Transcriptional mechanisms regulating skeletal muscle homeostasis

Nature Reviews Molecular Cell Biology

12, 349-361

DOI: 10.1038/nrm3118

Citation Report

#	Article	IF	CITATIONS
1	Revisiting the TCA cycle: signaling to tumor formation. Trends in Molecular Medicine, 2011, 17, 641-649.	3.5	216
2	Muscle ankyrin repeat proteins: their role in striated muscle function in health and disease. Critical Reviews in Clinical Laboratory Sciences, 2011, 48, 269-294.	2.7	63
3	Physical exercise stimulates autophagy in normal skeletal muscles but is detrimental for collagen VI-deficient muscles. Autophagy, 2011, 7, 1415-1423.	4.3	216
4	Melanocortin antagonism ameliorates muscle wasting and inflammation in chronic kidney disease. American Journal of Physiology - Renal Physiology, 2012, 303, F1315-F1324.	1.3	41
5	The Therapeutic Potential of MicroRNAs in Cancer. Cancer Journal (Sudbury, Mass), 2012, 18, 275-284.	1.0	97
6	Tra2β Protein Is Required for Tissue-specific Splicing of a Smooth Muscle Myosin Phosphatase Targeting Subunit Alternative Exon. Journal of Biological Chemistry, 2012, 287, 16575-16585.	1.6	19
7	A TGFβ-Smad4-Fgf6 signaling cascade controls myogenic differentiation and myoblast fusion during tongue development. Development (Cambridge), 2012, 139, 1640-1650.	1.2	60
8	Identification and Profiling of MicroRNAs from Skeletal Muscle of the Common Carp. PLoS ONE, 2012, 7, e30925.	1.1	64
9	The Obestatin/GPR39 System Is Up-regulated by Muscle Injury and Functions as an Autocrine Regenerative System. Journal of Biological Chemistry, 2012, 287, 38379-38389.	1.6	30
10	Regulation of mammalian cell differentiation by long non oding RNAs. EMBO Reports, 2012, 13, 971-983.	2.0	292
11	BAF60 A, B, and Cs of muscle determination and renewal. Genes and Development, 2012, 26, 2673-2683.	2.7	50
12	Tissue-Specific Stem Cells: Lessons from the Skeletal Muscle Satellite Cell. Cell Stem Cell, 2012, 10, 504-514.	5.2	374
13	Could muscle deformity in children with spastic cerebral palsy be related to an impairment of muscle growth and altered adaptation?. Developmental Medicine and Child Neurology, 2012, 54, 495-499.	1.1	103
14	Factors Involved in Signal Transduction During Vertebrate Myogenesis. International Review of Cell and Molecular Biology, 2012, 296, 187-272.	1.6	6
15	microRNA expression signature in skeletal muscle of Nile tilapia. Aquaculture, 2012, 364-365, 240-246.	1.7	24
16	Satellite cells, the engines of muscle repair. Nature Reviews Molecular Cell Biology, 2012, 13, 127-133.	16.1	408
17	mTORC1 and the regulation of skeletal muscle anabolism and mass. Applied Physiology, Nutrition and Metabolism, 2012, 37, 395-406.	0.9	28
18	Developmental regulation of MURF E3 ubiquitin ligases in skeletal muscle. Journal of Muscle Research and Cell Motility, 2012, 33, 107-122.	0.9	46

D

#	Article	IF	CITATIONS
19	The status of microRNA-21 expression and its clinical significance in human cutaneous malignant melanoma. Acta Histochemica, 2012, 114, 582-588.	0.9	67
20	Stem cell-biomaterial interactions for regenerative medicine. Biotechnology Advances, 2012, 30, 338-351.	6.0	179
21	Inhibition of microRNA function by antimiR oligonucleotides. Silence: A Journal of RNA Regulation, 2012, 3, 1.	8.0	456
22	Effect of resistance exercise contraction mode and protein supplementation on members of the STARS signalling pathway. Journal of Physiology, 2013, 591, 3749-3763.	1.3	22
23	Myf5-Positive Satellite Cells Contribute to Pax7-Dependent Long-Term Maintenance of Adult Muscle Stem Cells. Cell Stem Cell, 2013, 13, 590-601.	5.2	225
24	Biochemistry of Development: Striated Muscle. , 2013, , 179-186.		0
25	Enigma homolog 1 promotes myogenic gene expression and differentiation of C2C12 cells. Biochemical and Biophysical Research Communications, 2013, 435, 483-487.	1.0	9
26	Exchange Protein Directly Activated by cAMP (epac): A Multidomain cAMP Mediator in the Regulation of Diverse Biological Functions. Pharmacological Reviews, 2013, 65, 670-709.	7.1	230
27	MG53-induced IRS-1 ubiquitination negatively regulates skeletal myogenesis and insulin signalling. Nature Communications, 2013, 4, 2354.	5.8	140
28	MYOD mediates skeletal myogenic differentiation of human amniotic fluid stem cells and regeneration of muscle injury. Stem Cell Research and Therapy, 2013, 4, 147.	2.4	44
29	A systems biology approach using metabolomic data reveals genes and pathways interacting to modulate divergent growth in cattle. BMC Genomics, 2013, 14, 798.	1.2	76
30	The Regulation of Cell Size. Cell, 2013, 154, 1194-1205.	13.5	321
31	The Imprinted H19 LncRNA Antagonizes Let-7 MicroRNAs. Molecular Cell, 2013, 52, 101-112.	4.5	969
32	Progress in microRNA delivery. Journal of Controlled Release, 2013, 172, 962-974.	4.8	517
33	Epigenetic control of skeletal muscle regeneration. FEBS Journal, 2013, 280, 4014-4025.	2.2	38
34	Mechanisms of skeletal muscle aging: insights from <i>Drosophila</i> and mammalian models. DMM Disease Models and Mechanisms, 2013, 6, 1339-52.	1.2	201
35	Identification of Map4k4 as a Novel Suppressor of Skeletal Muscle Differentiation. Molecular and Cellular Biology, 2013, 33, 678-687.	1.1	28
36	The Roles of Vitamin D in Skeletal Muscle: Form, Function, and Metabolism. Endocrine Reviews, 2013, 34, 33-83.	8.9	417

#	Article	IF	CITATIONS
37	Modulation of Cancer Traits by Tumor Suppressor microRNAs. International Journal of Molecular Sciences, 2013, 14, 1822-1842.	1.8	27
38	MicroRNAs Involved in Skeletal Muscle Differentiation. Journal of Genetics and Genomics, 2013, 40, 107-116.	1.7	133
39	Bone and Skeletal Muscle: Neighbors With Close Ties. Journal of Bone and Mineral Research, 2013, 28, 1509-1518.	3.1	159
40	Mechanisms of muscle gene regulation in the electric organ of Sternopygus macrurus. Journal of Experimental Biology, 2013, 216, 2469-2477.	0.8	7
42	MicroRNAs—mediators of myometrial contractility during pregnancy and labour. Nature Reviews Endocrinology, 2013, 9, 391-401.	4.3	67
43	Developmental specificity in skeletal muscle of late-term avian embryos and its potential manipulation. Poultry Science, 2013, 92, 2754-2764.	1.5	15
44	ZEB1 Imposes a Temporary Stage-Dependent Inhibition of Muscle Gene Expression and Differentiation via CtBP-Mediated Transcriptional Repression. Molecular and Cellular Biology, 2013, 33, 1368-1382.	1.1	44
45	Brain and Muscle Arnt-like 1 is a Key Regulator of Myogenesis. Journal of Cell Science, 2013, 126, 2213-24.	1.2	73
46	Evidence of decreased muscle protein turnover in gilts selected for low residual feed intake1. Journal of Animal Science, 2013, 91, 4007-4016.	0.2	43
47	Mechanisms for fiber-type specificity of skeletal muscle atrophy. Current Opinion in Clinical Nutrition and Metabolic Care, 2013, 16, 243-250.	1.3	317
48	Sox4-mediated caldesmon expression facilitates skeletal myoblast differentiation. Journal of Cell Science, 2013, 126, 5178-88.	1.2	20
49	The methyltransferase SMYD3 mediates the recruitment of transcriptional cofactors at the <i>>myostatin</i> > and <i>c-Met</i> > genes and regulates skeletal muscle atrophy. Genes and Development, 2013, 27, 1299-1312.	2.7	74
50	The c-Myc-Regulated MicroRNA-17â^¼92 (miR-17â^¼92) and miR-106aâ^¼363 Clusters Target hCYP19A1 and h Inhibit Human Trophoblast Differentiation. Molecular and Cellular Biology, 2013, 33, 1782-1796.	ССМ1 То 1.1	149
52	Deep RNA Sequencing of the Skeletal Muscle Transcriptome in Swimming Fish. PLoS ONE, 2013, 8, e53171.	1.1	62
53	MicroRNA-3906 Regulates Fast Muscle Differentiation through Modulating the Target Gene homer-1b in Zebrafish Embryos. PLoS ONE, 2013, 8, e70187.	1.1	17
54	The Effect of Anabolic Steroid Administration on Passive Stretching-Induced Expression of Mechano-Growth Factor in Skeletal Muscle. Scientific World Journal, The, 2013, 2013, 1-5.	0.8	3
55	Post-Translational Modification Profiling of Burn-Induced — Insulin Resistance and Muscle Wasting. , 2013, , .		0
56	The Longissimus and Semimembranosus Muscles Display Marked Differences in Their Gene Expression Profiles in Pig. PLoS ONE, 2014, 9, e96491.	1.1	18

