Amygdala circuitry mediating reversible and bidirection

Nature 471, 358-362 DOI: 10.1038/nature09820

Citation Report

#	Article	IF	CITATIONS
1	Psychiatry's age of enlightenment: optogenetics and the discovery of novel targets for the treatment of psychiatric disorders. Journal of Psychiatry and Neuroscience, 2012, 37, 4-6.	1.4	18
2	Oxytocin Selectively Gates Fear Responses Through Distinct Outputs from the Central Amygdala. Science, 2011, 333, 104-107.	6.0	324
3	The primate thalamostriatal systems: Anatomical organization, functional roles and possible involvement in Parkinson's disease. Basal Ganglia, 2011, 1, 179-189.	0.3	57
4	Seeking a Spotless Mind: Extinction, Deconsolidation, and Erasure of Fear Memory. Neuron, 2011, 70, 830-845.	3.8	260
5	Optogenetics in Neural Systems. Neuron, 2011, 71, 9-34.	3.8	1,629
6	Recombinase-Driver Rat Lines: Tools, Techniques, and Optogenetic Application to Dopamine-Mediated Reinforcement. Neuron, 2011, 72, 721-733.	3.8	593
7	The Development and Application of Optogenetics. Annual Review of Neuroscience, 2011, 34, 389-412.	5.0	1,567
9	Unpredictability and Uncertainty in Anxiety: A New Direction for Emotional Timing Research. Frontiers in Integrative Neuroscience, 2011, 5, 55.	1.0	26
10	Using Affordable LED Arrays for Photo-Stimulation of Neurons. Journal of Visualized Experiments, 2011, , .	0.2	5
11	Excitatory transmission from the amygdala to nucleus accumbens facilitates reward seeking. Nature, 2011, 475, 377-380.	13.7	739
12	Ground-state properties of the retinal molecule: from quantum mechanical to classical mechanical computations of retinal proteins. Theoretical Chemistry Accounts, 2011, 130, 1169-1183.	0.5	15
13	Following the genes: a framework for animal modeling of psychiatric disorders. BMC Biology, 2011, 9, 76.	1.7	27
14	Recent advances in dynamic intravital multiâ€photon microscopy. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2011, 79A, 789-798.	1.1	40
15	The clinical implications of mouse models of enhanced anxiety. Future Neurology, 2011, 6, 531-571.	0.9	68
16	Inhibition to excitation ratio regulates visual system responses and behavior in vivo. Journal of Neurophysiology, 2011, 106, 2285-2302.	0.9	64
17	Pituitary Adenylate Cyclase-Activating Polypeptide Induces Postsynaptically Expressed Potentiation in the Intra-amygdala Circuit. Journal of Neuroscience, 2012, 32, 14165-14177.	1.7	51
18	Resting Amygdala and Medial Prefrontal Metabolism Predicts Functional Activation of the Fear Extinction Circuit. American Journal of Psychiatry, 2012, 169, 415-423.	4.0	82
19	Hypervigilance for fear after basolateral amygdala damage in humans. Translational Psychiatry, 2012, 2, e115-e115.	2.4	95

#	Article	IF	CITATIONS
20	Central amygdala nucleus (Ce) gene expression linked to increased trait-like Ce metabolism and anxious temperament in young primates. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 18108-18113.	3.3	56
21	Stress-Induced Activation of the Dynorphin/Î⁰-Opioid Receptor System in the Amygdala Potentiates Nicotine Conditioned Place Preference. Journal of Neuroscience, 2012, 32, 1488-1495.	1.7	87
22	Differential regulation of glutamic acid decarboxylase gene expression after extinction of a recent memory vs. intermediate memory. Learning and Memory, 2012, 19, 194-200.	0.5	17
23	Olfactory Deficits Cause Anxiety-Like Behaviors in Mice. Journal of Neuroscience, 2012, 32, 6718-6725.	1.7	48
24	Optogenetic electrophysiology: a new approach to combine cellular and systems physiology. Biomolecular Concepts, 2012, 3, 193-201.	1.0	1
25	Deep brain stimulation of the ventral striatum enhances extinction of conditioned fear. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 8764-8769.	3.3	124
27	Synaptic and Behavioral Profile of Multiple Glutamatergic Inputs to the Nucleus Accumbens. Neuron, 2012, 76, 790-803.	3.8	632
28	Principles for applying optogenetic tools derived from direct comparative analysis of microbial opsins. Nature Methods, 2012, 9, 159-172.	9.0	666
29	In Vivo Application of Optogenetics for Neural Circuit Analysis. ACS Chemical Neuroscience, 2012, 3, 577-584.	1.7	83
30	Glutamate Inputs to the Nucleus Accumbens: Does Source Matter?. Neuron, 2012, 76, 671-673.	3.8	16
31	Two-photon optogenetic toolbox for fast inhibition, excitation and bistable modulation. Nature Methods, 2012, 9, 1171-1179.	9.0	299
32	Orexin, stress, and anxiety/panic states. Progress in Brain Research, 2012, 198, 133-161.	0.9	178
33	Neural and cellular mechanisms of fear and extinction memory formation. Neuroscience and Biobehavioral Reviews, 2012, 36, 1773-1802.	2.9	365
34	Optogenetics: a new method for the causal analysis of neuronal networks in vivo. E-Neuroforum, 2012, 18, .	0.2	6
35	Patent Highlights. Pharmaceutical Patent Analyst, 2012, 1, 375-383.	0.4	0
36	Rules Got Rhythm. Neuron, 2012, 76, 673-676.	3.8	5
37	Inhibition of Fear by Learned Safety Signals: A Mini-Symposium Review. Journal of Neuroscience, 2012, 32, 14118-14124.	1.7	137
38	Optogenetic Strategies to Dissect the Neural Circuits that Underlie Reward and Addiction. Cold Spring Harbor Perspectives in Medicine, 2012, 2, a011924-a011924.	2.9	22

	CITATION	CITATION REPORT	
#	Article	IF	CITATIONS
39	New approaches to neural circuits in behavior. Learning and Memory, 2012, 19, 385-390.	0.5	12
40	The GABA system in anxiety and depression and its therapeutic potential. Neuropharmacology, 2012, 62, 42-53.	2.0	453
41	Virogenetic and optogenetic mechanisms to define potential therapeutic targets in psychiatric disorders. Neuropharmacology, 2012, 62, 89-100.	2.0	17
42	Avoiding mouse traps in schizophrenia genetics: lessons and promises from current and emerging mouse models. Neuroscience, 2012, 211, 136-164.	1.1	37
43	Distribution of dopamine D2-like receptors in the rat amygdala and their role in the modulation of unconditioned fear and anxiety. Neuroscience, 2012, 201, 252-266.	1.1	68
44	Fear conditioning, synaptic plasticity and the amygdala: implications for posttraumatic stress disorder. Trends in Neurosciences, 2012, 35, 24-35.	4.2	503
45	The Sturm und Drang of anabolic steroid use: angst, anxiety, and aggression. Trends in Neurosciences, 2012, 35, 382-392.	4.2	51
46	Can transcranial brain-targeted bright light treatment via ear canals be effective in relieving symptoms in seasonal affective disorder? – A pilot study. Medical Hypotheses, 2012, 78, 511-515.	0.8	21
47	Withdrawal from THC during adolescence: Sex differences in locomotor activity and anxiety. Behavioural Brain Research, 2012, 231, 48-59.	1.2	59
48	Acute restraint differently alters defensive responses and fos immunoreactivity in the rat brain. Behavioural Brain Research, 2012, 232, 20-29.	1.2	25
49	Decreased expression of extracellular matrix proteins and trophic factors in the amygdala complex of depressed mice after chronic immobilization stress. BMC Neuroscience, 2012, 13, 58.	0.8	35
50	Optogenetic Investigation of Neuropsychiatric Diseases. International Journal of Neuroscience, 2012, 123, 7-16.	0.8	10
51	Genetically encoded optical indicators for the analysis of neuronal circuits. Nature Reviews Neuroscience, 2012, 13, 687-700.	4.9	220
52	Chronic Ethanol Potentiates the Effect of Neuropeptide S in the Basolateral Amygdala and Shows Increased Anxiolytic and Anti-Depressive Effects. Neuropsychopharmacology, 2012, 37, 2436-2445.	2.8	23
53	CHAPTER 7. The Neurobiology of Depression and Anxiety: How Do We Change from Models of Drug Efficacy to Understanding Mood and Anxiety Disorders?. RSC Drug Discovery Series, 2012, , 159-183.	0.2	2
54	Optogenetic Therapeutic Cell Implants. Gastroenterology, 2012, 143, 301-306.	0.6	9
55	Controlling the Elements: An Optogenetic Approach to Understanding the Neural Circuits of Fear. Biological Psychiatry, 2012, 71, 1053-1060.	0.7	79
56	Optogenetic Modulation of Neural Circuits that Underlie Reward Seeking. Biological Psychiatry, 2012, 71, 1061-1067.	0.7	102

CITATION REPORT IF CITATIONS Optogenetics and Psychiatry: Applications, Challenges, and Opportunities. Biological Psychiatry, 2012, 71, 1030-1032. 0.7 77 Optogenetic Insights into Social Behavior Function. Biological Psychiatry, 2012, 71, 1075-1080. Insights into Cortical Oscillations Arising from Optogenetic Studies. Biological Psychiatry, 2012, 71, 1039-1045. 0.7 99

60	Molecular Tools and Approaches for Optogenetics. Biological Psychiatry, 2012, 71, 1033-1038.	0.7	55
61	Optogenetic dissection of cortical information processing-shining light on schizophrenia. Brain Research, 2012, 1476, 31-37.	1.1	12
62	5-HTTLPR–environment interplay and its effects on neural reactivity in adolescents. NeuroImage, 2012, 63, 1670-1680.	2.1	28
63	Neuropeptide Y (NPY) in the extended amygdala is recruited during the transition to alcohol dependence. Neuropeptides, 2012, 46, 253-259.	0.9	32
64	A glass-coated tungsten microelectrode enclosing optical fibers for optogenetic exploration in primate deep brain structures. Journal of Neuroscience Methods, 2012, 211, 49-57.	1.3	67
65	AVAILABLE TOOLS FOR WHOLE BRAIN EMULATION. International Journal of Machine Consciousness, 2012, 04, 67-86.	1.0	6
66	Using optogenetics to translate the "inflammatory dialogue―between heart and brain in the context of stress. Neuroscience Bulletin, 2012, 28, 435-448.	1.5	5
67	Optogenetics in neuroscience: what we gain from studies in mammals. Neuroscience Bulletin, 2012, 28, 423-434.	1.5	10
68	When the electricity (and the lights) go out: transient changes in excitability. Nature Neuroscience, 2012, 15, 1058-1060.	7.1	18
69	Deep Brain Stimulation. , 2012, , .		7
70	The Central Amygdala and Alcohol: Role of Â-Aminobutyric Acid, Glutamate, and Neuropeptides. Cold Spring Harbor Perspectives in Medicine, 2012, 2, a012195-a012195.	2.9	117
71	Fear Extinction as a Model for Translational Neuroscience: Ten Years of Progress. Annual Review of Psychology, 2012, 63, 129-151.	9.9	1,202
72	Serotonin and Anxiety. SpringerBriefs in Neuroscience, 2012, , .	0.1	16
73	Gene Targeting. , 2012, , 19-35.		5
74	Hilar GABAergic Interneuron Activity Controls Spatial Learning and Memory Retrieval. PLoS ONE, 2012, 7, e40555.	1.1	90

ARTICLE

#

57

#	Article	IF	CITATIONS
75	Avian Adeno-Associated Virus Vector Efficiently Transduces Neurons in the Embryonic and Post-Embryonic Chicken Brain. PLoS ONE, 2012, 7, e48730.	1.1	21
76	Optogenetics: An attempt to dissect neuronal pathways that regulate behavior. Japanese Journal of Animal Psychology, 2012, 62, 147-162.	0.2	0
77	Optogenetik: Eine neue Methodik zur kausalen Analyse neuronaler Netzwerke in vivo. E-Neuroforum, 2012, 18, 280-290.	0.2	0
78	The Role of the Amygdala in Anxiety Disorders. , 0, , .		9
79	Amygdala Subregions Tied to SSRI and Placebo Response in Patients with Social Anxiety Disorder. Neuropsychopharmacology, 2012, 37, 2222-2232.	2.8	60
80	Localized microstimulation of primate pregenual cingulate cortex induces negative decision-making. Nature Neuroscience, 2012, 15, 776-785.	7.1	216
81	Optogenetic stimulation of a hippocampal engram activates fear memory recall. Nature, 2012, 484, 381-385.	13.7	1,278
82	Unparalleled Control of Neural Activity Using Orthogonal Pharmacogenetics. ACS Chemical Neuroscience, 2012, 3, 619-629.	1.7	17
83	Optogenetic investigation of neural circuits underlying brain disease in animal models. Nature Reviews Neuroscience, 2012, 13, 251-266.	4.9	655
84	Construction of implantable optical fibers for long-term optogenetic manipulation of neural circuits. Nature Protocols, 2012, 7, 12-23.	5.5	338
85	Nodal Structures in Anxiety-Like and Panic-Like Responses. SpringerBriefs in Neuroscience, 2012, , 37-78.	0.1	1
86	The many paths to fear. Nature Reviews Neuroscience, 2012, 13, 651-658.	4.9	484
87	Postnatal development of the amygdala: A stereological study in macaque monkeys. Journal of Comparative Neurology, 2012, 520, 1965-1984.	0.9	63
88	Corticotropin-releasing factor (CRF) and neuropeptide Y (NPY): Effects on inhibitory transmission in central amygdala, and anxiety- & amp; alcohol-related behaviors. Alcohol, 2012, 46, 329-337.	0.8	71
89	Poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate)-poly(vinyl alcohol)/poly(acrylic acid) interpenetrating polymer networks for improving optrode-neural tissue interface in optogenetics. Biomaterials, 2012, 33, 378-394.	5.7	86
90	Lighting up the brain's reward circuitry. Annals of the New York Academy of Sciences, 2012, 1260, 24-33.	1.8	4
91	Dissecting local circuits in vivo: Integrated optogenetic and electrophysiology approaches for exploring inhibitory regulation of cortical activity. Journal of Physiology (Paris), 2012, 106, 104-111.	2.1	47
92	Neuropeptide modulation of central amygdala neuroplasticity is a key mediator of alcohol dependence. Neuroscience and Biobehavioral Reviews, 2012, 36, 873-888.	2.9	75

		REFORT	
#	Article	IF	CITATIONS
93	Evidence for a role of inhibition of orexinergic neurons in the anxiolytic and sedative effects of diazepam: A c-Fos study. Pharmacology Biochemistry and Behavior, 2012, 101, 115-124.	1.3	31
94	Activation of amygdalar metabotropic glutamate receptors modulates anxiety, and risk assessment behaviors in ovariectomized estradiol-treated female rats. Pharmacology Biochemistry and Behavior, 2012, 101, 369-378.	1.3	10
95	β3 integrin is dispensable for conditioned fear and Hebbian forms of plasticity in the hippocampus. European Journal of Neuroscience, 2012, 36, 2461-2469.	1.2	25
96	Motifs in health and disease: the promise of circuit interrogation by optogenetics. European Journal of Neuroscience, 2012, 36, 2260-2272.	1.2	16
97	The optogenetic (r)evolution. Molecular Genetics and Genomics, 2012, 287, 95-109.	1.0	69
98	Establishing causality for dopamine in neural function and behavior with optogenetics. Brain Research, 2013, 1511, 46-64.	1.1	41
99	Cortical activation of accumbens hyperpolarization-active NMDARs mediates aversion-resistant alcohol intake. Nature Neuroscience, 2013, 16, 1094-1100.	7.1	281
100	Optogenetic investigation of the role of the superior colliculus in orienting movements. Behavioural Brain Research, 2013, 255, 55-63.	1.2	46
101	Identification of neuronal loci involved with displays of affective aggression in NC900 mice. Brain Structure and Function, 2013, 218, 1033-1049.	1.2	12
102	BLA to vHPC Inputs Modulate Anxiety-Related Behaviors. Neuron, 2013, 79, 658-664.	3.8	460
103	Pup odor and ultrasonic vocalizations synergistically stimulate maternal attention in mice Behavioral Neuroscience, 2013, 127, 432-438.	0.6	87
104	50 years of hurdles and hope in anxiolytic drug discovery. Nature Reviews Drug Discovery, 2013, 12, 667-687.	21.5	334
105	GENSAT BAC Cre-Recombinase Driver Lines to Study the Functional Organization of Cerebral Cortical and Basal Ganglia Circuits. Neuron, 2013, 80, 1368-1383.	3.8	540
106	Optogenetic Stimulation of Lateral Orbitofronto-Striatal Pathway Suppresses Compulsive Behaviors. Science, 2013, 340, 1243-1246.	6.0	365
107	Optogenetic strategies to investigate neural circuitry engaged by stress. Behavioural Brain Research, 2013, 255, 19-25.	1.2	69
108	Ventromedial Prefrontal Cortex Pyramidal Cells Have a Temporal Dynamic Role in Recall and Extinction of Cocaine-Associated Memory. Journal of Neuroscience, 2013, 33, 18225-18233.	1.7	68
109	Fabrication and application of flexible, multimodal light-emitting devices for wireless optogenetics. Nature Protocols, 2013, 8, 2413-2428.	5.5	177
110	Ion Channels. Methods in Molecular Biology, 2013, , .	0.4	1

#	Article	IF	CITATIONS
111	Optogenetics through windows on the brain in the nonhuman primate. Journal of Neurophysiology, 2013, 110, 1455-1467.	0.9	103
112	Fast modulation of visual perception by basal forebrain cholinergic neurons. Nature Neuroscience, 2013, 16, 1857-1863.	7.1	489
113	Injectable, Cellular-Scale Optoelectronics with Applications for Wireless Optogenetics. Science, 2013, 340, 211-216.	6.0	1,010
114	Integrating Optogenetic and Pharmacological Approaches to Study Neural Circuit Function: Current Applications and Future Directions. Pharmacological Reviews, 2013, 65, 156-170.	7.1	17
115	Orbitofrontal and striatal circuits dynamically encode the shift between goal-directed and habitual actions. Nature Communications, 2013, 4, 2264.	5.8	501
116	Adaptations in brain reward circuitry underlie palatable food cravings and anxiety induced by high-fat diet withdrawal. International Journal of Obesity, 2013, 37, 1183-1191.	1.6	169
117	Optogenetics in epilepsy. Neurosurgical Focus, 2013, 34, E4.	1.0	29
118	The Multiple Anxieties of Getting Older: Tranquilizers and the Ambivalence of Effect. Medical Anthropology: Cross Cultural Studies in Health and Illness, 2013, 32, 399-416.	0.6	3
119	The Biology of Fear. Current Biology, 2013, 23, R79-R93.	1.8	358
120	Optogenetics in the cerebellum: Purkinje cell-specific approaches for understanding local cerebellar functions. Behavioural Brain Research, 2013, 255, 26-34.	1.2	13
121	Aberrant Histone Deacetylase2–Mediated Histone Modifications and Synaptic Plasticity in the Amygdala Predisposes to Anxiety and Alcoholism. Biological Psychiatry, 2013, 73, 763-773.	0.7	140
122	Recent Developments in Optical Neuromodulation Technologies. Molecular Neurobiology, 2013, 47, 172-185.	1.9	5
123	Novel approaches to epilepsy treatment. Epilepsia, 2013, 54, 1-10.	2.6	74
124	Anxiety is the sum of its parts. Nature, 2013, 496, 174-175.	13.7	17
125	Differential Control of Learning and Anxiety along the Dorsoventral Axis of the Dentate Gyrus. Neuron, 2013, 77, 955-968.	3.8	582
126	Development of transgenic animals for optogenetic manipulation of mammalian nervous system function: Progress and prospects for behavioral neuroscience. Behavioural Brain Research, 2013, 255, 3-18.	1.2	49
127	Functional patterned multiphoton excitation deep inside scattering tissue. Nature Photonics, 2013, 7, 274-278.	15.6	103
128	Posttraining optogenetic manipulations of basolateral amygdala activity modulate consolidation of inhibitory avoidance memory in rats. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 3597-3602.	3.3	85

