Antennas for light

Nature Photonics

5,83-90

DOI: 10.1038/nphoton.2010.237

Citation Report

#	Article	IF	CITATIONS
13	GPW excited by folded dipole antenna with opened loop. , 2011, , .		3
14	Active all-optical spectral tuning of nanorod plasmonic nanoantennas. , 2011, , .		0
15	A plasmonic nanocluster designed for near-field polarization analysis. , 2011, , .		0
16	Optical nano-antennas. , 2011, , .		0
17	Computational Prediction of Molecular Photoresponse upon Proximity to Gold Nanorods. Journal of Physical Chemistry C, 2011, 115, 13961-13967.	1.5	13
18	Nanoantenna Arrays for Large-Area Emission Enhancement. Journal of Physical Chemistry C, 2011, 115, 24662-24665.	1.5	24
19	Monolithic Integration of Continuously Tunable Plasmonic Nanostructures. Nano Letters, 2011, 11, 3526-3530.	4.5	59
20	Optical properties of metallic nanoparticles: manipulating light, heat and forces at the nanoscale. Nanoscale, 2011, 3, 4042.	2.8	228
21	Plasmonic Antennas for Directional Sorting of Fluorescence Emission. Nano Letters, 2011, 11, 2400-2406.	4.5	177
22	Far-Field Optical Imaging of a Linear Array of Coupled Gold Nanocubes: Direct Visualization of Dark Plasmon Propagating Modes. ACS Nano, 2011, 5, 8223-8229.	7.3	53
23	Single metal nanoparticles: optical detection, spectroscopy and applications. Reports on Progress in Physics, 2011, 74, 106401.	8.1	233
24	Real-Space Mapping of Fano Interference in Plasmonic Metamolecules. Nano Letters, 2011, 11, 3922-3926.	4.5	129
25	Directional Emission from Plasmonic Yagi–Uda Antennas Probed by Angle-Resolved Cathodoluminescence Spectroscopy. Nano Letters, 2011, 11, 3779-3784.	4.5	172
26	Tunable plasmonic Yagi-Uda nanoantenna. , 2011, , .		0
27	POLARIZATION-CONTROLLABLE WINGED NANOCONE TIP ANTENNA. Journal of Nonlinear Optical Physics and Materials, 2011, 20, 415-425.	1.1	3
28	Imaging the Hidden Modes of Ultrathin Plasmonic Strip Antennas by Cathodoluminescence. Nano Letters, 2011, 11, 4265-4269.	4.5	49
29	Electrical Excitation of Surface Plasmons. Physical Review Letters, 2011, 106, 226802.	2.9	200
30	Real-time terahertz near-field microscope. Optics Express, 2011, 19, 8277.	1.7	126

ATION REDO

#	Article	IF	CITATIONS
31	Localized surface-plasmon resonances on single and coupled nanoparticles through surface integral equations for flexible surfaces. Optics Express, 2011, 19, 12208.	1.7	28
32	Large molecular fluorescence enhancement by a nanoaperture with plasmonic corrugations. Optics Express, 2011, 19, 13056.	1.7	27
33	Design of a monopole-antenna-based resonant nanocavity for detection of optical power from hybrid plasmonic waveguides. Optics Express, 2011, 19, 17075.	1.7	28
34	Wavelength-dependent emission enhancement through the design of active plasmonic nanoantennas. Optics Express, 2011, 19, 17697.	1.7	9
35	Continuous layer gap plasmon resonators. Optics Express, 2011, 19, 19310.	1.7	102
36	Effect of radiation damping on the spectral response of plasmonic components. Optics Express, 2011, 19, 21748.	1.7	129
37	Nanoplasmonics: past, present, and glimpse into future. Optics Express, 2011, 19, 22029.	1.7	978
38	Unidirectional broadband radiation of honeycomb plasmonic antenna array with broken symmetry. Optics Express, 2011, 19, 22731.	1.7	20
39	Ultra-high enhancement of the field concentration in Split Ring Resonators by azimuthally polarized excitation. Optics Express, 2011, 19, 25454.	1.7	23
40	Extremely large extinction efficiency and field enhancement in terahertz resonant dipole nanoantennas. Optics Express, 2011, 19, 26088.	1.7	60
41	Directional far-field response of a spherical nanoantenna. Optics Letters, 2011, 36, 2146.	1.7	8
42	Subwavelength localization of near fields in coupled metallic spheres for single-emitter polarization analysis. Optics Letters, 2011, 36, 2339.	1.7	7
43	Crucial role of the emitter–particle distance on the directivity of optical antennas. Optics Letters, 2011, 36, 3368.	1.7	44
44	Circularly polarized unidirectional emission via a coupled plasmonic spiral antenna. Optics Letters, 2011, 36, 4533.	1.7	33
45	Dynamic membrane projection lithography [Invited]. Optical Materials Express, 2011, 1, 962.	1.6	4
46	Controlling Terahertz Radiation with Nanoscale Metal Barriers Embedded in Nano Slot Antennas. ACS Nano, 2011, 5, 8340-8345.	7.3	66
47	Directional Double Fano Resonances in Plasmonic Hetero-Oligomers. Nano Letters, 2011, 11, 3694-3700.	4.5	142
48	Nanoscale Control of the Radiation Properties of Coupled Nanoantennas. IEEE Photonics Technology Letters, 2011, 23, 1541-1543.	1.3	4

#	Article	IF	CITATIONS
49	RESONANCE WAVELENGTH DEPENDENCE AND MODE FORMATION IN GOLD NANOROD OPTICAL ANTENNAS WITH FINITE THICKNESS. Progress in Electromagnetics Research B, 2011, 30, 337-353.	0.7	13
50	Huygens optical elements and Yagi—Uda nanoantennas based on dielectric nanoparticles. JETP Letters, 2011, 94, 593-598.	0.4	92
51	Peculiar Properties of Loop Nanoantennas. IEEE Photonics Journal, 2011, 3, 845-853.	1.0	12
52	Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction. Science, 2011, 334, 333-337.	6.0	7,240
53	Broadband Plasmonic Nanoantenna for Magnetic Field Enhancement. Journal of Electromagnetic Waves and Applications, 2011, 25, 2341-2352.	1.0	4
54	Enhanced emission and light control with tapered plasmonic nanoantennas. Applied Physics Letters, 2011, 99, .	1.5	29
55	Graphene Plasmonics: A Platform for Strong Light–Matter Interactions. Nano Letters, 2011, 11, 3370-3377.	4.5	2,393
56	Plasmonic Photosensitization of a Wide Band Gap Semiconductor: Converting Plasmons to Charge Carriers. Nano Letters, 2011, 11, 5548-5552.	4.5	385
57	Attosecond control of electrons emitted from a nanoscale metal tip. Nature, 2011, 475, 78-81.	13.7	543
58	An arrayed nanoantenna for broadband light emission and detection. Physica Status Solidi - Rapid Research Letters, 2011, 5, 347-349.	1.2	39
59	Molding Optical Wavefronts Using Phase Discontinuities. , 2011, , .		0
60	Tapered plasmonic Yagi-Uda nanoantennas for emission enhancement and broadband communication. , 2011, , .		3
61	Femtosecond pulse shaping using plasmonic snowflake nanoantennas. Physical Review A, 2011, 84, .	1.0	15
62	Optical antenna design for nanophotodiodes. , 2011, , .		2
63	Fluorescence enhancement of light-harvesting complex 2 from purple bacteria coupled to spherical gold nanoparticles. Applied Physics Letters, 2011, 99, .	1.5	46
64	Angle-resolved cathodoluminescence spectroscopy. Applied Physics Letters, 2011, 99, .	1.5	67
65	Resonant coupling of dielectric waveguides with plasmonic metaatoms. , 2011, , .		0
66	On The Phase Of The Electric Field In Optical Antennas. , 2011, , .		0

ARTICLE IF CITATIONS # Multipolar second-harmonic emission with focused Gaussian beams. New Journal of Physics, 2012, 14, 67 1.2 15 113005. Plasmonic excitation and manipulation with an electron beam. MRS Bulletin, 2012, 37, 752-760. 1.7 Distributed bolometric effect in optical antennas and resonant structures. Journal of 69 0.4 15 Nanophotonics, 2012, 6, 063512. Optical amplification of surface plasmon polaritons: review. Journal of Nanophotonics, 2012, 6, 061801. Periodic plasmonic nanoantennas in a piecewise homogeneous background. Optics Express, 2012, 20, 71 1.7 $\mathbf{31}$ 18044. Funneling of light in combinations of metal-insulator-metal resonators. Journal of Nanophotonics, 2012, 6, 063534. 0.4 73 3-dimensional eigenmodal analysis of plasmonic nanostructures. Optics Express, 2012, 20, 5481. 1.7 8 Optical emission of a molecular nanoantenna pair. Journal of Chemical Physics, 2012, 136, 244503. 1.2 74 Scattering of evanescent wave by two cylinders near a flat boundary. Europhysics Letters, 2012, 97, 75 0.7 12 10007. Plasmonic coupled-cavity system for enhancement of surface plasmon localization in plasmonic 1.3 detectors. Nanotechnology, 2012, 23, 275201. 77 Ultraviolet optical magnetism from a new plasmonic resonance mode., 2012,,. 0 Multiple-scattering formalism beyond the quasistatic approximation: Analyzing resonances in plasmonic chains., 2012,,. Bonding and antibonding combinations of plasmons in aggregates of plasma columns., 2012,,. 79 1 Localized surface plasmon resonances in gold nano-patches on a gallium nitride substrate. 1.3 Nanotechnology, 2012, 23, 455709. Silencing and enhancement of second-harmonic generation in optical gap antennas. Optics Express, 81 1.7 97 2012, 20, 10498. Plasmon nanofocusing in a dielectric hemisphere covered in tapered metal film. Optics Express, 2012, 20, 12866. Coupled leaky mode theory for light absorption in 2D, 1D, and 0D semiconductor nanostructures. 83 1.7 64 Optics Express, 2012, 20, 13847. 84 Surface plasmon-coupled emission on plasmonic Bragg gratings. Optics Express, 2012, 20, 14042.

#	Article	IF	CITATIONS
85	Response of plasmonic resonant nanorods: an analytical approach to optical antennas. Optics Express, 2012, 20, 17916.	1.7	15
86	Saturated excitation of fluorescence to quantify excitation enhancement in aperture antennas. Optics Express, 2012, 20, 18085.	1.7	4
87	Plasmonic mode converter for controlling optical impedance and nanoscale light-matter interaction. Optics Express, 2012, 20, 20342.	1.7	20
88	Boosting the directivity of optical antennas with magnetic and electric dipolar resonant particles. Optics Express, 2012, 20, 20376.	1.7	182
89	Polarisation-resolved near-field mapping of a coupled gold nanowire array. Optics Express, 2012, 20, 28409.	1.7	35
90	Imaging the Gouy phase shift in photonic jets with a wavefront sensor. Optics Letters, 2012, 37, 3531.	1.7	12
91	Color-switched directional ultracompact optical nanoantennas. Journal of the Optical Society of America B: Optical Physics, 2012, 29, 1361.	0.9	26
92	Three-dimensional study of planar optical antennas made of split-ring architecture outperforming dipole antennas for increased field localization. Optics Letters, 2012, 37, 139.	1.7	2
93	Measurement limitations in knife-edge tomographic phase retrieval of focused IR laser beams. Optics Express, 2012, 20, 23875.	1.7	3
94	A combination of concave/convex surfaces for field-enhancement optimization: the indented nanocone. Optics Express, 2012, 20, 25201.	1.7	11
95	Frequency-dependent optical steering from subwavelength plasmonic structures. Optics Letters, 2012, 37, 4206.	1.7	12
96	Quantitative measurement of scattering and absorption cross-sections of individual metal nano-antennas. , 2012, , .		0
97	Resonant transmission of light through ZnO nanowaveguides in a silver film. Applied Physics Letters, 2012, 101, 081113.	1.5	5
98	Circular optical nanoantennas: an analytical theory. Physical Review B, 2012, 85, .	1.1	58
99	Vanadium Dioxide based tunable plasmonic antennas. , 2012, , .		0
100	Sub-diffraction optical coherent control of ultrafast electrical currents in antenna devices on GaAs. Applied Physics Letters, 2012, 101, 251119.	1.5	2
101	Optical energy optimization at the nanoscale by near-field interference. Applied Physics Letters, 2012, 101, .	1.5	19
102	Gap-plasmon nanoantennas and bowtie resonators. Physical Review B, 2012, 85, .	1.1	54

#	Article	IF	CITATIONS
103	A biologically-inspired nanoantenna array. , 2012, , .		0
104	Actively tunable bistable optical Yagi-Uda nanoantenna. Optics Express, 2012, 20, 8929.	1.7	58
105	Efficient time-domain techniques for the wideband analysis of plasmonic antennas. , 2012, , .		0
106	Near-field enhancement of a rod-like nanoantenna: Elctrostatic versus fully retarded results. , 2012, , .		1
107	Comparison of surface integral equation formulations for electromagnetic analysis of plasmonic nanoscatterers. Optics Express, 2012, 20, 9161.	1.7	62
108	Nanoscale mapping of plasmons, photons, and excitons. MRS Bulletin, 2012, 37, 39-46.	1.7	17
109	Control of single emitter radiation by polarization- and position-dependent activation of dark antenna modes. Optics Letters, 2012, 37, 1017.	1.7	19
110	Broadband and broadangle SPP antennas based on plasmonic crystals with linear chirp. Scientific Reports, 2012, 2, 829.	1.6	49
111	One-way optical waveguides for perfectly matched non-reciprocal nano-antennas. , 2012, , .		1
112	Cooperative effects of two optical dipole antennas coupled to plasmonic Fabry–Pérot cavity. Nanoscale, 2012, 4, 5308.	2.8	11
113	Nanowire-based plasmonic waveguides and devices for integrated nanophotonic circuits. Nanophotonics, 2012, 1, 155-169.	2.9	111
114	Femtosecond quantum optics with semiconductor nanostructures. , 2012, , 487-527.		0
115	Combining nanooptical fields and coherent spectroscopy on systems with delocalized excitons. , 2012, , .		2
116	Multipolar and Unidirectional Emission of Quantum Emitters Coupled to Optical Antennas. , 2012, , .		0
117	Excitation Enhancement of a Quantum Dot Coupled to a Plasmonic Antenna. Advanced Materials, 2012, 24, OP314-20.	11.1	72
118	Metascreen-Based Superdirective Antenna in the Optical Frequency Regime. Physical Review Letters, 2012, 109, 223901.	2.9	25
119	Surface Plasmon Polaritons and Its Applications. IEEE Photonics Journal, 2012, 4, 590-595.	1.0	54
120	Plasmonic nanoantennas for efficient control of polarization-entangled photon pairs. Physical Review A, 2012, 86, .	1.0	24

		CITATION REPORT		
#	Article		IF	CITATIONS
121	Revealing the quantum regime in tunnelling plasmonics. Nature, 2012, 491, 574-577.		13.7	939
122	Spectroscopy and imaging of arrays of nanorods toward nanopolarimetry. Nanotechno 045701.	blogy, 2012, 23,	1.3	11
123	Recent progress in cell surface nanoscopy: Light and force in the near-field. Nano Toda 390-403.	y, 2012, 7,	6.2	20
124	Light scattering by a magneto-optical nanoparticle in front of a flat surface: Perturbati Physical Review B, 2012, 85, .	ve approach.	1.1	6
125	All-dielectric optical nanoantennas. , 2012, , .			5
126	Tunable terahertz optical antennas based on graphene ring structures. Applied Physics 100, 153111.	Letters, 2012,	1.5	102
127	Quantitative Experimental Determination of Scattering and Absorption Cross-Section Individual Optical Metallic Nanoantennas. Physical Review Letters, 2012, 109, 233902	Spectra of	2.9	64
128	Nonlinear plasmonics. Nature Photonics, 2012, 6, 737-748.		15.6	2,200
129	Active nanoplasmonic metamaterials. Nature Materials, 2012, 11, 573-584.		13.3	502
130	Accelerated single photon emission from dye molecule-driven nanoantennas assemble Nature Communications, 2012, 3, 962.	d on DNA.	5.8	104
131	Nonlinear metal–dielectric nanoantennas for light switching and routing. New Journ 2012, 14, 093005.	al of Physics,	1.2	65
133	Photonic Engineering of Hybrid Metal–Organic Chromophores. Angewandte Chemie Edition, 2012, 51, 11083-11087.	- International	7.2	27
134	Broadband scattering by tapered nanoantennas. Physica Status Solidi - Rapid Research 466-468.	Letters, 2012, 6,	1.2	11
135	Determinant role of the edges in defining surface plasmon propagation in stripe waves tapered concentrators. Journal of the Optical Society of America B: Optical Physics, 20	guides and 12, 29, 226.	0.9	18
136	Enhanced nonlinearities using plasmonic nanoantennas. Nanophotonics, 2012, 1, 221	-233.	2.9	64
137	Transverse magneto-optical effects in nanoscale disks. Physical Review B, 2012, 85, .		1.1	11
138	Polarizability of supported metal nanoparticles: Mehler-Fock approach. Journal of Appli 2012, 112, 064312.	ed Physics,	1.1	10
139	Dispersive Ground Plane Core–Shell Type Optical Monopole Antennas Fabricated wi Induced Deposition. ACS Nano, 2012, 6, 8226-8232.	th Electron Beam	7.3	16

#	ARTICLE	IF	CITATIONS
140	Conductive AFM of transfer printed nano devices. , 2012, , .		1
141	Design of optical nanoantennas with the surface integral equation method of moments. , 2012, , .		Ο
142	Cavity modes and their excitations in elliptical plasmonic patch nanoantennas. Optics Express, 2012, 20, 11615.	1.7	30
143	All-dielectric optical nanoantennas. Optics Express, 2012, 20, 20599.	1.7	490
144	Correlation of micellar structures with surface-plasmon-coupled fluorescence in a strategy for fluorescence enhancement. Journal of Materials Chemistry, 2012, 22, 24727.	6.7	12
145	Nano-transfer printing of functioning MIM tunnel diodes. , 2012, , .		2
146	Doubly and Triply Coupled Nanowire Antennas. Journal of Physical Chemistry C, 2012, 116, 23779-23784.	1.5	16
147	Antenna–load interactions at optical frequencies: impedance matching to quantum systems. Nanotechnology, 2012, 23, 444001.	1.3	59
148	Optical Yagi-Uda nanoantennas. Nanophotonics, 2012, 1, 65-81.	2.9	112
149	Multiresonant Broadband Optical Antennas As Efficient Tunable Nanosources of Second Harmonic Light. Nano Letters, 2012, 12, 4997-5002.	4.5	184
150	Modeling nanoscale V-shaped antennas for the design of optical phased arrays. Physical Review B, 2012, 85, .	1.1	96
151	Neuro-modelling of CSRR for antenna applications. , 2012, , .		0
152	Optical Control of Plasmonic Bloch Modes on Periodic Nanostructures. Nano Letters, 2012, 12, 546-550.	4.5	19
153	Antenna-Enhanced Photocurrent Microscopy on Single-Walled Carbon Nanotubes at 30 nm Resolution. ACS Nano, 2012, 6, 6416-6421.	7.3	38
154	Asymmetric Plasmonic Nanoshells as Subwavelength Directional Nanoantennas and Color Nanorouters: A Multipole Interference Approach. Journal of Physical Chemistry C, 2012, 116, 21536-21546.	1.5	19
155	Near-Field Mapping of Plasmonic Antennas by Multiphoton Absorption in Poly(methyl methacrylate). Nano Letters, 2012, 12, 4864-4868.	4.5	42
156	Broadband High Directivity Multibeam Emission Through Transformation Optics-Enabled Metamaterial Lenses. IEEE Transactions on Antennas and Propagation, 2012, 60, 5063-5074.	3.1	51
157	High-Yield Transfer Printing of Metal–Insulator–Metal Nanodiodes. ACS Nano, 2012, 6, 2853-2859.	7.3	38

#	Article	IF	CITATIONS
158	A first principle study of interband transitions and electron energy loss in mono and bilayer graphene: Effect of external electric field. Physica E: Low-Dimensional Systems and Nanostructures, 2012, 44, 1670-1674.	1.3	58
159	Silver Nanoparticle Aggregates as Highly Efficient Plasmonic Antennas for Fluorescence Enhancement. Journal of Physical Chemistry C, 2012, 116, 16687-16693.	1.5	77
160	Optimization of the intensity enhancement in plasmonic nanoantennas. , 2012, , .		1
161	Selective Functionalization of Tailored Nanostructures. ACS Nano, 2012, 6, 9214-9220.	7.3	13
162	Label-Free Mapping of Osteopontin Adsorption to Calcium Oxalate Monohydrate Crystals by Tip-Enhanced Raman Spectroscopy. Journal of the American Chemical Society, 2012, 134, 17076-17082.	6.6	42
163	Plasmonics: visit the past to know the future. Journal Physics D: Applied Physics, 2012, 45, 433001.	1.3	220
164	Simple Reductant Concentration-Dependent Shape Control of Polyhedral Gold Nanoparticles and Their Plasmonic Properties. Langmuir, 2012, 28, 9021-9026.	1.6	120
165	Quantum Plasmonic Circuits. IEEE Journal of Selected Topics in Quantum Electronics, 2012, 18, 1781-1791.	1.9	78
166	Light-management in ultra-thin polythiophene films using plasmonic monopole nanoantennas. Applied Physics Letters, 2012, 101, .	1.5	20
167	Fluorescence Enhancement at Docking Sites of DNA-Directed Self-Assembled Nanoantennas. Science, 2012, 338, 506-510.	6.0	603
168	Analysis of plasmon resonances of closely located particles by the discrete sources method. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2012, 113, 440-445.	0.2	9
169	Electromagnetic Analysis of Metamaterials and Plasmonic Nanostructures with the Method of Moments. IEEE Antennas and Propagation Magazine, 2012, 54, 81-91.	1.2	9
170	Ultrabright Bowtie Nanoaperture Antenna Probes Studied by Single Molecule Fluorescence. Nano Letters, 2012, 12, 5972-5978.	4.5	74
171	Coupling light into and out from the surface plasmon polaritons of a nanometer-thin metal film with a metal nanostrip. Physical Review B, 2012, 86, .	1.1	11
172	Selective Excitation of Plasmon Resonances of Single Au Triangles by Polarization-Dependent Light Excitation. Journal of Physical Chemistry C, 2012, 116, 14591-14598.	1.5	82
173	Mixed states in Rabi waves and quantum nanoantennas. Physical Review B, 2012, 85, .	1.1	19
174	Diffraction from Arrays of Plasmonic Nanoparticles with Short-Range Lateral Order. ACS Nano, 2012, 6, 9455-9465.	7.3	14
175	Magnetic and electric coherence in forward- and back-scattered electromagnetic waves by a single dielectric subwavelength sphere. Nature Communications, 2012, 3, 1171.	5.8	466

		CITATION REPORT		
#	Article		IF	CITATIONS
176	Dynamics of Four-Photon Photoluminescence in Gold Nanoantennas. Nano Letters, 201	12, 12, 2941-2947.	4.5	81
177	Quantitative Modeling of the Third Harmonic Emission Spectrum of Plasmonic Nanoant Letters, 2012, 12, 3778-3782.	tennas. Nano	4.5	154
178	Demonstration of enhanced broadband unidirectional electromagnetic radiation enable subwavelength profile leaky anisotropic zero-index metamaterial coating. Physical Revie	ed by a ew B, 2012, 86, .	1.1	23
179	Deep Subwavelength Spatial Characterization of Angular Emission from Single-Crystal A Ridge Nanoantennas. ACS Nano, 2012, 6, 1742-1750.	Au Plasmonic	7.3	45
180	Switching Off FRET in the Hybrid Assemblies of Diblock Copolymer Micelles, Quantum I by Plasmonic Nanoparticles. ACS Nano, 2012, 6, 5051-5059.	Dots, and Dyes	7.3	62
181	Enhancement of Terahertz Pulse Emission by Optical Nanoantenna. ACS Nano, 2012, 6	, 2026-2031.	7.3	139
182	Engineering high harmonic generation in semiconductors via pulse shaping. , 2012, , .			0
183	Terahertz super thin planar lenses. Proceedings of SPIE, 2012, , .		0.8	2
184	Direct printing of nanostructures by electrostatic autofocussing of ink nanodroplets. N Communications, 2012, 3, 890.	ature	5.8	319
185	Metamaterial sensors for infrared detection of molecular monolayers. Proceedings of SI	PIE, 2012, , .	0.8	0
186	Out-of-Plane Reflection and Refraction of Light by Anisotropic Optical Antenna Metasur Phase Discontinuities. Nano Letters, 2012, 12, 1702-1706.	faces with	4.5	506
187	Electron rescattering at metal nanotips induced by ultrashort laser pulses. Physical Revi 86, .	ew B, 2012,	1.1	68
188	Waveguide-fed optical hybrid plasmonic patch nano-antenna. Optics Express, 2012, 20	, 18326.	1.7	96
189	Broad-Band Near-Infrared Plasmonic Nanoantennas for Higher Harmonic Generation. AC 6, 3537-3544.	CS Nano, 2012,	7.3	106
190	Near-field scanning optical microscopy nanoprobes. Nanotechnology Reviews, 2012, 1,	313-338.	2.6	28
191	A Chemical Route To Increase Hot Spots on Silver Nanowires for Surface-Enhanced Ram Spectroscopy Application. Langmuir, 2012, 28, 14441-14449.	an	1.6	84
192	Excitation and propagation of surface plasmons on metallic nanowires. Proceedings of	SPIE, 2012, , .	0.8	0
193	Extraction of the homogeneous linewidth of the spectrally diffusing line of a CdSe/ZnSe dot embedded in a nanowire. Physical Review B, 2012, 86, .	e quantum	1.1	6

#	Article	IF	CITATIONS
194	Fabrication of free-standing plasmonic nanoantennas with application for optical break junctions. , 2012, , .		0
195	Dipole-dipole interaction between a quantum dot and a graphene nanodisk. Physical Review B, 2012, 86,	1.1	92
196	Tunable Yagi-Uda-type plasmonic nanoantennas: implications for nanoscale optical sensing. , 2012, , .		2
197	Design of broadband nano-optical antennas with the surface method of moments. , 2012, , .		0
198	Interference, Coupling, and Nonlinear Control of High-Order Modes in Single Asymmetric Nanoantennas. ACS Nano, 2012, 6, 6462-6470.	7.3	46
199	Light-Emitting Waveguide-Plasmon Polaritons. Physical Review Letters, 2012, 109, 166803.	2.9	77
200	Plasmonic Antennas Hybridized with Dielectric Waveguides. ACS Nano, 2012, 6, 10156-10167.	7.3	130
201	Theory of Three-Dimensional Nanocrescent Light Harvesters. Nano Letters, 2012, 12, 5946-5953.	4.5	42
203	Nanocouplers for Infrared and Visible Light. Advances in OptoElectronics, 2012, 2012, 1-17.	0.6	17
204	Surface Plasmon-Enhanced Nanoantenna for Localized Fluorescence. International Journal of Antennas and Propagation, 2012, 2012, 1-7.	0.7	2
205	Gap Nanoantennas toward Molecular Plasmonic Devices. International Journal of Optics, 2012, 2012, 1-19.	0.6	5
206	Modern Trends in Metamaterial Applications. Advances in OptoElectronics, 2012, 2012, 1-2.	0.6	1
207	Fluorescence Enhancement Factors on Optical Antennas: Enlarging the Experimental Values without Changing the Antenna Design. International Journal of Optics, 2012, 2012, 1-7.	0.6	15
208	Plasmonic Rectenna for Efficient Conversion of Light into Electricity. , 2012, , .		0
209	Plasmon-Controlled Fluorescence: Beyond the Intensity Enhancement. Journal of Physical Chemistry Letters, 2012, 3, 191-202.	2.1	388
210	Single Molecule Tracking on Supported Membranes with Arrays of Optical Nanoantennas. Nano Letters, 2012, 12, 1717-1721.	4.5	65
211	Enhancing the Nonlinear Optical Response Using Multifrequency Gold-Nanowire Antennas. Physical Review Letters, 2012, 108, 217403.	2.9	154
212	Optical antennas as nanoscale resonators. Nanoscale, 2012, 4, 692-706.	2.8	112

#	Article	IF	CITATIONS
213	Modification of two-level-atom resonance fluorescence near a plasmonic nanostructure. Physical Review A, 2012, 85, .	1.0	47
214	Broadband Unidirectional Scattering by Magneto-Electric Core–Shell Nanoparticles. ACS Nano, 2012, 6, 5489-5497.	7.3	277
215	Compact Magnetic Antennas for Directional Excitation of Surface Plasmons. Nano Letters, 2012, 12, 4853-4858.	4.5	165
216	Rainbow Radiating Single-Crystal Ag Nanowire Nanoantenna. Nano Letters, 2012, 12, 2331-2336.	4.5	34
217	Theoretical study of symmetric and antysymmetric plasmons in chains of coupled plasma cylinders. , 2012, , .		4
218	Nanoantennas for visible and infrared radiation. Reports on Progress in Physics, 2012, 75, 024402.	8.1	736
219	Singleâ€Crystalline Silver Films for Plasmonics. Advanced Materials, 2012, 24, 3988-3992.	11.1	118
220	Polarization Properties of a CdSe/ZnS and Au Nanoparticle Dimer. ChemPhysChem, 2012, 13, 2522-2525.	1.0	2
221	Engineering metallic nanostructures for plasmonics and nanophotonics. Reports on Progress in Physics, 2012, 75, 036501.	8.1	427
222	Experimental verification of the concept of all-dielectric nanoantennas. Applied Physics Letters, 2012, 100, .	1.5	119
223	Bottom-Up Assembly of Colloidal Gold and Silver Nanostructures for Designable Plasmonic Structures and Metamaterials. Langmuir, 2012, 28, 8902-8908.	1.6	32
224	Absorption Enhancement in Peridinin–Chlorophyll–Protein Light-Harvesting Complexes Coupled to Semicontinuous Silver Film. Plasmonics, 2012, 7, 115-121.	1.8	28
225	Nanofabrication for the Analysis and Manipulation of Membranes. Annals of Biomedical Engineering, 2012, 40, 1356-1366.	1.3	6
226	MNPBEM – A Matlab toolbox for the simulation of plasmonic nanoparticles. Computer Physics Communications, 2012, 183, 370-381.	3.0	644
227	New scheme of the Discrete Sources Method for investigation of a near field enhancement by coupled particles. Computer Physics Communications, 2012, 183, 1753-1759.	3.0	2
228	Multifrequency tapered plasmonic nanoantennas. Optics Communications, 2012, 285, 821-824.	1.0	21
229	Light scattering under nanofocusing: Towards coherent nanoscopies. Optics Communications, 2012, 285, 3383-3389.	1.0	9
230	Log-periodic optical antennas with broadband directivity. Optics Communications, 2012, 285, 3334-3340.	1.0	39

#	ARTICLE	IF	CITATIONS
231	Beam engineering of quantum cascade lasers. Laser and Photonics Reviews, 2012, 6, 24-46.	4.4	56
233	Nanoscale Photoelectron Mapping and Spectroscopy with an Atomic Force Microscope. Physical Review Letters, 2013, 111, 067602.	2.9	0
234	Electron Tweezers as a Tool forÂHigh-Precision Manipulation of Nanoobjects. Advances in Imaging and Electron Physics, 2013, , 203-262.	0.1	10
235	Reduced linewidth multipolar plasmon resonances in metal nanorods and related applications. Nanoscale, 2013, 5, 6985.	2.8	78
236	Nonreciprocal Rotating Power Flow within Plasmonic Nanostructures. Physical Review Letters, 2013, 111, 047401.	2.9	49
237	Amorphous Nanophotonics. Nano-optics and Nanophotonics, 2013, , .	0.2	21
238	Controlled placement of colloidal quantum dots in sub-15 nm clusters. Nanotechnology, 2013, 24, 125302.	1.3	16
239	Charnia-like broadband plasmonic nano-antenna. Journal of Modern Optics, 2013, 60, 790-796.	0.6	7
240	Plasmonic nanofocusing with a metallic pyramid and an integrated C-shaped aperture. Scientific Reports, 2013, 3, 1857.	1.6	43
241	In-situ ultra-sensitive infrared absorption spectroscopy of biomolecule interactions in real time with plasmonic nanoantennas. Nature Communications, 2013, 4, 2154.	5.8	319
242	Deep-Subwavelength Plasmonic Nanoresonators Exploiting Extreme Coupling. Nano Letters, 2013, 13, 3482-3486.	4.5	61
243	Tailoring Magnetic Dipole Emission with Plasmonic Split-Ring Resonators. Physical Review Letters, 2013, 111, 026803.	2.9	86
244	Plasmon-Induced Conductance Enhancement in Single-Molecule Junctions. Journal of Physical Chemistry Letters, 2013, 4, 2811-2816.	2.1	58
245	Multimodal imaging of heterogeneous polymers at the nanoscale by AFM and scanning near-field ellipsometric microscopy. European Polymer Journal, 2013, 49, 1935-1942.	2.6	6
246	Plasmonically Enhanced Vibrational Biospectroscopy Using Lowâ€Cost Infrared Antenna Arrays by Nanostencil Lithography. Advanced Optical Materials, 2013, 1, 798-803.	3.6	45
247	Quantum Nonreciprocity of Nanoscale Antenna Arrays in Timed Dicke States. Physical Review Letters, 2013, 111, 023602.	2.9	36
248	Single nano-hole as a new effective nonlinear element for third-harmonic generation. Laser Physics Letters, 2013, 10, 075901.	0.6	19

#	Article	IF	CITATIONS
249	A nanohole in a thin metal film as an efficient nonlinear optical element. Journal of Experimental and Theoretical Physics, 2013, 117, 21-31.	0.2	2
250	Atomic layer lithography of wafer-scale nanogap arrays for extreme confinement of electromagnetic waves. Nature Communications, 2013, 4, 2361.	5.8	286
251	Plasmonic Nanoantennas for Multispectral Surface-Enhanced Spectroscopies. Journal of Physical Chemistry C, 2013, 117, 18620-18626.	1.5	71
252	Analysis of spatial resonances in the field of evanescent waves by the discrete source method. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2013, 115, 119-124.	0.2	4
253	An Electrically Excited Nanoscale Light Source with Active Angular Control of the Emitted Light. Nano Letters, 2013, 13, 4198-4205.	4.5	62
254	Surface Plasmon Tunability and Emission Sensitivity of Ultrasmall Fluorescent Copper Nanoclusters. Plasmonics, 2013, 8, 1457-1468.	1.8	27
255	Electron Energy Loss and One- and Two-Photon Excited SERS Probing of "Hot―Plasmonic Silver Nanoaggregates. Plasmonics, 2013, 8, 763-767.	1.8	18
256	Terahertz Dipole Nanoantenna Arrays: Resonance Characteristics. Plasmonics, 2013, 8, 133-138.	1.8	35
257	Functional Plasmonic Nanocircuits with Low Insertion and Propagation Losses. Nano Letters, 2013, 13, 4539-4545.	4.5	85
258	Nonlinear nanoantenna with self-tunable scattering pattern. JETP Letters, 2013, 96, 759-764.	0.4	11
259	Gold nanoarray deposited using alternating current for emission rate-manipulating nanoantenna. Nanoscale Research Letters, 2013, 8, 295.	3.1	5
260	Impact of optical antenna and plasmonics on infrared imagers. Infrared Physics and Technology, 2013, 59, 142-145.	1.3	13
261	Strong coupling of optical nanoantennas and atomic systems. Physical Review B, 2013, 88, .	1.1	60
262	Vibrational near-field mapping of planar and buried three-dimensional plasmonic nanostructures. Nature Communications, 2013, 4, 2237.	5.8	103
263	Comparison between an optical dielectric resonator nano-antenna reflectarray and an equivalent dielectric grating reflector. , 2013, , .		0
264	Directional spontaneous emission enhancement in hyperbolic metamaterials. Journal of Applied Physics, 2013, 114, .	1.1	44
265	Analysis of plasmonic properties of heavily doped semiconductors using full band structure calculations. Journal of Applied Physics, 2013, 113, .	1.1	24
266	Ultrafast Nonlinear Control of Progressively Loaded, Single Plasmonic Nanoantennas Fabricated Using Helium Ion Milling. Nano Letters, 2013, 13, 5647-5653.	4.5	76

#	Article	IF	CITATIONS
267	Spontaneous Emission Control in a Tunable Hybrid Photonic System. Physical Review Letters, 2013, 110, 217405.	2.9	30
268	UWB Dual-Vivaldi nano-antenna and load effect on the reflection properties. , 2013, , .		0
269	Selective Plasmon Enhancement of the 1.08 μ m Nd ³⁺ Laser Stark Transition by Tailoring Ag Nanoparticles Chains on a PPLN <i>Y</i> -cut. Nano Letters, 2013, 13, 4931-4936.	4.5	17
270	Array of tunneling-coupled quantum dots as a terahertz range quantum nanoantenna. Journal of Nanophotonics, 2013, 7, 073085.	0.4	7
271	Fano resonances in antennas: General control over radiation patterns. Physical Review B, 2013, 88, .	1.1	54
272	Bright Cathodoluminescent Thin Films for Scanning Nano-Optical Excitation and Imaging. ACS Nano, 2013, 7, 10397-10404.	7.3	13
273	Plasmonic absorption nanoantenna for frequency selective mid-infrared detection. Proceedings of SPIE, 2013, , .	0.8	0
274	Superdirective magnetic nanoantennas with effect of light steering: Theory and experiment. , 2013, , .		1
275	Plasmonics for solid-state lighting: enhanced excitation and directional emission of highly efficient light sources. Light: Science and Applications, 2013, 2, e66-e66.	7.7	335
276	Phase Mismatch–Free Nonlinear Propagation in Optical Zero-Index Materials. Science, 2013, 342, 1223-1226.	6.0	255
277	Superdirective nanoantennas: Theory and experiment. , 2013, , .		0
278	Ultracompact all-dielectric superdirective antennas: Theory and experiment. , 2013, , .		1
279	All-dielectric nanoantennas. Proceedings of SPIE, 2013, , .	0.8	4
280	A Resonant Scanning Dipole-Antenna Probe for Enhanced Nanoscale Imaging. Nano Letters, 2013, 13, 5070-5074.	4.5	22
281	Justification of an integro-functional method for the analysis of plasmonic structures. Differential Equations, 2013, 49, 1126-1133.	0.1	0
282	Photoluminescence decay rate engineering of CdSe quantum dots in ensemble arrays embedded with gold nano-antennae. Journal of Applied Physics, 2013, 114, 064305.	1.1	21
283	Optical nanoantennas. Physics-Uspekhi, 2013, 56, 539-564.	0.8	207
284	Supercontinuum generation in water doped with gold nanoparticles. Applied Physics Letters, 2013, 103, 111109.	1.5	30

