave and optical frequencies with a vibrational degree of freedom. , 2015, , .		0
259	Quantum state transfer between remote nanomechanical qubits. European Physical Journal D, 2015, 69, 1.	1.3	2
260	The next detectors for gravitational wave astronomy. Science China: Physics, Mechanics and Astronomy, 2015, 58, 1.	5.1	23
261	Quantum nonlinear optics near optomechanical instabilities. Physical Review A, 2015, 91, .	2.5	31
262	Steady-state mechanical squeezing in an optomechanical system via Duffing nonlinearity. Physical Review A, 2015, 91, .	2.5	165
263	Cooling mechanical resonators to the quantum ground state from room temperature. Physical Review A, 2015, 91, .	2.5	24
264	All-optical scheme for detecting the possible Majorana signature based on QD and nanomechanical resonator systems. Science China: Physics, Mechanics and Astronomy, 2015, 58, 1-14.	5.1	9
265	Optomechanically induced amplification and perfect transparency in double-cavity optomechanics. Frontiers of Physics, 2015, 10, 351-357.	5.0	32
266	Dissipation-induced optomechanical entanglement with the assistance of Coulomb interaction. Physical Review A, 2015, 91, .	2.5	50
267	Towards optomechanical quantum state reconstruction of mechanical motion. Annalen Der Physik, 2015, 527, 15-26.	2.4	46
268	On-Chip Photonic Transistor Device and Biomolecule Mass Sensor Based on a Whispering Gallery Mode Cavity Optomechanical System. IEEE Sensors Journal, 2015, 15, 3375-3380.	4.7	3
269	Nonlinear optical response of cavity optomechanical system with second-order coupling. Applied Optics, 2015, 54, 4623.	1.8	25
270	Phase-dependent optical response properties in an optomechanical system by coherently driving the mechanical resonator. Physical Review A, 2015, 91, .	2.5	85
271	Precision measurement of the environmental temperature by tunable double optomechanically induced transparency with a squeezed field. Physical Review A, 2015, 91, .	2.5	91

#	Article	IF	CITATIONS
272	Controlling photon transport in the single-photon weak-coupling regime of cavity optomechanics. Physical Review A, 2015, 91, .	2.5	31
273	Enhanced entanglement between two movable mirrors in an optomechanical system with nonlinear media. Europhysics Letters, 2015, 110, 64004.	2.0	17
274	Circuit analog of quadratic optomechanics. Physical Review A, 2015, 91, .	2.5	53
275	Cross-Kerr nonlinearity in optomechanical systems. Physical Review A, 2015, 91, .	2.5	34
276	Real photons from vacuum fluctuations in optomechanics: The role of polariton interactions. Physical Review A, 2015, 91, .	2.5	23
277	Tunable Bistability in Hybrid Bose-Einstein Condensate Optomechanics. Scientific Reports, 2015, 5, 10612.	3.3	28
278	Quantum coherence in ultrastrong optomechanics. Physical Review A, 2015, 91, .	2.5	52
279	Single-step arbitrary control of mechanical quantum states in ultrastrong optomechanics. Physical Review A, 2015, 91, .	2.5	15
280	High-efficiency quantum state transfer and quantum memory using a mechanical oscillator. Physical Review A, 2015, 91, .	2.5	54
281	Comparing resolved-sideband cooling and measurement-based feedback cooling on an equal footing: Analytical results in the regime of ground-state cooling. Physical Review A, 2015, 91, .	2.5	17
282	Quantum network of superconducting qubits through an optomechanical interface. Physical Review A, 2015, 91, .	2.5	55
283	Three-pathway electromagnetically induced transparency in coupled-cavity optomechanical system. Optics Express, 2015, 23, 11508.	3.4	64
284	Multiple Optomechanically Induced Transparency in a Ring Cavity Optomechanical System Assisted by Atomic Media. International Journal of Theoretical Physics, 2015, 54, 3665-3675.	1.2	10
285	Entanglement concentration with strong projective measurement in an optomechanical system. Science China: Physics, Mechanics and Astronomy, 2015, 58, 1-6.	5.1	25
286	Double optomechanical transparency with direct mechanical interaction. Chinese Physics B, 2015, 24, 054205.	1.4	1
287	Ponderomotive squeezing and entanglement in a ring cavity with two vibrational mirrors. Chinese Physics B, 2015, 24, 050301.	1.4	5
288	Effect of laser phase noise on the fidelity of optomechanical quantum memory. Physical Review A, 2015, 91, .	2.5	6
289	Quantum technologies with hybrid systems. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 3866-3873.	7.1	568

#	Article	IF	CITATIONS
290	Interconversion of photon-phonon in a silica optomechanical microresonator. Science China: Physics, Mechanics and Astronomy, 2015, 58, 1-6.	5.1	4
291	Optomechanical interfaces for hybrid quantum networks. National Science Review, 2015, 2, 510-519.	9.5	48
292	Quantum phase gate for optical qubits with cavity quantum optomechanics. Optics Express, 2015, 23, 7786.	3.4	21
293	Tunable multi-channel inverse optomechanically induced transparency and its applications. Optics Express, 2015, 23, 18534.	3.4	36
294	Engineering optomechanical normal modes for single-phonon transfer and entanglement preparation. Journal of the Optical Society of America B: Optical Physics, 2015, 32, 588.	2.1	7
295	Tunable strong nonlinearity of a micromechanical beam embedded in a dc-superconducting quantum interference device. Journal of Applied Physics, 2015, 117, 014309.	2.5	3
296	Large cooperativity and microkelvin cooling with a three-dimensional optomechanical cavity. Nature Communications, 2015, 6, 8491.	12.8	74
297	Optical Control of Mechanical Mode-Coupling within a MoS ₂ Resonator in the Strong-Coupling Regime. Nano Letters, 2015, 15, 6727-6731.	9.1	55
298	Tunable optomechanically induced absorption with quantum fields in an optomechanical system. Journal of the Optical Society of America B: Optical Physics, 2015, 32, 1712.	2.1	8
299	Optoelectromechanical transducer: Reversible conversion between microwave and optical photons. Annalen Der Physik, 2015, 527, 1-14.	2.4	77
300	High fidelity quantum state transfer in electromechanical systems with intermediate coupling. Scientific Reports, 2015, 4, 6237.	3.3	25
301	Macroscopic Entanglement of Remote Optomechanical Systems Assisted by Parametric Interactions. International Journal of Theoretical Physics, 2015, 54, 1334-1341.	1.2	3
302	Thermally Tunable Absorptionâ€Induced Transparency by a Quasi 3D Bowâ€Tie Nanostructure for Nonplasmonic and Volumetric Refractive Index Sensing at Midâ€IR. Advanced Optical Materials, 2016, 4, 943-952.	7.3	20
303	Control of microwave signals using bichromatic electromechanically induced transparency in multimode circuit electromechanical systems. Chinese Physics B, 2016, 25, 054204.	1.4	7
304	Controlling signal transport in a carbon nanotube opto-transistor. Scientific Reports, 2016, 6, 37193.	3.3	1
305	Quantum nonlinear dynamics of optomechanical systems in the strong-coupling regime. Physical Review A, 2016, 94, .	2.5	7
306	Entangling a single NV centre with a superconducting qubit via parametric couplings between photons and phonons in a hybrid system. Journal of Modern Optics, 2016, 63, 2173-2179.	1.3	2
307	Phase noise and squeezing spectra of the output field of an optical cavity containing an interacting Bose–Einstein condensate. Journal of Physics B: Atomic, Molecular and Optical Physics, 2016, 49, 145501.	1.5	12

#	Article	IF	CITATIONS
308	Superconducting Cavity Electromechanics on a Silicon-on-Insulator Platform. Physical Review Applied, 2016, 6, .	3.8	16
309	Phase-dependent multiple optomechanically induced absorption in multimode optomechanical systems with mechanical driving. Physical Review A, 2016, 94, .	2.5	30
310	Enhanced electromechanical coupling of a nanomechanical resonator to coupled superconducting cavities. Scientific Reports, 2016, 6, 19065.	3.3	15
311	Multimode Strong Coupling in Superconducting Cavity Piezoelectromechanics. Physical Review Letters, 2016, 117, 123603.	7.8	53
312	Tunable Multiple Optomechanically Induced Transparency with Squeezed Fields in an Optomechanical System. International Journal of Theoretical Physics, 2016, 55, 5385-5392.	1.2	1
313	Tunable multiphonon blockade in coupled nanomechanical resonators. Physical Review A, 2016, 93, .	2.5	83
314	Degenerate optomechanical parametric oscillators: Cooling in the vicinity of a critical point. Physical Review A, 2016, 93, .	2.5	16
315	Nonreciprocal conversion between microwave and optical photons in electro-optomechanical systems. Physical Review A, 2016, 93, .	2.5	103
316	Cross-Kerr effect on an optomechanical system. Physical Review A, 2016, 93, .	2.5	72
317	Degenerate parametric oscillation in quantum membrane optomechanics. Physical Review A, 2016, 93, .	2.5	21
318	Classical and quantum-linearized descriptions of degenerate optomechanical parametric oscillators. Physical Review A, 2016, 93, .	2.5	12
319	Dissipative structures in optomechanical cavities. Physical Review A, 2016, 93, .	2.5	5
320	Single-photon nonlinearities in a strongly driven optomechanical system with quadratic coupling. Physical Review A, 2016, 93, .	2.5	54
321	Devil's staircase in an optomechanical cavity. Physical Review E, 2016, 93, 023007.	2.1	9
322	Macroscopic Quantum Superposition in Cavity Optomechanics. Physical Review Letters, 2016, 116, 163602.	7.8	139
323	Near-Field Integration of a SiN Nanobeam and a <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mi>SiO</mml:mi><mml:mn>2</mml:mn></mml:msub>Microcay for Heisenberg.l imited Displacement Sensing, Physical Payloy, Applied, 2016, 5</mml:math 	vity ⁸	48
324	Mechanically Mediated Microwave Frequency Conversion in the Quantum Regime. Physical Review Letters, 2016, 116, 043601.	7.8	76
325	Dynamics of an optomechanical system with quadratic coupling: Effect of first order correction to adiabatic elimination. Scientific Reports, 2016, 6, 35583.	3.3	7

