Eutherian mammals use diverse strategies to initiate Xdevelopment

Nature 472, 370-374 DOI: 10.1038/nature09872

Citation Report

#	Article	IF	CITATIONS
1	Live-Cell Chromosome Dynamics and Outcome of X Chromosome Pairing Events during ES Cell Differentiation. Cell, 2011, 145, 447-458.	13.5	137
2	Role of ATRX in chromatin structure and function: implications for chromosome instability and human disease. Reproduction, 2011, 142, 221-234.	1.1	52
3	Unexpected X Chromosome Skewing during Culture and Reprogramming of Human Somatic Cells Can Be Alleviated by Exogenous Telomerase. Cell Stem Cell, 2011, 9, 156-165.	5.2	88
4	Gracefully ageing at 50, X-chromosome inactivation becomes a paradigm for RNA and chromatin control. Nature Reviews Molecular Cell Biology, 2011, 12, 815-826.	16.1	187
5	The Coupling of X-Chromosome Inactivation to Pluripotency. Annual Review of Cell and Developmental Biology, 2011, 27, 611-629.	4.0	35
6	Functional Themes from Psychiatric Genome-Wide Screens. Frontiers in Genetics, 2011, 2, 89.	1.1	1
7	RNA-Seq of Human Neurons Derived from iPS Cells Reveals Candidate Long Non-Coding RNAs Involved in Neurogenesis and Neuropsychiatric Disorders. PLoS ONE, 2011, 6, e23356.	1.1	227
8	Regulation of X-chromosome inactivation by the X-inactivation centre. Nature Reviews Genetics, 2011, 12, 429-442.	7.7	312
9	Chromosome silencing mechanisms in X-chromosome inactivation: unknown unknowns. Development (Cambridge), 2011, 138, 5057-5065.	1.2	60
10	Fifty years of X-inactivation research. Development (Cambridge), 2011, 138, 5049-5055.	1.2	73
11	Genes that escape from X inactivation. Human Genetics, 2011, 130, 237-245.	1.8	301
12	XCI in preimplantation mouse and human embryos: first there is remodelling…. Human Genetics, 2011, 130, 203-215.	1.8	29
13	The single active X in human cells: evolutionary tinkering personified. Human Genetics, 2011, 130, 281-293.	1.8	16
14	X-inactivation and X-reactivation: epigenetic hallmarks of mammalian reproduction and pluripotent stem cells. Human Genetics, 2011, 130, 265-280.	1.8	58
15	Evolutionary diversity and developmental regulation of X-chromosome inactivation. Human Genetics, 2011, 130, 307-327.	1.8	87
16	X chromosome inactivation in human and mouse pluripotent stem cells. Human Genetics, 2011, 130, 217-222.	1.8	18
17	X chromosome inactivation: A silence that needs to be broken. Genesis, 2011, 49, 821-834.	0.8	19
18	Dynamics of DNA methylation levels in maternal and paternal rabbit genomes after fertilization. Epigenetics, 2011, 6, 987-993.	1.3	38

#	Article	IF	CITATIONS
20	Conformation Regulation of the X Chromosome Inactivation Center: A Model. PLoS Computational Biology, 2011, 7, e1002229.	1.5	29
21	The Demoiselle of X-Inactivation: 50 Years Old and As Trendy and Mesmerising As Ever. PLoS Genetics, 2011, 7, e1002212.	1.5	69
22	Genomic Imprinting and Epigenetic Control of Development. Cold Spring Harbor Perspectives in Biology, 2012, 4, a008136-a008136.	2.3	42
23	Rabbit as a reproductive model for human health. Reproduction, 2012, 144, 1-10.	1.1	164
24	Patterns of placental development evaluated by X chromosome inactivation profiling provide a basis to evaluate the origin of epigenetic variation. Human Reproduction, 2012, 27, 1745-1753.	0.4	39
25	Methylation of AR locus does not always reflect X chromosome inactivation state. Blood, 2012, 119, e100-e109.	0.6	44
26	Update on the state of play of Animal Health and Welfare and Environmental Impact of Animals derived from SCNT Cloning and their Offspring, and Food Safety of Products Obtained from those Animals. EFSA Journal, 2012, 10, 2794.	0.9	11
27	Chromatin and epigenetic modifications during early mammalian development. Animal Reproduction Science, 2012, 134, 45-55.	0.5	42
28	The mouse DXZ4 homolog retains Ctcf binding and proximity to Pls3 despite substantial organizational differences compared to the primate macrosatellite. Genome Biology, 2012, 13, R70.	13.9	39
29	X-chromosome inactivation in monkey embryos and pluripotent stem cells. Developmental Biology, 2012, 371, 146-155.	0.9	23
30	Profiling PARP inhibitors. Nature Biotechnology, 2012, 30, 249-250.	9.4	6
31	Epigenetic Alterations in Human Pluripotent Stem Cells: A Tale of Two Cultures. Cell Stem Cell, 2012, 11, 9-15.	5.2	31
32	Dosage Compensation of the Sex Chromosomes. Annual Review of Genetics, 2012, 46, 537-560.	3.2	184
33	Accessing na $ ilde{A}$ ve human pluripotency. Current Opinion in Genetics and Development, 2012, 22, 272-282.	1.5	92
34	Human postmeiotic sex chromatin and its impact on sex chromosome evolution. Genome Research, 2012, 22, 827-836.	2.4	50
35	Mammalian X chromosome inactivation evolved as a dosage-compensation mechanism for dosage-sensitive genes on the X chromosome. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 5346-5351.	3.3	164
36	Low Levels of X-Inactive Specific Transcript in Somatic Cell Nuclear Transfer Embryos Derived from Female Bovine Freemartin Donor Cells. Sexual Development, 2012, 6, 151-159.	1.1	3
37	The origin and evolution of vertebrate sex chromosomes and dosage compensation. Heredity, 2012, 108, 50-58.	1.2	80