#	Article	IF	CITATIONS
285	Near-field spatial mapping of strongly interacting multiple plasmonic infrared antennas. Physical Chemistry Chemical Physics, 2013, 15, 18944.	1.3	23
286	Low-threshold optical bistability in metal-nonlinear dielectric multilayer nanostructure. Europhysics Letters, 2013, 102, 24003.	0.7	6
287	Hybrid optical antenna with high directivity gain. Proceedings of SPIE, 2013, , .	0.8	1
288	Dielectric resonator nanoantennas at visible frequencies. Optics Express, 2013, 21, 1344.	1.7	187
289	Realization of near-field linear nano-polarizer by asymmetric nanoaperture and bowtie nanoantenna. Optics Express, 2013, 21, 10342.	1.7	6
290	Experimental demonstration of surface and bulk plasmon polaritons in hypergratings. Scientific Reports, 2013, 3, 3291.	1.6	105
291	High efficient bowtie nanoantenna for thermophotovoltaic cells. , 2013, , .		0
292	Giant Suppression of Photobleaching for Single Molecule Detection via the Purcell Effect. Nano Letters, 2013, 13, 5949-5953.	4.5	69
293	Plasmon Resonances and Their Quality Factors in a Finite Linear Chain of Coupled Metal Wires. IEEE Journal of Selected Topics in Quantum Electronics, 2013, 19, 4602207-4602207.	1.9	18
294	Plasmonic nanoparticle networks formed using iron porphyrin molecular bridges. Physical Chemistry Chemical Physics, 2013, 15, 11840.	1.3	7
295	Design optimization of bowtie nanoantenna for high-efficiency thermophotovoltaics. Journal of Applied Physics, 2013, 114, .	1.1	13
296	Effect of quantum confinement on electronic and dielectric properties of niobium dichalcogenides NbX2 (X=S, Se, Te). Journal of Alloys and Compounds, 2013, 550, 283-291.	2.8	33
297	Silver nanowires for photonics applications. Laser and Photonics Reviews, 2013, 7, 901-919.	4.4	87
298	Individual Nanoantennas Loaded with Three-Dimensional Optical Nanocircuits. Nano Letters, 2013, 13, 142-147.	4.5	111
299	Top-down fabrication of plasmonic nanostructures for deterministic coupling to single quantum emitters. Journal of Applied Physics, 2013, 113, 024310.	1.1	18
300	The Planar Parabolic Optical Antenna. Nano Letters, 2013, 13, 188-193.	4.5	33
301	Plasmonic Radiance: Probing Structure at the Ångström Scale with Visible Light. Nano Letters, 2013, 13, 497-503.	4.5	108
302	Gold nanorods and their plasmonic properties. Chemical Society Reviews, 2013, 42, 2679-2724.	18.7	1,576

#	ARTICLE	IF	CITATIONS
303 304	Electronically controlled optical beam-steering by an active phased array of metallic nanoantennas.	0.9	1
305	Flat Optics: Controlling Wavefronts With Optical Antenna Metasurfaces. IEEE Journal of Selected Topics in Quantum Electronics, 2013, 19, 4700423-4700423.	1.9	258
306	Optical Properties of Single Infrared Resonant Circular Microcavities for Surface Phonon Polaritons. Nano Letters, 2013, 13, 5051-5055.	4.5	101
307	Enhanced optical absorption and electric field resonance in diabolo metal bar optical antennas. Optics Express, 2013, 21, 32491.	1.7	32
308	Engineering the broadband spectrum of close-packed plasmonic honeycomb array surfaces. Journal of Quantitative Spectroscopy and Radiative Transfer, 2013, 120, 70-80.	1.1	13
309	Design of optical wide-band log-periodic nanoantennas using surface integral equation techniques. Optics Communications, 2013, 301-302, 61-66.	1.0	11
310	Nanoscale lithographic positioning of fluorescing quantum dot nanocrystals on planar samples. Optical Materials, 2013, 35, 1342-1347.	1.7	5
311	Plasmonically Enhanced Thermomechanical Detection of Infrared Radiation. Nano Letters, 2013, 13, 1638-1643.	4.5	66
312	Nanofluidic delivery of molecules: integrated plasmonic sensing with nanoholes. Microfluidics and Nanofluidics, 2013, 14, 743-751.	1.0	7
313	Geometrically Tunable Optical Properties of Metal Nanoparticles. , 2013, , 1-74.		3
314	Size-Dependent Optical Properties of Metallic Nanostructures. , 2013, , 179-229.		11
315	Ultrasensitive Broadband Probing of Molecular Vibrational Modes with Multifrequency Optical Antennas. ACS Nano, 2013, 7, 669-675.	7.3	125
316	Ultrasensitive Optical Shape Characterization of Gold Nanoantennas Using Second Harmonic Generation. Nano Letters, 2013, 13, 1787-1792.	4.5	88
317	Controlling Spontaneous Emission with Plasmonic Optical Patch Antennas. Nano Letters, 2013, 13, 1516-1521.	4.5	209
318	Mapping Magnetic Near-Field Distributions of Plasmonic Nanoantennas. ACS Nano, 2013, 7, 3168-3176.	7.3	77
319	Optical Nanoantennas with Tunable Radiation Patterns. Nano Letters, 2013, 13, 444-450.	4.5	32
320	Directional visible light scattering by silicon nanoparticles. Nature Communications, 2013, 4, 1527.	5.8	908

#	Article	IF	CITATIONS
321	Theory, Modeling and Features of Optical Nanoantennas. IEEE Transactions on Antennas and Propagation, 2013, 61, 1508-1517.	3.1	73
322	Enhancement of Second-Harmonic Generation from Metal Nanoparticles by Passive Elements. Physical Review Letters, 2013, 110, 093902.	2.9	120
323	Nanomechanical method to gauge emission quantum yield applied to nitrogen-vacancy centers in nanodiamond. Applied Physics Letters, 2013, 102, 121105.	1.5	18
324	Simple accurate approximations for the optical properties of metallic nanospheres and nanoshells. Physical Chemistry Chemical Physics, 2013, 15, 4233.	1.3	41
325	Nanoscale light–matter interactions in atomic cladding waveguides. Nature Communications, 2013, 4, 1548.	5.8	112
326	Plasmonic Smart Dust for Probing Local Chemical Reactions. Nano Letters, 2013, 13, 1816-1821.	4.5	104
327	Experimental Verification of <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mi>n</mml:mi><mml:mo>=</mml:mo><mml:mn>0</mml:mn></mml:math> Structures for Visible Light. Physical Review Letters, 2013, 110, 013902.	2.9	208
328	Plasmonic fluorescence enhancement by metal nanostructures: shaping the future of bionanotechnology. Physical Chemistry Chemical Physics, 2013, 15, 15709.	1.3	161
329	Optical Nanoantennas for Multiband Surface-Enhanced Infrared and Raman Spectroscopy. ACS Nano, 2013, 7, 3522-3531.	7.3	201
330	Semiconductor nanowires: a platform for exploring limits and concepts for nano-enabled solar cells. Energy and Environmental Science, 2013, 6, 719.	15.6	189
331	Ultrathin Terahertz Planar Elements. Advanced Optical Materials, 2013, 1, 186-191.	3.6	207
332	Modulation of mid-infrared light using graphene-metal plasmonic antennas. Applied Physics Letters, 2013, 102, .	1.5	144
333	Nonlinear Optical Microscopy of Single Nanostructures. Annual Review of Materials Research, 2013, 43, 213-236.	4.3	35
334	Directional Raman Scattering from Single Molecules in the Feed Gaps of Optical Antennas. Nano Letters, 2013, 13, 2194-2198.	4.5	104
335	Nanoscale Chemical Imaging Using Tipâ€Enhanced Raman Spectroscopy: A Critical Review. Angewandte Chemie - International Edition, 2013, 52, 5940-5954.	7.2	272
336	Real-Time, Subwavelength Terahertz Imaging. Annual Review of Materials Research, 2013, 43, 237-259.	4.3	70
337	Coherent Control of Light Scattering from Nanostructured Materials by Second-Harmonic Generation. Physical Review Letters, 2013, 110, 177405.	2.9	39
338	Phase Engineering of Subwavelength Unidirectional Plasmon Launchers. Advanced Optical Materials, 2013, 1, 434-437.	3.6	5

#	Article	IF	CITATIONS
339	Analysis of plasmonic resonances of two paired noble metal spheroids via the discrete sources method. Journal of Modern Optics, 2013, 60, 529-537.	0.6	9
340	Making connections—strategies for single molecule fluorescence biophysics. Current Opinion in Chemical Biology, 2013, 17, 691-698.	2.8	16
341	Breaking the concentration barrier. Nature Nanotechnology, 2013, 8, 480-482.	15.6	23
342	Optical response of oriented and highly anisotropic subwavelength metallic nanostructure arrays. Applied Physics Letters, 2013, 102, .	1.5	6
343	Plasmonic optical antenna design for performing tip-enhanced Raman spectroscopy and microscopy. Journal Physics D: Applied Physics, 2013, 46, 145501.	1.3	34
345	Tip-Enhanced Raman Spectroscopy of Self-Assembled Thiolated Monolayers on Flat Gold Nanoplates Using Gaussian-Transverse and Radially Polarized Excitations. Journal of Physical Chemistry C, 2013, 117, 15639-15646.	1.5	34
346	Light–matter interaction in free space. Journal of Modern Optics, 2013, 60, 36-42.	0.6	30
349	Low-Loss Electric and Magnetic Field-Enhanced Spectroscopy with Subwavelength Silicon Dimers. Journal of Physical Chemistry C, 2013, 117, 13573-13584.	1.5	347
350	Topographically Flat Substrates with Embedded Nanoplasmonic Devices for Biosensing. Advanced Functional Materials, 2013, 23, 2812-2820.	7.8	36
351	Nonlinear Plasmonics: Four-photon Near-field Photolithography using Optical Antennas. Plasmonics, 2013, 8, 1655-1665.	1.8	3
352	Experimental Verification of the Spectral Shift between Near- and Far-Field Peak Intensities of Plasmonic Infrared Nanoantennas. Physical Review Letters, 2013, 110, 203902.	2.9	144
353	Theory of the Spontaneous Optical Emission of Nanosize Photonic and Plasmon Resonators. Physical Review Letters, 2013, 110, 237401.	2.9	562
354	Optically isotropic responses induced by discrete rotational symmetry of nanoparticle clusters. Nanoscale, 2013, 5, 6395.	2.8	62
355	A plasmonic â€~antenna-in-box' platform for enhanced single-molecule analysis at micromolar concentrations. Nature Nanotechnology, 2013, 8, 512-516.	15.6	297
356	Quantum Efficiency Modification of Organic Fluorophores Using Gold Nanoparticles on DNA Origami Scaffolds. Journal of Physical Chemistry C, 2013, 117, 12735-12744.	1.5	40
357	Signatures of Exciton Coupling in Paired Nanoemitters. Journal of Physical Chemistry C, 2013, 117, 12393-12396.	1.5	7
358	Template-Stripped Asymmetric Metallic Pyramids for Tunable Plasmonic Nanofocusing. Nano Letters, 2013, 13, 5635-5641.	4.5	39
359	A terahertz photomixer based on plasmonic nanoantennas coupled to a graphene emitter. Nanotechnology, 2013, 24, 455202.	1.3	25

ARTICLE IF CITATIONS Multipolar radiation of quantum emitters with nanowire optical antennas. Nature Communications, 360 5.8 148 2013, 4, 1750. DC-pulsed voltage electrochemical method based on duty cycle self-control for producing TERS gold 0.3 tips. Journal of Physics: Conference Series, 2013, 478, 012016. Design of plasmonic nano-antenna for total internal reflection fluorescence microscopy. Optics 362 1.7 9 Express, 2013, 21, 23036. New progress of plasmonics in complex metal nanostructures. Science China: Physics, Mechanics and 2.0 Astronomy, 2013, 56, 2327-2336. B5. Perforated N anoantenna Reflectarray., 2013,,. 364 0 Surface-mediated light transmission in metal nanoparticle chains. Physical Review B, 2013, 87, . 1.1 Superhydrophobic Surface-Enhanced Raman Scattering Platform Fabricated by Assembly of Ag 366 4.0 110 Nanocubes for Trace Molecular Sensing. ACS Applied Materials & amp; Interfaces, 2013, 5, 11409-11418. Plasmonics: Future Outlook. Japanese Journal of Applied Physics, 2013, 52, 010001. 367 0.8 44 Emission and Transmission Properties of a Doubly Resonant 3D Nanodisk Yagi–Uda Antenna for 368 2 1.8 Wireless Optical Communications. Plasmonics, 2013, 8, 173-183. Optimization of distributed bolometers coupled to optical antennas in the infrared., 2013,,. Angular modulation of single-molecule fluorescence by gold nanoparticles on DNA origami 370 2.9 12 templates. Nanophotonics, 2013, 2, 167-172. Photoluminescence Enhancement from a Single Nitrogen Vacancy Center in a Nanodiamond Crystal via 371 a Metal Nanoantenna., 2013,,. Highly nonparaxial spin Hall effect and its enhancement by plasmonic structures. Optics Letters, 2013, 372 1.7 11 38, 4421. Spontaneous Emission and Nonlinear Response Enhancement by Silver Nanoparticles in a Nd³⁺â€Doped Periodically Poled LiNbO<sub>3</súb> Laser Crystal. Advanced Materials, 2013, 11.1 38 25, 910-915. Plasmons excited by an evanescent wave. Journal of the Optical Society of America B: Optical Physics, 374 0.9 1 2013, 30, 2048. Thermal tuning of mid-infrared plasmonic antenna arrays using a phase change material. Optics Letters, 2013, 38, 368. 196 376 Schottky-contact plasmonic rectenna for biosensing. Proceedings of SPIE, 2013, , . 0.8 0 Split ring aperture for optical magnetic field enhancement by radially polarized beam. Optics Express,

CITATION REPORT

2013, 21, 6845.

377

#

#	Article	IF	CITATIONS
378	An ultrathin terahertz lens with axial long focal depth based on metasurfaces. Optics Express, 2013, 21, 30030.	1.7	106
379	How complicated must an optical component be?. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2013, 30, 238.	0.8	39
380	Dielectric resonator antenna for applications in nanophotonics. Optics Express, 2013, 21, 1234.	1.7	107
381	Visualizing the near-field coupling and interference of bonding and anti-bonding modes in infrared dimer nanoantennas. Optics Express, 2013, 21, 1270.	1.7	52
382	Optimization of an optical wireless nanolink using directive nanoantennas. Optics Express, 2013, 21, 2369.	1.7	59
383	Towards a full characterization of a plasmonic nanostructure with a fluorescent near-field probe. Optics Express, 2013, 21, 11536.	1.7	30
384	Mass-producible and efficient optical antennas with CMOS-fabricated nanometer-scale gap. Optics Express, 2013, 21, 16561.	1.7	13
385	Non-exponential spontaneous emission dynamics for emitters in a time-dependent optical cavity. Optics Express, 2013, 21, 23130.	1.7	18
386	Gold nanoparticles for enhanced single molecule fluorescence analysis at micromolar concentration. Optics Express, 2013, 21, 27338.	1.7	38
387	Sensing properties of lattice resonances of 2D metal nanoparticle arrays: An analytical model. Optics Express, 2013, 21, 27490.	1.7	52
388	Tunable optical antennas enabled by the phase transition in vanadium dioxide. Optics Express, 2013, 21, 27503.	1.7	66
389	Efficient second harmonic generation using nonlinear substrates patterned by nano-antenna arrays. Optics Express, 2013, 21, 29165.	1.7	31
390	Fabrication and spectral tuning of standing gold infrared antennas using single fs-laser pulses. Optics Express, 2013, 21, 32176.	1.7	32
391	Engineering the optical response of nanodipole antennas using equivalent circuit representations of core-shell particle loads. Journal of the Optical Society of America B: Optical Physics, 2013, 30, 2840.	0.9	7
392	High load sensitivity in wideband infrared dual-Vivaldi nanoantennas. Optics Letters, 2013, 38, 205.	1.7	17
393	Robustness of antenna-coupled distributed bolometers. Optics Letters, 2013, 38, 3784.	1.7	12
394	Hybrid optical antenna with high directivity gain. Optics Letters, 2013, 38, 2726.	1.7	23
395	Finite element simulation of a perturbed axial-symmetric whispering-gallery mode and its use for intensity enhancement with a nanoparticle coupled to a microtoroid. Optics Express, 2013, 21, 14169.	1.7	43

~			<u> </u>	
	ΙΤΔΤΙ	ON	REDC	ND L
\sim	/			

#	Article	IF	CITATIONS
396	Discontinuous electromagnetic fields using orthogonal electric and magnetic currents for wavefront manipulation. Optics Express, 2013, 21, 14409.	1.7	318
397	Optical antenna of comb-shaped split ring architecture for increased field localization in NIR and MIR. Optics Express, 2013, 21, 29455.	1.7	4
398	Forward and backward unidirectional scattering from plasmonic coupled wires. Optics Express, 2013, 21, 31138.	1.7	26
399	Directive antenna nanocoupler to plasmonic gap waveguides. Optics Letters, 2013, 38, 1630.	1.7	18
400	Bowtie nanoantenna integrated with indium gallium arsenide antimonide for uncooled infrared detector with enhanced sensitivity. Applied Optics, 2013, 52, 8432.	0.9	11
401	Quantitative spectroscopy on individual wire, slot, bow-tie, rectangular, and square-shaped optical antennas. Optics Letters, 2013, 38, 4597.	1.7	14
402	Diffraction-assisted extreme ultraviolet proximity lithography for fabrication of nanophotonic arrays. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2013, 31, 021602.	0.6	15
403	Tip-Enhanced Raman Imaging and Nano Spectroscopy of Etched Silicon Nanowires. Sensors, 2013, 13, 12744-12759.	2.1	22
404	Using localized double-quantum-coherence spectroscopy to reconstruct the two-exciton wave function of coupled quantum emitters. New Journal of Physics, 2013, 15, 025004.	1.2	13
405	DNA-templated nanoantennas for single-molecule detection at elevated concentrations. Journal of Biomedical Optics, 2013, 18, 065001.	1.4	9
406	Substrate-Dependent Broadband Light Absorption in Transferrable Single Nanowires. Applied Physics Express, 2013, 6, 092302.	1.1	1
407	Far-field disentanglement of modes in hybrid plasmonic-photonic crystals by fluorescence nano-reporters. Nanophotonics, 2013, 2, 173-185.	2.9	14
408	Nanolocalised source of femtosecond radiation. Quantum Electronics, 2013, 43, 379-387.	0.3	4
409	Demonstration of beam steering via dipole-coupled plasmonic spiral antenna. Scientific Reports, 2013, 3, 2237.	1.6	39
410	Vanadium dioxide thickness effects on tunable optical antennas. Proceedings of SPIE, 2013, , .	0.8	3
411	Plasmonic antennas as design elements for coherent ultrafast nanophotonics. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 18386-18390.	3.3	55
412	Enhancement of second-harmonic generation from gold nanoparticles through passive elements. , 2013, , .		0
413	Plasmonic nanoantennas for enhanced single molecule analysis at micromolar conentrations. , 2013, ,		0

#	Article	IF	CITATIONS
414	Metal-Insulator-Metal (MIM) plasmonic waveguide based directional couplers operating at telecom wavelengths. , 2013, , .		2
415	The plasmonic J-pole antenna. Applied Physics Letters, 2013, 102, 033106.	1.5	14
416	Imaging of fluorescence enhancement in photosynthetic complexes coupled to silver nanowires. Applied Physics Letters, 2013, 102, .	1.5	34
417	Characterising few and single nano-antennas with rotating polarisation. , 2013, , .		0
418	Scattering of core-shell nanowires with the interference of electric and magnetic resonances. Optics Letters, 2013, 38, 2621.	1.7	75
419	Chiral nanoemitter array: A launchpad for optical vortices. Laser and Photonics Reviews, 2013, 7, 1088-1092.	4.4	26
420	Tuning nano antenna with graphene. , 2013, , .		1
421	Nanoantenna probes: Mode mapping and nanoscale imaging. , 2013, , .		0
422	Coupling of a single quantum emitter to end-to-end aligned silver nanowires. Applied Physics Letters, 2013, 102, 103106.	1.5	17
423	Vibrationally Resolved Decay Width of Interatomic Coulombic Decay in HeNe. Physical Review Letters, 2013, 111, 233004.	2.9	53
424	Electrically tuned nanoantennas excited by Rabi-waves and Rabi wavepackets. , 2013, , .		0
425	Approaching the strong coupling limit in single plasmonic nanorods interacting with J-aggregates. Scientific Reports, 2013, 3, 3074.	1.6	210
426	Optical gating of perylene bisimide fluorescence using dithienylcyclopentene photochromic switches. Applied Physics Letters, 2013, 103, .	1.5	13
427	One way optical waveguides for matched non-reciprocal nanoantennas with dynamic beam scanning functionality. Optics Express, 2013, 21, A77.	1.7	22
428	Highly directional bottom-up 3D nanoantenna for visible light. Scientific Reports, 2013, 3, 2311.	1.6	18
429	Nanowire Photonics and Their Applications. , 2013, , 65-102.		1
430	Multiphysics simulation for the optimization of optical nanoantennas working as distributed bolometers in the infrared. Journal of Nanophotonics, 2013, 7, 073093.	0.4	11
431	PERFORATED NANOANTENNA REFLECTARRAY. Progress in Electromagnetics Research M, 2013, 29, 253-265.	0.5	10

#	Article	IF	CITATIONS
432	Resonant properties, of modified triangular plasmonic nanoparticles with higher field concentration. Journal of Microwaves, Optoelectronics and Electromagnetic Applications, 2013, 12, 325-335.	0.4	0
433	Laser fabricated nanoantennas for near-field applications. , 2013, , .		0
434	Glass Superstrate Nanoantennas for Infrared Energy Harvesting Applications. International Journal of Antennas and Propagation, 2013, 2013, 1-7.	0.7	17
435	FINITE-BOUNDARY BOWTIE APERTURE ANTENNA FOR TRAPPING NANOPARTICLES. Progress in Electromagnetics Research, 2013, 136, 17-27.	1.6	4
436	ROBUST CYLINDRICAL PLASMONIC NANO-ANTENNAS FOR LIGHT-MATTER INTERACTION. Progress in Electromagnetics Research, 2014, 148, 129-139.	1.6	0
437	All-Dielectric Optical Nanoantennas. , 2014, , .		8
438	Simple and Efficient Computational Method to Analyze Cylindrical Plasmonic Nanoantennas. International Journal of Antennas and Propagation, 2014, 2014, 1-8.	0.7	7
439	Analysis of Nanodipoles in Optical Nanocircuits Fed by Gaussian Beam. International Journal of Antennas and Propagation, 2014, 2014, 1-12.	0.7	4
440	HIGHLY DIRECTIVE HYBRID PLASMONIC LEAKY WAVE OPTICAL NANO-ANTENNA. Progress in Electromagnetics Research Letters, 2014, 50, 85-90.	0.4	26
442	Multipole analysis of unidirectional light scattering from plasmonic dimers. Journal of Optics (United Kingdom), 2014, 16, 114005.	1.0	34
443	Collective photonic-plasmonic resonances in noble metal - dielectric nanoparticle hybrid arrays. Optical Materials Express, 2014, 4, 2409.	1.6	17
444	Quantum theory of plasmon energy spectra in electron gases of bulk metal and metallic nanostructures. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2014, 5, 035004.	0.7	6
445	Plasmonic sectoral horn nanoantennas. Optics Letters, 2014, 39, 3204.	1.7	28
446	Silica-covered Au nanoresonators for fluorescence modulating of a graphene quantum dot. Chinese Physics B, 2014, 23, 097803.	0.7	5
447	Enhanced light absorption of silicon in the near-infrared band by designed gold nanostructures. Chinese Physics B, 2014, 23, 047306.	0.7	4
448	Enhancement of focusing energy of ultra-thin planar lens through plasmonic resonance and coupling. Optics Express, 2014, 22, 26277.	1.7	11
449	Design of highly efficient metallo-dielectric patch antennas for single-photon emission. Optics Express, 2014, 22, 2337.	1.7	39
450	Up-Converted Luminescence of a Two-Level Molecule with Population Inversion. Journal of the Physical Society of Japan, 2014, 83, 093401.	0.7	2

#	Article	IF	CITATIONS
451	Plasmonic metasurface for efficient ultrashort pulse laser-driven particle acceleration. Physical Review Special Topics: Accelerators and Beams, 2014, 17, .	1.8	26
452	On the possibility of detecting local refractive index changes in optically transparent objects by means of a point nanoantenna attached to a fibre microaxicon. Quantum Electronics, 2014, 44, 975-980.	0.3	0
453	Large Suppression of Quantum Fluctuations of Light from a Single Emitter by an Optical Nanostructure. Physical Review Letters, 2014, 113, 263605.	2.9	25
454	Quantum size effect on dielectric function of ultrathin metal film: a first-principles study of Al(1 1 1). Journal of Physics Condensed Matter, 2014, 26, 505302.	0.7	16
455	All-dielectric optical "huygens source". , 2014, , .		0
456	Recent advances on optical metasurfaces. Journal of Optics (United Kingdom), 2014, 16, 123001.	1.0	90
457	Efficient nanoantenna simulation for IR energy harvesting and detection devices. , 2014, , .		0
458	High-sensitivity silicon nanowire phototransistors. Proceedings of SPIE, 2014, , .	0.8	2
459	Photonic E-field sensor. AIP Advances, 2014, 4, .	0.6	26
460	Dual-tip-enhanced ultrafast CARS nanoscopy. New Journal of Physics, 2014, 16, 083004.	1.2	5
461	Spectral and temporal characteristics of a transient Cherenkov radiation from a periodic resonant medium excited by an ultrashort laser pulse at superluminal velocity. Proceedings of SPIE, 2014, , .	0.8	0
462	Ultra-wideband polarization conversion metasurfaces. , 2014, , .		21
463	Thermal-Electromagnetic Analysis of Infrared Antennas. , 2014, , .		0
464	Single gold nanoparticles to enhance the detection of single fluorescent molecules at micromolar concentration using fluorescence correlation spectroscopy. Proceedings of SPIE, 2014, , .	0.8	0
465	Nano-antenna elements for controlling optical phase. , 2014, , .		1
466	Huge light-enhancement by coupling a bowtie nano-antenna's plasmonic resonance to a photonic crystal mode. Optics Express, 2014, 22, 14464.	1.7	28
467	Heterodyne detection at near-infrared wavelengths with a superconducting NbN hot-electron bolometer mixer. Optics Letters, 2014, 39, 1429.	1.7	13
468	Steerable optical antennas by selective heating. Optics Letters, 2014, 39, 1957.	1.7	5

	Сітаті	on Report	
#	Article	IF	CITATIONS
469	Three-dimensional winged nanocone optical antennas. Optics Letters, 2014, 39, 3686.	1.7	16
470	Characterization of Sierpinski carpet optical antenna at visible and near-infrared wavelengths. New Journal of Physics, 2014, 16, 093024.	1.2	10
471	Highly resonant and directional optical nanoantennas. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2014, 31, 388.	0.8	10
472	Slant-gap plasmonic nanoantennas for optical chirality engineering and circular dichroism enhancement. Optics Express, 2014, 22, 7434.	1.7	34
473	Nanoimprinted and Angular Evaporated Aluminum Plasmonic Nanoantennas Arrays. , 2014, , .		1
474	The spectral shift between near- and far-field resonances of optical nano-antennas. Optics Express, 2014, 22, 9971.	1.7	35
475	Controlling near-field polarization distribution of a plasmonic prolate nanospheroid by its aspect ratio and polarization of the incident electromagnetic field. Optics Express, 2014, 22, 20432.	1.7	17
476	First demonstration of plasmonic GaN quantum cascade detectors with enhanced efficiency at normal incidence. Optics Express, 2014, 22, 21069.	1.7	14
477	Engineering metal-nanoantennae/dye complexes for maximum fluorescence enhancement. Optics Express, 2014, 22, 22018.	1.7	27
478	A plasmonic antenna-coupled superconducting near-IR photon detector. Optics Express, 2014, 22, 22062.	1.7	6
479	Analysis of near-field components of a plasmonic optical antenna and their contribution to quantum dot infrared photodetector enhancement. Optics Express, 2014, 22, 24970.	1.7	25
480	Optical investigation of the J-pole and Vee antenna families. Optics Express, 2014, 22, 1336.	1.7	17
481	Nanofocusing in circular sector-like nanoantennas. Optics Express, 2014, 22, 10341.	1.7	9
482	Terahertz phase contrast imaging of sorption kinetics in porous coordination polymer nanocrystals using differential optical resonator. Optics Express, 2014, 22, 11061.	1.7	3
483	Metallo-dielectric hybrid antenna for high Purcell factor and radiation efficiency. Optics Express, 2014, 22, 14517.	1.7	21
484	Light funneling from a photonic crystal laser cavity to a nano-antenna: overcoming the diffraction limit in optical energy transfer down to the nanoscale. Optics Express, 2014, 22, 15075.	1.7	15
485	Ultra-directional forward scattering by individual core-shell nanoparticles. Optics Express, 2014, 22, 16178.	1.7	147
486	Plasmonic nano-comb structures for efficient large-area second harmonic generation. Optics Express, 2014, 22, 17116.	1.7	1

	CITATION	NLPOKI	
#	Article	IF	CITATIONS
487	Monopole resonators in planar plasmonic metamaterials. Optics Express, 2014, 22, 18433.	1.7	5
488	Liquid metacrystals. Journal of the Optical Society of America B: Optical Physics, 2014, 31, 559.	0.9	21
489	CHAPTER 16. Quantum Rectennas for Photovoltaics. RSC Energy and Environment Series, 0, , 506-546.	0.2	2
490	Observation of unusual absorption and scattering cross-section line shapes of individual optical double-wire antennas. Applied Physics Letters, 2014, 104, 031111.	1.5	4
491	Resonant Augerâ \in "intersite-Coulombic hybridized decay in the photoionization of endohedral fullerenes. Physical Review A, 2014, 89, .	1.0	20
492	Modal representation of spatial coherence in dissipative and resonant photonic systems. Physical Review A, 2014, 89, .	1.0	33
493	Ultrafine control of partially loaded single plasmonic nanoantennas fabricated using e-beam lithography and helium ion beam milling. , 2014, , .		1
494	Phase control of femtosecond pulses on the nanoscale using second harmonic nanoparticles. Light: Science and Applications, 2014, 3, e143-e143.	7.7	47
495	Positional control of plasmonic fields and electron emission. Applied Physics Letters, 2014, 105, .	1.5	11
496	Strong field enhancement and light-matter interactions with all-dielectric metamaterials based on split bar resonators. Optics Express, 2014, 22, 30889.	1.7	79
497	Quantifying coherent and incoherent cathodoluminescence in semiconductors and metals. Journal of Applied Physics, 2014, 115, .	1.1	52
498	Resonant cavity modes of circular plasmonic patch nanoantennas. Applied Physics Letters, 2014, 104, .	1.5	45
499	Nanogaps for SERS applications. MRS Bulletin, 2014, 39, 163-168.	1.7	99
500	Nanoscale Excitation Mapping of Plasmonic Patch Antennas. ACS Photonics, 2014, 1, 1134-1143.	3.2	27
501	Emitters as probes of a complex plasmo-photonic mode. Journal of Materials Chemistry C, 2014, 2, 10362-10368.	2.7	6
502	The simplest plasmonic molecules: Metal nanoparticle dimers and trimers. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2014, 21, 26-39.	5.6	86
503	Long range emission enhancement and anisotropy in coupled quantum dots induced by aligned gold nanoantenna. Applied Physics Letters, 2014, 105, .	1.5	12
504	Nanostructure arrays in free-space: optical properties and applications. Reports on Progress in Physics, 2014, 77, 126402.	8.1	126

#	Article	IF	CITATIONS
505	Analysis and design of a cross dipole nanoantenna for fluorescence-sensing applications. Journal of the Optical Society of America B: Optical Physics, 2014, 31, 302.	0.9	17
506	Dielectric resonator nano-antennas: A pathway to efficient optical antennas. , 2014, , .		0
507	Seebeck nanoantennas for solar energy harvesting. Applied Physics Letters, 2014, 105, 093108.	1.5	31
508	Mapping nanoscale light fields. Nature Photonics, 2014, 8, 919-926.	15.6	172
509	<i>Ab initio</i> nanoplasmonics: The impact of atomic structure. Physical Review B, 2014, 90, .	1.1	147
510	Plasmonic nanocone arrays as photoconductive and photovoltaic metamaterials. , 2014, , .		0
511	Directional plasmonic scattering from metal nanoparticles in thin-film environments. Applied Physics Letters, 2014, 104, 081110.	1.5	8
512	Theory of the spontaneous-decay enhancement in plasmonic nanoparticles based on a singularity representation of the scattering matrix. Physical Review A, 2014, 90, .	1.0	9
513	Two-Dimensional Distance and Angle Location Nanoruler Using the Surface Plasmon Resonance. , 2014, , , .		0
514	Plasmoelectric potentials in metal nanostructures. Science, 2014, 346, 828-831.	6.0	209
515	Computational analysis of a spiral thermoelectric nanoantenna for solar energy harvesting applications. , 2014, , .		3
516	Universal method for the synthesis of arbitrary polarization states radiated by a nanoantenna. Laser and Photonics Reviews, 2014, 8, L27.	4.4	37
517	Polarimetric pixel using Seebeck nanoantennas. Optics Express, 2014, 22, 13835.	1.7	14
518	Field enhancement and funneling of light in combinations of MIM resonators. , 2014, , .		0
519	InP-based nano solar cells. , 2014, , .		2
520	Silver conical helix broadband plasmonic nanoantenna. Journal of Nanophotonics, 2014, 8, 083078.	0.4	14
521	Plasmonic influence on the up-conversion luminescence in NaYF4:Er3+/Yb3+nanocrystals. , 2014, , .		0
522	Large and well-defined Rabi splitting in a semiconductor nanogap cavity. Optics Express, 2014, 22, 22470.	1.7	7

#	Article	IF	CITATIONS
523	A semi-log-periodic array of spheroidal nanoelements: broadbanding nanoantennas. Applied Physics B: Lasers and Optics, 2014, 117, 885-889.	1.1	0
524	Seebeck nanoantennas for the detection and characterization of infrared radiation. Optics Express, 2014, 22, A1538.	1.7	25
525	Plasmonic Optical Nanoantennas. Handbook of Surface Science, 2014, 4, 109-136.	0.3	7
526	Laser Generation and Printing of Nanoparticles. Springer Series in Materials Science, 2014, , 103-123.	0.4	1
527	Bowtie nanoantennas with symmetry breaking. Journal of Nanophotonics, 2014, 9, 093798.	0.4	4
528	Phase change material based tunable reflectarray for free-space optical inter/intra chip interconnects. Optics Express, 2014, 22, 24142.	1.7	41
529	Superdirective all-dielectric nanoantennas: theory and experiment. IOP Conference Series: Materials Science and Engineering, 2014, 67, 012008.	0.3	5
530	Laser field distribution near inclined taper optical antenna. Journal of Physics: Conference Series, 2014, 560, 012008.	0.3	2
531	Novel optical antenna designs of comb shaped split ring architecture for NIR and MIR enhanced field localization. , 2014, , .		0
532	Nanoantennas for ultrabright single photon sources. Optics Letters, 2014, 39, 1246.	1.7	26
533	Engineering plasmonic and dielectric directional nanoantennas. Proceedings of SPIE, 2014, , .	0.8	1
534	Modulated photoluminescence of graphene quantum dots in the vicinity of an individual silver nano-octahedron. Physical Chemistry Chemical Physics, 2014, 16, 4504.	1.3	14
535	Seeing and measuring in colours: Electron microscopy and spectroscopies applied to nano-optics. Comptes Rendus Physique, 2014, 15, 158-175.	0.3	43
536	Analysis of scattered field enhancement in the evanescent wave area based on the Discrete Sources Method. Journal of Quantitative Spectroscopy and Radiative Transfer, 2014, 146, 235-243.	1.1	2
537	Transformation Electromagnetics Inspired Lens Designs and Associated Metamaterial Implementations for Highly Directive Radiation. , 2014, , 221-261.		4
538	Photonic effects on the Förster resonance energy transfer efficiency. Nature Communications, 2014, 5, 3610.	5.8	112
539	Musselâ€inspired Plasmonic Nanohybrids for Light Harvesting. Advanced Materials, 2014, 26, 4463-4468.	11.1	72
540	Coupled nano-plasmons. Applied Physics A: Materials Science and Processing, 2014, 115, 387-392.	1.1	1

		CITATION R	EPORT	
#	Article		IF	CITATIONS
541	Experimental demonstration of superdirective dielectric antenna. Applied Physics Letter	[.] s, 2014, 104, .	1.5	47
542	Third-harmonic-upconversion enhancement from a single semiconductor nanoparticle oplasmonic antenna. Nature Nanotechnology, 2014, 9, 290-294.	oupled to a	15.6	371
543	Enhancing the magnetic field intensity with a dielectric gap antenna. Applied Physics Le 021117.	tters, 2014, 104,	1.5	58
544	Design considerations for near-field enhancement in optical antennas. Contemporary P 1-11.	hysics, 2014, 55,	0.8	26
545	Liquid Metal/Metal Oxide Frameworks. Advanced Functional Materials, 2014, 24, 3799-	3807.	7.8	191
546	Growth of non-concentric graphene ring on 6H-SiC (0001) surface. Applied Surface Sci 136-141.	ence, 2014, 307,	3.1	12
547	Nanophotonic approaches for nanoscale imaging and singleâ€molecule detection at ult concentrations. Microscopy Research and Technique, 2014, 77, 537-545.	rahigh	1.2	8
548	Spectral interferometric microscopy reveals absorption by individual optical nanoanten extinction phase. Nature Communications, 2014, 5, 3748.	nas from	5.8	25
549	Wavelength-tunable light shaping with cholesteric liquid crystal microlenses. Lab on A (2063.	Chip, 2014, 14,	3.1	24
550	Beaming Visible Light with a Plasmonic Aperture Antenna. ACS Photonics, 2014, 1, 365	-370.	3.2	41
551	Electromagnetic Study of the Chlorosome Antenna Complex of <i>Chlorobium tepidum 2014, 8, 3884-3894.</i>	ı. ACS Nano,	7.3	12
552	Doubling the Efficiency of Third Harmonic Generation by Positioning ITO Nanocrystals i Hot-Spot of Plasmonic Gap-Antennas. Nano Letters, 2014, 14, 2867-2872.	nto the	4.5	155
553	Fundamentals of Laser-Assisted Micro- and Nanotechnologies. Springer Series in Materi 2014, , .	als Science,	0.4	19
554	Electric and Magnetic Field Enhancement with Ultralow Heat Radiation Dielectric Nano Considerations for Surface-Enhanced Spectroscopies. ACS Photonics, 2014, 1, 524-529	antennas:).	3.2	181
555	Antenna-coupled microcavities for enhanced infrared photo-detection. Applied Physics 104, .	Letters, 2014,	1.5	68
556	Nonlinear Photon-Assisted Tunneling Transport in Optical Gap Antennas. Nano Letters, 2330-2338.	2014, 14,	4.5	68
557	Plasmonic DNA-Origami Nanoantennas for Surface-Enhanced Raman Spectroscopy. Na 14, 2914-2919.	10 Letters, 2014,	4.5	187
558	Transient Cherenkov radiation from an inhomogeneous string excited by an ultrashort l superluminal velocity. Physical Review A, 2014, 89, .	aser pulse at	1.0	20

ARTICLE IF CITATIONS # Hotspotâ€Engineered 3D Multipetal Flower Assemblies for Surfaceâ€Enhanced Raman Spectroscopy. 559 11.1 74 Advanced Materials, 2014, 26, 5924-5929. Tip-enhanced near-field optical microscopy. Chemical Society Reviews, 2014, 43, 1248-1262. 18.7 124 Ambiguous Refractive Index Sensitivity of Fano Resonance on an Array of Gold Nanoparticles. 561 1.8 8 Plasmonics, 2014, 9, 729-735. A twin-free single-crystal Ag nanoplate plasmonic platform: hybridization of the optical nano-antenna and surface plasmon active surface. Nanoscale, 2014, 6, 514-520. Multi-frequency near-field scanning optical microscopy. Nanotechnology, 2014, 25, 035203. 563 1.3 5 564 Flat optics with designer metasurfaces. Nature Materials, 2014, 13, 139-150. 13.3 4,358 565 Directional emission from a single plasmonic scatterer. Nature Communications, 2014, 5, 3250. 5.8 154 Graphene Plasmonics for Terahertz to Mid-Infrared Applications. ACS Nano, 2014, 8, 1086-1101. 566 1,165 567 Nanofocusing of electromagnetic radiation. Nature Photonics, 2014, 8, 13-22. 15.6 321 Eleven Nanometer Alignment Precision of a Plasmonic Nanoantenna with a Self-Assembled GaAs 4.5 Quantum Dot. Nano Letters, 2014, 14, 197-201. Selective Excitation of Single Molecules Coupled to the Bright Mode of a Plasmonic Cavity. Nano 569 4.516 Letters, 2014, 14, 284-288. Direct Temperature Mapping of Nanoscale Plasmonic Devices. Nano Letters, 2014, 14, 648-652. 4.5 49 Breaking the concentration limit of optical single-molecule detection. Chemical Society Reviews, 2014, 571 18.7 179 43, 1014-1028. Coupling of plasmonic gap waveguides with directive antennas., 2014, , . Plasmon-Enhanced Upconversion. Journal of Physical Chemistry Letters, 2014, 5, 4020-4031. 573 2.1 248 Ultra-Compact Mid-IR Modulators Based on Electrically Tunable Optical Antennas., 2014,,. 574 575 Hybrid plasmons in assemblies of coupled metal nanowires., 2014, , . 2 576 Nanophotonics: devices for manipulating light at the nanoscale., 2014, , 376-398.

