Giant Faraday rotation in single- and multilayer graphe

Nature Physics 7, 48-51

DOI: 10.1038/nphys1816

Citation Report

#	Article	IF	CITATIONS
2	Gyrotropy and non-reciprocity of graphene for microwave applications. , 2011, , .		12
3	Quantum magneto-optics of graphite with trigonal warping. Physical Review B, 2011, 84, .	1.1	14
4	Multicomponent magneto-optical conductivity of multilayer graphene on SiC. Physical Review B, 2011, 84, .	1.1	44
5	Field displacement in a graphene loaded waveguide. , 2011, , .		O
6	Enhanced Faraday rotation in magnetophotonic crystal infiltrated with graphene. Applied Physics Letters, 2011, 98, .	1.5	36
7	Graphene-based non-reciprocal spatial isolator. , 2011, , .		15
8	Dynamical polarization of graphene in a magnetic field. Physical Review B, 2011, 83, .	1.1	53
9	Faraday effect in graphene enclosed in an optical cavity and the equation of motion method for the study of magneto-optical transport in solids. Physical Review B, 2011, 84, .	1.1	125
10	Edge surface modes in magnetically biased chemically doped graphene strips. Applied Physics Letters, 2011, 99, .	1.5	41
11	Broadband circulators based on directional coupling of one-way waveguides. Optics Express, 2011, 19, 22248.	1.7	52
12	Magneto optical polarization measurements using THz polarization modulation spectroscopy. , 2011, , .		0
13	Polar Kerr Effect and Time Reversal Symmetry Breaking in Bilayer Graphene. Physical Review Letters, 2011, 107, 097402.	2.9	53
14	Infrared Spectroscopy of Wafer-Scale Graphene. ACS Nano, 2011, 5, 9854-9860.	7.3	187
15	Spin Resonance in <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>EuTi</mml:mi><mml:msub><mml:mi mathvariant="normal">O</mml:mi><mml:mn>3</mml:mn></mml:msub></mml:math> Probed by Time-Domain Gigahertz Ellipsometry. Physical Review Letters, 2011, 106, 217601.	2.9	21
16	Magneto-optics of bilayer inclusions in multilayered epitaxial graphene on the carbon face of SiC. Physical Review B, 2011, 83, .	1.1	34
17	Effect of electron-phonon coupling on energy and density of states renormalizations of dynamically screened graphene. Physical Review B, $2011,84$, .	1.1	22
18	New type of gyrotropy in graphene â€" Comparison with gyrotropy in plasmas. , 2011, , .		0
19	Theory of giant Faraday rotation and Goos-HĀ r chen shift in graphene. Europhysics Letters, 2011, 96, 27008.	0.7	18

#	Article	IF	CITATIONS
20	SEMICONDUCTING GRAPHENE. Nano LIFE, 2012, 02, 1230009.	0.6	5
21	Terahertz magneto-optics in the quantum Hall system. Proceedings of SPIE, 2012, , .	0.8	1
22	Terahertz magneto-optical polarization modulation spectroscopy. Journal of the Optical Society of America B: Optical Physics, 2012, 29, 1406.	0.9	27
23	Optical self-energy in graphene due to correlations. Journal of Physics Condensed Matter, 2012, 24, 245601.	0.7	10
24	Giant Faraday and Kerr rotation with strained graphene. Optics Letters, 2012, 37, 3237.	1.7	20
25	Faraday rotation effect in periodic graphene structure. Journal of Applied Physics, 2012, 112, 023115.	1.1	5
26	Graphene for highly tunable non-reciprocal electromagnetic devices. , 2012, , .		2
27	Phenomenology of a semi-Dirac semi-Weyl semimetal. Physical Review B, 2012, 86, .	1.1	60
28	Magneto-optical conductivity in graphene including electron-phonon coupling. Physical Review B, 2012, 85, .	1.1	39
29	Infrared magnetospectroscopy of graphite in tilted fields. Physical Review B, 2012, 86, .	1.1	8
30	Graphene under spatially varying external potentials: Landau levels, magnetotransport, and topological modes. Physical Review B, 2012, 85, .	1.1	40
31	Iwo-parameter flow of <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"> <mml:mrow> <mml:msub> <mml:mi> if </mml:mi> <mml:mrow> <mml:mi> x</mml:mi> xx/mml:mi> xmlns:mml="http://www.w3.org/1998/Math/MathML"</mml:mrow></mml:msub></mml:mrow></mml:math>	: <td>></td>	>

#	Article	IF	Citations
38	Crystal lattice dynamics, structure and thermodynamics., 0,, 205-242.		1
39	Gauge fields and strain engineering. , 0, , 243-265.		O
40	Scattering mechanisms and transport properties. , 0, , 266-300.		0
41	Classical to quantum crossover of the cyclotron resonance in graphene: a study of the strength of intraband absorption. New Journal of Physics, 2012, 14, 095008.	1.2	24
42	Manipulation of giant Faraday rotation in graphene metasurfaces. Applied Physics Letters, 2012, 101, 231605.	1.5	69
43	Odd-electron molecular theory of graphene hydrogenation. Journal of Molecular Modeling, 2012, 18, 3751-3768.	0.8	19
44	Circular polarization dependent cyclotron resonance in large-area graphene in ultrahigh magnetic fields. Physical Review B, 2012, 85, .	1.1	46
45	Quantum magneto-optics of the graphite family. Journal of Experimental and Theoretical Physics, 2012, 115, 1151-1164.	0.2	9
46	Dynamical conductivity of AA-stacked bilayer graphene. Physical Review B, 2012, 86, .	1.1	108
47	Non-contact characterization of graphene surface impedance at micro and millimeter waves. Journal of Applied Physics, 2012, 111, .	1.1	103
48	Faraday rotation in bilayer and trilayer graphene in the quantum Hall regime. Physical Review B, 2012, 86, .	1.1	21
49	Decrypting the cyclotron effect in graphite using Kerr rotation spectroscopy. Solid State Communications, 2012, 152, 1294-1300.	0.9	9
50	A roadmap for graphene. Nature, 2012, 490, 192-200.	13.7	8,011
51	Magneto-optic studies of magnetic oxides. Journal of Magnetism and Magnetic Materials, 2012, 324, 3422-3426.	1.0	23
52	Simulation of ripples in single layer graphene sheets and study of their vibrational and elastic properties. Computational Materials Science, 2012, 51, 96-102.	1.4	18
53	Magneto-optical and optical probes of gapped ground states of bilayer graphene. Physical Review B, 2012, 86, .	1.1	24
54	Faraday rotation in graphene. European Physical Journal B, 2012, 85, 1.	0.6	35
55	Graphene-based photonic crystal to steer giant Faraday rotation. Applied Physics Letters, 2012, 100, .	1.5	47

#	Article	IF	Citations
56	Infrared Spectroscopy of Tunable Dirac Terahertz Magneto-Plasmons in Graphene. Nano Letters, 2012, 12, 3766-3771.	4.5	232
57	Plasmonics of coupled graphene micro-structures. New Journal of Physics, 2012, 14, 125001.	1.2	68
58	Non-reciprocal gyrotropy in graphene: New phenomena and applications. , 2012, , .		4
59	GRAPHENE: KINKS, SUPERLATTICES, LANDAU LEVELS AND MAGNETOTRANSPORT. International Journal of Modern Physics B, 2012, 26, 1242007.	1.0	19
60	Magnetooptics of graphene layers. Physics-Uspekhi, 2012, 55, 1140-1145.	0.8	14
61	Analysis of graphene-based multilayer structures using spectral domain technique. , 2012, , .		0
62	Graphene for antenna applications: Opportunities and challenges from microwaves to THz., 2012,,.		76
63	Tunable infrared plasmonic devices using graphene/insulator stacks. Nature Nanotechnology, 2012, 7, 330-334.	15.6	1,097
64	Intrinsic Terahertz Plasmons and Magnetoplasmons in Large Scale Monolayer Graphene. Nano Letters, 2012, 12, 2470-2474.	4.5	224
65	Terahertz Dynamics of Quantum-Confined Electrons in Carbon Nanomaterials. Journal of Infrared, Millimeter, and Terahertz Waves, 2012, 33, 846-860.	1.2	22
66	Perturbation theory for a hamiltonian linear in quasimomentum. JETP Letters, 2012, 94, 723-727.	0.4	6
67	Gyrotropy and Nonreciprocity of Graphene for Microwave Applications. IEEE Transactions on Microwave Theory and Techniques, 2012, 60, 901-914.	2.9	214
68	Magneto-optical conductivity in a topological insulator. Physical Review B, 2013, 88, .	1.1	56
69	Transfer matrix method for optics in graphene layers. Journal of Physics Condensed Matter, 2013, 25, 215301.	0.7	304
70	Third harmonic generation in graphene and few-layer graphite films. Physical Review B, 2013, 87, .	1.1	244
71	Non-reciprocal faraday rotation in graphene: Just a unique phenomenon or even more?. , 2013, , .		0
72	Magneto-optics of monolayer and bilayer graphene. JETP Letters, 2013, 97, 429-438.	0.4	18
73	A theoretical evaluation of the magneto-optical properties of AA-stacked graphite. Carbon, 2013, 54, 268-276.	5.4	13