	Сітатіої	n Report	
#	Article	IF	CITATIONS
38	Tracing the genesis of human embryonic stem cells. Nature Biotechnology, 2012, 30, 247-249.	9.4	0
39	The roles of FGF and MAP kinase signaling in the segregation of the epiblast and hypoblast cell lineages in bovine and human embryos. Development (Cambridge), 2012, 139, 871-882.	1.2	230
40	Recent advances in X-chromosome inactivation research. Current Opinion in Cell Biology, 2012, 24, 825-832.	2.6	53
41	Cell Lineage Specific Distribution of H3K27 Trimethylation Accumulation in an In Vitro Model for Human Implantation. PLoS ONE, 2012, 7, e32701.	1.1	25
42	X-Linked Gene Transcription Patterns in Female and Male In Vivo, In Vitro and Cloned Porcine Individual Blastocysts. PLoS ONE, 2012, 7, e51398.	1.1	26
43	X-Chromosome Inactivation in Rett Syndrome Human Induced Pluripotent Stem Cells. Frontiers in Psychiatry, 2012, 3, 24.	1.3	41
45	Concise Review: Pluripotency and the Transcriptional Inactivation of the Female Mammalian X Chromosome. Stem Cells, 2012, 30, 48-54.	1.4	50
46	X chromosome inactivation in the cycle of life. Development (Cambridge), 2012, 139, 2085-2089.	1.2	49
47	Solving the "X―in Embryos and Stem Cells. Stem Cells and Development, 2012, 21, 1215-1224.	1.1	22
48	Derivation of new human embryonic stem cell lines reveals rapid epigenetic progression in vitro that can be prevented by chemical modification of chromatin. Human Molecular Genetics, 2012, 21, 751-764.	1.4	46
49	Derivation Conditions Impact X-Inactivation Status in Female Human Induced Pluripotent Stem Cells. Cell Stem Cell, 2012, 11, 91-99.	5.2	99
50	On the emerging role of rabbit as human disease model and the instrumental role of novel transgenic tools. Transgenic Research, 2012, 21, 699-713.	1.3	49
51	Origin and evolution of X chromosome inactivation. Current Opinion in Cell Biology, 2012, 24, 397-404.	2.6	51
52	Tissue-specific differences in the proportion of mosaic large NF1 deletions are suggestive of a selective growth advantage of hematopoietic del(+/â^') stem cells. Human Mutation, 2012, 33, 541-550.	1.1	23
53	The sex-specific region of sex chromosomes in animals and plants. Chromosome Research, 2012, 20, 57-69.	1.0	38
54	A cross-species comparison of escape from X inactivation in Eutheria: implications for evolution of X chromosome inactivation. Chromosoma, 2012, 121, 71-78.	1.0	30
55	XACT, a long non-coding transcript coating the active X chromosome in human pluripotent cells. Epigenetics and Chromatin, 2013, 6, .	1.8	3
56	Placental contribution to the origins of sexual dimorphism in health and diseases: sex chromosomes and epigenetics. Biology of Sex Differences, 2013, 4, 5.	1.8	259

#	Article	IF	CITATIONS
57	Heterozygosity for the mutated X-chromosome-linked L1 cell adhesion molecule gene leads to increased numbers of neurons and enhanced metabolism in the forebrain of female carrier mice. Brain Structure and Function, 2013, 218, 1375-1390.	1.2	19
58	The transience of transient overexpression. Nature Methods, 2013, 10, 715-721.	9.0	203
60	XIST-induced silencing of flanking genes is achieved by additive action of repeat a monomers in human somatic cells. Epigenetics and Chromatin, 2013, 6, 23.	1.8	37
61	Role and control of X chromosome dosage in mammalian development. Current Opinion in Genetics and Development, 2013, 23, 109-115.	1.5	72
62	Generating different epigenotypes. Reproductive BioMedicine Online, 2013, 27, 624-628.	1.1	7
63	Using mouse models to investigate sex-linked genetic effects on brain, behaviour and vulnerability to neuropsychiatric disorders. Brain Research Bulletin, 2013, 92, 12-20.	1.4	15
64	Derivation of novel human ground state naive pluripotent stem cells. Nature, 2013, 504, 282-286.	13.7	924
65	XACT, a long noncoding transcript coating the active X chromosome in human pluripotent cells. Nature Genetics, 2013, 45, 239-241.	9.4	125
66	Reactivation of the inactive X chromosome in development and reprogramming. Cellular and Molecular Life Sciences, 2013, 70, 2443-2461.	2.4	62
67	Epigenetic regulation in pluripotent stem cells: a key to breaking the epigenetic barrier. Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, 368, 20120292.	1.8	107
68	X-Inactivation, Imprinting, and Long Noncoding RNAs in Health and Disease. Cell, 2013, 152, 1308-1323.	13.5	631
69	Epigenetics of Reprogramming to Induced Pluripotency. Cell, 2013, 152, 1324-1343.	13.5	277
70	Placental Development, Evolution, and Epigenetics of Primate Pregnancies. , 2013, , 55-81.		2
71	Different flavors of X-chromosome inactivation in mammals. Current Opinion in Cell Biology, 2013, 25, 314-321.	2.6	50
72	Parental Epigenetic Asymmetry in Mammals. Current Topics in Developmental Biology, 2013, 104, 293-328.	1.0	27
73	Immunofluorescence protects RNA signals in simultaneous RNA–DNA FISH. Experimental Cell Research, 2013, 319, 46-55.	1.2	15
74	Human X-chromosome inactivation pattern distributions fit a model of genetically influenced choice better than models of completely random choice. European Journal of Human Genetics, 2013, 21, 1396-1402.	1.4	22
75	X Chromosome Inactivation and Epigenetic Responses to Cellular Reprogramming. Annual Review of Genomics and Human Genetics, 2013, 14, 85-110.	2.5	81

#	Article	IF	Citations
76	Livestock Somatic Cell Nuclear Transfer livestock somatic cell nuclear transfer. , 2013, , 1067-1095.		1
77	Independent Evolution of Transcriptional Inactivation on Sex Chromosomes in Birds and Mammals. PLoS Genetics, 2013, 9, e1003635.	1.5	26
78	Long non-coding RNAs and human X-chromosome regulation. RNA Biology, 2013, 10, 1262-1265.	1.5	12
79	Discovery of pluripotency-associated microRNAs in rabbit preimplantation embryos and embryonic stem-like cells. Reproduction, 2013, 145, 421-437.	1.1	18
80	Species-specific differences in X chromosome inactivation in mammals. Reproduction, 2013, 146, R131-R139.	1.1	28
82	BMP4 regulation of human trophoblast development. International Journal of Developmental Biology, 2014, 58, 239-246.	0.3	31
83	Derivation of naÃ ⁻ ve human embryonic stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 4484-4489.	3.3	415
84	Paternal X inactivation does not correlate with X chromosome evolutionary strata in marsupials. BMC Evolutionary Biology, 2014, 14, 267.	3.2	8
85	Differentially methylated CpG island within human XIST mediates alternative P2 transcription and YY1 binding. BMC Genetics, 2014, 15, 89.	2.7	36
86	Coupling of X-Chromosome reactivation with the pluripotent stem cell state. RNA Biology, 2014, 11, 798-807.	1.5	32
87	A prominent and conserved role for YY1 in Xist transcriptional activation. Nature Communications, 2014, 5, 4878.	5.8	100
89	High-resolution chromosomal microarray analysis of early-stage human embryonic stem cells reveals an association between X chromosome instability and skewed X inactivation. Cell and Bioscience, 2014, 4, 74.	2.1	17
90	Current state of the opportunities for derivation of germ-like cells from pluripotent stem cells: are you a man, or a mouse?. Biotechnology and Biotechnological Equipment, 2014, 28, 184-191.	0.5	5
91	Long Noncoding RNAs in Imprinting and X Chromosome Inactivation. Biomolecules, 2014, 4, 76-100.	1.8	53
92	Totipotency and lineage segregation in the human embryo. Molecular Human Reproduction, 2014, 20, 599-618.	1.3	55
93	The epigenome in pluripotency and differentiation. Epigenomics, 2014, 6, 121-137.	1.0	20
94	X chromosome regulation: diverse patterns in development, tissues and disease. Nature Reviews Genetics, 2014, 15, 367-378.	7.7	261
95	<i>Xist</i> Deficiency and Disorders of X-Inactivation in Rabbit Embryonic Stem Cells Can Be Rescued by Transcription-Factor-Mediated Conversion. Stem Cells and Development, 2014, 23, 2283-2296.	1.1	7