#	Article	IF	CITATIONS
577	Quantum yield and excitation rate of single molecules close to metallic nanostructures. Nature Communications, 2014, 5, 5356.	5.8	74
578	Plasmonic antennas and zeroâ€mode waveguides to enhance single molecule fluorescence detection and fluorescence correlation spectroscopy toward physiological concentrations. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2014, 6, 268-282.	3.3	53
579	Huygens source nanoparticle lasers and their applications. , 2014, , .		0
580	Single Nanoparticle Couplers for Plasmonic Waveguides. Small, 2014, 10, 4264-4269.	5.2	25
581	Optical trapping in the presence of higher order mode sources and interactions. Journal of Optics (United Kingdom), 2014, 16, 114024.	1.0	3
582	Control of the distribution of surface plasmon local field by altering the surrounding material. Optik, 2014, 125, 6810-6813.	1.4	Ο
583	Optical properties and interparticle coupling of plasmonic bowtie nanoantennas on a semiconducting substrate. Physical Review B, 2014, 90, .	1.1	25
584	Nanohelices by shadow growth. Nanoscale, 2014, 6, 9457-9466.	2.8	105
585	smFRET studies of the â€~encounter' complexes and subsequent intermediate states that regulate the selectivity of ligand binding. FEBS Letters, 2014, 588, 3526-3538.	1.3	7
586	Hybrid Photonic Antennas for Subnanometer Multicolor Localization and Nanoimaging of Single Molecules. Nano Letters, 2014, 14, 4895-4900.	4.5	31
587	Spin-Polarized Photon Emission by Resonant Multipolar Nanoantennas. ACS Photonics, 2014, 1, 1218-1223.	3.2	75
588	Giant field enhancement in electromagnetic Helmholtz nanoantenna. Physical Review B, 2014, 90, .	1.1	14
589	Polarization control of metal-enhanced fluorescence in hybrid assemblies of photosynthetic complexes and gold nanorods. Physical Chemistry Chemical Physics, 2014, 16, 9015.	1.3	15
590	Nonlocal Response of Metallic Nanospheres Probed by Light, Electrons, and Atoms. ACS Nano, 2014, 8, 1745-1758.	7.3	145
591	Control of two-dimensional excitonic light emission via photonic crystal. 2D Materials, 2014, 1, 011001.	2.0	144
592	Quantitative Extraction of Equivalent Lumped Circuit Elements for Complex Plasmonic Nanostructures. ACS Photonics, 2014, 1, 403-407.	3.2	25
593	Broadband optical scattering in coupled silicon nanocylinders. Journal of Applied Physics, 2014, 115, .	1.1	43
594	Control of light scattering by nanoparticles with optically-induced magnetic responses. Chinese Physics B, 2014, 23, 047806.	0.7	43

#	Article	IF	Citations
595	Nearâ€Field Analysis of Bright and Dark Modes on Plasmonic Metasurfaces Showing Extraordinary Suppressed Transmission. Advanced Optical Materials, 2014, 2, 990-999.	3.6	11
596	Precision Synthesis: Designing Hot Spots over Hot Spots via Selective Gold Deposition on Silver Octahedra Edges. Small, 2014, 10, 4940-4950.	5.2	36
597	Nanophotonic Enhancement of the Förster Resonance Energy-Transfer Rate with Single Nanoapertures. Nano Letters, 2014, 14, 4707-4714.	4.5	86
598	Probing, Sensing, and Fluorescence Enhancement with Single Gold Nanorods. Journal of Physical Chemistry Letters, 2014, 5, 3000-3006.	2.1	15
599	The Modulation Effect of Transverse, Antibonding, and Higher-Order Longitudinal Modes on the Two-Photon Photoluminescence of Gold Plasmonic Nanoantennas. ACS Nano, 2014, 8, 9053-9062.	7.3	26
600	Optically induced forces in scanning probe microscopy. Nanophotonics, 2014, 3, 105-116.	2.9	7
601	Possibilities of functionalized probes in optical near-field microscopy. Physica Scripta, 2014, T162, 014005.	1.2	5
602	Subwavelength Focusing of Light with Orbital Angular Momentum. Nano Letters, 2014, 14, 4598-4601.	4.5	36
603	Toward Plasmonics with Nanometer Precision: Nonlinear Optics of Helium-Ion Milled Gold Nanoantennas. Nano Letters, 2014, 14, 4778-4784.	4.5	174
604	Hotspot-mediated ultrafast nonlinear control of multifrequency plasmonic nanoantennas. Nature Communications, 2014, 5, 4869.	5.8	75
605	Blue SHG Enhancement by Silver Nanocubes Photochemically Prepared on a RbTiOPO ₄ Ferroelectric Crystal. Advanced Materials, 2014, 26, 6447-6453.	11.1	12
606	Vectorial Nanoscale Mapping of Optical Antenna Fields by Single Molecule Dipoles. Nano Letters, 2014, 14, 4715-4723.	4.5	34
607	Underpinning Hybridization Intuition for Complex Nanoantennas by Magnetoelectric Quadrupolar Polarizability Retrieval. ACS Photonics, 2014, 1, 444-453.	3.2	46
609	Plasmonic Hot Electron Induced Structural Phase Transition in a MoS ₂ Monolayer. Advanced Materials, 2014, 26, 6467-6471.	11.1	516
610	Bidirectional waveguide coupling with plasmonic Fano nanoantennas. Applied Physics Letters, 2014, 105, .	1.5	30
611	Analysis of double surface plasmon resonance by the discrete source method. Computational Mathematics and Mathematical Physics, 2014, 54, 1251-1260.	0.2	3
612	Geometry-Dependent Plasmonic Tunability and Photothermal Characteristics of Multibranched Gold Nanoantennas. Journal of Physical Chemistry C, 2014, 118, 3696-3707.	1.5	75
613	Structurally tunable resonant absorption bands in ultrathin broadband plasmonic absorbers. Optics Express, 2014, 22, 19457.	1.7	64

ARTICLE

IF CITATIONS

614	Nanophotonics and quantum optics. , 2014, , .		0
615	New scheme of the Discrete Sources Method for light scattering analysis of a particle breaking interface. Computer Physics Communications, 2014, 185, 3141-3150.	3.0	4
616	Thiolated DNA-Based Chemistry and Control in the Structure and Optical Properties of Plasmonic Nanoparticles with Ultrasmall Interior Nanogap. Journal of the American Chemical Society, 2014, 136, 14052-14059.	6.6	122
617	Scanning Single Quantum Emitter Fluorescence Lifetime Imaging: Quantitative Analysis of the Local Density of Photonic States. Nano Letters, 2014, 14, 2623-2627.	4.5	74
618	Babinet-Inverted Optical Yagi–Uda Antenna for Unidirectional Radiation to Free Space. Nano Letters, 2014, 14, 3072-3078.	4.5	31
619	Highly Efficient and Broadband Wide-Angle Holography Using Patch-Dipole Nanoantenna Reflectarrays. Nano Letters, 2014, 14, 2485-2490.	4.5	134
620	Modular Plasmonic Antennas Built of Ultrathin Silica-Shell Silver-Core Nanoparticles. Langmuir, 2014, 30, 7919-7927.	1.6	22
621	Mode Parity-Controlled Fano- and Lorentz-like Line Shapes Arising in Plasmonic Nanorods. Nano Letters, 2014, 14, 2322-2329.	4.5	65
622	Optical interactions in plasmonic nanostructures. Nano Convergence, 2014, 1, .	6.3	21
623	Hetero-oligomer Nanoparticle Arrays for Plasmon-Enhanced Hydrogen Sensing. ACS Nano, 2014, 8, 7639-7647.	7.3	60
624	Laser printing of silicon nanoparticles with resonant optical electric and magnetic responses. Nature Communications, 2014, 5, 3402.	5.8	430
625	Induction Theorem Analysis of Resonant Nanoparticles: Design of a Huygens Source Nanoparticle Laser. Physical Review Applied, 2014, 1, .	1.5	42
626	Seeing a single molecule vibrate through time-resolved coherent anti-Stokes Raman scattering. Nature Photonics, 2014, 8, 650-656.	15.6	220
627	Imaging and steering an optical wireless nanoantenna link. Nature Communications, 2014, 5, 4354.	5.8	96
628	Plasmon-Enhanced Fluorescence Biosensors: a Review. Plasmonics, 2014, 9, 781-799.	1.8	380
629	Double plasmon resonance in the field of evanescent waves. Doklady Mathematics, 2014, 89, 119-123.	0.1	2
630	Plasmon-Induced Hot Carriers in Metallic Nanoparticles. ACS Nano, 2014, 8, 7630-7638.	7.3	638
631	Graphene Surface Plasmon Induced Optical Field Confinement and Lasing Enhancement in ZnO Whispering-Gallery Microcavity. ACS Applied Materials & Interfaces, 2014, 6, 10469-10475.	4.0	54

#	Article	IF	CITATIONS
632	Modes and Mode Volumes of Leaky Optical Cavities and Plasmonic Nanoresonators. ACS Photonics, 2014, 1, 2-10.	3.2	217
633	Diamond Nanophotonics. Advanced Optical Materials, 2014, 2, 911-928.	3.6	252
634	Enhanced Up-Conversion of Entangled Photons and Quantum Interference under a Localized Field in Nanostructures. Physical Review Letters, 2014, 112, 133601.	2.9	16
635	Selfâ€Assembled Silver Nanoparticles in a Bowâ€Tie Antenna Configuration. Small, 2014, 10, 1057-1062.	5.2	18
636	Singleâ€enzyme kinetics with fluorogenic substrates: lessons learnt and future directions. FEBS Letters, 2014, 588, 3553-3563.	1.3	15
637	Collective Plasmonic Resonances on Arrays of Cysteine-Functionalized Silver Nanoparticle Aggregates. Journal of Physical Chemistry C, 2014, 118, 17940-17955.	1.5	10
638	Modelling of Plasmonic and Graphene Nanodevices. Springer Theses, 2014, , .	0.0	9
639	Ultrafast acousto-plasmonic control and sensing in complex nanostructures. Nature Communications, 2014, 5, 4042.	5.8	84
640	Surface-Wave-Assisted Beaming of Light Radiation from Localized Sources. ACS Photonics, 2014, 1, 612-617.	3.2	14
641	Mode Conversion in High-Definition Plasmonic Optical Nanocircuits. Nano Letters, 2014, 14, 3881-3886.	4.5	36
641 642	Mode Conversion in High-Definition Plasmonic Optical Nanocircuits. Nano Letters, 2014, 14, 3881-3886. Superdirective dielectric nanoantennas. Nanoscale, 2014, 6, 7354-7361.	4.5 2.8	36 165
641 642 643	Mode Conversion in High-Definition Plasmonic Optical Nanocircuits. Nano Letters, 2014, 14, 3881-3886. Superdirective dielectric nanoantennas. Nanoscale, 2014, 6, 7354-7361. Shrinking-Hole Colloidal Lithography: Self-Aligned Nanofabrication of Complex Plasmonic Nanoantennas. Nano Letters, 2014, 14, 2655-2663.	4.5 2.8 4.5	36 165 64
641 642 643 644	Mode Conversion in High-Definition Plasmonic Optical Nanocircuits. Nano Letters, 2014, 14, 3881-3886. Superdirective dielectric nanoantennas. Nanoscale, 2014, 6, 7354-7361. Shrinking-Hole Colloidal Lithography: Self-Aligned Nanofabrication of Complex Plasmonic Nanoantennas. Nano Letters, 2014, 14, 2655-2663. Plasmonic nanoparticles: fabrication, simulation and experiments. Journal Physics D: Applied Physics, 2014, 47, 213001.	4.52.84.51.3	36 165 64 81
641 642 643 644	Mode Conversion in High-Definition Plasmonic Optical Nanocircuits. Nano Letters, 2014, 14, 3881-3886. Superdirective dielectric nanoantennas. Nanoscale, 2014, 6, 7354-7361. Shrinking-Hole Colloidal Lithography: Self-Aligned Nanofabrication of Complex Plasmonic Nanoantennas. Nano Letters, 2014, 14, 2655-2663. Plasmonic nanoparticles: fabrication, simulation and experiments. Journal Physics D: Applied Physics, 2014, 47, 213001. Enhancing singleâ€molecule fluorescence with nanophotonics. FEBS Letters, 2014, 588, 3547-3552.	 4.5 2.8 4.5 1.3 1.3 	36 165 64 81 19
 641 642 643 644 645 646 	Mode Conversion in High-Definition Plasmonic Optical Nanocircuits. Nano Letters, 2014, 14, 3881-3886. Superdirective dielectric nanoantennas. Nanoscale, 2014, 6, 7354-7361. Shrinking-Hole Colloidal Lithography: Self-Aligned Nanofabrication of Complex Plasmonic Nanoantennas. Nano Letters, 2014, 14, 2655-2663. Plasmonic nanoparticles: fabrication, simulation and experiments. Journal Physics D: Applied Physics, 2014, 47, 213001. Enhancing singleâ€molecule fluorescence with nanophotonics. FEBS Letters, 2014, 588, 3547-3552. Capturing the Optical Phase Response of Nanoantennas by Coherent Second-Harmonic Microscopy. Nano Letters, 2014, 14, 4078-4082.	 4.5 2.8 4.5 1.3 1.3 4.5 	 36 165 64 81 19 33
 641 642 643 644 645 646 647 	Mode Conversion in High-Definition Plasmonic Optical Nanocircuits. Nano Letters, 2014, 14, 3881-3886. Superdirective dielectric nanoantennas. Nanoscale, 2014, 6, 7354-7361. Shrinking-Hole Colloidal Lithography: Self-Aligned Nanofabrication of Complex Plasmonic Nanoantennas. Nano Letters, 2014, 14, 2655-2663. Plasmonic nanoparticles: fabrication, simulation and experiments. Journal Physics D: Applied Physics, 2014, 47, 213001. Enhancing singleâCmolecule fluorescence with nanophotonics. FEBS Letters, 2014, 588, 3547-3552. Capturing the Optical Phase Response of Nanoantennas by Coherent Second-Harmonic Microscopy. Nano Letters, 2014, 14, 4078-4082. Plasmonic gas and chemical sensing. Nanophotonics, 2014, 3, 157-180.	 4.5 2.8 4.5 1.3 1.3 4.5 2.9 	 36 165 64 81 19 33 98
 641 642 643 644 645 646 647 648 	Mode Conversion in High-Definition Plasmonic Optical Nanocircuits. Nano Letters, 2014, 14, 3881-3886. Superdirective dielectric nanoantennas. Nanoscale, 2014, 6, 7354-7361. Shrinking-Hole Colloidal Lithography: Self-Aligned Nanofabrication of Complex Plasmonic Nanoantennas. Nano Letters, 2014, 14, 2655-2663. Plasmonic nanoparticles: fabrication, simulation and experiments. Journal Physics D: Applied Physics, 2014, 47, 213001. Enhancing singleâ€molecule fluorescence with nanophotonics. FEBS Letters, 2014, 588, 3547-3552. Capturing the Optical Phase Response of Nanoantennas by Coherent Second-Harmonic Microscopy. Nano Letters, 2014, 14, 4078-4082. Plasmonic gas and chemical sensing. Nanophotonics, 2014, 3, 157-180. Surface plasmon photodetectors and their applications. Laser and Photonics Reviews, 2014, 8, 197-220.	 4.5 2.8 4.5 1.3 1.3 4.5 2.9 4.4 	 36 165 64 81 19 33 98 186
#	Article	IF	CITATIONS
-----	---	-----	-----------
651	Light manipulation with encoded plasmonic nanostructures. EPJ Applied Metamaterials, 2014, 1, 6.	0.8	16
652	Spectral interferometric microscopy reveals absorption by individual optical nano-antennas from extinction phase. , 2014, , .		Ο
653	Growth of protrusive graphene rings on Siâ€ŧerminated 6H–SiC (0001). Surface and Interface Analysis, 2014, 46, 1156-1159.	0.8	8
654	Effect of rounding on the sensitivity of optical antennas based sensors. , 2014, , .		4
655	Optical torque from enhanced scattering by multipolar plasmonic resonance. Nanophotonics, 2014, 3, 343-350.	2.9	26
656	Practical Realization of Apertureless Scanning Near-field Optical Microscopy Using Hybrid Mode Atomic Force Microscopy. Materials Research Society Symposia Proceedings, 2015, 1754, 97-102.	0.1	1
657	Chiral Ag nanostructure arrays as optical antennas. , 2015, , .		1
658	Directivity of a plasmonic dipole optical antenna. , 2015, , .		0
659	Photonic nano-antennas: Directive emission and quantum state transformation. , 2015, , .		0
660	Scattering of a plasmonic nanoantenna embedded in a silicon waveguide. Optics Express, 2015, 23, 28108.	1.7	23
661	Nanoscale shaping and focusing of visible light in planar metal–oxide–silicon waveguides. Optica, 2015, 2, 1045.	4.8	34
662	Radiation pattern of two identical emitters driven by a Laguerre-Gaussian beam: An atom nanoantenna. Physical Review A, 2015, 92, .	1.0	4
663	Quantum statistics control with a plasmonic nanocavity: Multimode-enhanced interferences. Physical Review A, 2015, 92, .	1.0	11
664	Tailored nanoantennas for directional Raman studies of individual carbon nanotubes. Physical Review B, 2015, 91, .	1.1	6
665	Real-space imaging of nanotip plasmons using electron energy loss spectroscopy. Physical Review B, 2015, 92, .	1.1	40
666	Purcell effect in hyperbolic metamaterial resonators. Physical Review B, 2015, 92, .	1.1	62
667	Plasmonic phase-gradient metasurface for spontaneous emission control. Physical Review B, 2015, 92, .	1,1	29
668	Singular perturbations approach to localized surface-plasmon resonance: Nearly touching metal nanospheres. Physical Review B, 2015, 92, .	1.1	12

ARTICLE IF CITATIONS # Delocalization of Nonlinear Optical Responses in Plasmonic Nanoantennas. Physical Review Letters, 669 2.9 31 2015, 115, 197401. Optical Metacages. Physical Review Letters, 2015, 115, 215501. 670 19 671 Surface-Wave Enhanced Biosensing., 2015, , 139-162. 1 Dynamically controllable anisotropic metamaterials with simultaneous attenuation and amplification. Physical Review A, 2015, 92, . Quantized Evolution of the Plasmonic Response in a Stretched Nanorod. Physical Review Letters, 2015, 673 2.9 52 115, 236804. Rational design of metallic nanocavities for resonantly enhanced four-wave mixing. Scientific Reports, 2015, 5, 10033. 674 1.6 Optimizing plasmonic nanoantennas via coordinated multiple coupling. Scientific Reports, 2015, 5, 675 1.6 84 14788. An antenna model for the Purcell effect. Scientific Reports, 2015, 5, 12956. 1.6 160 677 On the SERS depolarization ratio. Nanospectroscopy, 2015, 1, . 0.7 6 Parametric Performances of a Petahertz Band Nano-Patch Dipole Antenna on Electrical Field 678 0.2 Distribution for Energy Harvesting. Applied Mechanics and Materials, 2015, 781, 454-457. Coupling between plasmonic films and nanostructures: from basics to applications. Nanophotonics, 679 71 2.9 2015, 4, 363-382. Template-Guided Self-Assembly of Discrete Optoplasmonic Molecules and Extended Optoplasmonic 680 Arrays. Nanophotonics, 2015, 4, 250-260. Bridging the Gap between RF and Optical Patch Antenna Analysis via the Cavity Model. Scientific 681 1.6 8 Reports, 2015, 5, 15941. Coexistence of Scattering Enhancement and Suppression by Plasmonic Cavity Modes in Loaded Dimer 1.6 Gap-Antennas. Scientific Reports, 2015, 5, 17234 An ultrafast nanotip electron gun triggered by grating-coupled surface plasmons. Applied Physics 683 1.5 41 Letters, 2015, 107, . Enabling High Efficiency Nanoplasmonics with Novel Nanoantenna Architectures. Scientific Reports, 684 2015, 5, 17562. Nanoscale volume confinement and fluorescence enhancement with double nanohole aperture. 685 1.6 50 Scientific Reports, 2015, 5, 15852. Surface wave loss reduction by spherical reflector enhances antenna coupled IR detector performance., 2015,,.

#	Article	IF	CITATIONS
687	Polarization response of nanowires à la carte. Scientific Reports, 2015, 5, 7651.	1.6	17
688	Controlling wave-vector of propagating surface plasmon polaritons on single-crystalline gold nanoplates. Scientific Reports, 2015, 5, 13424.	1.6	13
689	Broadband zero-backward and near-zero-forward scattering by metallo-dielectric core-shell nanoparticles. Scientific Reports, 2015, 5, 12491.	1.6	44
690	Focusing and Extraction of Light mediated by Bloch Surface Waves. Scientific Reports, 2015, 4, 5428.	1.6	52
691	Effects of layer eccentricity on the super-resonant states of active cylindrical core-shell nano-particles. EPJ Applied Metamaterials, 2015, 2, 7.	0.8	0
692	Plasmonic nanoantennas: enhancing light-matter interactions at the nanoscale. EPJ Applied Metamaterials, 2015, 2, 4.	0.8	37
693	Unidirectional scattering by nanoparticles near substrates: generalized Kerker conditions. Optics Express, 2015, 23, 28808.	1.7	80
694	Novel droplet near-field transducer for heat-assisted magnetic recording. Nanophotonics, 2015, 4, 503-510.	2.9	20
695	Directional side scattering of light by a single plasmonic trimer. Laser and Photonics Reviews, 2015, 9, 530-537.	4.4	47
696	Toroidal dipoleâ€induced transparency in core–shell nanoparticles. Laser and Photonics Reviews, 2015, 9, 564-570.	4.4	86
697	Boundary element methods for the scattering retrieval of metamaterials. , 2015, , .		0
698	Coherent Energy Transfers between Orthogonal Radiant and Weakly Radiant Plasmonic Nanorod Resonators. Journal of Physical Chemistry C, 2015, 119, 26079-26085.	1.5	8
699	A Single Atom Antenna. Journal of Physics: Conference Series, 2015, 635, 112099.	0.3	0
700	Enhanced emission extraction and selective excitation of NV centers with all–dielectric nanoantennas. Laser and Photonics Reviews, 2015, 9, 385-391.	4.4	24
701	The Fluid Joint: The Soft Spot of Micro―and Nanosystems. Advanced Materials, 2015, 27, 4254-4272.	11.1	38
703	Review of Recent Progress of Plasmonic Materials and Nano-Structures for Surface-Enhanced Raman Scattering. Materials, 2015, 8, 3024-3052.	1.3	193
704	Synthesis of Photoswitchable Magnetic Au–Fullerosome Hybrid Nanomaterials for Permittivity Enhancement Applications. Molecules, 2015, 20, 14746-14760.	1.7	6
705	Eccentrically-Layered Active Coated Nano-Particles for Directive Near- and Far-Field Radiation. Photonics, 2015, 2, 773-794.	0.9	7

#	Article	IF	CITATIONS
706	Nanoantenna-induced fringe splitting of Fabry-Perot interferometer: a model study of plasmonic/photonic coupling. Optics Express, 2015, 23, 31085.	1.7	9
707	Radiation-Induced Correlation between Molecules Nearby Metallic Antenna Array. International Journal of Antennas and Propagation, 2015, 2015, 1-6.	0.7	2
708	Photoluminescence of a single complex plasmonic nanoparticle. Scientific Reports, 2015, 4, 3867.	1.6	46
709	Optical Dark-Field and Electron Energy Loss Imaging and Spectroscopy of Symmetry-Forbidden Modes in Loaded Nanogap Antennas. ACS Nano, 2015, 9, 6222-6232.	7.3	10
710	Band-Edge Bilayer Plasmonic Nanostructure for Surface Enhanced Raman Spectroscopy. ACS Photonics, 2015, 2, 1546-1551.	3.2	14
711	Integrated colloidal quantum dot photodetectors with color-tunable plasmonic nanofocusing lenses. Light: Science and Applications, 2015, 4, e234-e234.	7.7	46
712	Linear and non-linear response of lithographically defined plasmonic nanoantennas. , 2015, , .		0
713	Excitation of a plasmon resonance in metal cylinders by an evanescent wave. Quantum Electronics, 2015, 45, 240-244.	0.3	3
714	Hybrid Plasmonic Waveguide Fed Broadband Nanoantenna for Nanophotonic Applications. IEEE Photonics Technology Letters, 2015, 27, 1092-1095.	1.3	39
715	Directed Assembly of Optoplasmonic Hybrid Materials with Tunable Photonic–Plasmonic Properties. Journal of Physical Chemistry Letters, 2015, 6, 2056-2064.	2.1	31
716	Percolating plasmonic networks for light emission control. Faraday Discussions, 2015, 178, 237-252.	1.6	18
717	One-way surface states due to nonreciprocal light-line crossing. New Journal of Physics, 2015, 17, 063014.	1.2	12
718	Surface plasmon wave plates. Applied Physics Letters, 2015, 106, 041104.	1.5	9
719	Allowance for the nonlocal interaction of plasmonic particles in the discrete sources method. Doklady Mathematics, 2015, 91, 222-226.	0.1	1
720	Moiré Nanosphere Lithography. ACS Nano, 2015, 9, 6031-6040.	7.3	91
721	Nano-scale dielectric resonator antennas as building blocks for efficient manipulation of light. , 2015, , .		0
722	Group-IV midinfrared plasmonics. Journal of Nanophotonics, 2015, 9, 093789.	0.4	27
723	Detectivity comparison of bolometric optical antennas. , 2015, , .		2

#	Article	IF	CITATIONS
724	Spectral interferometric microscopy reveals absorption by individual optical nano-antennas from extinction phase. , 2015, , .		0
725	Coupled plasmon hybrid modes in aggregates of metal nanowires. , 2015, , .		0
726	Resonant metallic nanostructures for enhanced terahertz spectroscopy. , 2015, , .		0
727	A high index dielectric broadside optical antenna. , 2015, , .		0
728	A plasmonic dipole optical antenna coupled quantum dot infrared photodetector. Journal Physics D: Applied Physics, 2015, 48, 475102.	1.3	13
729	Visualization and Manipulation of Terahertz Light in the Near-Field. , 2015, , .		2
730	Asymmetric Light Absorption and Reflection in Freestanding Nanostructured Metallic Membranes. ACS Photonics, 2015, 2, 1652-1657.	3.2	21
731	Anomalously Weak Scattering in Metal-Semiconductor Multilayer Hyperbolic Metamaterials. Physical Review X, 2015, 5, .	2.8	21
732	Fano nanoantenna for on-chip separation of wavelength-encoded optical signals. , 2015, , .		0
733	Resonant elements contactless coupled to bolometric micro-stripes. Proceedings of SPIE, 2015, , .	0.8	1
734	Micro-antennas for the phase and amplitude modulation of terahertz wave. , 2015, , .		1
735	Enhanced Magneto-Optical Edge Excitation in Nanoscale Magnetic Disks. Physical Review Letters, 2015, 115, 187403.	2.9	18
736	Size and shape dependent few-cycle near-field dynamics of bowtie nanoantennas. Optics Express, 2015, 23, 31460.	1.7	13
737	Hexagonal dielectric loaded nantenna for optical ITU-T C-band communication. , 2015, , .		2
738	Color Rendering Plasmonic Aluminum Substrates with Angular Symmetry Breaking. ACS Nano, 2015, 9, 12383-12391.	7.3	92
739	Input impedance of small antenna provides Purcell factor. , 2015, , .		0
740	Scattering suppression with homogeneous ENZ-media. , 2015, , .		0
741	Relaxation time mapping of single quantum dots and substrate background fluorescence. JETP Letters, 2015, 102, 161-166.	0.4	0

	CITATIC	IN REPORT	
#	Article	IF	Citations
742	Limitations of Extreme Nonlinear Ultrafast Nanophotonics. Nanophotonics, 2015, 4, 303-323.	2.9	13
743	Quantification of misalignment in e-beam lithography due to height map error on optically non-uniform substrates for plasmonic nanoantennas. , 2015, , .		0
744	Feature issue introduction: plasmonics. Optical Materials Express, 2015, 5, 2698.	1.6	0
745	Geometry-dependent anti-Stokes SERS radiation patterns from gold nanorod dimers. Journal of Optics (United Kingdom), 2015, 17, 114011.	1.0	4
746	Nonlinear energy transfer in quantum dot and metallic nanorod nanocomposites. Journal of the Optical Society of America B: Optical Physics, 2015, 32, 2216.	0.9	14
747	Nanophotonic boost of intermolecular energy transfer. New Journal of Physics, 2015, 17, 113052.	1.2	17
748	Progress in Nonlinear Nano-Optics. Nano-optics and Nanophotonics, 2015, , .	0.2	11
749	Multispectral Sharp Plasmon Resonances for Polarization-Manipulated Subtractive Polychromatic Filtering and Sensing. Plasmonics, 2015, 10, 821-830.	1.8	9
750	Fiber-Based Optical Nanoantennas for Single-Molecule Imaging and Sensing. Journal of Lightwave Technology, 2015, 33, 2371-2377.	2.7	12
751	The Morphology of Narrow Gaps Modifies the Plasmonic Response. ACS Photonics, 2015, 2, 295-305.	3.2	99
752	Optical antenna enhanced spontaneous emission. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 1704-1709.	3.3	135
753	Plasmon-Enhanced Nonlinear Wave Mixing in Nanostructured Graphene. ACS Photonics, 2015, 2, 306-312.	3.2	64
754	Mapping the Radiative and the Apparent Nonradiative Local Density of States in the Near Field of a Metallic Nanoantenna. ACS Photonics, 2015, 2, 189-193.	3.2	35
755	Nanospot Soldering Polystyrene Nanoparticles with an Optical Fiber Probe Laser Irradiating a Metallic AFM Probe Based on the Near-Field Enhancement Effect. ACS Applied Materials & amp; Interfaces, 2015, 7, 2294-2300.	4.0	56
756	Structure and Morphology of Organic Semiconductor–Nanoparticle Hybrids Prepared by Soft Deposition. Journal of Physical Chemistry C, 2015, 119, 5225-5237.	1.5	5
757	Plasmonic Lasing of Nanocavity Embedding in Metallic Nanoantenna Array. Nano Letters, 2015, 15, 1382-1387.	4.5	61
758	Electromagnetic density of states in complex plasmonic systems. Surface Science Reports, 2015, 70, 1-41.	3.8	151
759	Material effects on V-nanoantenna performance. Nanoscale, 2015, 7, 4179-4186.	2.8	3

#	Article	IF	CITATIONS
761	Enhanced-fluorescence correlation spectroscopy at micro-molar dye concentration around a single gold nanorod. Physical Chemistry Chemical Physics, 2015, 17, 21127-21132.	1.3	21
762	Radiation and absorption properties of gold nanodipoles in transmitting mode. Microwave and Optical Technology Letters, 2015, 57, 1-6.	0.9	5
763	Electrically Controlled Plasmonic Switches and Modulators. IEEE Journal of Selected Topics in Quantum Electronics, 2015, 21, 276-283.	1.9	88
764	Plasmonic Control of Radiative Properties of Semiconductor Quantum Dots Coupled to Plasmonic Ring Cavities. ACS Nano, 2015, 9, 2648-2658.	7.3	36
765	Engineering resonance dynamics of plasmon hybridized systems. Journal of Applied Physics, 2015, 117, 023110.	1.1	9
766	Optimizing Nanoparticle Designs for Ideal Absorption of Light. ACS Photonics, 2015, 2, 263-270.	3.2	63
767	Shaping Photoluminescence Spectra with Magnetoelectric Resonances in All-Dielectric Nanoparticles. ACS Photonics, 2015, 2, 172-177.	3.2	120
768	Electrical control of optical emitter relaxation pathways enabled by graphene. Nature Physics, 2015, 11, 281-287.	6.5	99
769	Optically resonant magneto-electric cubic nanoantennas for ultra-directional light scattering. Journal of Applied Physics, 2015, 117, .	1.1	87
770	Modulatable optical radiators and metasurfaces based on quantum nanoantennas. Physical Review B, 2015, 91, .	1.1	12
771	Optical Metasurfaces and Prospect of Their Applications Including Fiber Optics. Journal of Lightwave Technology, 2015, 33, 2344-2358.	2.7	102
772	Numerically exact solution of the many emitter–cavity laser problem: Application to the fully quantized spaser emission. Physical Review B, 2015, 91, .	1.1	48
774	Directional excitation of surface plasmons by dielectric resonators. Physical Review B, 2015, 91, .	1.1	16
775	Plasmon-induced broadband fluorescence enhancement on Al-Ag bimetallic substrates. Scientific Reports, 2014, 4, 6014.	1.6	24
776	Spontaneous Hot-Electron Light Emission from Electron-Fed Optical Antennas. Nano Letters, 2015, 15, 5811-5818.	4.5	85
777	Fano resonances and strong field enhancements in arrays of asymmetric plasmonic gap-antennas. Journal of Optics (United Kingdom), 2015, 17, 085002.	1.0	1
778	Hybridization in Three Dimensions: A Novel Route toward Plasmonic Metamolecules. Nano Letters, 2015, 15, 5200-5207.	4.5	39
779	The optical theorem for local source excitation of a particle near a plane interface. Journal of Quantitative Spectroscopy and Radiative Transfer, 2015, 166, 1-5.	1.1	1

#	Article	IF	CITATIONS
780	Plasmon-Enhanced Emission Rate of Silicon Nanocrystals in Gold Nanorod Composites. ACS Photonics, 2015, 2, 1298-1305.	3.2	26
781	Nanoantenna-Enhanced Light–Matter Interaction in Atomically Thin WS ₂ . ACS Photonics, 2015, 2, 1260-1265.	3.2	114
782	Small Dielectric Spheres with High Refractive Index as New Multifunctional Elements for Optical Devices. Scientific Reports, 2015, 5, 12288.	1.6	73
783	Strong focusing higher-order laser modes: transverse and longitudinal optical fields. Journal of Physics: Conference Series, 2015, 613, 012010.	0.3	1
784	Metaphotonics: An emerging field with opportunities and challenges. Physics Reports, 2015, 594, 1-60.	10.3	76
785	Reusable Inorganic Templates for Electrostatic Self-Assembly of Individual Quantum Dots, Nanodiamonds, and Lanthanide-Doped Nanoparticles. Nano Letters, 2015, 15, 5010-5016.	4.5	31
786	Anomalous ultrafast dynamics of hot plasmonic electrons in nanostructures with hot spots. Nature Nanotechnology, 2015, 10, 770-774.	15.6	256
787	Far- and Deep-Ultraviolet Spectroscopy. , 2015, , .		39
788	Nanospot welding of carbon nanotubes using near-field enhancement effect of AFM probe irradiated by optical fiber probe laser. RSC Advances, 2015, 5, 56677-56685.	1.7	45
789	Excitation of Mesoscopic Plasmonic Tapers by Relativistic Electrons: Phase Matching <i>versus</i> Eigenmode Resonances. ACS Nano, 2015, 9, 7641-7648.	7.3	61
790	Current sheets in the Discontinuous Galerkin Time-Domain method: an application to graphene. , 2015, ,		5
791	Position-Dependent Local Detection Efficiency in a Nanowire Superconducting Single-Photon Detector. Nano Letters, 2015, 15, 4541-4545.	4.5	48
792	Extraordinarily Large Optical Cross Section for Localized Single Nanoresonator. Physical Review Letters, 2015, 115, 023903.	2.9	34
793	Hybrid Semiconductor Nanowire–Metallic Yagi-Uda Antennas. Nano Letters, 2015, 15, 4889-4895.	4.5	39
794	Self-Assembled Nanoparticle Dimer Antennas for Plasmonic-Enhanced Single-Molecule Fluorescence Detection at Micromolar Concentrations. ACS Photonics, 2015, 2, 1099-1107.	3.2	105
795	Directional radiation of Babinet-inverted optical nanoantenna integrated with plasmonic waveguide. Scientific Reports, 2015, 5, 11832.	1.6	13
796	Emission enhancement and polarization of semiconductor quantum dots with nanoimprinted plasmonic cavities: towards scalable fabrication of plasmon-exciton displays. Nanoscale, 2015, 7, 13816-13821.	2.8	19
797	Plasmonic Metasurface for Efficient Laser-Driven Particle Acceleration. , 2015, , .		0