#	Article	IF	Citations
74	Transparent graphene-based non-reciprocal devices magnetically biased with ferromagnetic nanowire metamaterials and electrically biased with frequency selective surfaces. , 2013 , , .		O
75	Magnetoplasmonics: Combining Magnetic and Plasmonic Functionalities. Advanced Optical Materials, 2013, 1, 10-35.	3.6	507
76	Manipulating polarization of light with ultrathin epsilon-near-zero metamaterials. Optics Express, 2013, 21, 14907.	1.7	119
77	Faraday Rotation Due to Excitation of Magnetoplasmons in Graphene Microribbons. ACS Nano, 2013, 7, 9780-9787.	7.3	106
78	Integral Equation Analysis of Plane Wave Scattering by Coplanar Graphene-Strip Gratings in the THz Range. IEEE Transactions on Terahertz Science and Technology, 2013, 3, 666-674.	2.0	130
79	Monolayer graphene photonic metastructures: Giant Faraday rotation and nearly perfect transmission. Physical Review B, 2013, 88, .	1.1	46
80	Chemically Engineered Graphene-Based 2D Organic Molecular Magnet. ACS Nano, 2013, 7, 10011-10022.	7.3	47
81	Optical properties of the Hofstadter butterfly in the moir $ ilde{A}$ © superlattice. Physical Review B, 2013, 88, .	1.1	29
82	Tuning Plasmonic Cloaks with an External Magnetic Field. Physical Review Letters, 2013, 111, 215504.	2.9	34
83	Unusual reflection of electromagnetic radiation from a stack of graphene layers at oblique incidence. Journal of Optics (United Kingdom), 2013, 15, 114004.	1.0	79
84	Review of Anisotropic Terahertz Material Response. Journal of Infrared, Millimeter, and Terahertz Waves, 2013, 34, 724-739.	1.2	22
85	Magneto-optical fingerprints of distinct graphene multilayers using the giant infrared Kerr effect. Scientific Reports, 2013, 3, 3143.	1.6	20
86	Quantized Faraday effect in $(3+1)$ -dimensional and $(2+1)$ -dimensional systems. Physical Review A, 2013, 88,	1.0	7
87	Magneto-induced anisotropy of Voigt effect and other magneto-optical phenomena in ordered metal-dielectric metamaterials. Proceedings of SPIE, 2013, , .	0.8	0
88	Enhancing the absorption of graphene in the terahertz range. Europhysics Letters, 2013, 101, 58002.	0.7	44
89	Tunable Magneto-Optical Kerr Effect in Gated Monolayer Graphene in Terahertz Region. Journal of the Physical Society of Japan, 2013, 82, 074717.	0.7	14
90	Faraday rotation in micro- and nano-patterned graphene metasurfaces. , 2013, , .		1
91	Monitoring of incorporation of magnetic ions into II–VI semiconductor nanocrystals by optical and magneto-optical spectroscopy. Thin Solid Films, 2013, 541, 79-82.	0.8	3

#	Article	IF	CITATIONS
92	Generation of Entangled Photons in Graphene in a Strong Magnetic Field. Physical Review Letters, 2013, 110, 077404.	2.9	101
93	Parallel plate waveguide with anisotropic graphene plates: Effect of electric and magnetic biases. Journal of Applied Physics, 2013, 113, .	1.1	24
94	Exact solution for square-wave grating covered with graphene: surface plasmon-polaritons in the terahertz range. Journal of Physics Condensed Matter, 2013, 25, 125303.	0.7	33
95	Tunable magnetoplasmons for efficient terahertz modulator and isolator by gated monolayer graphene. Physical Chemistry Chemical Physics, 2013, 15, 5084.	1.3	40
96	The Interaction of Light and Graphene: Basics, Devices, and Applications. Proceedings of the IEEE, 2013, 101, 1717-1731.	16.4	94
97	Nonlinear optics of graphene in a strong magnetic field. Journal of Physics Condensed Matter, 2013, 25, 054203.	0.7	55
98	Plasmon-boosted magneto-optics. Nature Photonics, 2013, 7, 429-430.	15.6	37
99	Regulating Infrared Photoresponses in Reduced Graphene Oxide Phototransistors by Defect and Atomic Structure Control. ACS Nano, 2013, 7, 6310-6320.	7. 3	112
100	Faraday rotation in magnetically biased graphene at microwave frequencies. Applied Physics Letters, 2013, 102, .	1.5	63
101	Quantum Faraday and Kerr rotations in graphene. Nature Communications, 2013, 4, 1841.	5.8	167
102	Optical Faraday rotation with graphene. Journal of Applied Physics, 2013, 113, .	1.1	11
103	Complete Stokes polarimetry of magneto-optical Faraday effect in a terbium gallium garnet crystal at cryogenic temperatures. Optics Express, 2013, 21, 25148.	1.7	15
104	Graphene-based plasmonic switches at near infrared frequencies. Optics Express, 2013, 21, 15490.	1.7	291
105	Fourier transform analysis of grapheneâ€based multilayer structures. IET Microwaves, Antennas and Propagation, 2013, 7, 1084-1091.	0.7	4
106	Strong light–matter interaction in systems described by a modified Dirac equation. Journal of Physics Condensed Matter, 2013, 25, 305801.	0.7	10
107	Theory for oblique-incidence magneto-optical Faraday and Kerr effects in interfaced monolayer graphene and their characteristic features. Journal of the Optical Society of America B: Optical Physics, 2013, 30, 1085.	0.9	20
108	Fabry-Perot enhanced Faraday rotation in graphene. Optics Express, 2013, 21, 24736.	1.7	47
109	Theoretical Analysis of the Faraday Effect in Carbon Nanotubes with Arbitrary Chirality. , 2013, 2013, 1-8.		1

#	Article	IF	CITATIONS
110	Polarization Selection Rules for Inter-Landau-Level Transitions in Epitaxial Graphene Revealed by the Infrared Optical Hall Effect. Physical Review Letters, 2013, 111, 077402.	2.9	18
111	Investigation on gyrotropic effect of magnetically biased graphene sheet in rectangular waveguide. , 2013, , .		2
112	Chiral symmetry and its manifestation in optical responses in graphene: interaction and multilayers. New Journal of Physics, 2013, 15, 035023.	1.2	17
113	Theory for optical Hall conductivity in the trilayer graphene in the quantum Hall regime. Journal of Physics: Conference Series, 2013, 456, 012028.	0.3	0
114	Nonlinear cyclotron acceleration of massless Dirac charge carriers in graphene and topological insulators. JETP Letters, 2014, 100, 390-397.	0.4	5
115	Valley-spin polarization in the magneto-optical response of square lattice. European Physical Journal B, 2014, 87, 1.	0.6	1
116	Intraband carrier dynamics in Landau-quantized multilayer epitaxial graphene. New Journal of Physics, 2014, 16, 123021.	1.2	17
117	Magneto-plasmonics in graphene-dielectric sandwich. Optics Express, 2014, 22, 21727.	1.7	18
118	Magneto-optical Faraday rotation of semiconductor nanoparticles embedded in dielectric matrices. Applied Optics, 2014, 53, B22.	0.9	8
119	Theoretical calculations of nonlinear refraction and absorption coefficients of doped graphene. Journal of Optics (United Kingdom), 2014, 16, 125203.	1.0	16
120	Faraday rotation and polarization-modulated intense femtosecond laser pulses in a field-ionizing gaseous medium. Physical Review A, 2014, 90, .	1.0	3
121	Asymmetric transmission of terahertz waves through a graphene-loaded metal grating. Applied Physics Letters, 2014, 105, .	1.5	25
122	Formation and ultraslow propagation of infrared solitons in graphene under an external magnetic field. Journal of Applied Physics, 2014, 115, 234301.	1.1	49
123	Strong enhancement of Faraday rotation using one-dimensional conjugated photonic crystals containing graphene layers. Applied Optics, 2014, 53, 8374.	2.1	10
124	The energy flow behavior during the resonance scattering of a plane electromagnetic wave by a magnetized plasma column. , 2014 , , .		3
125	Frequency-tunable circular polarization beam splitter using a graphene-dielectric sub-wavelength film. Optics Express, 2014, 22, 19748.	1.7	11
126	Optical Magneto-Spectroscopy of Graphene-Based Systems. Nanoscience and Technology, 2014, , 113-140.	1.5	0
127	Surface plasmon enhanced giant Faraday effect in graphene. Applied Physics B: Lasers and Optics, 2014, 116, 437-445.	1.1	5