#	Article	IF	CITATIONS
96	Signaling Roadmap Modulating Naive and Primed Pluripotency. Stem Cells and Development, 2014, 23, 193-208.	1.1	48
97	Genomic Imprinting in Farm Animals. Annual Review of Animal Biosciences, 2014, 2, 23-40.	3.6	40
98	The evolution of X chromosome inactivation in mammals: the demise of Ohno's hypothesis?. Cellular and Molecular Life Sciences, 2014, 71, 1383-1394.	2.4	46
99	Chromosome-wide profiling of X-chromosome inactivation and epigenetic states in fetal brain and placenta of the opossum, <i>Monodelphis domestica</i> . Genome Research, 2014, 24, 70-83.	2.4	48
100	Noncoding RNAs and Epigenetic Mechanisms During X-Chromosome Inactivation. Annual Review of Cell and Developmental Biology, 2014, 30, 561-580.	4.0	195
101	Xâ€chromosome inactivation in development and cancer. FEBS Letters, 2014, 588, 2514-2522.	1.3	118
102	Resetting Transcription Factor Control Circuitry toward Ground-State Pluripotency in Human. Cell, 2014, 158, 1254-1269.	13.5	784
103	Systematic Identification of Culture Conditions for Induction and Maintenance of Naive Human Pluripotency. Cell Stem Cell, 2014, 15, 471-487.	5.2	702
104	Primate-specific endogenous retrovirus-driven transcription defines naive-like stem cells. Nature, 2014, 516, 405-409.	13.7	372
105	Changes in sex ratio from fertilization to birth in assisted-reproductive-treatment cycles. Reproductive Biology and Endocrinology, 2014, 12, 56.	1.4	46
105 106		1.4 5.6	46 7
	Reproductive Biology and Endocrinology, 2014, 12, 56. Aberrant Patterns of X Chromosome Inactivation in a New Line of Human Embryonic Stem Cells		
106	Reproductive Biology and Endocrinology, 2014, 12, 56. Aberrant Patterns of X Chromosome Inactivation in a New Line of Human Embryonic Stem Cells Established in Physiological Oxygen Concentrations. Stem Cell Reviews and Reports, 2014, 10, 472-479. Germ cell specification and pluripotency in mammals: a perspective from early embryogenesis.	5.6	7
106 107	 Reproductive Biology and Endocrinology, 2014, 12, 56. Aberrant Patterns of X Chromosome Inactivation in a New Line of Human Embryonic Stem Cells Established in Physiological Oxygen Concentrations. Stem Cell Reviews and Reports, 2014, 10, 472-479. Germ cell specification and pluripotency in mammals: a perspective from early embryogenesis. Reproductive Medicine and Biology, 2014, 13, 203-215. X Chromosome of Female Cells Shows Dynamic Changes in Status during Human Somatic Cell 	5.6 1.0	7 62
106 107 108	 Reproductive Biology and Endocrinology, 2014, 12, 56. Aberrant Patterns of X Chromosome Inactivation in a New Line of Human Embryonic Stem Cells Established in Physiological Oxygen Concentrations. Stem Cell Reviews and Reports, 2014, 10, 472-479. Germ cell specification and pluripotency in mammals: a perspective from early embryogenesis. Reproductive Medicine and Biology, 2014, 13, 203-215. X Chromosome of Female Cells Shows Dynamic Changes in Status during Human Somatic Cell Reprogramming. Stem Cell Reports, 2014, 2, 896-909. X-chromosome inactivation in female newborns conceived by assisted reproductive technologies. 	5.6 1.0 2.3	7 62 33
106 107 108 109	Reproductive Biology and Endocrinology, 2014, 12, 56. Aberrant Patterns of X Chromosome Inactivation in a New Line of Human Embryonic Stem Cells Established in Physiological Oxygen Concentrations. Stem Cell Reviews and Reports, 2014, 10, 472-479. Germ cell specification and pluripotency in mammals: a perspective from early embryogenesis. Reproductive Medicine and Biology, 2014, 13, 203-215. X Chromosome of Female Cells Shows Dynamic Changes in Status during Human Somatic Cell Reprogramming. Stem Cell Reports, 2014, 2, 896-909. X-chromosome inactivation in female newborns conceived by assisted reproductive technologies. Fertility and Sterility, 2014, 101, 1718-1723. Combined DNA-RNA Fluorescent In situ Hybridization (FISH) to Study X Chromosome Inactivation in Differentiated Female Mouse Embryonic Stem Cells. Journal of Visualized	5.6 1.0 2.3 0.5	7 62 33 6
106 107 108 109 110	Reproductive Biology and Endocrinology, 2014, 12, 56. Aberrant Patterns of X Chromosome Inactivation in a New Line of Human Embryonic Stem Cells Established in Physiological Oxygen Concentrations. Stem Cell Reviews and Reports, 2014, 10, 472-479. Germ cell specification and pluripotency in mammals: a perspective from early embryogenesis. Reproductive Medicine and Biology, 2014, 13, 203-215. X Chromosome of Female Cells Shows Dynamic Changes in Status during Human Somatic Cell Reprogramming. Stem Cell Reports, 2014, 2, 896-909. X-chromosome inactivation in female newborns conceived by assisted reproductive technologies. Fertility and Sterility, 2014, 101, 1718-1723. Combined DNA-RNA Fluorescent In situ Hybridization (FISH) to Study X Chromosome Inactivation in Differentiated Female Mouse Embryonic Stem Cells. Journal of Visualized Experiments, 2014, . The inactive X chromosome is epigenetically unstable and transcriptionally labile in breast cancer.	5.6 1.0 2.3 0.5 0.2	7 62 33 6 9