#	Article	IF	CITATIONS
326	Extended Bose-Hubbard model with pair hopping induced by a quadratically coupled optomechanical system. Physical Review A, 2016, 94, .	2.5	3
327	Controlled Electromagnetically Induced Transparency and Fano Resonances in Hybrid BEC-Optomechanics. Scientific Reports, 2016, 6, 22651.	3.3	42
328	Ultrasensitive mass sensing method based on slow light in cavity optomechanics. Applied Physics Express, 2016, 9, 052205.	2.4	3
329	Cavity magnomechanics. Science Advances, 2016, 2, e1501286.	10.3	395
330	Quantum electromechanics on silicon nitride nanomembranes. Nature Communications, 2016, 7, 12396.	12.8	58
331	An electromechanical displacement transducer. Applied Physics Express, 2016, 9, 086701.	2.4	2
332	Phase-factor-dependent symmetries and quantum phases in a three-level cavity QED system. Scientific Reports, 2016, 6, 25192.	3.3	5
333	Nested trampoline resonators for optomechanics. Applied Physics Letters, 2016, 108, .	3.3	19
334	Transduction. , 2016, , 115-147.		0
335	Fundamentals of Nanomechanical Resonators. , 2016, , .		129
335 336	Fundamentals of Nanomechanical Resonators. , 2016, , . Reprint of : Dynamics of coupled vibration modes in a quantum non-linear mechanical resonator. Physica E: Low-Dimensional Systems and Nanostructures, 2016, 82, 117-121.	2.7	129 0
335 336 337	Fundamentals of Nanomechanical Resonators. , 2016, , . Reprint of : Dynamics of coupled vibration modes in a quantum non-linear mechanical resonator. Physica E: Low-Dimensional Systems and Nanostructures, 2016, 82, 117-121. Dynamical strong coupling and parametric amplification of mechanical modes of graphene drums. Nature Nanotechnology, 2016, 11, 747-751.	2.7 31.5	129 O 139
335336337338	Fundamentals of Nanomechanical Resonators. , 2016, , . Reprint of : Dynamics of coupled vibration modes in a quantum non-linear mechanical resonator. Physica E: Low-Dimensional Systems and Nanostructures, 2016, 82, 117-121. Dynamical strong coupling and parametric amplification of mechanical modes of graphene drums. Nature Nanotechnology, 2016, 11, 747-751. Optical transduction and routing of microwave phonons in cavity-optomechanical circuits. Nature Photonics, 2016, 10, 489-496.	2.7 31.5 31.4	129 0 139 161
 335 336 337 338 339 	Fundamentals of Nanomechanical Resonators., 2016, , . Reprint of : Dynamics of coupled vibration modes in a quantum non-linear mechanical resonator. Physica E: Low-Dimensional Systems and Nanostructures, 2016, 82, 117-121. Dynamical strong coupling and parametric amplification of mechanical modes of graphene drums. Nature Nanotechnology, 2016, 11, 747-751. Optical transduction and routing of microwave phonons in cavity-optomechanical circuits. Nature Photonics, 2016, 10, 489-496. Tunable ponderomotive squeezing induced by Coulomb interaction in an optomechanical system.	2.7 31.5 31.4 1.4	129 0 139 161
 335 336 337 338 339 340 	Fundamentals of Nanomechanical Resonators. , 2016, , . Reprint of : Dynamics of coupled vibration modes in a quantum non-linear mechanical resonator. Physica E: Low-Dimensional Systems and Nanostructures, 2016, 82, 117-121. Dynamical strong coupling and parametric amplification of mechanical modes of graphene drums. Nature Nanotechnology, 2016, 11, 747-751. Optical transduction and routing of microwave phonons in cavity-optomechanical circuits. Nature Photonics, 2016, 10, 489-496. Tunable ponderomotive squeezing induced by Coulomb interaction in an optomechanical system. Chinese Physics B, 2016, 25, 010304. Nanophononics: state of the art and perspectives. European Physical Journal B, 2016, 89, 1.	2.7 31.5 31.4 1.4 1.5	129 0 139 161 4 149
 335 336 337 338 339 340 341 	Fundamentals of Nanomechanical Resonators., 2016,,. Reprint of : Dynamics of coupled vibration modes in a quantum non-linear mechanical resonator. Physica E: Low-Dimensional Systems and Nanostructures, 2016, 82, 117-121. Dynamical strong coupling and parametric amplification of mechanical modes of graphene drums. Nature Nanotechnology, 2016, 11, 747-751. Optical transduction and routing of microwave phonons in cavity-optomechanical circuits. Nature Photonics, 2016, 10, 489-496. Tunable ponderomotive squeezing induced by Coulomb Interaction in an optomechanical system. Chinese Physics B, 2016, 25, 010304. Nanophononics: state of the art and perspectives. European Physical Journal B, 2016, 89, 1. Compensation of the Kerr effect for transient optomechanically induced transparency in a silica microsphere. Optics Letters, 2016, 41, 1249.	2.7 31.5 31.4 1.4 1.5 3.3	129 0 139 161 4 149
 335 336 337 338 339 340 341 342 	Fundamentals of Nanomechanical Resonators. , 2016, , . Reprint of : Dynamics of coupled vibration modes in a quantum non-linear mechanical resonator. Physica E: Low-Dimensional Systems and Nanostructures, 2016, 82, 117-121. Dynamical strong coupling and parametric amplification of mechanical modes of graphene drums. Nature Nanotechnology, 2016, 11, 747-751. Optical transduction and routing of microwave phonons in cavity-optomechanical circuits. Nature Photonics, 2016, 10, 489-496. Tunable ponderomotive squeezing induced by Coulomb interaction in an optomechanical system. Chinese Physics B, 2016, 25, 010304. Nanophononics: state of the art and perspectives. European Physical Journal B, 2016, 89, 1. Compensation of the Kerr effect for transient optomechanically induced transparency in a silica microsphere. Optics Letters, 2016, 41, 1249. Observation of strong radiation pressure forces from squeezed light on a mechanical oscillator. Nature Physics, 2016, 12, 683-687.	2.7 31.5 31.4 1.4 1.5 3.3 16.7	129 0 139 161 4 149 31 68

#	ARTICLE	IF	CITATIONS
344	Overwhelming Thermomechanical Motion with Microwave Radiation Pressure Shot Noise. Physical Review Letters, 2016, 116, 013602.	7.8	55
345	Signal bi-amplification in networks of unidirectionally coupled MEMS. European Physical Journal B, 2016, 89, 1.	1.5	4
346	Dynamics of coupled vibration modes in a quantum non-linear mechanical resonator. Physica E: Low-Dimensional Systems and Nanostructures, 2016, 76, 181-186.	2.7	6
347	Coherent Phonon Rabi Oscillations with a High-Frequency Carbon Nanotube Phonon Cavity. Nano Letters, 2017, 17, 915-921.	9.1	37
348	Sideband cooling beyond the quantum backaction limit with squeezed light. Nature, 2017, 541, 191-195.	27.8	196
349	Controllable optical response by modifying the gain and loss of a mechanical resonator and cavity mode in an optomechanical system. Physical Review A, 2017, 95, .	2.5	67
350	Electron Spin Resonance at the Level of <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mrow><mml:mn>1</mml:mn><mml:msup><mml:mrow><mml:mn>0Using Low Impedance Superconducting Resonators. Physical Review Letters, 2017, 118, 037701.</mml:mn></mml:mrow></mml:msup></mml:mrow></mml:math>	nro 7∿⊗ < mm	1 l:ı®ı4 ow>≺mr
351	Quantum feedback: Theory, experiments, and applications. Physics Reports, 2017, 679, 1-60.	25.6	181
352	Noiseless Quantum Measurement and Squeezing of Microwave Fields Utilizing Mechanical Vibrations. Physical Review Letters, 2017, 118, 103601.	7.8	51
353	Review of microwave electro-phononics in semiconductor nanostructures. Semiconductor Science and Technology, 2017, 32, 053003.	2.0	11
354	Mechanical dissipation in MoRe superconducting metal drums. Applied Physics Letters, 2017, 110, 083103.	3.3	2
355	Coherent coupling between an optomechanical membrane and an interacting photon Bose–Einstein condensate. Journal of Modern Optics, 2017, 64, 1725-1738.	1.3	2
356	Damping in a superconducting mechanical resonator. Europhysics Letters, 2017, 117, 57008.	2.0	3
357	A dissipative quantum reservoir for microwave light using a mechanical oscillator. Nature Physics, 2017, 13, 787-793.	16.7	76
358	Non-Markovian Dynamics of Spin Squeezing Under Detuning Modulation. Open Systems and Information Dynamics, 2017, 24, 1750003.	1.2	0
359	Optical-response properties in an atom-assisted optomechanical system with a mechanical pump. Journal of Physics B: Atomic, Molecular and Optical Physics, 2017, 50, 105503.	1.5	7
360	Controllable optical multistability in hybrid optomechanical system assisted by parametric interactions. Science China: Physics, Mechanics and Astronomy, 2017, 60, 1.	5.1	10
361	Classical-to-quantum transition behavior between two oscillators separated in space under the action of optomechanical interaction. Scientific Reports, 2017, 7, 2545.	3.3	36