#	Article	IF	CITATIONS
57	Identification of Differentially Expressed Genes in Breast Muscle and Skin Fat of Postnatal Pekin Duck. PLoS ONE, 2014, 9, e107574.	1.1	21
58	The SWI/SNF Subunit/Tumor Suppressor BAF47/INI1 Is Essential in Cell Cycle Arrest upon Skeletal Muscle Terminal Differentiation. PLoS ONE, 2014, 9, e108858.	1.1	22
59	<i>CARP</i> , a Myostatin-downregulated Gene in CFM Cells, Is a Novel Essential Positive Regulator of Myogenesis. International Journal of Biological Sciences, 2014, 10, 309-320.	2.6	7
60	Skeletal Muscle Remodeling and Regeneration. , 2014, , 567-579.		1
61	Acute change of titin at mid-sarcomere remains despite 8 wk of plyometric training. Journal of Applied Physiology, 2014, 116, 1512-1519.	1.2	19
62	Pannexin 1 and Pannexin 3 Channels Regulate Skeletal Muscle Myoblast Proliferation and Differentiation. Journal of Biological Chemistry, 2014, 289, 30717-30731.	1.6	57
63	The transient expression of miR-203 and its inhibiting effects on skeletal muscle cell proliferation and differentiation. Cell Death and Disease, 2014, 5, e1347-e1347.	2.7	97
64	Six Homeoproteins and a linc-RNA at the Fast MYH Locus Lock Fast Myofiber Terminal Phenotype. PLoS Genetics, 2014, 10, e1004386.	1.5	56
65	Proteasome dysfunction induces muscle growth defects and protein aggregation. Journal of Cell Science, 2014, 127, 5204-17.	1.2	56
66	Gene Expression, Cell Determination, and Differentiation. , 2014, , 225-234.		Ο
67	Melatonin treatment combined with treadmill exercise accelerates muscular adaptation through early inhibition of <scp>CHOP</scp> â€mediated autophagy in the gastrocnemius of rats with		12
	intraâ€articular collagenaseâ€induced knee laxity. Journal of Pineal Research, 2014, 56, 175-188.	3.4	12
68	intraâ€articular collagenaseâ€induced knee laxity. Journal of Pineal Research, 2014, 56, 175-188. Development of micro <scp>RNA</scp> therapeutics is coming of age. EMBO Molecular Medicine, 2014, 6, 851-864.	3.4 3.3	526
68 69	intraâ€articular collagenaseâ€induced knee laxity. Journal of Pineal Research, 2014, 56, 175-188. Development of micro <scp>RNA</scp> therapeutics is coming of age. EMBO Molecular Medicine, 2014,		
	intraâ€articular collagenaseâ€induced knee laxity. Journal of Pineal Research, 2014, 56, 175-188. Development of micro <scp>RNA</scp> therapeutics is coming of age. EMBO Molecular Medicine, 2014, 6, 851-864. Gene co-regulation by Fezf2 selects neurotransmitter identity and connectivity of corticospinal	3.3	526
69	 intraâ€articular collagenaseâ€induced knee laxity. Journal of Pineal Research, 2014, 56, 175-188. Development of micro<scp>RNA</scp> therapeutics is coming of age. EMBO Molecular Medicine, 2014, 6, 851-864. Gene co-regulation by Fezf2 selects neurotransmitter identity and connectivity of corticospinal neurons. Nature Neuroscience, 2014, 17, 1046-1054. A bioinformatic and computational study of myosin phosphatase subunit diversity. American Journal 	3.3 7.1	526 121
69 70	 intraâ€articular collagenaseâ€induced knee laxity. Journal of Pineal Research, 2014, 56, 175-188. Development of micro<scp>RNA</scp> therapeutics is coming of age. EMBO Molecular Medicine, 2014, 6, 851-864. Gene co-regulation by Fezf2 selects neurotransmitter identity and connectivity of corticospinal neurons. Nature Neuroscience, 2014, 17, 1046-1054. A bioinformatic and computational study of myosin phosphatase subunit diversity. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2014, 307, R256-R270. Swimming-induced exercise promotes hypertrophy and vascularization of fast skeletal muscle fibres and activation of myogenic and angiogenic transcriptional programs in adult zebrafish. BMC 	3.3 7.1 0.9	526 121 21
69 70 71	 intraâ€articular collagenaseâ€induced knee laxity. Journal of Pineal Research, 2014, 56, 175-188. Development of micro<scp>RNA</scp> therapeutics is coming of age. EMBO Molecular Medicine, 2014, 6, 851-864. Gene co-regulation by Fezf2 selects neurotransmitter identity and connectivity of corticospinal neurons. Nature Neuroscience, 2014, 17, 1046-1054. A bioinformatic and computational study of myosin phosphatase subunit diversity. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2014, 307, R256-R270. Swimming-induced exercise promotes hypertrophy and vascularization of fast skeletal muscle fibres and activation of myogenic and angiogenic transcriptional programs in adult zebrafish. BMC Genomics, 2014, 15, 1136. Integrating multiple resources to identify specific transcriptional cooperativity with a Bayesian 	3.3 7.1 0.9 1.2	526 121 21 67

#	Article	IF	Citations
76	Mechano-signaling in heart failure. Pflugers Archiv European Journal of Physiology, 2014, 466, 1093-1099.	1.3	31
77	Barx2 and Pax7 Have Antagonistic Functions in Regulation of Wnt Signaling and Satellite Cell Differentiation. Stem Cells, 2014, 32, 1661-1673.	1.4	27
78	Transglutaminase Regulation of Cell Function. Physiological Reviews, 2014, 94, 383-417.	13.1	353
79	Identification of the Immunoproteasome as a Novel Regulator of Skeletal Muscle Differentiation. Molecular and Cellular Biology, 2014, 34, 96-109.	1.1	52
80	Regulation of MKL1 via actin cytoskeleton dynamics drives adipocyte differentiation. Nature Communications, 2014, 5, 3368.	5.8	138
81	Periostin is temporally expressed as an extracellular matrix component in skeletal muscle regeneration and differentiation. Gene, 2014, 553, 130-139.	1.0	38
82	Rbfox2-Coordinated Alternative Splicing of Mef2d and Rock2 Controls Myoblast Fusion during Myogenesis. Molecular Cell, 2014, 55, 592-603.	4.5	104
83	Endocrine regulation of fetal skeletal muscle growth: impact on future metabolic health. Journal of Endocrinology, 2014, 221, R13-R29.	1.2	97
84	Requirement of MEF2A, C, and D for skeletal muscle regeneration. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 4109-4114.	3.3	162
85	Adipocytes arise from multiple lineages that are heterogeneously and dynamically distributed. Nature Communications, 2014, 5, 4099.	5.8	285
86	Animal Models for Stem Cell Therapy. Methods in Molecular Biology, 2014, , .	0.4	2
87	Kelch proteins: emerging roles in skeletal muscle development and diseases. Skeletal Muscle, 2014, 4, 11.	1.9	119
88	Long noncoding RNAs, emerging players in muscle differentiation and disease. Skeletal Muscle, 2014, 4, 8.	1.9	108
89	Loss of <i>Prox1</i> in striated muscle causes slow to fast skeletal muscle fiber conversion and dilated cardiomyopathy. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 9515-9520.	3.3	45
90	Transcriptional regulation and alternative splicing cooperate in muscle fiber-type specification in flies and mammals. Experimental Cell Research, 2014, 321, 90-98.	1.2	50
91	The combination of transcriptomics and informatics identifies pathways targeted by miR-204 during neurogenesis and axon guidance. Nucleic Acids Research, 2014, 42, 7793-7806.	6.5	31
92	HDAC-regulated myomiRs control BAF60 variant exchange and direct the functional phenotype of fibro-adipogenic progenitors in dystrophic muscles. Genes and Development, 2014, 28, 841-857.	2.7	132
93	In vivo Monitoring of Transcriptional Dynamics After Lower-Limb Muscle Injury Enables Quantitative Classification of Healing. Scientific Reports, 2015, 5, 13885.	1.6	21

#	Article	IF	CITATIONS
94	Syntaxin 4 regulates the surface localization of a promyogenic receptor Cdo thereby promoting myogenic differentiation. Skeletal Muscle, 2015, 5, 28.	1.9	9
95	Noncoding RNAs, Emerging Regulators of Skeletal Muscle Development and Diseases. BioMed Research International, 2015, 2015, 1-17.	0.9	82
96	Myomaker, Regulated by MYOD, MYOG and miR-140-3p, Promotes Chicken Myoblast Fusion. International Journal of Molecular Sciences, 2015, 16, 26186-26201.	1.8	93
97	Runx1 Transcription Factor Is Required for Myoblasts Proliferation during Muscle Regeneration. PLoS Genetics, 2015, 11, e1005457.	1.5	67
98	Differentiation-Associated Downregulation of Poly(ADP-Ribose) Polymerase-1 Expression in Myoblasts Serves to Increase Their Resistance to Oxidative Stress. PLoS ONE, 2015, 10, e0134227.	1.1	42
99	Identification of Atypical Peri-Nuclear Multivesicular Bodies in Oxidative and Glycolytic Skeletal Muscle of Aged and Pompe's Disease Mouse Models. Frontiers in Physiology, 2015, 6, 393.	1.3	2
100	Serum Response Factor Is Essential for Prenatal Gastrointestinal Smooth Muscle Development and Maintenance of Differentiated Phenotype. Journal of Neurogastroenterology and Motility, 2015, 21, 589-602.	0.8	12
101	New insights into the epigenetic control of satellite cells. World Journal of Stem Cells, 2015, 7, 945.	1.3	26
102	Prmt5 is a regulator of muscle stem cell expansion in adult mice. Nature Communications, 2015, 6, 7140.	5.8	98
103	Action of Obestatin in Skeletal Muscle Repair: Stem Cell Expansion, Muscle Growth, and Microenvironment Remodeling. Molecular Therapy, 2015, 23, 1003-1021.	3.7	33
104	TAp63gamma is required for the late stages of myogenesis. Cell Cycle, 2015, 14, 894-901.	1.3	19
105	A Rapid One-Generation Genetic Screen in a <i>Drosophila</i> Model to Capture Rhabdomyosarcoma Effectors and Therapeutic Targets. G3: Genes, Genomes, Genetics, 2015, 5, 205-217.	0.8	3
106	The implications on clinical diagnostics of using microRNA-based biomarkers in exercise. Expert Review of Molecular Diagnostics, 2015, 15, 761-772.	1.5	19
107	The Avian Embryo as a Model System for Skeletal Myogenesis. Results and Problems in Cell Differentiation, 2015, 56, 99-122.	0.2	18
108	Different Requirements for Wnt Signaling in Tongue Myogenic Subpopulations. Journal of Dental Research, 2015, 94, 421-429.	2.5	15
109	Transcription Factors in Craniofacial Development. Current Topics in Developmental Biology, 2015, 115, 377-410.	1.0	18
110	Molecular Regulation of Parturition: A Myometrial Perspective. Cold Spring Harbor Perspectives in Medicine, 2015, 5, a023069.	2.9	51
111	MEF2 Transcription Factors Regulate Distinct Gene Programs in Mammalian Skeletal Muscle Differentiation. Journal of Biological Chemistry, 2015, 290, 1256-1268.	1.6	92