#	ARTICLE Generation of hypoxanthine phosphoribosyltransferase gene knockout rabbits by homologous	IF	CITATIONS
114	recombination and gene trapping through somatic cell nuclear transfer. Scientific Reports, 2015, 5, 16023.	1.6	10
115	Research with parthenogenetic stem cells will help decide whether a safer clinical use is possible. Journal of Tissue Engineering and Regenerative Medicine, 2015, 9, 325-331.	1.3	2
116	Recent insights into the regulation of X-chromosome inactivation. Advances in Genomics and Genetics, 2015, , 227.	0.8	8
117	Dosage Compensation in Mammals. Cold Spring Harbor Perspectives in Biology, 2015, 7, a019406.	2.3	96
118	DNA Demethylation Dynamics in the Human Prenatal Germline. Cell, 2015, 161, 1425-1436.	13.5	297
119	Sexually dimorphic gene expression emerges with embryonic genome activation and is dynamic throughout development. BMC Genomics, 2015, 16, 295.	1.2	90
120	X-chromosome inactivation and escape. Journal of Genetics, 2015, 94, 591-599.	0.4	102
121	Ex Uno Plures: Molecular Designs for Embryonic Pluripotency. Physiological Reviews, 2015, 95, 245-295.	13.1	30
122	Epigenetics, embryo quality and developmental potential. Reproduction, Fertility and Development, 2015, 27, 53.	0.1	28
123	Erosion of X Chromosome Inactivation in Human Pluripotent Cells Initiates with XACT Coating and Depends on a Specific Heterochromatin Landscape. Cell Stem Cell, 2015, 16, 533-546.	5.2	113
124	Reinforcement of STAT3 activity reprogrammes human embryonic stem cells to naive-like pluripotency. Nature Communications, 2015, 6, 7095.	5.8	137
125	Germline and somatic imprinting in the nonhuman primate highlights species differences in oocyte methylation. Genome Research, 2015, 25, 611-623.	2.4	25
126	Hallmarks of pluripotency. Nature, 2015, 525, 469-478.	13.7	338
127	Dosage compensation of X-chromosome inactivation center-linked genes in porcine preimplantation embryos: Non-chromosome-wide initiation of X-chromosome inactivation in blastocysts. Mechanisms of Development, 2015, 138, 246-255.	1.7	14
128	The pluripotent state in mouse and human. Development (Cambridge), 2015, 142, 3090-3099.	1.2	136
129	X Inactivation Lessons from Differentiating Mouse Embryonic Stem Cells. Stem Cell Reviews and Reports, 2015, 11, 699-705.	5.6	12
130	Induced Pluripotency and Epigenetic Reprogramming. Cold Spring Harbor Perspectives in Biology, 2015, 7, a019448.	2.3	84
131	Divergent actions of long noncoding RNAs on X-chromosome remodelling in mammals and Drosophila achieve the same end result: dosage compensation. Journal of Genetics, 2015, 94, 575-584.	0.4	18

	CITATION REI	PORT	
#	Article	IF	CITATIONS
132	Pluripotency in the light of the developmental hourglass. Biological Reviews, 2015, 90, 428-443.	4.7	6
133	Sexual Dimorphism and DOHaD through the Lens of Epigenetics. , 2016, , 389-424.		1
134	A review of Rett syndrome (RTT) with induced pluripotent stem cells. Stem Cell Investigation, 2016, 3, 52-52.	1.3	15
135	Pluripotent Stem Cells: Current Understanding and Future Directions. Stem Cells International, 2016, 2016, 1-20.	1.2	111
136	Describing the Stem Cell Potency: The Various Methods of Functional Assessment and In silico Diagnostics. Frontiers in Cell and Developmental Biology, 2016, 4, 134.	1.8	58
137	States of Pluripotency: Na $ ilde{A}$ ve and Primed Pluripotent Stem Cells. , 2016, , .		6
138	Regulation of X-linked gene expression during early mouse development by Rlim. ELife, 2016, 5, .	2.8	46
139	Spatiotemporal Reconstruction of the Human Blastocyst by Single-Cell Gene-Expression Analysis Informs Induction of Naive Pluripotency. Developmental Cell, 2016, 38, 100-115.	3.1	35
140	The "lnc―between 3D chromatin structure and X chromosome inactivation. Seminars in Cell and Developmental Biology, 2016, 56, 35-47.	2.3	21
141	Single-Cell RNA-Seq Reveals Lineage and X Chromosome Dynamics in Human Preimplantation Embryos. Cell, 2016, 165, 1012-1026.	13.5	830
142	Evolution of Epigenetic Regulation in Vertebrate Genomes. Trends in Genetics, 2016, 32, 269-283.	2.9	86
143	Transcriptome Encyclopedia of Early Human Development. Cell, 2016, 165, 777-779.	13.5	11
144	Developmental regulation of X-chromosome inactivation. Seminars in Cell and Developmental Biology, 2016, 56, 88-99.	2.3	46
145	Establishment of X chromosome inactivation and epigenomic features of the inactive X depend on cellular contexts. BioEssays, 2016, 38, 869-880.	1.2	31
146	Assessment of †one-step' versus †sequential' embryo culture conditions through embryonic genome methylation and hydroxymethylation changes. Human Reproduction, 2016, 31, 2471-2483.	0.4	23
147	Species-Specific Variation Among Mammals. Current Topics in Developmental Biology, 2016, 120, 401-420.	1.0	6
148	Singleâ€cell <scp>RNA</scp> sequencing: revealing human preâ€implantation development, pluripotency and germline development. Journal of Internal Medicine, 2016, 280, 252-264.	2.7	11
149	Function and evolution of the long noncoding <scp>RNA</scp> circuitry orchestrating Xâ€chromosome inactivation in mammals. Wiley Interdisciplinary Reviews RNA, 2016, 7, 702-722.	3.2	41

		CITATION REPORT		
#	Article	IF		CITATIONS
150	Molecular Criteria for Defining the Naive Human Pluripotent State. Cell Stem Cell, 2016, 19, 502	-515. 5.	.2	415
151	Ordered chromatin changes and human X chromosome reactivation by cell fusion-mediated pluripotent reprogramming. Nature Communications, 2016, 7, 12354.	5.	.8	19
152	Sexually Dimorphic Gene Expression in Bovine Conceptuses at the Initiation of Implantation. Biol of Reproduction, 2016, 95, 92-92.	ogy 1.	.2	20
153	How Many Non-coding RNAs Does It Take to Compensate Male/Female Genetic Imbalance?. Adva Experimental Medicine and Biology, 2016, 886, 33-49.	inces in O	.8	2
154	Isolation and cultivation of naive-like human pluripotent stem cells based on HERVH expression. Nature Protocols, 2016, 11, 327-346.	5.	.5	32
155	The X factor: X chromosome dosage compensation in the evolutionarily divergent monotremes a marsupials. Seminars in Cell and Developmental Biology, 2016, 56, 117-121.	ind 2.	.3	20
156	Is the resulting phenotype of an embryo with balanced X-autosome translocation, obtained by m of preimplantation genetic diagnosis, linked to the X inactivation pattern?. Fertility and Sterility, 105, 1035-1046.		.5	7
157	Have humans lost control: The elusive X-controlling element. Seminars in Cell and Developmenta Biology, 2016, 56, 71-77.	2.	.3	13
158	An overview of X inactivation based on species differences. Seminars in Cell and Developmental Biology, 2016, 56, 111-116.	2.	.3	13
159	Impaired imprinted X chromosome inactivation is responsible for the skewed sex ratio following vitro fertilization. Proceedings of the National Academy of Sciences of the United States of Amer 2016, 113, 3197-3202.		.3	53
160	Evolution of vertebrate sex chromosomes and dosage compensation. Nature Reviews Genetics, 2 33-46.	2016, 17, 7.	7	159
161	Dynamic interplay and function of multiple noncoding genes governing X chromosome inactivat Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2016, 1859, 112-120.	on. o	.9	29
162	Primate embryogenesis predicts the hallmarks of human naÃ ⁻ ve pluripotency. Development (Car 2017, 144, 175-186.	nbridge), 1.	2	106
163	Random X-chromosome inactivation dynamics in vivo by single-cell RNA sequencing. BMC Genor 2017, 18, 90.	nics, 1.	2	12
164	Pluripotency of embryo-derived stem cells from rodents, lagomorphs, and primates: Slippery slop terrace and cliff. Stem Cell Research, 2017, 19, 104-112.	e, 0	.3	20
165	De novo DNA methylation during monkey pre-implantation embryogenesis. Cell Research, 2017, 526-539.	27, ₅ .	.7	61
166	The X chromosome in space. Nature Reviews Genetics, 2017, 18, 377-389.	7.	.7	112
167	X chromosome inactivation in human pluripotent stem cells as a model for human development: to the drawing board?. Human Reproduction Update, 2017, 23, 520-532.	back 5.	.2	34