		CITATION R	EPORT	
#	Article		IF	CITATIONS
362	Dynamical Gaussian quantum steering in optomechanics. European Physical Journal D,	2017, 71, 1.	1.3	16
363	Microwave Frequency Graphene Optomechanics. Coherent Propagation Properties and Responses. Journal of Russian Laser Research, 2017, 38, 276-284.	Nonlinear	0.6	1
364	Optomechanical Transistor with Phonons and Photons. IEEE Sensors Journal, 2017, , 1-	1.	4.7	1
365	Electromagnetically induced transparency in optical microcavities. Nanophotonics, 201	7, 6, 789-811.	6.0	162
366	Coherent Optical Propagation Properties Based on a Generalized Multi-Mode Optomec International Journal of Theoretical Physics, 2017, 56, 948-956.	hanical System.	1.2	1
367	Optomechanics with a position-modulated Kerr-type nonlinear coupling. Physical Review	w A, 2017, 96, .	2.5	17
368	Optical bistability and four-wave mixing in a hybrid optomechanical system. Physics Let General, Atomic and Solid State Physics, 2017, 381, 3289-3294.	ters, Section A:	2.1	17
369	Nonreciprocal reconfigurable microwave optomechanical circuit. Nature Communicatio 604.	ns, 2017, 8,	12.8	231
370	Reconfigurable re-entrant cavity for wireless coupling to an electro-optomechanical dev of Scientific Instruments, 2017, 88, 094701.	ice. Review	1.3	7
371	Tunable double optomechanically induced transparency in a dual-species Bose–Einste Laser Physics Letters, 2017, 14, 105201.	ein condensate.	1.4	3
372	Pulsed Entanglement of Two Optomechanical Oscillators and Furry's Hypothesis. P Letters, 2017, 119, 023601.	hysical Review	7.8	38
373	A hybrid microwave-optomechanical system under the effect of an optical parametric a Superlattices and Microstructures, 2017, 111, 824-829.	mplifier.	3.1	5
374	Simulation of an optomechanical quantum memory in the nonlinear regime. Physical Re .	eview A, 2017, 96,	2.5	12
375	Demonstration of Efficient Nonreciprocity in a Microwave Optomechanical Circuit. Phys 2017, 7, .	sical Review X,	8.9	106
376	Single-photon transport through a waveguide coupling to a quadratic optomechanical s Physical Review A, 2017, 96, .	system.	2.5	9
377	Adiabatic transfer of energy fluctuations between membranes inside an optical cavity. F A, 2017, 96, .	Physical Review	2.5	7
378	Dissipative generation of significant amount of mechanical entanglement in a coupled system. Scientific Reports, 2017, 7, 14497.	optomechanical	3.3	12
379	Optomechanically induced absorption in parity-time-symmetric optomechanical system Review A, 2017, 95, .	is. Physical	2.5	37

		CITATION RE	PORT	
#	Article		IF	CITATIONS
380	Nonlinear effects in modulated quantum optomechanics. Physical Review A, 2017, 95,		2.5	59
381	Coherent optical propagation and ultrahigh resolution mass sensor based on photonic optomechanics. Optics Communications, 2017, 382, 73-79.	molecules	2.1	10
382	Control of slow-to-fast light and single-to-double optomechanically induced transparer compound resonator system: A theoretical approach. Europhysics Letters, 2017, 120, 2	ncy in a 24001.	2.0	12
383	Phase sensitive imaging of 10 GHz vibrations in an AlN microdisk resonator. Review of Instruments, 2017, 88, 123709.	Scientific	1.3	21
384	Phase control of entanglement and quantum steering in a three-mode optomechanical Journal of Physics, 2017, 19, 123039.	system. New	2.9	28
385	Dynamical and quantum effects of collective dissipation in optomechanical systems. N Physics, 2017, 19, 113007.	ew Journal of	2.9	17
386	Optical directional amplification in a three-mode optomechanical system. Optics Expre 18907.	ss, 2017, 25,	3.4	61
387	Straightforward method to measure optomechanically induced transparency. Optics E 12935.	xpress, 2017, 25,	3.4	5
388	Preparation of entangled states of microwave photons in a hybrid system via the electr Optics Express, 2017, 25, 28305.	o-optic effect.	3.4	4
389	Quantum-enhanced accelerometry with a nonlinear electromechanical circuit. Physical 2017, 96, .	Review A,	2.5	6
390	A correlated electromechanical system. New Journal of Physics, 2017, 19, 033026.		2.9	3
391	Invariant-based inverse engineering for fluctuation transfer between membranes in an optomechanical cavity system. Physical Review A, 2018, 97, .		2.5	34
392	Nonperturbative Dynamical Casimir Effect in Optomechanical Systems: Vacuum Casim Physical Review X, 2018, 8, .	ir-Rabi Splittings.	8.9	57
393	Quantum non-demolition phonon counter with a hybrid optomechnical system. Science Mechanics and Astronomy, 2018, 61, 1.	e China: Physics,	5.1	2
394	Optomechanical transistor with mechanical gain. Physical Review A, 2018, 97, .		2.5	32
395	Normal-Mode Splitting in a Weakly Coupled Optomechanical System. Physical Review 073601.	Letters, 2018, 120,	7.8	45
396	Multi-functional quantum router using hybrid opto-electromechanics. Laser Physics Let 035201.	ters, 2018, 15,	1.4	5
397	Tunable high-order-sideband generation and carrier-envelope-phase–dependent effect fields in hybrid electro-optomechanical systems. Physical Review A, 2018, 97, .	cts via microwave	2.5	19

#	Article	IF	CITATIONS
398	Photon blockade in optomechanical systems with a position-modulated Kerr-type nonlinear coupling. Journal of Physics A: Mathematical and Theoretical, 2018, 51, 095302.	2.1	4
399	Quantum-Limited Directional Amplifiers with Optomechanics. Physical Review Letters, 2018, 120, 023601.	7.8	120
400	Controllable coherent perfect absorption and transmission in a generalized three-mode optomechanical system. Optik, 2018, 168, 46-53.	2.9	3
401	Optomechanically induced transparency with Bose–Einstein condensate in double-cavity optomechanical system. Chinese Physics B, 2018, 27, 034205.	1.4	4
402	Cavity optomechanical spectroscopy constraints chameleon dark energy scenarios. European Physical Journal C, 2018, 78, 1.	3.9	3
403	Cavity optomechanics: Manipulating photons and phonons towards the single-photon strong coupling. Chinese Physics B, 2018, 27, 024204.	1.4	38
404	Multiple electromechanically-induced-transparency windows and Fano resonances in hybrid nano-electro-optomechanics. Physical Review A, 2018, 97, .	2.5	51
405	Nonclassical properties (squeezing, antibunching, entanglement) for couple-cavity optomechanical system. Journal of Optics (India), 2018, 47, 121-131.	1.7	1
406	A maser based on dynamical backaction on microwave light. Physics Letters, Section A: General, Atomic and Solid State Physics, 2018, 382, 2233-2237.	2.1	6
407	Enhanced Entanglement in Optomechanical Cavity with a Nonlinear Material χ (3). International Journal of Theoretical Physics, 2018, 57, 219-225.	1.2	1
408	Ultrawide-range photon number calibration using a hybrid system combining nano-electromechanics and superconducting circuit quantum electrodynamics. Applied Physics Letters, 2018, 113, .	3.3	4
409	Effective quality factor tuning mechanisms in micromechanical resonators. Applied Physics Reviews, 2018, 5, .	11.3	91
410	Coherent storage and manipulation of broadband photons via dynamically controlled Autler–Townes splitting. Nature Photonics, 2018, 12, 774-782.	31.4	78
411	Optomechanically induced nonreciprocity in a three-mode optomechanical system. Physical Review A, 2018, 98, .	2.5	38
412	Superconducting membrane mechanical oscillator based on vacuum-gap capacitor. Chinese Physics B, 2018, 27, 060701.	1.4	3
413	Enhanced nonlinear interaction effects in a four-mode optomechanical ring. Physical Review A, 2018, 98, .	2.5	5
414	Loss-induced transparency in optomechanics. Optics Express, 2018, 26, 25199.	3.4	52
415	Experimental Determination of Irreversible Entropy Production in out-of-Equilibrium Mesoscopic Quantum Systems. Physical Review Letters, 2018, 121, 160604.	7.8	58