#	Article	IF	CITATIONS
112	Function and position determine relative proportions of different fiber types in limb muscles of the lizard Tropidurus psammonastes. Zoology, 2015, 118, 27-33.	0.6	4
113	Temporal analysis of reciprocal miRNA-mRNA expression patterns predicts regulatory networks during differentiation in human skeletal muscle cells. Physiological Genomics, 2015, 47, 45-57.	1.0	16
114	The Ontogeny of Brown Adipose Tissue. Annual Review of Nutrition, 2015, 35, 295-320.	4.3	99
115	The Sick and the Weak: Neuropathies/Myopathies in the Critically Ill. Physiological Reviews, 2015, 95, 1025-1109.	13.1	262
116	ClpX stimulates the mitochondrial unfolded protein response (UPRmt) in mammalian cells. Biochimica Et Biophysica Acta - Molecular Cell Research, 2015, 1853, 2580-2591.	1.9	56
117	Metabolic Role of Angiotensin-(1-7)/Mas Axis. , 2015, , 249-254.		Ο
118	Skeletal Myogenesis in the Zebrafish and Its Implications for Muscle Disease Modelling. Results and Problems in Cell Differentiation, 2015, 56, 49-76.	0.2	14
119	Messenger RNA sequencing and pathway analysis provide novel insights into the biological basis of chickens' feed efficiency. BMC Genomics, 2015, 16, 195.	1.2	53
120	The miRNA Transcriptome Directly Reflects the Physiological and Biochemical Differences between Red, White, and Intermediate Muscle Fiber Types. International Journal of Molecular Sciences, 2015, 16, 9635-9653.	1.8	20
121	KAT5-mediated SOX4 acetylation orchestrates chromatin remodeling during myoblast differentiation. Cell Death and Disease, 2015, 6, e1857-e1857.	2.7	25
122	Development of Novel Antisense Oligonucleotides for the Functional Regulation of RNA-Induced Silencing Complex (RISC) by Promoting the Release of microRNA from RISC. Bioconjugate Chemistry, 2015, 26, 2454-2460.	1.8	16
123	Different Resistance-Training Regimens Evoked a Similar Increase in Myostatin Inhibitors Expression. International Journal of Sports Medicine, 2015, 36, 761-768.	0.8	10
124	Characterization of a novel chicken muscle disorder through differential gene expression and pathway analysis using RNA-sequencing. BMC Genomics, 2015, 16, 399.	1.2	210
125	Response to Letter Regarding Article, "Myostatin Regulates Energy Homeostasis in the Heart and Prevents Heart Failure― Circulation Research, 2015, 116, e97-8.	2.0	0
126	Olig1 Acetylation and Nuclear Export Mediate Oligodendrocyte Development. Journal of Neuroscience, 2015, 35, 15875-15893.	1.7	54
127	Leptin administration activates irisin-induced myogenesis via nitric oxide-dependent mechanisms, but reduces its effect on subcutaneous fat browning in mice. International Journal of Obesity, 2015, 39, 397-407.	1.6	98
128	Gene expression profiling of trout regenerating muscle reveals common transcriptional signatures with hyperplastic growth zones of the post-embryonic myotome. BMC Genomics, 2016, 17, 810.	1.2	16
129	Changes in expression of specific miRNAs and their target genes in repair of exercise-induced muscle injury in rats. Genetics and Molecular Research, 2016, 15, .	0.3	9

#	Article	IF	CITATIONS
130	Gene Expression Profiling of Muscle Stem Cells Identifies Novel Regulators of Postnatal Myogenesis. Frontiers in Cell and Developmental Biology, 2016, 4, 58.	1.8	63
131	Integrative Analyses of miRNA-mRNA Interactions Reveal let-7b, miR-128 and MAPK Pathway Involvement in Muscle Mass Loss in Sex-Linked Dwarf Chickens. International Journal of Molecular Sciences, 2016, 17, 276.	1.8	39
132	Spatial Geometries of Self-Assembled Chitohexaose Monolayers Regulate Myoblast Fusion. International Journal of Molecular Sciences, 2016, 17, 686.	1.8	3
133	Mechanosensitive Molecular Networks Involved in Transducing Resistance Exercise-Signals into Muscle Protein Accretion. Frontiers in Physiology, 2016, 7, 547.	1.3	37
134	Genome-wide identification and characterization of long non-coding RNAs in developmental skeletal muscle of fetal goat. BMC Genomics, 2016, 17, 666.	1.2	117
135	Skeletal muscle dedifferentiation during salamander limb regeneration. Current Opinion in Genetics and Development, 2016, 40, 108-112.	1.5	24
136	Lrrc75b is a novel negative regulator of C2C12 myogenic differentiation. International Journal of Molecular Medicine, 2016, 38, 1411-1418.	1.8	4
137	The LIM domain protein nTRIP6 acts as a co-repressor for the transcription factor MEF2C in myoblasts. Scientific Reports, 2016, 6, 27746.	1.6	9
138	Chronic Hyperinsulinemia Increases Myoblast Proliferation in Fetal Sheep Skeletal Muscle. Endocrinology, 2016, 157, 2447-2460.	1.4	16
139	Bakuchiol augments MyoD activation leading to enhanced myoblast differentiation. Chemico-Biological Interactions, 2016, 248, 60-67.	1.7	13
140	Scaffold protein enigma homolog 1 overcomes the repression of myogenesis activation by inhibitor of DNA binding 2. Biochemical and Biophysical Research Communications, 2016, 474, 413-420.	1.0	5
141	Post-transcriptional modulation of interleukin 8 by CNOT6L regulates skeletal muscle differentiation. Biochimica Et Biophysica Acta - Molecular Cell Research, 2016, 1863, 263-270.	1.9	8
142	The Chromatin Remodeling Complex Chd4/NuRD Controls Striated Muscle Identity and Metabolic Homeostasis. Cell Metabolism, 2016, 23, 881-892.	7.2	68
143	Optimization of an <i>inÂvitro</i> bioassay to monitor growth and formation of myotubes in real time. Bioscience Reports, 2016, 36, .	1.1	18
144	Engineering of Skeletal Muscle Regeneration: Principles, Current State, and Challenges. , 2016, , 777-812.		0
145	Inferring the Skeletal Muscle Developmental Changes of Grazing and Barn-Fed Goats from Gene Expression Data. Journal of Agricultural and Food Chemistry, 2016, 64, 6791-6800.	2.4	6
146	Regulation of Skeletal Muscle Myoblast Differentiation and Proliferation by Pannexins. Advances in Experimental Medicine and Biology, 2016, 925, 57-73.	0.8	30
147	Six1 homeoprotein drives myofiber type IIA specialization in soleus muscle. Skeletal Muscle, 2016, 6, 30.	1.9	24

#	Article	IF	CITATIONS
148	Transcriptional and Chromatin Dynamics of Muscle Regeneration after Severe Trauma. Stem Cell Reports, 2016, 7, 983-997.	2.3	41
149	PKN2 and Cdo interact to activate AKT and promote myoblast differentiation. Cell Death and Disease, 2016, 7, e2431-e2431.	2.7	33
150	Lamina-associated polypeptide 1 is dispensable for embryonic myogenesis but required for postnatal skeletal muscle growth. Human Molecular Genetics, 2016, 26, ddw368.	1.4	12
151	Long non-coding RNAs (IncRNAs) in skeletal and cardiac muscle: potential therapeutic and diagnostic targets?. Clinical Science, 2016, 130, 2245-2256.	1.8	24
152	The role of STIM1 in the Cr(<scp>vi</scp>)-induced [Ca ²⁺] _i increase and cell injury in L-02 hepatocytes. Metallomics, 2016, 8, 1273-1282.	1.0	9
153	Daily rhythmicity of clock gene transcript levels in fast and slow muscle fibers from Chinese perch (Siniperca chuatsi). BMC Genomics, 2016, 17, 1008.	1.2	22
154	βâ€Taxilin participates in differentiation of C2C12 myoblasts into myotubes. Experimental Cell Research, 2016, 345, 230-238.	1.2	8
155	Effect of resistance ladder training on sparc expression in skeletal muscle of hindlimb immobilized rats. Muscle and Nerve, 2016, 53, 951-957.	1.0	10
156	An NF-κB - EphrinA5-Dependent Communication between NG2+ Interstitial Cells and Myoblasts Promotes Muscle Growth in Neonates. Developmental Cell, 2016, 36, 215-224.	3.1	33
157	Improving maternal vitamin D status promotes prenatal and postnatal skeletal muscle development of pig offspring. Nutrition, 2016, 32, 1144-1152.	1.1	33
158	Myf5 and Myogenin in the development of thymic myoid cells — Implications for a murine in vivo model of myasthenia gravis. Experimental Neurology, 2016, 277, 76-85.	2.0	6
159	Coordinating cell proliferation and differentiation: Antagonism between cell cycle regulators and cell type-specific gene expression. Cell Cycle, 2016, 15, 196-212.	1.3	417
160	Tissue-Specific Cultured Human Pericytes: Perivascular Cells from Smooth Muscle Tissue Have Restricted Mesodermal Differentiation Ability. Stem Cells and Development, 2016, 25, 674-686.	1.1	24
161	Acetoacetate Accelerates Muscle Regeneration and Ameliorates Muscular Dystrophy in Mice. Journal of Biological Chemistry, 2016, 291, 2181-2195.	1.6	55
162	Exosomes from differentiating human skeletal muscle cells trigger myogenesis of stem cells and provide biochemical cues for skeletal muscle regeneration. Journal of Controlled Release, 2016, 222, 107-115.	4.8	138
163	Discovery of Novel Small Molecules that Activate Satellite Cell Proliferation and Enhance Repair of Damaged Muscle. ACS Chemical Biology, 2016, 11, 518-529.	1.6	16
164	Temporal correlation between differentiation factor expression and microRNAs in Holstein bovine skeletal muscle. Animal, 2017, 11, 227-235.	1.3	15
165	SH2B1 modulates chromatin state and MyoD occupancy to enhance expressions of myogenic genes. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2017, 1860, 270-281.	0.9	4