#	ARTICLE	IF	CITATIONS
798	Strong Modification of Magnetic Dipole Emission through Diabolo Nanoantennas. ACS Photonics, 2015, 2, 1071-1076.	3.2	55
799	Integrated broadband bowtie antenna on transparent substrate. Proceedings of SPIE, 2015, , .	0.8	0
800	Tunable broadband plasmonic field enhancement on a graphene surface using a normal-incidence plane wave at mid-infrared frequencies. Scientific Reports, 2015, 5, 11195.	1.6	23
801	Optical Nano Antennas: State of the Art, Scope and Challenges as a Biosensor Along with Human Exposure to Nano-Toxicology. Sensors, 2015, 15, 8787-8831.	2.1	26
802	Tuning the optical response of a dimer nanoantenna using plasmonic nanoring loads. Scientific Reports, 2015, 5, 9813.	1.6	14
803	Numerical Modeling in Antenna Engineering. , 2015, , 1-71.		1
804	Narrow-line self-assembled GaAs quantum dots for plasmonics. Applied Physics Letters, 2015, 106, 101110.	1.5	3
805	Loss-compensated nonlinear modes and symmetry breaking in amplifying metal-dielectric-metal plasmonic couplers. Physical Review A, 2015, 91, .	1.0	8
806	Cathodoluminescence-Activated Nanoimaging: Noninvasive Near-Field Optical Microscopy in an Electron Microscope. Nano Letters, 2015, 15, 3383-3390.	4.5	20
807	Atomistic Near-Field Nanoplasmonics: Reaching Atomic-Scale Resolution in Nanooptics. Nano Letters, 2015, 15, 3410-3419.	4.5	257
808	Single-Crystalline Aluminum Nanostructures on a Semiconducting GaAs Substrate for Ultraviolet to Near-Infrared Plasmonics. ACS Nano, 2015, 9, 3875-3886.	7.3	60
809	Coherent resonance of quantum plasmons in the graphene–gold cluster hybrid system. Physical Chemistry Chemical Physics, 2015, 17, 12051-12055.	1.3	7
810	Manipulating the Optical Bistability in a Nonlinear Plasmonic Nanoantenna Array with a Reflecting Surface. Plasmonics, 2015, 10, 203-209.	1.8	15
811	Optical antennas for tunable enhancement in tip-enhanced Raman spectroscopy imaging. Applied Physics Express, 2015, 8, 032401.	1.1	56
812	Strong Enhancement of Second Harmonic Emission by Plasmonic Resonances at the Second Harmonic Wavelength. Nano Letters, 2015, 15, 3917-3922.	4.5	122
813	Role of surface plasmon polaritons and other waves in the radiation of resonant optical dipole antennas. Scientific Reports, 2015, 5, 8456.	1.6	32
814	Electronic modulation of infrared radiation in graphene plasmonic resonators. Nature Communications, 2015, 6, 7032.	5.8	213
815	Parallel fabrication of wafer-scale plasmonic metamaterials for nano-optics. Proceedings of SPIE, 2015, , .	0.8	0

		CITATION REPO	ORT	
#	Article		IF	Citations
816	Gap and channeled plasmons in tapered grooves: a review. Nanoscale, 2015, 7, 9355-	9386.	2.8	125
817	Soliton nanoantennas in two-dimensional arrays of quantum dots. Journal of Physics C Matter, 2015, 27, 225301.	ondensed	0.7	5
818	Towards all-dielectric metamaterials and nanophotonics. Proceedings of SPIE, 2015, , .		0.8	66
819	Fully quantized spaser physics: towards exact modeling of mesoscopic CQED systems	, 2015, , .		2
820	Structured InP-based nanoantenna for photovoltaics applications. Journal of Photonics 2015, 5, 053098.	; for Energy,	0.8	1
821	Comparison of the plasmonic performances between lithographically fabricated and cl grown gold nanorods. Physical Chemistry Chemical Physics, 2015, 17, 10861-10870.	nemically	1.3	46
822	Helmholtz resonator for electric field enhancement from visible to far-infrared. , 2015,	,.		0
823	Mid-infrared plasmonic resonances exploiting heavily-doped Ge on Si. Proceedings of S	PIE, 2015, , .	0.8	1
824	Plasmonic lens focused longitudinal field excitation for tip-enhanced Raman spectrosc Research Letters, 2015, 10, 189.	opy. Nanoscale	3.1	5
825	Electric radiation mapping of silver/zinc oxide nanoantennas by using electron hologra of Applied Physics, 2015, 117, 034306.	phy. Journal	1.1	9
826	High-density metallic nanogap arrays for the sensitive detection of single-walled carbo thin films. Faraday Discussions, 2015, 178, 195-201.	n nanotube	1.6	16
827	Nanophotonic control of circular dipole emission. Nature Communications, 2015, 6, 6	695.	5.8	209
828	Scattering suppression from arbitrary objects in spatially dispersive layered metamater Review B, 2015, 91, .	ials. Physical	1.1	45
829	Laser Trapping of Colloidal Metal Nanoparticles. ACS Nano, 2015, 9, 3453-3469.		7.3	193
830	Efficient Coupling of an Antenna-Enhanced nanoLED into an Integrated InP Waveguide 2015, 15, 3329-3333.	2. Nano Letters,	4.5	28
831	Plasmonic Fano Nanoantennas for On-Chip Separation of Wavelength-Encoded Optica Letters, 2015, 15, 3324-3328.	l Signals. Nano	4.5	64
832	Unveiling the Origin of Third Harmonic Generation in Hybrid ITO–Plasmonic Crystals Optical Materials, 2015, 3, 1059-1065.	. Advanced	3.6	19
833	Optofluidic chip for surface wave-based fluorescence sensing. Sensors and Actuators I 2015, 215, 225-230.	3: Chemical,	4.0	13

#	ARTICLE	IF	CITATIONS
834	Cathodoluminescence microscopy: Optical imaging and spectroscopy with deep-subwavelength resolution. MRS Bulletin, 2015, 40, 359-365.	1.7	44
835	Nanoantenna harmonic sensor: theoretical analysis of contactless detection of molecules with light. Nanotechnology, 2015, 26, 415201.	1.3	7
836	Optical antennas with multiple plasmonic nanoparticles for tip-enhanced Raman microscopy. Nanoscale, 2015, 7, 17424-17433.	2.8	79
837	Bright and dark plasmon resonances of nanoplasmonic antennas evanescently coupled with a silicon nitride waveguide. Optics Express, 2015, 23, 3088.	1.7	54
838	A generalized Kerker condition for highly directive nanoantennas. Optics Letters, 2015, 40, 2645.	1.7	201
839	Absorption through a coupled optical resonance in a horizontal InP nanowire array. Photonics Research, 2015, 3, 125.	3.4	5
840	Diffractive optical elements made from photonic metamaterials. , 2015, , .		0
841	Engineering plasmon dispersion relations: hybrid nanoparticle chain -substrate plasmon polaritons. Optics Express, 2015, 23, 2280.	1.7	16
842	General considerations for the miniaturization of radiative antennae. Optics Express, 2015, 23, 3209.	1.7	1
843	Metasurfaces based dual wavelength diffractive lenses. Optics Express, 2015, 23, 3928.	1.7	53
844	Scanning metallic nanosphere microscopy for vectorial profiling of optical focal spots. Optics Express, 2015, 23, 8338.	1.7	6
845	Enhancing extraction of light from metal composite structures for plasmonic emitters using light-coupling effect. Optics Express, 2015, 23, 9602.	1.7	3
846	Modulated light transmission through a subwavelength slit at early stage. Optics Express, 2015, 23, 9901.	1.7	7
847	Effective wavelength scaling of rectangular aperture antennas. Optics Express, 2015, 23, 10385.	1.7	6
848	Ultrasensitive molecular absorption detection using metal slot antenna arrays. Optics Express, 2015, 23, 19047.	1.7	9
849	Supercontinuum-based three-color three-pulse time-resolved coherent anti-Stokes Raman scattering. Optics Express, 2015, 23, 24019.	1.7	10
850	Efficient excitation and tuning of toroidal dipoles within individual homogenous nanoparticles. Optics Express, 2015, 23, 24738.	1.7	32
851	Functional plasmonic nanoantennae as optical filters. Micro and Nano Letters, 2015, 10, 5-8.	0.6	2

#	Article	IF	CITATIONS
852	A carbon nanotube optical rectenna. Nature Nanotechnology, 2015, 10, 1027-1032.	15.6	131
853	Holographic fabrication of nanoantenna templates through a single reflective optical element. Applied Optics, 2015, 54, 2720.	0.9	5
854	Dual-polarization plasmonic metasurface for nonlinear optics. Optics Letters, 2015, 40, 2874.	1.7	22
855	Plasmonic Tip Based on Excitation of Radially Polarized Conical Surface Plasmon Polariton for Detecting Longitudinal and Transversal Fields. ACS Photonics, 2015, 2, 1468-1475.	3.2	46
856	Nanoscale Imaging of Local Few-Femtosecond Near-Field Dynamics within a Single Plasmonic Nanoantenna. Nano Letters, 2015, 15, 6601-6608.	4.5	81
857	Modal method for second harmonic generation in nanostructures. Journal of the Optical Society of America B: Optical Physics, 2015, 32, 275.	0.9	9
858	Solution processed nanomanufacturing of SERS substrates with random Ag nanoholes exhibiting uniformly high enhancement factors. RSC Advances, 2015, 5, 85019-85027.	1.7	7
859	Full three-dimensional power flow analysis of single-emitter–plasmonic-nanoantenna system. Optics Express, 2015, 23, 11080.	1.7	6
860	Mid-infrared Fourier-transform spectroscopy with a high-brilliance tunable laser source: investigating sample areas down to 5 μm diameter. Optics Express, 2015, 23, 11105.	1.7	36
861	Simultaneous directional emissions of multiple quantum emitters with cross plasmonic antenna. Optics Express, 2015, 23, 15098.	1.7	0
862	Silver-coated elevated bowtie nanoantenna arrays: Improving the near-field enhancement of gap cavities for highly active surface-enhanced Raman scattering. Nano Research, 2015, 8, 3715-3724.	5.8	40
863	State-of-the-art photodetectors for optoelectronic integration at telecommunication wavelength. Nanophotonics, 2015, 4, 277-302.	2.9	76
864	Circular Differential Scattering of Single Chiral Self-Assembled Gold Nanorod Dimers. ACS Photonics, 2015, 2, 1602-1610.	3.2	107
865	From optical magnetic resonance to dielectric nanophotonics (A review). Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2015, 119, 551-568.	0.2	28
866	An optical theorem for local sources in diffraction theory. Moscow University Physics Bulletin (English Translation of Vestnik Moskovskogo Universiteta, Fizika), 2015, 70, 258-262.	0.1	9
867	All-Optical Nanometric Switch Based on the Directional Scattering of Semiconductor Nanoparticles. Journal of Physical Chemistry C, 2015, 119, 19558-19564.	1.5	28
868	Tailoring local density of optical states to control emission intensity and anisotropy of quantum dots in hybrid photonic-plasmonic templates. Applied Physics Letters, 2015, 106, .	1.5	9
869	Universal nature of collective plasmonic excitations in finite 1D carbon-based nanostructures. Nanotechnology, 2015, 26, 325201.	1.3	4

#	Article	IF	Citations
870	Dielectric resonator nanoantenna at optical frequencies. , 2015, , .		8
871	Strategies for optical integration of single-photon sources. Proceedings of SPIE, 2015, , .	0.8	2
872	Surface Plasmon-Enhanced Luminescence of Silicon Quantum Dots in Gold Nanoparticle Composites. Journal of Physical Chemistry C, 2015, 119, 25108-25113.	1.5	21
873	Coupled T-Shaped Optical Antennas with Two Resonances Localized in a Common Nanogap. ACS Photonics, 2015, 2, 1644-1651.	3.2	21
874	3D U-shaped yagi uda nantenna for nanoscale applications. , 2015, , .		2
875	Radiation-enhanced optical antenna based on nonperiodic metallic nanoparticle dimer chain. Europhysics Letters, 2015, 111, 17004.	0.7	4
876	Wedge Waveguides and Resonators for Quantum Plasmonics. Nano Letters, 2015, 15, 6267-6275.	4.5	107
877	Design principles for morphologies of antireflection patterns for solar absorbing applications. Applied Optics, 2015, 54, 6053.	2.1	15
878	Gold Nanoparticles in Core–Polyelectrolyte–Shell Assemblies Promote Large Enhancements of Phthalocyanine Fluorescence. Journal of Physical Chemistry C, 2015, 119, 21612-21619.	1.5	12
879	Synergetic Light-Harvesting and Near-Field Enhancement in Multiscale Patterned Gold Substrates. ACS Photonics, 2015, 2, 1355-1365.	3.2	8
880	Matching Nanoantenna Field Confinement to FRET Distances Enhances Förster Energy Transfer Rates. Nano Letters, 2015, 15, 6193-6201.	4.5	85
881	Incident Angle-Tuning of Infrared Antenna Array Resonances for Molecular Sensing. ACS Photonics, 2015, 2, 1498-1504.	3.2	48
882	Enhancing resonances of optical nanoantennas by circular gratings. Optics Express, 2015, 23, 14583.	1.7	9
883	Antenna-coupled photon emission from hexagonal boron nitride tunnel junctions. Nature Nanotechnology, 2015, 10, 1058-1063.	15.6	141
884	Broadly Tuning Resonant Wavelengths of Contour Bowtie Nano-Antennas Operating in the Near- and Mid-Infrared. IEEE Photonics Journal, 2015, 7, 1-8.	1.0	5
885	Analysis of the spectral response of fractal antennas related with its geometry and current paths. Proceedings of SPIE, 2015, , .	0.8	Ο
886	Highly Directive Hybrid Plasmonic Leaky-Wave Optical Antenna With Controlled Side-Lobe Level. Journal of Lightwave Technology, 2015, 33, 4791-4798.	2.7	29
887	Transient radiation from a ring resonant medium excited by an ultrashort superluminal pulse. Quantum Electronics, 2015, 45, 590-596.	0.3	11

ARTICLE IF CITATIONS Reinterpreting the magnetoelectric coupling of infinite cylinders using symmetry: a simple TM and TE 888 0.8 0 view. Proceedings of SPIE, 2015, , . Controlling the angular radiation of single emitters using dielectric patch nanoantennas. Applied 1.5 Physics Letters, 2015, 107, 031109. 890 Analysis of metallic nanoantennas for solar energy conversion., 2015,,. 0 Nanomaterials and Nanoarchitectures. NATO Science for Peace and Security Series C: Environmental 0.1 Security, 2015, , . Tunable directional radiation of a dipole inside a cuboid slot on a dielectric substrate. Journal of 892 1.1 0 Applied Physics, 2015, 118, 093104. Broadband Multifunctional Efficient Meta-Gratings Based on Dielectric Waveguide Phase Shifters. 4.5 99 Nano Letters, 2015, 15, 6709-6715. Optical nanoantenna based on an asymmetric nanohole pair milled in an opaque gold film. Journal of 894 0.9 4 the Optical Society of America B: Optical Physics, 2015, 32, 767. Probing Extended Modes on Disordered Plasmonic Networks by Wavefront Shaping. ACS Photonics, 2015, 2, 1658-1662. 3.2 Efficient high-order analysis of bowtie nanoantennas using the locally corrected Nyström method. 896 8 1.7 Optics Express, 2015, 23, 31452. Vertical dipole above a dielectric or metallic half space: Energy-flow considerations. Physical Review 0.8 E, 2015, 92, 013203. Sensing the Charge State of Single Gold Nanoparticles via Work Function Measurements. Nano 4.5174 Letters, 2015, 15, 51-55. Impact of nonlocal response on surface plasmon polaritons in an asymmetrical structure. Physica 899 Status Solidi (B): Basic Research, 2015, 252, 187-191. Near-field polarization of a plasmonic prolate nanospheroid in a Gaussian beam. Laser Physics Letters, 900 0.6 10 2015, 12, 015302. Squeezing Terahertz Light into Nanovolumes: Nanoantenna Enhanced Terahertz Spectroscopy (NETS) 4.5 86 of Semiconductor Quantum Dots. Nano Letters, 2015, 15, 386-391. Controllable orientation of single silver nanowire using two fiber probes. Scientific Reports, 2015, 4, 902 22 1.6 3989. Learning from Nature: Binary Cooperative Complementary Nanomaterials. Small, 2015, 11, 1072-1096. 88 Nanoplasmonics: Fundamentals and Applications. NATO Science for Peace and Security Series B: Physics 904 0.2 8 and Biophysics, 2015, , 3-102.

CITATION REPORT

905	Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. Nanoscale, 2015, 7, 4598-4810.	2.8	2,452
-----	--	-----	-------

898

#

#	Article	IF	CITATIONS
906	Nantenna for Standard 1550 nm Optical Communication Systems. International Journal of Antennas and Propagation, 2016, 2016, 1-9.	0.7	6
907	Light scattering by oblate particles near planar interfaces: on the validity of the T-matrix approach. Optics Express, 2016, 24, 25154.	1.7	20
908	Ultra-strong polarization dependence of surface lattice resonances with out-of-plane plasmon oscillations. Optics Express, 2016, 24, 28279.	1.7	47
909	Sideways scattering in double resonant plasmonic nanostructures for light harvesting applications. Optics Express, 2016, 24, 30234.	1.7	1
910	Multipolar nonlinear nanophotonics. Optica, 2016, 3, 1241.	4.8	280
911	Understanding localized surface plasmon resonance with propagative surface plasmon polaritons in optical nanogap antennas. Photonics Research, 2016, 4, 293.	3.4	20
912	Large spontaneous-emission enhancements in metallic nanostructures: towards LEDs faster than lasers [Invited]. Optics Express, 2016, 24, 17916.	1.7	76
913	Quantum effects in the plasmon response of bimetallic core-shell nanostructures. Optics Express, 2016, 24, 23941.	1.7	9
914	Laser Printing of Nanoparticles. , 2016, , .		0
915	Fluorescence enhancement in visible light: dielectric or noble metal?. Physical Chemistry Chemical Physics, 2016, 18, 19324-19335.	1.3	45
916	Direct Comparison of Second Harmonic Generation and Two-Photon Photoluminescence from Single Connected Gold Nanodimers. Journal of Physical Chemistry C, 2016, 120, 17699-17710.	1.5	30
917	Impact of the Nanoscale Gap Morphology on the Plasmon Coupling in Asymmetric Nanoparticle Dimer Antennas. Small, 2016, 12, 1667-1675.	5.2	23
918	Improvement of near-field enhancement with a grating-assisted gold tapered nanoantenna. Journal of Physics: Conference Series, 2016, 714, 012010.	0.3	2
919	Generalization of the optical theorem to a singular source in the presence of a half-space. Doklady Mathematics, 2016, 93, 89-93.	0.1	0
920	Accelerating spontaneous emission in open resonators. Annalen Der Physik, 2016, 528, 571-579.	0.9	9
921	Plasmonic photodetectors based on asymmetric nanogap electrodes. Applied Physics Express, 2016, 9, 084101.	1.1	14
922	Numerical conversion efficiency of thermally isolated Seebeck nanoantennas. AIP Advances, 2016, 6, 115018.	0.6	7
923	Compact Nonlinear Yagi-Uda Nanoantennas. Scientific Reports, 2016, 6, 18872.	1.6	33

#	Article	IF	CITATIONS
924	Chapter 7 RF/Optical Scattering Manipulation Using Metasurface Coatings and Plasmonic Loadings. , 2016, , 243-286.		0
925	Holographic free-electron light source. Nature Communications, 2016, 7, 13705.	5.8	66
926	Pronounced Fano Resonance in Single Gold Split Nanodisks with 15 nm Split Gaps for Intensive Second Harmonic Generation. ACS Nano, 2016, 10, 11105-11114.	7.3	126
927	Lattice Boltzmann Methods for Nanofluidics. , 2016, , 1771-1777.		0
928	Laser Tweezers Using Nanoapertures in Metal Films. , 2016, , 1753-1764.		0
929	Ligand-Directed Gold-Phage Nanosystems. , 2016, , 1778-1782.		0
930	Wheatstone bridge configuration for evaluation of plasmonic energy transfer. Scientific Reports, 2016, 6, 24423.	1.6	1
931	Optical isotropy at terahertz frequencies using anisotropic metamaterials. Applied Physics Letters, 2016, 109, 031103.	1.5	4
932	Resonant plasmonic nanoparticles for multicolor second harmonic imaging. Applied Physics Letters, 2016, 108, .	1.5	12
933	Modeling and design of all-dielectric cylindrical nanoantennas. Journal of Nanophotonics, 2016, 10, 046011.	0.4	6
934	Resonant Effects in Nanoscale Bowtie Apertures. Scientific Reports, 2016, 6, 27254.	1.6	11
935	Ge-on-Si PIN-photodetectors with Al nanoantennas: The effect of nanoantenna size on light scattering into waveguide modes. Applied Physics Letters, 2016, 108, .	1.5	15
936	Chemical and Biological Sensing Using Diatom Photonic Crystal Biosilica With In-Situ Growth Plasmonic Nanoparticles. IEEE Transactions on Nanobioscience, 2016, 15, 828-834.	2.2	42
937	Multipolar optically induced electric and magnetic resonances in the ellipsoidal nanoparticles. , 2016, , \cdot		0
938	Ge-on-Si Photonics for Mid-infrared Sensing Applications. MRS Advances, 2016, 1, 3269-3279.	0.5	0
939	An undergraduate experiment demonstrating the physics of metamaterials with acoustic waves and soda cans. American Journal of Physics, 2016, 84, 14-20.	0.3	4
940	Plasmonic circuits for manipulating optical information. Nanophotonics, 2016, 6, 543-559.	2.9	116
941	Resonance energy transfer: The unified theory <i>via</i> vector spherical harmonics. Journal of Chemical Physics, 2016, 145, 074107.	1.2	15

#	Article	IF	CITATIONS
942	Plasmonic Light Scattering and Infrared Vibrational Signal Enhancement. ACS Symposium Series, 2016, , 1-19.	0.5	3
943	Recent Advances of Plasmon-Enhanced Spectroscopy at Bio-Interfaces. ACS Symposium Series, 2016, , 183-207.	0.5	5
944	Electrically driven plasmon chip: Active plasmon lens in the visible range. Applied Physics Letters, 2016, 108, .	1.5	8
945	Nonradiating and radiating modes excited by quantum emitters in open epsilon-near-zero cavities. Science Advances, 2016, 2, e1600987.	4.7	90
946	Nanoscale Kerr Nonlinearity Enhancement Using Spontaneously Generated Coherence in Plasmonic Nanocavity. Scientific Reports, 2016, 5, 18315.	1.6	29
947	Tunable unidirectional scattering of ellipsoidal single nanoparticle. Journal of Applied Physics, 2016, 119, 243102.	1.1	9
948	Controlling the state of polarization via optical nanoantenna feeding with surface plasmon polaritons. Applied Physics Letters, 2016, 108, 131102.	1.5	3
949	High-performance silicon nanowire bipolar phototransistors. Applied Physics Letters, 2016, 109, .	1.5	27
950	Effect of phonon-plasmon and surface plasmon polaritons on photoluminescence in quantum emitter and graphene deposited on polar crystals. Journal of Applied Physics, 2016, 120, 124308.	1.1	16
951	A unique patterned diamond stamp for a periodically hierarchical nanoarray structure. Nanotechnology, 2016, 27, 434001.	1.3	5
952	Laser-Reduced Graphene Oxide. , 2016, , 1764-1764.		0
953	Estimating Integral Scattering Characteristics in a Point Emitter Field from Energy Relationships. Computational Mathematics and Modeling, 2016, 27, 429-438.	0.2	0
954	Longitudinal polarizability and enhancement factor of a tapered optical gold nanoantenna. Journal of Physics: Conference Series, 2016, 714, 012011.	0.3	0
955	Pulsed EM radiation from a traveling-current plasmonic nanowire. Photonics and Nanostructures - Fundamentals and Applications, 2016, 22, 35-39.	1.0	0
956	Plasmon spectroscopy: Theoretical and numerical calculations, and optimization techniques. Nanospectroscopy, 2016, 1, .	0.7	3
957	Self-aligned grating couplers on template-stripped metal pyramids via nanostencil lithography. Applied Physics Letters, 2016, 108, 213106.	1.5	4
958	Double negative electromagnetic properties of percolated Fe53Ni47/Cu granular composites. Applied Physics Letters, 2016, 108, .	1.5	77
959	Plasmonic nanoantenna hydrophones. Scientific Reports, 2016, 6, 32892.	1.6	13

#	Article	IF	CITATIONS
960	Discrete source method for analysis of fluorescence enhancement in the presence of plasmonic structures. Computational Mathematics and Mathematical Physics, 2016, 56, 140-147.	0.2	5
961	Semiclassical modeling of individual and arrayed nanoantennas in the quantum plasmonic regime. , 2016, , .		0
962	Elucidating the Sole Contribution from Electromagnetic Nearâ€Fields in Plasmonâ€Enhanced Cu ₂ O Photocathodes. Advanced Energy Materials, 2016, 6, 1501250.	10.2	31
963	The World of Plasmons. Springer Series in Materials Science, 2016, , 11-57.	0.4	0
964	Optics of an individual organic molecular mesowire waveguide: directional light emission and anomalous refractive index. Journal of Optics (United Kingdom), 2016, 18, 065002.	1.0	10
965	Magneto-plasmonic nanoantennas: Basics and applications. Reviews in Physics, 2016, 1, 36-51.	4.4	93
966	Tip-enhanced Raman spectroscopy: plasmid-free vs. plasmid-embedded DNA. Analyst, The, 2016, 141, 3251-3258.	1.7	27
967	Controlling Electric and Magnetic Resonances for Ultracompact Nanoantennas with Tunable Directionality. ACS Photonics, 2016, 3, 953-963.	3.2	43
968	Multipolar Third-Harmonic Generation Driven by Optically Induced Magnetic Resonances. ACS Photonics, 2016, 3, 1468-1476.	3.2	89
969	Local Enhancement of Terahertz Waves in Structured Metals. IEEE Transactions on Terahertz Science and Technology, 2016, 6, 371-381.	2.0	8
970	Roadmap on biosensing and photonics with advanced nano-optical methods. Journal of Optics (United) Tj ETQq0	0.0 rgBT / 1.0	Oyerlock 10
971	Size-Reduction Template Stripping of Smooth Curved Metallic Tips for Adiabatic Nanofocusing of Surface Plasmons. ACS Applied Materials & amp; Interfaces, 2016, 8, 13624-13629.	4.0	6
972	Short-range ordered photonic structures of lamellae-forming diblock copolymers for excitation-regulated fluorescence enhancement. Nanoscale, 2016, 8, 10823-10831.	2.8	12
973	Refilling of carbon nanotube cartridges for 3D nanomanufacturing. Nanoscale, 2016, 8, 7217-7223.	2.8	4
974	Vector beam generation via micrometer-scale photonic integrated circuits and plasmonic nano-antennae. Journal of the Optical Society of America B: Optical Physics, 2016, 33, 360.	0.9	9
975	Rational Design of Plasmonic Nanoparticles for Enhanced Cavitation and Cell Perforation. Nano Letters, 2016, 16, 3187-3194.	4.5	41
976	Split Bull's Eye Antenna for High-Speed Photodetector in the Range of Visible to Mid-Infrared. IEEE Photonics Technology Letters, 2016, 28, 1177-1180.	1.3	9
977	Measuring chromatic aberrations in imaging systems using plasmonic nanoparticles. Optics Letters, 2016, 41, 1688.	1.7	6

#	Article	IF	CITATIONS
978	Competition between Förster Resonance Energy Transfer and Donor Photodynamics in Plasmonic Dimer Nanoantennas. ACS Photonics, 2016, 3, 895-903.	3.2	61
979	Quantum Dot Lattice as Nano-Antenna for Collective Spontaneous Emission. NATO Science for Peace and Security Series B: Physics and Biophysics, 2016, , 69-88.	0.2	1
980	Pushing the Photon Limit: Nanoantennas Increase Maximal Photon Stream and Total Photon Number. Journal of Physical Chemistry Letters, 2016, 7, 1604-1609.	2.1	20
981	Investigation of the nonlinear refractive index of single-crystalline thin gold films and plasmonic nanostructures. Applied Physics B: Lasers and Optics, 2016, 122, 1.	1.1	4
982	Full-Color Subwavelength Printing with Gap-Plasmonic Optical Antennas. Nano Letters, 2016, 16, 3166-3172.	4.5	207
983	Stark Effect and Nonlinear Impedance of the Asymmetric Ag-CO-Ag Junction: An Optical Rectenna. Journal of Physical Chemistry C, 2016, 120, 20914-20921.	1.5	13
984	Topology optimization for three-dimensional electromagnetic waves using an edge element-based finite-element method. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2016, 472, 20150835.	1.0	36
985	Coherence of Auger and inter-Coulombic decay processes in the photoionization of Ar@C60 versus Kr@C60. European Physical Journal D, 2016, 70, 1.	0.6	9
986	HD DVD substrates for surface enhanced Raman spectroscopy analysis: fabrication, theoretical predictions and practical performance. RSC Advances, 2016, 6, 44163-44169.	1.7	12
987	Controlling the Radiation Parameters of a Resonant Medium Excited by a Sequence of Ultrashort Superluminal Pulses. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2016, 120, 423-433.	0.2	5
988	Ultrafast Coherent Raman Scattering at Plasmonic Nanojunctions. Journal of Physical Chemistry C, 2016, 120, 20943-20953.	1.5	42
989	Radiation direction control by optical slot antenna integrated with plasmonic waveguide. , 2016, , .		2
990	Elliptically polarized modes for the unidirectional excitation of surface plasmon polaritons. Optics Express, 2016, 24, 3858.	1.7	3
991	Imaging the Magnetic Near-Field of Plasmon Modes in Bar Antennas. Springer Theses, 2016, , 35-52.	0.0	0
992	Ultrafast Meets Ultrasmall: Controlling Nanoantennas and Molecules. ACS Photonics, 2016, 3, 1401-1414.	3.2	60
993	Four-dimensional electron microscopy: Ultrafast imaging, diffraction and spectroscopy in materials science and biology. Nano Today, 2016, 11, 228-249.	6.2	72
994	First prediction of inter-Coulombic decay of C ₆₀ inner vacancies through the continuum of confined atoms. Journal of Physics B: Atomic, Molecular and Optical Physics, 2016, 49, 11LT01.	0.6	18
995	Multiple Resonances Induced by Plasmonic Coupling between Gold Nanoparticle Trimers and Hexagonal Assembly of Gold-Coated Polystyrene Microspheres. Journal of Physical Chemistry Letters, 2016, 7, 3652-3658.	2.1	18

#	Article	IF	CITATIONS
996	Accurate Feeding of Nanoantenna by Singular Optics for Nanoscale Translational and Rotational Displacement Sensing. Physical Review Letters, 2016, 117, 113903.	2.9	38
997	Computational Design of Durable Spherical Nanoparticles with Optimal Material, Shape, and Size for Ultrafast Plasmon-Enhanced Nanocavitation. ACS Photonics, 2016, 3, 2158-2169.	3.2	21
998	Tailoring light emission with all-silicon optical antennas. , 2016, , .		0
999	Molecular diodes in optical rectennas. Proceedings of SPIE, 2016, , .	0.8	2
1000	On gain in homogenized composite materials. Proceedings of SPIE, 2016, , .	0.8	0
1001	Plasmonic nanoparticle-semiconductor composites for efficient solar water splitting. Journal of Materials Chemistry A, 2016, 4, 17891-17912.	5.2	165
1002	Design of tunable cylindrical dielectric nanoantenna. , 2016, , .		0
1003	Design of plasmonic photodetector with high absorptance and nano-scale active regions. Optics Express, 2016, 24, 18229.	1.7	15
1004	Ultrafast Nonlinear Plasmonic Spectroscopy: From Dipole Nanoantennas to Complex Hybrid Plasmonic Structures. ACS Photonics, 2016, 3, 1336-1350.	3.2	38
1005	Mode structure of planar optical antennas on dielectric substrates. Optics Express, 2016, 24, 18727.	1.7	9
1006	Reinterpreting the magnetoelectric coupling of polarizability tensors of infinite cylinders using symmetry: A simple TM/TE view. Physical Review B, 2016, 94, .	1.1	0
1007	Optical nonlinear enhancement from binary optimization of plasmonic nano-bi-domes. Journal of Nonlinear Optical Physics and Materials, 2016, 25, 1650018.	1.1	2
1009	Phase-change material-based nanoantennas with tunable radiation patterns. Optics Letters, 2016, 41, 4099.	1.7	45
1010	Antenna–Cavity Hybrids: Matching Polar Opposites for Purcell Enhancements at Any Linewidth. ACS Photonics, 2016, 3, 1943-1951.	3.2	104
1011	Controlling electromagnetic scattering with wire metamaterial resonators. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2016, 33, 1910.	0.8	16
1012	Plasmon–Exciton Coupling Using DNA Templates. Nano Letters, 2016, 16, 5962-5966.	4.5	94
1013	A sensitive 2D plasmon ruler based on Fano resonance. RSC Advances, 2016, 6, 81757-81762.	1.7	3
1014	Generalization of the Optical Theorem to the multipole source excitation. Journal of Quantitative Spectroscopy and Radiative Transfer, 2016, 185, 22-26.	1.1	5

#	Article	IF	CITATIONS
1015	Near-Field Imaging of Cell Membranes in Liquid Enabled by Active Scanning Probe Mechanical Resonance Control. Journal of Physical Chemistry C, 2016, 120, 21138-21144.	1.5	5
1016	Nano crescent antenna with variable axial ratio for energy harvesting applications. , 2016, , .		1
1017	Experimental measurement of plasmonic nanostructures embedded in silicon waveguide gaps. Optics Express, 2016, 24, 9592.	1.7	30
1018	Plasmonic Circuit Theory for Multiresonant Light Funneling to a Single Spatial Hot Spot. Nano Letters, 2016, 16, 5764-5769.	4.5	13
1019	Near-UV-enhanced broad-band large third-order optical nonlinearity in aluminum nanorod array film with sub-10 nm gaps. Optics Express, 2016, 24, 5387.	1.7	11
1020	Insights into directional scattering: from coupled dipoles to asymmetric dimer nanoantennas. Optics Express, 2016, 24, 19638.	1.7	10
1021	Improved Near-Field Transducer Design for Heat-Assisted Magnetic Recording. IEEE Transactions on Magnetics, 2016, 52, 1-6.	1.2	8
1022	Split-Wedge Antennas with Sub-5 nm Gaps for Plasmonic Nanofocusing. Nano Letters, 2016, 16, 7849-7856.	4.5	54
1023	Magneto-Optical Activity in High Index Dielectric Nanoantennas. Scientific Reports, 2016, 6, 30803.	1.6	39
1024	Dielectric Metasurface as a Platform for Spatial Mode Conversion in Nanoscale Waveguides. Nano Letters, 2016, 16, 7956-7961.	4.5	76
1025	Linearly polarized dipolar second harmonic generation from gold nano-antennas by controlling their radiation phase. , 2016, , .		0
1026	Wave-Mixing Origin and Optimization in Single and Compact Aluminum Nanoantennas. ACS Photonics, 2016, 3, 1840-1846.	3.2	17
1027	Wavelength-Dependent Super-resolution Images of Dye Molecules Coupled to Plasmonic Nanotriangles. ACS Photonics, 2016, 3, 1733-1740.	3.2	28
1028	High-efficiency and high-resolution apertureless plasmonic near-field probe under internal illumination. Proceedings of SPIE, 2016, , .	0.8	4
1029	Plasmonic Nanoantennas Enable Forbidden Förster Dipole–Dipole Energy Transfer and Enhance the FRET Efficiency. Nano Letters, 2016, 16, 6222-6230.	4.5	73
1030	The Interplay of Symmetry and Scattering Phase in Second Harmonic Generation from Gold Nanoantennas. Nano Letters, 2016, 16, 5278-5285.	4.5	69
1031	Atom and quantum oscillator coupled by the vacuum field: Radiation pattern, emission spectrum, and decay dynamics. Physical Review A, 2016, 93, .	1.0	2
1032	Local density of states near spatially dispersive nanospheres. Physical Review A, 2016, 93, .	1.0	6

#	Article	IF	CITATIONS
1033	Engineering the emission of light from a scanning tunneling microscope using the plasmonic modes of a nanoparticle. Physical Review B, 2016, 93, .	1.1	26
1034	Optimal interactions of light with magnetic and electric resonant particles. Physical Review B, 2016, 93, .	1.1	14
1035	Combined electron energy-loss and cathodoluminescence spectroscopy on individual and composite plasmonic nanostructures. Physical Review B, 2016, 93, .	1.1	22
1036	Dielectric function and plasmons in graphene: A self-consistent-field calculation within a Markovian master equation formalism. Physical Review B, 2016, 93, .	1.1	21
1037	Cavity quantum electrodynamics in application to plasmonics and metamaterials. Reviews in Physics, 2016, 1, 120-139.	4.4	43
1038	Optical Activation of Germanium Plasmonic Antennas in the Mid-Infrared. Physical Review Letters, 2016, 117, 047401.	2.9	55
1039	Vector-Field Nonlinear Microscopy of Nanostructures. ACS Photonics, 2016, 3, 1351-1370.	3.2	60
1040	All-Dielectric Silicon Nanogap Antennas To Enhance the Fluorescence of Single Molecules. Nano Letters, 2016, 16, 5143-5151.	4.5	197
1041	Probing plasmons in three dimensions by combining complementary spectroscopies in a scanning transmission electron microscope. Nanotechnology, 2016, 27, 155202.	1.3	5
1042	Optical Monitoring of the Magnetoelectric Coupling in Individual Plasmonic Scatterers. ACS Photonics, 2016, 3, 1581-1588.	3.2	16
1043	Temperature control of thermal radiation from composite bodies. Physical Review B, 2016, 93, .	1.1	18
1044	Green's Function Retrieval with Absorbing Probes in Reverberating Cavities. Physical Review Letters, 2016, 116, 213902.	2.9	11
1045	Normal-Incidence PEEM Imaging of Propagating Modes in a Plasmonic Nanocircuit. Nano Letters, 2016, 16, 6832-6837.	4.5	28
1046	Microscopic analysis of gain spectrum of surface plasmons in graphene. Results in Physics, 2016, 6, 754-760.	2.0	4
1047	Single Particle Nanoplasmonic Sensing in Individual Nanofluidic Channels. Nano Letters, 2016, 16, 7857-7864.	4.5	35
1048	Dielectric singularity in hyperbolic metamaterials: the inversion point of coexisting anisotropies. Scientific Reports, 2016, 6, 20002.	1.6	54
1049	Optically resonant dielectric nanostructures. Science, 2016, 354, .	6.0	2,086
1050	Biophotonics in Ultrashort, Intense Optical Fields. Biological and Medical Physics Series, 2016, , 95-122.	0.3	0