# 129	ARTICLE Hypothalamic Survival Circuits: Blueprints for Purposive Behaviors. Neuron, 2013, 77, 810-824.	IF 3.8	CITATIONS
130	Viral Gene Delivery: Optimized Protocol for Production of High Titer Lentiviral Vectors. Methods in Molecular Biology, 2013, 998, 65-75.	0.4	15
131	Optogenetic Dissection of Entorhinal-Hippocampal Functional Connectivity. Science, 2013, 340, 1232627.	6.0	225
132	Optogenetic dissection of neural circuits underlying emotional valence and motivated behaviors. Brain Research, 2013, 1511, 73-92.	1.1	102
133	Using optogenetics to study habits. Brain Research, 2013, 1511, 102-114.	1.1	24
134	The neural signatures of distinct psychopathic traits. Social Neuroscience, 2013, 8, 122-135.	0.7	162
135	Towards new approaches to disorders of fear and anxiety. Current Opinion in Neurobiology, 2013, 23, 346-352.	2.0	73
136	Thy1-Expressing Neurons in the Basolateral Amygdala May Mediate Fear Inhibition. Journal of Neuroscience, 2013, 33, 10396-10404.	1.7	83
137	Optogenetics in psychiatric diseases. Current Opinion in Neurobiology, 2013, 23, 430-435.	2.0	23
138	Testosterone administration in women increases amygdala responses to fearful and happy faces. Psychoneuroendocrinology, 2013, 38, 808-817.	1.3	79
139	Optogenetics in primates: a shining future?. Trends in Genetics, 2013, 29, 403-411.	2.9	75
140	Chronic unpredictable mild stress alters an anxiety-related defensive response, Fos immunoreactivity and hippocampal adult neurogenesis. Behavioural Brain Research, 2013, 250, 81-90.	1.2	58
141	Corticotropin releasing factor and catecholamines enhance glutamatergic neurotransmission in the lateral subdivision of the central amygdala. Neuropharmacology, 2013, 70, 316-323.	2.0	54
142	Measuring behaviour in rodents: Towards translational neuropsychiatric research. Behavioural Brain Research, 2013, 236, 295-306.	1.2	31
143	Acute anxiety increases the magnitude of the cold shock response before and after habituation. European Journal of Applied Physiology, 2013, 113, 681-689.	1.2	17
144	Optogenetics. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 16287-16287.	3.3	74
145	<i>^î²</i> -Opioid Receptors in the Central Amygdala Regulate Ethanol Actions at Presynaptic GABAergic Sites. Journal of Pharmacology and Experimental Therapeutics, 2013, 346, 130-137.	1.3	46
146	Optogenetic Inhibition of Dorsal Medial Prefrontal Cortex Attenuates Stress-Induced Reinstatement of Palatable Food Seeking in Female Rats. Journal of Neuroscience, 2013, 33, 214-226.	1.7	64

		Citation R	EPORT	
#	Article		IF	CITATIONS
147	Optogenetics, physiology, and emotions. Frontiers in Behavioral Neuroscience, 2013, 7	7, 169.	1.0	23
148	Central Amygdala GluA1 Facilitates Associative Learning of Opioid Reward. Journal of N 2013, 33, 1577-1588.	leuroscience,	1.7	34
149	Generous economic investments after basolateral amygdala damage. Proceedings of the Academy of Sciences of the United States of America, 2013, 110, 2506-2510.	he National	3.3	48
150	Approach–Avoidance versus Dominance–Submissiveness: A Multilevel Neural Fran Testosterone Promotes Social Status. Emotion Review, 2013, 5, 296-302.	nework on How	2.1	116
151	Aversive motivation and the maintenance of monogamous pair bonding. Reviews in the 2013, 24, 51-60.	e Neurosciences,	1.4	48
152	Reward Learning Requires Activity of Matrix Metalloproteinase-9 in the Central Amygda Neuroscience, 2013, 33, 14591-14600.	ala. Journal of	1.7	63
153	Neural Basis of Emotional Decision Making in Trait Anxiety. Journal of Neuroscience, 20 18641-18653.)13, 33,	1.7	73
154	Optogenetics in the behaving rat: integration of diverse new technologies in a vital ani Optogenetics, 2013, 1, 1-17.	mal model.	3.0	20
155	Visual Response Properties of V1 Neurons Projecting to V2 in Macaque. Journal of Neu 33, 16594-16605.	roscience, 2013,	1.7	41
156	Neutral antagonism at the cannabinoid 1 receptor: a safer treatment for obesity. Mole Psychiatry, 2013, 18, 1294-1301.	cular	4.1	64
157	Real-Time Imaging of Amygdalar Network Dynamics <i>In Vitro</i> Reveals a Neurophys Behavior in a Mouse Model of Extremes in Trait Anxiety. Journal of Neuroscience, 2013	iological Link to , 33, 16262-16267.	1.7	16
158	Analysis of Transduction Efficiency, Tropism and Axonal Transport of AAV Serotypes 1, the Mouse Brain. PLoS ONE, 2013, 8, e76310.	2, 5, 6, 8 and 9 in	1.1	419
159	Neuropsychological Deficits in Mice Depleted of the Schizophrenia Susceptibility Gene ONE, 2013, 8, e79501.	CSMD1. PLoS	1.1	64
160	Inhibitory networks of the amygdala for emotional memory. Frontiers in Neural Circuits	s, 2013, 7, 129.	1.4	59
161	Optogenetic inhibition of D1R containing nucleus accumbens neurons alters cocaine-n regulation of Tiam1. Frontiers in Molecular Neuroscience, 2013, 6, 13.	nediated	1.4	69
162	Highly Palatable Food during Adolescence Improves Anxiety-Like Behaviors and Hypothalamic-Pituitary-Adrenal Axis Dysfunction in Rats that Experienced Neonatal Ma Separation. Endocrinology and Metabolism, 2014, 29, 169.	iternal	1.3	21
163	AAV-Mediated Overexpression of Neuroserpin in the Hippocampus Decreases PSD-95 E Does Not Affect Hippocampal-Dependent Learning and Memory. PLoS ONE, 2014, 9, e	Expression but 91050.	1.1	16
164	Optogenetics: illuminating the neural bases of rodent behavior. Open Access Animal Pl 33.	hysiology, 2014, ,	0.3	0

#	Article	IF	CITATIONS
165	Optogenetic and chemogenetic insights into the food addiction hypothesis. Frontiers in Behavioral Neuroscience, 2014, 8, 57.	1.0	28
166	Ex vivo dissection of optogenetically activated mPFC and hippocampal inputs to neurons in the basolateral amygdala: implications for fear and emotional memory. Frontiers in Behavioral Neuroscience, 2014, 8, 64.	1.0	85
167	Optogenetic dissection of amygdala functioning. Frontiers in Behavioral Neuroscience, 2014, 8, 107.	1.0	58
168	Optogenetic insights on the relationship between anxiety-related behaviors and social deficits. Frontiers in Behavioral Neuroscience, 2014, 8, 241.	1.0	120
169	Optogenetic evocation of field inhibitory postsynaptic potentials in hippocampal slices: a simple and reliable approach for studying pharmacological effects on GABAA and GABAB receptor-mediated neurotransmission. Frontiers in Cellular Neuroscience, 2014, 8, 2.	1.8	11
170	Impaired activity-dependent neural circuit assembly and refinement in autism spectrum disorder genetic models. Frontiers in Cellular Neuroscience, 2014, 8, 30.	1.8	70
171	Dissecting inhibitory brain circuits with genetically-targeted technologies. Frontiers in Neural Circuits, 2014, 8, 124.	1.4	11
172	Optogenetics in preclinical neuroscience and psychiatry research: recent insights and potential applications. Neuropsychiatric Disease and Treatment, 2014, 10, 1369.	1.0	12
173	Central CRTH2, a Second Prostaglandin D ₂ Receptor, Mediates Emotional Impairment in the Lipopolysaccharide and Tumor-Induced Sickness Behavior Model. Journal of Neuroscience, 2014, 34, 2514-2523.	1.7	17
174	Enkephalin Knockdown in the Basolateral Amygdala Reproduces Vulnerable Anxiety-Like Responses to Chronic Unpredictable Stress. Neuropsychopharmacology, 2014, 39, 1159-1168.	2.8	32
175	Defining Midbrain Dopaminergic Neuron Diversity by Single-Cell Gene Expression Profiling. Cell Reports, 2014, 9, 930-943.	2.9	268
176	Light up your life: Optogenetics for depression?. Journal of Psychiatry and Neuroscience, 2014, 39, 3-5.	1.4	19
177	Amygdala: Contributions to Fear. , 2014, , .		1
178	Light-induced termination of spiral wave arrhythmias by optogenetic engineering of atrial cardiomyocytes. Cardiovascular Research, 2014, 104, 194-205.	1.8	108
179	Central Amygdala Neuroplasticity in Alcohol Dependence. , 2014, , 207-226.		2
180	Ethanol Untangles the Amygdalaâ€Anxiety Circuit Through Tonic <scp>GABA</scp> Inhibition. Alcoholism: Clinical and Experimental Research, 2014, 38, 619-623.	1.4	5
181	Serotonergic responses to stress are enhanced in the central amygdala and inhibited in the ventral hippocampus during amphetamine withdrawal. European Journal of Neuroscience, 2014, 40, 3684-3692.	1.2	17
182	<scp>WONOEP</scp> appraisal: Optogenetic tools to suppress seizures and explore the mechanisms of epileptogenesis. Epilepsia, 2014, 55, 1693-1702.	2.6	20

#	Article	IF	CITATIONS
183	Neural Circuit Reprogramming: A New Paradigm for Treating Neuropsychiatric Disease?. Neuron, 2014, 83, 1259-1261.	3.8	20
184	Optogenetic Excitation of Central Amygdala Amplifies and Narrows Incentive Motivation to Pursue One Reward Above Another. Journal of Neuroscience, 2014, 34, 16567-16580.	1.7	170
185	Emotions and motivated behavior converge on an amygdalaâ€like structure in the zebrafish. European Journal of Neuroscience, 2014, 40, 3302-3315.	1.2	98
186	A Translational Neuroscience Approach to Understanding the Development of Social Anxiety Disorder and Its Pathophysiology. American Journal of Psychiatry, 2014, 171, 1162-1173.	4.0	156
187	Anxiety and Alcohol Use Disorders. , 2014, , 451-466.		4
188	Optogenetic Activation of Brainstem Serotonergic Neurons Induces Persistent Pain Sensitization. Molecular Pain, 2014, 10, 1744-8069-10-70.	1.0	73
189	Animal Models of Fear Relapse. ILAR Journal, 2014, 55, 246-258.	1.8	73
190	Optogenetic studies of nicotinic contributions to cholinergic signaling in the central nervous system. Reviews in the Neurosciences, 2014, 25, 755-71.	1.4	12
191	Anxiolytic function of the orexin 2/hypocretin A receptor in the basolateral amygdala. Psychoneuroendocrinology, 2014, 40, 17-26.	1.3	59
192	Adolescent social isolation enhances the plasmalemmal density of NMDA NR1 subunits in dendritic spines of principal neurons in the basolateral amygdala of adult mice. Neuroscience, 2014, 258, 174-183.	1.1	25
193	Algal photoreceptors: in vivo functions and potential applications. Planta, 2014, 239, 1-26.	1.6	104
194	Tools for Resolving Functional Activity and Connectivity within Intact Neural Circuits. Current Biology, 2014, 24, R41-R50.	1.8	51
195	Photoswitching Proteins. Methods in Molecular Biology, 2014, , .	0.4	7
196	Diet-induced obesity progressively alters cognition, anxiety-like behavior and lipopolysaccharide-induced depressive-like behavior: Focus on brain indoleamine 2,3-dioxygenase activation. Brain, Behavior, and Immunity, 2014, 41, 10-21.	2.0	190
197	Prefrontal Cortical Circuit for Depression- and Anxiety-Related Behaviors Mediated by Cholecystokinin: Role of ΔFosB. Journal of Neuroscience, 2014, 34, 3878-3887.	1.7	256
198	Attenuation of Reserpine-Induced Pain/Depression Dyad by Gentiopicroside Through Downregulation of CluN2B Receptors in the Amygdala of Mice. NeuroMolecular Medicine, 2014, 16, 350-359.	1.8	52
199	Advancing the discovery of medications for autism spectrum disorder using new technologies to reveal social brain circuitry in rodents. Psychopharmacology, 2014, 231, 1147-1165.	1.5	17
200	A Framework for Studying Emotions across Species. Cell, 2014, 157, 187-200.	13.5	434

#	Article	IF	CITATIONS
201	Nanotechnology and Neuroscience: Nano-electronic, Photonic and Mechanical Neuronal Interfacing. , 2014, , .		10
202	Excitatory/inhibitory equilibrium of the central amygdala nucleus gates anti-depressive and anxiolytic states in the hamster. Pharmacology Biochemistry and Behavior, 2014, 118, 79-86.	1.3	14
203	Glucocorticoid actions on synapses, circuits, and behavior: Implications for the energetics of stress. Frontiers in Neuroendocrinology, 2014, 35, 180-196.	2.5	232
204	Multiple Mechanistically Distinct Modes of Endocannabinoid Mobilization at Central Amygdala Glutamatergic Synapses. Neuron, 2014, 81, 1111-1125.	3.8	69
205	Optogenetics to study the circuits of fear- and depression-like behaviors: A critical analysis. Pharmacology Biochemistry and Behavior, 2014, 122, 144-157.	1.3	53
206	Chemogenetic Synaptic Silencing of Neural Circuits Localizes a Hypothalamus→Midbrain Pathway for Feeding Behavior. Neuron, 2014, 82, 797-808.	3.8	378
207	Control of Stress-Induced Persistent Anxiety by an Extra-Amygdala Septohypothalamic Circuit. Cell, 2014, 156, 522-536.	13.5	217
208	Optogenetic Brain Interfaces. IEEE Reviews in Biomedical Engineering, 2014, 7, 3-30.	13.1	76
209	Viral Vector Approaches in Neurobiology and Brain Diseases. Neuromethods, 2014, , .	0.2	0
210	Optical Imaging of Neocortical Dynamics. Neuromethods, 2014, , .	0.2	8
211	Amygdala Inputs to the Ventral Hippocampus Bidirectionally Modulate Social Behavior. Journal of Neuroscience, 2014, 34, 586-595.	1.7	397
212	Circuit dynamics of adaptive and maladaptive behaviour. Nature, 2014, 505, 309-317.	13.7	158
213	The participation of cortical amygdala in innate, odour-driven behaviour. Nature, 2014, 515, 269-273.	13.7	235
214	Pathological circuit function underlying addiction and anxiety disorders. Nature Neuroscience, 2014, 17, 1635-1643.	7.1	170
215	Simultaneous cellular-resolution optical perturbation and imaging of place cell firing fields. Nature Neuroscience, 2014, 17, 1816-1824.	7.1	315
216	β-catenin mediates stress resilience through Dicer1/microRNA regulation. Nature, 2014, 516, 51-55.	13.7	243
217	Optogenetic activation of presynaptic inputs in lateral amygdala forms associative fear memory. Learning and Memory, 2014, 21, 627-633.	0.5	48
218	Neuroscience of fear extinction: Implications for assessment and treatment of fear-based and anxiety related disorders. Behaviour Research and Therapy, 2014, 62, 17-23.	1.6	122

# 219	ARTICLE Noninvasive optical inhibition with a red-shifted microbial rhodopsin. Nature Neuroscience, 2014, 17, 1123-1129.	IF 7.1	CITATIONS
220	Central amygdala PKC-δ+ neurons mediate the influence of multiple anorexigenic signals. Nature Neuroscience, 2014, 17, 1240-1248.	7.1	302
221	Let There Be Light: A tutorial on optogenetics IEEE Pulse, 2014, 5, 55-59.	0.1	2
222	CAPON-nNOS coupling can serve as a target for developing new anxiolytics. Nature Medicine, 2014, 20, 1050-1054.	15.2	82
223	State-Dependent Architecture of Thalamic Reticular Subnetworks. Cell, 2014, 158, 808-821.	13.5	237
224	Optimization of AAV expression cassettes to improve packaging capacity and transgene expression in neurons. Molecular Brain, 2014, 7, 17.	1.3	128
225	Deciphering Memory Function with Optogenetics. Progress in Molecular Biology and Translational Science, 2014, 122, 341-390.	0.9	17
226	Optical Neural Interfaces. Annual Review of Biomedical Engineering, 2014, 16, 103-129.	5.7	170
227	Targeting the Modulation of Neural Circuitry for the Treatment of Anxiety Disorders. Pharmacological Reviews, 2014, 66, 1002-1032.	7.1	47
228	Optic Ataxia: From Balint's Syndrome to the Parietal Reach Region. Neuron, 2014, 81, 967-983.	3.8	112
229	Presynaptic adenosine A1 receptors modulate excitatory transmission in the rat basolateral amygdala. Neuropharmacology, 2014, 77, 465-474.	2.0	20
230	How the amygdala affects emotional memory by altering brain network properties. Neurobiology of Learning and Memory, 2014, 112, 2-16.	1.0	138
231	Alterations in Reward, Fear and Safety Cue Discrimination after Inactivation of the Rat Prelimbic and Infralimbic Cortices. Neuropsychopharmacology, 2014, 39, 2405-2413.	2.8	101
232	Suppression of bone marrow–derived microglia in the amygdala improves anxiety-like behavior induced by chronic partial sciatic nerve ligation in mice. Pain, 2014, 155, 1762-1772.	2.0	68
233	Adenosine through the A2A adenosine receptor increases IL- $1\hat{l}^2$ in the brain contributing to anxiety. Brain, Behavior, and Immunity, 2014, 41, 218-231.	2.0	37
234	Progress in understanding mood disorders: optogenetic dissection of neural circuits. Genes, Brain and Behavior, 2014, 13, 38-51.	1.1	86
235	Fear but not fright: re-evaluating traumatic experience attenuates anxiety-like behaviors after fear conditioning. Frontiers in Behavioral Neuroscience, 2014, 8, 279.	1.0	13
236	Distributed circuits underlying anxiety. Frontiers in Behavioral Neuroscience, 2014, 8, 112.	1.0	174