ARTICLE IF CITATIONS # Haploidy in Humans: An Evolutionary and Developmental Perspective. Developmental Cell, 2017, 41, 3.1 23 168 581-589. Revealing allele-specific gene expression by single-cell transcriptomics. International Journal of Biochemistry and Cell Biology, 2017, 90, 155-160. 1.2 170 Epigenetic Regulation of X-Chromosome Inactivation., 2017, , 113-158. 2 Comprehensive Cell Surface Protein Profiling Identifies Specific Markers of Human Naive and Primed 171 150 Pluripotent States. Cell Stem Cell, 2017, 20, 874-890.e7. Insights into the Establishment of Chromatin States in Pluripotent Cells from Studies of X 172 2.0 6 Inactivation. Journal of Molecular Biology, 2017, 429, 1521-1531. New Insights into Early Human Development: Lessons for Stem Cell Derivation and Differentiation. Cell Stem Cell, 2017, 20, 18-28. 174 5.2 Human Embryonic Stem Cells Do Not Change Their X Inactivation Status during Differentiation. Cell 175 2.9 100 Reports, 2017, 18, 54-67. Human Naive Pluripotent Stem Cells Model X Chromosome Dampening and X Inactivation. Cell Stem 5.2 188 Cell, 2017, 20, 87-101. XACT Noncoding RNA Competes with XIST in the Control of X Chromosome Activity during Human 177 5.2 181 Early Development. Cell Stem Cell, 2017, 20, 102-111. Regulation of X-chromosome dosage compensation in human: mechanisms and model systems. 178 1.8 Philosophical Transactions of the Royal Society B: Biological Sciences, 2017, 372, 20160363. Choosing the Active X: The Human Version of X Inactivation. Trends in Genetics, 2017, 33, 899-909. 179 39 2.9 When the Lyon(ized chromosome) roars: ongoing expression from an inactive X chromosome. 1.8 Philosophical Transactions of the Royal Society B: Biological Sciences, 2017, 372, 20160355. Human X chromosome inactivation and reactivation: implications for cell reprogramming and disease. 181 1.8 35 Philosophical Transactions of the Royal Society B: Biological Sciences, 2017, 372, 20160358. What makes the maternal X chromosome resistant to undergoing imprinted X inactivation?. Philosophical Transactions of the Royal Society B: Biological Sciences, 2017, 372, 20160365. 1.8 X-chromosome dosage as a modulator of pluripotency, signalling and differentiation?. Philosophical 183 1.8 16 Transactions of the Royal Society B: Biological Sciences, 2017, 372, 20160366. Early X chromosome inactivation during human preimplantation development revealed by single-cell RNA-sequencing. Scientific Reports, 2017, 7, 10794. 184 Epigenetic resetting of human pluripotency. Development (Cambridge), 2017, 144, 2748-2763. 185 225 1.2 Establishment of a strain of haemophilia-A pigs by xenografting of foetal testicular tissue from neonatally moribund cloned pigs. Scientific Reports, 2017, 7, 17026.

#	Article	IF	CITATIONS
187	New Advances in Human X Chromosome Status from a Developmental and Stem Cell Biology. Tissue Engineering and Regenerative Medicine, 2017, 14, 643-652.	1.6	0
188	Reprogramming human cells to naÃ ⁻ ve pluripotency: how close are we?. Current Opinion in Genetics and Development, 2017, 46, 58-65.	1.5	14
189	Mechanisms of gene regulation in human embryos and pluripotent stem cells. Development (Cambridge), 2017, 144, 4496-4509.	1.2	63
190	A versatile genetic tool: haploid cells. Stem Cell Research and Therapy, 2017, 8, 197.	2.4	19
191	Epigenetic analysis of bovine parthenogenetic embryonic fibroblasts. Journal of Reproduction and Development, 2017, 63, 365-375.	0.5	12
192	At Term, XmO and XpO Mouse Placentas Show Differences in Glucose Metabolism in the Trophectoderm-Derived Outer Zone. Frontiers in Cell and Developmental Biology, 2017, 5, 63.	1.8	4
193	Characterization of X-Chromosome Gene Expression in Bovine Blastocysts Derived by In vitro Fertilization and Somatic Cell Nuclear Transfer. Frontiers in Genetics, 2017, 8, 42.	1.1	18
194	Epigenetic Regulation of X-Chromosome Inactivation. , 2017, , 353-371.		0
195	Memories of an X-chromosome. Stem Cell Investigation, 2017, 4, 27-27.	1.3	1
196	X-chromosome activity in naive human pluripotent stem cells—are we there yet?. Stem Cell Investigation, 2017, 4, 54-54.	1.3	10
197	Studying X chromosome inactivation in the single-cell genomic era. Biochemical Society Transactions, 2018, 46, 577-586.	1.6	13
198	TFAP2C regulates transcription in human naive pluripotency by opening enhancers. Nature Cell Biology, 2018, 20, 553-564.	4.6	134
199	Identifying Human NaÃ⁻ve Pluripotent Stem Cells â^' Evaluating Stateâ€Specific Reporter Lines and Cellâ€Surface Markers. BioEssays, 2018, 40, e1700239.	1.2	26
200	Genetic and epigenetic factors which modulate differentiation propensity in human pluripotent stem cells. Human Reproduction Update, 2018, 24, 162-175.	5.2	39
201	XIST Derepression in Active X Chromosome Hinders Pig Somatic Cell Nuclear Transfer. Stem Cell Reports, 2018, 10, 494-508.	2.3	54
202	Parallel derivation of isogenic human primed and naive induced pluripotent stem cells. Nature Communications, 2018, 9, 360.	5.8	104
203	Cell surface markers for the identification and study of human naive pluripotent stem cells. Stem Cell Research, 2018, 26, 36-43.	0.3	39
204	The Ftx Noncoding Locus Controls X Chromosome Inactivation Independently of Its RNA Products. Molecular Cell, 2018, 70, 462-472.e8.	4.5	75