#	Article	IF	CITATIONS
1051	Orientation-Dependent Handedness of Chiral Plasmons on Nanosphere Dimers: How to Turn a Right Hand into a Left Hand. ACS Photonics, 2016, 3, 2482-2489.	3.2	18
1052	Broadband nanophotonic wireless links and networks using on-chip integrated plasmonic antennas. Scientific Reports, 2016, 6, 19490.	1.6	67
1053	Purcell effect at the percolation transition. Physical Review B, 2016, 94, .	1.1	14
1054	Nonlinear Generation of Vector Beams From AlGaAs Nanoantennas. Nano Letters, 2016, 16, 7191-7197.	4.5	237
1055	Wireless communication system via nanoscale plasmonic antennas. Scientific Reports, 2016, 6, 31710.	1.6	38
1056	Nonlinear scattering of laser radiation by high-refractive-index nanoparticles. , 2016, , .		0
1058	Heisenberg uncertainty principle and light squeezing in quantum nanoantennas and electric circuits. Journal of Nanophotonics, 2016, 10, 046005.	0.4	7
1059	Numerical Modeling in Antenna Engineering. , 2016, , 111-195.		0
1060	Local Field Enhancement: Comparing Self-Similar and Dimer Nanoantennas. Journal of Physical Chemistry C, 2016, 120, 26021-26024.	1.5	10
1061	Narrow band perfect absorber for maximum localized magnetic and electric field enhancement and sensing applications. Scientific Reports, 2016, 6, 24063.	1.6	174
1062	Exploiting metamaterials, plasmonics and nanoantennas concepts in silicon photonics. Journal of Optics (United Kingdom), 2016, 18, 123001.	1.0	36
1063	Form and identify plasmonic dimer antennas: emitting-polarization resolved scattering from classical to quantum regime. Proceedings of SPIE, 2016, , .	0.8	0
1064	Infrared light emission from nano hot electron gas created in atomic point contacts. Europhysics Letters, 2016, 114, 57002.	0.7	15
1065	Ultra-subwavelength resonators for high temperature high performance quantum detectors. New Journal of Physics, 2016, 18, 113016.	1.2	38
1066	1×2 Equilateral Triangular Dielectric Resonator Nantenna array for optical communication. , 2016, , .		3
1067	Advances in Full Control of Electromagnetic Waves with Metasurfaces. Advanced Optical Materials, 2016, 4, 818-833.	3.6	306
1068	Piezoelectric tuning of narrowband perfect plasmonic absorbers via an optomechanic cavity. Optics Letters, 2016, 41, 2803.	1.7	8
1069	Nanoantenna-controlled radiation pattern of the third-harmonic emission. Applied Physics B: Lasers and Optics, 2016, 122, 1.	1.1	3

ARTICLE IF CITATIONS # Comprehensive Surface-Wave Description for the Nano-scale Energy Concentration with Resonant 1070 1.8 8 Dipole Antennas. Plasmonics, 2016, 11, 1025-1033. Modified stripe waveguide design for plasmonic input port structures. Journal of Nanophotonics, 1071 0.4 2016, 10, 016019. Responsivity and resonant properties of dipole, bowtie, and spiral Seebeck nanoantennas. Journal of 1072 0.8 11 Photonics for Energy, 2016, 6, 024501. Plasmon-Driven Dynamic Response of a Hierarchically Structural Silver-Decorated Nanorod Array for 4.0 Sub-10 nm Nanogaps. ACS Applied Materials & amp; Interfaces, 2016, 8, 15623-15629. Protein Conformational Motions: Enzyme Catalysis., 2016, , 45-70. 1074 0 Plasmonic nanofocusing $\hat{a} \in \mathcal{C}$ grey holes for light. Advances in Physics: X, 2016, 1, 297-330. 1.5 A review of metasurfaces: physics and applications. Reports on Progress in Physics, 2016, 79, 076401. 1076 8.1 1,524 Harmonics Generation by Surface Plasmon Polaritons on Single Nanowires. ACS Photonics, 2016, 3, 3.2 1446-1452. New optical near-field nanolithography with optical fiber probe laser irradiating atomic force 1078 0.3 33 microscopy probe tip. Integrated Ferróelectrics, 2016, 169, 124-132. Current vs Charge Density Contributions to Nonlinear X-ray Spectroscopy. Journal of Chemical 1079 2.3 Theory and Computation, 2016, 12, 3959-3968. Anomalous reflection from metasurfaces with gradient phase distribution below 2Ï€. Applied Physics 1080 1.1 13 Express, 2016, 9, 072502. Super-resolution Localization and Defocused Fluorescence Microscopy on Resonantly Coupled Single-Molecule, Single-Nanorod Hybrids. ACS Nano, 2016, 10, 2455-2466. Integrated Broadband Bowtie Antenna on Transparent Silica Substrate. IEEE Antennas and Wireless 1082 2.4 22 Propagation Letters, 2016, 15, 1377-1381. A voltage-controlled silver nanograting device for dynamic modulation of transmitted light based on the surface plasmon polariton effect. Nanoscale, 2016, 8, 4650-4656. 2.8 1084 Light Emission near a Gradient Metasurface. ACS Photonics, 2016, 3, 243-248. 3.2 8 Imaging and Steering Unidirectional Emission from Nanoantenna Array Metasurfaces. ACS Photonics, 2016, 3, 286-292. 30 Split Hole Resonator: A Nanoscale UV Light Source. Nano Letters, 2016, 16, 1138-1142. 1086 4.5 27 Nonlinear Surface Magnetoplasmonics in Kretschmann Multilayers. ACS Photonics, 2016, 3, 179-183. 3.2

#	Article	IF	CITATIONS
1088	Enhanced photovoltaic performance of ultrathin Si solar cells via semiconductor nanocrystal sensitization: energy transfer vs. optical coupling effects. Nanoscale, 2016, 8, 5873-5883.	2.8	11
1089	One-way surface magnetoplasmon cavity and its application for nonreciprocal devices. Optics Letters, 2016, 41, 800.	1.7	16
1090	Characterization of a circular optical nanoantenna by nonlinear photoemission electron microscopy. Applied Physics B: Lasers and Optics, 2016, 122, 1.	1.1	9
1091	Electromechanically Tunable Suspended Optical Nanoantenna. Nano Letters, 2016, 16, 2680-2685.	4.5	18
1092	Coupling Emitters and Silver Nanowires to Achieve Long-Range Plasmon-Mediated Fluorescence Energy Transfer. ACS Nano, 2016, 10, 3968-3976.	7.3	69
1093	On-chip molecular electronic plasmon sources based on self-assembled monolayer tunnel junctions. Nature Photonics, 2016, 10, 274-280.	15.6	110
1094	Yagi–Uda optical antenna array collimated laser based on surface plasmons. Optics Communications, 2016, 368, 197-201.	1.0	13
1095	Fabrication of narrow-gap nanostructures using electron-beam induced deposition etch masks. Microelectronic Engineering, 2016, 153, 77-82.	1.1	7
1096	Plasmon Response and Electron Dynamics in Charged Metallic Nanoparticles. Langmuir, 2016, 32, 2829-2840.	1.6	42
1097	Spin-Dependent Emission from Arrays of Planar Chiral Nanoantennas Due to Lattice and Localized Plasmon Resonances. ACS Nano, 2016, 10, 3389-3397.	7.3	77
1098	Light trapping in mesoporous solar cells with plasmonic nanostructures. Energy and Environmental Science, 2016, 9, 1577-1601.	15.6	333
1099	Some considerations on the transmissivity of trirefringent metamaterials. Journal of the Optical Society of America B: Optical Physics, 2016, 33, 116.	0.9	4
1100	Surface Enhancement in Ultrafast 2D ATR IR Spectroscopy at the Metal-Liquid Interface. Journal of Physical Chemistry C, 2016, 120, 3350-3359.	1.5	57
1101	Plasmonic Nanoparticle Trapping With Inhomogeneous Temperature Fields. IEEE Photonics Journal, 2016, 8, 1-8.	1.0	3
1102	Chemically Engraving Semiconductor Nanowires: Using Three-Dimensional Nanoscale Morphology to Encode Functionality from the Bottom Up. Journal of Physical Chemistry Letters, 2016, 7, 685-692.	2.1	28
1103	Surface-enhanced Raman spectroscopy in 3D electrospun nanofiber mats coated with gold nanorods. Analytical and Bioanalytical Chemistry, 2016, 408, 1357-1364.	1.9	27
1104	Efficient optical coupling into ultra-compact plasmonic slot waveguides using dipole nanoantennas. , 2016, , .		0
1105	Broadband active tuning of unidirectional scattering from nanoantenna using combined radially and azimuthally polarized beams. Optics Letters, 2016, 41, 33.	1.7	24

#	Article	IF	CITATIONS
1106	Template-Stripped Multifunctional Wedge and Pyramid Arrays for Magnetic Nanofocusing and Optical Sensing. ACS Applied Materials & amp; Interfaces, 2016, 8, 9319-9326.	4.0	18
1107	Observation of Thermal Beaming from Tungsten and Molybdenum Bull's Eyes. ACS Photonics, 2016, 3, 494-500.	3.2	63
1108	Direct and Efficient Optical Coupling Into Plasmonic Integrated Circuits From Optical Fibers. IEEE Photonics Technology Letters, 2016, 28, 1165-1168.	1.3	6
1109	Understanding the vapor–liquid–solid mechanism of Si nanowire growth and doping to synthetically encode precise nanoscale morphology. Journal of Materials Chemistry C, 2016, 4, 3890-3897.	2.7	32
1110	Photoinduced Electron Transfer in the Strong Coupling Regime: Waveguide–Plasmon Polaritons. Nano Letters, 2016, 16, 2651-2656.	4.5	79
1111	Real-Space Mapping of the Chiral Near-Field Distributions in Spiral Antennas and Planar Metasurfaces. Nano Letters, 2016, 16, 663-670.	4.5	64
1112	Tunable surface plasmon-polaritons in a gyroelectric slab sandwiched between two graphene layers. Optics Communications, 2016, 366, 112-118.	1.0	11
1113	Polarization State of Light Scattered from Quantum Plasmonic Dimer Antennas. ACS Nano, 2016, 10, 1580-1588.	7.3	74
1114	Developments in the Photonic Theory of Fluorescence. Reviews in Fluorescence, 2016, , 235-268.	0.5	0
1115	Polarization-selective enhancement of Nd3+ photoluminescence assisted by linear chains of silver nanoparticles. Journal of Luminescence, 2016, 169, 569-573.	1.5	12
1116	Nanostar probes for tip-enhanced spectroscopy. Nanoscale, 2016, 8, 987-994.	2.8	35
1117	Reviews in Fluorescence 2015. Reviews in Fluorescence, 2016, , .	0.5	2
1118	Developing and understanding biofluid vibrational spectroscopy: a critical review. Chemical Society Reviews, 2016, 45, 1803-1818.	18.7	243
1119	Discrete Sources Method for light scattering analysis of non-axisymmetric features of a substrate. Computer Physics Communications, 2016, 198, 12-21.	3.0	4
1120	Plasmon enhanced photoacoustic generation from volumetric electromagnetic hotspots. Nanoscale, 2016, 8, 757-761.	2.8	8
1121	Fabrication of mid-infrared plasmonic antennas based on heavily doped germanium thin films. Thin Solid Films, 2016, 602, 52-55.	0.8	8
1122	Controlled positioning of analytes and cells on a plasmonic platform for glycan sensing using surface enhanced Raman spectroscopy. Chemical Science, 2016, 7, 575-582.	3.7	31
1123	Spectral Response of Metallic Optical Antennas Driven by Temperature. Plasmonics, 2017, 12, 553-561.	1.8	2

#	Article	IF	CITATIONS
1124	Bridging the Gap between Dielectric Nanophotonics and the Visible Regime with Effectively Lossless Gallium Phosphide Antennas. Nano Letters, 2017, 17, 1219-1225.	4.5	208
1125	Broadband localized electric field enhancement produced by a single-element plasmonic nanoantenna. RSC Advances, 2017, 7, 2074-2080.	1.7	12
1127	Bloch Surface Waves on A One Dimensional Photonic Crystal. PoliTO Springer Series, 2017, , 1-28.	0.3	1
1128	Tunable metasurfaces via subwavelength phase shifters with uniform amplitude. Scientific Reports, 2017, 7, 40174.	1.6	41
1129	Enhancing the optical cross section of quantum antenna. Physical Review A, 2017, 95, .	1.0	8
1130	Functionalization of Scanning Probe Tips with Epitaxial Semiconductor Layers. Small Methods, 2017, 1, 1600033.	4.6	8
1131	Multiscale modeling of plasmonic enhanced energy transfer and cavitation around laser-excited nanoparticles. Nanoscale, 2017, 9, 3023-3032.	2.8	35
1132	Photon Management Assisted by Surface Waves on Photonic Crystals. PoliTO Springer Series, 2017, , .	0.3	5
1133	Plasmonic effects of gold colloids on the fluorescence behavior of dye-doped SiO 2 nanoparticles. Journal of Luminescence, 2017, 185, 192-199.	1.5	10
1134	Dynamic Control over the Optical Transmission of Nanoscale Dielectric Metasurface by Alkali Vapors. Nano Letters, 2017, 17, 1127-1131.	4.5	26
1135	An Optical Leaky Wave Antenna by a Waffled Structure. Journal of Lightwave Technology, 2017, 35, 2273-2279.	2.7	21
1136	High-Throughput and Ultra-Sensitive Biosensing and Spectroscopy by Plasmonics. NATO Science for Peace and Security Series B: Physics and Biophysics, 2017, , 275-282.	0.2	2
1137	Optical Observation of Plasmonic Nonlocal Effects in a 2D Superlattice of Ultrasmall Gold Nanoparticles. Nano Letters, 2017, 17, 2234-2239.	4.5	33
1138	Strategies to reduce detection volume of fluorescence correlation spectroscopy (FCS) to realize physiological concentration measurements. TrAC - Trends in Analytical Chemistry, 2017, 89, 181-189.	5.8	4
1139	Hybrid plasmonic–photonic whispering gallery mode resonators for sensing: a critical review. Analyst, The, 2017, 142, 883-898.	1.7	69
1140	Advances in Tip-Enhanced Near-Field Raman Microscopy Using Nanoantennas. Chemical Reviews, 2017, 117, 4945-4960.	23.0	103
1141	Anomalous electromagnetic coupling via entanglement at the nanoscale. New Journal of Physics, 2017, 19, 023014.	1.2	11
1142	Multipolar interference effects in nanophotonics. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2017, 375, 20160317.	1.6	81

		Citation R	EPORT	
#	Article		IF	CITATIONS
1143	Core–Shell Nanoparticle-Enhanced Raman Spectroscopy. Chemical Reviews, 2017, 1	17, 5002-5069.	23.0	819
1144	Dual-Band Unidirectional Emission in a Multilayered Metal–Dielectric Nanoantenna. A 2, 774-783.	ACS Omega, 2017,	1.6	14
1145	Single-Photon Nanoantennas. ACS Photonics, 2017, 4, 710-722.		3.2	228
1146	Complementary split-ring resonator antenna coupled quantum dot infrared photodeter Physics Letters, 2017, 110, 091106.	ctor. Applied	1.5	8
1147	A design of nano-optical Yagi-Uda antenna with high forward directivity. Microwave and Technology Letters, 2017, 59, 786-789.	d Optical	0.9	0
1148	Droplet etched GaAs quantum dots close to surfaces and metallic interfaces. Journal of Physics, 2017, 121, .	Applied	1.1	14
1149	Non-Markovian dynamics in plasmon-induced spontaneous emission interference. Phys 2017, 95, .	ical Review B,	1.1	56
1150	Light Outcoupling from Quantum Dot-Based Microdisk Laser via Plasmonic Nanoanten Photonics, 2017, 4, 275-281.	na. ACS	3.2	39
1151	Metamaterial, plasmonic and nanophotonic devices. Reports on Progress in Physics, 20)17, 80, 036401.	8.1	157
1152	Mid-IR colloidal quantum dot detectors enhanced by optical nano-antennas. Applied Ph 2017, 110, .	lysics Letters,	1.5	54
1153	Attosecond physics at the nanoscale. Reports on Progress in Physics, 2017, 80, 05440	1.	8.1	274
1154	Ultradirectional optical nanoantennas with high radiation efficiency by core–shell na Journal of Nanophotonics, 2017, 11, 016005.	noparticles.	0.4	8
1155	In-Plane Plasmonic Antenna Arrays with Surface Nanogaps for Giant Fluorescence Enha Letters, 2017, 17, 1703-1710.	ncement. Nano	4.5	114
1156	Angular-dependent photodetection enhancement by a metallic circular disk optical ant Advances, 2017, 7, .	enna. AIP	0.6	5
1157	Optical slot antenna and its application. , 2017, , .			0
1158	A SIW-DGS wideband bandpass filter with a sharp roll-off at upper stopband. Microwav Technology Letters, 2017, 59, 789-792.	e and Optical	0.9	22
1159	All-dielectric light concentrator to subwavelength volume. Physical Review B, 2017, 95,		1.1	7
1160	Interplay Between In-Plane and Out-of-Plane Resonances of Heptamer Oligomer Nanoa of Lightwave Technology, 2017, 35, 186-192.	pertures. Journal	2.7	0

#	Article	IF	CITATIONS
1161	Surface plasmon resonance in gold nanoparticles: a review. Journal of Physics Condensed Matter, 2017, 29, 203002.	0.7	1,184
1162	Tunable mid-infrared patch antennas based on VO ₂ phase transition. Journal of Modern Optics, 2017, 64, 1762-1767.	0.6	8
1163	Multi-layered bowtie nano-antennas. Journal of Applied Physics, 2017, 121, 133106.	1.1	13
1164	Classical and <i>ab Initio</i> Plasmonics Meet at Sub-nanometric Noble Metal Rods. ACS Photonics, 2017, 4, 1484-1493.	3.2	57
1165	Coherent interaction of single molecules and plasmonic nanowires. International Journal of Modern Physics B, 2017, 31, 1740004.	1.0	2
1166	Plasmonic lattice resonance-enhanced light emission from plastic scintillators by periodical Ag nanoparticle arrays. Applied Physics Letters, 2017, 110, .	1.5	9
1167	Strong electric field enhancement in a gold/silica bow-tie nano-antenna. Proceedings of SPIE, 2017, , .	0.8	0
1168	Accurate Modeling of the Polarizability of Dyes for Electromagnetic Calculations. ACS Omega, 2017, 2, 1804-1811.	1.6	27
1169	Coherent resonance of quantum plasmons in Stone–Wales defected graphene–silver nanowire hybrid system. Frontiers of Physics, 2017, 12, 1.	2.4	1
1170	Estimation of the Number of Quantum Dots Immobilized on an Ultra-flat Au Surface. Nanoscale Research Letters, 2017, 12, 301.	3.1	4
1171	Modifying magnetic dipole spontaneous emission with nanophotonic structures. Laser and Photonics Reviews, 2017, 11, 1600268.	4.4	110
1172	Angular emission from 1D and 2D meso- and nano-structures: Probed by dual-channel Fourier-plane microscopy. Optics Communications, 2017, 398, 112-121.	1.0	4
1173	Low-Loss Plasmonic Dielectric Nanoresonators. Nano Letters, 2017, 17, 3238-3245.	4.5	113
1174	Nanoantenna-Enhanced Infrared Spectroscopic Chemical Imaging. ACS Sensors, 2017, 2, 655-662.	4.0	19
1175	Quadrature-Squeezed from Emitters in Optical. Springer Series in Solid-state Sciences, 2017, , 25-46.	0.3	2
1176	Surface-Sensitive and Surface-Specific Ultrafast Two-Dimensional Vibrational Spectroscopy. Chemical Reviews, 2017, 117, 10623-10664.	23.0	114
1177	Tailorable secondâ€harmonic generation from an individual nanowire using spatially phaseâ€shaped beams. Laser and Photonics Reviews, 2017, 11, 1600175.	4.4	23
1178	Enhancement of terahertz photoconductive antenna operation by optical nanoantennas. Laser and Photonics Reviews, 2017, 11, 1600199.	4.4	116

		CITATION RE	PORT	
#	Article		IF	CITATIONS
1179	Nanoantenna Integrated Thermomechanical Infrared Detector. Plasmonics, 2017, 12, 1	.921-1927.	1.8	4
1180	Directional Emission from Dielectric Leaky-Wave Nanoantennas. Nano Letters, 2017, 1	7, 4178-4183.	4.5	39
1181	Electromagnetic radiation from filamentary sources in the presence of axially magnetiz plasma scatterers. Journal of Experimental and Theoretical Physics, 2017, 124, 202-212	ed cylindrical ?.	0.2	5
1182	Campanile Near-Field Probes Fabricated by Nanoimprint Lithography on the Facet of an Scientific Reports, 2017, 7, 1651.	Optical Fiber.	1.6	28
1183	Integrated nanoplasmonic waveguides for magnetic, nonlinear, and strong-field devices Nanophotonics, 2017, 6, 235-257.	5.	2.9	20
1184	Numerical Analysis on Tunable Multilayer Nanoring Waveguide. IEEE Photonics Technol 2017, 29, 967-970.	ogy Letters,	1.3	7
1185	Photonic Tuning of the Emission Color of Nanophosphor Films Processed at High Temp Advanced Optical Materials, 2017, 5, 1700099.	erature.	3.6	21
1186	Nano-scale chemical reactions based on non-uniform optical near-fields and their applic Progress in Quantum Electronics, 2017, 55, 166-194.	ations.	3.5	15
1187	Engineering two-wire optical antennas for near field enhancement. Photonics and Nanc Fundamentals and Applications, 2017, 25, 72-76.	ostructures -	1.0	11
1188	Single Emitter Fluorescence Enhancement with Surface Lattice Resonances. Journal of I Chemistry C, 2017, 121, 13280-13289.	Physical	1.5	38
1189	Hybrid Organic-Plasmonic Nanoantennas with Enhanced Third-Harmonic Generation. A 2, 2577-2582.	CS Omega, 2017,	1.6	9
1190	Probing Gap Plasmons Down to Subnanometer Scales Using Collapsible Nanofingers. A 11, 5836-5843.	.CS Nano, 2017,	7.3	35
1191	DNA-Mediated Patterning of Single Quantum Dot Nanoarrays: A Reusable Platform for Control. Scientific Reports, 2017, 7, 45591.	Single-Molecule	1.6	19
1192	Comparative study of optical near-field transducers for heat-assisted magnetic recordin Engineering, 2017, 56, 121906.	ıg. Optical	0.5	14
1193	Metal–Dielectric Hybrid Dimer Nanoantenna: Coupling between Surface Plasmons ar Resonances for Fluorescence Enhancement. Journal of Physical Chemistry C, 2017, 121	nd Dielectric ., 12871-12884.	1.5	45
1194	Plasmonic Antireflection Coating for Photoconductive Terahertz Generation. ACS Photo 1350-1354.	onics, 2017, 4,	3.2	27
1195	Tuning the collective decay of two entangled emitters by means of a nearby surface. Jo Physics B: Atomic, Molecular and Optical Physics, 2017, 50, 154001.	urnal of	0.6	14
1196	The Origin and Limit of Asymmetric Transmission in Chiral Resonators. ACS Photonics, 2	2017, 4, 884-890.	3.2	18

		CITATION RE	EPORT	
#	Article		IF	Citations
1197	Nonresonant 104 Terahertz Field Enhancement with 5-nm Slits. Scientific Reports, 201	.7, 7, 45638.	1.6	11
1198	Nano-Raman Scattering Microscopy: Resolution and Enhancement. Chemical Reviews, 4983-5001.	2017, 117,	23.0	80
1199	Doubly Resonant Photonic Antenna for Single Infrared Quantum Dot Imaging at Teleco Wavelengths. Nano Letters, 2017, 17, 2152-2158.	ommunication	4.5	18
1201	Fabrication of flexible highly ordered porous alumina templates by combined nanosphe and anodization. Nanotechnology, 2017, 28, 194003.	ere lithography	1.3	13
1202	Study of a nano optical antenna for intersatellite communications. Optical and Quantu 2017, 49, 1.	ım Electronics,	1.5	12
1203	Direct observation of resonance scattering patterns in single silicon nanoparticles. App Letters, 2017, 110, .	lied Physics	1.5	19
1204	Atomic-Scale Imaging and Spectroscopy of Electroluminescence at Molecular Interface Reviews, 2017, 117, 5174-5222.	s. Chemical	23.0	126
1205	Mode Coupling in Plasmonic Heterodimers Probed with Electron Energy Loss Spectros 2017, 11, 3485-3495.	copy. ACS Nano,	7.3	42
1206	Photoinduced molecular chirality probed by ultrafast resonant X-ray spectroscopy. Stru Dynamics, 2017, 4, 044006.	uctural	0.9	23
1207	Enhanced Forward Scattering of Ellipsoidal Dielectric Nanoparticles. Nanoscale Researd 2017, 12, 58.	ch Letters,	3.1	15
1208	Twisting Fluorescence through Extrinsic Chiral Antennas. Nano Letters, 2017, 17, 2265	5-2272.	4.5	34
1209	Spacer-controlled emission of randomly oriented fluorophores enhanced with surface plasmon-polaritons. Physical Chemistry Chemical Physics, 2017, 19, 8706-8714.		1.3	14
1210	Antenna-Coupled Tunnel Junctions. Springer Series in Solid-state Sciences, 2017, , 211	-236.	0.3	21
1211	Unrelenting plasmons. Nature Photonics, 2017, 11, 8-10.		15.6	66
1212	Surface Plasmon Enhanced Schottky Detectors. Springer Series in Solid-state Sciences	, 2017, , 191-209.	0.3	1
1213	Effect of Zinc oxide nanoparticle on Fluorescence Resonance Energy transfer between and Rhodamine 6G. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectros 110-116.	Fluorescein scopy, 2017, 175,	2.0	19
1214	Topographically Flat Nanoplasmonic Sensor Chips for Biosensing and Materials Science 2017, 2, 119-127.	2. ACS Sensors,	4.0	13
1215	Resonant Enhancement of Photoluminescence Intensity and Anisotropy of Quantum E with Self-Assembled Gold Nanorods. Plasmonics, 2017, 12, 1911-1919.	ot Monolayers	1.8	5

		CITATION RE	PORT	
#	Article		IF	CITATIONS
1216	Revealing Nanostructures through Plasmon Polarimetry. ACS Nano, 2017, 11, 850-855	5.	7.3	33
1217	Spectral shift between the near-field and far-field optoplasmonic response in gold nan- nanoshells, homo- and hetero-dimers. Journal of Quantitative Spectroscopy and Radiat 2017, 195, 97-106.	ospheres, ive Transfer,	1.1	18
1218	Instabilities in the optical response of a semiconductor quantum dot—metal nanopa heterodimer: self-oscillations and chaos. Journal of Optics (United Kingdom), 2017, 19	rticle , 015004.	1.0	6
1219	Wavelength Scaling in Antenna-Enhanced Infrared Spectroscopy: Toward the Far-IR an ACS Photonics, 2017, 4, 45-51.	d THz Region.	3.2	28
1220	Morphology dependent two photon absorption in plasmonic structures and plasmonic hybrids. Optics and Laser Technology, 2017, 90, 201-210.	:–organic	2.2	8
1221	Nanolocalized UV source of laser radiation. EPJ Web of Conferences, 2017, 132, 0100	8.	0.1	0
1222	Electrically Driven Unidirectional Optical Nanoantennas. Nano Letters, 2017, 17, 7433	-7439.	4.5	56
1223	Breakdown of Far-Field Raman Selection Rules by Light–Plasmon Coupling Demonst Tip-Enhanced Raman Scattering. Journal of Physical Chemistry Letters, 2017, 8, 5462-5	rated by 5471.	2.1	16
1224	Nanoantenna–Microcavity Hybrids with Highly Cooperative Plasmonic–Photonic (Letters, 2017, 17, 7569-7577.	Coupling. Nano	4.5	64
1225	Optical Antennas: Controlling Electromagnetic Scattering, Radiation, and Emission at IEEE Antennas and Propagation Magazine, 2017, 59, 43-61.	the Nanoscale.	1.2	21
1226	Temporal Dynamics of Localized Exciton–Polaritons in Composite Organic–Plasmo Nano Letters, 2017, 17, 7675-7683.	onic Metasurfaces.	4.5	22
1227	Localized Phase Separation of Thermoresponsive Polymers Induced by Plasmonic Heat Physical Chemistry C, 2017, 121, 22496-22507.	ing. Journal of	1.5	14
1228	Giant light-harvesting nanoantenna for single-molecule detection in ambient light. Nat 2017, 11, 657-663.	ure Photonics,	15.6	133
1229	Quantum Dot Emission Driven by Mie Resonances in Silicon Nanostructures. Nano Let 6886-6892.	ters, 2017, 17,	4.5	127
1230	Tip-Enhanced Raman Spectromicroscopy of Co(II)-Tetraphenylporphyrin on Au(111): T Chemists' Microscope. ACS Nano, 2017, 11, 11466-11474.	oward the	7.3	63
1231	Metalenses: Versatile multifunctional photonic components. Science, 2017, 358, .		6.0	671
1232	Broadband Surfaceâ€Enhanced Photoluminescence Based on Gold Nanocubic Selfâ€A Optical Materials, 2017, 5, 1700551.	ssembly. Advanced	3.6	4
1233	Highly Desirable Photodetectors Derived from Versatile Plasmonic Nanostructures. Ad Functional Materials, 2017, 27, 1704181.	vanced	7.8	54

#	Article	IF	CITATIONS
1234	Light diffraction by a slit and grooves with a point source model based on wave dynamics. Physical Review A, 2017, 96, .	1.0	8
1236	Noninvasive Cathodoluminescence-Activated Nanoimaging of Dynamic Processes in Liquids. ACS Nano, 2017, 11, 10583-10590.	7.3	6
1237	Nanocomposite polymer structures for optical sensors of hydrogen sulfide. Technical Physics, 2017, 62, 1277-1280.	0.2	6
1238	Dynamically reconfigurable plasmon resonances enabled by capillary oscillations of liquid-metal nanodroplets. Physical Review A, 2017, 96, .	1.0	14
1239	Plasmonic Polarizationâ€Rotating Emitters with Metallic Nanogroove Antennas. Advanced Optical Materials, 2017, 5, 1700510.	3.6	12
1240	Visual Understanding of Light Absorption and Waveguiding in Standing Nanowires with 3D Fluorescence Confocal Microscopy. ACS Photonics, 2017, 4, 2235-2241.	3.2	28
1241	Polarization-Sensitive Single Dipoles Generated from Multiple Sharp Branches on the Surfaces of Single Gold Nanourchins. Journal of Physical Chemistry C, 2017, 121, 19975-19982.	1.5	13
1242	Granular Permittivity Representation in Extremely Near-Field Light–Matter Interaction Processes. ACS Photonics, 2017, 4, 2137-2143.	3.2	3
1243	Generating an electromagnetic multipole by oscillating currents. Physical Review A, 2017, 96, .	1.0	3
1244	Epitaxial Nanoflag Photonics: Semiconductor Nanoemitters Grown with Their Nanoantennas. Nano Letters, 2017, 17, 6011-6017.	4.5	7
1245	Planar Optical Nanoantennas Resolve Cholesterol-Dependent Nanoscale Heterogeneities in the Plasma Membrane of Living Cells. Nano Letters, 2017, 17, 6295-6302.	4.5	43
1246	High–bit rate ultra-compact light routing with mode-selective on-chip nanoantennas. Science Advances, 2017, 3, e1700007.	4.7	64
1247	High optical nonlinearity of nematic liquid crystal doped with graphen oxide. Journal of Molecular Liquids, 2017, 244, 103-109.	2.3	21
1248	Plasmons in graphene nanoribbons. Physical Review B, 2017, 96, .	1.1	33
1249	Maxwell–Hydrodynamic Model for Simulating Nonlinear Terahertz Generation From Plasmonic Metasurfaces. IEEE Journal on Multiscale and Multiphysics Computational Techniques, 2017, 2, 194-201.	1.4	23
1250	Enhancing light absorption in graphene with plasmonic lattices. Europhysics Letters, 2017, 119, 17006.	0.7	7
1251	On-chip wireless silicon photonics: from reconfigurable interconnects to lab-on-chip devices. Light: Science and Applications, 2017, 6, e17053-e17053.	7.7	71
1252	Concentric circular ring and nanodisk optical antenna enhanced multispectral quantum dot infrared photodetector with spectral localization. Journal Physics D: Applied Physics, 2017, 50, 405106.	1.3	2

#	Article	IF	CITATIONS
1253	Analysis of mutual couplings in a concentric circular ring plasmonic optical antenna array. Scientific Reports, 2017, 7, 10996.	1.6	10
1254	Multimode superlattice arrays. Nature Nanotechnology, 2017, 12, 838-839.	15.6	1
1255	Anisotropic enhancement of Yb ³⁺ luminescence by disordered plasmonic networks self-assembled on RbTiOPO ₄ ferroelectric crystals. Nanoscale, 2017, 9, 16166-16174.	2.8	11
1256	Achieving Strong Field Enhancement and Light Absorption Simultaneously with Plasmonic Nanoantennas Exploiting Film-Coupled Triangular Nanodisks. Journal of Physical Chemistry C, 2017, 121, 16481-16490.	1.5	28
1257	Transient Nanoscopic Phase Separation in Biological Lipid Membranes Resolved by Planar Plasmonic Antennas. ACS Nano, 2017, 11, 7241-7250.	7.3	39
1258	Broadband electromagnetic dipole scattering by coupled multiple nanospheres. Superlattices and Microstructures, 2017, 111, 830-840.	1.4	4
1259	Double resonant plasmonic nanoantennas for efficient second harmonic generation in zinc oxide. Physical Review B, 2017, 95, .	1.1	21
1260	Weak-Light Nonlinearity Using a Dark State in Coupled Quantum Dots. Journal of the Physical Society of Japan, 2017, 86, 083401.	0.7	1
1261	Spectral dependence of nonlinear absorption in ordered silver metallic nanoprism arrays. Scientific Reports, 2017, 7, 5307.	1.6	22
1262	Fabrication of large area flexible nanoplasmonic templates with flow coating. Review of Scientific Instruments, 2017, 88, 073104.	0.6	3
1263	Enhanced Second-Harmonic Generation from Sequential Capillarity-Assisted Particle Assembly of Hybrid Nanodimers. Nano Letters, 2017, 17, 5381-5388.	4.5	70
1264	Effect of sizes of "bowtie―composite nanoantenna elements on above-threshold photoemission spectra. Bulletin of the Lebedev Physics Institute, 2017, 44, 192-197.	0.1	1
1265	Sculpting light by arranging optical components with DNA nanostructures. MRS Bulletin, 2017, 42, 936-942.	1.7	32
1266	Exposing optical near fields of plasmonic patch nanoantennas. Applied Physics Letters, 2017, 111, .	1.5	4
1267	Graphene-edge dielectrophoretic tweezers for trapping of biomolecules. Nature Communications, 2017, 8, 1867.	5.8	69
1268	Enhancing Coherent Light-Matter Interactions through Microcavity-Engineered Plasmonic Resonances. Physical Review Letters, 2017, 119, 233901.	2.9	112
1269	Vibrational Surface Electron-Energy-Loss Spectroscopy Probes Confined Surface-Phonon Modes. Physical Review X, 2017, 7, .	2.8	36
1270	Few-Electron Ultrastrong Light-Matter Coupling at 300 GHz with Nanogap Hybrid LC Microcavities. Nano Letters, 2017, 17, 7410-7415.	4.5	57

#	Article	IF	CITATIONS
1271	Optical Nanoantenna for Single Molecule-Based Detection of Zika Virus Nucleic Acids without Molecular Multiplication. Analytical Chemistry, 2017, 89, 13000-13007.	3.2	85
1272	Generation of high-power terahertz radiation by nonlinear photon-assisted tunneling transport in plasmonic metamaterials. Journal of Optics (United Kingdom), 2017, 19, 124012.	1.0	5
1273	Polarization Multiplexing of Fluorescent Emission Using Multiresonant Plasmonic Antennas. ACS Nano, 2017, 11, 12167-12173.	7.3	14
1274	Mode Matching for Optical Antennas. Physical Review Letters, 2017, 119, 217401.	2.9	13
1275	Investigating the origin of third harmonic generation from diabolo optical antennas. Applied Physics Letters, 2017, 111, 173102.	1.5	4
1276	Quantitative and Isolated Measurement of Far-Field Light Scattering by a Single Nanostructure. Physical Review Applied, 2017, 8, .	1.5	9
1277	DNA Origami Directed Au Nanostar Dimers for Single-Molecule Surface-Enhanced Raman Scattering. Journal of the American Chemical Society, 2017, 139, 17639-17648.	6.6	141
1278	Optical rectification using geometrical field enhancement in gold nano-arrays. Journal of Applied Physics, 2017, 122, .	1.1	13
1279	All-Dielectric Nanophotonics: Fundamentals, Fabrication, and Applications. World Scientific Series in Nanoscience and Nanotechnology, 2017, , 337-385.	0.1	3
1280	Integral equation technique for scatterers with mesoscopic insertions: Application to a carbon nanotube. Physical Review B, 2017, 96, .	1.1	8
1281	Surface-plasmon-enhanced quantum field entanglement through anisotropic Purcell factors. Physical Review A, 2017, 96, .	1.0	3
1282	Multimode directionality in all-dielectric metasurfaces. Physical Review B, 2017, 95, .	1.1	106
1283	Synchronization Dynamics in a Designed Open System. Physical Review Letters, 2017, 118, 203601.	2.9	13
1284	Dynamically reconfigurable metal-semiconductor Yagi-Uda nanoantenna. Physical Review B, 2017, 95, .	1.1	18
1285	Quantum description of the optical response of charged monolayer–thick metallic patch nanoantennas. Physical Review B, 2017, 95, .	1.1	9
1286	Single-Molecule Investigation of Energy Dynamics in a Coupled Plasmon-Exciton System. Physical Review Letters, 2017, 119, 013901.	2.9	115
1287	3D Confocal Raman Tomography to Probe Field Enhancements inside Supercluster Metamaterials. ACS Photonics, 2017, 4, 2070-2077.	3.2	11
1288	Near-field optical characteristics of Ag nanoparticle within the near-field scope of a metallic AFM tip irradiated by SNOM laser. Integrated Ferroelectrics, 2017, 178, 117-124.	0.3	28