#	Article	IF	CITATIONS
237	Control of Cells Function by Optogenetics. Nippon Laser Igakkaishi, 2014, 34, 394-401.	0.0	0
238	Time-reversal optical focusing for biophotonics applications. Proceedings of SPIE, 2014, , .	0.8	0
239	Reversal of deficits in dendritic spines, BDNF and Arc expression in the amygdala during alcohol dependence by HDAC inhibitor treatment. International Journal of Neuropsychopharmacology, 2014, 17, 313-322.	1.0	86
240	On emotion-cognition integration: The effect of happy and sad moods on language comprehension. Behavioral and Brain Sciences, 2015, 38, e73.	0.4	2
241	Integration of cognition and emotion in physical and mental actions in musical and other behaviors. Behavioral and Brain Sciences, 2015, 38, e76.	0.4	9
242	How arousal influences neural competition: What dual competition does not explain. Behavioral and Brain Sciences, 2015, 38, e77.	0.4	3
243	The cognitive-emotional brain is an embodied and social brain. Behavioral and Brain Sciences, 2015, 38, e78.	0.4	2
244	Behavioral evidence for a continuous approach to the perception of emotionally valenced stimuli. Behavioral and Brain Sciences, 2015, 38, e79.	0.4	2
245	United we stand, divided we fall: Cognition, emotion, and the <i>moral link</i> between them. Behavioral and Brain Sciences, 2015, 38, e80.	0.4	3
246	Surprise as an ideal case for the interplay of cognition and emotion. Behavioral and Brain Sciences, 2015, 38, e74.	0.4	3
247	Models for cognition and emotion: Evolutionary and linguistic considerations. Behavioral and Brain Sciences, 2015, 38, e81.	0.4	0
248	On theory integration: Toward developing affective components within cognitive architectures. Behavioral and Brain Sciences, 2015, 38, e82.	0.4	0
249	Neuropsychology still needs to model organismic processes "from withinâ€: Behavioral and Brain Sciences, 2015, 38, e83.	0.4	9
250	When emotion and cognition do (not) work together: Delusions as emotional and executive dysfunctions. Behavioral and Brain Sciences, 2015, 38, e84.	0.4	5
251	Active inference and cognitive-emotional interactions in the brain. Behavioral and Brain Sciences, 2015, 38, e85.	0.4	18
252	The cognitive-emotional brain: Opportunitvnies and challenges for understanding neuropsychiatric disorders. Behavioral and Brain Sciences, 2015, 38, e86.	0.4	15
253	Strengthening emotion-cognition integration. Behavioral and Brain Sciences, 2015, 38, e87.	0.4	2
254	Social theory and the cognitive-emotional brain. Behavioral and Brain Sciences, 2015, 38, e88.	0.4	2

		CITATION RE	PORT	
#	Article		IF	CITATIONS
255	Precision about the automatic emotional brain. Behavioral and Brain Sciences, 2015, 3	8, e89.	0.4	1
256	Preferences and motivations with and without inferences. Behavioral and Brain Scienc	es, 2015, 38, e90.	0.4	1
257	The cognitive-emotional amalgam. Behavioral and Brain Sciences, 2015, 38, e91.		0.4	21
258	Cognition as the tip of the emotional iceberg: A neuro-evolutionary perspective. Behav Sciences, 2015, 38, e72.	ioral and Brain	0.4	1
259	Enactive neuroscience, the direct perception hypothesis, and the socially extended min and Brain Sciences, 2015, 38, e75.	nd. Behavioral	0.4	11
260	Gene Targeting in Neuroendocrinology. , 2015, 5, 1645-1676.			17
262	Temporal Dynamics of Anxiety Phenotypes in a Dental Pulp Injury Model. Molecular Pa s12990-015-0040.	in, 2015, 11,	1.0	20
263	The ecology of human fear: survival optimization and the nervous system. Frontiers in 2015, 9, 55.	Neuroscience,	1.4	255
264	A retrograde adeno-associated virus for collecting ribosome-bound mRNA from anator projection neurons. Frontiers in Molecular Neuroscience, 2015, 8, 56.	nically defined	1.4	12
265	A Framework for Understanding the Emerging Role of Corticolimbic-Ventral Striatal Ne OCD-Associated Repetitive Behaviors. Frontiers in Systems Neuroscience, 2015, 9, 17	tworks in 1.	1.2	73
266	A genetic link between discriminative fear coding by the lateral amygdala, dopamine, a generalization. ELife, 2015, 4, .	nd fear	2.8	23
268	Postsynaptic Adenosine A2A Receptors Modulate Intrinsic Excitability of Pyramidal Cel Basolateral Amygdala. International Journal of Neuropsychopharmacology, 2015, 18, .	ls in the Rat	1.0	21
269	Maternal Style Selectively Shapes Amygdalar Development and Social Behavior in Rats Prone to High Anxiety. Developmental Neuroscience, 2015, 37, 203-214.	Genetically	1.0	33
270	Serotype-dependent transduction efficiencies of recombinant adeno-associated viral v monkey neocortex. Neurophotonics, 2015, 2, 031209.	ectors in	1.7	43
271	Neuronal and behavioural modulations by pathway-selective optogenetic stimulation of oculomotor system. Nature Communications, 2015, 6, 8378.	of the primate	5.8	78
272	Sweet and bitter taste in the brain of awake behaving animals. Nature, 2015, 527, 512	-515.	13.7	179
273	Ventromedial prefrontal cortex damage alters resting blood flow to the bed nucleus of terminalis. Cortex, 2015, 64, 281-288.	stria	1.1	46
274	Impaired acquisition of classically conditioned fear-potentiated startle reflexes in huma bilateral basolateral amygdala damage. Social Cognitive and Affective Neuroscience, 2	ans with focal 015, 10, 1161-1168.	1.5	65

#	Article	IF	CITATIONS
275	Novel metabotropic glutamate receptor 4 and glutamate receptor 8 therapeutics for the treatment of anxiety. Expert Opinion on Investigational Drugs, 2015, 24, 519-528.	1.9	12
276	Central role for the insular cortex in mediating conditioned responses to anticipatory cues. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 1190-1195.	3.3	92
277	Daytime spikes in dopaminergic activity drive rapid mood-cycling in mice. Molecular Psychiatry, 2015, 20, 1406-1419.	4.1	117
278	From circuits to behaviour in the amygdala. Nature, 2015, 517, 284-292.	13.7	1,508
279	Optogenetic Stimulation of Accumbens Shell or Shell Projections to Lateral Hypothalamus Produce Differential Effects on the Motivation for Cocaine. Journal of Neuroscience, 2015, 35, 3537-3543.	1.7	37
280	Corticotropin-Releasing Hormone Drives Anandamide Hydrolysis in the Amygdala to Promote Anxiety. Journal of Neuroscience, 2015, 35, 3879-3892.	1.7	196
281	Processing of visually evoked innate fear by a non-canonical thalamic pathway. Nature Communications, 2015, 6, 6756.	5.8	260
282	Manipulating neural activity in physiologically classified neurons: triumphs and challenges. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370, 20140216.	1.8	12
283	Prefrontal inputs to the amygdala instruct fear extinction memory formation. Science Advances, 2015, 1, .	4.7	181
284	Making Sense of Optogenetics. International Journal of Neuropsychopharmacology, 2015, 18, pyv079.	1.0	112
285	Adult attachment style modulates neural responses in a mentalizing task. Neuroscience, 2015, 303, 462-473.	1.1	38
286	Contemporary approaches to neural circuit manipulation and mapping: focus on reward and addiction. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370, 20140210.	1.8	30
287	Activation of GPR30 attenuates chronic pain-related anxiety in ovariectomized mice. Psychoneuroendocrinology, 2015, 53, 94-107.	1.3	46
288	Increased Basolateral Amygdala Pyramidal Cell Excitability May Contribute to the Anxiogenic Phenotype Induced by Chronic Early-Life Stress. Journal of Neuroscience, 2015, 35, 9730-9740.	1.7	109
289	Nuance and behavioral cogency: How the Visible Burrow System inspired the Stress-Alternatives Model and conceptualization of the continuum of anxiety. Physiology and Behavior, 2015, 146, 86-97.	1.0	21
290	Anxiety is correlated with running in adolescent female mice undergoing activity-based anorexia Behavioral Neuroscience, 2015, 129, 170-182.	0.6	58
291	Self-reported impulsivity is negatively correlated with amygdalar volumes in cocaine dependence. Psychiatry Research - Neuroimaging, 2015, 233, 212-217.	0.9	11
292	Anhedonia and the Brain Reward Circuitry in Depression. Current Behavioral Neuroscience Reports, 2015, 2, 146-153.	0.6	164

#	Article	IF	CITATIONS
293	Persistent Adaptations in Afferents to Ventral Tegmental Dopamine Neurons after Opiate Withdrawal. Journal of Neuroscience, 2015, 35, 10290-10303.	1.7	74
294	CRH Engagement of the Locus Coeruleus Noradrenergic System Mediates Stress-Induced Anxiety. Neuron, 2015, 87, 605-620.	3.8	451
295	Modeling the Spatiotemporal Dynamics of Light and Heat Propagation for InÂVivo Optogenetics. Cell Reports, 2015, 12, 525-534.	2.9	315
296	Chronic stress and brain plasticity: Mechanisms underlying adaptive and maladaptive changes and implications for stress-related CNS disorders. Neuroscience and Biobehavioral Reviews, 2015, 58, 79-91.	2.9	177
297	Breathing Inhibited When Seizures Spread to the Amygdala and upon Amygdala Stimulation. Journal of Neuroscience, 2015, 35, 10281-10289.	1.7	180
298	Piezoelectric Nanoparticle-Assisted Wireless Neuronal Stimulation. ACS Nano, 2015, 9, 7678-7689.	7.3	236
299	Neural Representations of Unconditioned Stimuli in Basolateral Amygdala Mediate Innate and Learned Responses. Cell, 2015, 162, 134-145.	13.5	192
300	The Amygdala and Social Perception. , 2015, , 91-96.		1
301	Anxiolytic efficacy of repeated oral capsaicin in rats with partial aberration of oral sensory relay to brain. Archives of Oral Biology, 2015, 60, 989-997.	0.8	5
302	Conditional neuroligin-2 knockout in adult medial prefrontal cortex links chronic changes in synaptic inhibition to cognitive impairments. Molecular Psychiatry, 2015, 20, 850-859.	4.1	95
303	A circuit mechanism for differentiating positive and negative associations. Nature, 2015, 520, 675-678.	13.7	478
304	Selective information routing by ventral hippocampal CA1 projection neurons. Science, 2015, 348, 560-563.	6.0	283
305	Mechanistic origins of bombardier beetle (Brachinini) explosion-induced defensive spray pulsation. Science, 2015, 348, 563-567.	6.0	63
306	Ethanol and corticotropin releasing factor receptor modulation of central amygdala neurocircuitry: An update and future directions. Alcohol, 2015, 49, 179-184.	0.8	22
307	The nature of individual differences in inhibited temperament and risk for psychiatric disease: A review and meta-analysis. Progress in Neurobiology, 2015, 127-128, 23-45.	2.8	70
308	Effects of testosterone and estradiol on anxiety and depressive-like behavior via a non-genomic pathway. Neuroscience Bulletin, 2015, 31, 288-296.	1.5	34
309	Properties of the primary somatosensory cortex projection to the primary motor cortex in the mouse. Journal of Neurophysiology, 2015, 113, 2400-2407.	0.9	69
310	Neuronal circuits for fear and anxiety. Nature Reviews Neuroscience, 2015, 16, 317-331.	4.9	1,317

#	Article	IF	Citations
311	In vivo Optogenetic Stimulation of the Rodent Central Nervous System. Journal of Visualized Experiments, 2015, , 51483.	0.2	17
312	Increased GABAergic Efficacy of Central Amygdala Projections to Neuropeptide S Neurons in the Brainstem During Fear Memory Retrieval. Neuropsychopharmacology, 2015, 40, 2753-2763.	2.8	24
313	Activation of 5-HT1A receptors in the medial subdivision of the central nucleus of the amygdala produces anxiolytic effects in a rat model of Parkinson's disease. Neuropharmacology, 2015, 95, 181-191.	2.0	32
314	Principles of designing interpretable optogenetic behavior experiments. Learning and Memory, 2015, 22, 232-238.	0.5	110
315	Advancing Fear Memory Research with Optogenetics. , 2015, , 139-165.		0
316	Collateral Pathways from the Ventromedial Hypothalamus Mediate Defensive Behaviors. Neuron, 2015, 85, 1344-1358.	3.8	232
317	Closed-Loop and Activity-Guided Optogenetic Control. Neuron, 2015, 86, 106-139.	3.8	328
318	Opioid Inhibition of Intercalated Input to the Central Amygdala. Journal of Neuroscience, 2015, 35, 13272-13274.	1.7	1
319	Habenula Lesions Reveal that Multiple Mechanisms Underlie Dopamine Prediction Errors. Neuron, 2015, 87, 1304-1316.	3.8	143
320	Resolving the neural circuits of anxiety. Nature Neuroscience, 2015, 18, 1394-1404.	7.1	504
321	A tonic for anxiety. Nature Neuroscience, 2015, 18, 1434-1435.	7.1	0
322	Explaining the especially pink elephant. Nature Neuroscience, 2015, 18, 1435-1436.	7.1	1
323	Optogenetics. , 2015, , 268-273.		1
324	Basomedial amygdala mediates top-down control of anxiety and fear. Nature, 2015, 527, 179-185.	13.7	399
325	Cortical and Subcortical Contributions to Short-Term Memory for Orienting Movements. Neuron, 2015, 88, 367-377.	3.8	106
326	GABAergic control of the activity of the central nucleus of the amygdala in low- and high-anxiety rats. Neuropharmacology, 2015, 99, 566-576.	2.0	13
327	Structural and functional characterization of dendritic arbors and GABAergic synaptic inputs on interneurons and principal cells in the rat basolateral amygdala. Journal of Neurophysiology, 2015, 114, 942-957.	0.9	32
328	Optogenetics: 10 years of microbial opsins in neuroscience. Nature Neuroscience, 2015, 18, 1213-1225.	7.1	1,029

# 329	ARTICLE Regulating anxiety with extrasynaptic inhibition. Nature Neuroscience, 2015, 18, 1493-1500.	IF 7.1	Citations
330	Neuronal correlates of depression. Cellular and Molecular Life Sciences, 2015, 72, 4825-4848.	2.4	101
331	Glucagon-like peptide-2-induced memory improvement and anxiolytic effects in mice. Neuropeptides, 2015, 49, 7-14.	0.9	20
332	The Central Amygdala as an Integrative Hub for Anxiety and Alcohol Use Disorders. Biological Psychiatry, 2015, 77, 859-869.	0.7	353
333	Optogenetic control of astrocytes: Is it possible to treat astrocyte-related epilepsy?. Brain Research Bulletin, 2015, 110, 20-25.	1.4	24
334	Amygdala NRG1–ErbB4 Is Critical for the Modulation of Anxiety-Like Behaviors. Neuropsychopharmacology, 2015, 40, 974-986.	2.8	65
335	The Hypocretin/Orexin System: An Increasingly Important Role in Neuropsychiatry. Medicinal Research Reviews, 2015, 35, 152-197.	5.0	64
336	Automated volumetry of the mesiotemporal structures in antibody-associated limbic encephalitis. Journal of Neurology, Neurosurgery and Psychiatry, 2015, 86, 735-742.	0.9	57
337	Illuminating circuitry relevant to psychiatric disorders with optogenetics. Current Opinion in Neurobiology, 2015, 30, 9-16.	2.0	76
338	Monoamine-Sensitive Developmental Periods Impacting Adult Emotional and Cognitive Behaviors. Neuropsychopharmacology, 2015, 40, 88-112.	2.8	128
339	Anterograde Viral Tracer Methods. , 2016, , 203-218.		1
340	Fundamentals of Functional Neuroimaging. , 0, , 41-73.		3
341	Patterns of Theta Activity in Limbic Anxiety Circuit Preceding Exploratory Behavior in Approach-Avoidance Conflict. Frontiers in Behavioral Neuroscience, 2016, 10, 171.	1.0	47
342	Local Optogenetic Induction of Fast (20–40 Hz) Pyramidal-Interneuron Network Oscillations in the In Vitro and In Vivo CA1 Hippocampus: Modulation by CRF and Enforcement of Perirhinal Theta Activity. Frontiers in Cellular Neuroscience, 2016, 10, 108.	1.8	7
343	Estimating Neural Background Input with Controlled and Fast Perturbations: A Bandwidth Comparison between Inhibitory Opsins and Neural Circuits. Frontiers in Neural Circuits, 2016, 10, 58.	1.4	3
344	Cortical-Subcortical Interactions in Depression: From Animal Models to Human Psychopathology. Frontiers in Systems Neuroscience, 2016, 10, 20.	1.2	59
346	Adult microbiotaâ€deficient mice have distinct dendritic morphological changes: differential effects in the amygdala and hippocampus. European Journal of Neuroscience, 2016, 44, 2654-2666.	1.2	263
347	Specific Targeting of the Basolateral Amygdala to Projectionally Defined Pyramidal Neurons in Prelimbic and Infralimbic Cortex. ENeuro, 2016, 3, ENEURO.0002-16.2016.	0.9	76

#	Article	IF	CITATIONS
348	Pituitary adenylate cyclase-activating polypeptide (PACAP) in the central nucleus of the amygdala induces anxiety via melanocortin receptors. Psychopharmacology, 2016, 233, 3269-3277.	1.5	37
349	The Amygdala and Fear. , 2016, , 305-310.		0
350	Neurogenesis and anxietyâ€like behavior in male California mice during the mate's postpartum period. European Journal of Neuroscience, 2016, 43, 703-709.	1.2	29
351	What's in a Name? Roles of <scp>RF</scp> amideâ€Related Peptides Beyond Gonadotrophin Inhibition. Journal of Neuroendocrinology, 2016, 28, .	1.2	5
352	The role of inositol 1,4,5-trisphosphate 3-kinase A in regulating emotional behavior and amygdala function. Scientific Reports, 2016, 6, 23757.	1.6	11
353	Overview on Research and Clinical Applications of Optogenetics. Current Protocols in Pharmacology, 2016, 75, 11.19.1-11.19.21.	4.0	19
354	Divergent Routing of Positive and Negative Information from the Amygdala during Memory Retrieval. Neuron, 2016, 90, 348-361.	3.8	307
355	Optogenetic Interrogation of Functional Synapse Formation by Corticospinal Tract Axons in the Injured Spinal Cord. Journal of Neuroscience, 2016, 36, 5877-5890.	1.7	44
356	Is increased antidepressant exposure a contributory factor to the obesity pandemic?. Translational Psychiatry, 2016, 6, e759-e759.	2.4	105
357	Arborization patterns of amygdalopetal axons from the rat ventral pallidum. Brain Structure and Function, 2016, 221, 4549-4573.	1.2	2
358	Summaries of plenary, symposia, and oral sessions at the XXII World Congress of Psychiatric Genetics, Copenhagen, Denmark, 12–16 October 2014. Psychiatric Genetics, 2016, 26, 1-47.	0.6	0
359	Neuronal correlates of sustained fear in the anterolateral part of the bed nucleus of stria terminalis. Neurobiology of Learning and Memory, 2016, 131, 137-146.	1.0	32
360	Mirtazapine exerts an anxiolytic-like effect through activation of the median raphe nucleus-dorsal hippocampal 5-HT pathway in contextual fear conditioning in rats. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2016, 70, 17-23.	2.5	14
361	Mesolimbic neuropeptide W coordinates stress responses under novel environments. Proceedings of the United States of America, 2016, 113, 6023-6028.	3.3	10
362	Dynorphin Controls the Gain of an Amygdalar Anxiety Circuit. Cell Reports, 2016, 14, 2774-2783.	2.9	134
363	Cholinergic Signaling Controls Conditioned Fear Behaviors and Enhances Plasticity of Cortical-Amygdala Circuits. Neuron, 2016, 90, 1057-1070.	3.8	173
364	Targeting Neural Circuits. Cell, 2016, 165, 524-534.	13.5	148
365	Activation of corticotropin releasing factor-containing neurons in the rat central amygdala and bed nucleus of the stria terminalis following exposure to two different anxiogenic stressors. Behavioural Brain Research, 2016, 304, 92-101.	1.2	44