#	Article	IF	Citations
205	Long term effects of ART: What do animals tell us?. Molecular Reproduction and Development, 2018, 85, 348-368.	1.0	76
206	The eXceptional nature of the X chromosome. Human Molecular Genetics, 2018, 27, R242-R249.	1.4	64
207	Control of inner cells' proportion by asymmetric divisions and ensuing resilience of cloned rabbit embryos. Development (Cambridge), 2018, 145, .	1.2	4
208	Early sex-dependent differences in response to environmental stress. Reproduction, 2018, 155, R39-R51.	1.1	33
209	Impact of Xist RNA on chromatin modifications and transcriptional silencing maintenance at different stages of imprinted X chromosome inactivation in vole Microtus levis. Chromosoma, 2018, 127, 129-139.	1.0	8
210	Epigenetic differences between naÃ ⁻ ve and primed pluripotent stem cells. Cellular and Molecular Life Sciences, 2018, 75, 1191-1203.	2.4	84
211	Important cardiac transcription factor genes are accompanied by bidirectional long non-coding RNAs. BMC Genomics, 2018, 19, 967.	1.2	17
212	Sex Chromosome Effects on Male–Female Differences in Mammals. Current Biology, 2018, 28, R1313-R1324.	1.8	75
213	Maternal <i>Eed</i> knockout causes loss of H3K27me3 imprinting and random X inactivation in the extraembryonic cells. Genes and Development, 2018, 32, 1525-1536.	2.7	93
214	X-Chromosome Inactivation: A Crossroads Between Chromosome Architecture and Gene Regulation. Annual Review of Genetics, 2018, 52, 535-566.	3.2	192
215	Thermal Response of Epigenetic Genes Informs Turtle Sex Determination with and without Sex Chromosomes. Sexual Development, 2018, 12, 308-319.	1.1	30
216	Combined Immunofluorescence, RNA FISH, and DNA FISH in Preimplantation Mouse Embryos. Methods in Molecular Biology, 2018, 1861, 149-159.	0.4	6
217	X-Chromosome Inactivation. Methods in Molecular Biology, 2018, , .	0.4	2
218	Reconstitution of Germ Cell Development In Vitro. , 2018, , 1-19.		0
219	Parental haplotype-specific single-cell transcriptomics reveal incomplete epigenetic reprogramming in human female germ cells. Nature Communications, 2018, 9, 1873.	5.8	46
220	Mammalian X Chromosome Dosage Compensation: Perspectives From the Germ Line. BioEssays, 2018, 40, e1800024.	1.2	25
221	Stem Cell-Derived Spermatozoa. , 2018, , 315-345.		2
222	Dosage compensation in human preâ€implantation embryos: Xâ€chromosome inactivation or dampening?. EMBO Reports, 2018, 19, .	2.0	16

# 223	ARTICLE Somatic Cell Nuclear Transfer Reprogramming: Mechanisms and Applications. Cell Stem Cell, 2018, 23, 471-485.	IF 5.2	CITATIONS
224	Functional genetics of early human development. Current Opinion in Genetics and Development, 2018, 52, 1-6.	1.5	17
225	Progressive methylation of POU5F1 regulatory regions during blastocyst development. Reproduction, 2018, 156, 145-161.	1.1	9
226	The Role of Xist in X-Chromosome Dosage Compensation. Trends in Cell Biology, 2018, 28, 999-1013.	3.6	117
227	Human Pre-gastrulation Development. Current Topics in Developmental Biology, 2018, 128, 295-338.	1.0	59
228	Single-cell multi-omics sequencing of human early embryos. Nature Cell Biology, 2018, 20, 847-858.	4.6	142
229	Embryonic Stem Cells. , 2019, , 113-123.		0
230	Recent Advances in Understanding the Reversal of Gene Silencing During X Chromosome Reactivation. Frontiers in Cell and Developmental Biology, 2019, 7, 169.	1.8	19
231	Catalytic deficiency of O-GlcNAc transferase leads to X-linked intellectual disability. Proceedings of the United States of America, 2019, 116, 14961-14970.	3.3	58
232	Epigenetic Regulation of Transition Among Different Pluripotent States: Concise Review. Stem Cells, 2019, 37, 1372-1380.	1.4	24
233	Defining Human Pluripotency. Cell Stem Cell, 2019, 25, 9-22.	5.2	67
234	Modeling allele-specific expression at the gene and SNP levels simultaneously by a Bayesian logistic mixed regression model. BMC Bioinformatics, 2019, 20, 530.	1.2	7
235	Recent insights into the naÃ⁻ve state of human pluripotency and its applications. Experimental Cell Research, 2019, 385, 111645.	1.2	30
236	Pluripotency and X chromosome dynamics revealed in pig pre-gastrulating embryos by single cell analysis. Nature Communications, 2019, 10, 500.	5.8	91
237	The Ambivalent Role of IncRNA Xist in Carcinogenesis. Stem Cell Reviews and Reports, 2019, 15, 314-323.	5.6	24
238	Frontiers of Pluripotency. Methods in Molecular Biology, 2019, 2005, 3-27.	0.4	3
239	Complex Regulation of X-Chromosome Inactivation in Mammals by Long Non-coding RNAs. , 2019, , 1-33.		1
240	No imprinted XIST expression in pigs: biallelic XIST expression in early embryos and random X inactivation in placentas. Cellular and Molecular Life Sciences, 2019, 76, 4525-4538.	2.4	10

		CITATION REPORT		
#	Article		IF	Citations
241	Conversion of random X-inactivation to imprinted X-inactivation by maternal PRC2. ELife, 201	9, 8, .	2.8	38
242	Diverse developmental strategies of X chromosome dosage compensation in eutherian mamn International Journal of Developmental Biology, 2019, 63, 223-233.	nals.	0.3	8
243	A novel approach to differentiate rat embryonic stem cells in vitro reveals a role for RNF12 in activation of X chromosome inactivation. Scientific Reports, 2019, 9, 6068.		1.6	3
244	Beyond the mouse: non-rodent animal models for study of early mammalian development and biomedical research. International Journal of Developmental Biology, 2019, 63, 187-201.		0.3	31
245	The Barker Hypothesis. , 2019, , 191-211.			3
246	Xist/Tsix expression dynamics during mouse peri-implantation development revealed by whole 3D RNA-FISH. Scientific Reports, 2019, 9, 3637.	e-mount	1.6	22
247	Dosage Compensation of the X Chromosomes in Bovine Germline, Early Embryos, and Somati Genome Biology and Evolution, 2019, 11, 242-252.	c Tissues.	1.1	7
248	The impact of transposable element activity on therapeutically relevant human stem cells. Mo 2019, 10, 9.	bile DNA,	1.3	18
249	A symmetric toggle switch explains the onset of random X inactivation in different mammals. Structural and Molecular Biology, 2019, 26, 350-360.	Nature	3.6	36
250	DNA methylation and functional characterization of the XIST gene during <i>in vitro</i> early e development in cattle. Epigenetics, 2019, 14, 568-588.	mbryo	1.3	11
251	Clobal Characterization of X Chromosome Inactivation in Human Pluripotent Stem Cells. Cell Reports, 2019, 27, 20-29.e3.		2.9	47
252	Are BALB/c Mice Relevant Models for Understanding Sex-Related Differences in Gene Expression Human Meibomian Gland?. Cornea, 2019, 38, 1554-1562.	on in the	0.9	5
253	A primate-specific retroviral enhancer wires the XACT IncRNA into the core pluripotency netwo humans. Nature Communications, 2019, 10, 5652.	ork in	5.8	21
255	The Role of DNA Methylation in Gene Regulation. , 2019, , 127-151.			11
256	Nuclear positioning and pairing of X-chromosome inactivation centers are not primary determ during initiation of random X-inactivation. Nature Genetics, 2019, 51, 285-295.	inants	9.4	32
257	AFF3: a new player in maintaining XIST monoallelic expression. Journal of Molecular Cell Biolog 11, 723-724.	gy, 2019,	1.5	1
258	The X chromosome and sex-specific effects in infectious disease susceptibility. Human Genom 13, 2.	iics, 2019,	1.4	271
259	Dampened X-chromosomes in human pluripotent stem cells: dampening or erasure of X-upreg Chromosoma, 2020, 129, 111-113.	gulation?.	1.0	7