#	Article	IF	CITATIONS
1289	Quantum Corrections in Nanoplasmonics: Shape, Scale, and Material. Physical Review Letters, 2017, 118, 157402.	2.9	105
1290	Self-Similar Nanocavity Design with Ultrasmall Mode Volume for Single-Photon Nonlinearities. Physical Review Letters, 2017, 118, 223605.	2.9	159
1291	Plasmon-Enhanced Second Harmonic Generation: from Individual Antennas to Extended Arrays. Plasmonics, 2017, 12, 1595-1600.	1.8	8
1292	Charge transfer between sensing and targeted metal nanoparticles in indirect nanoplasmonic sensors. Physica E: Low-Dimensional Systems and Nanostructures, 2017, 87, 205-208.	1.3	3
1293	Enabling inter- and intra-chip optical wireless interconnect by the aid of hybrid plasmonic leaky-wave optical antennas. Optics Communications, 2017, 382, 119-126.	1.0	9
1294	Femtosecond plasmon interferometer. Optics Communications, 2017, 382, 509-513.	1.0	10
1295	Nonlinear plasmonic imaging techniques and their biological applications. Nanophotonics, 2017, 6, 31-49.	2.9	27
1296	Beyond dipolar regime in high-order plasmon mode bowtie antennas. Optics Communications, 2017, 387, 48-54.	1.0	5
1297	Split-cross antenna based narrowband mid-infrared absorber for sensing applications. Optics Communications, 2017, 387, 55-60.	1.0	15
1298	Plasmonic colour generation. Nature Reviews Materials, 2017, 2, .	23.3	620
1298 1299	Plasmonic colour generation. Nature Reviews Materials, 2017, 2, . Quantum Plasmonics. Springer Series in Solid-state Sciences, 2017, , .	23.3 0.3	620 41
1298 1299 1300	Plasmonic colour generation. Nature Reviews Materials, 2017, 2, . Quantum Plasmonics. Springer Series in Solid-state Sciences, 2017, , . Design and Characterization of High Efficiency Nanoantenna Couplers With Plasmonic Integrated Circuit. Journal of Lightwave Technology, 2017, 35, 3182-3188.	23.3 0.3 2.7	620 41 11
1298 1299 1300 1301	Plasmonic colour generation. Nature Reviews Materials, 2017, 2, . Quantum Plasmonics. Springer Series in Solid-state Sciences, 2017, , . Design and Characterization of High Efficiency Nanoantenna Couplers With Plasmonic Integrated Circuit. Journal of Lightwave Technology, 2017, 35, 3182-3188. Hybrid Plasmonic Cavity Modes in Arrays of Gold Nanotubes. Advanced Optical Materials, 2017, 5, 1600731.	23.3 0.3 2.7 3.6	620 41 11 15
1298 1299 1300 1301 1302	Plasmonic colour generation. Nature Reviews Materials, 2017, 2, . Quantum Plasmonics. Springer Series in Solid-state Sciences, 2017, , . Design and Characterization of High Efficiency Nanoantenna Couplers With Plasmonic Integrated Circuit. Journal of Lightwave Technology, 2017, 35, 3182-3188. Hybrid Plasmonic Cavity Modes in Arrays of Gold Nanotubes. Advanced Optical Materials, 2017, 5, 1600731. Particle swarm optimization of broadband field enhancement with a grating-assisted plasmonic taper nanoantenna. Journal of Physics: Conference Series, 2017, 859, 012008.	23.3 0.3 2.7 3.6 0.3	 620 41 11 15 0
1298 1299 1300 1301 1302 1303	Plasmonic colour generation. Nature Reviews Materials, 2017, 2, .Quantum Plasmonics. Springer Series in Solid-state Sciences, 2017, , .Design and Characterization of High Efficiency Nanoantenna Couplers With Plasmonic Integrated Circuit. Journal of Lightwave Technology, 2017, 35, 3182-3188.Hybrid Plasmonic Cavity Modes in Arrays of Gold Nanotubes. Advanced Optical Materials, 2017, 5, 1600731.Particle swarm optimization of broadband field enhancement with a grating-assisted plasmonic taper nanoantenna. Journal of Physics: Conference Series, 2017, 859, 012008.Plasmonic nanoantenna for enhancement of vertical emission from whispering gallery mode laser. , 2017, , .	23.3 0.3 2.7 3.6 0.3	 620 41 11 15 0 0
1298 1299 1300 1301 1302 1303 1304	Plasmonic colour generation. Nature Reviews Materials, 2017, 2, . Quantum Plasmonics. Springer Series in Solid-state Sciences, 2017, , . Design and Characterization of High Efficiency Nanoantenna Couplers With Plasmonic Integrated Circuit. Journal of Lightwave Technology, 2017, 35, 3182-3188. Hybrid Plasmonic Cavity Modes in Arrays of Gold Nanotubes. Advanced Optical Materials, 2017, 5, 1600731. Particle swarm optimization of broadband field enhancement with a grating-assisted plasmonic taper nanoantenna. Journal of Physics: Conference Series, 2017, 859, 012008. Plasmonic nanoantenna for enhancement of vertical emission from whispering gallery mode laser. , 2017, , . Controllable Unidirectional Emission With Double-Resonant Plasmonic Antenna. IEEE Photonics Journal, 2017, 9, 1-10.	23.3 0.3 2.7 3.6 0.3	 620 41 11 15 0 0 5
1298 1299 1300 1301 1302 1303 1304	Plasmonic colour generation. Nature Reviews Materials, 2017, 2, . Quantum Plasmonics. Springer Series in Solid-state Sciences, 2017, , . Design and Characterization of High Efficiency Nanoantenna Couplers With Plasmonic Integrated Circuit. Journal of Lightwave Technology, 2017, 35, 3182-3188. Hybrid Plasmonic Cavity Modes in Arrays of Gold Nanotubes. Advanced Optical Materials, 2017, 5, 1600731. Particle swarm optimization of broadband field enhancement with a grating-assisted plasmonic taper nanoantenna. Journal of Physics: Conference Series, 2017, 859, 012008. Plasmonic nanoantenna for enhancement of vertical emission from whispering gallery mode laser. , 2017, , . Controllable Unidirectional Emission With Double-Resonant Plasmonic Antenna. IEEE Photonics Journal, 2017, 9, 1-10. Plasmonic nanoantennas with liquid crystals for nanocrystal fluorescence enhancement and polarization selectivity of classical and quantum light sources. Molecular Crystals and Liquid Crystals, 2017, 657, 173-183.	23.3 0.3 2.7 3.6 0.3 1.0	 620 41 11 15 0 0 5 6
ARTICLE IF CITATIONS Suppression of fluorescence quenching and strong-coupling in plasmonic nanocavities. , 2017, , . 1307 0 A 100,000 Scale Factor Radar Range. Scientific Reports, 2017, 7, 17767. 1.6 9 Nanofabrication with the thermal AFM metallic tip irradiated by continuous laser. Integrated 1309 0.3 32 Ferroelectrics, 2017, 179, 140-147. Dielectric Resonator Nanoantennas: A Review of the Theoretical Background, Design Examples, 1.2 Prospects, and Challenges. IEEE Antennas and Propagation Magazine, 2017, 59, 30-42. Nanopositioning MEMS stage for high speed positioning of metamaterials lenses for use in high 1311 0 resolution optical imaging., 2017,,. 1×2 Equilateral Triangular Dielectric Resonator Nantenna array for optical communication., 2017, , . Far-field to near-field investigation of thermal radiation emitted by a single optical nanoantenna., 1313 0 2017,,. Toroidal dipole associated resonant forward scattering of light by silicon nanoparticles., 2017, , . 1314 Boosting Hot-Electron Extraction Through Deep Groove Perfect Absorber for Si-Based 1315 1.3 4 Photodetector. IEEE Photonics Technology Letters, 2017, 29, 1884-1887. Generalization of the optical theorem to multipole sources in the scattering theory of 0.2 electromagnetic waves. Computational Mathematics and Mathematical Physics, 2017, 57, 1173-1180. Ultrafast tunable hybrid Yagi-Uda nanoantenna., 2017,,. 1317 0 Plane wave excitation of optical leaky waveguide antenna by arrayed slow taper., 2017,,. DUAL-POLARIZED MULTI-BAND INFRARED ENERGY HARVESTING USING H-SHAPED METASURFACE ABSORBER. 1319 0.6 7 Progress in Electromagnetics Research C, 2017, 76, 1-10. Impedance Matching Analysis of Cylindrical Plasmonic Nanoantennas Fed by Optical Transmission 1321 Terahertz Nanoantennas for Enhanced Spectroscopy., 0, , . 4 Vectorial control of nonlinear emission via chiral butterfly nanoantennas: generation of pure high order nonlinear vortex beams. Optics Express, 2017, 25, 2569. Resonant forward scattering of light by high-refractive-index dielectric nanoparticles with toroidal 1323 1.7 77 dipole contribution. Optics Letters, 2017, 42, 835. Bistable near field and bistable transmittance in 2D composite slab consisting of nonlocal core-Kerr 1324 shell inclusions. Optics Express, 2017, 25, 1062.

#	Article	IF	CITATIONS
1325	Plasmonic nanoantenna design and fabrication based on evolutionary optimization. Optics Express, 2017, 25, 10828.	1.7	21
1326	Hybridized metamaterial platform for nano-scale sensing. Optics Express, 2017, 25, 15590.	1.7	14
1327	Integrated Vivaldi plasmonic antenna for wireless on-chip optical communications. Optics Express, 2017, 25, 16214.	1.7	51
1328	Full control of far-field radiation via photonic integrated circuits decorated with plasmonic nanoantennas. Optics Express, 2017, 25, 17417.	1.7	4
1329	Ultracompact x-ray dosimeter based on scintillators coupled to a nano-optical antenna. Optics Letters, 2017, 42, 1361.	1.7	9
1330	Localized slow light phenomenon in symmetry broken terahertz metamolecule made of conductively coupled dark resonators. Optical Materials Express, 2017, 7, 1950.	1.6	21
1331	Ultrathin platelet antennas mediated light-matter interaction in monolayer MoS_2. Optics Express, 2017, 25, 10261.	1.7	2
1332	Packed Yagi–Uda nano-antennas using a unidirectional feed at visible wavelengths. Optics Letters, 2017, 42, 4788.	1.7	3
1333	Broadband Dipole-Loop Combined Nanoantenna Fed by Two-Wire Optical Transmission Line. International Journal of Antennas and Propagation, 2017, 2017, 1-13.	0.7	2
1334	Broadband Ultra-Deep Sub-Diffraction-Limit Optical Focusing by Metallic Graded-Index (MGRIN) Lenses. Nanomaterials, 2017, 7, 221.	1.9	12
1335	Dielectric Resonator Nantennas for Optical Communication. , 0, , .		0
1336	The New Concept of Nano-Device Spectroscopy Based on Rabi–Bloch Oscillations for THz-Frequency Range. Applied Sciences (Switzerland), 2017, 7, 721.	1.3	3
1337	Core-shell Yagi-Uda nanoantenna for highly efficient and directive emission. Journal of Physics: Conference Series, 2017, 929, 012066.	0.3	1
1338	Analytical investigation of surface plasmon excitation on a graphene sheet using four-wave mixing. Applied Optics, 2017, 56, 434.	2.1	4
1339	Time-dependent transport of a localized surface plasmon through a linear array of metal nanoparticles: Precursor and normal mode contributions. Physical Review B, 2018, 97, .	1.1	9
1340	Surface-Enhanced Spectroscopies of a Molecular Monolayer in an All-Dielectric Nanoantenna. ACS Photonics, 2018, 5, 1546-1557.	3.2	48
1341	From a quantum-electrodynamical light–matter description to novel spectroscopies. Nature Reviews Chemistry, 2018, 2, .	13.8	182
1342	Synthesis of Quantum Antennas for Shaping Field Correlations. Physical Review Applied, 2018, 9, .	1.5	18

#		IC	CITATIONS
#	Tunable plasmon-enhanced broadband light harvesting for perovskite solar cells. Journal of Power	IF 4.0	25
1343	Sources, 2018, 383, 42-49.	4.0	20
1344	Plasmon-Assisted Selective and Super-Resolving Excitation of Individual Quantum Emitters on a Metal Nanowire. Nano Letters, 2018, 18, 2009-2015.	4.5	26
1345	Coupling a single solid-state quantum emitter to an array of resonant plasmonic antennas. Scientific Reports, 2018, 8, 3415.	1.6	15
1346	Anomalous extinction in index-matched terahertz nanogaps. Nanophotonics, 2018, 7, 347-354.	2.9	17
1347	Roadmap on plasmonics. Journal of Optics (United Kingdom), 2018, 20, 043001.	1.0	240
1348	Ultrasmall Plasmonic Single Nanoparticle Light Source Driven by a Graphene Tunnel Junction. ACS Nano, 2018, 12, 2780-2788.	7.3	35
1349	Mapping the refractive index with single plasmonic nanoantenna. Scientific Reports, 2018, 8, 3861.	1.6	9
1350	Effect of adsorbate electrophilicity and spiky uneven surfaces on single gold nanourchin-based localized surface plasmon resonance sensors. Chemical Physics Letters, 2018, 697, 38-42.	1.2	7
1351	Zero-mode waveguide nanophotonic structures for single molecule characterization. Journal Physics D: Applied Physics, 2018, 51, 193001.	1.3	22
1352	Silicon Mie resonators for highly directional light emission from monolayer MoS2. Nature Photonics, 2018, 12, 284-290.	15.6	160
1353	Bose–Einstein condensation in a plasmonic lattice. Nature Physics, 2018, 14, 739-744.	6.5	151
1354	Spontaneous Emission Enhancement in Strain-Induced WSe ₂ Monolayer-Based Quantum Light Sources on Metallic Surfaces. ACS Photonics, 2018, 5, 1919-1926.	3.2	78
1355	Electrically tunable mid-infrared antennas based on VO ₂ . Journal of Modern Optics, 2018, 65, 1809-1816.	0.6	15
1356	Plasmon hybridization engineering in self-organized anisotropic metasurfaces. Nano Research, 2018, 11, 3943-3956.	5.8	28
1357	Babinet-Inverted Optical Nanoantenna Analogue of Electromagnetically Induced Transparency. Chinese Physics Letters, 2018, 35, 014201.	1.3	1
1358	Field enhanced graphene based dual hexagonal ring optical antenna for tip-enhanced spectroscopy. Infrared Physics and Technology, 2018, 90, 70-77.	1.3	3
1359	Plasmon Waveguiding in Nanowires. Chemical Reviews, 2018, 118, 2882-2926.	23.0	179
1360	Impact of Plasmon-Induced Atoms Migration in Harmonic Generation. ACS Photonics, 2018, 5, 1208-1214.	3.2	9

#	Article	IF	CITATIONS
1361	Resonant-Plasmon-Assisted Subwavelength Ablation by a Femtosecond Oscillator. Physical Review Applied, 2018, 9, .	1.5	7
1362	Broadside Nanoantennas Made of Single Silver Nanorods. ACS Nano, 2018, 12, 1720-1731.	7.3	24
1363	Ultra-fast dynamics in the nonlinear optical response of silver nanoprism ordered arrays. Nanoscale, 2018, 10, 5182-5190.	2.8	24
1364	Enhanced terahertz magnetic dipole response by subwavelength fiber. APL Photonics, 2018, 3, 051701.	3.0	6
1365	Hybrid Plasmonic Nanoantenna With the Capability of Monolithic Integration With Laser and Photodetector on InP Substrate. IEEE Transactions on Antennas and Propagation, 2018, 66, 3-8.	3.1	26
1366	Unidirectional emission in an all-dielectric nanoantenna. Journal of Physics Condensed Matter, 2018, 30, 124002.	0.7	23
1367	The Nanoscale Optical Properties of Complex Nanostructures. Springer Theses, 2018, , .	0.0	0
1368	Decay rate of magnetic dipoles near nonmagnetic nanostructures. Physical Review B, 2018, 97, .	1.1	23
1369	Construction of Core‧hell Ag@SiO ₂ Nanoarrays on Polystyrene Microspheres with Metalâ€Enhanced Fluorescence Effect. ChemNanoMat, 2018, 4, 170-174.	1.5	3
1370	Directional Optical Travelling Wave Antenna Based on Surface Plasmon Transmission Line. Laser and Photonics Reviews, 2018, 12, 1700073.	4.4	7
1371	DNA Origami Route for Nanophotonics. ACS Photonics, 2018, 5, 1151-1163.	3.2	171
1372	Spectroscopy and Biosensing with Optically Resonant Dielectric Nanostructures. Advanced Optical Materials, 2018, 6, 1701094.	3.6	120
1373	Surface-enhanced FAST CARS: en route to quantum nano-biophotonics. Nanophotonics, 2018, 7, 523-548.	2.9	16
1374	Concept of quantum timing jitter and non-Markovian limits in single-photon detection. Physical Review A, 2018, 97, .	1.0	8
1375	Hybrid Photon–Plasmon Coupling and Ultrafast Control of Nanoantennas on a Silicon Photonic Chip. Nano Letters, 2018, 18, 610-617.	4.5	30
1376	Optimum morphology of gold nanorods for light-induced hyperthermia. Nanoscale, 2018, 10, 2632-2638.	2.8	39
1377	Plasmon-Enhanced Ultrasensitive Surface Analysis Using Ag Nanoantenna. Analytical Chemistry, 2018, 90, 2018-2022.	3.2	30
1378	Near-Field Plasmonic Probe with Super Resolution and High Throughput and Signal-to-Noise Ratio. Nano Letters, 2018, 18, 881-885.	4.5	48

#	Article	IF	CITATIONS
1379	Nanoantenna-Enhanced Radiative and Anisotropic Decay Rates in Monolayer-Quantum Dots. Plasmonics, 2018, 13, 1811-1816.	1.8	2
1381	Plasmonic Cavity Coupling. ACS Photonics, 2018, 5, 43-53.	3.2	176
1382	Electronically Tunable Perfect Absorption in Graphene. Nano Letters, 2018, 18, 971-979.	4.5	197
1383	Optical proximity correction (OPC) in near-field lithography with pixel-based field sectioning time modulation. Nanotechnology, 2018, 29, 045301.	1.3	9
1384	Quantum description of radiative decay in optical cavities. Physical Review A, 2018, 97, .	1.0	3
1385	Enhanced Fluorescence of a Dye on DNA-Assembled Gold Nanodimers Discriminated by Lifetime Correlation Spectroscopy. Journal of Physical Chemistry C, 2018, 122, 10971-10980.	1.5	15
1386	Broadband Wireless Optical Nanolink Composed by Dipole-Loop Nanoantennas. IEEE Photonics Journal, 2018, 10, 1-8.	1.0	9
1387	Photo-induced heat generation in non-plasmonic nanoantennas. Physical Chemistry Chemical Physics, 2018, 20, 15307-15315.	1.3	19
1388	Silver nanowires for highly reproducible cantilever based AFM-TERS microscopy: towards a universal TERS probe. Nanoscale, 2018, 10, 7556-7565.	2.8	28
1389	Dipole-fiber system: from single photon source to metadevices. Frontiers of Optoelectronics, 2018, 11, 30-36.	1.9	0
1390	Light Funneling Profile During Enhanced Transmission Through a Subwavelength Metallic Slit. Plasmonics, 2018, 13, 2249-2254.	1.8	10
1391	Improving light trapping of polymer solar cell via doping a new array of triple core-shell spherical nanoparticles utilizing realistic modeling. Solar Energy, 2018, 163, 600-609.	2.9	13
1392	Metal–Dielectric Parabolic Antenna for Directing Single Photons. Nano Letters, 2018, 18, 3060-3065.	4.5	26
1393	Plasmons in N-doped graphene nanostructures tuned by Au/Ag films: a time-dependent density functional theory study. Physical Chemistry Chemical Physics, 2018, 20, 10439-10444.	1.3	4
1394	Nanoscale Mapping and Control of Antenna-Coupling Strength for Bright Single Photon Sources. Nano Letters, 2018, 18, 2538-2544.	4.5	33
1395	Wavelength-Dependent Third-Harmonic Generation in Plasmonic Gold Nanoantennas: Quantitative Determination of the d-Band Influence. ACS Photonics, 2018, 5, 1863-1870.	3.2	16
1396	Directional Enhancement Analysis of All-Dielectric Optical Nanoantennas Based on SIE Formulation. IEEE Photonics Technology Letters, 2018, 30, 123-126.	1.3	2
1397	Chiral Light Design and Detection Inspired by Optical Antenna Theory. Nano Letters, 2018, 18, 4633-4640.	4.5	73

		CITATION REPORT		
#	Article		IF	Citations
1398	Broadband absorption with gradient metasurfaces. EPJ Applied Metamaterials, 2018, 5	o, 4.	0.8	2
1399	Efficient frequency conversion by combined photonic–plasmonic mode coupling. Jo Physics, 2018, 123, .	urnal of Applied	1.1	3
1400	Suppressed Quenching and Strong-Coupling of Purcell-Enhanced Single-Molecule Emis Plasmonic Nanocavities. ACS Photonics, 2018, 5, 186-191.	sion in	3.2	137
1401	The rich photonic world of plasmonic nanoparticle arrays. Materials Today, 2018, 21, 3	303-314.	8.3	326
1402	Strong Light–Matter Interaction in Quantum Emitter/Metal Hybrid Nanostructures. 2018, 5, 2-23.	ACS Photonics,	3.2	168
1403	Novel Nanostructures and Materials for Strong Light–Matter Interactions. ACS Phot 24-42.	onics, 2018, 5,	3.2	365
1404	Yagi–Uda nanoantenna For NIR domain. Journal of Computational Electronics, 2018	, 17, 406-418.	1.3	3
1405	Using Particle Lithography to Tailor the Architecture of Au Nanoparticle Plasmonic Nar Journal of Physical Chemistry B, 2018, 122, 730-736.	oring Arrays.	1.2	10
1406	Exciton-plasmon coupling interactions: from principle to applications. Nanophotonics,	2018, 7, 145-167.	2.9	164
1407	An Analytic Approach to Nanofocusing with Pyramidal Horn Antennas. Plasmonics, 20	18, 13, 1417-1423.	1.8	1
1408	Future Solar Energy Devices. SpringerBriefs in Applied Sciences and Technology, 2018	,,.	0.2	3
1409	Plasmonic Substrates Do Not Promote Vibrational Energy Transfer at Solid–Liquid In of Physical Chemistry Letters, 2018, 9, 49-56.	terfaces. Journal	2.1	11
1410	Optical Antenna-Based Fluorescence Correlation Spectroscopy to Probe the Nanoscale Biological Membranes. Journal of Physical Chemistry Letters, 2018, 9, 110-119.	2 Dynamics of	2.1	41
1411	Differential Wavevector Distribution of Surface-Enhanced Raman Scattering and Fluor Film-Coupled Plasmonic Nanowire Cavity. Nano Letters, 2018, 18, 650-655.	escence in a	4.5	34
1412	Asymptotic analysis for close evaluation of layer potentials. Journal of Computational I 355, 327-341.	Physics, 2018,	1.9	14
1413	A hybridizable discontinuous Galerkin method for computing nonlocal electromagneti three-dimensional metallic nanostructures. Journal of Computational Physics, 2018, 35	c effects in 55, 548-565.	1.9	25
1414	Broadband bowtie belt nanoantennas. Journal of Modern Optics, 2018, 65, 228-235.		0.6	2
1415	Emitting-polarization of surface plasmons coupling in metallic nanoantennas. Journal o (United Kingdom), 2018, 20, 014002.	of Optics	1.0	3

#	Article	IF	CITATIONS
1416	Mapping Nanoscale Hotspots with Single-Molecule Emitters Assembled into Plasmonic Nanocavities Using DNA Origami. Nano Letters, 2018, 18, 405-411.	4.5	126
1417	Recent advances in enhanced luminescence upconversion of lanthanide-doped NaYF 4 phosphors. Physica B: Condensed Matter, 2018, 535, 278-286.	1.3	20
1418	Plasmon Enhanced Dual Band Upconverters. , 2018, , .		0
1419	Double-Pointed Optical Antenna in the Longwave Infrared (LWIR) Spectral Regime. , 2018, , .		1
1420	Direct Visualization of Wavelength-Dependent Single Dipoles Generated on Single Gold Nanourchins with Sharp Branches. Nanoscale Research Letters, 2018, 13, 256.	3.1	4
1421	Above-Threshold Photoemission of Compound Nanoantennas Irradiated by Femtosecond Laser Pulses. Bulletin of the Russian Academy of Sciences: Physics, 2018, 82, 448-452.	0.1	0
1422	Lightwaves in restricted geometries. , 0, , 92-146.		1
1423	Coupling configurations between extended surface electromagnetic waves and localized surface plasmons for ultrahigh field enhancement. Nanophotonics, 2018, 7, 1891-1916.	2.9	74
1424	Control Enhancement of Dipole Emission Using Hybrid Metal-Dielectric Nanoantenna. , 2018, , .		0
1425	Nano-Antenna Coupled Infrared Detector Design. Sensors, 2018, 18, 3714.	2.1	17
1426	Antennas for photons: light-matter coupling at nanoscale. , 2018, , .		0
1427	Fabrication of microparabolic reflector for infrared antenna coupled detectors. Micro and Nano Letters, 2018, 13, 1343-1348.	0.6	3
1428	General Method for Determining Light Scattering and Absorption of Nanoparticle Composites. Advanced Optical Materials, 2019, 7, 1801315.	3.6	10
1429	Plasmonic mid-infrared third harmonic generation in germanium nanoantennas. Light: Science and Applications, 2018, 7, 106.	7.7	42
1430	Exploring matter wave scattering by means of the phase diagram. Europhysics Letters, 2018, 124, 30006.	0.7	1
1431	Double Hot-Spot Dual-Polarization Chand-Bali Nanoantenna for NIR Detection Applications. , 2018, , .		0
1432	DNA-Assisted Assembly of Gold Nanostructures and Their Induced Optical Properties. Nanomaterials, 2018, 8, 994.	1.9	17
1433	Shaping the Nonlinear Emission Pattern of a Dielectric Nanoantenna by Integrated Holographic Gratings. Nano Letters, 2018, 18, 6750-6755.	4.5	30

#	Article	IF	CITATIONS
1434	All-optical active control of photon correlations: Dressed-state-assisted quantum interference effects. Physical Review A, 2018, 98, .	1.0	12
1435	Titanium Dioxide Modifications for Energy Conversion: Learnings from Dye-Sensitized Solar Cells. , 2018, , .		3
1436	E-beam-lithography free plasmonic slot waveguides for on-chip Raman spectroscopy. , 2018, , .		1
1437	Optical slot antennas and their applications to photonic devices. Nanophotonics, 2018, 7, 1617-1636.	2.9	21
1438	Self-Similar Multiresonant Nanoantenna Arrays for Sensing from Near- to Mid-Infrared. ACS Photonics, 2018, 5, 4903-4911.	3.2	59
1439	Compact and high-efficient wavelength demultiplexing coupler based on high-index dielectric nanoantennas. Chinese Physics B, 2018, 27, 094217.	0.7	4
1440	High signal-to-noise ratio ultra-compact lab-on-a-chip microflow cytometer enabled by silicon optical antennas. Optics Express, 2018, 26, 25645.	1.7	3
1441	Enhancing Reproducibility and Nonlocal Effects in Film oupled Nanoantennas. Advanced Optical Materials, 2018, 6, 1801177.	3.6	5
1442	Spatially-resolved fluorescence-detected two-dimensional electronic spectroscopy probes varying excitonic structure in photosynthetic bacteria. Nature Communications, 2018, 9, 4219.	5.8	86
1443	Coherent Excitation of Optical Oscillations in a Metal Nanosphere by a 2D Electric Current. Journal of Russian Laser Research, 2018, 39, 484-491.	0.3	0
1444	Low cost tips for tip-enhanced Raman spectroscopy fabricated by two-step electrochemical etching of 125 µm diameter gold wires. Beilstein Journal of Nanotechnology, 2018, 9, 2718-2729.	1.5	13
1445	Perturbation tuning of plasmon modes in semiconductor armchair nanoribbons. Physical Review B, 2018, 98, .	1.1	24
1446	Metamaterial Platforms for Spintronic Modulation of Mid-Infrared Response under Very Weak Magnetic Field. ACS Photonics, 2018, 5, 3956-3961.	3.2	20
1447	All-optical wireless wavelength multiplexing and demultiplexing using resonant cavity. Applied Optics, 2018, 57, 7997.	0.9	3
1448	Strongly coupled bacteriochlorin dyad studied using phase-modulated fluorescence-detected two-dimensional electronic spectroscopy. Optics Express, 2018, 26, 22327.	1.7	33
1449	Optical-Force-Dominated Directional Reshaping of Au Nanodisks in Al–Au Heterodimers. Nano Letters, 2018, 18, 6509-6514.	4.5	13
1450	Circular Dichroism of Chiral Molecules in DNA-Assembled Plasmonic Hotspots. ACS Nano, 2018, 12, 9110-9115.	7.3	110
1451	Ultracompact Graphene-Assisted Tunable Waveguide Couplers with High Directivity and Mode Selectivity. Scientific Reports, 2018, 8, 13362.	1.6	30

ARTICLE

1452

IF CITATIONS

1453	Terahertz Generation from Plasmonic Metasurfaces. , 2018, , .		0
1454	Size Control of Self-Organized Gold Nanoparticles on Nanopatterned Single Crystal Diamond. , 2018, ,		0
1455	Active optical antennas driven by inelastic electron tunneling. Nanophotonics, 2018, 7, 1503-1516.	2.9	15
1456	Recent advances on optical vortex generation. Nanophotonics, 2018, 7, 1533-1556.	2.9	238
1457	Optical wireless link between a nanoscale antenna and a transducing rectenna. Nature Communications, 2018, 9, 1992.	5.8	38
1458	Artificial Plasmonic Molecules and Their Interaction with Real Molecules. Chemical Reviews, 2018, 118, 5539-5580.	23.0	80
1459	Computing parametrized solutions for plasmonic nanogap structures. Journal of Computational Physics, 2018, 366, 89-106.	1.9	13
1460	Fundamental Limitations for Antenna Radiation Efficiency. IEEE Transactions on Antennas and Propagation, 2018, 66, 3894-3901.	3.1	33
1461	Low-Power Optical Trapping of Nanoparticles and Proteins with Resonant Coaxial Nanoaperture Using 10 nm Gap. Nano Letters, 2018, 18, 3637-3642.	4.5	134
1462	A Full-Visible-Spectrum Invisibility Cloak for Mesoscopic Metal Wires. Nano Letters, 2018, 18, 3865-3872.	4.5	25
1463	Sub-micrometer-scale chemical analysis by nanosecond-laser-induced tip-enhanced ablation and ionization time-of-flight mass spectrometry. Nano Research, 2018, 11, 5989-5996.	5.8	14
1464	Nonlinear optics in plasmonic nanostructures. Journal of Optics (United Kingdom), 2018, 20, 083001.	1.0	160
1465	Materials characterization by synchrotron x-ray microprobes and nanoprobes. Reviews of Modern Physics, 2018, 90, .	16.4	93
1466	Light control based on unidirectional scattering in metal–dielectric core–shell nanoparticles. Optics Communications, 2018, 426, 483-489.	1.0	11
1467	Subwavelength focusing by optical surface transformation. Optics Communications, 2018, 427, 139-146.	1.0	3
1468	Dramatic Enhancement of Quantum Cutting in Lanthanide-Doped Nanocrystals Photosensitized with an Aggregation-Induced Enhanced Emission Dye. Nano Letters, 2018, 18, 4922-4926.	4.5	37
1469	Light-Forbidden Transitions in Plasmon-Emitter Interactions beyond the Weak Coupling Regime. ACS Photonics, 2018, 5, 3415-3420.	3.2	40

Polarizability spectra of magnetized layered nanocomposites with an anisotropic core or cladding and localized surface plasmons. Journal of Optical Technology (A Translation of Opticheskii) Tj ETQq0 0 0 rgBT /Ovæløck 10 Tf 50 737 T

#	Article	IF	CITATIONS
1470	Controlling On-chip Optical Radiation with All-Dielectric Antennas: Reconfigurable Interconnects and Lab-on-achip Devices. Journal of Physics: Conference Series, 2018, 961, 012008.	0.3	0
1471	Polarization Control of Linear Dipole Radiation Using an Optical Nanofiber. Physical Review Applied, 2018, 9, .	1.5	13
1472	Two-dimensional light-emitting materials: preparation, properties and applications. Chemical Society Reviews, 2018, 47, 6128-6174.	18.7	167
1473	Harnessing magnetic dipole resonance in novel dielectric nanomaterials. Nanoscale, 2018, 10, 16102-16106.	2.8	2
1474	Quantum Sensing of Motion in Colloids via Timeâ€Đependent Purcell Effect. Laser and Photonics Reviews, 2018, 12, 1800042.	4.4	5
1475	Junction Plasmon Driven Population Inversion of Molecular Vibrations: A Picosecond Surface-Enhanced Raman Spectroscopy Study. Nano Letters, 2018, 18, 5791-5796.	4.5	23
1476	DNA-Functionalized Dye-Loaded Polymeric Nanoparticles: Ultrabright FRET Platform for Amplified Detection of Nucleic Acids. Journal of the American Chemical Society, 2018, 140, 10856-10865.	6.6	119
1477	Tailoring the quality factors and nonlinear response in hybrid plasmonic-dielectric metasurfaces. Optics Express, 2018, 26, 120.	1.7	15
1478	Nanoscale displacement sensing based on the interaction of a Gaussian beam with dielectric nano-dimer antennas. Optics Express, 2018, 26, 1000.	1.7	14
1479	Metal-dielectric antennas for efficient photon collection from diamond color centers. Optics Express, 2018, 26, 3341.	1.7	32
1480	All-silicon-based nano-antennas for wavelength and polarization demultiplexing. Optics Express, 2018, 26, 12344.	1.7	30
1481	Investigation of broadband terahertz generation from metasurface. Optics Express, 2018, 26, 14241.	1.7	29
1482	Nanophotonics with 2D transition metal dichalcogenides [Invited]. Optics Express, 2018, 26, 15972.	1.7	134
1483	Tailoring optical responses of infrared plasmonic metamaterial absorbers by optical phonons. Optics Express, 2018, 26, 16769.	1.7	36
1484	Circular dichroism enhancement in plasmonic nanorod metamaterials. Optics Express, 2018, 26, 17841.	1.7	52
1485	Probing vectorial near field of light: imaging theory and design principles of nanoprobes. Optics Express, 2018, 26, 18644.	1.7	10
1486	Imaging Electric and Magnetic Modes and Their Hybridization in Single and Dimer AlGaAs Nanoantennas. Advanced Optical Materials, 2018, 6, 1800664.	3.6	10
1487	Directional second-harmonic generation controlled by sub-wavelength facets of an organic mesowire. Applied Optics, 2018, 57, 5914.	0.9	5

#	Article	IF	CITATIONS
1488	Quasi-phase-matched second harmonic generation of long-range surface plasmon polaritons. Optics Express, 2018, 26, 4194.	1.7	4
1489	Semianalytical model for the electromagnetic enhancement by a rectangular nanowire optical antenna on metallic substrate. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2018, 35, 880.	0.8	4
1490	Efficient light generation from enhanced inelastic electron tunnelling. Nature Photonics, 2018, 12, 485-488.	15.6	100
1491	Relation between absorption and emission directivities for dipoles coupled with optical antennas. Physical Review A, 2018, 98, .	1.0	4
1492	Alternative Strategy Based on Scanning Probe Lithography for Patterning Complex Metallic Nanostrutures on Rigid or Flexible Substrates. Advanced Materials Technologies, 2018, 3, 1800134.	3.0	6
1493	Yagi-Uda nanoantenna enhanced metal-semiconductor-metal photodetector. Applied Physics Letters, 2018, 113, 023102.	1.5	8
1494	Highly Directive Hybrid Metal–Dielectric Yagi-Uda Nanoantennas. ACS Nano, 2018, 12, 8616-8624.	7.3	61
1495	Benchmarking the Use of Heavily Doped Ge for Plasmonics and Sensing in the Mid-Infrared. ACS Photonics, 2018, 5, 3601-3607.	3.2	31
1496	Quantum Antenna as an Open System: Strong Antenna Coupling with Photonic Reservoir. Applied Sciences (Switzerland), 2018, 8, 951.	1.3	9
1497	Electromagnetic Field in Hybrid Quantum Plasmonic-Photonic Systems. Condensed Matter, 2018, 3, 10.	0.8	5
1498	Light-assisted spontaneous birefringence and magnetic-domain formation in a suspension of gyrotropic nanoparticles. Physical Review A, 2018, 98, .	1.0	1
1499	Enhancement of the Local Electromagnetic Field over Planar "Particles―Formed on the Surface of a Polar Crystal. JETP Letters, 2018, 107, 512-515.	0.4	2
1500	Enhanced light–matter interaction of aligned armchair graphene nanoribbons using arrays of plasmonic nanoantennas. 2D Materials, 2018, 5, 045006.	2.0	10
1501	Exploring the Magnetic and Electric Side of Light through Plasmonic Nanocavities. Nano Letters, 2018, 18, 5098-5103.	4.5	16
1502	Nanoplasmonic optical antennas forÂlife sciences and medicine. Nature Reviews Materials, 2018, 3, 228-243.	23.3	106
1503	Counterâ€Propagating Optical Trapping of Resonant Nanoparticles Using a Uniaxial Crystal. Laser and Photonics Reviews, 2018, 12, 1800139.	4.4	6
1504	Superabsorbing Metasurfaces with Hybrid Ag–Au Nanostructures for Surfaceâ€Enhanced Raman Spectroscopy Sensing of Drugs and Chemicals. Small Methods, 2018, 2, 1800045.	4.6	29
1505	Laser beam deflector based generation of few-cycle electromagnetic pulses in a circular nonlinear medium. Optics Communications, 2018, 424, 170-176.	1.0	9