#	Article	IF	CITATIONS
416	Phonon-Number-Sensitive Electromechanics. Physical Review Letters, 2018, 121, 183601.	7.8	48
417	The effect of oscillator and dipole-dipole interaction on multiple optomechanically induced transparency in cavity optomechanical system. Scientific Reports, 2018, 8, 14367.	3.3	6
418	Manipulation of fast and slow light propagation by photonic-molecule optomechanics. Journal of Applied Physics, 2018, 124, .	2.5	12
419	Frequency Control and Coherent Excitation Transfer in a Nanostring-resonator Network. Physical Review Applied, 2018, 10, .	3.8	7
420	Quantum nondemolition measurement of mechanical motion quanta. Nature Communications, 2018, 9, 3621.	12.8	18
421	Phase-dependent Fano-shape optomechanically induced transparency. Applied Optics, 2018, 57, 7444.	1.8	5
422	Strong light-matter coupling in quantum chemistry and quantum photonics. Nanophotonics, 2018, 7, 1479-1501.	6.0	181
423	Efficient single-photon switch with an optomechanical cavity coupled to a one-dimensional waveguide. Journal of Physics B: Atomic, Molecular and Optical Physics, 2018, 51, 155503.	1.5	3
424	Optically induced transparency in bosonic cascade lasers. Optics Letters, 2018, 43, 259.	3.3	4
425	Quantum squeezing in a modulated optomechanical system. Optics Express, 2018, 26, 11915.	3.4	27
426	Mass Detection of Single Viruses Based on Whispering Gallery Modes of Optomechanical Systems via Optical Pump–Probe Technique. Journal of Experimental and Theoretical Physics, 2018, 126, 712-717.	0.9	0
427	Method of Higher-order Operators for Quantum Optomechanics. Scientific Reports, 2018, 8, 11566.	3.3	5
428	Inducing Strong Non-Linearities in a Phonon Trapping Quartz Bulk Acoustic Wave Resonator Coupled to a Superconducting Quantum Interference Device. Applied Sciences (Switzerland), 2018, 8, 602.	2.5	1
429	Optical cavity mode dynamics and coherent phonon generation in high- <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi>Q </mml:mi> micropillar resonators. Physical Review A, 2018, 98, .</mml:math 	2.5	5
430	Properties of the output field of a hybrid superconducting quantum circuit system. Journal of Physics B: Atomic, Molecular and Optical Physics, 2018, 51, 175504.	1.5	3
431	Enhanced quadratic nonlinearity with parametric amplifications. Journal of the Optical Society of America B: Optical Physics, 2018, 35, 652.	2.1	3
432	Level attraction in a microwave optomechanical circuit. Physical Review A, 2018, 98, .	2.5	51
433	All-optical photon switching, router and amplifier using a passive-active optomechanical system. Europhysics Letters, 2018, 122, 24001.	2.0	12

ARTICLE IF CITATIONS # Quantitative analysis of the interaction between a dc SQUID and an integrated micromechanical 434 2.5 0 doubly clamped cantilever. Journal of Applied Physics, 2019, 125, . Exceptional points in 1D arrays of quantum harmonic oscillators. Europhysics Letters, 2019, 127, 20001. Conversion of mechanical noise into correlated photon pairs: Dynamical Casimir effect from an 436 2.524 incoherent mechanical drive. Physical Review A, 2019, 100, . Sub-hertz optomechanically induced transparency with a kilogram-scale mechanical oscillator. 2.5 Physical Review A, 2019, 100, . Discerning quantum memories based on electromagnetically-induced-transparency and 438 2.5 34 Autler-Townes-splitting protocols. Physical Review A, 2019, 100, . Controllable and tunable multiple optomechanically induced transparency and Fano resonance mediated by different mechanical resonators. AlP Advances, 2019, 9, . 439 1.3 Selective and switchable optical amplification with mechanical driven oscillators. Physical Review A, 440 2.5 47 2019, 100, . Bose-condensed optomechanical-like system and a Fabryâ€"Perot cavity with one movable mirror: quantum correlations from the perspectives of quantum optics. European Physical Journal D, 2019, 73, 1.3 An optomechanical heat engine with feedback-controlled in-loop light. New Journal of Physics, 2019, 442 2.9 17 21, 093051. Generation of single entangled photon-phonon pairs via an atom-photon-phonon interaction. Physical 443 2.5 Review A, 2019, 100, . Generating a Squeezedâ€Coherentâ€Cat State in a Doubleâ€Cavity Optomechanical System. Annalen Der 444 7 2.4 Physik, 2019, 531, 1900196. Entangling two microwave modes via optomechanics. Physical Review A, 2019, 100, . 2.5 Electromagnetically Induced Absorption in Cavity Optomechanics System with a Bose–Einstein 446 0.6 2 Condensate. Journal of Russian Laser Research, 2019, 40, 340-347. Tunable transparency and amplification in a hybrid optomechanical system with quadratic coupling. Journal of Physics B: Atomic, Molecular and Optical Physics, 2019, 52, 215402. 447 1.5 Auxiliary cavity enhanced mode splitting and ground-state cooling of mechanical resonator in hybrid 448 1.3 3 optomechanical system. European Physical Journal D, 2019, 73, 1. Optomechanically induced transparency and nonlinear responses based on graphene optomechanics system. EPJ Quantum Technology, 2019, 6, . Controllable optical response properties in a hybrid optomechanical system. Quantum Information 450 2.25 Processing, 2019, 18, 1. Effects of the Casimir force on the properties of a hybrid optomechanical system. Chinese Physics B, 1.4 2019, 28, 014202.

#	Article	IF	CITATIONS
452	A controllable superconducting electromechanical oscillator with a suspended membrane. AIP Advances, 2019, 9, .	1.3	5
453	Atom-assisted second-order sideband generation in an optomechanical system with atom-cavity-resonator coupling. Physical Review A, 2019, 99, .	2.5	21
454	Optimal control of hybrid optomechanical systems for generating non-classical states of mechanical motion. Quantum Science and Technology, 2019, 4, 034001.	5.8	21
455	Phonon Coupling between a Nanomechanical Resonator and a Quantum Fluid. Nano Letters, 2019, 19, 3716-3722.	9.1	7
456	A tunable single-photon multi-channel quantum router in a hybrid BEC-optomechanical system. Laser Physics, 2019, 29, 065501.	1.2	1
457	Enhancement of few-photon optomechanical effects with cross-Kerr nonlinearity. Physical Review A, 2019, 99, .	2.5	35
458	Peak splitting and locking behavior arising from Fano interference between localized surface plasmons and cavity modes. Physical Review B, 2019, 99, .	3.2	6
459	Closely packed metallic nanocuboid dimer allowing plasmomechanical strong coupling. Physical Review A, 2019, 99, .	2.5	10
460	High-frequency cavity optomechanics using bulk acoustic phonons. Science Advances, 2019, 5, eaav0582.	10.3	37
461	Strong vibrational coupling in room temperature plasmonic resonators. Nature Communications, 2019, 10, 1527.	12.8	35
462	Controlling phonons and photons at the wavelength scale: integrated photonics meets integrated phononics. Optica, 2019, 6, 213.	9.3	125
463	Optomechanically induced transparency in a Laguerre-Gaussian rotational-cavity system and its application to the detection of orbital angular momentum of light fields. Physical Review A, 2019, 99, .	2.5	34
464	Spin detection with a micromechanical trampoline: towards magnetic resonance microscopy harnessing cavity optomechanics. New Journal of Physics, 2019, 21, 043049.	2.9	38
465	Nonreciprocal control and cooling of phonon modes in an optomechanical system. Nature, 2019, 568, 65-69.	27.8	125
466	Optomechanical Platform with a Three-dimensional Waveguide Cavity. Physical Review Applied, 2019, 11,	3.8	5
467	Quantum electromechanics of a hypersonic crystal. Nature Nanotechnology, 2019, 14, 334-339.	31.5	30
468	Quantum sound on a chip. Nature Nanotechnology, 2019, 14, 311-312.	31.5	1
469	Normalâ€Mode Splitting in a Weakly Coupled Electromechanical System with a Mechanical Modulation. Annalen Der Physik, 2019, 531, 1800461.	2.4	11