#	ARTICLE	IF	CITATIONS
128	Strong angular magneto-induced anisotropy of Voigt effect in metal-dielectric metamaterials with periodic nanostructures. Physical Review B, 2014, 89 , .	1.1	16
129	ANALYSIS OF FARADAY ROTATION AND MAGNETO-OPTICAL TRANSMISSION IN MONOLAYER GRAPHENE. International Journal of Modern Physics B, 2014, 28, 1450061.	1.0	1
130	Circular dichroism of graphene-based absorber in static magnetic field. Journal of Applied Physics, 2014, 115, .	1.1	20
131	Fundamental limits and near-optimal design of graphene modulators and non-reciprocal devices. Nature Photonics, 2014, 8, 556-563.	15.6	103
132	Observation of three-dimensional massless Kane fermions in a zinc-blende crystal. Nature Physics, 2014, 10, 233-238.	6.5	190
133	Graphene based resonant & Comparison of the layer of the layer. The comparison of the layer of the layer. Graphene by localized interruptions to the chemical potential of the layer. Graphene by localized interruptions to the chemical potential of the layer. Graphene by localized interruptions to the chemical potential of the layer. Graphene by localized interruptions to the chemical potential of the layer.		1
134	Extreme magneto-optics with graphene metasurfaces. , 2014, , .		1
135	Manifestation of optical activity in different materials. Crystallography Reports, 2014, 59, 447-465.	0.1	7
136	Luminescence, Patterned Metallic Regions, and Photon-Mediated Electronic Changes in Single-Sided Fluorinated Graphene Sheets. ACS Nano, 2014, 8, 7801-7808.	7.3	28
137	Terahertz science and technology of carbon nanomaterials. Nanotechnology, 2014, 25, 322001.	1.3	156
138	Magnetic field sensing using evanescent waves in the Kretschmann configuration. Sensors and Actuators A: Physical, 2014, 220, 85-91.	2.0	10
139	Extreme and Quantized Magneto-optics with Graphene Meta-atoms and Metasurfaces. ACS Photonics, 2014, 1, 1068-1073.	3.2	39
140	Polar magneto-optical effects in magnetoplasmonic thin films illuminated by attenuated total reflection. Applied Physics Letters, 2014, 105, 102405.	1.5	3
141	<i>Colloquium</i> : Graphene spectroscopy. Reviews of Modern Physics, 2014, 86, 959-994.	16.4	220
142	Long-range electron-electron interactions in graphene make its electrodynamics nonlocal. Physical Review B, 2014, 90, .	1.1	7
143	Plasmon-enhanced Faraday rotation in thin films. Physical Review A, 2014, 89, .	1.0	10
144	Linear and circular polarized tunable slow light in Bragg-spaced graphene layers. Physica B: Condensed Matter, 2014, 452, 66-70.	1.3	1
145	Faraday Rotation in Graphene Quantum Dots: Interplay of Size, Perimeter Type, and Functionalization. Journal of Physical Chemistry C, 2014, 118, 23996-24005.	1.5	17

#	ARTICLE	IF	Citations
147	Valley-splitting and valley-dependent inter-Landau-level optical transitions in monolayer <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow><mml:mi mathvariant="normal">MoS</mml:mi></mml:mrow><mml:mn>2</mml:mn></mml:msub></mml:math> quantum Hall systems. Physical Review B, 2014, 90, .	1.1	67
148	Ultrasmall polarization rotation measurements via weak value amplification. Physics Letters, Section A: General, Atomic and Solid State Physics, 2014, 378, 2029-2033.	0.9	31
149	Shot-noise-limited optical Faraday polarimetry with enhanced laser noise cancelling. Journal of Applied Physics, 2014, 115, 103101.	1.1	9
150	Detection of a weak magnetic field via cavity-enhanced Faraday rotation. Physical Review A, 2015, 92, .	1.0	12
151	Electromagnetic absorption and Kerr effect in quantum Hall ferromagnetic states of bilayer graphene. Physical Review B, 2015, 92, .	1.1	3
152	Optical Hall conductivity of a Floquet topological insulator. Physical Review B, 2015, 92, .	1.1	54
153	High-Resolution Faraday Rotation and Electron-Phonon Coupling in Surface States of the Bulk-Insulating Topological Insulator <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mro< td=""><td>min>0.02<</td><td>:/<mark>M</mark>ml:mn><</td></mml:mro<></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:math>	min>0.02<	:/ <mark>M</mark> ml:mn><
154	Magnetoelectronic properties of multilayer black phosphorus. Physical Review B, 2015, 92, .	1.1	45
155	Minimum light transmission in graphene in the presence of a magnetic field. Materials Research Express, 2015, 2, 125005.	0.8	0
156	Highly Omnidirectional and Frequency Controllable Carbon/Polyaniline-based 2D and 3D Monopole Antenna. Scientific Reports, 2015, 5, 13615.	1.6	18
157	Towards a tunable graphene-based Landau level laser in the terahertz regime. Scientific Reports, 2015, 5, 12646.	1.6	33
158	Field effect tuning of microwave Faraday rotation and isolation with large-area graphene. Applied Physics Letters, 2015, 107, 093106.	1.5	10
159	Magneto-optic transmittance modulation observed in a hybrid graphene–split ring resonator terahertz metasurface. Applied Physics Letters, 2015, 107, .	1.5	39
160	Gravitational-Like Lens Based on Graphene Ripple. Microscopy and Microanalysis, 2015, 21, 1207-1213.	0.2	1
161	Magnetically biased grapheneâ€based switches for microwave applications. Microwave and Optical Technology Letters, 2015, 57, 2956-2958.	0.9	1
162	On propagation of photons in a magnetized medium. Astronomische Nachrichten, 2015, 336, 895-899.	0.6	1
163	Quantum Magneto-Optics in Graphene. Photonics, 2015, 2, 13-20.	0.9	3
164	Surface Plasmon and Fabryâ€"Perot Enhanced Magneto-Optical Kerr Effect in Graphene Microribbons. Chinese Physics Letters, 2015, 32, 024204.	1.3	2

#	Article	IF	CITATIONS
165	Giant Faraday rotation in cross-shaped graphene array in THz region. , 2015, , .		2
166	Anomalous magneto-optical response of black phosphorus thin films. Physical Review B, 2015, 92, .	1.1	52
167	Theory of magnetically controlled low-terahertz surface plasmon-polariton modes in graphene–dielectric structures. Journal of the Optical Society of America B: Optical Physics, 2015, 32, 2467.	0.9	17
168	Beating oscillations of magneto-optical spectra in simple hexagonal graphite. Computer Physics Communications, 2015, 189, 60-65.	3.0	1
169	Graphene transparency in weak magnetic fields. Journal of Physics A: Mathematical and Theoretical, 2015, 48, 065402.	0.7	13
170	Atomically thin nonreciprocal optical isolation. Scientific Reports, 2014, 4, 4190.	1.6	38
171	Wideband Modeling of Graphene-Based Structures at Different Temperatures Using Hybrid FDTD Method. IEEE Nanotechnology Magazine, 2015, 14, 250-258.	1.1	30
172	Electrical control of terahertz polarization by graphene microstructure. Optics Communications, 2015, 346, 120-123.	1.0	17
173	Self-biased reconfigurable graphene stacks for terahertz plasmonics. Nature Communications, 2015, 6, 6334.	5.8	125
174	Slow light propagation and bistable switching in a graphene under an external magnetic field. Laser Physics Letters, 2015, 12, 045202.	0.6	58
175	Terahertz magneto-optical spectroscopy of a two-dimensional hole gas. Applied Physics Letters, 2015, 106, 031902.	1.5	8
176	Magneto-optical Kramers-Kronig analysis. Review of Scientific Instruments, 2015, 86, 033906.	0.6	16
177	Terahertz magneto-optics in the ferromagnetic semiconductor HgCdCr2Se4. Applied Physics Letters, 2015, 106, .	1.5	21
178	Improved Hybrid FDTD Method for Studying Tunable Graphene Frequency-Selective Surfaces (GFSS) for THz-Wave Applications. IEEE Transactions on Terahertz Science and Technology, 2015, 5, 358-367.	2.0	41
179	Casimir force between metal and graphene sheets. Journal of the Optical Society of America B: Optical Physics, 2015, 32, 157.	0.9	5
180	Ultrafast carrier dynamics in Landau-quantized graphene. Nanophotonics, 2015, 4, 224-249.	2.9	33
181	Infrared magneto-spectroscopy of two-dimensional and three-dimensional massless fermions: A comparison. Journal of Applied Physics, 2015, 117, 112803.	1.1	7
182	Frequency-dependent polarization-angle-phase-shift in the microwave-induced magnetoresistance oscillations. Journal of Applied Physics, 2015, 117, 064306.	1.1	11