#	Article	IF	CITATIONS
166	Myoblast replication is reduced in the IUGR fetus despite maintained proliferative capacity in vitro. Journal of Endocrinology, 2017, 232, 475-491.	1.2	32
167	Palmdelphin promotes myoblast differentiation and muscle regeneration. Scientific Reports, 2017, 7, 41608.	1.6	21
168	Systematic Identification of Genes Regulating Muscle Stem Cell Self-Renewal and Differentiation. Methods in Molecular Biology, 2017, 1556, 343-353.	0.4	5
169	The Structure and Growth ofÂMuscle. , 2017, , 49-97.		6
170	Serine/Threonine Kinase 40 (Stk40) Functions as a Novel Regulator of Skeletal Muscle Differentiation. Journal of Biological Chemistry, 2017, 292, 351-360.	1.6	25
171	Protein Reviews. Advances in Experimental Medicine and Biology, 2017, , .	0.8	1
173	Rev-Erb co-regulates muscle regeneration via tethered interaction with the NF-Y cistrome. Molecular Metabolism, 2017, 6, 703-714.	3.0	27
174	Coordinated development of the limb musculoskeletal system: Tendon and muscle patterning and integration with the skeleton. Developmental Biology, 2017, 429, 420-428.	0.9	40
175	Akirin2 regulates proliferation and differentiation of porcine skeletal muscle satellite cells via ERK1/2 and NFATc1 signaling pathways. Scientific Reports, 2017, 7, 45156.	1.6	22
176	Malat1 regulates myogenic differentiation and muscle regeneration through modulating MyoD transcriptional activity. Cell Discovery, 2017, 3, 17002.	3.1	86
177	Quaking RNA-Binding Proteins Control Early Myofibril Formation by Modulating Tropomyosin. Developmental Cell, 2017, 42, 527-541.e4.	3.1	16
178	Xkâ€related protein 8 regulates myoblast differentiation and survival. FEBS Journal, 2017, 284, 3575-3588.	2.2	12
179	The DUX4 homeodomains mediate inhibition of myogenesis and are functionally exchangeable with the Pax7 homeodomain. Journal of Cell Science, 2017, 130, 3685-3697.	1.2	41
180	Extended specificity studies of mRNA assays used to infer human organ tissues and body fluids. Electrophoresis, 2017, 38, 3155-3160.	1.3	21
181	Effective Anti-miRNA Oligonucleotides Show High Releasing Rate of MicroRNA from RNA-Induced Silencing Complex. Nucleic Acid Therapeutics, 2017, 27, 303-308.	2.0	12
182	miR-130b-3p/301b-3p negatively regulated Rb1cc1 expression on myogenic differentiation of chicken primary myoblasts. Biotechnology Letters, 2017, 39, 1611-1619.	1.1	7
183	miR-491 inhibits skeletal muscle differentiation through targeting myomaker. Archives of Biochemistry and Biophysics, 2017, 625-626, 30-38.	1.4	19
184	MiR-23-TrxR1 as a novel molecular axis in skeletal muscle differentiation. Scientific Reports, 2017, 7, 7219.	1.6	37

#	Article	IF	CITATIONS
185	An siRNA-based screen in C2C12 myoblasts identifies novel genes involved in myogenic differentiation. Experimental Cell Research, 2017, 359, 145-153.	1.2	10
186	The histone code reader Spin1 controls skeletal muscle development. Cell Death and Disease, 2017, 8, e3173-e3173.	2.7	14
187	Mef2 and the skeletal muscle differentiation program. Seminars in Cell and Developmental Biology, 2017, 72, 33-44.	2.3	117
188	mTFkb: a knowledgebase for fundamental annotation of mouse transcription factors. Scientific Reports, 2017, 7, 3022.	1.6	21
189	Global gene expression in muscle from fasted/refed trout reveals up-regulation of genes promoting myofibre hypertrophy but not myofibre production. BMC Genomics, 2017, 18, 447.	1.2	27
190	Striated muscle activator of Rho signalling (STARS) is reduced in ageing human skeletal muscle and targeted by miRâ€628â€5p. Acta Physiologica, 2017, 220, 263-274.	1.8	16
191	Dynamic Phosphorylation of the Myocyte Enhancer Factor 2Cα1 Splice Variant Promotes Skeletal Muscle Regeneration and Hypertrophy. Stem Cells, 2017, 35, 725-738.	1.4	27
192	miRNA-223 upregulated by MYOD inhibits myoblast proliferation by repressing IGF2 and facilitates myoblast differentiation by inhibiting ZEB1. Cell Death and Disease, 2017, 8, e3094-e3094.	2.7	60
193	Novel Insights into the Role of the Cytoskeleton in Cancer. , 0, , .		4
194	Proteomic Analysis of Chicken Skeletal Muscle during Embryonic Development. Frontiers in Physiology, 2017, 8, 281.	1.3	59
195	MicroRNAs in Muscle: Characterizing the Powerlifter Phenotype. Frontiers in Physiology, 2017, 8, 383.	1.3	45
196	Sex-Specific Muscular Maturation Responses Following Prenatal Exposure to Methylation-Related Micronutrients in Pigs. Nutrients, 2017, 9, 74.	1.7	8
197	Neurologic Correlates of Gait Abnormalities in Cerebral Palsy: Implications for Treatment. Frontiers in Human Neuroscience, 2017, 11, 103.	1.0	57
198	Gene expression profiling in Pekin duck embryonic breast muscle. PLoS ONE, 2017, 12, e0174612.	1.1	9
198 199	Gene expression profiling in Pekin duck embryonic breast muscle. PLoS ONE, 2017, 12, e0174612. Genome-wide strategies identify downstream target genes of connective tissue-associated transcription factors. Development (Cambridge), 2018, 145, .	1.1	9 20
	Genome-wide strategies identify downstream target genes of connective tissue-associated		
199	Genome-wide strategies identify downstream target genes of connective tissue-associated transcription factors. Development (Cambridge), 2018, 145, . Fatty acids promote bovine skeletal muscle satellite cell differentiation by regulating ELOVL3	1.2	20

#	ARTICLE	IF	CITATIONS
203	Dairy Protein Supplementation Modulates the Human Skeletal Muscle microRNA Response to Lower Limb Immobilization. Molecular Nutrition and Food Research, 2018, 62, e1701028.	1.5	15
204	Comprehensive analysis of lncRNAs and mRNAs with associated co-expression and ceRNA networks in C2C12 myoblasts and myotubes. Gene, 2018, 647, 164-173.	1.0	28
205	Breed-dependent microRNA expression in the primary culture of skeletal muscle cells subjected to myogenic differentiation. BMC Genomics, 2018, 19, 109.	1.2	17
206	The complexity of titin splicing pattern in human adult skeletal muscles. Skeletal Muscle, 2018, 8, 11.	1.9	65
207	Expression patterns of regulatory RNAs, including lncRNAs and tRNAs, during postnatal growth of normal and dystrophic (mdx) mouse muscles, and their response to taurine treatment. International Journal of Biochemistry and Cell Biology, 2018, 99, 52-63.	1.2	10
208	Transcription factor EGR1 promotes differentiation of bovine skeletal muscle satellite cells by regulating <i>MyoG</i> gene expression. Journal of Cellular Physiology, 2018, 233, 350-362.	2.0	42
209	Dynamic transcriptomic analysis in hircine longissimus dorsi muscle from fetal to neonatal development stages. Functional and Integrative Genomics, 2018, 18, 43-54.	1.4	25
210	Emerging role of extracellular vesicles in musculoskeletal diseases. Molecular Aspects of Medicine, 2018, 60, 123-128.	2.7	86
211	The distinct transcriptomes of slow and fast adult muscles are delineated by noncoding RNAs. FASEB Journal, 2018, 32, 1579-1590.	0.2	25
212	Chick muscle development. International Journal of Developmental Biology, 2018, 62, 127-136.	0.3	19
213	miRNA-1290 Promotes Aggressiveness in Pancreatic Ductal Adenocarcinoma by Targeting IKK1. Cellular Physiology and Biochemistry, 2018, 51, 711-728.	1.1	21
214	The Ubiquitin-Proteasome System Is Indispensable for the Maintenance of Muscle Stem Cells. Stem Cell Reports, 2018, 11, 1523-1538.	2.3	54
215	Oncogenic Amplification of Zygotic Dux Factors in Regenerating p53-Deficient Muscle Stem Cells Defines a Molecular Cancer Subtype. Cell Stem Cell, 2018, 23, 794-805.e4.	5.2	21
216	The RNA-binding proteins Zfp36l1 and Zfp36l2 act redundantly in myogenesis. Skeletal Muscle, 2018, 8, 37.	1.9	22
217	ATP-Induced Increase in Intracellular Calcium Levels and Subsequent Activation of mTOR as Regulators of Skeletal Muscle Hypertrophy. International Journal of Molecular Sciences, 2018, 19, 2804.	1.8	49
218	Long noncoding RNA <i>SYISL</i> regulates myogenesis by interacting with polycomb repressive complex 2. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E9802-E9811.	3.3	106
219	Tissue-specific activities of the Fat1 cadherin cooperate to control neuromuscular morphogenesis. PLoS Biology, 2018, 16, e2004734.	2.6	25
220	Gga-miR-205a Affecting Myoblast Proliferation and Differentiation by Targeting CDH11. Frontiers in Genetics, 2018, 9, 414.	1.1	11

ARTICLE IF CITATIONS # TP63 Transcripts Play Opposite Roles in Chicken Skeletal Muscle Differentiation. Frontiers in 221 1.3 5 Physiology, 2018, 9, 1298. Metabolic Networks Influencing Skeletal Muscle Fiber Composition. Frontiers in Cell and 1.8 Developmental Biology, 2018, 6, 125. Physical Exercise-Induced Myokines and Muscle-Adipose Tissue Crosstalk: A Review of Current Knowledge and the Implications for Health and Metabolic Diseases. Frontiers in Physiology, 2018, 9, 223 221 1.3 1307. Alternative Splicing of Transcription Factors Genes in Muscle Physiology and Pathology. Genes, 2018, 224 9.107. Royal Jelly Delays Motor Functional Impairment During Aging in Genetically Heterogeneous Male Mice. 225 1.7 22 Nutrients, 2018, 10, 1191. Molecular regulation of skeletal muscle tissue formation and development. Veterinarni Medicina, 2018, 63, 489-499. 0.2 Novel internal regulators and candidate miRNAs within miR-379/miR-656 miRNA cluster can alter 227 1.6 25 cellular phenotype of human glioblastoma. Scientific Reports, 2018, 8, 7673. Deletion of NAD(P)H Oxidase 2 Prevents Angiotensin II-Induced Skeletal Muscle Atrophy. BioMed Research International, 2018, 2018, 1-10. The Major Lysosomal Membrane Proteins LAMP-1 and LAMP-2 Participate in Differentiation of C2C12 229 0.6 9 Myoblasts. Biological and Pharmaceutical Bulletin, 2018, 41, 1186-1193. Possible Role of NADPH Oxidase 4 in Angiotensin II-Induced Muscle Wasting in Mice. Frontiers in 1.3 Physiology, 2018, 9, 340. Myocyte enhancer factor 2A promotes proliferation and its inhibition attenuates myogenic 231 1.1 39 differentiation via myozenin 2 in bovine skeletal muscle myoblast. PLoS ONE, 2018, 13, e0196255. Mitochondrial ROS-derived PTEN oxidation activates PI3K pathway for mTOR-induced myogenic 5.0 106 autophagy. Cell Death and Differentiation, 2018, 25, 1921-1937. MUNC, an Enhancer RNA Upstream from the <i>MYOD</i> Gene, Induces a Subgroup of Myogenic 233 1.1 32 Transcripts in <i>trans</i> Independently of MyoD. Molecular and Cellular Biology, 2018, 38, . Abnormalities in Skeletal Muscle Myogenesis, Growth, and Regeneration in Myotonic Dystrophy. 234 1.1 Frontiers in Neurology, 2018, 9, 368. Integrated Analyses Reveal Overexpressed Notch1 Promoting Porcine Satellite Cells' Proliferation 235 1.8 22 through Regulating the Cell Cycle. International Journal of Molecular Sciences, 2018, 19, 271. Myokines related to leukocyte recruitment are down-regulated in osteosarcoma. International 1.1 Journal of Medical Sciences, 2018, 15, 859-866. Genome-wide survey reveals dynamic effects of folate supplement on DNA methylation and gene 237 1.0 6 expression during C2C12 differentiation. Physiological Genomics, 2018, 50, 158-168. Integrated analysis of IncRNA and mRNA expression in rainbow trout families showing variation in muscle growth and fillet quality traits. Scientific Reports, 2018, 8, 12111.