#	Article	IF	CITATIONS
470	Sideband cooling of nearly degenerate micromechanical oscillators in a multimode optomechanical system. Physical Review A, 2019, 99, .	2.5	41
471	Phase-controlled amplification and slow light in a hybrid optomechanical system. Optics Express, 2019, 27, 30473.	3.4	17
472	Coulomb forces in THz electromechanical meta-atoms. Nanophotonics, 2019, 8, 2269-2277.	6.0	13
473	Normal-mode splitting in coupled high-Q microwave cavities. Journal of Applied Physics, 2019, 126, 173908.	2.5	2
474	Coupling microwave photons to a mechanical resonator using quantum interference. Nature Communications, 2019, 10, 5359.	12.8	42
475	Control of electromagnetically induced transparency and Fano resonances in a hybrid optomechanical system. European Physical Journal D, 2019, 73, 1.	1.3	8
476	Optically induced transparency in coupled micro-cavities: tunable Fano resonance. European Physical Journal D, 2019, 73, 1.	1.3	6
477	Ultrastrong Parametric Coupling between a Superconducting Cavity and a Mechanical Resonator. Physical Review Letters, 2019, 123, 247701.	7.8	43
478	Optomechanically induced entanglement. Physical Review A, 2019, 99, .	2.5	17
479	Electro-optomechanical cooperative cooling of nanomechanical oscillator beyond resolved sideband regime. Science China: Physics, Mechanics and Astronomy, 2020, 63, 1.	5.1	5
480	Double optomechanically induced transparency in a Laguerre-Gaussian rovibrational cavity. Physics Letters, Section A: General, Atomic and Solid State Physics, 2020, 384, 126153.	2.1	17
481	Nonreciprocal enhancement of optomechanical second-order sidebands in a spinning resonator. Physical Review A, 2020, 102, .	2.5	20
482	Induced Transparency with Optical Cavities. Advanced Photonics Research, 2020, 1, 2000009.	3.6	17
483	Stationary Entanglement between Light and Microwave via Ferromagnetic Magnons. Annalen Der Physik, 2020, 532, 2000250.	2.4	24
484	Multi-channel optomechanically induced amplification in a parity-time-symmetric Laguerre-Gaussian rovibrational-cavity system. European Physical Journal D, 2020, 74, 1.	1.3	6
485	Generation of optical-photon-and-magnon entanglement in an optomagnonics-mechanical system. Quantum Information Processing, 2020, 19, 1.	2.2	6
486	Tunable multicolor optomechanically induced transparency in multi-cavity optomechanical system. International Journal of Theoretical Physics, 2020, 59, 3256-3267.	1.2	1
487	Widely Tunable Coupling between a Mechanical Mode and Cavity Photons via a Superconductor. Journal of the Korean Physical Society, 2020, 77, 927-930.	0.7	0

#	Article	IF	CITATIONS
488	Quantum nondemolition photon counting with a hybrid electromechanical probe. Physical Review A, 2020, 102, .	2.5	4
489	Optical and Microcavity Modes Entanglement by Means of Plasmonic Opto-Mechanical System. IEEE Journal of Selected Topics in Quantum Electronics, 2020, 26, 1-10.	2.9	4
490	Critical quantum fluctuations and photon antibunching in optomechanical systems with large single-photon cooperativity. Physical Review A, 2020, 101, .	2.5	11
491	Strong mechanical squeezing in a standard optomechanical system by pump modulation. Physical Review A, 2020, 101, .	2.5	24
492	Efficient microwave frequency conversion mediated by a photonics compatible silicon nitride nanobeam oscillator. Quantum Science and Technology, 2020, 5, 034011.	5.8	9
493	Pulsed entanglement and quantum steering in a three-mode electro-optomechanical system. Quantum Information Processing, 2020, 19, 1.	2.2	2
494	Nonvolatile Rewritable Frequency Tuning of a Nanoelectromechanical Resonator Using Photoinduced Doping. Nano Letters, 2020, 20, 2378-2386.	9.1	9
495	Tunable fast to slow light and second-order sideband generation in an optomechanical system with phonon pump. European Physical Journal D, 2020, 74, 1.	1.3	1
496	Hybrid quantum systems with circuit quantum electrodynamics. Nature Physics, 2020, 16, 257-267.	16.7	236
497	Quench dynamics in one-dimensional optomechanical arrays. Physical Review A, 2020, 101, .	2.5	7
498	Wavelength transduction from a 3D microwave cavity to telecom using piezoelectric optomechanical crystals. Applied Physics Letters, 2020, 116, 174005.	3.3	16
499	Cavity electromechanics with parametric mechanical driving. Nature Communications, 2020, 11, 1589.	12.8	28
500	Optomechanically induced transparency and gain. Physical Review A, 2020, 101, .	2.5	30
501	Controllable coherent optical response in a ring cavity optomechanical system. Physica E: Low-Dimensional Systems and Nanostructures, 2021, 125, 114394.	2.7	3
502	Photon-pressure strong coupling between two superconducting circuits. Nature Physics, 2021, 17, 85-91.	16.7	25
503	Strong optomechanical coupling at room temperature by coherent scattering. Nature Communications, 2021, 12, 276.	12.8	35
504	Conductor's elastic response to the vacuum-field radiation pressure. Physical Review A, 2021, 103, .	2.5	0
505			

#	Article	IF	CITATIONS
506	Non-classical energy squeezing of a macroscopic mechanical oscillator. Nature Physics, 2021, 17, 322-326.	16.7	26
507	Rare-Earth-Mediated Optomechanical System in the Reversed Dissipation Regime. Physical Review Letters, 2021, 126, 047404.	7.8	13
508	Superconducting Nanoelectromechanical Transducer Resilient to Magnetic Fields. Nano Letters, 2021, 21, 1800-1806.	9.1	2
509	Cavity optomechanics assisted by optical coherent feedback. Physical Review A, 2021, 103, .	2.5	12
510	Tunable ponderomotive squeezing in an optomechanical system with two coupled resonators*. Chinese Physics B, 2021, 30, 020303.	1.4	0
511	Controlling multiple optomechanically induced transparency in the distant cavity-optomechanical system*. Chinese Physics B, 2021, 30, 034209.	1.4	4
512	Optimal Control for Robust Photon State Transfer in Optomechanical Systems. Annalen Der Physik, 2021, 533, 2000608.	2.4	7
513	Gravitational Forces Between Nonclassical Mechanical Oscillators. Physical Review Applied, 2021, 15, .	3.8	17
514	Nanomechanical Microwave Bolometry with Semiconducting Nanowires. Physical Review Applied, 2021, 15, .	3.8	0
515	Tunable induced transparency and Fano-resonance in double cavity optomechanical system. International Journal of Physics Research and Applications, 2021, 4, 019-025.	0.3	1
516	Coupling Modifies the Quantum Fluctuations of Entangled Oscillators. Brazilian Journal of Physics, 2021, 51, 559-565.	1.4	0
517	Generation of Strong Mechanical–Mechanical Entanglement by Pump Modulation. Advanced Quantum Technologies, 2021, 4, 2000149.	3.9	9
518	Cavity magnomechanical storage and retrieval of quantum states. New Journal of Physics, 2021, 23, 043041.	2.9	39
519	Multicolor optomechanically induced transparency in a distant nano-electro-optomechanical system assisted by two-level atomic ensemble. Laser Physics, 2021, 31, 065202.	1.2	6
520	Direct observation of deterministic macroscopic entanglement. Science, 2021, 372, 622-625.	12.6	137
521	Reversible quantum state transfer in a three-mode optomechanical system. Laser Physics Letters, 2021, 18, 065206.	1.4	0
522	A cryogenic electro-optic interconnect for superconducting devices. Nature Electronics, 2021, 4, 326-332.	26.0	43
523	Circuit quantum electrodynamics. Reviews of Modern Physics, 2021, 93, .	45.6	634

#	Article	IF	CITATIONS
524	Tunable coupling of two mechanical resonators by a graphene membrane. 2D Materials, 2021, 8, 035039.	4.4	8
525	Floquet state depletion in ac-driven circuit QED. Physical Review B, 2021, 103, .	3.2	11
526	Strong tunable spin-spin interaction in a weakly coupled nitrogen vacancy spin-cavity electromechanical system. Physical Review B, 2021, 103, .	3.2	19
527	Quantum mechanics–free subsystem with mechanical oscillators. Science, 2021, 372, 625-629.	12.6	92
528	Ground-state cooling of mechanical resonators by quantum reservoir engineering. Communications Physics, 2021, 4, .	5.3	15
529	Reversible waveform conversion between microwave and optical fields in a hybrid opto-electromechanical system*. Chinese Physics B, 2021, 30, 068502.	1.4	6
530	Normal Mode Splitting in a Cavity Optomechanical System with a Cubic Anharmonic Oscillator. International Journal of Theoretical Physics, 2021, 60, 2766-2777.	1.2	3
531	Robust Four-Wave Mixing and Double Second-Order Optomechanically Induced Transparency Sideband in a Hybrid Optomechanical System. Photonics, 2021, 8, 234.	2.0	1
532	Controlling Multiple Optomechanically Induced Transparency in Charged Cavity Optomechanical System Assisted by Three-Level Atomic Ensemble. International Journal of Theoretical Physics, 2021, 60, 2216-2226.	1.2	0
533	Weak Radio-Frequency Signal Detection Based on Piezo-Opto-Electro-Mechanical System: Architecture Design and Sensitivity Prediction. IEEE Internet of Things Journal, 2021, 8, 10085-10102.	8.7	1
534	Room temperature cavity electromechanics in the sideband-resolved regime. Journal of Applied Physics, 2021, 130, .	2.5	2
535	High-resolution biomolecules mass sensing based on a spinning optomechanical system with phonon pump. Applied Physics Express, 2021, 14, 082005.	2.4	6
536	Multiple-Fano-resonance-induced fast and slow light in the hybrid nanomechanical-resonator system. Physical Review A, 2021, 104, .	2.5	19
537	Vectorial polaritons in the quantum motion of a levitated nanosphere. Nature Physics, 2021, 17, 1120-1124.	16.7	19
538	Microwave-optical quantum frequency conversion. Optica, 2021, 8, 1050.	9.3	81
539	Enhancing cross-Kerr coupling via mechanical parametric amplification. Optics Express, 2021, 29, 28835.	3.4	9
540	Nanomechanical Dissipation and Strain Engineering. Advanced Functional Materials, 2022, 32, 2105247.	14.9	15
541	Quantum simulation of tunable and ultrastrong mixed-optomechanics. Optics Express, 2021, 29, 28202.	3.4	1