#	Article	IF	CITATIONS
366	Amygdala EphB2 Signaling Regulates Glutamatergic Neuron Maturation and Innate Fear. Journal of Neuroscience, 2016, 36, 10151-10162.	1.7	17
367	Dispositional negativity: An integrative psychological and neurobiological perspective Psychological Bulletin, 2016, 142, 1275-1314.	5.5	176
368	Human amygdala engagement moderated by early life stress exposure is a biobehavioral target for predicting recovery on antidepressants. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 11955-11960.	3.3	50
369	Translational neuroscience of basolateral amygdala lesions: Studies of urbachâ€wiethe disease. Journal of Neuroscience Research, 2016, 94, 504-512.	1.3	24
370	Bridging the Gap : Towards a cell-type specific understanding of neural circuits underlying fear behaviors. Neurobiology of Learning and Memory, 2016, 135, 27-39.	1.0	41
371	Neural correlates of interactions between cannabidiol and Δ ⁹ â€ŧetrahydrocannabinol in mice: implications for medical cannabis. British Journal of Pharmacology, 2016, 173, 53-65.	2.7	68
373	Anxiety response and restraint-induced stress differentially affect ethanol intake in female adolescent rats. Neuroscience, 2016, 334, 259-274.	1.1	26
374	Emotional arousal state influences the ability of amygdalar endocannabinoid signaling to modulate anxiety. Neuropharmacology, 2016, 111, 59-69.	2.0	58
375	Opposite monosynaptic scaling of BLP–vCA1 inputs governs hopefulness- and helplessness-modulated spatial learning and memory. Nature Communications, 2016, 7, 11935.	5.8	71
376	Strategies for targeting primate neural circuits with viral vectors. Journal of Neurophysiology, 2016, 116, 122-134.	0.9	34
377	Stress-Induced Reinstatement of Nicotine Preference Requires Dynorphin/Kappa Opioid Activity in the Basolateral Amygdala. Journal of Neuroscience, 2016, 36, 9937-9948.	1.7	49
378	Optogenetic Approaches to Neural Circuit Analysis in the Mammalian Brain. , 2016, , 221-231.		2
379	Deep brain stimulation in the central nucleus of the amygdala decreases â€~wanting' and â€~liking' of foor rewards. European Journal of Neuroscience, 2016, 44, 2431-2445.	d 1.2	19
380	Lâ€ŧype Ca ²⁺ channels in mood, cognition and addiction: integrating human and rodent studies with a focus on behavioural endophenotypes. Journal of Physiology, 2016, 594, 5823-5837.	1.3	58
381	Parvalbumin Interneurons of Central Amygdala Regulate the Negative Affective States and the Expression of Corticotrophin-Releasing Hormone During Morphine Withdrawal. International Journal of Neuropsychopharmacology, 2016, 19, pyw060.	1.0	26
382	Optogenetic activation of serotonergic terminals facilitates GABAergic inhibitory input to orexin/hypocretin neurons. Scientific Reports, 2016, 6, 36039.	1.6	34
383	Dopamine and Sleep. , 2016, , .		2
384	SCOP/PHLPP1β in the basolateral amygdala regulates circadian expression of mouse anxiety-like behavior. Scientific Reports, 2016, 6, 33500.	1.6	13

		CITATION REPORT		
#	ARTICLE		IF	CITATIONS
385	Prospects for Therapeutic Application of Optogenetics. Nippon Laser Igakkaishi, 2016,	36, 482-488.	0.0	0
386	Early life stress induces sexâ€dependent increases in phosphorylated extracellular sign kinase in brains of mice with neuropathic pain. European Journal of Pain, 2016, 20, 134	alâ€regulated 46-1356.	1.4	12
387	The intercalated nuclear complex of the primate amygdala. Neuroscience, 2016, 330, 2	267-290.	1.1	42
388	Activation of protein kinase A in the amygdala modulates anxiety-like behaviors in soci exposed mice. Molecular Brain, 2016, 9, 3.	al defeat	1.3	28
389	Where are multisensory signals combined for perceptual decision-making?. Current Op Neurobiology, 2016, 40, 31-37.	pinion in	2.0	85
390	Basolateral amygdala projections to ventral hippocampus modulate the consolidation but not contextual, learning in rats. Learning and Memory, 2016, 23, 51-60.	of footshock,	0.5	53
391	2-arachidonoylglycerol signaling impairs short-term fear extinction. Translational Psych e749-e749.	niatry, 2016, 6,	2.4	54
392	Panic Anxiety in Humans with Bilateral Amygdala Lesions: Pharmacological Induction v Cardiorespiratory Interoceptive Pathways. Journal of Neuroscience, 2016, 36, 3559-35	ia 66.	1.7	52
393	Imagerie cérébrale et déconstruction de l'esprit. Evolution Psychiatrique, 20	016, 81, 381-404.	0.1	1
394	Increasing brain angiotensin converting enzyme 2 activity decreases anxiety-like behavely by activating central Mas receptors. Neuropharmacology, 2016, 105, 114-123.	vior in male mice	2.0	91
395	Dopamine D2 receptors gate generalization of conditioned threat responses through i signaling in the extended amygdala. Molecular Psychiatry, 2016, 21, 1545-1553.	nTORC1	4.1	84
396	Direct Ventral Hippocampal-Prefrontal Input Is Required for Anxiety-Related Neural Act Behavior. Neuron, 2016, 89, 857-866.	ivity and	3.8	343
397	A thalamic input to the nucleus accumbens mediates opiate dependence. Nature, 201	6, 530, 219-222.	13.7	308
398	Biophysical constraints of optogenetic inhibition at presynaptic terminals. Nature Neu 19, 554-556.	roscience, 2016,	7.1	317
399	Deep Brain Stimulation in Animal Models of Fear, Anxiety, and Posttraumatic Stress Di Neuropsychopharmacology, 2016, 41, 2810-2817.	sorder.	2.8	49
400	Brain imaging and the deconstruction of mind. Evolution Psychiatrique, 2016, 81, e1-e	24.	0.1	0
401	Architectural Representation of Valence in the Limbic System. Neuropsychopharmacol 1697-1715.	ogy, 2016, 41,	2.8	110
402	An Emerging Technology Framework for the Neurobiology of Appetite. Cell Metabolisr 234-253.	n, 2016, 23,	7.2	48

#	Article	IF	CITATIONS
403	Chemogenetic and Optogenetic Activation of Gαs Signaling in the Basolateral Amygdala Induces Acute and Social Anxiety-Like States. Neuropsychopharmacology, 2016, 41, 2011-2023.	2.8	38
404	Divergent responses of inflammatory mediators within the amygdala and medial prefrontal cortex to acute psychological stress. Brain, Behavior, and Immunity, 2016, 51, 70-91.	2.0	33
405	Cocaine-conditioned place preference is predicted by previous anxiety-like behavior and is related to an increased number of neurons in the basolateral amygdala. Behavioural Brain Research, 2016, 298, 35-43.	1.2	16
406	Neuroligin 2 deletion alters inhibitory synapse function and anxiety-associated neuronal activation in the amygdala. Neuropharmacology, 2016, 100, 56-65.	2.0	50
407	Intensity of anxiety is modified via complex integrative stress circuitries. Psychoneuroendocrinology, 2016, 63, 351-361.	1.3	22
408	Optogenetics enlightens neuroscience drug discovery. Nature Reviews Drug Discovery, 2016, 15, 97-109.	21.5	50
409	Somatostatin receptor subtype 4 activation is involved in anxiety and depression-like behavior in mouse models. Neuropharmacology, 2016, 101, 204-215.	2.0	40
410	Neuroimaging of Fear-Associated Learning. Neuropsychopharmacology, 2016, 41, 320-334.	2.8	111
411	The fiber-optic imaging and manipulation of neural activity during animal behavior. Neuroscience Research, 2016, 103, 1-9.	1.0	64
412	Bidirectional modulation of anxiety-related and social behaviors by amygdala projections to the medial prefrontal cortex. Neuroscience, 2016, 321, 197-209.	1.1	300
413	Of Mice, Men, and Microbial Opsins: How Optogenetics Can Help Hone Mouse Models of Mental Illness. Biological Psychiatry, 2016, 79, 47-52.	0.7	20
414	Animal models of major depression and their clinical implications. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2016, 64, 293-310.	2.5	276
415	Curiosity as an approach to ethoexperimental analysis: Behavioral neuroscience as seen by students and colleagues of Bob Blanchard. Neuroscience and Biobehavioral Reviews, 2017, 76, 415-422.	2.9	5
416	Localization of the delta opioid receptor and corticotropin-releasing factor in the amygdalar complex: role in anxiety. Brain Structure and Function, 2017, 222, 1007-1026.	1.2	16
417	Pattern of distribution of serotonergic fibers to the amygdala and extended amygdala in the rat. Journal of Comparative Neurology, 2017, 525, 116-139.	0.9	21
418	Constitutive Increases in Amygdalar Corticotropin-Releasing Factor and Fatty Acid Amide Hydrolase Drive an Anxious Phenotype. Biological Psychiatry, 2017, 82, 500-510.	0.7	65
419	Acute Stress Shapes Synaptic Inhibition within an Amygdala Microcircuit. Journal of Neuroscience, 2017, 37, 474-476.	1.7	0
420	Control of Amygdala Circuits by 5-HT Neurons via 5-HT and Glutamate Cotransmission. Journal of Neuroscience, 2017, 37, 1785-1796.	1.7	99

ARTICLE IF CITATIONS # Selective contribution of the telencephalic arcopallium to the social facilitation of foraging efforts 421 1.2 33 in the domestic chick. European Journal of Neuroscience, 2017, 45, 365-380. NMDA-receptor-dependent plasticity in the bed nucleus of the stria terminalis triggers long-term 422 5.8 39 anxiolysis. Nature Communications, 2017, 8, 14456. 423 Navigating the Neural Space in Search of the Neural Code. Neuron, 2017, 93, 1003-1014. 3.8 205 Higher susceptibility of somatostatin 4 receptor gene-deleted mice to chronic stress-induced 424 1.1 behavioral and neuroendocrine alterations. Neuroscience, 2017, 346, 320-336. Effect of diazepam and yohimbine on neuronal activity in sham and hemiparkinsonian rats. 426 1.1 8 Neuroscience, 2017, 351, 71-83. The human amygdala parametrically encodes the intensity of specific facial emotions and their categorical ambiguity. Nature Communications, 2017, 8, 14821. 5.8 Amygdala inputs to prefrontal cortex guide behavior amid conflicting cues of reward and 428 7.1 235 punishment. Nature Neuroscience, 2017, 20, 824-835. Divergent functions of the left and right central amygdala in visceral nociception. Pain, 2017, 158, 429 2.0 747-759. Microbial Proteins as Novel Industrial Biotechnology Hosts to Treat Epilepsy. Molecular 430 1.9 8 Neurobiology, 2017, 54, 8211-8224. Resting-state connectivity biomarkers define neurophysiological subtypes of depression. Nature 15.2 1,554 Medicine, 2017, 23, 28-38. Studying brain-regulation of immunity with optogenetics and chemogenetics; A new experimental 432 7 2.0 platform. Brain, Behavior, and Immunity, 2017, 65, 1-8. Anxiety and Nicotine Dependence: Emerging Role of the Habenulo-Interpeduncular Axis. Trends in 4.0 Pharmacological Sciences, 2017, 38, 169-180. Targeted and efficient activation of channelrhodopsins expressed in living cells via specifically-bound 434 2.8 27 upconversion nanoparticles. Nanoscale, 2017, 9, 9457-9466. Optogenetics Research in Behavioral Neuroscience: Insights into the Brain Basis of Reward Learning and Goal-directed Behavior., 0,, 276-291. Melanocortin-4 receptor regulation of pain. Biochimica Et Biophysica Acta - Molecular Basis of 436 1.8 15 Disease, 2017, 1863, 2515-2522. Brief Optogenetic Inhibition of the Basolateral Amygdala (BLA) in Mice Alters Effects of Stressful Experiences on Rapid Eye Movement Sleep (REM). Sleep, 2017, 40, . Integration of optogenetics with complementary methodologies in systems neuroscience. Nature 438 4.9 562 Reviews Neuroscience, 2017, 18, 222-235. Sex differences in responses of the basolateral-central amygdala circuit to alcohol, corticosterone 439 and their interaction. Neuropharmacology, 2017, 114, 123-134.

#	ARTICLE	IF	CITATIONS
440	Phosphodiesterase-7 inhibition affects accumbal and hypothalamic thyrotropin-releasing hormone expression, feeding and anxiety behavior of rats. Behavioural Brain Research, 2017, 319, 165-173.	1.2	18
441	Differential Recruitment of Competing Valence-Related Amygdala Networks during Anxiety. Neuron, 2017, 96, 81-88.e5.	3.8	51
442	Optogenetic Modulation of Intracellular Signalling and Transcription: Focus on Neuronal Plasticity. Journal of Experimental Neuroscience, 2017, 11, 117906951770335.	2.3	21
443	Synapse-specific astrocyte gating of amygdala-related behavior. Nature Neuroscience, 2017, 20, 1540-1548.	7.1	228
444	Impaired extinction of cued fear memory and abnormal dendritic morphology in the prelimbic and infralimbic cortices in VPAC2 receptor (VIPR2)-deficient mice. Neurobiology of Learning and Memory, 2017, 145, 222-231.	1.0	20
445	Recent advances in patterned photostimulation for optogenetics. Journal of Optics (United Kingdom), 2017, 19, 113001.	1.0	79
446	Distinct neuronal populations in the basolateral and central amygdala are activated with acute pain, conditioned fear, and fear-conditioned analgesia. Neuroscience Letters, 2017, 661, 11-17.	1.0	24
447	Serotonin gating of cortical and thalamic glutamate inputs onto principal neurons of the basolateral amygdala. Neuropharmacology, 2017, 126, 224-232.	2.0	19
448	Scanning for Justice With Functional Magnetic Resonance Imaging. Biological Psychiatry, 2017, 82, e23-e24.	0.7	1
449	Optogenetic Central Amygdala Stimulation Intensifies and Narrows Motivation for Cocaine. Journal of Neuroscience, 2017, 37, 8330-8348.	1.7	106
450	Amygdalar Endothelin-1 Regulates Pyramidal Neuron Excitability and Affects Anxiety. Scientific Reports, 2017, 7, 2316.	1.6	12
451	Understanding Mood Disorders Using Electrophysiology and Circuit Breaking. , 2017, , 343-370.		0
452	Silencing Neurons: Tools, Applications, and Experimental Constraints. Neuron, 2017, 95, 504-529.	3.8	263
453	Abnormal functional connectivity of the amygdala in first-episode and untreated adult major depressive disorder patients with different ages of onset. NeuroReport, 2017, 28, 214-221.	0.6	8
454	Q&A: How can advances in tissue clearing and optogenetics contribute to our understanding of normal and diseased biology?. BMC Biology, 2017, 15, 87.	1.7	8
455	Nonhuman Primate Optogenetics: Recent Advances and Future Directions. Journal of Neuroscience, 2017, 37, 10894-10903.	1.7	111
456	The role of 5-HT receptors in depression. Molecular Brain, 2017, 10, 28.	1.3	303
457	Oxytocin in the medial prefrontal cortex attenuates anxiety: Anatomical and receptor specificity and mechanism of action. Neuropharmacology, 2017, 125, 1-12.	2.0	56

#	Article	IF	CITATIONS
458	The mouse pulvinar nucleus: Organization of the tectorecipient zones. Visual Neuroscience, 2017, 34, E011.	0.5	84
459	Corticolimbic regulation of cardiovascular responses to stress. Physiology and Behavior, 2017, 172, 49-59.	1.0	78
460	Oxytocin attenuates aversive response to nicotine and anxiety-like behavior in adolescent rats. Neuroscience Research, 2017, 115, 29-36.	1.0	15
461	Dynamic Networks in the Emotional Brain. Neuroscientist, 2017, 23, 383-396.	2.6	36
462	CRF receptor type 2 neurons in the posterior bed nucleus of the stria terminalis critically contribute to stress recovery. Molecular Psychiatry, 2017, 22, 1691-1700.	4.1	67
463	Selective amotivation deficits following chronic psychosocial stress in mice. Behavioural Brain Research, 2017, 317, 424-433.	1.2	8
464	D1-like dopamine receptor dysfunction in the lateral habenula nucleus increased anxiety-like behavior in rat. Neuroscience, 2017, 340, 542-550.	1.1	22
465	Enhanced cued fear memory following post-training whole body irradiation of 3-month-old mice. Behavioural Brain Research, 2017, 319, 181-187.	1.2	4
466	Loss of Adenylyl Cyclase Type-5 in the Dorsal Striatum Produces Autistic-Like Behaviors. Molecular Neurobiology, 2017, 54, 7994-8008.	1.9	32
467	Cell―and regionâ€specific expression of depressionâ€related protein p11 (S100a10) in the brain. Journal of Comparative Neurology, 2017, 525, 955-975.	0.9	37
468	Pharmacogenetic reactivation of the original engram evokes an extinguished fear memory. Neuropharmacology, 2017, 113, 1-9.	2.0	14
469	Behavioral Changes in Mice Lacking Interleukin-33. ENeuro, 2017, 4, ENEURO.0147-17.2017.	0.9	25
470	Stress and Anxiety Disorders. , 2017, , 251-274.		5
471	Negative Affect and Excessive Alcohol Intake Incubate during Protracted Withdrawal from Binge-Drinking in Adolescent, But Not Adult, Mice. Frontiers in Psychology, 2017, 8, 1128.	1.1	54
472	Chronic Inactivation of the Orbitofrontal Cortex Increases Anxiety-Like Behavior and Impulsive Aggression, but Decreases Depression-Like Behavior in Rats. Frontiers in Behavioral Neuroscience, 2016, 10, 250.	1.0	24
473	Neuroanatomical Substrates of Rodent Social Behavior: The Medial Prefrontal Cortex and Its Projection Patterns. Frontiers in Neural Circuits, 2017, 11, 41.	1.4	153
474	From Structure to Behavior in Basolateral Amygdala-Hippocampus Circuits. Frontiers in Neural Circuits, 2017, 11, 86.	1.4	181
475	Aberrant Functional Network Connectivity as a Biomarker of Generalized Anxiety Disorder. Frontiers in Human Neuroscience, 2017, 11, 626.	1.0	55