#	Article	IF	CITATIONS
239	Targeted ablation of p38α MAPK suppresses denervation-induced muscle atrophy. Scientific Reports, 2018, 8, 9037.	1.6	23
240	Sensitive detection of fluorescence in western blotting by merging images. PLoS ONE, 2018, 13, e0191532.	1.1	13
241	Altered expression of miRNAs and mRNAs reveals the potential regulatory role of miRNAs in the developmental process of early weaned goats. PLoS ONE, 2019, 14, e0220907.	1.1	21
242	Contribution of Extracellular Vesicles in Rebuilding Injured Muscles. Frontiers in Physiology, 2019, 10, 828.	1.3	45
243	Ginsenoside Rg3 upregulates myotube formation and mitochondrial function, thereby protecting myotube atrophy induced by tumor necrosis factor-alpha. Journal of Ethnopharmacology, 2019, 242, 112054.	2.0	30
244	The Inhibition on MDFIC and PI3K/AKT Pathway Caused by miR-146b-3p Triggers Suppression of Myoblast Proliferation and Differentiation and Promotion of Apoptosis. Cells, 2019, 8, 656.	1.8	35
245	Protein kinase CK2 subunits exert specific and coordinated functions in skeletal muscle differentiation and fusogenic activity. FASEB Journal, 2019, 33, 10648-10667.	0.2	22
246	PRMT1 activates myogenin transcription via MyoD arginine methylation at R121. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2019, 1862, 194442.	0.9	11
247	Importance of Long Non-coding RNAs in the Development and Disease of Skeletal Muscle and Cardiovascular Lineages. Frontiers in Cell and Developmental Biology, 2019, 7, 228.	1.8	42
248	Methylation status and expression patterns of myomaker gene play important roles in postnatal development in the Japanese flounder (Paralichthys olivaceus). General and Comparative Endocrinology, 2019, 280, 104-114.	0.8	6
249	Non-Coding RNA Regulates the Myogenesis of Skeletal Muscle Satellite Cells, Injury Repair and Diseases. Cells, 2019, 8, 988.	1.8	60
250	Functions and Regulatory Mechanisms of IncRNAs in Skeletal Myogenesis, Muscle Disease and Meat Production. Cells, 2019, 8, 1107.	1.8	71
251	Non-viral nanocarriers for intracellular delivery of microRNA therapeutics. Journal of Materials Chemistry B, 2019, 7, 1209-1225.	2.9	70
252	Zfp423 Regulates Skeletal Muscle Regeneration and Proliferation. Molecular and Cellular Biology, 2019, 39, .	1.1	12
253	NeuroMuscleDB: a Database of Genes Associated with Muscle Development, Neuromuscular Diseases, Ageing, and Neurodegeneration. Molecular Neurobiology, 2019, 56, 5835-5843.	1.9	13
254	Paraxial Mesoderm Is the Major Source of Lymphatic Endothelium. Developmental Cell, 2019, 50, 247-255.e3.	3.1	94
255	Mechanisms of vitamin D action in skeletal muscle. Nutrition Research Reviews, 2019, 32, 192-204.	2.1	64
256	MEF2A Regulates the MEG3-DIO3 miRNA Mega Cluster-Targeted PP2A Signaling in Bovine Skeletal Myoblast Differentiation, International Journal of Molecular Sciences, 2019, 20, 2748	1.8	15

#	Article	IF	CITATIONS
257	Thermal manipulation of the broilers embryos: expression of muscle markers genes and weights of body and internal organs during embryonic and post-hatch days. BMC Veterinary Research, 2019, 15, 166.	0.7	21
258	Differential Expression of KCNJ12 Gene and Association Analysis of Its Missense Mutation with Growth Traits in Chinese Cattle. Animals, 2019, 9, 273.	1.0	8
259	Genetic effects of the EIF5A2 gene on chicken growth and skeletal muscle development. Livestock Science, 2019, 225, 62-72.	0.6	2
260	Molecular signature of selective microRNAs in Cyprinus carpio (Linnaeus 1758):a computational approach. ExRNA, 2019, 1, .	1.0	0
261	4-hydroxy-3-methoxy cinnamic acid accelerate myoblasts differentiation on C2C12 mouse skeletal muscle cells via AKT and ERK 1/2 activation. Phytomedicine, 2019, 60, 152873.	2.3	19
262	Gene expression of Hanwoo satellite cell differentiation in longissimus dorsi and semimembranosus. BMC Genomics, 2019, 20, 156.	1.2	18
263	Fabrication and Characterization of Electrospun Decellularized Muscle-Derived Scaffolds. Tissue Engineering - Part C: Methods, 2019, 25, 276-287.	1.1	46
264	The single-cell transcriptional landscape of mammalian organogenesis. Nature, 2019, 566, 496-502.	13.7	2,292
265	Differentially expressed coding and noncoding RNAs in CoCl ₂ -induced cytotoxicity of C2C12 cells. Epigenomics, 2019, 11, 423-438.	1.0	7
266	Long Noncoding Ribonucleic Acid MSTRG.59589 Promotes Porcine Skeletal Muscle Satellite Cells Differentiation by Enhancing the Function of PALLD. Frontiers in Genetics, 2019, 10, 1220.	1.1	7
267	A Novel Long Noncoding RNA, IncR-125b, Promotes the Differentiation of Goat Skeletal Muscle Satellite Cells by Sponging miR-125b. Frontiers in Genetics, 2019, 10, 1171.	1.1	24
268	Microfluidic devices for disease modeling in muscle tissue. Biomaterials, 2019, 198, 250-258.	5.7	15
269	A novel long non-coding RNA, IncKBTBD10, involved in bovine skeletal muscle myogenesis. In Vitro Cellular and Developmental Biology - Animal, 2019, 55, 25-35.	0.7	9
270	Tocotrienol-Rich Fraction (TRF) Treatment Promotes Proliferation Capacity of Stress-Induced Premature Senescence Myoblasts and Modulates the Renewal of Satellite Cells: Microarray Analysis. Oxidative Medicine and Cellular Longevity, 2019, 2019, 1-19.	1.9	14
271	Comparative transcriptome analysis reveals regulators mediating breast muscle growth and development in three chicken breeds. Animal Biotechnology, 2019, 30, 233-241.	0.7	25
272	GM130 and p115 play a key role in the organisation of the early secretory pathway during skeletal muscle differentiation. Journal of Cell Science, 2019, 132, .	1.2	8
273	Delayed myonuclear addition, myofiber hypertrophy, and increases in strength with high-frequency low-load blood flow restricted training to volitional failure. Journal of Applied Physiology, 2019, 126, 578-592.	1.2	42
274	Type 1 Muscle Fiber Hypertrophy after Blood Flow–restricted Training in Powerlifters. Medicine and Science in Sports and Exercise, 2019, 51, 288-298.	0.2	72

#	Article	IF	CITATIONS
275	Prmt7 promotes myoblast differentiation via methylation of p38MAPK on arginine residue 70. Cell Death and Differentiation, 2020, 27, 573-586.	5.0	24
276	Molecular characterization, expression analysis of myostatin gene and its negative regulation by miR-29b-3p in Chinese concave-eared frogs (Odorrana tormota). Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 2020, 240, 110369.	0.7	2
277	MLL1 promotes myogenesis by epigenetically regulating <i>Myf5</i> . Cell Proliferation, 2020, 53, e12744.	2.4	16
278	Promotion of oxidative stress is associated with mitochondrial dysfunction and muscle atrophy in aging mice. Geriatrics and Gerontology International, 2020, 20, 78-84.	0.7	40
279	Identification and Characterization of IncRNAs Related to the Muscle Growth and Development of Japanese Flounder (Paralichthys olivaceus). Frontiers in Genetics, 2020, 11, 1034.	1.1	11
280	A Cellular Mechanism to Detect and Alleviate Reductive Stress. Cell, 2020, 183, 46-61.e21.	13.5	85
281	lncRNA IGF2 AS Regulates Bovine Myogenesis through Different Pathways. Molecular Therapy - Nucleic Acids, 2020, 21, 874-884.	2.3	14
282	LRTM1 promotes the differentiation of myoblast cells by negatively regulating the FGFR1 signaling pathway. Experimental Cell Research, 2020, 396, 112237.	1.2	6
283	High glucose-induced oxidative stress accelerates myogenesis by altering SUMO reactions. Experimental Cell Research, 2020, 395, 112234.	1.2	13
284	The untold story between enhancers and skeletal muscle development. Journal of Integrative Agriculture, 2020, 19, 2137-2149.	1.7	0
285	Single-nucleus RNA-seq and FISH identify coordinated transcriptional activity in mammalian myofibers. Nature Communications, 2020, 11, 5102.	5.8	136
286	Lmod3 promotes myoblast differentiation and proliferation via the AKT and ERK pathways. Experimental Cell Research, 2020, 396, 112297.	1.2	12
287	Natural flavonoid silibinin promotes the migration and myogenic differentiation of murine C2C12 myoblasts via modulation of ROS generation and down-regulation of estrogen receptor α expression. Molecular and Cellular Biochemistry, 2020, 474, 243-261.	1.4	3
288	<i>IncMGPF</i> is a novel positive regulator of muscle growth and regeneration. Journal of Cachexia, Sarcopenia and Muscle, 2020, 11, 1723-1746.	2.9	36
289	Maintenance of sarcomeric integrity in adult muscle cells crucially depends on Z-disc anchored titin. Nature Communications, 2020, 11, 4479.	5.8	38
290	A Modified Pre-plating Method for High-Yield and High-Purity Muscle Stem Cell Isolation From Human/Mouse Skeletal Muscle Tissues. Frontiers in Cell and Developmental Biology, 2020, 8, 793.	1.8	20
291	Characterization of microRNAs during Embryonic Skeletal Muscle Development in the Shan Ma Duck. Animals, 2020, 10, 1417.	1.0	9
292	Identification of diverse cell populations in skeletal muscles and biomarkers for intramuscular fat of chicken by single-cell RNA sequencing. BMC Genomics, 2020, 21, 752.	1.2	24