	CHARGE		
#	Article	IF	CITATIONS
542	Photothermally induced transparency in coupled-cavity system. Physica Scripta, 2021, 96, 125109.	2.5	5
543	Strong single-photon optomechanical coupling in a hybrid quantum system. Optics Express, 2021, 29, 32639.	3.4	15
544	Controllable Fast and Slow Light in Photonic-Molecule Optomechanics with Phonon Pump. Micromachines, 2021, 12, 1074.	2.9	1
545	Optical Amplification and Fast-Slow Light in a Three-Mode Cavity Optomechanical System without Rotating Wave Approximation. Photonics, 2021, 8, 384.	2.0	2
546	Prototype superfluid gravitational wave detector. Physical Review D, 2021, 104, .	4.7	9
547	Optomechanical Interaction. Springer Theses, 2021, , 27-41.	0.1	0
548	Tunable fast–slow light conversion based on optomechanically induced absorption in a hybrid atom–optomechanical system. Quantum Information Processing, 2021, 20, 1.	2.2	3
550	Quantum Optomechanics with Millimeter Wave Photons. , 2021, , .		1
551	Optomechanically induced optical responses with non-rotating wave approximation. Journal of Physics B: Atomic, Molecular and Optical Physics, 2021, 54, 035401.	1.5	10
552	Quantum Opto-Mechanics with Micromirrors. Springer Theses, 2012, , .	0.1	3
553	Non-Hermitian physics. Advances in Physics, 2020, 69, 249-435.	14.4	695
554	Superfluid–Mott insulator quantum phase transition in hybrid cavity optomechanical arrays. Journal of Physics B: Atomic, Molecular and Optical Physics, 2020, 53, 195402.	1.5	2
555	Eigenfrequency loci crossings, veerings and mode splittings of two cantilevers coupled by an overhang. Journal of Physics Communications, 2020, 4, 085010.	1.2	3
556	Proposal for Heralded Generation and Detection of Entangled Microwave–Optical-Photon Pairs. Physical Review Letters, 2020, 124, 010511.	7.8	57
557	Optomechanical transistor: controlling the optical bistability in a photonic molecule. Applied Optics, 2019, 58, 2463.	1.8	4
558	Dynamical quantum steering in a pulsed hybrid opto-electro-mechanical system. Journal of the Optical Society of America B: Optical Physics, 2019, 36, 168.	2.1	13
559	Wide-range precision temperature measurement with optomechanically induced transparency in a double-cavity optomechanical system. Optics Express, 2019, 27, 2949.	3.4	4
560	Generation of entangled SchrĶdinger cat state of two macroscopic mirrors. Optics Express, 2019, 27, 13547.	3.4	21

ARTICLE IF CITATIONS # Macroscopic entanglement in optomechanical system induced by non-Markovian environment. Optics 561 3.4 14 Express, 2019, 27, 29082. Magnon-induced optical high-order sideband generation in hybrid atom-cavity optomagnonical system. 3.4 Optics Express, 2020, 28, 22334. 563 Mass sensing by quantum criticality. Optics Letters, 2019, 44, 630. 3.3 16 Observation of Brillouin optomechanical strong coupling with an 11  GHz mechanical mode. Optica, 564 2019, 6, 7. Squeezed property of optical transistor based on cavity optomechanical system. Wuli Xuebao/Acta 565 0.5 4 Physica Sinica, 2019, 68, 174202. Research progress in non-classical microwave states preparation based on cavity optomechanical system. Wuli Xuebao/Acta Physica Sinica, 2020, 69, 054203. Electrical Field Gradient Pumping of Parametric Oscillation in a High-Frequency 567 1.5 1 Nanoelectromechanical Resonator. Japanese Journal of Applied Physics, 2012, 51, 074003. Reversible optical–microwave quantum conversion assisted by optomechanical dynamically dark 2.2 modes. Quantum Information Processing, 2021, 20, 1. 569 Cooling photon-pressure circuits into the quantum regime. Science Advances, 2021, 7, eabg6653. 10.3 8 Critical ambient pressure and critical cooling rate in optomechanics of electromagnetically levitated 570 2.1 nanoparticles. Journal of the Optical Society of America B: Optical Physics, 2021, 38, 3652. Optomechanically induced transparency and Fano resonance in a four-mirror cavity. Physica Scripta, 571 0 2.5 2021, 96, 125112. Quantum-Coherent Coupling of Light and Micromechanical motion., 2012,,. Quantum-Coherent Coupling of a Mechanical Oscillator to an Optical Cavity Mode., 2012,,. 573 3 Introduction and Basic Theory. Springer Theses, 2012, , 3-34. 574 0.1 575 Quantum Optomechanics with Microwave Photons., 2012,,. 0 Entangled Mechanical Cat States From Conditional Optomechanics., 2013,,. 576 Entangled Mechanical Cat States via Single Photon Conditional Optomechanics., 2013,,. 0 577 578 Optical Detection of Radio Waves Through a Nanomechanical Transducer., 2014, , .

		CITATION RE	EPORT	
#	Article		IF	Citations
579	Sensor turns faintest radio waves into laser signals. Nature, 0, , .		27.8	1
580	A brief review on recent developments of superconducting microwave resonators for device application. Progress in Superconductivity and Cryogenics (PSAC), 2014, 16, 4	quantum D-43.	0.3	Ο
581	Coherent Perfect Absorption and Transmission Based on a Multi-Mode Optomechanic Physics, 2015, 05, 172-180.	al System. Applied	0.0	0
582	Arrays of optomechanical systems. , 2015, , 296-317.			0
583	Single-photon optomechanics. , 2015, , 212-249.			0
584	Coherent optical propagation properties and ultrahigh resolution mass sensing based whispering gallery modes cavity optomechanics. Wuli Xuebao/Acta Physica Sinica, 20.	on double 16, 65, 194205.	0.5	8
585	Coherent perfect absorption and transmission of a generalized three-mode cavity opti system. Wuli Xuebao/Acta Physica Sinica, 2017, 66, 107101.	co-mechanical	0.5	0
586	Photonic Transistor Device Based on a Whispering Gallery Mode Cavity Optomechanic Modern Physics, 2017, 07, 142-147.	al System.	0.1	0
587	Control of quantum correlation between atoms placed in coupled cavities. , 2018, , .			0
588	Quantum correlations under the effect of a thermal environment in a triangular opton cavity. Journal of the Optical Society of America B: Optical Physics, 2020, 37, A237.	nechanical	2.1	4
589	Compound-induced transparency in three-cavity coupled structure*. Chinese Physics E 124208.	9, 2020, 29,	1.4	0
591	Nonlinear optical effect and nonlinear optical mass sensor based on graphene optome Wuli Xuebao/Acta Physica Sinica, 2020, 69, 134203.	chanical system.	0.5	2
592	Phonon-number resolution of voltage-biased mechanical oscillators with weakly anhar superconducting circuits. Physical Review A, 2021, 104, .	monic	2.5	4
593	Quantum optical response of a hybrid optomechanical device embedded with a qubit. (United Kingdom), 2020, 22, 115401.	Journal of Optics	2.2	7
594	Efficient actuation design for optomechanical sensors. Optics Express, 2020, 28, 3234	19.	3.4	1
595	Ultrasensitive and high resolution mass sensor by photonic-molecule optomechanics v pump. Laser Physics, 2020, 30, 115203.	vith phonon	1.2	1
596	Double optomechanical induced transparency and measurement of orbital angular mo twisted light. Physica Scripta, 2021, 96, 015102.	mentum of	2.5	5
597	Probe response of a two-mode cavity with \$\$chi^{left(2 ight)}\$\$ non-linearity, non-resolve and fast light. Applied Physics B: Lasers and Optics, 2021, 127, 1.	ciprocity and	2.2	4