#	Article	IF	CITATIONS
183	Modeling of Magnetized Graphene From Microwave to THz Range by DGTD With a Scalar RBC and an ADE. IEEE Transactions on Antennas and Propagation, 2015, 63, 4458-4467.	3.1	37
184	Surface magneto plasmons and their applications in the infrared frequencies. Nanophotonics, 2015, 4, 383-396.	2.9	51
185	Magneto-optical response of a periodic metallic nano-structure. Proceedings of SPIE, 2015, , .	0.8	1
186	Switchable Frequency Selective Surfaces reflector based on graphene for THz receiver., 2015,,.		3
187	Carrier dynamics in Landau-quantized graphene featuring strong Auger scattering. Nature Physics, 2015, 11, 75-81.	6.5	79
188	Analyzing combinations of circular birefringence, linear birefringence, and elliptical dichroism in magneto-optical rotators. Journal of Modern Optics, 2015, 62, 75-84.	0.6	2
189	Light absorption in distorted graphene. International Journal of Modern Physics B, 2016, 30, 1650084.	1.0	8
190	Hybrid graphene/silicon integrated optical isolators with photonic spin-orbit interaction. , 2016, , .		O
191	Controlling dynamical thermal transport of biased bilayer graphene by impurity atoms. AIP Advances, 2016, 6, 075121.	0.6	5
192	Dynamical tuning between nearly perfect reflection, absorption, and transmission of light via graphene/dielectric structures. Scientific Reports, 2016, 6, 38141.	1.6	12
193	Hybrid graphene/silicon integrated optical isolators with photonic spin–orbit interaction. Applied Physics Letters, 2016, 108, .	1.5	12
194	Enhanced non-reciprocity induced by synergy of dark-modes and Faraday rotation. , 2016, , .		0
195	Null polarimetry near shot noise limit at 1 Hz. Review of Scientific Instruments, 2016, 87, 043102.	0.6	9
196	Near optimal graphene terahertz non-reciprocal isolator. Nature Communications, 2016, 7, 11216.	5.8	108
197	Giant cross-polarization conversion of terahertz radiation by plasmons in an active graphene metasurface. Applied Physics Letters, $2016, 109, \ldots$	1.5	15
198	Terahertz and mid-infrared reflectance of epitaxial graphene. Scientific Reports, 2016, 6, 24301.	1.6	23
199	Berry phase jumps and giant nonreciprocity in Dirac quantum dots. Physical Review B, 2016, 94, .	1.1	24
200	Graphene through the looking glass of QFT. Modern Physics Letters A, 2016, 31, 1630047.	0.5	11

#	Article	IF	CITATIONS
201	Strong interband Faraday rotation in 3D topological insulator Bi2Se3. Scientific Reports, 2016, 6, 19087.	1.6	11
202	Optical modulators with 2D layered materials. Nature Photonics, 2016, 10, 227-238.	15.6	1,188
203	The effects of impurity doping on the optical properties of biased bilayer graphene. Optical Materials, 2016, 57, 8-13.	1.7	10
204	Graphene-based magnetless converter of terahertz wave polarization. Proceedings of SPIE, 2016, , .	0.8	0
205	Universal Faraday Rotation in HgTe Wells with Critical Thickness. Physical Review Letters, 2016, 117, 117401.	2.9	23
206	Gyrotropic, shielding and sensing low-gigahertz properties of graphene sheet biased with magnetic and electric static fields., 2016,,.		1
207	Ultrafast optical modulation of magneto-optical terahertz effects occurring in a graphene-loaded resonant metasurface. Proceedings of SPIE, 2016, , .	0.8	1
208	Optical Hall effect—model description: tutorial. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2016, 33, 1553.	0.8	40
209	Theory of light-induced effective magnetic field in Rashba ferromagnets. Physical Review B, 2016, 94, .	1.1	24
211	Tunable broadband optical field enhancement in graphene-based slot waveguide at infrared frequencies. Applied Optics, 2016, 55, 5095.	2.1	9
212	Chiral plasmon in gapped Dirac systems. Physical Review B, 2016, 93, .	1.1	71
213	Enhanced Casimir effect for doped graphene. Physical Review B, 2016, 93, .	1.1	64
214	New family of graphene-based organic semiconductors: An investigation of photon-induced electronic structure manipulation in half-fluorinated graphene. Physical Review B, 2016, 93, .	1.1	5
215	Magnetoelectronic properties of graphene dressed by a high-frequency field. Physical Review B, 2016, 93, .	1.1	41
216	Faraday effect in rippled graphene: Magneto-optics and random gauge fields. Physical Review B, 2016, 94, .	1.1	9
217	Robust Phonon-Plasmon Coupling in Quasifreestanding Graphene on Silicon Carbide. Physical Review Letters, 2016, 116, 106802.	2.9	30
218	Transfer matrix approach for the Kerr and Faraday rotation in layered nanostructures. Journal of Physics Condensed Matter, 2016, 28, 375802.	0.7	23
219	Phase control of optical bistability and multistability in closed-type Landau-quantized graphene. Laser Physics Letters, 2016, 13, 125201.	0.6	6

#	Article	IF	CITATIONS
220	Double-dark-resonance-enhanced Kerr nonlinearity in a single layer of graphene nanostructure. European Physical Journal Plus, 2016, 131, 1.	1.2	2
221	Circular polarization sensitive absorbers based on graphene. Scientific Reports, 2016, 6, 23897.	1.6	6
222	Synergetic interaction of dark-modes and Faraday rotation for enhanced non-reciprocity., 2016,,.		0
223	Sb_2Te_3-deposited D-shaped fiber as a saturable absorber for mode-locked Yb-doped fiber lasers. Optical Materials Express, 2016, 6, 2273.	1.6	52
224	Experimental demonstration of a terahertz non-reciprocal isolator based on graphene. , 2016, , .		2
225	Polarized dependence of nonlinear susceptibility in a single layer graphene system in infrared region. Physica B: Condensed Matter, 2016, 497, 67-70.	1.3	10
226	Optical bistability and multistability via double dark resonance in graphene nanostructure. Chinese Physics B, 2016, 25, 064201.	0.7	3
227	Magneto-optical response in the arbitrary-Chern number topological phase on square lattice. Physics Letters, Section A: General, Atomic and Solid State Physics, 2016, 380, 2312-2316.	0.9	1
228	Superluminal light propagation in a monolayer graphene system under external magnetic field. Optik, 2016, 127, 8436-8442.	1.4	5
229	Giant Faraday Rotation of High-Order Plasmonic Modes in Graphene-Covered Nanowires. Nano Letters, 2016, 16, 4391-4395.	4.5	23
230	Novel effects of strains in graphene and other two dimensional materials. Physics Reports, 2016, 617, 1-54.	10.3	315
231	Faraday rotation in bilayer graphene-based integrated microcavity. Optics Letters, 2016, 41, 151.	1.7	8
232	Optical conductivity of AA-stacked bilayer graphene in presence of bias voltage beyond Dirac approximation. Indian Journal of Physics, 2016, 90, 811-817.	0.9	11
233	Partial Element Equivalent Circuit-Based Transient Analysis of Graphene-Based Interconnects. IEEE Transactions on Electromagnetic Compatibility, 2016, 58, 801-810.	1.4	10
234	Nonreciprocal Graphene Devices and Antennas Based on Spatiotemporal Modulation. IEEE Antennas and Wireless Propagation Letters, 2016, 15, 1529-1532.	2.4	101
235	Theoretical Limits on the Efficiency of Reconfigurable and Nonreciprocal Graphene Antennas. IEEE Antennas and Wireless Propagation Letters, 2016, 15, 1549-1552.	2.4	19
236	Extremely strong bipolar optical interactions in paired graphene nanoribbons. Physical Chemistry Chemical Physics, 2016, 18, 8561-8569.	1.3	6
237	THz TDS study of several sp2 carbon materials: Graphite, needle coke and graphene oxides. Carbon, 2016, 98, 484-490.	5.4	44

#	Article	IF	CITATIONS
238	Poynting vector behaviour during the resonance scattering of a plane electromagnetic wave by a gyrotropic cylinder. Physica Scripta, 2016, 91, 015502.	1.2	11
239	Phase dependence of optical bistability and multistability in graphene nanostructure under external magnetic field. Laser Physics Letters, 2016, 13, 015204.	0.6	32
240	Frequency dependence of optical third-harmonic generation from doped graphene. Physics Letters, Section A: General, Atomic and Solid State Physics, 2016, 380, 304-310.	0.9	20
241	Controllable optical bistability and multistability in a graphene monolayer system. Journal of Luminescence, 2016, 170, 72-77.	1.5	23
242	Visualizing subsurface defects in graphite by acoustic atomic force microscopy. Microscopy Research and Technique, 2017, 80, 66-74.	1.2	12
243	Linear and nonlinear magneto-optical properties of monolayer phosphorene. Journal of Applied Physics, 2017, 121, .	1.1	47
244	A Faraday isolator based on graphene. Optik, 2017, 134, 60-65.	1.4	6
245	2D Materials for Optical Modulation: Challenges and Opportunities. Advanced Materials, 2017, 29, 1606128.	11.1	364
246	Electrically controlled terahertz magneto-optical phenomena in continuous and patterned graphene. Nature Communications, 2017, 8, 14626.	5.8	93
247	Optical Hall effect in strained graphene. 2D Materials, 2017, 4, 025041.	2.0	12
248	Dark mode–Faraday rotation synergy for enhanced magneto-optics. Physical Review B, 2017, 95, .	1.1	2
249	Coherent absorption of light by graphene and other optically conducting surfaces in realistic on-substrate configurations. APL Photonics, 2017, 2, .	3.0	19
250	A new transfer matrix for investigation of surface plasmon modes in multilayer structures containing anisotropic graphene layers. European Physical Journal Plus, 2017, 132, 1.	1.2	15
251	Polarizers, optical bridges, and Sagnac interferometers for nanoradian polarization rotation measurements. Review of Scientific Instruments, 2017, 88, 043903.	0.6	8
252	Enhancing mechanisms of multi-layer graphenes to cementitious composites. Composites Part A: Applied Science and Manufacturing, 2017, 101, 143-150.	3.8	95
253	Enhancing optoelectronic properties of SiC-grown graphene by a surface layer of colloidal quantum dots. 2D Materials, 2017, 4, 031001.	2.0	5
254	Coherent and incoherent manipulation of optical bistability and group velocity in a dielectric slab with a monolayer of quantized graphene. Journal of Electromagnetic Waves and Applications, 2017, 31, 2025-2035.	1.0	2
255	Sub-100-ps dynamics of the anomalous Hall effect at terahertz frequencies. Physical Review B, 2017, 95, \cdot	1.1	13