#	Article	IF	CITATIONS
293	Human Platelet Lysate Supports Mouse Skeletal Myoblast Growth but Suppresses Cell Fusion on Nanogrooves. ACS Applied Bio Materials, 2020, 3, 3594-3604.	2.3	1
294	Transcriptome analysis reveals a molecular understanding of nicotinamide and butyrate sodium on meat quality of broilers under high stocking density. BMC Genomics, 2020, 21, 412.	1.2	10
295	Microtubule Organization in Striated Muscle Cells. Cells, 2020, 9, 1395.	1.8	45
296	Highly Proliferative Immortalized Human Dental Pulp Cells Retain the Odontogenic Phenotype when Combined with a Beta-Tricalcium Phosphate Scaffold and BMP2. Stem Cells International, 2020, 2020, 1-18.	1.2	20
297	A Cdh1–FoxM1–Apc axis controls muscle development and regeneration. Cell Death and Disease, 2020, 11, 180.	2.7	16
298	Emerging Strategies Targeting Catabolic Muscle Stress Relief. International Journal of Molecular Sciences, 2020, 21, 4681.	1.8	9
299	Exosome biogenesis, secretion and function of exosomal miRNAs in skeletal muscle myogenesis. Cell Proliferation, 2020, 53, e12857.	2.4	121
300	MEG3 Promotes Differentiation of Porcine Satellite Cells by Sponging miR-423-5p to Relieve Inhibiting Effect on SRF. Cells, 2020, 9, 449.	1.8	17
301	Proteomic analyses of sheep (ovis aries) embryonic skeletal muscle. Scientific Reports, 2020, 10, 1750.	1.6	13
302	Complicated Muscle-Bone Interactions in Children with Cerebral Palsy. Current Osteoporosis Reports, 2020, 18, 47-56.	1.5	9
303	Heterogeneity of Satellite Cells Implicates DELTA1/NOTCH2 Signaling in Self-Renewal. Cell Reports, 2020, 30, 1491-1503.e6.	2.9	47
304	MET promotes the proliferation and differentiation of myoblasts. Experimental Cell Research, 2020, 388, 111838.	1.2	3
305	Dynamic Transcriptomic Analysis of Breast Muscle Development From the Embryonic to Post-hatching Periods in Chickens. Frontiers in Genetics, 2019, 10, 1308.	1.1	18
306	Myogenesis control by SIX transcriptional complexes. Seminars in Cell and Developmental Biology, 2020, 104, 51-64.	2.3	25
307	Effects of alternating blood flow restricted training and heavy-load resistance training on myofiber morphology and mechanical muscle function. Journal of Applied Physiology, 2020, 128, 1523-1532.	1.2	9
308	miR-99a-5p Regulates the Proliferation and Differentiation of Skeletal Muscle Satellite Cells by Targeting MTMR3 in Chicken. Genes, 2020, 11, 369.	1.0	24
309	Therapeutic application of extracellular vesicles for musculoskeletal repair & regeneration. Connective Tissue Research, 2021, 62, 99-114.	1.1	7
310	Comprehensive Analysis of the Proteome and PTMomes of C2C12 Myoblasts Reveals that Sialylation Plays a Role in the Differentiation of Skeletal Muscle Cells. Journal of Proteome Research, 2021, 20, 222-235.	1.8	3

#	Article	IF	CITATIONS
311	Molecular Mechanisms of Skeletal Muscle Hypertrophy. Journal of Neuromuscular Diseases, 2021, 8, 169-183.	1.1	64
312	A novel PAI-1 inhibitor prevents ageing-related muscle fiber atrophy. Biochemical and Biophysical Research Communications, 2021, 534, 849-856.	1.0	1
313	Pyrimidine and fused pyrimidine derivatives as promising protein kinase inhibitors for cancer treatment. Medicinal Chemistry Research, 2021, 30, 31-49.	1.1	44
314	Integrated Glycoproteomics Identifies a Role of N-Glycosylation and Galectin-1 on Myogenesis and Muscle Development. Molecular and Cellular Proteomics, 2021, 20, 100030.	2.5	31
315	Cerebral Palsy and Stroke—Early and Late Brain Lesion Present Differences in Systemic Biomarkers and Gene Expression Related to Muscle Contractures. World Journal of Neuroscience, 2021, 11, 34-47.	0.1	1
316	A narrative review of skeletal muscle atrophy in critically ill children: pathogenesis and chronic sequelae. Translational Pediatrics, 2021, 10, 2763-2777.	0.5	6
317	CircRILPL1 promotes muscle proliferation and differentiation via binding miR-145 to activate IGF1R/PI3K/AKT pathway. Cell Death and Disease, 2021, 12, 142.	2.7	33
318	Recent advances and future avenues in understanding the role of adipose tissue cross talk in mediating skeletal muscle mass and function with ageing. GeroScience, 2021, 43, 85-110.	2.1	17
319	Role of 25-Hydroxyvitamin D3 and 1,25-Dihydroxyvitamin D3 in Chicken Embryo Osteogenesis, Adipogenesis, Myogenesis, and Vitamin D3 Metabolism. Frontiers in Physiology, 2021, 12, 637629.	1.3	9
320	Growth and Differentiation of Circulating Stem Cells After Extensive Ex Vivo Expansion. Tissue Engineering and Regenerative Medicine, 2021, 18, 411-427.	1.6	6
323	MiR-1290 promotes myoblast differentiation and protects against myotube atrophy via Akt/p70/FoxO3 pathway regulation. Skeletal Muscle, 2021, 11, 6.	1.9	14
324	Cellular and molecular pathways controlling muscle size in response to exercise. FEBS Journal, 2022, 289, 1428-1456.	2.2	16
325	Comparative transcriptome profiles of large and small bodied large-scale loaches cultivated in paddy fields. Scientific Reports, 2021, 11, 4936.	1.6	3
326	Long noncoding RNA SMUL suppresses SMURF2 production-mediated muscle atrophy via nonsense-mediated mRNA decay. Molecular Therapy - Nucleic Acids, 2021, 23, 512-526.	2.3	24
327	Oleate Ameliorates Palmitate-Induced Impairment of Differentiative Capacity in C2C12 Myoblast Cells. Stem Cells and Development, 2021, 30, 289-300.	1.1	6
328	Cystathionine gamma″yase/H 2 S signaling facilitates myogenesis under aging and injury condition. FASEB Journal, 2021, 35, e21511.	0.2	10
329	Activation of skeletal muscle–resident glial cells upon nerve injury. JCI Insight, 2021, 6, .	2.3	20
331	Effects of topological constraints on the alignment and maturation of multinucleated myotubes. Biotechnology and Bioengineering, 2021, 118, 2234-2242.	1.7	1

ARTICLE IF CITATIONS # Plectin regulates Wnt signaling mediated-skeletal muscle development by interacting with 332 1.0 11 Dishevelled-2 and antagonizing autophagy. Gene, 2021, 783, 145562. Mechanisms of exercise as a preventative measure to muscle wasting. American Journal of Physiology -2.1 Cell Physiology, 2021, 321, C40-C57. PERK Signaling Controls Myoblast Differentiation by Regulating MicroRNA Networks. Frontiers in 334 1.8 11 Cell and Developmental Biology, 2021, 9, 670435. Current Issues and Technical Advances in Cultured Meat Production: A Review. Food Science of 39 Animal Resources, 2021, 41, 355-372. The Effects of Marine Algal Polyphenols, Phlorotannins, on Skeletal Muscle Growth in C2C12 Muscle 336 2.2 9 Cells via Smad and IGF-1 Signaling Pathways. Marine Drugs, 2021, 19, 266. A novel lncRNA promotes myogenesis of bovine skeletal muscle satellite cells via PFN1â€RhoA/Rac1. Journal of Cellular and Molecular Medicine, 2021, 25, 5988-6005. 1.6 Transcriptome Analysis Reveals the Profile of Long Non-coding RNAs During Chicken Muscle 338 1.3 3 Development. Frontiers in Physiology, 2021, 12, 660370. Small heat-shock protein HSPB3 promotes myogenesis by regulating the lamin B receptor. Cell Death 2.7 16 and Disease, 2021, 12, 452. Circular RNA circMYBPC1 promotes skeletal muscle differentiation by targeting MyHC. Molecular 340 2.3 41 Therapy - Nucleic Acids, 2021, 24, 352-368. Controlling cellular organization in bioprinting through designed 3D microcompartmentalization. 341 5.5 Applied Physics Reviews, 2021, 8, 021404. Endothelial ontogeny and the establishment of vascular heterogeneity. BioEssays, 2021, 43, e2100036. 342 10 1.2 Analysis of long intergenic non-coding RNAs transcriptomic profiling in skeletal muscle growth 1.6 during porcine embryonicÂdevelopment. Scientific Reports, 2021, 11, 15240. Branchiomeric Muscle Development Requires Proper Retinoic Acid Signaling. Frontiers in Cell and 344 1.8 1 Developmental Biology, 2021, 9, 596838. Circadian rhythm shows potential for mRNA efficiency and self-organized division of labor in multinucleate cells. PLoS Computational Biology, 2021, 17, e1008828. 345 1.5 Growth factors improve the proliferation of Jeju black pig muscle cells by regulating myogenic 346 0.8 12 differentiation 1 and growth-related genes. Animal Bioscience, 2021, 34, 1392-1402. Understanding skeletal muscle in cerebral palsy: a path to personalized medicine?. Developmental Medicine and Child Neurology, 2022, 64, 289-295. 349 1.1 Decorin regulates myostatin and enhances proliferation and differentiation of embryonic myoblasts 350 1.0 2 in Leizhou black duck. Gene, 2021, 804, 145884. Cortisol differentially affects the viability and myogenesis of mono- and co-cultured porcine gluteal

CITATION REPORT

muscles satellite cells and fibroblasts. Tissue and Cell, 2021, 73, 101615.