#	Article	IF	Citations
598	Phase controllable four-wave mixing in the hybrid opto-electromechanical system. Journal of Applied Physics, 2021, 130, 194401.	2.5	3
599	Quantum simulation of a three-mode optomechanical system based on the Fredkin-type interaction. Physical Review A, 2021, 104, .	2.5	2
600	Phonon pump enhanced fast and slow light in a spinning optomechanical system. Results in Physics, 2021, 31, 105002.	4.1	7
601	Fundamentals, progress and perspectives on high-frequency phononic crystals. Journal Physics D: Applied Physics, 2022, 55, 193002.	2.8	22
602	GHz guided optomechanics in planar semiconductor microcavities. Optica, 2022, 9, 160.	9.3	4
603	Phase-dependent controllable field generation in a ring cavity resonator. Journal of the Optical Society of America B: Optical Physics, 0, , .	2.1	1
604	Mechanical frequency control in inductively coupled electromechanical systems. Scientific Reports, 2022, 12, 1608.	3.3	6
605	Fast excitation fluctuation transfer between two membranes based on transitionless quantum driving. Laser Physics Letters, 2022, 19, 035202.	1.4	2
606	Generalized Su-Schrieffer-Heeger Model in One Dimensional Optomechanical Arrays. Frontiers in Physics, 2022, 9, .	2.1	4
607	Microwave Optomechanically Induced Transparency and Absorption Between 250 and 450 mK. Journal of Low Temperature Physics, 2023, 210, 562-572.	1.4	2
608	A perspective on quantum entanglement in optomechanical systems. Physics Letters, Section A: General, Atomic and Solid State Physics, 2022, 429, 127966.	2.1	11
609	Optical response properties of a hybrid electro-optomechanical system interacting with a qubit. Journal of Modern Optics, 2022, 69, 323-335.	1.3	4
610	Far-infrared frequency mode conversion using bulk acoustic phonon modes. Applied Physics B: Lasers and Optics, 2022, 128, 1.	2.2	3
611	Simulating and Studying the Topological Properties of the Photon-Phonon in a One-Dimensional Superconducting Circuit Lattice. SSRN Electronic Journal, 0, , .	0.4	0
612	Phase dependence of the dynamical behaviours and photon entanglement induced by two-fold modulations in optomechanical interfaces. Pramana - Journal of Physics, 2022, 96, 1.	1.5	1
613	MoSi ₂ N ₄ : A 2D Regime with Strong Exciton–Phonon Coupling. Advanced Optical Materials, 2022, 10, .	7.3	13
614	Nonlinear interaction effects in a three-mode cavity optomechanical system. Physical Review A, 2022, 105, .	2.5	2
615	Dissipative optomechanical preparation of non-Gaussian mechanical entanglement. Physics Letters, Section A: General, Atomic and Solid State Physics, 2022, 438, 128101.	2.1	7

	Сітат	ion Report	
#	Article	IF	Citations
616	Robust and fast excitation fluctuations transfer between two membranes in an optomechanical system. Physics Letters, Section A: General, Atomic and Solid State Physics, 2022, 434, 128055.	2.1	0
617	Robust Second-Order Sideband Generation in a Photonic-Molecule Optomechanics with Phonon Pump. Journal of Experimental and Theoretical Physics, 2021, 133, 542-551.	0.9	0
618	Nonlocal nonreciprocal optomechanical circulator. Chinese Physics B, 2022, 31, 054204.	1.4	1
619	Optomechanical Anti-Lasing with Infinite Group Delay at a Phase Singularity. Physical Review Letters, 2021, 127, 273603.	7.8	9
620	Hybridized Frequency Combs in Multimode Cavity Electromechanical System. Physical Review Letters, 2022, 128, 153901.	7.8	5
621	Quantum Statistics of Phonon Radiations in Optomechianical Systems. Communications in Theoretical Physics, 0, , .	2.5	0
623	Exponentially Enhanced Singleâ€Photon Crossâ€Kerr Nonlinearity in Quantum Optomechanics. Annalen Der Physik, 2022, 534, 2100599.	2.4	1
624	Multi-outlet single photon quantum router between optics and microwave based on a hybrid optomechanical system. Laser Physics, 2022, 32, 065202.	1.2	0
625	Resonant Excitation-Induced Nonlinear Mode Coupling in a Microcantilever Resonator. Physical Review Applied, 2022, 17, .	3.8	0
626	Tunable Optically Induced Transparency and Fano Resonance In a Two Mode Coupled Micro-Cavity System with Double Optical Kerr Effect. Journal of Nonlinear Optical Physics and Materials, 0, , .	1.8	0
627	Electrically controlled optical nonlinear effects in the hybrid opto-electromechanical system with the cross-Kerr effect. Journal of Applied Physics, 2022, 131, .	2.5	6
628	Enhanced multicolor optomechanically induced transparency in electro-optical hybrid system. Laser Physics, 2022, 32, 075202.	1.2	0
629	Modulation of topological phase transitions and topological quantum states in one-dimensional superconducting transmission line cavities lattice. Wuli Xuebao/Acta Physica Sinica, 2022, 71, 194203.	0.5	3
630	On-Chip Microwave Frequency Combs in a Superconducting Nanoelectromechanical Device. Nano Letters, 2022, 22, 5459-5465.	9.1	4
631	Generation of Phononic High-Order Sidebands Via Intra- and Inter-Mode Couplings in Interconnected Electromechanical Resonators. SSRN Electronic Journal, 0, , .	0.4	0
632	Tunable slow and fast light in an atom-assisted hybrid system via external mechanical driving force. European Physical Journal Plus, 2022, 137, .	2.6	2
633	Terahertz cavity optomechanics using a topological nanophononic superlattice. Nanoscale, 2022, 14, 13046-13052.	5.6	3
634	Two-color transparency in a hybrid photothermal cavity system. European Physical Journal Plus, 2022, 137, .	2.6	0

#	Article	IF	CITATIONS
635	The fast and slow light in a hybrid spinning optomechanical system mediated by a two-level system. Results in Physics, 2022, 42, 105987.	4.1	3
636	Generation of phononic high-order sidebands via intra- and inter-mode couplings in interconnected electromechanical resonators. Results in Physics, 2022, 42, 105952.	4.1	0
637	Simulating and studying the topological properties of the photon-phonon coupled modes in a one-dimensional superconducting circuit lattice. Results in Physics, 2022, 42, 105999.	4.1	2
638	Simulation and detection of the topological properties of phonon-photon in frequency-tunable optomechanical lattice. Wuli Xuebao/Acta Physica Sinica, 2022, 71, 224202.	0.5	3
639	The Fast and Slow Light in a Hybrid Spinning Optomechanical System Mediated by a Two-Level System. SSRN Electronic Journal, 0, , .	0.4	0
640	Superconducting Cavity Electromechanics: The Realization of an Acoustic Frequency Comb at Microwave Frequencies. Physical Review Letters, 2022, 129, .	7.8	10
641	Exploiting non-linear effects in optomechanical sensors with continuous photon-counting. Quantum - the Open Journal for Quantum Science, 0, 6, 812.	0.0	1
642	Optomechanical squeezing with pulse modulation. Optics Letters, 2022, 47, 5545.	3.3	6
643	Nanomechanical Resonators: Toward Atomic Scale. ACS Nano, 2022, 16, 15545-15585.	14.6	55
644	Quantum Transduction Using Optoelectromechanical Systems. Resonance - Journal of Science Education, 2022, 27, 1703-1717.	0.3	0
645	Transparency in a Laguerre-Gaussian photo-rotational cavity. European Physical Journal Plus, 2022, 137,	2.6	2
646	100 years of Brillouin scattering: Historical and future perspectives. Applied Physics Reviews, 2022, 9, .	11.3	11
646 647	100 years of Brillouin scattering: Historical and future perspectives. Applied Physics Reviews, 2022, 9, . Thermal-noise-resistant optomechanical entanglement via general dark-mode control. Physical Review A, 2022, 106, .	11.3 2.5	11 8
646 647 648	 100 years of Brillouin scattering: Historical and future perspectives. Applied Physics Reviews, 2022, 9, . Thermal-noise-resistant optomechanical entanglement via general dark-mode control. Physical Review A, 2022, 106, . Electrically controlled optical nonlinear effects in the hybrid opto-electromechanical system: role of the Cubic anharmonic oscillator. European Physical Journal Plus, 2022, 137, . 	11.3 2.5 2.6	11 8 0
646 647 648 649	100 years of Brillouin scattering: Historical and future perspectives. Applied Physics Reviews, 2022, 9, . Thermal-noise-resistant optomechanical entanglement via general dark-mode control. Physical Review A, 2022, 106, . Electrically controlled optical nonlinear effects in the hybrid opto-electromechanical system: role of the Cubic anharmonic oscillator. European Physical Journal Plus, 2022, 137, . Macroscopic entanglement generation in optomechanical system embedded in non-Markovian environment. Laser Physics Letters, 2023, 20, 015205.	11.3 2.5 2.6 1.4	11 8 0 0
 646 647 648 649 650 	100 years of Brillouin scattering: Historical and future perspectives. Applied Physics Reviews, 2022, 9, . Thermal-noise-resistant optomechanical entanglement via general dark-mode control. Physical Review A, 2022, 106, . Electrically controlled optical nonlinear effects in the hybrid opto-electromechanical system: role of the Cubic anharmonic oscillator. European Physical Journal Plus, 2022, 137, . Macroscopic entanglement generation in optomechanical system embedded in non-Markovian environment. Laser Physics Letters, 2023, 20, 015205. Tuning the <i>Q</i> /i>-factor of nanomechanical string resonators by torsion support design. Applied Physics Letters, 2023, 122, .	11.3 2.5 2.6 1.4 3.3	11 8 0 0 2
 646 647 648 649 650 651 	100 years of Brillouin scattering: Historical and future perspectives. Applied Physics Reviews, 2022, 9, . Thermal-noise-resistant optomechanical entanglement via general dark-mode control. Physical Review A, 2022, 106, . Electrically controlled optical nonlinear effects in the hybrid opto-electromechanical system: role of the Cubic anharmonic oscillator. European Physical Journal Plus, 2022, 137, . Macroscopic entanglement generation in optomechanical system embedded in non-Markovian environment. Laser Physics Letters, 2023, 20, 015205. Tuning the <i>Q</i> factor of nanomechanical string resonators by torsion support design. Applied Physics Letters, 2023, 122, . Synchronization of a superconducting qubit to an optical field mediated by a mechanical resonator. Physical Review A, 2023, 107, .	111.3 2.5 2.6 1.4 3.3 2.5	 11 8 0 0 2 0