		CITATION REPORT		
#	Article		IF	CITATIONS
260	X chromosome inactivation in human development. Development (Cambridge), 2020,	147,.	1.2	95
261	Human Embryogenesis: A Comparative Perspective. Annual Review of Cell and Develop 2020, 36, 411-440.	omental Biology,	4.0	39
262	Overcoming Autocrine FGF Signaling-Induced Heterogeneity in Naive Human ESCs Ena Random X Chromosome Inactivation. Cell Stem Cell, 2020, 27, 482-497.e4.	ables Modeling of	5.2	32
263	Female human primordial germ cells display X-chromosome dosage compensation des of X-inactivation. Nature Cell Biology, 2020, 22, 1436-1446.	pite the absence	4.6	52
264	A single-cell transcriptome atlas of marsupial embryogenesis and XÂinactivation. Natu 612-617.	re, 2020, 586,	13.7	34
265	Pluripotent Stem Cells for Transgenesis in the Rabbit: A Utopia?. Applied Sciences (Sw 10, 8861.	itzerland), 2020,	1.3	0
266	New Insights into X-Chromosome Reactivation during Reprogramming to Pluripotency 2706.	[.] . Cells, 2020, 9,	1.8	11
267	Single-Cell Analysis Reveals Partial Reactivation of X Chromosome instead of Chromos Dampening in Naive Human Pluripotent Stem Cells. Stem Cell Reports, 2020, 14, 745-		2.3	16
268	Overcoming Intrinsic H3K27me3 Imprinting Barriers Improves Post-implantation Devel Somatic Cell Nuclear Transfer. Cell Stem Cell, 2020, 27, 315-325.e5.	opment after	5.2	45
269	Maternal H3K27me3-dependent autosomal and X chromosome imprinting. Nature Rev 2020, 21, 555-571.	views Genetics,	7.7	53
270	Dosage Sensing, Threshold Responses, and Epigenetic Memory: A Systems Biology Per Random X hromosome Inactivation. BioEssays, 2020, 42, e1900163.	spective on	1.2	21
271	X-Chromosome Inactivation during Preimplantation Development and in Pluripotent S Cytogenetic and Genome Research, 2020, 160, 283-294.	tem Cells.	0.6	11
272	The minimal promoter (P1) of <i>Xist</i> is non-essential for X chromosome inactivati 2020, 17, 623-629.	on. RNA Biology,	1.5	1
273	Embryo-derived and induced pluripotent stem cells: Towards naive pluripotency and ch competency in rabbits. Experimental Cell Research, 2020, 389, 111908.	himeric	1.2	4
274	Embryonic stem cells. , 2020, , 421-434.			3
275	Initiation of X Chromosome Inactivation during Bovine Embryo Development. Cells, 20	20, 9, 1016.	1.8	16
276	Stochastic gene expression and chromosome interactions in protecting the human activity silencing by XIST. Nucleus, 2021, 12, 1-5.	tive X from	0.6	4
277	Chromatin and Epigenetic Rearrangements in Embryonic Stem Cell Fate Transitions. Fr and Developmental Biology, 2021, 9, 637309.	ontiers in Cell	1.8	25

#	Article	IF	CITATIONS
278	Cross-species examination of X-chromosome inactivation highlights domains of escape from silencing. Epigenetics and Chromatin, 2021, 14, 12.	1.8	23
280	Reproductive risks and preimplantation genetic testing intervention for X–autosome translocation carriers. Reproductive BioMedicine Online, 2021, 43, 73-80.	1.1	3
281	X chromosome-dependent disruption of placental regulatory networks in hybrid dwarf hamsters. Genetics, 2021, 218, .	1.2	10
282	An improved method for specific-target preamplification PCR analysis of single blastocysts useful for embryo sexing and high-throughput gene expression analysis. Journal of Dairy Science, 2021, 104, 3722-3735.	1.4	2
283	Epigenetics drive the evolution of sex chromosomes in animals and plants. Philosophical Transactions of the Royal Society B: Biological Sciences, 2021, 376, 20200124.	1.8	15
284	A New Toolbox in Experimental Embryology—Alternative Model Organisms for Studying Preimplantation Development. Journal of Developmental Biology, 2021, 9, 15.	0.9	3
285	Concurrent X chromosome inactivation and upregulation during non-human primate preimplantation development revealed by single-cell RNA-sequencing. Scientific Reports, 2021, 11, 9624.	1.6	3
286	Contiguous erosion of the inactive X in human pluripotency concludes with global DNA hypomethylation. Cell Reports, 2021, 35, 109215.	2.9	11
287	A Novel <i>cis</i> Regulatory Element Regulates Human <i>XIST</i> in a CTCF-Dependent Manner. Molecular and Cellular Biology, 2021, 41, e0038220.	1.1	3
289	Epigenetic Reprogramming in Early Animal Development. Cold Spring Harbor Perspectives in Biology, 2022, 14, a039677.	2.3	28
290	Sex bias in SLE. , 2021, , 189-198.		1
291	Roles of Long Non-coding RNAs in X-Chromosome Inactivation. , 2013, , 69-94.		2
292	The Barker Hypothesis. , 2017, , 1-21.		9
293	Initiation de l'inactivation du chromosome X durant le développement embryonnaire précoce chez la souris et l'humain. Bulletin De L'Academie Nationale De Medecine, 2013, 197, 609-617.	0.0	1
304	Genetic causes of haemophilia in women and girls. Haemophilia, 2021, 27, e164-e179.	1.0	28
305	Overexpression of <i>OCT4A</i> ortholog elevates endogenous <i>XIST</i> in porcine parthenogenic blastocysts. Journal of Reproduction and Development, 2015, 61, 533-540.	0.5	1
306	Maintenance of Xist Imprinting Depends on Chromatin Condensation State and Rnf12 Dosage in Mice. PLoS Genetics, 2016, 12, e1006375.	1.5	10
307	Differences in X-Chromosome Transcriptional Activity and Cholesterol Metabolism between Placentae from Swine Breeds from Asian and Western Origins. PLoS ONE, 2013, 8, e55345.	1.1	37