#	Article	IF	Citations
256	Faraday Rotation Due to Surface States in the Topological Insulator (Bi _{1–<i>x</i>} Sb _{<i>x</i>}) ₂ Te ₃ . Nano Letters, 2017, 17, 980-984.	4.5	21
257	A Bandpass Graphene Frequency Selective Surface With Tunable Polarization Rotation for THz Applications. IEEE Transactions on Antennas and Propagation, 2017, 65, 662-672.	3.1	66
258	Giant quantized Goos-Hächen effect on the surface of graphene in the quantum Hall regime. Physical Review A, 2017, 96, .	1.0	46
259	Quadratic band touching points and flat bands in two-dimensional topological Floquet systems. Physical Review B, 2017, 95, .	1.1	39
260	Magneto-optical properties of topological insulator thin films with broken inversion symmetry. Journal of Physics Condensed Matter, 2017, 29, 425304.	0.7	7
261	Magneto-optical conductivity of anisotropic two-dimensional Dirac–Weyl materials. Annals of Physics, 2017, 384, 61-70.	1.0	15
262	Nonreciprocal Giant Magneto-Optic Effects in Transition-Metal Dichalcogenides without Magnetic Field. Journal of Physical Chemistry Letters, 2017, 8, 3805-3812.	2.1	15
263	Analysis of single band and dual band graphene based patch antenna for terahertz region. Physica E: Low-Dimensional Systems and Nanostructures, 2017, 94, 126-131.	1.3	50
264	Optical Properties of Graphene. , 2017, , 38-51.		7
265	Resonant magneto–optical Kerr effect induced by hybrid plasma modes in ferromagnetic nanovoids. Chinese Physics B, 2017, 26, 117801.	0.7	4
266	Topologically protected Dirac plasmons in a graphene superlattice. Nature Communications, 2017, 8, 1243.	5.8	66
267	Floquet states in (LaNiO3)2/(LaAlO3)N heterostructures grown along the (111) direction. Physical Review B, 2017, 95, .	1.1	4
268	Realization of electromagnetically induced phase grating and Kerr nonlinearity in a graphene ensemble under Raman excitation. Superlattices and Microstructures, 2017, 101, 592-601.	1.4	17
269	Beam reconfigurable antenna for the THz band based on a graphene high impedance surface. Physica E: Low-Dimensional Systems and Nanostructures, 2017, 85, 316-323.	1.3	16
270	THz dynamically controllable graphene Y-circulator. , 2017, , .		4
271	Graphene 3-port circulator based on edge-guide mode propagation. , 2017, , .		1
272	Magnetically tunable enhanced absorption of circularly polarized light in graphene-based 1D photonic crystals. Applied Optics, 2017, 56, 5914.	0.9	23
273	Improving Faraday rotation performance with block copolymer and FePt nanoparticle magneto-optical composite. Optical Materials Express, 2017, 7, 2126.	1.6	17

#	Article	IF	CITATIONS
274	Enhanced nonlinear optical activity in a four-level quantum system. Journal of the Optical Society of America B: Optical Physics, 2017, 34, 1684.	0.9	4
275	Manipulating polarized light with a planar slab of black phosphorus. Journal of Physics Communications, $2017,1,045003.$	0.5	31
276	Ultrafast Terahertz Nonlinear Optics of Landau Level Transitions in a Monolayer Graphene. Physical Review Letters, 2018, 120, 107401.	2.9	6
277	Giant Faraday rotation in graphene/MnF2 photonic crystals. European Physical Journal B, 2018, 91, 1.	0.6	5
278	Magnetoexcitons and Faraday rotation in single-walled carbon nanotubes and graphene nanoribbons. Physical Review B, 2018, 97, .	1.1	8
279	Magnetically tunable graphene-based reflector under linear polarized incidence at room temperature. Applied Physics Letters, 2018, 112, .	1.5	4
280	Current-controlled light scattering and asymmetric plasmon propagation in graphene. Physical Review B, 2018, 97, .	1.1	32
281	Magnetic field assisted transmission of THz waves through a graphene layer combined with a periodically perforated metallic film. Physical Review B, 2018, 97, .	1.1	5
282	Enhanced Faraday rotation and magneto-optical figure of merit in gold grating/graphene/silicon hybrid magneto-plasmonic devices. APL Photonics, 2018, 3, .	3.0	22
283	2D Layered Materialâ€Based van der Waals Heterostructures for Optoelectronics. Advanced Functional Materials, 2018, 28, 1706587.	7.8	279
284	Cavityâ€Induced Enhancement of Magnetoâ€Optic Effects in Monolayer Transition Metal Dichalcogenides. Advanced Optical Materials, 2018, 6, 1701175.	3.6	5
285	Magnetoâ€Optical Modulation of Photonic Spin Hall Effect of Graphene in Terahertz Region. Advanced Optical Materials, 2018, 6, 1701212.	3.6	67
286	Giant Faraday Rotation in Graphene Metamolecules due to Plasmonic Coupling. Journal of Lightwave Technology, 2018, 36, 2606-2610.	2.7	21
287	Enhancement and modulation of photonic spin Hall effect by defect modes in photonic crystals with graphene. Carbon, 2018, 134, 293-300.	5.4	50
288	Terahertz magneto-optical properties of bi- and tri-layer graphene. Journal of Physics Condensed Matter, 2018, 30, 175701.	0.7	16
289	Nonlinear magneto-optic effects in doped graphene and in gapped graphene: A perturbative treatment. Physical Review B, 2018, 97, .	1.1	7
290	Nonreciprocal optical isolation via graphene based photonic crystals. Journal of Magnetism and Magnetic Materials, 2018, 449, 33-39.	1.0	22
291	Optical and plasmonic properties of epigraphene. , 2018, , 741-748.		0

#	Article	IF	Citations
292	Polarization-Sensitive Fourier-Transform Spectroscopy of HgTe/CdHgTe Quantum Wells in the Far Infrared Range in a Magnetic Field. JETP Letters, 2018, 108, 329-334.	0.4	4
293	Anisotropic HIE-FDTD Scheme to Analyze Magnetically Biased Graphene. , 2018, , .		1
294	Observation of cyclotron antiresonance in the topological insulator Bi2Te3. Physical Review B, 2018, 98, .	1.1	1
295	Nonreciprocal hybrid magnetoplasmonics. Reports on Progress in Physics, 2018, 81, 116401.	8.1	56
296	Electromagnetic Nonreciprocity. Physical Review Applied, 2018, 10, .	1.5	366
297	Metamaterial Platforms for Spintronic Modulation of Mid-Infrared Response under Very Weak Magnetic Field. ACS Photonics, 2018, 5, 3956-3961.	3.2	20
298	Reconfigurable free-form graphene camouflage metasurfaces. Optics Letters, 2018, 43, 4631.	1.7	4
300	Ferrite loaded graphene based plasmonic waveguide. Optical and Quantum Electronics, 2018, 50, 1.	1.5	0
301	Active tuning of directional scattering by combining magneto-optical effects and multipolar interferences. Nanoscale, 2018, 10, 18282-18290.	2.8	13
302	Nonlinear and anisotropic polarization rotation in two-dimensional Dirac materials. Physical Review B, 2018, 97, .	1.1	10
303	Hall effect for interacting bosons in a lattice. Physical Review B, 2018, 97, .	1.1	3
304	Magnetoplasmonic enhancement of Faraday rotation in patterned graphene metasurfaces. Physical Review B, 2018, 97, .	1.1	27
305	Optical response of graphene/1D double-periodic quasi-crystals in the terahertz region under magnetic and electric biases. Optical and Quantum Electronics, 2018, 50, 1.	1.5	4
306	Symmetry enhanced non-reciprocal polarization rotation in a terahertz metal-graphene metasurface. Optics Express, 2018, 26, 3328.	1.7	7
307	A Oneâ∈Way Mirror: Highâ∈Performance Terahertz Optical Isolator Based on Magnetoplasmonics. Advanced Optical Materials, 2018, 6, 1800572.	3.6	44
308	Controlling phase of arbitrary polarizations using both the geometric phase and the propagation phase. Physical Review B, 2018, 97, .	1.1	34
309	Electro-optics of current-carrying graphene. Physical Review B, 2018, 98, .	1.1	7
310	Giant magneto-optical Faraday effect of graphene on Co in the soft x-ray range. Physical Review B, 2018, 98, .	1.1	5