#	Article	IF	CITATIONS
653	Perspectives on high-frequency nanomechanics, nanoacoustics, and nanophononics. Applied Physics Letters, 2023, 122, .	3.3	5
654	Tunable Transparency and Group Delay in Cavity Optomechanical Systems with Degenerate Fermi Gas. Photonics, 2023, 10, 279.	2.0	5
655	Auxiliary-Cavity-Assisted Slow and Fast Light in a Photonic Molecule Spinning Optomechanical System. Micromachines, 2023, 14, 655.	2.9	0
656	Nonreciprocal slow or fast light in anti- <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi mathvariant="script">PT -symmetric optomechanics. Physical Review A, 2023, 107,</mml:mi </mml:math 	2.5	9
657	Optomechanically Induced Transparency in Optomechanical System with a Cubic Anharmonic Oscillator. Photonics, 2023, 10, 407.	2.0	3
658	Harnessing Brillouin interaction in rare-earth aluminosilicate glass microwires for optoelectromechanic quantum transduction. Physics Letters, Section A: General, Atomic and Solid State Physics, 2023, 475, 128829.	2.1	0
659	Perfect optomechanically induced transparency in two-cavity optomechanics. Frontiers of Physics, 2023, 18, .	5.0	2
660	Collapse-revival and stability of magnon-superconducting qubit entanglement in a tripartite hybrid cavity system. Optik, 2023, 283, 170870.	2.9	2
661	Photon blockade in non-Hermitian optomechanical systems with nonreciprocal couplings. Physical Review A, 2023, 107, .	2.5	2
662	Auxiliary-Cavity-Induced Ultrasensitive and Ultrahigh-Resolution Biomolecule Mass Sensing in a Hybrid Spinning Resonator System. Journal of Russian Laser Research, 0, , .	0.6	0
663	Mode Coupling in Electromechanical Systems: Recent Advances and Applications. Advanced Electronic Materials, 2023, 9, .	5.1	3
664	Spectral Analysis of Quantum Field Fluctuations in a Strongly Coupled Optomechanical System. Physical Review Letters, 2023, 130, .	7.8	0
665	Nonlinear Sideband Cooling to a Cat State of Motion. Physical Review Letters, 2023, 130, .	7.8	3
666	Quantum Rabi interferometry of motion and radiation. Quantum - the Open Journal for Quantum Science, 0, 7, 1024.	0.0	0
667	Slow light effect caused by optomechanically induced transparency in multimode optomechanical system. Wuli Xuebao/Acta Physica Sinica, 2023, .	0.5	0
668	A quantum electromechanical interface for long-lived phonons. Nature Physics, 0, , .	16.7	1
669	Normal-mode splitting in an optomechanical system enhanced by an optical parametric amplifier and coherent feedback. Journal of Optics (United Kingdom), 2023, 25, 075201.	2.2	0
670	Transduction. , 2023, , 107-143.		0

#	Article	IF	CITATIONS
671	Quantum criticality induced strong coupling between resonant modes. Journal of Physics B: Atomic, Molecular and Optical Physics, 2023, 56, 125501.	1.5	0
672	Controllable generation of mechanical quadrature squeezing via dark-mode engineering in cavity optomechanics. Physical Review A, 2023, 108, .	2.5	3
673	Multiple transparency windows in an atom-assisted Laguerre–Gaussian rovibrational cavity. Physica Scripta, 2023, 98, 095105.	2.5	0
674	Iterative Adaptive Spectroscopy of Short Signals. Physical Review Letters, 2023, 131, .	7.8	0
675	Mechanical cooling in the bistable regime of a dissipative optomechanical cavity with a Kerr medium. Physical Review A, 2023, 108, .	2.5	0
676	Instabilities near Ultrastrong Coupling in a Microwave Optomechanical Cavity. Physical Review Letters, 2023, 131, .	7.8	3
677	ä,‰è"å & å‰åŠ›ç³»ç»Ÿçš"é€å°"谱和四波æႌ频现象ç"ç©¶. Zhongguo Jiguang/Chinese Journal of Lase	ers 1.2 023,	50, 1412003
678	Cryogenic ion trap system for high-fidelity near-field microwave-driven quantum logic. Quantum Science and Technology, 2024, 9, 015007.	5.8	1
679	Microcavity phonoritons – a coherent optical-to-microwave interface. Nature Communications, 2023, 14, .	12.8	4
680	Strengthening the atom-field coupling through the deep-strong regime via pseudo-Hermitian Hamiltonians. SciPost Physics, 2023, 15, .	4.9	0
681	Multitone Microwave Frequency Locking to a Noisy Cavity via Real-Time Feedback. Physical Review Applied, 2023, 20, .	3.8	0
682	Coupling high-overtone bulk acoustic wave resonators via superconducting qubits. Applied Physics Letters, 2023, 123, .	3.3	1
683	Topological phase transitions and topological quantum states modulated by the counter-rotating wave terms in a one-dimensional superconducting microwave cavity lattice. Wuli Xuebao/Acta Physica Sinica, 2023, .	0.5	0
	Topological phase transitions and topological quantum states modulated by the counter-rotating		

684	wave terms in a one-dimensional superconducting microwave cavity lattice. Wuli Xuebao/Acta Physica Sinica, 2023, .	0.5	0
685	Bogoliubov polaritons mediated strong indirect interaction between distant whispering-gallery-mode resonators. Optics Express, 2023, 31, 38024.	3.4	0
686	A novel method to realize quantum spin-phonon Hall insulator in a one-dimensional superconducting resonator lattice. Quantum Information Processing, 2023, 22, .	2.2	0
687	Optically heralded microwave photon addition. Nature Physics, 2023, 19, 1423-1428.	16.7	8
688	Continuous-Variable Pairwise Entanglement Based on Optoelectromechanical System. Quantum Engineering, 2023, 2023, 1-11.	2.5	0

#	Article	IF	CITATIONS
689	Three-pathway electromagnetically induced transparency and absorption based on coupled superconducting resonators. Physical Review A, 2023, 108, .	2.5	1
690	Photon-phonon quantum cloning in optomechanical system. Physica Scripta, 2024, 99, 015102.	2.5	0
691	Operator approach in nonlinear stochastic open quantum physics. Physics Reports, 2024, 1046, 1-94.	25.6	0
692	耦å•è"系统ä,çš"å‰åŠ>è⁻±å⁻¼æ"¾å§ä,Žæ¢å‰. Laser and Optoelectronics Progress, 2023, 60, 1927(00 1. 6	1
693	Selective enhancement of difference sideband generation in a quadratically coupled optomechanical system with mechanical driving. Physica Scripta, 0, , .	2.5	0
694	Quasibound states in the continuum in photonic crystal based optomechanical microcavities. Physical Review B, 2024, 109, .	3.2	0
695	Stationary entanglement in hybrid optomechanical systems. AIP Conference Proceedings, 2024, , .	0.4	0
696	Optomechanically induced transparency and photon blockade in a graphene coupled nonlinear photonic crystal nanobeam cavity based optomechanical system. Physica E: Low-Dimensional Systems and Nanostructures, 2024, 160, 115935.	2.7	0
697	Optomechanical second-order sidebands and group delays in a spinning resonator with a parametric amplifier and non-Markovian effects. Physical Review A, 2024, 109, .	2.5	0
698	Nonâ€Hermitian Broadside Coupled Split Ring Resonators with Directional Sensitivity. Advanced Optical Materials, 0, , .	7.3	0
699	Cavity magnomechanics: from classical to quantum. New Journal of Physics, 2024, 26, 031201.	2.9	0
700	Progress Toward Detection of Individual TLS in Nanomechanical Resonators. Journal of Low Temperature Physics, 0, , .	1.4	0