#	Article	IF	CITATIONS
476	Magnetothermal genetic deep brain stimulation of motor behaviors in awake, freely moving mice. ELife, 2017, 6, .	2.8	115
477	The Amygdala and Anxiety. , 0, , .		6
478	Appetitive and Aversive Systems in the Amygdala. , 2017, , 33-45.		4
479	New perspectives on central amygdala function. Current Opinion in Neurobiology, 2018, 49, 141-147.	2.0	185
480	Interaction between noradrenergic and cholinergic signaling in amygdala regulates anxiety- and depression-related behaviors in mice. Neuropsychopharmacology, 2018, 43, 2118-2125.	2.8	51
481	Maintenance of postsynaptic neuronal excitability by a positive feedback loop of postsynaptic BDNF expression. Cognitive Neurodynamics, 2018, 12, 403-416.	2.3	7
482	Strengthened functional connectivity among LFPs in rat medial prefrontal cortex during anxiety. Behavioural Brain Research, 2018, 349, 130-136.	1.2	2
483	Inhibition in the amygdala anxiety circuitry. Experimental and Molecular Medicine, 2018, 50, 1-16.	3.2	189
484	The center of the emotional universe: Alcohol, stress, and CRF1 amygdala circuitry. Alcohol, 2018, 72, 61-73.	0.8	42
485	Locomotor activity modulates associative learning in mouse cerebellum. Nature Neuroscience, 2018, 21, 725-735.	7.1	84
486	Anxiety Cells in a Hippocampal-Hypothalamic Circuit. Neuron, 2018, 97, 670-683.e6.	3.8	408
487	The promise and perils of causal circuit manipulations. Current Opinion in Neurobiology, 2018, 49, 84-94.	2.0	77
488	Regulation of threat in post-traumatic stress disorder: Associations between inhibitory control and dissociative symptoms. Biological Psychology, 2018, 133, 89-98.	1.1	18
489	Insular cortex mediates approach and avoidance responses to social affective stimuli. Nature Neuroscience, 2018, 21, 404-414.	7.1	182
490	Wireless optoelectronic photometers for monitoring neuronal dynamics in the deep brain. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E1374-E1383.	3.3	167
491	Inversely Active Striatal Projection Neurons and Interneurons Selectively Delimit Useful Behavioral Sequences. Current Biology, 2018, 28, 560-573.e5.	1.8	69
492	Imaging pathological activities of human brain tissue in organotypic culture. Journal of Neuroscience Methods, 2018, 298, 33-44.	1.3	36
493	Vigilance-Associated Gamma Oscillations Coordinate the Ensemble Activity of Basolateral Amygdala Neurons. Neuron, 2018, 97, 656-669.e7.	3.8	40

#	Article	IF	CITATIONS
494	The Antidepressant Effect of Light Therapy from Retinal Projections. Neuroscience Bulletin, 2018, 34, 359-368.	1.5	20
495	Similar effect of CRF1 and CRF2 receptor in the basolateral or central nuclei of the amygdala on tonic immobility behavior. Brain Research Bulletin, 2018, 137, 187-196.	1.4	9
496	Optogenetic activation of granule cells in the dorsal dentate gyrus enhances dopaminergic neurotransmission in the Nucleus Accumbens. Neuroscience Research, 2018, 134, 56-60.	1.0	11
497	Harmine enhances GABAergic transmission onto basoamygdala projection neurons in mice. Brain Research Bulletin, 2018, 137, 294-300.	1.4	16
498	Corticoamygdala Transfer of Socially Derived Information Gates Observational Learning. Cell, 2018, 173, 1329-1342.e18.	13.5	210
499	A midline thalamic circuit determines reactions to visual threat. Nature, 2018, 557, 183-189.	13.7	128
500	MARCKSL1 Regulates Spine Formation in the Amygdala and Controls the Hypothalamic-Pituitary-Adrenal Axis and Anxiety-Like Behaviors. EBioMedicine, 2018, 30, 62-73.	2.7	6
501	Organization of Valence-Encoding and Projection-Defined Neurons in the Basolateral Amygdala. Cell Reports, 2018, 22, 905-918.	2.9	214
502	Tethered and Implantable Optical Sensors. , 2018, , 439-505.		3
503	ACC to Dorsal Medial Striatum Inputs Modulate Histaminergic Itch Sensation. Journal of Neuroscience, 2018, 38, 3823-3839.	1.7	30
504	Dopamine <scp>D</scp> 1 or <scp>D</scp> 2 receptorâ€expressing neurons in the central nervous system. Addiction Biology, 2018, 23, 569-584.	1.4	93
505	miR-135a Regulates Synaptic Transmission and Anxiety-Like Behavior in Amygdala. Molecular Neurobiology, 2018, 55, 3301-3315.	1.9	43
506	Diminishing fear: Optogenetic approach toward understanding neural circuits of fear control. Pharmacology Biochemistry and Behavior, 2018, 174, 64-79.	1.3	10
507	Elucidation of the neural circuits activated by a GABAB receptor positive modulator: Relevance to anxiety. Neuropharmacology, 2018, 136, 129-145.	2.0	15
508	Social Isolation During Adolescence Induces Anxiety Behaviors and Enhances Firing Activity in BLA Pyramidal Neurons via mGluR5 Upregulation. Molecular Neurobiology, 2018, 55, 5310-5320.	1.9	25
509	The delta opioid receptor agonist KNT-127 in the prelimbic medial prefrontal cortex attenuates veratrine-induced anxiety-like behaviors in mice. Behavioural Brain Research, 2018, 336, 77-84.	1.2	17
510	Amygdaloid involvement in the defensive behavior of mice exposed to the open elevated plus-maze. Behavioural Brain Research, 2018, 338, 159-165.	1.2	22
511	Overlapping Brain Circuits for Homeostatic and Hedonic Feeding. Cell Metabolism, 2018, 27, 42-56.	7.2	242

	C	itation Report	
#	Article	IF	CITATIONS
512	Optogenetic manipulation of ENS - The brain in the gut. Life Sciences, 2018, 192, 18-25.	2.0	7
513	Kainate receptor mediated presynaptic LTP in agranular insular cortex contributes to fear and anxiety in mice. Neuropharmacology, 2018, 128, 388-400.	2.0	9
514	Serotonin inputs to the dorsal BNST modulate anxiety in a 5-HT1A receptor-dependent manner. Molecular Psychiatry, 2018, 23, 1990-1997.	4.1	43
515	The research domain criteria framework in drug discovery for neuropsychiatric diseases: focus on negative valence. Brain and Neuroscience Advances, 2018, 2, 239821281880403.	1.8	10
516	Physiological Profile of Neuropeptide Y-Expressing Neurons in Bed Nucleus of Stria Terminalis in Mice State of High Excitability. Frontiers in Cellular Neuroscience, 2018, 12, 393.		10
517	A Pathway to Avoiding Threats?. Neuron, 2018, 100, 780-782.	3.8	0
518	Fully implantable optoelectronic systems for battery-free, multimodal operation in neuroscience research. Nature Electronics, 2018, 1, 652-660.	13.1	157
519	Basal Forebrain Nuclei Display Distinct Projecting Pathways and Functional Circuits to Sensory Primary and Prefrontal Cortices in the Rat. Frontiers in Neuroanatomy, 2018, 12, 69.	0.9	29
520	Causal Role of Neural Signals Transmitted From the Frontal Eye Field to the Superior Colliculus in Saccade Generation. Frontiers in Neural Circuits, 2018, 12, 69.	1.4	17
521	Solving the prefrontal conundrum of high-order anxiety: conciliating HOTEC and hypofrontality. A theoretical review. Cognitive Neuropsychiatry, 2018, 23, 335-349.	0.7	0
522	The Impact of Stressor Exposure and Glucocorticoids on Anxiety and Fear. Current Topics in Behavioral Neurosciences, 2018, 43, 271-321.	0.8	16
523	Perspective: Implantable optical systems for neuroscience research in behaving animal models—Current approaches and future directions. APL Photonics, 2018, 3, .	3.0	11
524	Neural Circuit Motifs in Valence Processing. Neuron, 2018, 100, 436-452.	3.8	168
525	Optogenetic and chemogenetic approaches to manipulate attention, impulsivity and behavioural flexibility in rodents. Behavioural Pharmacology, 2018, 29, 560-568.	0.8	7
526	The Basolateral Amygdala Is Essential for Rapid Escape: A Human and Rodent Study. Cell, 2018, 175, 723-735.e16.	13.5	116
527	Methyleugenol counteracts anorexigenic signals in association with GABAergic inhibition in the central amygdala. Neuropharmacology, 2018, 141, 331-342.	2.0	8
528	The Central Amygdala Corticotropin-releasing hormone (CRH) Neurons Modulation of Anxiety-like Behavior and Hippocampus-dependent Memory in Mice. Neuroscience, 2018, 390, 187-197.	1.1	49
529	The coding of valence and identity in the mammalian taste system. Nature, 2018, 558, 127-131.	13.7	158

#	Article	IF	CITATIONS
530	Convergence on reduced stress behavior in the Mexican blind cavefish. Developmental Biology, 2018, 441, 319-327.	0.9	52
531	Brain Circuits Mediating Opposing Effects on Emotion and Pain. Journal of Neuroscience, 2018, 38, 6340-6349.	1.7	76
532	Increased Grik4 Gene Dosage Causes Imbalanced Circuit Output and Human Disease-Related Behaviors. Cell Reports, 2018, 23, 3827-3838.	2.9	30
533	Alternations in functional connectivity of amygdalar subregions under acute social stress. Neurobiology of Stress, 2018, 9, 264-270.	1.9	17
534	Chronic stress dysregulates amygdalar output to the prefrontal cortex. Neuropharmacology, 2018, 139, 68-75.	2.0	61
535	Low welfare impact of noise: assessment in an experimental model of mice infected by Herpes simplex-1. Applied Animal Behaviour Science, 2018, 207, 79-88.	0.8	1
536	Brain circuit dysfunction in post-traumatic stress disorder: from mouse to man. Nature Reviews Neuroscience, 2018, 19, 535-551.	4.9	293
537	Neuromodulation Using Optogenetics and Related Technologies. , 2018, , 487-500.		0
538	Neuropeptide S Counteracts Paradoxical Sleep Deprivation-Induced Anxiety-Like Behavior and Sleep Disturbances. Frontiers in Cellular Neuroscience, 2018, 12, 64.	1.8	19
539	Cocaine-Induced Changes in Low-Dimensional Attractors of Local Field Potentials in Optogenetic Mice. Frontiers in Computational Neuroscience, 2018, 12, 2.	1.2	2
540	Differential Regulation of Bladder Pain and Voiding Function by Sensory Afferent Populations Revealed by Selective Optogenetic Activation. Frontiers in Integrative Neuroscience, 2018, 12, 5.	1.0	20
541	Anterior cingulate cortex and its input to the basolateral amygdala control innate fear response. Nature Communications, 2018, 9, 2744.	5.8	111
542	Optogenetics Dissection of Sleep Circuits and Functions. , 2018, , 535-564.		0
543	Application of Optogenetics in Gene Therapy. Current Gene Therapy, 2018, 18, 40-44.	0.9	2
544	Optogenetic stimulation: Understanding memory and treating deficits. Hippocampus, 2018, 28, 457-470.	0.9	22
545	Development of an optogenetic toolkit for neural circuit dissection in squirrel monkeys. Scientific Reports, 2018, 8, 6775.	1.6	28
546	Relevance of Rodent Models of Depression in Clinical Practice: Can We Overcome the Obstacles in Translational Neuropsychiatry?. International Journal of Neuropsychopharmacology, 2018, 21, 668-676.	1.0	35
547	Hsp90 and FKBP51: complex regulators of psychiatric diseases. Philosophical Transactions of the Royal Society B: Biological Sciences, 2018, 373, 20160532.	1.8	87

#	Article	IF	Citations
548	Basal Forebrain and Brainstem Cholinergic Neurons Differentially Impact Amygdala Circuits and Learning-Related Behavior. Current Biology, 2018, 28, 2557-2569.e4.	1.8	44
549	Early life trauma increases threat response of periâ€weaning rats, reduction of axoâ€somatic synapses formed by parvalbumin cells and perineuronal net in the basolateral nucleus of amygdala. Journal of Comparative Neurology, 2018, 526, 2647-2664.	0.9	54
550	From words to action: Implicit attention to antisocial semantic cues predicts aggression and amygdala reactivity to angry faces in healthy young women. Aggressive Behavior, 2018, 44, 624-637.	1.5	9
551	Palatable Food Affects HPA Axis Responsivity and Forebrain Neurocircuitry in an Estrous Cycle-specific Manner in Female Rats. Neuroscience, 2018, 384, 224-240.	1.1	21
552	Ultrasoft and Highly Stretchable Hydrogel Optical Fibers for In Vivo Optogenetic Modulations. Advanced Optical Materials, 2018, 6, 1800427.	3.6	69
553	Activation and blockade of basolateral amygdala 5-HT6 receptor produce anxiolytic-like behaviors in an experimental model of Parkinson's disease. Neuropharmacology, 2018, 137, 275-285.	2.0	14
554	Basolateral amygdalar inactivation blocks chronic stress-induced lamina-specific reduction in prefrontal cortex volume and associated anxiety-like behavior. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2019, 88, 194-207.	2.5	17
555	Optogenetic investigation of neural mechanisms for alcohol-use disorder. Alcohol, 2019, 74, 29-38.	0.8	9
556	Optogenetics and its application in pain and anxiety research. Neuroscience and Biobehavioral Reviews, 2019, 105, 200-211.	2.9	18
557	Oral supplementation with ginseng polysaccharide promotes food intake in mice. Brain and Behavior, 2019, 9, e01340.	1.0	12
558	Palatable food reduces anxiety-like behaviors and HPA axis responses to stress in female rats in an estrous-cycle specific manner. Hormones and Behavior, 2019, 115, 104557.	1.0	14
559	A glutamatergic insular-striatal projection regulates the reinstatement of cue-associated morphine-seeking behavior in mice. Brain Research Bulletin, 2019, 152, 257-264.	1.4	14
560	Dorsal Amygdala Neurotrophin-3 Decreases Anxious Temperament in Primates. Biological Psychiatry, 2019, 86, 881-889.	0.7	27
561	Corticostriatal Flow of Action Selection Bias. Neuron, 2019, 104, 1126-1140.e6.	3.8	40
562	Amygdala lesions reduce seizure-induced respiratory arrest in DBA/1 mice. Epilepsy and Behavior, 2021, 121, 106440.	0.9	23
563	Dynamic remodeling of a basolateral-to-central amygdala glutamatergic circuit across fear states. Nature Neuroscience, 2019, 22, 2000-2012.	7.1	45
564	Targeted Cortical Manipulation of Auditory Perception. Neuron, 2019, 104, 1168-1179.e5.	3.8	66
565	Dopamine receptor antagonists effects on low-dimensional attractors of local field potentials in optogenetic mice. PLoS ONE, 2019, 14, e0223469.	1.1	1

#	Article	IF	CITATIONS
566	NGL-1/LRRC4C-Mutant Mice Display Hyperactivity and Anxiolytic-Like Behavior Associated With Widespread Suppression of Neuronal Activity. Frontiers in Molecular Neuroscience, 2019, 12, 250.	1.4	9
567	Chronic Stress Induces Activity, Synaptic, and Transcriptional Remodeling of the Lateral Habenula Associated with Deficits in Motivated Behaviors. Neuron, 2019, 104, 899-915.e8.	3.8	103
568	A neural circuit for comorbid depressive symptoms in chronic pain. Nature Neuroscience, 2019, 22, 1649-1658.	7.1	175
569	Mediation of the Acute Stress Response by the Skeleton. Cell Metabolism, 2019, 30, 890-902.e8.	7.2	110
570	Role of laterodorsal tegmentum projections to nucleus accumbens in reward-related behaviors. Nature Communications, 2019, 10, 4138.	5.8	34
571	A new stress model by predatory sound produces persistent anxiety-like behaviours in male SD rats but not ICR mice. Applied Animal Behaviour Science, 2019, 220, 104843.	0.8	1
572	Manipulating energy migration within single lanthanide activator for switchable upconversion emissions towards bidirectional photoactivation. Nature Communications, 2019, 10, 4416.	5.8	85
573	Enhanced activity of pyramidal neurons in the infralimbic cortex drives anxiety behavior. PLoS ONE, 2019, 14, e0210949.	1.1	30
574	Increased Anxiety-Related Behavior, Impaired Cognitive Function and Cellular Alterations in the Brain of Cend1-deficient Mice. Frontiers in Cellular Neuroscience, 2018, 12, 497.	1.8	11
575	Increased anxiety-like behavior following circuit-specific catecholamine denervation in mice. Neurobiology of Disease, 2019, 125, 55-66.	2.1	25
576	The anxiolytic effects of Bai Le Mian capsule, a traditional Chinese hypnotic in mice. Sleep and Biological Rhythms, 2019, 17, 191-201.	0.5	0
577	Affective valence in the brain: modules or modes?. Nature Reviews Neuroscience, 2019, 20, 225-234.	4.9	112
578	Early Life Stress and High FKBP5 Interact to Increase Anxiety-Like Symptoms through Altered AKT Signaling in the Dorsal Hippocampus. International Journal of Molecular Sciences, 2019, 20, 2738.	1.8	28
579	Anxiolytic Effect of Essential Oils and Their Constituents: A Review. Journal of Agricultural and Food Chemistry, 2019, 67, 13790-13808.	2.4	74
580	Functional and Optogenetic Approaches to Discovering Stable Subtype-Specific Circuit Mechanisms in Depression. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 2019, 4, 554-566.	1.1	23
581	Inhibitory actions of general anesthetics on hippocampal CA1 neurons modified by activation of amygdala circuitry are demonstrated on the novel amygdala-hippocampal slice preparation. Toxicology in Vitro, 2019, 60, 173-179.	1.1	0
582	From Probiotics to Psychobiotics: Live Beneficial Bacteria Which Act on the Brain-Gut Axis. Nutrients, 2019, 11, 890.	1.7	99
583	Amygdala ensembles encode behavioral states. Science, 2019, 364, .	6.0	147