#	Article	IF	CITATIONS
311	Effects of external magnetic field and out-of-plane strain on magneto-optical Kerr spectra in Crl3 monolayer. Journal of Physics Condensed Matter, 2018, 30, 285303.	0.7	16
312	Manipulation of the Faraday rotation by graphene metasurfaces. Journal of Magnetism and Magnetic Materials, 2019, 469, 231-235.	1.0	21
313	Control of the Faraday rotation via electromagnetically induced transparency medium and graphene metasurfaces. Journal of Optics (United Kingdom), 2019, 21, 105401.	1.0	3
314	Magnetically tunable multiband near-field radiative heat transfer between two graphene sheets. Physical Review B, 2019, 100, .	1.1	40
315	Colossal infrared and terahertz magneto-optical activity in a two-dimensional Dirac material. Nature Nanotechnology, 2019, 14, 756-761.	15.6	27
316	Terahertz frequency selective surface based on metalâ€graphene structure with independent frequency tuneability. IET Microwaves, Antennas and Propagation, 2019, 13, 911-916.	0.7	6
317	Control of slow light in three- and four-level graphene nanostructures. Modern Physics Letters B, 2019, 33, 1950226.	1.0	5
318	All-optical modulator based on reduced graphene oxide coated D-shaped fiber waveguide. Applied Physics Express, 2019, 12, 112002.	1.1	5
319	Electromagnetic modeling and EMC performances of graphene-based micro-/nanostructures. , 2019, , 205-249.		0
320	Reconfigurable metalattices: Combining multipolar lattice resonances and magneto-optical effect in far and near fields. Journal of Applied Physics, 2019, 126, .	1.1	6
321	Matter manipulation with extreme terahertz light: Progress in the enabling THz technology. Physics Reports, 2019, 836-837, 1-74.	10.3	147
322	Excitation of graphene magneto-plasmons in terahertz range and giant Kerr rotation. Journal of Applied Physics, 2019, 125, .	1.1	7
323	Strong terahertz magneto-optical phenomena based on quasi-bound states in the continuum and Fano resonances. Optics Express, 2019, 27, 16449.	1.7	15
324	Interband Faraday rotation in Boron nitride nanotubes. Superlattices and Microstructures, 2019, 130, 297-307.	1.4	1
325	Backscattering-Immune Computing of Spatial Differentiation by Nonreciprocal Plasmonics. Physical Review Applied, 2019, 11, .	1.5	20
326	Near-field radiative thermal modulation enabled by static magnetic fields. Journal of Quantitative Spectroscopy and Radiative Transfer, 2019, 232, 20-26.	1.1	9
327	Active Magneto-Optical Control of Near-Field Radiative Heat Transfer between Graphene Sheets. Physical Review Applied, 2019, 11, .	1.5	51
328	Enhanced nonlinear magneto-optical rotation in cold atoms: A theoretical study. Scientific Reports, 2019, 9, 6312.	1.6	10

#	Article	IF	CITATIONS
329	Magnetic fields affect hot electrons in silicon-based photodetectors at telecommunication wavelengths. Materials Horizons, 2019, 6, 1156-1168.	6.4	8
330	Simultaneously precise estimations of phase and amplitude variations based on weak-value amplification. Applied Physics Letters, 2019, 114, .	1.5	14
331	Robust polarization twist by pairs of multilayers with tilted optical axes. Physical Review B, 2019, 99, .	1.1	25
332	Giant magneto-optical Kerr enhancement from films on SiC due to the optical properties of the substrate. Physical Review B, 2019, 99, .	1.1	4
333	Analysis of magnetically biased graphene absorber using anisotropic HIE-FDTD method. Journal of Electromagnetic Waves and Applications, 2019, 33, 722-733.	1.0	4
334	Chiral Casimir forces: Repulsive, enhanced, tunable. Physical Review B, 2019, 99, .	1.1	50
335	Orbital magneto-optical response of periodic insulators from first principles. Npj Computational Materials, $2019, 5, \ldots$	3.5	5
336	Multi-layered Parallel Plate Waveguide with Electrically and Magnetically Biased Graphene Walls. , 2019, , .		0
337	Tunable Wave Isolators Based on Space-time Modulated Graphene Sheets., 2019,,.		0
338	Dynamically Controllable Terahertz Graphene Y-Circulator. IEEE Transactions on Magnetics, 2019, 55, 1-12.	1.2	18
339	Graphene Based Far-Infrared Junction Circulator. IEEE Nanotechnology Magazine, 2019, 18, 200-207.	1.1	4
340	Enhanced magnetic circular dichroism by subradiant plasmonic mode in symmetric graphene oligomers at low static magnetic fields. Optics Express, 2019, 27, 567.	1.7	8
341	Graphene and Its Applications in Microbial Electrochemical Technology., 2019,, 75-97.		5
342	Faraday effect control in graphene-dielectric structure by optical pumping. Journal of Magnetism and Magnetic Materials, 2019, 472, 25-28.	1.0	26
343	Multiphonon resonance Raman scattering in Landau-quantized graphene. Carbon, 2019, 141, 1-5.	5.4	5
344	Terahertz Spectroscopy of Nanomaterials: a Close Look at Charge arrier Transport. Advanced Optical Materials, 2020, 8, 1900623.	3.6	53
345	Is a single layer graphene a slab or a perfect sheet?. Carbon, 2020, 157, 486-494.	5.4	7
346	2D Materials for Terahertz Modulation. Advanced Optical Materials, 2020, 8, 1900550.	3.6	59

#	Article	IF	CITATIONS
347	Optical modulators based on 2D materials. , 2020, , 37-77.		2
348	Ultra wideband THz graphene fourâ€port circulators. Microwave and Optical Technology Letters, 2020, 62, 112-117.	0.9	5
349	Computer simulation of polarization rotation characteristics of graphene. International Journal of RF and Microwave Computer-Aided Engineering, 2020, 30, e22035.	0.8	0
350	Polarization conversion and phase modulation of terahertz electromagnetic waves via graphene-dielectric structure. Physica Scripta, 2020, 95, 015503.	1.2	4
351	Midâ€Infrared Photonics Using 2D Materials: Status and Challenges. Laser and Photonics Reviews, 2020, 14, 1900098.	4.4	106
352	Advanced Materials and Device Architectures for Magnetooptical Spatial Light Modulators. Advanced Optical Materials, 2020, 8, 1901381.	3.6	12
353	Surface plasmon polariton waves propagation at the boundary of graphene based metamaterial and corrugated metal in THz range. Optical and Quantum Electronics, 2020, 52, 1.	1.5	22
354	Quantitative measurement of giant and quantized microwave Faraday rotation. Physical Review B, 2020, 102, .	1.1	2
355	Observation of Terahertz-Induced Magnetooscillations in Graphene. Nano Letters, 2020, 20, 5943-5950.	4.5	12
356	Recent progress of graphene based nanomaterials in bioelectrochemical systems. Science of the Total Environment, 2020, 749, 141225.	3.9	105
357	Magnetoâ€optic effect of twoâ€dimensional materials and related applications. Nano Select, 2020, 1, 298-310.	1.9	30
358	Tutorial on Electromagnetic Nonreciprocity and its Origins. Proceedings of the IEEE, 2020, 108, 1684-1727.	16.4	114
359	Characterisation and Manipulation of Polarisation Response in Plasmonic and Magneto-Plasmonic Nanostructures and Metamaterials. Symmetry, 2020, 12, 1365.	1.1	16
360	Exchange splitting and exchange-induced nonreciprocal photonic behavior of graphene in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>Cr</mml:mi><mml:msub><mml:mi mathvariant="normal"> </mml:mi><mml:mn>3</mml:mn></mml:msub></mml:mrow></mml:math> -graphene van der Waals heterostructures. Physical Review B, 2020, 102, .	1.1	9
361	Magneto-optical Kerr effect and signature of the chiral anomaly in a Weyl semimetal in magnetic field. Physical Review B, 2020, 102, .	1.1	9
362	Enhanced tuneable rotatory power in a rotating plasma. Physical Review E, 2020, 102, 051202.	0.8	7
363	Acoustic field induced nonlinear magneto-optical rotation in a diamond mechanical resonator. Scientific Reports, 2020, 10, 8197.	1.6	2
364	The electronic structure of ideal graphene. , 2020, , 1-23.		0

#	Article	IF	CITATIONS
367	Electron states in a magnetic field., 2020,, 24-62.		1
368	Quantum transport via evanescent waves. , 2020, , 63-76.		0
369	The Klein paradox and chiral tunneling. , 2020, , 77-107.		0
370	Edges, nanoribbons, and quantum dots. , 2020, , 108-140.		O
371	Point defects., 2020,, 141-167.		0
372	Optics and response functions. , 2020, , 168-192.		0
373	The Coulomb problem., 2020,, 193-212.		0
374	Crystal lattice dynamics, structure, and thermodynamics. , 2020, , 213-256.		0
375	Gauge fields and strain engineering. , 2020, , 257-278.		0
376	Scattering mechanisms and transport properties. , 2020, , 279-325.		0
377	Spin effects and magnetism., 2020,, 326-350.		0
378	Graphene on hexagonal boron nitride. , 2020, , 351-378.		0
379	Twisted bilayer graphene. , 2020, , 379-388.		0
380	Many-body effects in graphene. , 2020, , 389-400.		0
383	Modeling of Magnetically Biased Graphene Coupler at Terahertz Frequency Through an Improved Anisotropic WCIP Method. IEEE Transactions on Magnetics, 2020, 56, 1-8.	1.2	10
384	Artificial Metaphotonics Born Naturally in Two Dimensions. Chemical Reviews, 2020, 120, 6197-6246.	23.0	78
385	A graphene-based magnetoplasmonic metasurface for actively tunable transmission and polarization rotation at terahertz frequencies. Applied Physics Letters, 2020, 116, 221107.	1.5	15
386	An Analytical Method to Investigate Propagation Properties of Magnetostatic Biased Graphene Layers. IEEE Access, 2020, 8, 107177-107184.	2.6	2