#	Article	IF	CITATIONS
1506	Phase-Change Metasurfaces for Dyamic Beam Steering and Beam Shaping in the Infrared. , 2018, , .		10
1507	Smart Surfaces: Magnetically Switchable Light Diffraction through Actuation of Superparamagnetic Plateâ€Like Microrods by Dynamic Magnetic Stray Field Landscapes. Advanced Optical Materials, 2018, 6, 1800133.	3.6	9
1508	Integrated Vivaldi antennas, an enabling technology for optical wireless networks on chip. , 2018, , .		4
1509	Photoluminescence-Driven Broadband Transmitting Directional Optical Nanoantennas. Nano Letters, 2018, 18, 6002-6008.	4.5	19
1510	Doughnut-shaped emission from vertical organic nanowire coupled to thin plasmonic film. Optics Letters, 2018, 43, 923.	1.7	2
1511	Efficient Emission Enhancement of Single CdSe/CdS/PMMA Quantum Dots through Controlled Near-Field Coupling to Plasmonic Bullseye Resonators. Nano Letters, 2018, 18, 5396-5400.	4.5	25
1512	Plasmonâ€Tunable Tip Pyramids: Monopole Nanoantennas for Nearâ€Field Scanning Optical Microscopy. Advanced Optical Materials, 2018, 6, 1800528.	3.6	35
1513	Ultrathin mono-resonant nano photovoltaic device for broadband solar conversion. Optics Express, 2018, 26, A806.	1.7	6
1514	Electromigrated electrical optical antennas for transducing electrons and photons at the nanoscale. Beilstein Journal of Nanotechnology, 2018, 9, 1964-1976.	1.5	9
1515	High-contrast switching and high-efficiency extracting for spontaneous emission based on tunable gap surface plasmon. Scientific Reports, 2018, 8, 11244.	1.6	12
1516	Double Blind Ultrafast Pulse Characterization by Mixed Frequency Generation in a Gold Antenna. ACS Photonics, 2018, 5, 3166-3171.	3.2	20
1517	Polarization-controlled coherent phonon generation in acoustoplasmonic metasurfaces. Physical Review B, 2018, 97, .	1.1	20
1518	Lithium Niobate Crystal with Embedded Au Nanoparticles: A New Saturable Absorber for Efficient Mode‣ocking of Ultrafast Laser Pulses at 1 µm. Advanced Optical Materials, 2018, 6, 1800357.	3.6	41
1519	Anapole-Enhanced Intrinsic Raman Scattering from Silicon Nanodisks. ACS Photonics, 2018, 5, 2730-2736.	3.2	73
1520	A parametric symmetry breaking transducer. Applied Physics Letters, 2018, 112, .	1.5	16
1521	Generation of Extremely Short Pulses upon Excitation of a Resonant Medium by a Superluminal Light Spot. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2018, 124, 536-540.	0.2	5
1522	Reconfigurable epsilon-near-zero metasurfaces via photonic doping. Nanophotonics, 2018, 7, 1117-1127.	2.9	47
1523	Hybrid Mushroom Nanoantenna for Fluorescence Enhancement by Matching the Stokes Shift of the Emitter. Journal of Physical Chemistry C, 2018, 122, 14771-14780.	1.5	14

#	Article	IF	Citations
1524	Environmental engineering of transition metal dichalcogenide optoelectronics. Frontiers of Physics, 2018, 13, 1.	2.4	13
1525	Meander Line Nanoantenna Absorber for Subwavelength Terahertz Detection. IEEE Photonics Journal, 2018, 10, 1-9.	1.0	5
1526	Coherent Control of a Plasmonic Nanoantenna Integrated on a Silicon Chip. ACS Photonics, 2018, 5, 2712-2717.	3.2	18
1527	Multiresonant Composite Optical Nanoantennas by Out-of-plane Plasmonic Engineering. Nano Letters, 2018, 18, 4409-4416.	4.5	32
1528	Localized Surface Plasmons of Supershape Nanoparticle Dimers. Plasmonics, 2019, 14, 285-291.	1.8	4
1529	Near-field optics on flatland: from noble metals to van der Waals materials. Advances in Physics: X, 2019, 4, 1593051.	1.5	8
1530	Rotation of Single-Molecule Emission Polarization by Plasmonic Nanorods. Journal of Physical Chemistry Letters, 2019, 10, 5047-5054.	2.1	17
1531	Upconversion enhancement of NaYF4:Yb3+, Tm3+ by coupling with broadband plasmonic Ag nanowires antenna. Journal of Luminescence, 2019, 215, 116682.	1.5	2
1532	The dual-frequency zero-backward scattering realized in a hybrid metallo-dielectric nanoantenna. AIP Advances, 2019, 9, 075121.	0.6	14
1533	The Atomic Force Microscopy for Nanoelectronics. Nanoscience and Technology, 2019, , 1-28.	1.5	4
1534	Scanning Frequency Comb Microscopy (SFCM) Shows Promise for Carrier Profiling at and Below the 7-nm Node. , 2019, , .		0
1535	Effects of transmission line geometry on traveling-wave metal-insulator-metal rectenna infrared detectors. Journal of Applied Physics, 2019, 126, 064503.	1.1	1
1536	Study of frequency-dependent plasmonic enhancement of a circular disk nano-optical antenna array using a femtosecond laser frequency comb. Journal Physics D: Applied Physics, 2019, 52, 385104.	1.3	2
1537	Microcavity-Mediated Spectrally Tunable Amplification of Absorption in Plasmonic Nanoantennas. Nano Letters, 2019, 19, 5297-5303.	4.5	26
1538	Colloidal Gold Nanorings and Their Plasmon Coupling with Gold Nanospheres. Small, 2019, 15, e1902608.	5.2	39
1539	Strong interaction between graphene and localized hot spots in all-dielectric metasurfaces. Journal Physics D: Applied Physics, 2019, 52, 385102.	1.3	10
1540	Extending Single-Molecule Förster Resonance Energy Transfer (FRET) Range beyond 10 Nanometers in Zero-Mode Waveguides. ACS Nano, 2019, 13, 8469-8480.	7.3	54
1541	Light emission driven by magnetic and electric toroidal dipole resonances in a silicon metasurface. Nanoscale, 2019, 11, 14446-14454.	2.8	38

#	Article	IF	CITATIONS
1542	Relative spectral tuning of the vertical versus base modes in plasmonic nanocones. Nanotechnology, 2019, 30, 415201.	1.3	8
1543	Electronic Structure-Dependent Surface Plasmon Resonance in Single Au–Fe Nanoalloys. Nano Letters, 2019, 19, 5754-5761.	4.5	37
1544	Optical rectification in a reconfigurable resistive switching filament. Applied Physics Letters, 2019, 115, 043101.	1.5	1
1545	Multiresonant plasmonics with spatial mode overlap: overview and outlook. Nanophotonics, 2019, 8, 1199-1225.	2.9	35
1546	Coherently Driven and Superdirective Antennas. Electronics (Switzerland), 2019, 8, 845.	1.8	5
1547	Combining isolated scatterers into a dimer by strong optical coupling. Physical Review A, 2019, 99, .	1.0	20
1548	Semiconductor infrared plasmonics. Nanophotonics, 2019, 8, 949-990.	2.9	93
1549	Hot electrons generated by intraband and interband transition detected using a plasmonic Cu/TiO ₂ nanodiode. RSC Advances, 2019, 9, 18371-18376.	1.7	38
1550	Monolithic waveguide laser mode-locked by embedded Ag nanoparticles operating at 1 \hat{l} /4m. Nanophotonics, 2019, 8, 859-868.	2.9	26
1551	Optoplasmonics: basic principles and applications. Journal of Optics (United Kingdom), 2019, 21, 113001.	1.0	30
1552	Progress of Photodetectors Based on the Photothermoelectric Effect. Advanced Materials, 2019, 31, e1902044.	11.1	132
1553	Integrated "Hot Spots†Tunable Subâ€10 nm Crescent Nanogap Arrays. Advanced Optical Materials, 2019, 7, 1901337.	3.6	18
1554	Adaptive printing using VO2 optical antennas with subwavelength resolution. Applied Physics Letters, 2019, 115, 161105.	1.5	7
1555	SPPs in a double layer graphene system with an anisotropic dielectric. Results in Physics, 2019, 15, 102718.	2.0	6
1556	Tunable Surface Plasmon Polaritons with Monolithic Schottky Diodes. ACS Applied Electronic Materials, 2019, 1, 2124-2129.	2.0	13
1557	Study of the Molecular Bending in Azobenzene Self-Assembled Monolayers Observed by Tip-Enhanced Raman Spectroscopy in Scanning Tunneling Mode. Journal of Physical Chemistry C, 2019, 123, 26554-26563.	1.5	5
1558	Plasmonic Electricity: Fluorophore-Induced Plasmonic Current. Journal of Physical Chemistry C, 2019, 123, 27770-27777.	1.5	6
1559	Steering and focusing of fundamental shear horizontal guided waves in plates by using multiple-strip metasurfaces. Europhysics Letters, 2019, 127, 46004.	0.7	18

		CITATION REPORT		
#	Article		IF	CITATIONS
1560	Antenna surface plasmon emission by inelastic tunneling. Nature Communications, 201	19, 10, 4949.	5.8	37
1561	Growth and characterization of two-dimensional crystals for communication and energ applications. Progress in Crystal Growth and Characterization of Materials, 2019, 65, 10	y 00465.	1.8	5
1562	Arrays of Bowtie Plasmonic Nanoantennas for Field Enhancement in MOEMS. , 2019, , .			0
1563	A Review: Evolution and Diversity of Optical Fibre Plasmonic Sensors. Sensors, 2019, 19	9, 4874.	2.1	44
1564	Resonance effects in photonic crystals and metamaterials: (100th anniversary of the log Physics-Uspekhi, 2019, 62, 823-838.	ffe Institute).	0.8	22
1565	Spectrally Sharp Plasmon Resonances in the Near Infrared: Subwavelength Core-shell N Physical Review Applied, 2019, 12, .	anoparticles.	1.5	6
1566	Cascaded plasmonic nanorod antenna for large broadband local electric field enhancem Physics B, 2019, 28, 107802.	ient. Chinese	0.7	2
1567	The magnetic Purcell effect: The case of an emitter near an antiferromagnet. Europhysic 127, 37002.	cs Letters, 2019,	0.7	3
1568	Optical antennas driven by quantum tunneling: a key issues review. Reports on Progres 2019, 82, 112401.	s in Physics,	8.1	56
1569	Enhanced Directional Fluorescence Emission of Randomly Oriented Emitters via a Meta Hybrid Nanoantenna. Journal of Physical Chemistry C, 2019, 123, 21150-21160.	l–Dielectric	1.5	27
1570	Novel Terahertz Sources in the Form of Multispectral Resonators Boosted by Both Pum Field Enhancement and Terahertz Purcell Effect. ACS Photonics, 2019, 6, 2223-2230.	p Light Local	3.2	0
1571	Evidence of Cascaded Third-Harmonic Generation in Noncentrosymmetric Gold Nanoan Letters, 2019, 19, 7013-7020.	tennas. Nano	4.5	23
1572	Broadband tunable plasmonic substrate using self-assembled gold–silver alloy nanop Current Applied Physics, 2019, 19, 1245-1251.	articles.	1.1	8
1573	Directing Single-Molecule Emission with DNA Origami-Assembled Optical Antennas. Na 19, 6629-6634.	no Letters, 2019,	4.5	37
1574	Yagi-Uda Nanoantenna Structures for Infrared Detection Using Silicon. , 2019, , .			0
1575	Manipulate the Dipole Emission Properties Using Highly Symmetrical Nanoantenna. , 20	019,,.		0
1576	Design and Analysis of a Ag Rhombus Nanoparticle Film-Coupled Plasmonic Nanostruct 2019, 4, 14759-14764.	ure. ACS Omega,	1.6	1
1577	Dielectric nanoantennas to manipulate solid-state light emission. Journal of Applied Phy	sics, 2019, 126,	1.1	76

#	Article	IF	CITATIONS
1578	Unidirectional Light Scattering With High \$f/b\$ at Optical Frequencies Based on Coupled Nanoantennas. IEEE Access, 2019, 7, 117916-117924.	2.6	1
1579	Color routing at the nanoscale. Light: Science and Applications, 2019, 8, 58.	7.7	4
1580	Nano-plasmonic Bundt Optenna for broadband polarization-insensitive and enhanced infrared detection. Scientific Reports, 2019, 9, 12197.	1.6	7
1581	High Fluence Chromium and Tungsten Bowtie Nano-antennas. Scientific Reports, 2019, 9, 13023.	1.6	4
1582	Enhancing Plasmonic–Photonic Hybrid Cavity Modes by Coupling of Individual Plasmonic Nanoparticles. Journal of Physical Chemistry C, 2019, 123, 24255-24262.	1.5	14
1583	Spectral Reshaping of Single Dye Molecules Coupled to Single Plasmonic Nanoparticles. Journal of Physical Chemistry Letters, 2019, 10, 5764-5769.	2.1	12
1584	Coherent Multiphoton Control of Gallium Phosphide Nanodisk Resonances. ACS Photonics, 2019, 6, 2487-2491.	3.2	19
1585	Deep Ultraviolet Plasmonic Enhancement of Single Protein Autofluorescence in Zero-Mode Waveguides. Nano Letters, 2019, 19, 7434-7442.	4.5	38
1586	Design and parametric simulation of triangle nano-particle structures for the visible and near-infrared frequencies. SN Applied Sciences, 2019, 1, 1.	1.5	2
1587	Carving Plasmon Modes in Silver Sierpiński Fractals. ACS Photonics, 2019, 6, 2974-2984.	3.2	9
1588	Modeling and observation of mid-infrared nonlocality in effective epsilon-near-zero ultranarrow coaxial apertures. Nature Communications, 2019, 10, 4476.	5.8	26
1589	Terahertz field confinement and enhancement in various sub-wavelength structures. Journal of Applied Physics, 2019, 126, .	1.1	16
1590	Elongated Metal Nanocap with Two Magnetic Dipole Resonances and Its Application for Upconversion Enhancement. Journal of Physical Chemistry C, 2019, 123, 25809-25815.	1.5	4
1591	Dynamics of electron-emission currents in plasmonic gaps induced by strong fields. Faraday Discussions, 2019, 214, 147-157.	1.6	15
1592	3D zig-zag nanogaps based on nanoskiving for plasmonic nanofocusing. Nanoscale, 2019, 11, 3583-3590.	2.8	11
1593	Coupling light and sound: giant nonlinearities from oscillating bubbles and droplets. Nanophotonics, 2019, 8, 367-390.	2.9	23
1594	Tunable Optical Antennas Using Vanadium Dioxide Metal-Insulator Phase Transitions. Plasmonics, 2019, 14, 1283-1288.	1.8	9
1595	Biological Applications of Nanoparticles in Optical Microscopy. , 2019, , 469-495.		1

#	Article	IF	CITATIONS
1596	SERS Detection via Individual Bowtie Nanoantennas Integrated in Si ₃ N ₄ Waveguides. IEEE Journal of Selected Topics in Quantum Electronics, 2019, 25, 1-6.	1.9	15
1597	Two-Dimensional Optical Metasurfaces: From Plasmons to Dielectrics. Advances in Condensed Matter Physics, 2019, 2019, 1-15.	0.4	19
1598	Au Nanobottles with Synthetically Tunable Overall and Opening Sizes for Chemo-Photothermal Combined Therapy. ACS Applied Materials & Interfaces, 2019, 11, 5353-5363.	4.0	19
1599	Coherent Raman scattering with plasmonic antennas. Nanophotonics, 2019, 8, 991-1021.	2.9	13
1600	A Highâ€Index Ge ₂ Sb ₂ Te ₅ â€Based Fabry–Perot Cavity and Its Application for Thirdâ€Harmonic Generation. Laser and Photonics Reviews, 2019, 13, 1900063.	4.4	36
1601	Generating Ultrabroadband Deep-UV Radiation and Sub-10 nm Gap by Hybrid-Morphology Gold Antennas. Nano Letters, 2019, 19, 4779-4786.	4.5	15
1602	Simulation of sub-nm carrier profiling by scanning frequency comb microscopy. AIP Advances, 2019, 9, .	0.6	0
1603	Mid-Infrared Nanofocusing Using Fragmented High-Order Transformation Optics. IEEE Transactions on Antennas and Propagation, 2019, 67, 6515-6522.	3.1	2
1604	Lattice resonances in dielectric metasurfaces. Journal of Applied Physics, 2019, 125, .	1.1	87
1605	High external-efficiency nanofocusing for lens-free near-field optical nanoscopy. Nature Photonics, 2019, 13, 636-643.	15.6	67
1606	A nanochannel through a plasmonic antenna gap: an integrated device for single particle counting. Lab on A Chip, 2019, 19, 2394-2403.	3.1	22
1607	Tailoring Second-Harmonic Emission from (111)-GaAs Nanoantennas. Nano Letters, 2019, 19, 3905-3911.	4.5	66
1608	Strong nonlinear optical response from ZnO by coupled and lattice-matched nanoantennas. Journal of Applied Physics, 2019, 125, 193104.	1.1	3
1609	Obtaining the circular polarization in a nano-dielectric resonator antenna for photonics applications. Semiconductor Science and Technology, 2019, 34, 07LT01.	1.0	34
1610	Dual-band unidirectional forward scattering of Au–Si sliced nanorod in the visible region. Applied Physics A: Materials Science and Processing, 2019, 125, 1.	1.1	4
1611	Unusual terahertz waveforms from a resonant medium controlled by diffractive optical elements. Scientific Reports, 2019, 9, 7444.	1.6	34
1612	Metalens-Based Miniaturized Optical Systems. Micromachines, 2019, 10, 310.	1.4	45
1613	Characterisation of onâ€chip wireless interconnects based on silicon nanoantennas via nearâ€field scanning optical microscopy. IET Optoelectronics, 2019, 13, 72-76.	1.8	7

#	Article	IF	CITATIONS
1614	Metasurfaceâ€Based Molecular Biosensing Aided by Artificial Intelligence. Angewandte Chemie - International Edition, 2019, 58, 14810-14822.	7.2	89
1615	All-Silicon On-Chip Optical Nanoantennas as Efficient Interfaces for Plasmonic Devices. ACS Photonics, 2019, 6, 1094-1099.	3.2	14
1616	Plasmon-assisted bandgap engineering in dilute nitrides. Nanophotonics, 2019, 8, 1465-1476.	2.9	4
1617	Photon-Assisted Tunneling in Carbon Nanotube Optical Rectennas: Characterization and Modeling. ACS Applied Electronic Materials, 2019, 1, 692-700.	2.0	17
1618	Colour routing with single silver nanorods. Light: Science and Applications, 2019, 8, 39.	7.7	34
1619	Metaoberflähenâ€basierte molekulare Biosensorik unterstützt von künstlicher Intelligenz. Angewandte Chemie, 2019, 131, 14952-14965.	1.6	4
1620	Watching a Single Fluorophore Molecule Walk into a Plasmonic Hotspot. ACS Photonics, 2019, 6, 985-993.	3.2	34
1621	Design of anapole mode electromagnetic field enhancement structures for biosensing applications. Optics Express, 2019, 27, 7196.	1.7	37
1622	Direct Imaging of the Energy-Transfer Enhancement between Two Dipoles in a Photonic Cavity. Physical Review X, 2019, 9, .	2.8	22
1623	Resonance Trimming in Dielectric Resonant Metasurfaces. IEEE Journal of Selected Topics in Quantum Electronics, 2019, 25, 1-5.	1.9	4
1624	Nanoscale Broadband Deep-Ultraviolet Light Source from Plasmonic Nanoholes. ACS Photonics, 2019, 6, 858-863.	3.2	17
1625	Monochromatic Multimode Antennas on Epsilonâ€Nearâ€Zero Materials. Advanced Optical Materials, 2019, 7, 1800826.	3.6	12
1626	Spectral Tuning of High Order Plasmonic Resonances in Multimodal Film oupled Crystalline Cavities. Advanced Optical Materials, 2019, 7, 1801787.	3.6	4
1627	Nanostructured metals for light-based technologies. Nanotechnology, 2019, 30, 212001.	1.3	18
1628	Silver nanowires with optimized silica coating as versatile plasmonic resonators. Scientific Reports, 2019, 9, 3859.	1.6	29
1629	Limits of Babinet's principle for solid and hollow plasmonic antennas. Scientific Reports, 2019, 9, 4004.	1.6	29
1630	Plasmonic mode conversion in individual tilted 3D nanostructures. Nanoscale, 2019, 11, 5429-5440.	2.8	14
1631	Hybridized Guided-Mode Resonances via Colloidal Plasmonic Self-Assembled Grating. ACS Applied Materials & Material	4.0	146

		CITATION RE	PORT	
#	Article		IF	CITATIONS
1632	Huygens' dipole for polarization-controlled nanoscale light routing. Physical Review A, 2	.019, 99, .	1.0	26
1633	Enhancing functionalities of atomically thin semiconductors with plasmonic nanostruct Nanophotonics, 2019, 8, 577-598.	ures.	2.9	26
1634	Spatial Distribution of the Nonlinear Photoluminescence in Au Nanowires. ACS Photonic 1240-1247.	cs, 2019, 6,	3.2	12
1635	Plasmon-assisted Förster resonance energy transfer at the single-molecule level in the quenching regime. Nanoscale, 2019, 11, 7674-7681.	moderate	2.8	56
1636	Super-resolution Mapping of Enhanced Emission by Collective Plasmonic Resonances. A 13, 4514-4521.	.CS Nano, 2019,	7.3	30
1637	Plasmonicâ€Nanopore Biosensors for Superior Singleâ€Molecule Detection. Advanced I e1900422.	Materials, 2019, 31,	11.1	124
1638	Polarization- and wavelength-dependent defocused scattering imaging of single gold na multiple long branches. Photochemical and Photobiological Sciences, 2019, 18, 1430-1	anostars with 435.	1.6	6
1640	Nanophotonic Advances for Room-Temperature Single-Photon Sources. Springer Series Sciences, 2019, , 103-178.	in Optical	0.5	10
1641	DNAâ€Mediated Selfâ€Assembly of Plasmonic Antennas with a Single Quantum Dot in 2019, 15, e1804418.	the Hot Spot. Small,	5.2	29
1642	Detecting a Zeptogram of Pyridine with a Hybrid Plasmonic–Photonic Nanosensor. A0 4, 586-594.	CS Sensors, 2019,	4.0	7
1643	Optical Beam Expander With Parabolic Photonic Bandgap Reflector for Efficient Excitati Leaky Wave Antenna. Journal of Lightwave Technology, 2019, 37, 2094-2099.	on of Optical	2.7	6
1644	Zinc oxide based dielectric nanoantennas for efficient nonlinear frequency conversion. J Applied Physics, 2019, 125, .	ournal of	1.1	7
1645	Quantum dot plasmonics: from weak to strong coupling. Nanophotonics, 2019, 8, 559	-575.	2.9	112
1646	Scattering of electromagnetic waves by cylinder inside uniaxial hyperbolic medium. Opt 2019, 27, 3991.	ics Express,	1.7	6
1647	Exciton Gating and Triplet Deshelving in Single Dye Molecules Excited by Perovskite Nai Antennae. Journal of Physical Chemistry Letters, 2019, 10, 1055-1062.	nocrystal FRET	2.1	14
1648	Nanostructured photovoltaics. Nano Futures, 2019, 3, 012002.		1.0	9
1649	Semiconductor-dielectric metasurfaces for low-loss field concentrators in the optical rai	тge. , 2019, ,		0
1650	Reconfigurable Spoof Surface Plasmon Polariton Band-stop Filter with Monolithic Schot 2019, , .	tky Diodes. ,		1

#	Article	IF	CITATIONS
1651	Study of a Microstrip Bow Tie Patch Antenna Loaded with a Novel Triangular SRR of Meta-Material for RFID Applications. , 2019, , .		1
1652	A Novel Design of Multilayered Bowtie Nano-Antenna for SERS Applications. , 2019, , .		2
1653	Hyperbolic Metamaterial Near-field Coupler. , 2019, , .		3
1654	Fano Resonant Cuboidal Dielectric Nanoantennas. Optics and Spectroscopy (English Translation of) Tj ETQq1 1	0.784314 ı 0.2	rgBT /Overlo
1655	Greatly amplified spontaneous emission of colloidal quantum dots mediated by a dielectric-plasmonic hybrid nanoantenna. Nanophotonics, 2019, 8, 2313-2319.	2.9	25
1656	Photocurrent enhancement by a local electric field on DNA-modified electrodes covered with gold nanoparticles. Analyst, The, 2019, 144, 6193-6196.	1.7	0
1657	Tunable fluorescence emission of molecules with controllable positions within the metallic nanogap between gold nanorods and a gold film. Journal of Materials Chemistry C, 2019, 7, 13526-13535.	2.7	6
1658	Strong second-harmonic generation from Au–Al heterodimers. Nanoscale, 2019, 11, 23475-23481.	2.8	13
1659	Hollow Au nanorattles for boosting the performance of organic photovoltaics. Journal of Materials Chemistry A, 2019, 7, 26797-26803.	5.2	11
1660	Electrically Driven Optical Antennas Based on Template Dielectrophoretic Trapping. ACS Nano, 2019, 13, 14041-14047.	7.3	19
1661	A rotary plasmonic nanoclock. Nature Communications, 2019, 10, 5394.	5.8	50
1662	Independent engineering of individual plasmon modes in plasmonic dimers with conductive and capacitive coupling. Nanophotonics, 2020, 9, 623-632.	2.9	17
1663	Optical Properties of Plasmonic Nanoantennas Based on Arrays of Interacting V-Shaped Structures in the Mid-IR Range. Bulletin of the Lebedev Physics Institute, 2019, 46, 344-347.	0.1	1
1664	40 GHz-rate all-optical cross-modulation of core-guided near infrared light in single mode fiber by surface plasmons on gold-coated tilted fiber Bragg gratings. APL Photonics, 2019, 4, 126104.	3.0	9
1665	Cooperative interactions between nano-antennas in a high-Q cavity for unidirectional light sources. Light: Science and Applications, 2019, 8, 115.	7.7	36
1666	Active coated nano rod antennas for enhanced and directive scattering phenomena. EPJ Applied Metamaterials, 2019, 6, 19.	0.8	2
1667	Self-assembly of spherical and rod-shaped nanoparticles with full positional control. Nanoscale, 2019, 11, 22841-22848.	2.8	14
1668	Large-area, lithography-free, narrow-band and highly directional thermal emitter. Nanoscale, 2019, 11, 19742-19750.	2.8	39

#	Article	IF	CITATIONS
1669	Radiation pattern control of core shell nanoantenna by manipulation of nonlinear properties. Microsystem Technologies, 2019, 25, 2289-2299.	1.2	1
1670	Plasmonics for the Characterization of Metal Organic Films and Nanoparticles. , 2019, , 223-259.		1
1671	Energy-Momentum Cathodoluminescence Imaging of Anisotropic Directionality in Elliptical Aluminum Plasmonic Bullseye Antennas. ACS Photonics, 2019, 6, 573-580.	3.2	9
1672	Directional Modulation of Fluorescence by Nanowireâ€Based Optical Traveling Wave Antennas. Advanced Optical Materials, 2019, 7, 1801362.	3.6	13
1673	Surface Plasmon Resonance in a Metallic Nanoparticle Embedded in a Semiconductor Matrix: Exciton–Plasmon Coupling. ACS Photonics, 2019, 6, 204-210.	3.2	16
1674	Coupling of Fluorophores in Single Nanoapertures with Tamm Plasmon Structures. Journal of Physical Chemistry C, 2019, 123, 1413-1420.	1.5	15
1675	Surface current confinement in circular ring optical antennas and its enhancement effect to the photoresponse of longwave infrared photodetectors. Journal Physics D: Applied Physics, 2019, 52, 095103.	1.3	0
1676	Reshaping the Second-Order Polar Response of Hybrid Metal–Dielectric Nanodimers. Nano Letters, 2019, 19, 877-884.	4.5	28
1677	Plasmonic dynamics measured with frequency-comb-referenced phase spectroscopy. Nature Physics, 2019, 15, 132-137.	6.5	15
1678	Enhancement of unidirectional scattering through magnetic and electric resonances by nanodisks' chain. Optical Review, 2019, 26, 131-142.	1.2	1
1679	Nonlinear Diffraction in Asymmetric Dielectric Metasurfaces. Nano Letters, 2019, 19, 1044-1051.	4.5	45
1680	Progress of binary cooperative complementary interfacial nanomaterials. Nano Today, 2019, 24, 48-80.	6.2	14
1681	Light Concentration by Metal-Dielectric Micro-Resonators for SERS Sensing. Materials, 2019, 12, 103.	1.3	28
1682	Kerker's conditions for chiral particles: Enhanced spin-to-orbital angular momentum conversion of the scattered light. Journal of Quantitative Spectroscopy and Radiative Transfer, 2019, 222-223, 60-64.	1.1	0
1683	Ultrasensitive and recyclable superstructure of Au SiO2@Ag wire for surface-enhanced Raman scattering detection of thiocyanate in urine and human serum. Analytica Chimica Acta, 2019, 1049, 179-187.	2.6	12
1684	A design method of spatiotemporal optical pulse using levelâ€set based time domain topology optimization. International Journal for Numerical Methods in Engineering, 2019, 117, 605-622.	1.5	3
1685	Plasmonic Micro-Antenna Characteristics Using Gold Grating Embedded in a Panda-Ring Circuit. Plasmonics, 2020, 15, 279-285.	1.8	15
1686	A circularly polarized hybrid plasmonic nanoantenna. Microwave and Optical Technology Letters, 2020, 62, 278-283.	0.9	6

	CITATION RE	PORT	
#	Article	IF	Citations
1687	Nano avity QED with Tunable Nanoâ€Tip Interaction. Advanced Quantum Technologies, 2020, 3, 1900087.	1.8	22
1688	Antenna-coupled vacuum channel nano-diode with high quantum efficiency. Nanoscale, 2020, 12, 1495-1499.	2.8	8
1689	Research progress of femtosecond surface plasmon polariton*. Chinese Physics B, 2020, 29, 027302.	0.7	14
1690	Ultrastrong coupling of CdZnS/ZnS quantum dots to bonding breathing plasmons of aluminum metal–insulator–metal nanocavities in near-ultraviolet spectrum. Nanoscale, 2020, 12, 3112-3120.	2.8	9
1691	Dielectric tensor of a rectangular arrangement of Ag nanoparticles in anisotropic <mml:math altimg="si15.svg" display="inline" id="d1e396" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>www.w3.org/1998/Math/MathML" display="inline" id="d1e396" altimg="si15.svg"><mml:mi>www.w3.org/1998/Math/MathML" display="inline" id="d1e396" altimg="si15.svg"><mml:mi></mml:mi><mml:mi>i</mml:mi><mml:mi>k</mml:mi>b</mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:math>	nml:mi> <r< td=""><td>nml:msub><n< td=""></n<></td></r<>	nml:msub> <n< td=""></n<>
1692	Ultrafast Single-Molecule Fluorescence Measured by Femtosecond Double-Pulse Excitation Photon Antibunching. Nano Letters, 2020, 20, 1074-1079.	4.5	19
1693	Polarized Single-Particle Quantum Dot Emitters through Programmable Cluster Assembly. ACS Nano, 2020, 14, 1369-1378.	7.3	34
1694	Forward and Backward Switching of Nonlinear Unidirectional Emission from GaAs Nanoantennas. ACS Nano, 2020, 14, 1379-1389.	7.3	53
1695	Controlling spontaneous emission with dielectric optical antennas. , 2020, , 109-144.		1
1696	Switchable multifunctional fish-bone elastic metasurface for transmitted plate wave modulation. Journal of Sound and Vibration, 2020, 470, 115168.	2.1	52
1697	Colloidal Plasmonics for Active Nanophotonics. Proceedings of the IEEE, 2020, 108, 704-720.	16.4	24
1698	Growth of Au Hollow Stars and Harmonic Excitation Energy Transfer. ACS Nano, 2020, 14, 736-745.	7.3	12
1699	Gap-Plasmon-Enhanced Second-Harmonic Generation in Epsilon-Near-Zero Nanolayers. ACS Photonics, 2020, 7, 174-179.	3.2	23
1700	Design of Aluminum Bowtie Nanoantenna Array with Geometrical Control to Tune LSPR from UV to Near-IR for Optical Sensing. Plasmonics, 2020, 15, 609-621.	1.8	53
1701	Plasmonâ€Enhanced Photoluminescence and Photocatalysis Reactions in Metalâ€Semiconductor Nanomaterials: UVâ€Generated Hot Electron in Goldâ€Zinc Oxide. ChemPhotoChem, 2020, 4, 181-194.	1.5	7
1702	Nanoantennas with balanced gain and loss. Nanophotonics, 2020, 9, 473-480.	2.9	19
1703	Nanofabrication of plasmon-tunable nanoantennas for tip-enhanced Raman spectroscopy. Journal of Chemical Physics, 2020, 153, 114201.	1.2	14
1704	Numerical analysis of tunable nonlinear plasmonic router based on nanoscale ring resonators. Optical and Quantum Electronics, 2020, 52, 1.	1.5	7

#	Article	IF	CITATIONS
1705	WS ₂ Monolayers Coupled to Hyperbolic Metamaterial Nanoantennas: Broad Implications for Light–Matter-Interaction Applications. ACS Applied Nano Materials, 2020, 3, 10226-10233.	2.4	26
1706	Designer Bloch plasmon polariton dispersion in grating-coupled hyperbolic metamaterials. APL Photonics, 2020, 5, 076109.	3.0	20
1707	Nanoantenna Array Design on Grounded Dielectric Substrate for High Field Enhancement and Absorption. , 2020, , .		0
1708	Optical nanoantenna for beamed and surfaceâ€enhanced Raman spectroscopy. Journal of Raman Spectroscopy, 2020, 51, 2121-2145.	1.2	12
1709	Effect of dynamic ions on band structure of plasmon excitations. Physics of Plasmas, 2020, 27, .	0.7	3
1710	Impact of Vibrational Modes in the Plasmonic Purcell Effect of Organic Molecules. ACS Photonics, 2020, 7, 3369-3375.	3.2	19
1711	Nanoantennas embedded in zinc oxide for second harmonic generation enhancement. Journal of Applied Physics, 2020, 128, 043107.	1.1	3
1712	Manipulating light scattering by nanoparticles with magnetoelectric coupling. Physical Review B, 2020, 102, .	1.1	7
1713	Electroâ€Optical Detection of Single Molecules Based on Solidâ€State Nanopores. Small Structures, 2020, 1, 2000003.	6.9	18
1714	Dielectric Nanoantennas for Strain Engineering in Atomically Thin Two-Dimensional Semiconductors. ACS Photonics, 2020, 7, 2413-2422.	3.2	26
1716	Critical Review: digital resolution biomolecular sensing for diagnostics and life science research. Lab on A Chip, 2020, 20, 2816-2840.	3.1	35
1717	Quasinormal mode expansion of optical far-field quantities. Physical Review B, 2020, 102, .	1.1	15
1718	Coupling theory of quasinormal modes for lossy and dispersive plasmonic nanoresonators. Physical Review B, 2020, 102, .	1.1	18
1719	Recent Advances of Spatial Selfâ€Phase Modulation in 2D Materials and Passive Photonic Device Applications. Small, 2020, 16, e2002252.	5.2	35
1720	Far-Field Control of Nanoscale Hotspots by Near-Field Interference. ACS Photonics, 2020, 7, 2381-2389.	3.2	4
1721	Tunable Directional Scattering from High-Refractive-Index Particles Dispersed in an Anisotropic Medium. Journal of Physical Chemistry C, 2020, 124, 18698-18706.	1.5	7
1722	The Raman Spectrum of a Single Molecule on an Electrochemically Etched Silver Tip. Applied Spectroscopy, 2020, 74, 1414-1422.	1.2	3
1723	Optically and electrically driven nanoantennas. Beilstein Journal of Nanotechnology, 2020, 11, 1542-1545.	1.5	1

#	Article	IF	CITATIONS
1724	Wireless Optical Nanolinks with Yagi-Uda and Dipoles Plasmonic Nanoantennas. , 0, , .		2
1725	SERS Immunosensor of Array Units Surrounded by Particles: A Platform for Auxiliary Diagnosis of Hepatocellular Carcinoma. Nanomaterials, 2020, 10, 2090.	1.9	2
1726	Enhancement of the Luminescence Signal from Self-Assembled Ge(Si) Nanoislands due to Interaction with the Modes of Two-Dimensional Photonic Crystals. Semiconductors, 2020, 54, 975-981.	0.2	2
1727	Realization of Deep UV Plasmonic Enhancement to Photo Response through Al Mesh. Materials, 2020, 13, 3252.	1.3	1
1728	Metal Nanoapertures and Single Emitters. Advanced Optical Materials, 2020, 8, 2001110.	3.6	7
1729	Wave-vector analysis of plasmon-assisted distributed nonlinear photoluminescence along Au nanowires. Physical Review B, 2020, 102, .	1.1	4
1730	The Inverse Relationship between Metal-Enhanced Fluorescence and Fluorophore-Induced Plasmonic Current. Journal of Physical Chemistry Letters, 2020, 11, 8145-8151.	2.1	4
1731	Tunable and dual-broadband giant enhancement of second-harmonic and third-harmonic generation in an optimized graphene-insulator-graphene metasurface. Physical Review B, 2020, 102, .	1.1	14
1732	Linkage Between Micro- and Nano-Raman Spectroscopy of Defects in Graphene. Physical Review Applied, 2020, 14, .	1.5	15
1733	Molecule Detection with Graphene Dimer Nanoantennas. Journal of Physical Chemistry C, 2020, 124, 28210-28219.	1.5	9
1734	Wavelength-Dependent Features of Photoelectron Spectra from Nanotip Photoemission. Photonics, 2020, 7, 129.	0.9	5
1735	Optical field concentrator with low absorption metasurfaces based on planar silicon nanoantennas on silica. Solid State Electronics Letters, 2020, 2, 55-58.	1.0	0
1736	Combining Molecular Spintronics with Electron Paramagnetic Resonance: The Path Towards Single-Molecule Pulsed Spin Spectroscopy. Applied Magnetic Resonance, 2020, 51, 1357-1409.	0.6	9
1737	Nanomagnonic Cavities for Strong Spin-Magnon Coupling and Magnon-Mediated Spin-Spin Interactions. Physical Review Letters, 2020, 125, 247702.	2.9	51
1738	Introduction to Infrared and Raman-Based Biomedical Molecular Imaging and Comparison with Other Modalities. Molecules, 2020, 25, 5547.	1.7	24
1739	Highly efficient unidirectional forward scattering induced by resonant interference in a metal–dielectric heterodimer. Nanoscale, 2020, 12, 22289-22297.	2.8	16
1740	A Sensor Based on Nanoantennas. Applied Sciences (Switzerland), 2020, 10, 6837.	1.3	9
1741	From Fundamental First-Principle Calculations to Nanoengineering Applications: A Review of the NESSIE Project. IEEE Nanotechnology Magazine, 2020, 14, 52-C3.	0.9	3