#	Article	IF	CITATIONS
584	Interventions after acute stress prevent its delayed effects on the amygdala. Neurobiology of Stress, 2019, 10, 100168.	1.9	14
585	Tinbergen's challenge for the neuroscience of behavior. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 9704-9710.	3.3	12
586	Clutamatergic neurons of the gigantocellular reticular nucleus shape locomotor pattern and rhythm in the freely behaving mouse. PLoS Biology, 2019, 17, e2003880.	2.6	39
587	Functional coupling of Tmem74 and HCN1 channels regulates anxiety-like behavior in BLA neurons. Molecular Psychiatry, 2019, 24, 1461-1477.	4.1	14
588	Inactivation of a CRF-dependent amygdalofugal pathway reverses addiction-like behaviors in alcohol-dependent rats. Nature Communications, 2019, 10, 1238.	5.8	106
589	A-Kinase Anchoring Protein 150 and Protein Kinase A Complex in the Basolateral Amygdala Contributes to Depressive-like Behaviors Induced by Chronic Restraint Stress. Biological Psychiatry, 2019, 86, 131-142.	0.7	49
590	Restingâ€state fMRI effective connectivity between the bed nucleus of the stria terminalis and amygdala nuclei. Human Brain Mapping, 2019, 40, 2723-2735.	1.9	16
591	Optogenetic stimulation promotes Schwann cell proliferation, differentiation, and myelination in vitro. Scientific Reports, 2019, 9, 3487.	1.6	17
592	Early weaning increases anxiety via brain-derived neurotrophic factor signaling in the mouse prefrontal cortex. Scientific Reports, 2019, 9, 3991.	1.6	14
593	Systemic Cellular Activation Mapping of an Extinction-Impaired Animal Model. Frontiers in Cellular Neuroscience, 2019, 13, 99.	1.8	11
594	Optogenetics: Illuminating the Neural Circuits of Depression. , 2019, , 147-157.		3
595	Modulation of tonic immobility by GABAA and GABAB receptors of the medial amygdala. Neuroscience Letters, 2019, 699, 189-194.	1.0	5
596	Primate optogenetics: Progress and prognosis. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 26195-26203.	3.3	65
597	Selective activation of TWIK-related acid-sensitive K ⁺ 3 subunit–containing channels is analgesic in rodent models. Science Translational Medicine, 2019, 11, .	5.8	64
598	A Central Amygdala Input to the Parafascicular Nucleus Controls Comorbid Pain in Depression. Cell Reports, 2019, 29, 3847-3858.e5.	2.9	40
599	Cortico-Limbic Interactions Mediate Adaptive and Maladaptive Responses Relevant to Psychopathology. American Journal of Psychiatry, 2019, 176, 987-999.	4.0	51
600	Intra-periaqueductal gray matter administration of orexin-A exaggerates pulpitis-induced anxiogenic responses and c-fos expression mainly through the interaction with orexin 1 and cannabinoid 1 receptors in rats. Neuropeptides, 2019, 73, 25-33.	0.9	14
601	Wiring the depressed brain: optogenetic and chemogenetic circuit interrogation in animal models of depression. Neuropsychopharmacology, 2019, 44, 1013-1026.	2.8	64

		Citation Re	PORT	
#	Article		IF	CITATIONS
602	Valence coding in amygdala circuits. Current Opinion in Behavioral Sciences, 2019, 26,	97-106.	2.0	55
603	Upregulation of Anandamide Hydrolysis in the Basolateral Complex of Amygdala Reduce Expression and Indices of Stress and Anxiety. Journal of Neuroscience, 2019, 39, 1275-1	es Fear Memory .292.	1.7	45
604	Optogenetic Long-Term Depression Induction in the PVT-CeL Circuitry Mediates Decrea Memory. Molecular Neurobiology, 2019, 56, 4855-4865.	sed Fear	1.9	27
605	22 kHz and 55 kHz ultrasonic vocalizations differentially influence neural and Implications for modeling anxiety via auditory stimuli in the rat. Behavioural Brain Resea 134-145.	behavioral outcomes: rch, 2019, 360,	1.2	22
606	Long-Term Effects of Traumatic Brain Injury on Anxiety-Like Behaviors in Mice: Behaviora Correlates. Frontiers in Behavioral Neuroscience, 2019, 13, 6.	al and Neural	1.0	41
607	Ultrasonic sculpting of virtual optical waveguides in tissue. Nature Communications, 20)19, 10, 92.	5.8	39
608	Optogenetic stimulation of medial prefrontal cortex Drd1 neurons produces rapid and l antidepressant effects. Nature Communications, 2019, 10, 223.	ong-lasting	5.8	145
609	Infralimbic prefrontal cortex structural and functional connectivity with the limbic foreb combined viral genetic and optogenetic analysis. Brain Structure and Function, 2019, 2	rain: a 24, 73-97.	1.2	55
610	Methyleugenol Potentiates Central Amygdala GABAergic Inhibition and Reduces Anxiety Pharmacology and Experimental Therapeutics, 2019, 368, 1-10.	/. Journal of	1.3	10
611	Acute and long-lasting effects of oxytocin in cortico-limbic circuits: consequences for fe and extinction. Psychopharmacology, 2019, 236, 339-354.	ar recall	1.5	18
612	The effects of living in an outdoor enclosure on hippocampal plasticity and anxietyâ€lik response to nematode infection. Hippocampus, 2019, 29, 366-377.	e behavior in	0.9	18
613	New tools for understanding coping and resilience. Neuroscience Letters, 2019, 693, 54	4-57.	1.0	14
614	The central extended amygdala in fear and anxiety: Closing the gap between mechanist neuroimaging research. Neuroscience Letters, 2019, 693, 58-67.	ic and	1.0	136
615	Stress peptides sensitize fear circuitry to promote passive coping. Molecular Psychiatry, 428-441.	, 2020, 25,	4.1	38
616	Erbin in Amygdala Parvalbumin-Positive Neurons Modulates Anxiety-like Behaviors. Biolo Psychiatry, 2020, 87, 926-936.	ogical	0.7	39
617	Insula to ventral striatal projections mediate compulsive eating produced by intermitter palatable food. Neuropsychopharmacology, 2020, 45, 579-588.	it access to	2.8	31
618	The Angiotensin Type 1 Receptor Antagonist Losartan Prevents Ovariectomy-Induced C Dysfunction and Anxiety-Like Behavior in Long Evans Rats. Cellular and Molecular Neuro 40, 407-420.	ognitive biology, 2020,	1.7	15
619	Self-powered, wireless-control, neural-stimulating electronic skin for in vivo characteriza synaptic plasticity. Nano Energy, 2020, 67, 104182.	tion of	8.2	52

#	Article	IF	CITATIONS
620	Amygdalar corticotropin-releasing factor mediates stress-induced anxiety. Brain Research, 2020, 1729, 146622.	1.1	13
621	GluA1 in Central Amygdala Promotes Opioid Use and Reverses Inhibitory Effect of Pain. Neuroscience, 2020, 426, 141-153.	1.1	6
622	Manipulations of Central Amygdala Neurotensin Neurons Alter the Consumption of Ethanol and Sweet Fluids in Mice. Journal of Neuroscience, 2020, 40, 632-647.	1.7	62
623	Optogenetics: What it has uncovered in potential pathways of depression. Pharmacological Research, 2020, 152, 104596.	3.1	9
624	A somatosensory cortex input to the caudal dorsolateral striatum controls comorbid anxiety in persistent pain. Pain, 2020, 161, 416-428.	2.0	40
625	Cell-Type- and Endocannabinoid-Specific Synapse Connectivity in the Adult Nucleus Accumbens Core. Journal of Neuroscience, 2020, 40, 1028-1041.	1.7	35
626	Involvement of the dopamine D1 receptor system in the anxiolytic effect of cedrol in the elevated plus maze and light–dark box tests. Journal of Pharmacological Sciences, 2020, 142, 26-33.	1.1	12
627	The Insula Cortex Contacts Distinct Output Streams of the Central Amygdala. Journal of Neuroscience, 2020, 40, 8870-8882.	1.7	11
628	Circuit-Based Biomarkers for Mood and Anxiety Disorders. Trends in Neurosciences, 2020, 43, 902-915.	4.2	33
629	Chronic Corticosterone Elevation Suppresses Adult Hippocampal Neurogenesis by Hyperphosphorylating Huntingtin. Cell Reports, 2020, 32, 107865.	2.9	22
630	Anatomic alterations across amygdala subnuclei in medication-free patients with obsessive–compulsive disorder. Journal of Psychiatry and Neuroscience, 2020, 45, 334-343.	1.4	17
631	Remediation of chronic immobilization stress-induced negative affective behaviors and altered metabolism of monoamines in the prefrontal cortex by inactivation of basolateral amygdala. Neurochemistry International, 2020, 141, 104858.	1.9	2
632	Expression and impact of Lsamp neural adhesion molecule in the serotonergic neurotransmission system. Pharmacology Biochemistry and Behavior, 2020, 198, 173017.	1.3	6
633	Theoretical Analysis of Low-power Bidirectional Optogenetic Control of High-frequency Neural Codes with Single Spike Resolution. Neuroscience, 2020, 449, 165-188.	1.1	11
634	Chronic optogenetic manipulation of basolateral amygdala astrocytes rescues stress-induced anxiety. Biochemical and Biophysical Research Communications, 2020, 533, 657-664.	1.0	16
635	Sex differences in corticotropin releasing factor peptide regulation of inhibitory control and excitability in central amygdala corticotropin releasing factor receptor 1-neurons. Neuropharmacology, 2020, 180, 108296.	2.0	20
636	Somatostatin neurons in the central amygdala mediate anxiety by disinhibition of the central sublenticular extended amygdala. Molecular Psychiatry, 2023, 28, 4163-4174.	4.1	15
637	Off-Peak 594-nm Light Surpasses On-Peak 532-nm Light in Silencing Distant ArchT-Expressing Neurons InÂVivo. IScience, 2020, 23, 101276.	1.9	7

	CITATION	Report	
#	Article	IF	CITATIONS
638	Histological assessment of optogenetic tools to study fronto-visual and fronto-parietal cortical networks in the rhesus macaque. Scientific Reports, 2020, 10, 11051.	1.6	6
639	Anxiety Regulation: From Affective Neuroscience to Clinical Practice. Brain Sciences, 2020, 10, 846.	1.1	7
640	Optogenetics. , 2020, , 279-292.		2
641	Angiotensin-converting enzyme 2 activator, DIZE in the basolateral amygdala attenuates the tachycardic response to acute stress by modulating glutamatergic tone. Neuropeptides, 2020, 83, 102076.	0.9	8
642	Mapping gene expression in social anxiety reveals the main brain structures involved in this disorder. Behavioural Brain Research, 2020, 394, 112808.	1.2	4
643	Noradrenergic Activity in the Olfactory Bulb Is a Key Element for the Stability of Olfactory Memory. Journal of Neuroscience, 2020, 40, 9260-9271.	1.7	4
644	Neuroprotective Effect of Optogenetics Varies With Distance From Channelrhodopsin-2 Expression in an Amyloid-β-Injected Mouse Model of Alzheimer's Disease. Frontiers in Neuroscience, 2020, 14, 583628.	1.4	5
645	Anxiety and the Neurobiology of Temporally Uncertain Threat Anticipation. Journal of Neuroscience, 2020, 40, 7949-7964.	1.7	68
646	GABA–glutamate supramammillary neurons control theta and gamma oscillations in the dentate gyrus during paradoxical (REM) sleep. Brain Structure and Function, 2020, 225, 2643-2668.	1.2	22
647	To Approach or Avoid: An Introductory Overview of the Study of Anxiety Using Rodent Assays. Frontiers in Behavioral Neuroscience, 2020, 14, 145.	1.0	69
648	Multi-Scale Understanding of NMDA Receptor Function in Schizophrenia. Biomolecules, 2020, 10, 1172.	1.8	3
649	Reduced Information Transmission of Medial Prefrontal Cortex to Basolateral Amygdala Inhibits Exploratory Behavior in Depressed Rats. Frontiers in Neuroscience, 2020, 14, 608587.	1.4	3
650	Common and dissociable effects of oxytocin and lorazepam on the neurocircuitry of fear. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 11781-11787.	3.3	21
651	An Erbin Story: Amygdala Excitation-Inhibition Balance in Anxiety. Biological Psychiatry, 2020, 87, 872-874.	0.7	1
652	Light Up the Brain: The Application of Optogenetics in Cell-Type Specific Dissection of Mouse Brain Circuits. Frontiers in Neural Circuits, 2020, 14, 18.	1.4	39
653	The Rewarding and Anxiolytic Properties of Ethanol within the Central Nucleus of the Amygdala: Mediated by Genetic Background and Nociceptin. Journal of Pharmacology and Experimental Therapeutics, 2020, 374, 366-375.	1.3	10
654	Brain stimulation rewarding experience attenuates neonatal clomipramine-induced adulthood anxiety by reversal of pathological changes in the amygdala. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2020, 103, 110000.	2.5	4
655	Oxytocin receptors excite lateral nucleus of central amygdala by phospholipase Cl̂²â€•and protein kinase Câ€dependent depression of inwardly rectifying K ⁺ channels. Journal of Physiology, 2020, 598, 3501-3520.	1.3	18

#	Article	IF	CITATIONS
656	Gamma Oryzanol Alleviates High-Fat Diet-Induced Anxiety-Like Behaviors Through Downregulation of Dopamine and Inflammation in the Amygdala of Mice. Frontiers in Pharmacology, 2020, 11, 330.	1.6	14
657	Behavioral and Neurobiological Convergence of Odor, Mood and Emotion: A Review. Frontiers in Behavioral Neuroscience, 2020, 14, 35.	1.0	51
658	GluA1 in central amygdala increases pain but inhibits opioid withdrawal-induced aversion. Molecular Pain, 2020, 16, 174480692091154.	1.0	7
659	Evolution of brain-wide activity in the awake behaving mouse after acute fear by longitudinal manganese-enhanced MRI. NeuroImage, 2020, 222, 116975.	2.1	9
660	Effects of Housing Conditions and Circadian Time on Baseline c-Fos Immunoreactivity in C57BL/6J Mice. Neuroscience, 2020, 431, 143-151.	1.1	9
661	The unique expression profile of FAM19A1 in the mouse brain and its association with hyperactivity, long-term memory and fear acquisition. Scientific Reports, 2020, 10, 3969.	1.6	10
662	Serotonin and the neurobiology of anxious states. Handbook of Behavioral Neuroscience, 2020, 31, 505-520.	0.7	6
663	Involvement of orexin-A in the regulation of neuronal activity and emotional behaviors in central amygdala in rats. Neuropeptides, 2020, 80, 102019.	0.9	15
664	Experimental Traumatic Brain Injury Induces Chronic Glutamatergic Dysfunction in Amygdala Circuitry Known to Regulate Anxiety-Like Behavior. Frontiers in Neuroscience, 2019, 13, 1434.	1.4	39
665	Posterior basolateral amygdala to ventral hippocampal CA1 drives approach behaviour to exert an anxiolytic effect. Nature Communications, 2020, 11, 183.	5.8	82
666	Space, Time, and Fear: Survival Computations along Defensive Circuits. Trends in Cognitive Sciences, 2020, 24, 228-241.	4.0	138
667	Median raphe serotonin neurons promote anxiety-like behavior via inputs to the dorsal hippocampus. Neuropharmacology, 2020, 168, 107985.	2.0	42
668	Behavioural effects of extracellular matrix protein Fras1 depletion in the mouse. European Journal of Neuroscience, 2021, 53, 3905-3919.	1.2	12
669	Functional Connectomic Approach to Studying Selank and Semax Effects. Doklady Biological Sciences, 2020, 490, 9-11.	0.2	1
670	Anteromedial thalamic nucleus to anterior cingulate cortex inputs modulate histaminergic itch sensation. Neuropharmacology, 2020, 168, 108028.	2.0	9
671	Complementary roles of differential medial entorhinal cortex inputs to the hippocampus for the formation and integration of temporal and contextual memory (Systems Neuroscience). European Journal of Neuroscience, 2021, 54, 6762-6779.	1.2	19
672	Neuronal diversity of the amygdala and the bed nucleus of the stria terminalis. Handbook of Behavioral Neuroscience, 2020, 26, 63-100.	0.7	34
673	Evaluation of anxiolytic, sedative, and antioxidant activities of Vitex peduncularis Wall. leaves and investigation of possible lead compounds through molecular docking study. Advances in Traditional Medicine, 2021, 21, 507-518.	1.0	2

#	Article	IF	CITATIONS
674	The Role of the Central Amygdala in Alcohol Dependence. Cold Spring Harbor Perspectives in Medicine, 2021, 11, a039339.	2.9	61
675	Central amygdala circuit dynamics underlying the benzodiazepine anxiolytic effect. Molecular Psychiatry, 2021, 26, 534-544.	4.1	44
676	Neuroinflammation induces anxiety- and depressive-like behavior by modulating neuronal plasticity in the basolateral amygdala. Brain, Behavior, and Immunity, 2021, 91, 505-518.	2.0	122
677	Optical interrogation of multi-scale neuronal plasticity underlying behavioral learning. Current Opinion in Neurobiology, 2021, 67, 8-15.	2.0	8
678	Reduced Inhibitory Inputs On Basolateral Amygdala Principal Neurons Following Long-Term Alcohol Consumption. Neuroscience, 2021, 452, 219-227.	1.1	5
679	IL-10 normalizes aberrant amygdala GABA transmission and reverses anxiety-like behavior and dependence-induced escalation of alcohol intake. Progress in Neurobiology, 2021, 199, 101952.	2.8	38
680	Neural substrates of the interplay between cognitive load and emotional involvement in bilingual decision making. Neuropsychologia, 2021, 151, 107721.	0.7	7
681	A comparison of cell density and serotonergic innervation of the amygdala among four macaque species. Journal of Comparative Neurology, 2021, 529, 1659-1668.	0.9	2
682	7,8-Dihydroxyflavone Alleviates Anxiety-Like Behavior Induced by Chronic Alcohol Exposure in Mice Involving Tropomyosin-Related Kinase B in the Amygdala. Molecular Neurobiology, 2021, 58, 92-105.	1.9	10
683	Traumatic Brain Injury and Alcohol Drinking Alter Basolateral Amygdala Endocannabinoids in Female Rats. Journal of Neurotrauma, 2021, 38, 422-434.	1.7	6
684	The neuroscience of unmet social needs. Social Neuroscience, 2021, 16, 221-231.	0.7	24
685	Tracing goes viral: Viruses that introduce expression of fluorescent proteins in chemically-specific neurons. Journal of Neuroscience Methods, 2021, 348, 109004.	1.3	2
686	Influence of enriched environment on anxiety-related behavior in evidence and mechanisms. Stress and Brain, 2021, 1, 33-45.	0.3	2
687	Combining transcranial magnetic stimulation with functional magnetic resonance imaging for probing and modulating neural circuits relevant to affective disorders. Wiley Interdisciplinary Reviews: Cognitive Science, 2021, 12, e1553.	1.4	22
688	Representation of Fear of Heights by Basolateral Amygdala Neurons. Journal of Neuroscience, 2021, 41, 1080-1091.	1.7	7
689	Cell-Type-Specific Optogenetic Techniques Reveal Neural Circuits Crucial for Episodic Memories. Advances in Experimental Medicine and Biology, 2021, 1293, 429-447.	0.8	3
690	Switching of delta opioid receptor subtypes in central amygdala microcircuits is associated with anxiety states in pain. Journal of Biological Chemistry, 2021, 296, 100277.	1.6	12
691	Therapies of the Future. , 2021, , 355-377.		0