#	Article	IF	CITATIONS
387	High-Efficiency Elastic Wave Rectifier in One-Dimensional Linear Magnetoelastic Phononic Crystal Slabs by an External Magnetostatic Field. Physical Review Applied, 2020, 13, .	1.5	9
388	Metamaterials for Enhanced Optical Responses and their Application to Active Control of Terahertz Waves. Advanced Materials, 2020, 32, e2000250.	11.1	55
389	Enhancing the Faraday rotation in the monolayer phosphorus base of magneto-photonic crystals. Optical Materials, 2020, 102, 109809.	1.7	13
390	Two dimensional nanomaterials-enabled smart light regulation technologies: Recent advances and developments. Optik, 2020, 220, 165191.	1.4	18
391	Electrically controllable magneto-optic effects in a two-dimensional hexagonal organometallic lattice. Physical Review B, 2020, 101 , .	1.1	2
392	NON-RECIPROCAL ANTENNA ARRAY BASED ON MAGNETIZED GRAPHENE FOR THZ APPLICATIONS USING THE ITERATIVE METHOD. Progress in Electromagnetics Research M, 2020, 89, 93-100.	0.5	2
393	Comparative investigation of two-dimensional materials for the design of non-reciprocal antennas in terahertz band. Optik, 2020, 205, 164267.	1.4	1
394	Efficient adjustment of finite graphene scattering properties via magnetic-bias control for advanced beam manipulation. AIP Advances, 2020, 10 , .	0.6	1
395	Circular dichroism and Faraday and Kerr rotation in two-dimensional materials with intrinsic Hall conductivities. Physical Review B, 2020, 101 , .	1.1	10
396	Quantum limit cyclotron resonance in monolayer epitaxial graphene in magnetic fields up to 560 T: The relativistic electron and hole asymmetry. Physical Review B, 2020, 101, .	1.1	7
397	Four-wave mixing of topological edge plasmons in graphene metasurfaces. Science Advances, 2020, 6, eaaz3910.	4.7	82
398	Theory and Design of Multifunctional Space-Time Metasurfaces. Physical Review Applied, 2020, 13, .	1.5	7 5
399	Upâ€Andâ€Coming Advances in Optical and Microwave Nonreciprocity: From Classical to Quantum Realm. Advanced Photonics Research, 2021, 2, 2000104.	1.7	15
400	Tunable Optical Properties of 2D Materials and Their Applications. Advanced Optical Materials, 2021, 9, 2001313.	3.6	100
401	Transitional Faraday and Kerr effect in hybridized topological insulator thin films. Optical Materials Express, 2021, 11, 525.	1.6	14
402	Terahertz chiral sensing and magneto-optical enhancement for ferromagnetic nanofluids in the chiral metasurface. Nanoscale Advances, 2021, 3, 4790-4798.	2.2	17
403	Strong Excitonic Magneto-Optic Effects in Two-Dimensional Organic–Inorganic Hybrid Perovskites. ACS Applied Materials & District School (1988) (19	4.0	11
404	Magneto-optical rotation of surface plasmon polaritons. Journal Physics D: Applied Physics, 2021, 54, 175107.	1.3	8

#	Article	IF	CITATIONS
405	Recent Advances in Terahertz Photonic Technologies Based on Graphene and Their Applications. Advanced Photonics Research, 2021, 2, 2000168.	1.7	12
406	Optical properties of massive anisotropic tilted Dirac systems. Physical Review B, 2021, 103, .	1.1	32
407	Coherent control of magneto-optical Faraday rotation at terahertz frequencies in graphene-based metasurfaces via electromagnetically induced transparency. Physica Scripta, 2021, 96, 095101.	1.2	1
408	Giant THz Faraday rotation with stacked magnetized graphene. Journal of Applied Physics, 2021, 129, 183103.	1.1	5
409	Magneto-Optical Effects in Various Crystalline Materials, Films, and Meso- and Nanostructures. Crystallography Reports, 2021, 66, 323-348.	0.1	5
410	Giant terahertz polarization rotation in ultrathin films of aligned carbon nanotubes. Optica, 2021, 8, 760.	4.8	12
411	Magnetic Control of Optical Reflectance from Metallic Thin Film Using Surface Plasmon Resonance and Faraday Rotation. Materials, 2021, 14, 3354.	1.3	2
412	Dynamically tunable perfect THz absorption in graphene-based metamaterial structures. Europhysics Letters, 2021, 134, 57003.	0.7	4
413	Electromagnetic Scattering from a Graphene Disk: Helmholtz-Galerkin Technique and Surface Plasmon Resonances. Mathematics, 2021, 9, 1429.	1.1	10
414	Multi-layered parallel plate waveguide with electrically and magnetically biased graphene sheets. Journal of Electromagnetic Waves and Applications, 0, , 1-14.	1.0	0
415	Faraday rotations, ellipticity, and circular dichroism in magneto-optical spectrum of moiré superlattices*. Chinese Physics B, 2021, 30, 077803.	0.7	3
416	Reflection and Transmission Coefficients in Multilayered Fully Anisotropic Media Solved by Transfer Matrix Method With Plane Waves for Predicting Energy Transmission Course. IEEE Transactions on Antennas and Propagation, 2021, 69, 4727-4736.	3.1	4
417	声å¦è¶…æž"ææ−™çš"éžäº'æ-"性ç"究进展. Chinese Science Bulletin, 2021, , .	0.4	2
418	On-chip terahertz isolator with ultrahigh isolation ratios. Nature Communications, 2021, 12, 5570.	5.8	26
419	High Contrast, Femtosecond Light Polarization Manipulation in Epsilon-near-Zero Material Coupled to a Plasmonic Nanoantenna Array. ACS Photonics, 2021, 8, 2791-2799.	3.2	15
420	An analytical method to study the magneto-optical effects of a graphene sheet embedded between two magneto-optical media. Journal of Magnetism and Magnetic Materials, 2021, 536, 168132.	1.0	5
421	Polar magneto-optical Kerr effect of reflected light from Graphene/InAs/Graphene/Polyimide/Al structure. Superlattices and Microstructures, 2021, 158, 107021.	1.4	1
422	The effect of using coated graphene in enhancing Faraday rotation in gyroelectric and gyromagnetic materials. Journal of Magnetism and Magnetic Materials, 2021, 537, 168219.	1.0	5

#	Article	IF	Citations
424	Tunable optical and magneto-optical Faraday and Kerr rotations in a dielectric slab doped with double-V type atoms. Scientific Reports, 2020, 10, 8544.	1.6	6
425	Active metamaterials and metadevices: a review. Journal Physics D: Applied Physics, 2020, 53, 503002.	1.3	261
426	Enhanced Faraday rotation in proximitized monolayer transition metal dichalcogenides. Nanotechnology, 2020, 31, 465202.	1.3	2
427	Strain-induced large Faraday rotation in graphene at subtesla external magnetic fields. Physical Review Research, 2019, 1, .	1.3	4
428	Optical Hall response of bilayer graphene: Manifestation of chiral hybridized states in broken mirror symmetry lattices. Physical Review Research, 2020, 2, .	1.3	5
429	Ultrafast tunable integrated Faraday isolator based on optical pumping in a graphene–InSb–graphene structure. Applied Optics, 2020, 59, 7745.	0.9	5
430	Ultrawideband graphene three-port circulator for THz region. Optics Express, 2019, 27, 15982.	1.7	16
431	Magneto-optical effects in the Landau level manifold of 2D lattices with spin-orbit interaction. Optics Express, 2019, 27, 23217.	1.7	21
432	New method of second quantization of the strained-graphene Kerr and Faraday rotations. Optics Express, 2019, 27, 28350.	1.7	3
433	Analytical and rigorous method for analysis of an array of magnetically-biased graphene ribbons. Optics Express, 2019, 27, 28395.	1.7	11
434	Enhancement of graphene Faraday rotation in the one-dimensional topological photonic crystals. Optics Express, 2020, 28, 24560.	1.7	14
435	Nonreciprocal Fabry-Perot effect and performance enhancement in a magneto-optical InSb-based Faraday terahertz isolator. Optics Express, 2020, 28, 38280.	1.7	15
436	Magnetoplasmon-surface phonon polaritons' coupling effects in radiative heat transfer. Optics Letters, 2020, 45, 5148.	1.7	14
437	Analog of giant magnetoimpedance in magnetized ε-near-zero plasma. Optics Letters, 2019, 44, 991.	1.7	3
438	Tunable deflection and asymmetric transmission of THz waves using a thin slab of graphene-dielectric metamaterial, with and without ENZ components. Optical Materials Express, 2018, 8, 3887.	1.6	9
440	Tunable Faraday rotation of light from symmetric and asymmetric photonic crystals containing a plasma layer. Optical and Quantum Electronics, 2021, 53, 1.	1.5	2
441	Graphene-based four-port circulator with anÂelliptical resonator for THz applications. Journal of Computational Electronics, 2021, 20, 2471-2482.	1.3	1
442	Magnetic Field-induced Effects in Photon Scattering and Absorption by Crystals. Journal of the Physical Society of Japan, 2011, 80, 064703.	0.7	1