#	Article	IF	CITATIONS
308	Identification of the Porcine XIST Gene and Its Differential CpG Methylation Status in Male and Female Pig Cells. PLoS ONE, 2013, 8, e73677.	1.1	9
309	Sexual Dimorphism of the Feto-Placental Phenotype in Response to a High Fat and Control Maternal Diets in a Rabbit Model. PLoS ONE, 2013, 8, e83458.	1.1	62
310	Dynamics of the Two Heterochromatin Types during Imprinted X Chromosome Inactivation in Vole Microtus levis. PLoS ONE, 2014, 9, e88256.	1.1	11
311	Characterization of bovine embryos cultured under conditions appropriate for sustaining human naìve pluripotency. PLoS ONE, 2017, 12, e0172920.	1.1	17
312	Revisiting the X-Chromosome Inactivation and Its Impact on Female Longevity. Advances in Bioscience and Biotechnology (Print), 2014, 05, 572-583.	0.3	5
313	Characterization of allele-specific expression of the X-linked gene MAO-A in trophectoderm cells of bovine embryos produced by somatic cell nuclear transfer. Genetics and Molecular Research, 2015, 14, 12128-12136.	0.3	2
314	A quantum mechanical approach to random X chromosome inactivation. AIMS Biophysics, 2021, 8, 322-336.	0.3	0
316	Cross-species meta-analysis of transcriptome changes during the morula-to-blastocyst transition: metabolic and physiological changes take center stage. American Journal of Physiology - Cell Physiology, 2021, 321, C913-C931.	2.1	3
317	The Placenta's Role in Sexually Dimorphic Fetal Growth Strategies. Reproductive Sciences, 2022, 29, 1895-1907.	1.1	8
320	Livestock Somatic Cell Nuclear Transfer livestock somatic cell nuclear transfer. , 2012, , 6149-6178.		0
322	Imprinted X chromosome inactivation: evolution of mechanisms in distantly related mammals. AIMS Genetics, 2015, 02, 110-126.	1.9	0
323	The Xist Locus. , 2019, , .		0
329	Enhanced chromatin accessibility contributes to X chromosome dosage compensation in mammals. Genome Biology, 2021, 22, 302.	3.8	16
331	Digging into X chromosome inactivation. Science, 2021, 374, 942-943.	6.0	4
332	The X chromosome dosage compensation program during the development of cynomolgus monkeys. Science, 2021, 374, eabd8887.	6.0	33
333	Gene regulation in time and space during X-chromosome inactivation. Nature Reviews Molecular Cell Biology, 2022, 23, 231-249.	16.1	86
335	Mechanisms of Choice in X-Chromosome Inactivation. Cells, 2022, 11, 535.	1.8	15
336	The non-coding genome in early human development – Recent advancements. Seminars in Cell and Developmental Biology, 2022, , .	2.3	2

#	Article	IF	CITATIONS
338	Study of X Chromosome Activity Status in Human Naive Pluripotent Stem Cells Using RNA-FISH. Methods in Molecular Biology, 2022, 2416, 239-255.	0.4	0
341	Sexual dimorphism in placental development and function: Comparative physiology with an emphasis on the pig. Molecular Reproduction and Development, 2023, 90, 684-696.	1.0	3
342	Long noncoding RNA XIST: Mechanisms for X chromosome inactivation, roles in sex-biased diseases, and therapeutic opportunities. Genes and Diseases, 2022, 9, 1478-1492.	1.5	19
343	Noncanonical imprinting sustains embryonic development and restrains placental overgrowth. Genes and Development, 2022, , .	2.7	13
344	Preventing erosion of X-chromosome inactivation in human embryonic stem cells. Nature Communications, 2022, 13, 2516.	5.8	13
345	Silencing XIST on the future active X: Searching human and bovine preimplantation embryos for the repressor. European Journal of Human Genetics, 2022, , .	1.4	2
346	A lifelong duty: how Xist maintains the inactive X chromosome. Current Opinion in Genetics and Development, 2022, 75, 101927.	1.5	10
347	Epigenetic mechanisms regulate sex-specific bias in disease manifestations. Journal of Molecular Medicine, 2022, 100, 1111-1123.	1.7	15
348	Maternal SMCHD1 controls both imprinted Xist expression and imprinted X chromosome inactivation. Epigenetics and Chromatin, 2022, 15, .	1.8	4
349	Enhancement of Chromatin and Epigenetic Reprogramming in Porcine SCNT Embryos—Progresses and Perspectives. Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	5
350	Constitutive heterochromatin propagation contributes to the X chromosome inactivation. Chromosome Research, 0, , .	1.0	0
351	Major transcriptomic, epigenetic and metabolic changes underlie the pluripotency continuum in rabbit preimplantation embryos. Development (Cambridge), 2022, 149, .	1.2	7
353	Epigenetics of X-chromosome Inactivation. , 2023, , 419-441.		2
354	Maternal obesity alters methylation level of cytosine in CpG island for epigenetic inheritance in fetal umbilical cord blood. Human Genomics, 2022, 16, .	1.4	2
355	The physiological and pathological mechanisms of early embryonic development. Fundamental Research, 2022, 2, 859-872.	1.6	1
357	Dosage compensation: A new player in X chromosome upregulation. Current Biology, 2022, 32, R1030-R1032.	1.8	0
358	Stabilization of hESCs in two distinct substates along the continuum of pluripotency. IScience, 2022, 25, 105469.	1.9	2
360	Derivation of a minimal functional XIST by combining human and mouse interaction domains. Human Molecular Genetics, 0, , .	1.4	1

#	Article	IF	CITATIONS
361	Identification and differential expression of long non-coding RNAs and their association with XIST gene during early embryonic developmental stages of Bos taurus. International Journal of Biological Macromolecules, 2023, 229, 896-908.	3.6	1
362	X-chromosome inactivation patterns depend on age and tissue but not conception method in humans. Chromosome Research, 2023, 31, .	1.0	2
364	Epigenetic Reprogramming and Somatic Cell Nuclear Transfer. Methods in Molecular Biology, 2023, , 37-58.	0.4	0
365	Nanosheet coating improves stability of human pluripotent stem cell culture on glass substrates. Biochemical and Biophysical Research Communications, 2023, 650, 55-61.	1.0	1
366	Generation of blastoids from human parthenogenetic stem cells. , 2023, 2, .		2
367	Induction of fetal meiotic oocytes from embryonic stem cells in cynomolgus monkeys. EMBO Journal, 2023, 42, .	3.5	7
368	Induction and application of human naive pluripotency. Cell Reports, 2023, 42, 112379.	2.9	7
369	Early Cell Specification in Mammalian Fertilized and Somatic Cell Nuclear Transfer Embryos. Methods in Molecular Biology, 2023, , 59-81.	0.4	0
370	Human X-chromosome inactivation: Complexity and clinical implications. , 2023, , 355-385.		0