#	Article	IF	CITATIONS
692	Valence processing in the PFC: Reconciling circuit-level and systems-level views. International Review of Neurobiology, 2021, 158, 171-212.	0.9	9
693	Top-Down Control of Sweet and Bitter Taste in the Mammalian Brain. Cell, 2021, 184, 257-271.e16.	13.5	37
694	Roles of the bed nucleus of the stria terminalis and amygdala in fear reactions. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2021, 179, 419-432.	1.0	10
695	Optogenetic Stimulation of Prelimbic Pyramidal Neurons Maintains Fear Memories and Modulates Amygdala Pyramidal Neuron Transcriptome. International Journal of Molecular Sciences, 2021, 22, 810.	1.8	8
696	N-Type Calcium Channels Control GABAergic Transmission in Brain Areas related to Fear and Anxiety. , 2021, 5, .		8
697	Nonhuman Primate Optogenetics: Current Status and Future Prospects. Advances in Experimental Medicine and Biology, 2021, 1293, 345-358.	0.8	4
698	Current Topics of Optogenetics for Medical Applications Toward Therapy. Advances in Experimental Medicine and Biology, 2021, 1293, 513-521.	0.8	1
699	Western Diet Consumption During Development: Setting the Stage for Neurocognitive Dysfunction. Frontiers in Neuroscience, 2021, 15, 632312.	1.4	47
700	Medial preoptic area antagonistically mediates stress-induced anxiety and parental behavior. Nature Neuroscience, 2021, 24, 516-528.	7.1	67
701	Baclofen decreases compulsive alcohol drinking in rats characterized by reduced levels of GATâ€3 in the central amygdala. Addiction Biology, 2021, 26, e13011.	1.4	16
702	Effect of Pleomorphic Adenoma Gene 1 Deficiency on Selected Behaviours in Adult Mice. Neuroscience, 2021, 455, 30-38.	1.1	7
703	Neurotransmitters, Cell Types, and Circuit Mechanisms of Motor Skill Learning and Clinical Applications. Frontiers in Neurology, 2021, 12, 616820.	1.1	3
704	GABAergic neuron-specific whole-brain transduction by AAV-PHP.B incorporated with a new GAD65 promoter. Molecular Brain, 2021, 14, 33.	1.3	27
706	A balancing act: the role of pro―and antiâ€stress peptides within the central amygdala in anxiety and alcohol use disorders. Journal of Neurochemistry, 2021, 157, 1615-1643.	2.1	22
707	Astrocytes mediate the effect of oxytocin in the central amygdala on neuronal activity and affective states in rodents. Nature Neuroscience, 2021, 24, 529-541.	7.1	88
708	Neural Computations of Threat. Trends in Cognitive Sciences, 2021, 25, 151-171.	4.0	53
709	Decreased amygdala volume in adults after premature birth. Scientific Reports, 2021, 11, 5403.	1.6	16
710	Wireless and battery-free technologies for neuroengineering. Nature Biomedical Engineering, 2023, 7, 405-423.	11.6	141

#	Article	IF	CITATIONS
711	Mechanism for differential recruitment of orbitostriatal transmission during actions and outcomes following chronic alcohol exposure. ELife, 2021, 10, .	2.8	16
712	Introduction and Conceptual Overview. , 2021, , 1-9.		0
715	Soft, wireless and subdermally implantable recording and neuromodulation tools. Journal of Neural Engineering, 2021, 18, 041001.	1.8	13
717	An Infrared Touch System for Automatic Behavior Monitoring. Neuroscience Bulletin, 2021, 37, 815-830.	1.5	5
718	A Novel Research Technology to Explore the Mystery of Traditional Chinese Medicine: Optogenetics. Evidence-based Complementary and Alternative Medicine, 2021, 2021, 1-12.	0.5	0
719	Evidence in primates supporting the use of chemogenetics for the treatment of human refractory neuropsychiatric disorders. Molecular Therapy, 2021, 29, 3484-3497.	3.7	25
720	Involvement of TRPC5 channels, inwardly rectifying K ⁺ channels, PLCβ and PIP ₂ in vasopressinâ€mediated excitation of medial central amygdala neurons. Journal of Physiology, 2021, 599, 3101-3119.	1.3	6
721	Anxiety and depression severity in neuropsychiatric SLE are associated with perfusion and functional connectivity changes of the frontolimbic neural circuit: a resting-state f(unctional) MRI study. Lupus Science and Medicine, 2021, 8, e000473.	1.1	9
722	Modular Network between Postrhinal Visual Cortex, Amygdala, and Entorhinal Cortex. Journal of Neuroscience, 2021, 41, 4809-4825.	1.7	12
723	Neural Markers of Vulnerability to Anxiety Outcomes after Traumatic Brain Injury. Journal of Neurotrauma, 2021, 38, 1006-1022.	1.7	5
724	Brain circuit dysfunction in specific symptoms of depression. European Journal of Neuroscience, 2022, 55, 2393-2403.	1.2	6
725	Incerto-thalamic modulation of fear via GABA and dopamine. Neuropsychopharmacology, 2021, 46, 1658-1668.	2.8	19
726	Brainâ€wide mapping of presynaptic inputs to basolateral amygdala neurons. Journal of Comparative Neurology, 2021, 529, 3062-3075.	0.9	9
727	The Hidden Brain: Uncovering Previously Overlooked Brain Regions by Employing Novel Preclinical Unbiased Network Approaches. Frontiers in Systems Neuroscience, 2021, 15, 595507.	1.2	11
728	CRH Neurons in the Laterodorsal Tegmentum Mediate Acute Stress-induced Anxiety. Neuroscience Bulletin, 2021, 37, 999-1004.	1.5	3
729	Prediction errors and valence: From single units to multidimensional encoding in the amygdala. Behavioural Brain Research, 2021, 404, 113176.	1.2	8
730	Bidirectional Influence of Limbic GIRK Channel Activation on Innate Avoidance Behavior. Journal of Neuroscience, 2021, 41, 5809-5821.	1.7	3
731	Connectivity characterization of the mouse basolateral amygdalar complex. Nature Communications, 2021, 12, 2859.	5.8	63

#	Article	IF	CITATIONS
732	Altered theta and beta oscillatory synchrony in a genetic mouse model of pathological anxiety. FASEB Journal, 2021, 35, e21585.	0.2	6
734	In Vivo Expression of Reprogramming Factor OCT4 Ameliorates Myelination Deficits and Induces Striatal Neuroprotection in Huntington's Disease. Genes, 2021, 12, 712.	1.0	3
735	Moderate adolescent chronic intermittent ethanol exposure sex-dependently disrupts synaptic transmission and kappa opioid receptor function in the basolateral amygdala of adult rats. Neuropharmacology, 2021, 188, 108512.	2.0	8
736	Testosterone works through androgen receptors to modulate neuronal response to anxiogenic stimuli. Neuroscience Letters, 2021, 753, 135852.	1.0	5
737	Wireless multilateral devices for optogenetic studies of individual and social behaviors. Nature Neuroscience, 2021, 24, 1035-1045.	7.1	98
739	Lost in translation: no effect of repeated optogenetic cortico-striatal stimulation on compulsivity in rats. Translational Psychiatry, 2021, 11, 315.	2.4	7
741	Frontostriatal Projections Regulate Innate Avoidance Behavior. Journal of Neuroscience, 2021, 41, 5487-5501.	1.7	19
742	Cellular, circuit and transcriptional framework for modulation of itch in the central amygdala. ELife, 2021, 10, .	2.8	22
744	Neuronal basis for pain-like and anxiety-like behaviors in the central nucleus of the amygdala. Pain, 2022, 163, e463-e475.	2.0	17
745	Amygdala Allostasis and Early Life Adversity: Considering Excitotoxicity and Inescapability in the Sequelae of Stress. Frontiers in Human Neuroscience, 2021, 15, 624705.	1.0	21
746	Distinct circuits in rat central amygdala for defensive behaviors evoked by socially signaled imminent versus remote danger. Current Biology, 2021, 31, 2347-2358.e6.	1.8	28
747	Multiplexing viral approaches to the study of the neuronal circuits. Journal of Neuroscience Methods, 2021, 357, 109142.	1.3	1
748	A bidirectional corticoamygdala circuit for the encoding and retrieval of detailed reward memories. ELife, 2021, 10, .	2.8	29
749	Clinical applicability of optogenetic gene regulation. Biotechnology and Bioengineering, 2021, 118, 4168-4185.	1.7	3
750	The Role of the Medial Septum—Associated Networks in Controlling Locomotion and Motivation to Move. Frontiers in Neural Circuits, 2021, 15, 699798.	1.4	10
751	Distinct projections from the infralimbic cortex exert opposing effects in modulating anxiety and fear. Journal of Clinical Investigation, 2021, 131, .	3.9	50
752	Early and late visual deprivation induce hypersensitivity to mechanical and thermal noxious stimuli in the ZRDBA mouse. European Journal of Pain, 2021, 25, 2257-2265.	1.4	4
753	Over-representation of fundamental decision variables in the prefrontal cortex underlies decision bias. Neuroscience Research, 2021, 173, 1-13.	1.0	2

#	Article	IF	CITATIONS
754	A human colliculus-pulvinar-amygdala pathway encodes negative emotion. Neuron, 2021, 109, 2404-2412.e5.	3.8	35
755	Proteomic and metabolomic characterization of amygdala in chronic social defeat stress rats. Behavioural Brain Research, 2021, 412, 113407.	1.2	9
756	Activation of monoaminergic system contributes to the antidepressant- and anxiolytic-like effects of J147. Behavioural Brain Research, 2021, 411, 113374.	1.2	12
757	Memories are not written in stone: Re-writing fear memories by means of non-invasive brain stimulation and optogenetic manipulations. Neuroscience and Biobehavioral Reviews, 2021, 127, 334-352.	2.9	60
758	β-Arrestin–dependent ERK signaling reduces anxiety-like and conditioned fear–related behaviors in mice. Science Signaling, 2021, 14, .	1.6	19
759	PEN Receptor GPR83 in Anxiety-Like Behaviors: Differential Regulation in Global vs Amygdalar Knockdown. Frontiers in Neuroscience, 2021, 15, 675769.	1.4	9
760	Pain modulates dopamine neurons via a spinal–parabrachial–mesencephalic circuit. Nature Neuroscience, 2021, 24, 1402-1413.	7.1	52
762	lonic and signaling mechanisms involved in neurotensin-mediated excitation of central amygdala neurons. Neuropharmacology, 2021, 196, 108714.	2.0	1
763	Kainate receptors in the developing neuronal networks. Neuropharmacology, 2021, 195, 108585.	2.0	12
764	CB1 receptor neutral antagonist treatment epigenetically increases neuropeptide Y expression and decreases alcohol drinking. Neuropharmacology, 2021, 195, 108623.	2.0	2
766	Association of Increased Amygdala Activity with Stress-Induced Anxiety but not Social Avoidance Behavior in Mice. Neuroscience Bulletin, 2022, 38, 16-28.	1.5	16
767	Zona incerta subpopulations differentially encode and modulate anxiety. Science Advances, 2021, 7, eabf6709.	4.7	29
768	Karl Deisseroth, Peter Hegemann, and Dieter Oesterhelt receive the 2021 Albert Lasker Basic Medical Research Award. Journal of Clinical Investigation, 2021, , .	3.9	1
769	Dedicated C-fiber vagal sensory afferent pathways to the paraventricular nucleus of the hypothalamus. Brain Research, 2021, 1769, 147625.	1.1	11
770	A Roadmap to Applying Optogenetics in Neuroscience. Methods in Molecular Biology, 2014, 1148, 129-147.	0.4	15
771	Cell Type-Specific Targeting Strategies for Optogenetics. Neuromethods, 2018, , 25-42.	0.2	4
772	Viral Vectors for Optogenetics of Hypothalamic Neuropeptides. Neuromethods, 2014, , 311-329.	0.2	6
773	Optogenetic Tools for Control of Neural Activity. Neuromethods, 2014, , 73-86.	0.2	2

	Сітаті	on Report	
#	Article	IF	CITATIONS
774	Modulation of expression of fear by oxytocin signaling in the central amygdala: From reduction of fear to regulation of defensive behavior style. Neuropharmacology, 2020, 173, 108130.	2.0	10
775	Early life sleep disruption is a risk factor for increased ethanol drinking after acute footshock stress in prairie voles Behavioral Neuroscience, 2020, 134, 424-434.	0.6	6
776	Optogenetic investigation of neural circuits underlying brain disease in animal models. , 0, .		1
777	CHAPTER 10. Optogenetic and Chemogenetic Tools for Drug Discovery in Schizophrenia. RSC Drug Discovery Series, 2015, , 234-272.	0.2	1
788	A molecular mechanism for choosing alcohol over an alternative reward. Science, 2018, 360, 1321-1326.	6.0	169
789	High fidelity optogenetic control of individual prefrontal cortical pyramidal neurons in vivo. F1000Research, 2012, 1, 7.	0.8	9
790	Performance evaluation of an implantable sensor for deep brain imaging: an analytical investigation. Optical Materials Express, 2019, 9, 3729.	1.6	5
791	Cognitive and Emotional Alterations Are Related to Hippocampal Inflammation in a Mouse Model of Metabolic Syndrome. PLoS ONE, 2011, 6, e24325.	1.1	206
792	The Metabolic Responses to Aerial Diffusion of Essential Oils. PLoS ONE, 2012, 7, e44830.	1.1	12
793	Voluntary Running in Young Adult Mice Reduces Anxiety-Like Behavior and Increases the Accumulation of Bioactive Lipids in the Cerebral Cortex. PLoS ONE, 2013, 8, e81459.	1.1	21
794	Molecular and Cellular Mechanisms for Trapping and Activating Emotional Memories. PLoS ONE, 2016, 11, e0161655.	1.1	29
795	Molecular, Morphological, and Functional Characterization of Corticotropin-Releasing Factor Receptor 1-Expressing Neurons in the Central Nucleus of the Amygdala. ENeuro, 2019, 6, ENEURO.0087-19.2019.	0.9	23
796	New Concerns for Neurocognitive Function during Deep Space Exposures to Chronic, Low Dose-Rate, Neutron Radiation. ENeuro, 2019, 6, ENEURO.0094-19.2019.	0.9	80
797	Depletion of the Microbiome Alters the Recruitment of Neuronal Ensembles of Oxycodone Intoxication and Withdrawal. ENeuro, 2020, 7, ENEURO.0312-19.2020.	0.9	39
798	Corticotropin-Releasing Factor Receptor-1 Neurons in the Lateral Amygdala Display Selective Sensitivity to Acute and Chronic Ethanol Exposure. ENeuro, 2020, 7, ENEURO.0420-19.2020.	0.9	9
799	SIRT1 Decreases Emotional Pain Vulnerability with Associated CaMKIIα Deacetylation in Central Amygdala. Journal of Neuroscience, 2020, 40, 2332-2342.	1.7	20
800	Disorders of memory and plasticity in psychiatric disease. Dialogues in Clinical Neuroscience, 2013, 15, 455-463.	1.8	72
801	Stress-related disorders, pituitary adenylate cyclase—activating peptide (PACAP)ergic system, and sex differences. Dialogues in Clinical Neuroscience, 2016, 18, 403-413.	1.8	40

# 802	ARTICLE Effects of Electrical Stimulation at Different Locations in the Central Nucleus of Amygdala on Gastric Motility and Spike Activity. Physiological Research, 2016, 65, 693-700.	IF 0.4	Citations
803	Anxiolytic Activity and Brain Modulation Pattern of the α-Casozepine-Derived Pentapeptide YLGYL in Mice. Nutrients, 2020, 12, 1497.	1.7	12
804	Optogenetics-induced activation of glutamate receptors improves memory function in mice with Alzheimer's disease. Neural Regeneration Research, 2019, 14, 2147.	1.6	15
805	Neurophysiology of Aggression in Posttraumatic Stress Disorder. Journal of Psychiatry, 2016, 19, .	0.1	5
806	Anxiety and its Regulation: Neural Mechanisms and Regulation Techniques According to the Experiential-Dynamic Approach. , 0, , .		9
807	Decoding a neural circuit controlling global animal state in C. elegans. ELife, 2015, 4, .	2.8	63
808	Modulation of anxiety and fear via distinct intrahippocampal circuits. ELife, 2016, 5, e14120.	2.8	65
809	Locus coeruleus to basolateral amygdala noradrenergic projections promote anxiety-like behavior. ELife, 2017, 6, .	2.8	209
810	TMEM16B regulates anxiety-related behavior and GABAergic neuronal signaling in the central lateral amygdala. ELife, 2019, 8, .	2.8	17
811	Kainate receptors regulate development of glutamatergic synaptic circuitry in the rodent amygdala. ELife, 2020, 9, .	2.8	16
812	Acetylcholine is released in the basolateral amygdala in response to predictors of reward and enhances the learning of cue-reward contingency. ELife, 2020, 9, .	2.8	55
813	Extensive and spatially variable within-cell-type heterogeneity across the basolateral amygdala. ELife, 2020, 9, .	2.8	50
814	Frontal Alpha Asymmetry in Posttraumatic Stress Disorder: Group Differences Among Individuals With and Without PTSD During an Inhibitory Control Task. Clinical EEG and Neuroscience, 2023, 54, 472-482.	0.9	2
816	An inferior-superior colliculus circuit controls auditory cue-directed visual spatial attention. Neuron, 2022, 110, 109-119.e3.	3.8	15
818	Optogenetics in psychiatry: The light ahead. Industrial Psychiatry, 2012, 21, 160.	0.3	0
820	Deep focusing of light in tissues by optoelectronic time-reversal. , 2013, , .		0
821	Control of Sleep/Wakefulness by Using Optogenetics for Study of Sleep Disease. The Review of Laser Engineering, 2013, 41, 92.	0.0	0
822	Optogenetics. Materials and Methods, 0, 3, .	0.0	1