#	Article	IF	Citations
443	Novel Electromagnetic Phenomena in Graphene and Subsequent Microwave Devices Enabled by Multi-Scale Metamaterials. , 0, , .		0
444	Optical Quantum Hall Effect in Graphene. The Review of Laser Engineering, 2014, 42, 627.	0.0	0
446	Tunable terahertz absorption in Si/SiO ₂ -graphene multilayers: disorder and magneto-optical effects. Applied Optics, 2020, 59, 11034.	0.9	15
447	Broadband Terahertz Isolator. IEEE Transactions on Terahertz Science and Technology, 2022, 12, 81-86.	2.0	4
448	Cross-coupling effect induced beam shifts for polarized vortex beam at two-dimensional anisotropic monolayer graphene surface. Optics Express, 2020, 28, 8308.	1.7	10
449	Quasistationary near-gate plasmons in van der Waals heterostructures. Physical Review B, 2021, 104, .	1.1	2
450	Enhanced Faraday rotation and control of pure spin-valley optical conductivity by topological phase in silicene. Physica E: Low-Dimensional Systems and Nanostructures, 2021, 137, 115011.	1.3	2
451	Anisotropic magneto-optical absorption and linear dichroism in two-dimensional semi-Dirac electron systems. Physical Review B, 2021, 104, .	1.1	8
452	Microstructure and Properties of Bi-doped Yttrium Iron Garnet Magneto-optical Ceramics Prepared by Hot-pressing Sintering Process. Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2022, 37, 773.	0.6	10
453	Graphene-based magneto-optical THz modulator with 100% depth of modulation for communication purposes. Optical Materials, 2022, 123, 111944.	1.7	13
454	Graphene-Based Magnetically Tunable Broadband Terahertz Absorber. IEEE Photonics Journal, 2022, 14, 1-6.	1.0	3
455	Active terahertz beam deflection and nonreciprocal spin chirality selection based on magneto-optical P-B metasurface with stacked-graphene layers. Optics Letters, 2022, 47, 818.	1.7	6
456	Highly flexible, high-performance radio-frequency antenna based on free-standing graphene/polymer nanocomposite film. Applied Surface Science, 2022, 582, 152455.	3.1	6
457	Theoretical study of the alignment-to-orientation conversion in magneto-optical rotation based on atomic multipole moments. Physical Review A, 2022, 105 , .	1.0	0
458	Dual-band composite right/left-handed metamaterial lines with dynamically controllable nonreciprocal phase shift proportional to operating frequency. Nanophotonics, 2022, .	2.9	1
459	Multimode absorption in single-layer graphene: Disordered photonics and magneto-optic effect. Optical Materials, 2022, 126, 112172.	1.7	9
460	Optical and magnetic response of ultrathin film topological insulators in tilted magnetic field. Physica B: Condensed Matter, 2022, 633, 413754.	1.3	0
461	Giant enhancement of Faraday rotation in Weyl semimetal assisted by optical Tamm state. Physics Letters, Section A: General, Atomic and Solid State Physics, 2022, 437, 128103.	0.9	9

#	Article	IF	CITATIONS
462	Comparative study of Faraday rotation spectra of periodic and Fibonacci multilayer structures containing graphene sheets. Physica B: Condensed Matter, 2022, 636, 413835.	1.3	2
463	2D materials-enabled optical modulators: From visible to terahertz spectral range. Applied Physics Reviews, 2022, 9, .	5.5	32
464	Graphene-empowered dynamic metasurfaces and metadevices. Opto-Electronic Advances, 2022, 5, 200098-200098.	6.4	54
465	Semi-analytical model for the analysis of a magnetically biased 1D subwavelength graphene-strip-grating., 2022, 1, 1144.		0
466	Landau levels and magneto-optical transport properties of a semi-Dirac system. Physical Review B, 2022, 105, .	1.1	3
467	Observation of chiral and slow plasmons in twisted bilayer graphene. Nature, 2022, 605, 63-68.	13.7	45
468	Magnetically tunable and enhanced spin Hall effect of reflected light in a multilayer structure containing anisotropic graphene. Optics Express, 2022, 30, 18617.	1.7	6
469	Topological Kerr effect in the graphene family materials. Optics Express, 0, , .	1.7	2
470	Magneto-optic effects of monolayer transition metal dichalcogenides induced by ferrimagnetic proximity effect. Physica B: Condensed Matter, 2022, 640, 414073.	1.3	1
471	A new type of cyclotron resonance from charge-impurity scattering in the bulk-insulating Bi2Se3 thin films. Journal Physics D: Applied Physics, 0, , .	1.3	1
472	ABCs of Faraday Rotation in Organic Materials. Journal of the American Chemical Society, 2022, 144, 11912-11926.	6.6	11
473	Optical Fiber Sensor with Stable Operating Point for AC Magnetic Field Measurement. Applied Sciences (Switzerland), 2022, 12, 7049.	1.3	3
474	Extremely low effective impedance in stratified graphene-dielectric metamaterials. Scientific Reports, 2022, 12, .	1.6	1
475	Tunable Faraday effect in Graphene/SiO2/Ta2O5 layered structure using a pump He-Ne laser light. Physics Letters, Section A: General, Atomic and Solid State Physics, 2022, 447, 128293.	0.9	0
476	Microwave Dynamical Conductivity in the Quantum Hall Regime. Physical Review Letters, 2022, 129, .	2.9	0
478	The 2022 magneto-optics roadmap. Journal Physics D: Applied Physics, 2022, 55, 463003.	1.3	47
479	Electromagnetic Modeling of Nonlinear Graphene-Based Nanostructures. , 2022, , .		0
480	Rotatory power reversal induced by magnetic current in bi-isotropic media. Physical Review B, 2022, 106, .	1.1	1

#	Article	IF	CITATIONS
481	Evolution of the cyclotron mass with doping in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>La</mml:mi><mml:mphysical .<="" 106,="" 2022,="" b,="" review="" td=""><td>ırolwi⊳<mn< td=""><td>าl:เชก>2</td></mn<></td></mml:mphysical></mml:msub></mml:mrow></mml:math>	ıro lwi ⊳ <mn< td=""><td>าl:เชก>2</td></mn<>	า l:เช ก>2
482	Tunable Onâ€Chip Terahertz Isolator Based on Nonreciprocal Transverse Edge Spin State of Asymmetric Magnetoâ€Plasmonic Waveguide. Laser and Photonics Reviews, 2023, 17, .	4.4	12
483	A comprehensive study of tunable properties of broadband terahertz absorber based on graphene-embedded random photonic crystals. Physica B: Condensed Matter, 2023, 650, 414581.	1.3	6
484	Advances in magneto-optical birefringence effect of 2D materials with extremely large aspect ratio. Applied Physics Letters, 2022, 121, 220505.	1.5	O
485	Magneto-optical properties of the transmitted light from an air/graphene/InSb/air layered structure at the THz frequency region. European Physical Journal Plus, 2022, 137, .	1.2	1
486	Impact of truncation on absorption spectra in graphene-based random photonic crystal. Emerging Materials Research, 2023, 12, 1-9.	0.4	1
487	Dynamic control of Fano-like interference in the graphene periodic structure. Journal Physics D: Applied Physics, 2023, 56, 115104.	1.3	2
488	Study of magnetoplasmons in graphene rings with two-dimensional finite element method. Wuli Xuebao/Acta Physica Sinica, 2023, 72, 087301.	0.2	0
489	Growth of Zn1 \hat{a} 'xNixO Thin Films and Their Structural, Optical and Magneto-Optical Properties. Coatings, 2023, 13, 601.	1.2	2
490	Frequency Magnetically Tunable Terahertz Perfect Absorber Based on Graphene and Silica Layered Dielectric. Crystals, 2023, 13, 553.	1.0	1
491	Asymmetric transmission in nanophotonics. Nanophotonics, 2023, 12, 2639-2667.	2.9	2
492	A review: Magneto-optical sensor based on magnetostrictive materials and magneto-optical material. Sensors and Actuators Reports, 2023, 5, 100152.	2.3	7
501	An enhancement of absorption in monolayer graphene-based random photonic crystal by using a differential evolution optimization algorithm. , 2022, , .		0
518	Magnetostatic Field Assisted Tunability and Polarization Conversion in Patterned Graphene Terahertz Metamaterials., 2023,,.		O