#	Article	IF	CITATIONS
352	Lnc-ORA interacts with microRNA-532-3p and IGF2BP2 to inhibit skeletal muscle myogenesis. Journal of Biological Chemistry, 2021, 296, 100376.	1.6	18
353	Myotonic Dystrophy and Developmental Regulation of RNA Processing. , 2018, 8, 509-553.		26
354	Regulation of Eukaryotic Cell Differentiation by Long Non-coding RNAs. , 2013, , 15-67.		4
355	Skeletal Muscle Stem Cells for Muscle Regeneration. Methods in Molecular Biology, 2014, 1213, 245-253.	0.4	4
356	Skeletal Muscle microRNAs: Roles in Differentiation, Disease and Exercise. Research and Perspectives in Endocrine Interactions, 2017, , 67-81.	0.2	9
357	Circular RNA Profiling Reveals an Abundant circEch1 That Promotes Myogenesis and Differentiation of Bovine Skeletal Muscle. Journal of Agricultural and Food Chemistry, 2021, 69, 592-601.	2.4	35
362	Cell-Autonomous and Non-Cell-Autonomous Roles for Irf6 during Development of the Tongue. PLoS ONE, 2013, 8, e56270.	1.1	17
363	Paracrine Effects of IGF-1 Overexpression on the Functional Decline Due to Skeletal Muscle Disuse: Molecular and Functional Evaluation in Hindlimb Unloaded MLC/mIgf-1 Transgenic Mice. PLoS ONE, 2013, 8, e65167.	1.1	24
364	Trbp Is Required for Differentiation of Myoblasts and Normal Regeneration of Skeletal Muscle. PLoS ONE, 2016, 11, e0155349.	1.1	9
365	Cdo Regulates Surface Expression of Kir2.1 K+ Channel in Myoblast Differentiation. PLoS ONE, 2016, 11, e0158707.	1.1	16
366	Rates of myogenesis and myofiber numbers are reduced in late gestation IUGR fetal sheep. Journal of Endocrinology, 2020, 244, 339-352.	1.2	15
367	Genes expression profiles in the loin muscle of Manych Merino sheep with different live weight. , 2016, 19, 19-29.		1
368	Cell Differentiation and Checkpoint. International Journal of Cancer Research and Molecular Mechanisms, 2015, 1, .	0.2	4
369	Correlation between gene expression profiles in muscle and live weight in Dzhalginsky Merino sheep. Revista Colombiana De Ciencias Pecuarias, 2016, 29, .	0.4	6
370	TP53/miR-34a-associated signaling targets SERPINE1 expression in human pancreatic cancer. Aging, 2020, 12, 2777-2797.	1.4	21
372	Regulation of Skeletal Muscle Plasticity by Glycogen Synthase Kinase-3β: A Potential Target for the Treatment of Muscle Wasting. Current Pharmaceutical Design, 2013, 19, 3276-3298.	0.9	15
373	Nuclear Export Mediated Regulation of MicroRNAs: Potential Target for Drug Intervention. Current Drug Targets, 2013, 14, 1094-1100.	1.0	40
374	The Expression and Functional Roles of miRNAs in Embryonic and Lineage-Specific Stem Cells. Current Stem Cell Research and Therapy, 2019, 14, 278-289.	0.6	19

#	Article	IF	CITATIONS
375	Mechanism and Functions of Identified miRNAs in Poultry Skeletal Muscle Development – A Review. Annals of Animal Science, 2019, 19, 887-904.	0.6	2
376	Indels within the bovine visfatin gene affect its mRNA expression in longissimus muscle and subcutaneous fat. Archives Animal Breeding, 2016, 59, 91-95.	0.5	5
377	Pask integrates hormonal signaling with histone modification via Wdr5 phosphorylation to drive myogenesis. ELife, 2016, 5, .	2.8	16
378	BRAF activates PAX3 to control muscle precursor cell migration during forelimb muscle development. ELife, 2016, 5, .	2.8	16
379	Extensive alternative splicing transitions during postnatal skeletal muscle development are required for calcium handling functions. ELife, 2017, 6, .	2.8	58
380	Analysis of dynamic and widespread IncRNA and miRNA expression in fetal sheep skeletal muscle. PeerJ, 2020, 8, e9957.	0.9	10
381	Skeletal Muscle Regeneration by the Exosomes of Adipose Tissue-Derived Mesenchymal Stem Cells. Current Issues in Molecular Biology, 2021, 43, 1473-1488.	1.0	20
382	Myogenin controls via AKAP6 non-centrosomal microtubule-organizing center formation at the nuclear envelope. ELife, 2021, 10, .	2.8	6
383	Identification of Chimeric RNAs in Pig Skeletal Muscle and Transcriptomic Analysis of Chimeric RNA TNNI2-ACTA1 V1. Frontiers in Veterinary Science, 2021, 8, 742593.	0.9	3
384	MicroRNAs in skeletal muscle. Japanese Journal of Physical Fitness and Sports Medicine, 2012, 61, 61-70.	0.0	2
385	Cardiac Myocytes and Mechanosensation. , 0, , .		0
386	Zellen. , 2014, , 131-199.		0
390	Organizational Properties of a Functional Mammalian Cis-Regulome. SSRN Electronic Journal, 0, , .	0.4	0
391	Skeletal Muscle Structure in Spastic Cerebral Palsy. , 2018, , 1075-1089.		0
397	MicroRNA‑23a‑5p mediates the proliferation and differentiation of C2C12 myoblasts. Molecular Medicine Reports, 2020, 22, 3705-3714.	1.1	4
400	The temporal specific role of WNT/l²-catenin signaling during myogenesis. Journal of Nature and Science, 2015, 1, e143.	1.1	8
401	Pyruvate Might Bridge Gut Microbiota and Muscle Health in Aging Mice After Chronic High Dose of Leucine Supplementation. Frontiers in Medicine, 2021, 8, 755803.	1.2	3
402	The genome variation and developmental transcriptome maps reveal genetic differentiation of skeletal muscle in pigs. PLoS Genetics, 2021, 17, e1009910.	1.5	22

#	Article	IF	Citations
403	Molecular Cloning, Characterization and Expression Profile of Myf5 and Myf6 During Growth and Development in the Seriola lalandi. Journal of Ocean University of China, 2021, 20, 1597-1605.	0.6	1
404	Nano-sized graphene oxide coated nanopillars on microgroove polymer arrays that enhance skeletal muscle cell differentiation. Nano Convergence, 2021, 8, 40.	6.3	18
405	LncEDCH1Âimproves mitochondrial function to reduce muscle atrophy by interacting with SERCA2. Molecular Therapy - Nucleic Acids, 2022, 27, 319-334.	2.3	9
406	Maternal undernutrition alters the skeletal muscle development and methylation of myogenic factors in goat offspring. Animal Bioscience, 2022, 35, 847-857.	0.8	4
407	Interleukinâ€15 receptor subunit alpha regulates interleukinâ€15 localization and protein expression in skeletal muscle cells. Experimental Physiology, 2022, 107, 222-232.	0.9	4
408	Biogenesis and function of extracellular vesicles in pathophysiological processes of skeletal muscle atrophy. Biochemical Pharmacology, 2022, 198, 114954.	2.0	38
409	<i>Tent5a</i> modulates muscle fiber formation in adolescent idiopathic scoliosis via maintenance of myogenin expression. Cell Proliferation, 2022, 55, e13183.	2.4	6
410	Yeast hydrolysate ameliorates dexamethasone-induced muscle atrophy by suppressing MuRF-1 expression in C2C12 cells and C57BL/6 mice. Journal of Functional Foods, 2022, 90, 104985.	1.6	4
412	Role of skeletal muscle satellite cells in the repair of osteoporotic fractures mediated by βâ€catenin. Journal of Cachexia, Sarcopenia and Muscle, 2022, 13, 1403-1417.	2.9	9
414	Driving an Oxidative Phenotype Protects Myh4 Null Mice From Myofiber Loss During Postnatal Growth. Frontiers in Physiology, 2021, 12, 785151.	1.3	2
415	Myokines and Resistance Training: A Narrative Review. International Journal of Molecular Sciences, 2022, 23, 3501.	1.8	29
416	Maternal exposure to <scp>glyphosateâ€based</scp> herbicide promotes changes in the muscle structure of C57BL/6 mice offspring. Anatomical Record, 2022, 305, 3307-3316.	0.8	7
417	m6A Methylases Regulate Myoblast Proliferation, Apoptosis and Differentiation. Animals, 2022, 12, 773.	1.0	5
418	Gene markers of dietary macronutrient composition and growth in the skeletal muscle of gilthead sea bream (Sparus aurata). Aquaculture, 2022, 555, 738221.	1.7	6
419	METTL3 promotes proliferation and myogenic differentiation through m6A RNA methylation/YTHDF1/2 signaling axis in myoblasts. Life Sciences, 2022, 298, 120496.	2.0	10
420	The mechanism of Megalobrama amblycephala muscle injury repair based on RNA-seq. Gene, 2022, 827, 146455.	1.0	0
421	Non-coding RNAs-associated ceRNA networks involved in the amelioration of skeletal muscle aging after whey protein supplementation. Journal of Nutritional Biochemistry, 2022, 104, 108968.	1.9	1
422	Transcriptome-wide N6-Methyladenosine Methylome Profiling Reveals m6A Regulation of Skeletal Myoblast Differentiation in Cattle (Bos taurus). Frontiers in Cell and Developmental Biology, 2021, 9, 785380.	1.8	10