#	Article	IF	CITATIONS
823	Deux décennies de recherche en neuroscienceÂ: avancées et perspectives. Cahiers De Psychologie Clinique, 2013, nº 40, 71-87.	0.1	0
824	Optogenetics and its Applications in Psychology: Manipulating the Brain Using Light. Journal of European Psychology Students, 2013, 4, 87.	0.5	0
825	Viral Vector-Based Techniques for Optogenetic Modulation In Vivo. Neuromethods, 2014, , 289-310.	0.2	1
826	Neocortical Circuit Interrogation with Optogenetics. Neuromethods, 2014, , 175-188.	0.2	0
827	Optogenetics. , 2014, , 269-282.		0
828	Optogenetic Dissection of Neural Circuit Function in Behaving Animals. Neuromethods, 2015, , 143-160.	0.2	0
829	Regulation and Modulation of Depression-Related Behaviours: Role of Dopaminergic Neurons. , 2016, , 147-190.		0
830	The Quantitative Unconscious: A Psychoanalytic Perturbation-Theoretic Approach to the Complexity of Neuronal Systems in the Neuroses. NeuroQuantology, 2016, 14, .	0.1	2
847	Roles of mesocortico–limbic system in exercise–induced hypoalgesia. Pain Research, 2020, 35, 80-91.	0.1	0
853	κ Opioid Receptor-Dynorphin Signaling in the Central Amygdala Regulates Conditioned Threat Discrimination and Anxiety. ENeuro, 2021, 8, ENEURO.0370-20.2020.	0.9	15
857	Illuminating the Undergraduate Behavioral Neuroscience Laboratory: A Guide for the in vivo Application of Optogenetics in Mammalian Model Organisms. Journal of Undergraduate Neuroscience Education: JUNE: A Publication of FUN, Faculty for Undergraduate Neuroscience, 2016, 14, A111-6.	0.6	1
858	Habenula orphan G-protein coupled receptors in the pathophysiology of fear and anxiety. Neuroscience and Biobehavioral Reviews, 2022, 132, 870-883.	2.9	2
859	Sex differences in neural mechanisms of social and non-social threat monitoring. Developmental Cognitive Neuroscience, 2021, 52, 101038.	1.9	4
860	A Locus Coeruleus- Dorsal CA1 Dopaminergic Circuit Modulates Memory Linking. SSRN Electronic Journal, 0, , .	0.4	1
861	Threat imminence reveals links among unfolding of anticipatory physiological response, cortical-subcortical intrinsic functional connectivity, and anxiety. Neurobiology of Stress, 2022, 16, 100428.	1.9	10
863	Reviewing the role of the orexinergic system and stressors in modulating mood and reward-related behaviors. Neuroscience and Biobehavioral Reviews, 2022, 133, 104516.	2.9	14
864	Volume of Amygdala Subregions and Clinical Manifestations in Patients With First-Episode, Drug-NaÃ ⁻ ve Major Depression. Frontiers in Human Neuroscience, 2021, 15, 780884.	1.0	6
865	Disruption of Amygdala Tsc2 in Adolescence Leads to Changed Prelimbic Cellular Activity and Generalized Fear Responses at Adulthood in Rats. Cerebral Cortex, 2022, , .	1.6	0

#	Article	IF	CITATIONS
866	Selective control of synaptically-connected circuit elements by all-optical synapses. Communications Biology, 2022, 5, 33.	2.0	14
867	Towards translational optogenetics. Nature Biomedical Engineering, 2023, 7, 349-369.	11.6	54
868	Multimodal neural probes for combined optogenetics and electrophysiology. IScience, 2022, 25, 103612.	1.9	14
870	A Distinct Metabolically Defined Central Nucleus Circuit Bidirectionally Controls Anxiety-Related Behaviors. Journal of Neuroscience, 2022, 42, 2356-2370.	1.7	8
872	Increased TRPV1 Channels and FosB Protein Expression Are Associated with Chronic Epileptic Seizures and Anxiogenic-like Behaviors in a Preclinical Model of Temporal Lobe Epilepsy. Biomedicines, 2022, 10, 416.	1.4	9
873	Edaravone ameliorates depressive and anxiety-like behaviors via Sirt1/Nrf2/HO-1/Gpx4 pathway. Journal of Neuroinflammation, 2022, 19, 41.	3.1	142
874	PKCδ-positive GABAergic neurons in the central amygdala exhibit tissue-type plasminogen activator: role in the control of anxiety. Molecular Psychiatry, 2022, 27, 2197-2205.	4.1	10
875	Partial Ablation of Postsynaptic Dopamine D2 Receptors in the Central Nucleus of the Amygdala Increases Risk Avoidance in Exploratory Tasks. ENeuro, 2022, 9, ENEURO.0528-21.2022.	0.9	2
876	PBN-PVT projections modulate negative affective states in mice. ELife, 2022, 11, .	2.8	21
877	Dissociation of basolateral and central amygdala effective connectivity predicts the stability of emotion-related impulsivity in adolescents and emerging adults with borderline personality symptoms: a resting-state fMRI study. Psychological Medicine, 2023, 53, 3533-3547.	2.7	5
878	Basolateral Amygdala Mediates Central Mechanosensory Feedback of Musculoskeletal System. Frontiers in Molecular Neuroscience, 2022, 15, 834980.	1.4	0
879	The Slack Channel Regulates Anxiety-Like Behaviors via Basolateral Amygdala Glutamatergic Projections to Ventral Hippocampus. Journal of Neuroscience, 2022, 42, 3049-3064.	1.7	5
880	Midbrain projection to the basolateral amygdala encodes anxiety-like but not depression-like behaviors. Nature Communications, 2022, 13, 1532.	5.8	56
881	Gene Therapy, A Potential Therapeutic Tool for Neurological and Neuropsychiatric Disorders: Applications, Challenges and Future Perspective. Current Gene Therapy, 2023, 23, 20-40.	0.9	6
882	Connecting the dots between cell populations, whole-brain activity, and behavior. Neurophotonics, 2022, 9, 032208.	1.7	3
884	Perturbation of amygdala/somatostatin-nucleus of the solitary tract projections reduces sensitivity to quinine in a brief-access test. Brain Research, 2022, 1783, 147838.	1.1	5
885	FKBP51 in the Oval Bed Nucleus of the Stria Terminalis Regulates Anxiety-Like Behavior. ENeuro, 2021, 8, ENEURO.0425-21.2021.	0.9	12
886	Decreased Phase–Amplitude Coupling Between the mPFC and BLA During Exploratory Behaviour in Chronic Unpredictable Mild Stress-Induced Depression Model of Rats. Frontiers in Behavioral Neuroscience, 2021, 15, 799556.	1.0	3

#	Article	IF	CITATIONS
887	Internalizing–externalizing comorbidity and regional brain volumes in the ABCD study. Development and Psychopathology, 2021, 33, 1620-1633.	1.4	8
888	Artificial Intelligence Identified Resilient and Vulnerable Female Rats After Traumatic Stress and Ethanol Exposure: Investigation of Neuropeptide Y Pathway Regulation. Frontiers in Neuroscience, 2021, 15, 772946.	1.4	2
889	Neural correlates and determinants of approach–avoidance conflict in the prelimbic prefrontal cortex. ELife, 2021, 10, .	2.8	15
891	"Magnetismâ€Optogenetic―System for Wireless and Highly Sensitive Neuromodulation. Advanced Healthcare Materials, 2022, 11, 2102023.	3.9	2
892	A circuit of COCH neurons encodes social-stress-induced anxiety via MTF1 activation of Cacna1h. Cell Reports, 2021, 37, 110177.	2.9	12
893	Firing Patterns of Ventral Hippocampal Neurons Predict the Exploration of Anxiogenic Locations. SSRN Electronic Journal, 0, , .	0.4	0
894	Chronic Alcohol Dysregulates Glutamatergic Function in the Basolateral Amygdala in a Projection-and Sex-Specific Manner. Frontiers in Cellular Neuroscience, 2022, 16, 857550.	1.8	9
918	Claustrum mediates bidirectional and reversible control of stress-induced anxiety responses. Science Advances, 2022, 8, eabi6375.	4.7	27
919	Current Understanding of the Neural Circuitry in the Comorbidity of Chronic Pain and Anxiety. Neural Plasticity, 2022, 2022, 1-13.	1.0	20
920	Expression of Calbindin, a Marker of Gamma-Aminobutyric Acid Neurons, Is Reduced in the Amygdala of Oestrogen Receptor β-Deficient Female Mice. Journal of Clinical Medicine, 2022, 11, 1760.	1.0	5
921	Target-specific projections of amygdala somatostatin-expressing neurons to the hypothalamus and brainstem. Chemical Senses, 2022, 47, .	1.1	3
922	Repeated vagus nerve stimulation produces anxiolytic effects via upregulation of AMPAR function in centrolateral amygdala of male rats. Neurobiology of Stress, 2022, 18, 100453.	1.9	2
923	Complement Dependent Synaptic Reorganisation During Critical Periods of Brain Development and Risk for Psychiatric Disorder. Frontiers in Neuroscience, 2022, 16, .	1.4	9
926	A Critical Role for Touch Neurons in a Skin-Brain Pathway for Stress Resilience. SSRN Electronic Journal, 0, , .	0.4	Ο
927	Advancements in the Quest to Map, Monitor, and Manipulate Neural Circuitry. Frontiers in Neural Circuits, 0, 16, .	1.4	14
930	Sparse genetically defined neurons refine the canonical role of periaqueductal gray columnar organization. ELife, 0, 11, .	2.8	9
931	Association between the volume of subregions of the amygdala and major depression with suicidal thoughts and anxiety in a Chinese cohort. Journal of Affective Disorders, 2022, 312, 39-45.	2.0	3
932	The Prominent Role of the Temporal Lobe in Premenstrual Syndrome and Premenstrual Dysphoric Disorder: Evidence From Multimodal Neuroimaging. Frontiers in Psychiatry, 0, 13, .	1.3	2

# 933	ARTICLE Distinct basolateral amygdala excitatory inputs mediate the somatosensory and aversive-affective components of pain. Journal of Biological Chemistry, 2022, 298, 102207.	IF 1.6	Citations
935	Sex Differences in the Alcohol-Mediated Modulation of BLA Network States. ENeuro, 2022, 9, ENEURO.0010-22.2022.	0.9	5
936	Subcortical and hippocampal brain segmentation in 5â€yearâ€old children: Validation of FSLâ€FIRST and FreeSurfer against manual segmentation. European Journal of Neuroscience, 2022, 56, 4619-4641.	1.2	7
937	Neural Oscillations in Aversively Motivated Behavior. Frontiers in Behavioral Neuroscience, 0, 16, .	1.0	12
938	GABAergic circuits of the basolateral amygdala and generation of anxiety after traumatic brain injury. Amino Acids, 2022, 54, 1229-1249.	1.2	2
939	Optogenetics at the presynapse. Nature Neuroscience, 2022, 25, 984-998.	7.1	37
941	Gene Dysregulation in the Adult Rat Paraventricular Nucleus and Amygdala by Prenatal Exposure to Dexamethasone. Life, 2022, 12, 1077.	1.1	3
942	The Neurobiological Links between Stress and Traumatic Brain Injury: A Review of Research to Date. International Journal of Molecular Sciences, 2022, 23, 9519.	1.8	0
943	Clutamate inputs from the laterodorsal tegmental nucleus to the ventral tegmental area are essential for the induction of cocaine sensitization in male mice. Psychopharmacology, 2022, 239, 3263-3276.	1.5	2
944	The ethanol inhibition of basolateral amygdala neuron spiking is mediated by a gγâ€aminobutyric acid type Aâ€mediated tonic current. Alcoholism: Clinical and Experimental Research, 0, , .	1.4	1
945	Mapping effective connectivity of human amygdala subdivisions with intracranial stimulation. Nature Communications, 2022, 13, .	5.8	11
946	Humanized substitutions of Vmat1 in mice alter amygdala-dependent behaviors associated with the evolution of anxiety. IScience, 2022, 25, 104800.	1.9	1
947	Increased Anxiety-like Behaviors in Adgra1â^'/â^' Male But Not Female Mice are Attributable to Elevated Neuron Dendrite Density, Upregulated PSD95 Expression, and Abnormal Activation of the PI3K/AKT/GSK-3β and MEK/ERK Pathways. Neuroscience, 2022, 503, 131-145.	1.1	7
948	Regulation of adult-born and mature neurons in stress response and antidepressant action in the dentate gyrus of the hippocampus. Neuroscience Research, 2022, , .	1.0	7
951	Connectivity and functional characterization of the mouse contralateral projecting neurons in basolateral amygdala. Stress and Brain, 2022, , 1-13.	0.3	1
953	A Parabrachial-to-Amygdala Circuit That Determines Hemispheric Lateralization of Somatosensory Processing. Biological Psychiatry, 2023, 93, 370-381.	0.7	15
956	Dynorphin/kappa opioid receptor system regulation on amygdaloid circuitry: Implications for neuropsychiatric disorders. Frontiers in Systems Neuroscience, 0, 16, .	1.2	4
958	Evolution and Development of Amygdala Subdivisions: Pallial, Subpallial, and Beyond. Brain, Behavior and Evolution, 2023, 98, 1-21.	0.9	6

#	Article	IF	CITATIONS
959	Customizable, wireless and implantable neural probe design and fabrication via 3D printing. Nature Protocols, 2023, 18, 3-21.	5.5	8
961	Synaptic plasticity in two cell types of central amygdala for regulation of emotion and pain. Frontiers in Cellular Neuroscience, 0, 16, .	1.8	6
963	Toll-like receptor 3 neuroimmune signaling and behavior change: A strain comparison between Lewis and Wistar rats. Behavioural Brain Research, 2023, 438, 114200.	1.2	0
964	Neuronal cell types, projections, and spatial organization of the central amygdala. IScience, 2022, 25, 105497.	1.9	8
965	Effects of a nutritional intervention on impaired behavior and cognitive function in an emphysematous murine model of COPD with endotoxin-induced lung inflammation. Frontiers in Nutrition, 0, 9, .	1.6	3
966	Assessment of mental health of university students faced with different lockdowns during the coronavirus pandemic, a repeated cross-sectional study. European Journal of Psychotraumatology, 2022, 13, .	0.9	3
967	Targeting mediodorsal thalamic CB1 receptors to inhibit dextromethorphan-induced anxiety/exploratory-related behaviors in rats: The post-weaning effect of exercise and enriched environment on adulthood anxiety. Journal of Psychiatric Research, 2023, 157, 212-222.	1.5	1
968	The healing bitterness of Gentiana lutea L., phytochemistry and biological activities: A systematic review. Phytochemistry, 2023, 206, 113518.	1.4	6
969	Distinct serotonergic pathways to the amygdala underlie separate behavioral features of anxiety. Nature Neuroscience, 2022, 25, 1651-1663.	7.1	21
970	The role of the bed nucleus of the stria terminalis in the motivational control of instrumental action. Frontiers in Behavioral Neuroscience, 0, 16, .	1.0	1
971	Genetic and Pharmacological Inhibition of Astrocytic Mysm1 Alleviates Depressiveâ€Like Disorders by Promoting ATP Production. Advanced Science, 2023, 10, .	5.6	4
972	Characterizing deep brain biosignals: The advances and applications of implantable MEMS-based devices. Materials Today Advances, 2022, 16, 100322.	2.5	Ο
973	Activation of amygdala prokineticin receptor 2 neurons drives the anorexigenic activity of the neuropeptide PK2. Journal of Biological Chemistry, 2023, 299, 102814.	1.6	3
974	TIAM1-mediated synaptic plasticity underlies comorbid depression–like and ketamine antidepressant–like actions in chronic pain. Journal of Clinical Investigation, 2022, 132, .	3.9	12
975	Recruitment of inhibitory neuronal pathways regulating dopaminergic activity for the control of cocaine seeking. European Journal of Neuroscience, 2023, 58, 4487-4501.	1.2	1
976	The brain activation of anxiety disorders with emotional stimuli—an fMRI ALE meta-analysis. Neurocase, 0, , 1-10.	0.2	0
977	Topographic representation of current and future threats in the mouse nociceptive amygdala. Nature Communications, 2023, 14, .	5.8	7
978	Neuregulin-1 reverses anxiety-like behavior and social behavior deficits induced by unilateral micro-injection of CoCl2 into the ventral hippocampus (vHPC). Neurobiology of Disease, 2023, 177, 105982	2.1	0

#	Article	IF	CITATIONS
979	Corticosteroid treatment attenuates anxiety and mPFC-amygdala circuit dysfunction in allergic asthma. Life Sciences, 2023, 315, 121373.	2.0	5
980	Disynaptic specificity of serial information flow for conditioned fear. Science Advances, 2023, 9, .	4.7	8
981	Hippocampus: Molecular, Cellular, and Circuit Features in Anxiety. Neuroscience Bulletin, 2023, 39, 1009-1026.	1.5	11
982	A quadruple dissociation of reward-related behaviour in mice across excitatory inputs to the nucleus accumbens shell. Communications Biology, 2023, 6, .	2.0	6
983	A revisit of the amygdala theory of autism: Twenty years after. Neuropsychologia, 2023, 183, 108519.	0.7	2
984	C57BL/6J and C57BL/6N mice exhibit different neuro-behaviors and sensitivity to midazolam- and propofol-induced anesthesia. Physiology and Behavior, 2023, 264, 114146.	1.0	1
985	Prefrontal modulation of anxiety through a lens of noradrenergic signaling. Frontiers in Systems Neuroscience, 0, 17, .	1.2	6
986	Optogenetics studies of kisspeptin neurons. Peptides, 2023, 162, 170961.	1.2	0
987	Dopaminergic innervation at the central nucleus of the amygdala reveals distinct topographically segregated regions. Brain Structure and Function, 2023, 228, 663-675.	1.2	3
989	Biological subtyping of psychiatric syndromes as a pathway for advances in drug discovery and personalized medicine. , 2023, 1, 88-99.		7
990	Chemogenetic inhibition of a monosynaptic projection from the basolateral amygdala to the ventral hippocampus selectively reduces appetitive, but not consummatory, alcohol drinkingâ€related behaviours. European Journal of Neuroscience, 2023, 57, 1241-1259.	1.2	2
992	Network analysis reveals abnormal functional brain circuitry in anxious dogs. PLoS ONE, 2023, 18, e0282087.	1.1	3
993	The Evolving Role of Animal Models in the Discovery and Development of Novel Treatments for Psychiatric Disorders. Advances in Neurobiology, 2023, , 37-99.	1.3	1
994	Decreased phase information transfer from the mPFC to the BLA: During exploratory behavior in CUMS rats. Frontiers in Neuroscience, 0, 17, .	1.4	1
995	Chemogenetic inhibition of amygdala excitatory neurons impairs rhEPO-enhanced contextual fear memory after TBI. Neuroscience Letters, 2023, 804, 137216.	1.0	0
996	Optogenetic stimulation of mouse Hoxb8 microglia in specific regions of the brain induces anxiety, grooming, or both. Molecular Psychiatry, 0, , .	4.1	6
997	Firing patterns of ventral hippocampal neurons predict the exploration of anxiogenic locations. ELife, 0, 12, .	2.8	1
999	PCSboost: A Multi-Model Machine Learning Framework for Key Fragments Selection of Channelrhodopsins Achieving Optogenetics. Journal of Circuits, Systems and Computers, 0, , .	1.0	0

#	Article	IF	CITATIONS
1000	Nos1+ and Nos1â^' excitatory neurons in the BLA regulate anxiety- and depression-related behaviors oppositely. Journal of Affective Disorders, 2023, 333, 181-192.	2.0	3
1001	Faits marquants de l'année 2010Â: clinique, nouveaux traitements et neurosciences. Information Psychiatrique, 2011, Volume 87, 689-695.	0.1	0
1016	Carving Out the Path to Computational Biomarkers for Mental Disorders. Neuromethods, 2023, , 145-165.	0.2	0
1065	Central regulation of the heart. , 2024, , .		0