#	Article	IF	CITATIONS
423	L-Arginine Supplementation for Nulliparous Sows during the Last Third of Gestation. Animals, 2021, 11, 3476.	1.0	1
424	Genome-wide identification of enhancers and transcription factors regulating the myogenic differentiation of bovine satellite cells. BMC Genomics, 2021, 22, 901.	1.2	6
425	Regulation of Myostatin on the Growth and Development of Skeletal Muscle. Frontiers in Cell and Developmental Biology, 2021, 9, 785712.	1.8	47
426	SIGNET: single-cell RNA-seq-based gene regulatory network prediction using multiple-layer perceptron bagging. Briefings in Bioinformatics, 2022, 23, .	3.2	9
427	Transcriptomic analysis of thigh muscle of Lueyang black-bone chicken in free-range and caged feeding. Animal Biotechnology, 2023, 34, 785-795.	0.7	8
428	Positional Context of Myonuclear Transcription During Injury-Induced Muscle Regeneration. Frontiers in Physiology, 2022, 13, 845504.	1.3	5
429	Expression Profile Analysis to Identify Circular RNA Expression Signatures in Muscle Development of Wu'an Goat Longissimus Dorsi Tissues. Frontiers in Veterinary Science, 2022, 9, 833946.	0.9	6
430	Modulatory effects of cell–cell interactions between porcine skeletal muscle satellite cells and fibroblasts on the expression of myogenesis-related genes. Journal of Applied Animal Research, 2022, 50, 259-268.	0.4	3
431	Identification and characterization of long non-coding RNAs in juvenile and adult skeletal muscle of largemouth bass (Micropterus salmoides). Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 2022, 261, 110748.	0.7	0
466	Singleâ€Cell RNA Sequencing Reveals Heterogeneity of Myf5â€Derived Cells and Altered Myogenic Fate in the Absence of SRSF2. Advanced Science, 2022, , 2105775.	5.6	3
467	Long noncoding RNA ZFP36L2-AS functions as a metabolic modulator to regulate muscle development. Cell Death and Disease, 2022, 13, 389.	2.7	7
468	Additional effects of simultaneous treatment with C14-Cblin and celastrol on the clinorotation-induced rat L6 myotube atrophy. Journal of Medical Investigation, 2022, 69, 127-134.	0.2	1
469	Therapeutic Properties of Ayahuasca Components in Ischemia/Reperfusion Injury of the Eye. Biomedicines, 2022, 10, 997.	1.4	1
470	LncR-133a Suppresses Myoblast Differentiation by Sponging miR-133a-3p to Activate the FGFR1/ERK1/2 Signaling Pathway in Goats. Genes, 2022, 13, 818.	1.0	4
471	Identification of distinct non-myogenic skeletal-muscle-resident mesenchymal cell populations. Cell Reports, 2022, 39, 110785.	2.9	23
472	Regulation of A-to-I RNA editing and stop codon recoding to control selenoprotein expression during skeletal myogenesis. Nature Communications, 2022, 13, 2503.	5.8	5
473	Integrative analysis of circRNA, miRNA, and mRNA profiles to reveal ceRNA regulation in chicken muscle development from the embryonic to post-hatching periods. BMC Genomics, 2022, 23, 342.	1.2	8
474	Young CSF restores oligodendrogenesis and memory in aged mice via Fgf17. Nature, 2022, 605, 509-515.	13.7	98

#	Article	IF	CITATIONS
475	MEF2C Expression Is Regulated by the Post-transcriptional Activation of the METTL3-m6A-YTHDF1 Axis in Myoblast Differentiation. Frontiers in Veterinary Science, 2022, 9, 900924.	0.9	8
476	miR-377 Inhibits Proliferation and Differentiation of Bovine Skeletal Muscle Satellite Cells by Targeting FHL2. Genes, 2022, 13, 947.	1.0	3
477	MicroRNA profiling reveals miRâ€145â€5p inhibits goat myoblast differentiation by targeting the coding domain sequence of USP13. FASEB Journal, 2022, 36, .	0.2	7
478	Regulation of Non-Coding RNA in the Growth and Development of Skeletal Muscle in Domestic Chickens. Genes, 2022, 13, 1033.	1.0	8
479	Multi-Omics Analysis of the Microbiome and Metabolome Reveals the Relationship Between the Gut Microbiota and Wooden Breast Myopathy in Broilers. Frontiers in Veterinary Science, 0, 9, .	0.9	2
480	Design, synthesis, and anti-cancer evaluation of new pyrido[2,3-d]pyrimidin-4(3H)-one derivatives as potential EGFRWT and EGFRT790M inhibitors and apoptosis inducers. Journal of Enzyme Inhibition and Medicinal Chemistry, 2022, 37, 1053-1076.	2.5	16
481	Knockdown of VEGFB/VEGFR1 Signaling Promotes White Adipose Tissue Browning and Skeletal Muscle Development. International Journal of Molecular Sciences, 2022, 23, 7524.	1.8	3
482	CREB1 promotes proliferation and differentiation by mediating the transcription of CCNA2 and MYOG in bovine myoblasts. International Journal of Biological Macromolecules, 2022, 216, 32-41.	3.6	10
483	MicroRNA-29b/graphene oxide–polyethyleneglycol–polyethylenimine complex incorporated within chitosan hydrogel promotes osteogenesis. Frontiers in Chemistry, 0, 10, .	1.8	6
484	Sexual dimorphism through androgen signaling; from external genitalia to muscles. Frontiers in Endocrinology, 0, 13, .	1.5	3
485	Coding and Noncoding Genes Involved in Atrophy and Compensatory Muscle Growth in Nile Tilapia. Cells, 2022, 11, 2504.	1.8	1
486	PPARGC1A Is a Moderator of Skeletal Muscle Development Regulated by miR-193b-3p. International Journal of Molecular Sciences, 2022, 23, 9575.	1.8	4
487	Role of USP13 in physiology and diseases. Frontiers in Molecular Biosciences, 0, 9, .	1.6	6
488	Downregulation of Sparc-like protein 1 during cisplatin-induced inhibition of myogenic differentiation of C2C12 myoblasts. Biochemical Pharmacology, 2022, 204, 115234.	2.0	2
489	The structure and growth of muscle. , 2023, , 51-103.		2
490	CircSUCO promotes proliferation and differentiation of chicken skeletal muscle satellite cells <i>via</i> sponging miR-15. British Poultry Science, 0, , .	0.8	1
491	Generation of mega brown adipose tissue in adults by controlling brown adipocyte differentiation in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	1
492	Effect of thermal manipulation during embryogenesis on gene expression of myogenic regulatory factors pre and post hatch in broilers. Indian Journal of Animal Sciences, 2022, 92, .	0.1	Ο

#	Article	IF	CITATIONS
494	Molecular Characterization of LKB1 of Triploid Crucian Carp and Its Regulation on Muscle Growth and Quality. Animals, 2022, 12, 2474.	1.0	4
496	Temporal Expression of Myogenic Regulatory Genes in Different Chicken Breeds during Embryonic Development. International Journal of Molecular Sciences, 2022, 23, 10115.	1.8	3
497	Profiling Analysis of N6-Methyladenosine mRNA Methylation Reveals Differential m6A Patterns during the Embryonic Skeletal Muscle Development of Ducks. Animals, 2022, 12, 2593.	1.0	6
499	CircTCF4 Suppresses Proliferation and Differentiation of Goat Skeletal Muscle Satellite Cells Independent from AGO2 Binding. International Journal of Molecular Sciences, 2022, 23, 12868.	1.8	5
501	Identification and Characterization of IncRNAs Expression Profile Related to Goat Skeletal Muscle at Different Development Stages. Animals, 2022, 12, 2683.	1.0	0
502	Eldecalcitol prevents muscle loss by suppressing PI3K/AKT/FOXOs pathway in orchiectomized mice. Frontiers in Pharmacology, 0, 13, .	1.6	2
503	The Effect of Heat Shock on Myogenic Differentiation of Human Skeletal-Muscle-Derived Mesenchymal Stem/Stromal Cells. Cells, 2022, 11, 3209.	1.8	2
504	Transcriptome Sequencing Reveals Pathways Related to Proliferation and Differentiation of Shitou Goose Myoblasts. Animals, 2022, 12, 2956.	1.0	5
505	Atrophic skeletal muscle fibreâ€derived small extracellular vesicle miRâ€690 inhibits satellite cell differentiation during ageing. Journal of Cachexia, Sarcopenia and Muscle, 2022, 13, 3163-3180.	2.9	11
506	Recent advances in cellâ€based and cellâ€free therapeutic approaches for sarcopenia. FASEB Journal, 2022, 36, .	0.2	2
507	Skeletal Muscle–Extricated Extracellular Vesicles: Facilitators of Repair and Regeneration. , 2022, , 1097-1121.		1
508	Extracellular vesicle-derived miRNAs improve stem cell-based therapeutic approaches in muscle wasting conditions. Frontiers in Immunology, 0, 13, .	2.2	3
509	Postmortem skeletal muscle metabolism of farm animals approached with metabolomics. Animal Bioscience, 0, , .	0.8	0
510	Interactive regulation of DNA demethylase gene TET1 and m6A methyltransferase gene METTL3 in myoblast differentiation. International Journal of Biological Macromolecules, 2022, 223, 916-930.	3.6	8
511	Transcriptome-Wide Study of mRNAs and IncRNAs Modified by m6A RNA Methylation in the Longissimus Dorsi Muscle Development of Cattle-Yak. Cells, 2022, 11, 3654.	1.8	2
512	Transcriptome and Methylome Profiling in Rat Skeletal Muscle: Impact of Post-Weaning Protein Restriction. International Journal of Molecular Sciences, 2022, 23, 15771.	1.8	0
513	FOXO3a-dependent PARKIN negatively regulates cardiac hypertrophy by restoring mitophagy. Cell and Bioscience, 2022, 12, .	2.1	3
514	Nonsense-mediated mRNA decay promote C2C12 cell proliferation by targeting PIK3R5. Journal of Muscle Research and Cell Motility, 2023, 44, 11-23.	0.9	3

#	Article	IF	CITATIONS
515	Nuclear factor 1 X-type-associated regulation of myogenesis in developing mouse tongue. Journal of Oral Biosciences, 2023, , .	0.8	0
516	LncRNA-TBP mediates TATA-binding protein recruitment to regulate myogenesis and induce slow-twitch myofibers. Cell Communication and Signaling, 2023, 21, .	2.7	2
517	A comprehensive normative reference database of muscleÂmorphology in typically developing children aged 3–18 years—a crossâ€sectional ultrasound study. Journal of Anatomy, 2023, 242, 754-770.	0.9	3
518	Transcriptome RNA Sequencing Reveals That Circular RNAs Are Abundantly Expressed in Embryonic Breast Muscle of Duck. Veterinary Sciences, 2023, 10, 75.	0.6	6
519	Uncovering the prominent role of satellite cells in paravertebral muscle developmentÂand aging by single-nucleus RNA sequencing. Genes and Diseases, 2023, 10, 2597-2613.	1.5	2
520	Single-cell RNA sequencing in skeletal muscle developmental biology. Biomedicine and Pharmacotherapy, 2023, 162, 114631.	2.5	1
521	Effect of <i>Lentinula edodes</i> water extracts and Lentinan on proliferation of myosatellite cell of <i>Bos taurus</i> Hanwoo. Journal of Applied Biological Chemistry, 0, 66, .	0.2	0
523	Transcriptome-Wide Study Revealed That N6-Methyladenosine Participates in Regulation Meat Production in Goats. Foods, 2023, 12, 1159.	1.9	1
524	The role of <i>Limch1</i> alternative splicing in skeletal muscle function. Life Science Alliance, 2023, 6, e202201868.	1.3	0
525	Transcriptome Analysis Reveals the Profile of Long Non-Coding RNAs during Myogenic Differentiation in Goats. International Journal of Molecular Sciences, 2023, 24, 6370.	1.8	0
526	Identification of Key Functional Genes and LncRNAs Influencing Muscle Growth and Development in Leizhou Black Goats. Genes, 2023, 14, 881.	1.0	1
553	Overview of Head Muscles with Special Emphasis on Extraocular Muscle Development. Advances in Anatomy, Embryology and Cell Biology, 2023, , 57-80.	1.0	0