#	Article	IF	CITATIONS
1742	Manipulation of shear horizontal guided wave with arbitrary wave fronts by using metasurfaces. Journal Physics D: Applied Physics, 2020, 53, 285301.	1.3	18
1743	Spoof surface plasmon polariton <scp>bandâ€stop</scp> filter with <scp>singleâ€loop</scp> split ring resonators. International Journal of RF and Microwave Computer-Aided Engineering, 2020, 30, e22267.	0.8	7
1744	Ge(Sn) nano-island/Si heterostructure photodetectors with plasmonic antennas. Nanotechnology, 2020, 31, 345203.	1.3	8
1745	Single-particle study: effects of oxygen plasma treatment on structural and spectral changes of anisotropic gold nanorods. Physical Chemistry Chemical Physics, 2020, 22, 11767-11770.	1.3	18
1746	Plasmonic Antennas with Electric, Magnetic, and Electromagnetic Hot Spots Based on Babinet's Principle. Physical Review Applied, 2020, 13, .	1.5	27
1747	Control of Vibronic Transition Rates by Resonant Single-Molecule-Nanoantenna Coupling. Nano Letters, 2020, 20, 4537-4542.	4.5	10
1748	Nanoscale analysis of protein self-assemblies. , 2020, , 249-268.		2
1749	Influence of experimental conditions on localized surface plasmon resonances measurement by electron energy loss spectroscopy. Ultramicroscopy, 2020, 216, 113044.	0.8	6
1750	Absorption Engineering in an Ultrasubwavelength Quantum System. Nano Letters, 2020, 20, 4430-4436.	4.5	21
1751	Staircase bowtie nanoantenna and rectangular nanoaperture arrays with huge intensity enhancement as SERS substrates. Optics Communications, 2020, 474, 126065.	1.0	4
1752	Steering valley-polarized emission of monolayer MoS ₂ sandwiched in plasmonic antennas. Science Advances, 2020, 6, eaao0019.	4.7	47
1753	Ultrafast Photoemission Electron Microscopy: Imaging Plasmons in Space and Time. Chemical Reviews, 2020, 120, 6247-6287.	23.0	71
1754	Exciton-surface plasmon polariton interactions. Advances in Physics: X, 2020, 5, 1749884.	1.5	7
1755	Bowtie Nanoantenna Array Integrated With Artificial Impedance Surfaces for Realizing High Field Enhancement and Perfect Absorption Simultaneously. IEEE Access, 2020, 8, 99858-99869.	2.6	10
1756	Probing dipole and quadrupole resonance mode in non-plasmonic nanowire using Raman spectroscopy. Nanotechnology, 2020, 31, 425201.	1.3	1
1757	Asymmetric Excitation of Surface Plasmon Polaritons via Paired Slot Antennas for Angstrom Displacement Sensing. Physical Review Letters, 2020, 124, 243901.	2.9	19
1758	Harmonic generation at the nanoscale. Journal of Applied Physics, 2020, 127, .	1.1	65
1759	Asymptotic Approximations for the Close Evaluation of Double-Layer Potentials. SIAM Journal of Scientific Computing, 2020, 42, A504-A533.	1.3	5

#	Article	IF	CITATIONS
1760	Probing the origin of photoluminescence blinking in graphene nanoribbons: Influence of plasmonic field enhancement. 2D Materials, 2020, 7, 045009.	2.0	0
1761	Strong-field nano-optics. Reviews of Modern Physics, 2020, 92, .	16.4	141
1762	Electrochemical Sensing at a Confined Space. Analytical Chemistry, 2020, 92, 5621-5644.	3.2	158
1763	Extreme multiexciton emission from deterministically assembled single-emitter subwavelength plasmonic patch antennas. Light: Science and Applications, 2020, 9, 33.	7.7	23
1764	Nonmodal Plasmonics: Controlling the Forced Optical Response of Nanostructures. Physical Review X, 2020, 10, .	2.8	25
1765	Dielectric Microsphere Coupled to a Plasmonic Nanowire: A Selfâ€Assembled Hybrid Optical Antenna. Advanced Optical Materials, 2020, 8, 1901672.	3.6	13
1766	Collective Mie Resonances for Directional On-Chip Nanolasers. Nano Letters, 2020, 20, 5655-5661.	4.5	37
1767	The Influence of Structure Parameters on Nanoantennas' Optical Response. Chemosensors, 2020, 8, 42.	1.8	8
1768	Molecular Spectroscopic Markers of Abnormal Protein Aggregation. Molecules, 2020, 25, 2498.	1.7	24
1769	Evaporation and particle deposition of bi-component colloidal droplets on a superhydrophobic surface. International Journal of Heat and Mass Transfer, 2020, 159, 120063.	2.5	18
1770	Plasmonic resonators: fundamental properties and applications. Journal Physics D: Applied Physics, 2020, 53, 443002.	1.3	21
1771	Wave equation of single photon. AIP Conference Proceedings, 2020, , .	0.3	1
1772	Observation of Fano line shape in directional fluorescence emission mediated by coupled planar waveguide modes and interpretation based on Lorentz reciprocity. AIP Advances, 2020, 10, .	0.6	4
1773	Optical Properties of Plasmonâ€Tunable Tip Pyramids for Tipâ€Enhanced Raman Spectroscopy. Physica Status Solidi - Rapid Research Letters, 2020, 14, 2000212.	1.2	13
1774	Cavity-enhanced energy transfer between nano-emitters and monolayer graphene. Carbon, 2020, 161, 794-799.	5.4	8
1775	Quantum Antennas. Advanced Quantum Technologies, 2020, 3, 1900120.	1.8	19
1776	Subwavelength plasmonic nanoantenna as a Plasmonic Induced Polarization Rotator (PI-PR). Scientific Reports, 2020, 10, 2809.	1.6	5
1777	Optical field tuning of localized plasmon modes in Ag microcrystals at the nanofemto scale. Journal of Chemical Physics, 2020, 152, 054201.	1.2	9

#	Article	IF	CITATION
1778	Spatial characteristics of optical fields near a gold nanorod revealed by three-dimensional scanning near-field optical microscopy. Journal of Chemical Physics, 2020, 152, 014708.	1.2	5
1779	Shaping Field Gradients for Nanolocalization. ACS Photonics, 2020, 7, 581-587.	3.2	6
1780	Accurately Predicting the Radiation Enhancement Factor in Plasmonic Optical Antenna Emitters. Journal of Physical Chemistry Letters, 2020, 11, 1947-1953.	2.1	4
1781	Lasing from Finite Plasmonic Nanoparticle Lattices. ACS Photonics, 2020, 7, 630-636.	3.2	37
1782	Metasurfaces-based imaging and applications: from miniaturized optical components to functional imaging platforms. Nanoscale Advances, 2020, 2, 605-625.	2.2	52
1783	Trends in Quantum Nanophotonics. Advanced Quantum Technologies, 2020, 3, 1900126.	1.8	37
1784	Characteristics of electric quadrupole and magnetic quadrupole coupling in a symmetric silicon structure. New Journal of Physics, 2020, 22, 023018.	1.2	13
1785	Dipolar and quadrupolar excitons coupled to a nanoparticle-on-mirror cavity. Physical Review B, 2020, 101, .	1.1	21
1786	Diffusion-inspired time-varying phosphorescent decay in a nanostructured environment. Physical Review B, 2020, 101, .	1.1	9
1787	Molecular Spectroscopic Markers of DNA Damage. Molecules, 2020, 25, 561.	1.7	29
1788	Fundamental understanding and applications of plasmon-enhanced Raman spectroscopy. Nature Reviews Physics, 2020, 2, 253-271.	11.9	309
1789	Near-field to far-field transformations of optical quasinormal modes and efficient calculation of quantized quasinormal modes for open cavities and plasmonic resonators. Physical Review B, 2020, 101, .	1.1	17
1790	Multiphoton Absorption and Graphitization in Poly(methyl methacrylate)-Coated Aluminum Nanoantenna Arrays. Journal of Physical Chemistry C, 2020, 124, 8930-8937.	1.5	2
1791	Optical nanogap antennas as plasmonic biosensors for the detection of miRNA biomarkers. Journal of Materials Chemistry B, 2020, 8, 4310-4317.	2.9	22
1792	Probing the Radiative Electromagnetic Local Density of States in Nanostructures with a Scanning Tunneling Microscope. ACS Photonics, 2020, 7, 1280-1289.	3.2	6
1793	Au–Ag–Al Nanoâ€Alloy Thin Films as an Advanced Material for Photonic Applications: XPS Analysis, Linear and Nonlinear Optical Properties Under CW Regime. Crystal Research and Technology, 2020, 55, 1900228.	0.6	4
1794	Localized Surface Plasmon Resonance-Induced Welding of Gold Nanotriangles and the Local Plasmonic Properties for Multicolor Sensing and Light-Harvesting Applications. ACS Applied Nano Materials, 2020, 3, 5172-5177.	2.4	16
1795	Selective Etching of (111)Bâ€Oriented Al x Ga 1â^' x Asâ€Layers for Epitaxial Liftâ€Off. Physica Status Solidi (A) Applications and Materials Science, 2021, 218, 2000408.	0.8	0

#	Article	IF	CITATIONS
1796	Optical Nanoantennas for Tip-Enhanced Raman Spectroscopy. IEEE Journal of Selected Topics in Quantum Electronics, 2021, 27, 1-11.	1.9	21
1797	Spectral Analysis of Line Sources With Complex Longitudinal Wavenumbers in Planarly Layered Media. IEEE Transactions on Antennas and Propagation, 2021, 69, 429-442.	3.1	3
1798	Waveguide-Based Photonic Antenna Tweezer for Optical Trapping. IEEE Journal of Selected Topics in Quantum Electronics, 2021, 27, 1-7.	1.9	1
1799	Selfâ€Assembled Colloidal Nanopatterns toward Unnatural Optical Metaâ€Materials. Advanced Functional Materials, 2021, 31, 2008246.	7.8	17
1800	Asymmetric Light Scattering on Heterodimers Made of Au Nanorods Vertically Standing on Au Nanodisks. Advanced Optical Materials, 2021, 9, 2001595.	3.6	8
1801	A wideband graphene coated dielectric resonator antenna with circular polarization generation technique for THz applications. Superlattices and Microstructures, 2021, 150, 106754.	1.4	20
1802	Enhancing Plasmonic Spectral Tunability with Anomalous Material Dispersion. Nano Letters, 2021, 21, 91-98.	4.5	6
1803	Monolayer Excitonic Semiconductors Integrated with Au Quasi-Periodic Nanoterrace Morphology on Fused Silica Substrates for Light-Emitting Devices. ACS Applied Nano Materials, 2021, 4, 84-93.	2.4	2
1804	Generation of a Conjoint Surface Plasmon by an Infrared Nanoâ€Antenna Array. Advanced Photonics Research, 2021, 2, 2000003.	1.7	2
1805	The different resonant modes for the special 2D / 1D hybrid structures in the visibleâ€light region. International Journal of Quantum Chemistry, 2021, 121, e26550.	1.0	0
1806	Directional Control of Light with Nanoantennas. Advanced Optical Materials, 2021, 9, .	3.6	44
1807	Broadband Enhancement of the Spontaneous Emission by a Split-Ring Nanoantenna: Impact of Azimuthally Propagating Surface Plasmon Polaritons. IEEE Journal of Selected Topics in Quantum Electronics, 2021, 27, 1-15.	1.9	5
1808	Mode Switching With Waveguide-Coupled Plasmonic Nanogratings. IEEE Journal of Selected Topics in Quantum Electronics, 2021, 27, 1-10.	1.9	4
1809	Realization of Artificial Chirality in Micro-/Nano-Scale Three-Dimensional Plasmonic Structures. Topics in Applied Physics, 2021, , 241-263.	0.4	1
1810	Physics of Anomalous Transient Light Transmission Through Subwavelength Metallic Slit. Plasmonics, 2021, 16, 915-922.	1.8	1
1811	Tip-Enhanced Raman Spectroscopy. Progress in Optical Science and Photonics, 2021, , 209-234.	0.3	1
1812	Mechanical modulation of spontaneous emission of nearby nanostructured black phosphorus. Optics Express, 2021, 29, 1037.	1.7	4
1813	Geometry-induced enhancement factor improvement in covered-gold-nanorod-dimer antennas. RSC Advances, 2021, 11, 9518-9527.	1.7	1

#	Article	IF	CITATIONS
1814	Phase change materials in photonic devices. Journal of Applied Physics, 2021, 129, .	1.1	43
1815	Bright Plasmons with Cubic Nanometer Mode Volumes through Mode Hybridization. ACS Photonics, 2021, 8, 307-314.	3.2	30
1816	Plasmon-driven photocatalytic molecular transformations on metallic nanostructure surfaces: mechanistic insights gained from plasmon-enhanced Raman spectroscopy. Molecular Systems Design and Engineering, 2021, 6, 250-280.	1.7	22
1817	Preparation of QSS@AuNPs and Solvent Inducing Enhancement Strategy for Raman Determination of Salivary Thiocyanate. ACS Applied Materials & amp; Interfaces, 2021, 13, 5966-5974.	4.0	6
1818	Extremely large near-field enhancements in the vicinity of plasmonic nanoantennas on top of bull's eye structures exhibiting the extraordinary transmission of light. OSA Continuum, 2021, 4, 193.	1.8	6
1819	Dynamical control of directional nonlinear scattering from metallic nanoantennas by three-dimensional focal polarization orientation. Optoelectronics Letters, 2021, 17, 65-69.	0.4	0
1820	Dynamically tunable polarization beam splitting with slotted graphene patch arrays in the terahertz regime. Journal of the Optical Society of America B: Optical Physics, 2021, 38, 401.	0.9	2
1821	Impact of Glycans on Lipid Membrane Dynamics at the Nanoscale Unveiled by Planar Plasmonic Nanogap Antennas and Atomic Force Spectroscopy. Journal of Physical Chemistry Letters, 2021, 12, 1175-1181.	2.1	5
1822	Wavelength-dependent laser-induced dynamic nano-annealing of single plasmonic antennas. Nanoscale, 2021, 13, 8991-8997.	2.8	1
1823	Quantum plasmons in the hybrid nanostructures of double vacancy defected graphene and metallic nanoarrays. Chinese Physics B, 2021, 30, 017804.	0.7	1
1824	Optimization of Modified Yagi-Uda Nanoantenna Arrays Using Adaptive Fuzzy GAPSO. International Journal of Antennas and Propagation, 2021, 2021, 1-11.	0.7	2
1826	Tailoring the optical properties of dilute nitride semiconductors at the nanometer scale. Nanotechnology, 2021, 32, 185301.	1.3	0
1827	Quantum optics of quantum emitters in the near field of a nanoparticle. Physics-Uspekhi, 2022, 65, 245-269.	0.8	1
1828	Optical Nanoantennas for Photovoltaic Applications. Nanomaterials, 2021, 11, 422.	1.9	21
1829	Ultra-high-Q resonances in plasmonic metasurfaces. Nature Communications, 2021, 12, 974.	5.8	212
1830	Manipulation of quantum dot emission with semiconductor metasurfaces exhibiting magnetic quadrupole resonances. Optics Express, 2021, 29, 5567.	1.7	6
1831	Dielectric optical nanoantennas. Nanotechnology, 2021, 32, 202001.	1.3	24
1832	Hot carrier-mediated avalanche multiphoton photoluminescence from coupled Au–Al nanoantennas. Journal of Chemical Physics, 2021, 154, 074701.	1.2	6

	CHATION	LEPURI	
#	Article	IF	CITATIONS
1833	Real-time deep learning design tool for far-field radiation profile. Photonics Research, 2021, 9, B104.	3.4	16
1834	Twoâ€Tier Nanolaminate Plasmonic Crystals for Broadband Multiresonant Light Concentration with Spatial Mode Overlap. Advanced Optical Materials, 2021, 9, 2001908.	3.6	6
1835	Strong light emission from a defective hexagonal boron nitride monolayer coupled to near-touching random plasmonic nanounits. Optics Letters, 2021, 46, 1664.	1.7	6
1836	Chemical Interface Damping of Surface Plasmon Resonances. Accounts of Chemical Research, 2021, 54, 1950-1960.	7.6	86
1837	Smart optical cross dipole nanoantenna with multibeam pattern. Scientific Reports, 2021, 11, 5047.	1.6	6
1838	Low-Loss Broadband Transverse Electric Pass Hybrid Plasmonic Fiber Polarizers Using Metallic Nanomaterials. ACS Applied Materials & Interfaces, 2021, 13, 14718-14727.	4.0	3
1839	Plasmonic Modulation of Valleytronic Emission in Twoâ€Đimensional Transition Metal Dichalcogenides. Advanced Functional Materials, 2021, 31, 2010234.	7.8	21
1840	Fixed-size double-resonant nanolaminate plasmonic nanoantennas with wide spectral tunability and high optical cross-sections. Optik, 2021, 230, 166332.	1.4	3
1841	Hot Electron Generation through Near-Field Excitation of Plasmonic Nanoresonators. ACS Photonics, 2021, 8, 1243-1250.	3.2	6
1842	Tracking the Coupling of Single Emitters to Plasmonic Nanoantennas with Single-Molecule Super-Resolution Imaging. ACS Photonics, 2021, 8, 1020-1026.	3.2	4
1843	Nanoantennaâ€Enhanced Lightâ€Emitting Diodes: Fundamental and Recent Progress. Laser and Photonics Reviews, 2021, 15, 2000367.	4.4	16
1844	Flat-topped pattern synthesis of optical leaky-wave antennas. Optics Communications, 2021, 485, 126737.	1.0	2
1845	Plasmonic Core–Shell Nanoparticle Enhanced Spectroscopies for Surface Analysis. Analytical Chemistry, 2021, 93, 6573-6582.	3.2	17
1846	Plasmonics—high-speed photonics for co-integration with electronics. Japanese Journal of Applied Physics, 2021, 60, SB0806.	0.8	12
1847	Integrating Sphere Fourier Microscopy of Highly Directional Emission. ACS Photonics, 2021, 8, 1143-1151.	3.2	7
1848	Directional Modulation of Exciton Emission Using Single Dielectric Nanospheres. Advanced Materials, 2021, 33, e2007236.	11.1	15
1849	Dielectric travelling wave antennas for directional light emission. Optics Express, 2021, 29, 14694.	1.7	8
1850	Applied electromagnetic optics simulations for nanophotonics. Journal of Applied Physics, 2021, 129, .	1.1	18

#	Article	IF	Citations
1851	Collectively driven optical nanoantennas. Physical Review A, 2021, 103, .	1.0	4
1852	Plasmonic Helical Nanoantenna As a Converter between Longitudinal Fields and Circularly Polarized Waves. Nano Letters, 2021, 21, 3410-3417.	4.5	16
1853	Impedance-Matching Technique for an Infrared Folded Dipole Antenna. Journal of Infrared, Millimeter, and Terahertz Waves, 2021, 42, 504-513.	1.2	2
1854	Engineering single-molecule fluorescence with asymmetric nano-antennas. Light: Science and Applications, 2021, 10, 79.	7.7	18
1855	Microfluidics for flexible electronics. Materials Today, 2021, 44, 105-135.	8.3	65
1856	A Highly Directive Ultraviolet Plasmonic "Antennaâ€onâ€Reflector―for Singleâ€Molecule Detection. Physica Status Solidi - Rapid Research Letters, 2021, 15, 2000579.	1.2	2
1857	Complete Electromagnetic Dyadic Green Function Characterization in a Complex Environment—Resonant Dipole-Dipole Interaction and Cooperative Effects. Physical Review X, 2021, 11, .	2.8	8
1858	Broadband antireflective random metasurfaces. Journal of the Optical Society of America B: Optical Physics, 2021, 38, 1974.	0.9	1
1859	Nanoscale Light Confinement: the Q's and V's. ACS Photonics, 2021, 8, 1522-1538.	3.2	38
1860	Plasmon enhanced linear and nonlinear optical properties of natural curcumin dye with silver nanoparticles. Dyes and Pigments, 2021, 189, 109256.	2.0	18
1861	Probing subwavelength in-plane anisotropy with antenna-assisted infrared nano-spectroscopy. Nature Communications, 2021, 12, 2649.	5.8	9
1862	Semiconductor Bowâ€Tie Nanoantenna from Coupled Colloidal Quantum Dot Molecules. Angewandte Chemie, 2021, 133, 14588-14593.	1.6	1
1863	Electric Directional Steering of Cathodoluminescence From Graphene-Based Hybrid Nanostructures. Physical Review Applied, 2021, 15, .	1.5	3
1864	Electrical generation of visible surface plasmon polaritons by a nanopillars antenna array. APL Photonics, 2021, 6, .	3.0	2
1865	Semiconductor Bowâ€Tie Nanoantenna from Coupled Colloidal Quantum Dot Molecules. Angewandte Chemie - International Edition, 2021, 60, 14467-14472.	7.2	11
1866	Plasmonic Saturable Absorbers. Advanced Photonics Research, 2021, 2, 2100003.	1.7	17
1867	Comparison of GaP and Si nanoantennas for optical emission control. Journal of the Optical Society of America B: Optical Physics, 0, , .	0.9	1
1868	Efficient spontaneous emission by metal-dielectric antennas; antenna Purcell factor explained. Optics Express, 2021, 29, 22018.	1.7	2

#	Article	IF	CITATIONS
1869	Optical Anapole Modes in Gallium Phosphide Nanodisk with Forked Slits for Electric Field Enhancement. Nanomaterials, 2021, 11, 1490.	1.9	7
1870	How to Utilize Excited Plasmon Energy Efficiently. ACS Nano, 2021, 15, 10759-10768.	7.3	39

1871 Multiwavelength metalens by spatial multiplexing at visible wavelengths. Journal of Optics (United) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50

1873	Field-resolved detection of the temporal response of a single plasmonic antenna in the mid-infrared. Optica, 2021, 8, 898.	4.8	14
1874	Plasmonic metamaterial absorbers with strong coupling effects for small pixel infrared detectors. Optics Express, 2021, 29, 22907.	1.7	12
1875	Controlling quantum systems with modulated electron beams. Physical Review Research, 2021, 3, .	1.3	13
1876	Bright Optical Eigenmode of <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mn>1</mml:mn><mml:mtext> </mml:mtext><mml:mtext> </mml:mtext> Volume. Physical Review Letters, 2021, 126, 257401.</mml:math>	ከ ቌኒ p> <m< td=""><td>mlteni>nm<,</td></m<>	m lte ni>nm<,
1877	Insightful understanding of hot-carrier generation and transfer in plasmonic Au@CeO2 core–shell photocatalysts for light-driven hydrogen evolution improvement. Applied Catalysis B: Environmental, 2021, 286, 119947.	10.8	43
1878	Excitation enhancement of surface plasmon polaritons from an annular plasmonic coupler based on internal corrugations and a central nanowire. Journal of Computational Electronics, 2021, 20, 1721-1728.	1.3	3
1879	Strong coupling between in-plane photonic modes and out-of-plane plasmonic modes in 2D metal–dielectric–metal nanocylinder arrays. Optics Communications, 2021, 490, 126908.	1.0	4
1880	Beaming Elastic and SERS Emission from Bent-Plasmonic Nanowire on a Mirror Cavity. Journal of Physical Chemistry Letters, 2021, 12, 6589-6595.	2.1	10
1881	Modeling electric field increment in the Tip-Enhanced Raman Spectroscopy by using grating on the probe of atomic force nanoscope. Optical and Quantum Electronics, 2021, 53, 1.	1.5	0
1882	Optical DRA and its equivalent circuit analysis. Journal of Discrete Mathematical Sciences and Cryptography, 2021, 24, 1215-1228.	0.5	2
1883	Recent Progress in the Development of Graphene Detector for Terahertz Detection. Sensors, 2021, 21, 4987.	2.1	12
1884	Carbon Nanotube Far Infrared Detectors with High Responsivity and Superior Polarization Selectivity Based on Engineered Optical Antennas. Sensors, 2021, 21, 5221.	2.1	2
1885	Manipulation of Ultrafast Nonlinear Optical Response Based on Surface Plasmon Resonance. Advanced Optical Materials, 2021, 9, 2100847.	3.6	8
1886	Enhanced Mie resonance in a low refractive index colloidal metamaterial aided by nematic liquid crystal. Journal of Molecular Liquids, 2022, 346, 117116.	2.3	1
1887	Continuously and reversibly electro-tunable optical nanoantennas based on phase transition of vanadium dioxide. New Journal of Physics, 2021, 23, 075002.	1.2	8

#	Article	IF	CITATIONS
1888	Quantum Optics in Nanostructures. Nanomaterials, 2021, 11, 1919.	1.9	15
1889	Artificial Compound Eye Systems and Their Application: A Review. Micromachines, 2021, 12, 847.	1.4	19
1890	Subwavelength superdirective gyrotropic cylindrical nanoantenna. Physical Review A, 2021, 104, .	1.0	0
1891	A cavity-based optical antenna for color centers in diamond. APL Photonics, 2021, 6, .	3.0	9
1892	Plasmonic perovskite solar cells: An overview from metal particle structure to device design. Surfaces and Interfaces, 2021, 25, 101287.	1.5	15
1893	Mechanically Tunable Nanogap Antennas: Singleâ€Structure Effects and Multiâ€Structure Applications. Advanced Optical Materials, 2021, 9, 2100326.	3.6	9
1894	Emission Manipulation by DNA Origamiâ€Assisted Plasmonic Nanoantennas. Advanced Optical Materials, 2021, 9, 2100848.	3.6	13
1895	Purcell radiative rate enhancement of label-free proteins with ultraviolet aluminum plasmonics. Journal Physics D: Applied Physics, 2021, 54, 425101.	1.3	9
1896	DNA Origami Nanoantennas for Fluorescence Enhancement. Accounts of Chemical Research, 2021, 54, 3338-3348.	7.6	24
1897	Inward electromagnetic wave coupling in hybrid subwavelength structures illuminated with secondary imaging. Chinese Journal of Physics, 2021, 72, 688-699.	2.0	1
1898	Accessing Plasmonic Hotspots Using Nanoparticle-on-Foil Constructs. ACS Photonics, 2021, 8, 2811-2817.	3.2	10
1899	Tuning the optical response of Nano dipole antenna by using plasmonic materials as a load in the gap. Materials Research Express, 2021, 8, 086201.	0.8	0
1900	A Universal Approach for Maximizing Terahertz Wave Absorption in Graphene Cut-Wires. Frontiers in Materials, 2021, 8, .	1.2	1
1901	Single Photon Source from a Nanoantenna-Trapped Single Quantum Dot. Nano Letters, 2021, 21, 7030-7036.	4.5	35
1902	Quantum Tunneling Induced Optical Rectification and Plasmon-Enhanced Photocurrent in Nanocavity Molecular Junctions. ACS Nano, 2021, 15, 14535-14543.	7.3	26
1903	Correlative nanophotonic approaches to enlighten the nanoscale dynamics of living cell membranes. Biochemical Society Transactions, 2021, 49, 2357-2369.	1.6	3
1904	Electronic Exciton–Plasmon Coupling in a Nanocavity Beyond the Electromagnetic Interaction Picture. Nano Letters, 2021, 21, 8466-8473.	4.5	8
1905	UV Plasmonics and Nanophotonics. Journal of the Japan Society for Precision Engineering, 2021, 87, 725-729.	0.0	0

#	Article	IF	Citations
1906	Probing and Imaging Photonic Spinâ€Orbit Interactions in Nanostructures. Laser and Photonics Reviews, 2021, 15, 2100011.	4.4	12
1907	Application of Nanooptics in Photographic Imagery and Medical Imaging. Journal of Chemistry, 2021, 2021, 1-15.	0.9	3
1908	Low side-lobe level pattern synthesis of optical leaky-wave antennas. Optik, 2021, 242, 167192.	1.4	0
1909	Single antibody detection in a DNA origami nanoantenna. IScience, 2021, 24, 103072.	1.9	27
1910	Frequency-tunable transient Cherenkov radiation from an inhomogeneous medium. Physical Review A, 2021, 104, .	1.0	1
1911	Asymmetric Cavity Mode Engineering in a Single Plasmonic Nanowire. Journal of Lightwave Technology, 2021, 39, 5855-5863.	2.7	3
1912	Metasurface-Driven Optically Variable Devices. Chemical Reviews, 2021, 121, 13013-13050.	23.0	125
1913	Magnetic polaritons assisted effective excitation of multi-order anisotropic borophene surface plasmons in the infrared region. Results in Physics, 2021, 29, 104780.	2.0	9
1914	Light trapping in perovskite solar cells with plasmonic core/shell nanorod array: A numerical study. Energy Reports, 2021, 7, 1404-1415.	2.5	32
1915	A posteriori error estimates for finite element discretizations of time-harmonic Maxwell's equations coupled with a non-local hydrodynamic Drude model. Computer Methods in Applied Mechanics and Engineering, 2021, 385, 114002.	3.4	1
1916	Chiral gold nanotubes for nano-solenoid magnetic receiving loop antennas. Chemical Physics Letters, 2021, 782, 139032.	1.2	2
1917	Plasmonic silver nanoparticles promoted sugar conversion to 5-hydroxymethylfurfural over catalysts of immobilised metal ions. Applied Catalysis B: Environmental, 2021, 296, 120340.	10.8	7
1918	An aqueous gold nanorod and CdSe quantum dots hybrid nanomaterial: A potential plasmon enhanced fluorescence structure for bio-probe fabrication. Chemical Engineering Journal, 2021, 426, 131571.	6.6	11
1919	D2D routing aided networking for efficient energy consumption management of wireless IoT. Ad Hoc Networks, 2021, 123, 102636.	3.4	4
1920	Surface-enhanced Raman spectroscopy for bioanalysis and diagnosis. Nanoscale, 2021, 13, 11593-11634.	2.8	99
1921	Directional light emission by electric and magnetic dipoles near a nanosphere: an analytical approach based on the generalized Mie theory. Optics Letters, 2021, 46, 302.	1.7	8
1922	Optically induced aggregation by radiation pressure of gold nanorods on graphene for SERS detection of biomolecules. European Physical Journal Plus, 2021, 136, 1.	1.2	0
1923	Studying 2D materials with advanced Raman spectroscopy: CARS, SRS and TERS. Physical Chemistry Chemical Physics, 2021, 23, 23428-23444.	1.3	26

#	Article	IF	CITATIONS
1924	Direction ontrollable Plasmonic Color Scanning by Using Laserâ€Induced Bubbles. Advanced Functional Materials, 2021, 31, 2008579.	7.8	7
1925	Synthesis of monodispersed VO ₂ @Au core–semishell submicroparticles and their switchable optical properties. Journal of Materials Chemistry C, 2021, 9, 11669-11673.	2.7	4
1926	Nonlinear Plasmon Optics. Nano-optics and Nanophotonics, 2015, , 155-181.	0.2	2
1927	Photon-Atom Coupling with Parabolic Mirrors. Nano-optics and Nanophotonics, 2015, , 75-98.	0.2	3
1928	Trends in Photonics. SpringerBriefs in Applied Sciences and Technology, 2018, , 77-96.	0.2	1
1929	Deep-Ultraviolet Surface-Enhanced Raman Scattering. , 2015, , 145-158.		2
1930	Nanoplasmonics: From Present into Future. Challenges and Advances in Computational Chemistry and Physics, 2013, , 1-101.	0.6	2
1931	Plasmonics with a Twist: Taming Optical Tornadoes on the Nanoscale. Challenges and Advances in Computational Chemistry and Physics, 2013, , 431-461.	0.6	2
1932	Plasmonic Gas and Chemical Sensing. NATO Science for Peace and Security Series C: Environmental Security, 2015, , 239-272.	0.1	2
1933	High-density quantum bits generation using microring plasmonic antenna. Optical and Quantum Electronics, 2020, 52, 1.	1.5	5
1935	Tunneling Plasmonics: Vacuum Rabi Oscillations in Carbon Nanotube Mediated Electromigrated Nanojunctions. Journal of Physical Chemistry C, 2021, 125, 782-791.	1.5	20
1936	Switchable Optical Nonlinearity at the Metal to Insulator Transition in Magnesium Thin Films. ACS Photonics, 2020, 7, 1560-1568.	3.2	2
1937	Nanoplasmonic–Nanofluidic Single-Molecule Biosensors for Ultrasmall Sample Volumes. ACS Sensors, 2021, 6, 73-82.	4.0	8
1940	Enhanced nanoscopy of individual CsPbBr3 perovskite nanocrystals using dielectric sub-micrometric antennas. APL Materials, 2020, 8, 021109.	2.2	9
1941	Planar nonlinear metasurface optics and their applications. Reports on Progress in Physics, 2020, 83, 126101.	8.1	22
1942	Tunable optical metasurfaces enabled by chalcogenide phase-change materials: from the visible to the THz. Journal of Optics (United Kingdom), 2020, 22, 114001.	1.0	45
1943	Control of optical nanometer gap shapes made via standard lithography using atomic layer deposition. Journal of Micro/ Nanolithography, MEMS, and MOEMS, 2018, 17, 1.	1.0	7
1944	Unidirectional optical nanoantenna with individual core–dual shells nanoparticle. Journal of Nanophotonics, 2018, 12, 1.	0.4	4

#	Article	IF	CITATIONS	
1945	Thermoelectric efficiency optimization of nanoantennas for solar energy harvesting. Journal of Nanophotonics, 2019, 13, 1.	0.4	6	
1946	Influence of Plasmon Resonance in Silver Island Film on the Optical Properties of Peridinin-Chlorophyll-Protein Light-Harvesting Complexes. Acta Physica Polonica A, 2012, 122, 275-278.	0.2	4	
1947	Nonlinear core-shell Yagi-Uda nanoantenna for highly tunable directive emission. , 2017, , .		1	
1948	Quantum dipole emitters in structured environments: a scattering approach: tutorial. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2019, 36, 186.	0.8	17	
1949	Near-UV luminescence tomography with an aperture-free meta super oscillatory lens for single molecule detection. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2020, 37, 621.	0.8	2	
1950	Influence of thermal fluctuations on optical properties of liquid metacrystals. Journal of the Optical Society of America B: Optical Physics, 2017, 34, 546.	0.9	5	
1951	Core size and axial offset dependent extinction characteristics for silver nanotube and its application to directional sensing. Journal of the Optical Society of America B: Optical Physics, 2019, 36, 1637.	0.9	2	
1952	Polarization-selective defect mode amplification in a photonic crystal with intracavity 2D arrays of metallic nanoparticles. Journal of the Optical Society of America B: Optical Physics, 2019, 36, 1645.	0.9	10	
1953	Near-field probing the magnetic field vector of visible light with a silicon nanoparticle probe and nanopolarimetry. Optics Express, 2018, 26, 24637.	1.7	10	
1954	Plasmonic nanoantenna-dielectric nanocavity hybrids for ultrahigh local electric field enhancement. Optics Express, 2018, 26, 31116.	1.7	27	
1955	Tailoring optical nonlinearities of LiNbO ₃ crystals by plasmonic silver nanoparticles for broadband saturable absorbers. Optics Express, 2018, 26, 31276.	1.7	23	
1956	Engineering scattering patterns with asymmetric dielectric nanorods. Optics Express, 2018, 26, 32624.	1.7	14	
1957	Efficient optimization of SHG hotspot switching in plasmonic nanoantennas using phase-shaped laser pulses controlled by neural networks. Optics Express, 2018, 26, 33678.	1.7	15	
1958	Unidirectional scattering exploited transverse displacement sensor with tunable measuring range. Optics Express, 2019, 27, 4944.	1.7	15	
1959	Efficient unidirectional and broadband vertical-emitting optical coupler assisted by aperture-coupled nanopatch antenna array. Optics Express, 2019, 27, 9941.	1.7	6	
1960	Plasmon enhanced light scattering into semiconductors by aperiodic metal nanowire arrays. Optics Express, 2019, 27, 14308.	1.7	2	
1961	Steering second-harmonic radiation through local excitations of plasmon. Optics Express, 2019, 27, 18246.	1.7	8	
1962	Cramér-Rao analysis of lifetime estimations in time-resolved fluorescence microscopy. Optics Express, 2019, 27, 21239.	1.7	13	
		CITATION RE	PORT	
------	---	------------------------	------	-----------
#	Article		IF	CITATIONS
1963	Compact, ultra-broadband plasmonic grating couplers. Optics Express, 2019, 27, 2971	.9.	1.7	11
1964	Designing metal-dielectric nanoantenna for unidirectional scattering via Bayesian optir Optics Express, 2019, 27, 31075.	nization.	1.7	14
1965	Miniaturized fiber dosimeter of medical ionizing radiations on a narrow optical fiber. O 2019, 27, 35588.	ptics Express,	1.7	11
1966	Analytic approach to study a hybrid plasmonic waveguide-fed and numerically design a based on the new director. Optics Express, 2020, 28, 3305.	nano-antenna	1.7	15
1967	Linear scattering off a dynamically controlled nanosphere-mirror plasmonic antenna or Optics Express, 2020, 28, 7051.	ı a fiber taper.	1.7	1
1968	Optical-field topological phase transition in nonlinear frequency conversion. Optics Exp 28, 2818.	bress, 2020,	1.7	3
1969	Metasurface with metallic nanoantennas and graphene nanoslits for sensing of proteir and sub-monolayers. Optics Express, 2020, 28, 18479.	ı monolayers	1.7	15
1970	Manipulating the scattering pattern with non-Hermitian particle arrays. Optics Express 19492.	, 2020, 28,	1.7	6
1971	Surface plasmon resonance effect on laser trapping and swarming of gold nanoparticle interface. Optics Express, 2020, 28, 27727.	2s at an	1.7	21
1972	Structural and optical properties of monocrystalline and polycrystalline gold plasmonic Optics Express, 2020, 28, 34960.	: nanorods.	1.7	7
1973	Modulation instability in waveguides doped with anisotropic nanoparticles. Optics Let 3119.	cers, 2020, 45,	1.7	9
1974	Dynamically tunable bowtie nanoantennas based on the phase transition of vanadium Letters, 2019, 44, 2752.	dioxide. Optics	1.7	15
1975	Enhanced emission of in-situ fabricated perovskite-polymer composite films on gold na substrates. Optical Materials Express, 2020, 10, 1659.	noparticle	1.6	7
1976	Nanowire photonics toward wide wavelength range and subwavelength confinement Optical Materials Express, 2020, 10, 2560.	Invited].	1.6	10
1977	Highly-symmetrical plasmonic nanoantenna for fluorescence enhancement and polariz preservation of arbitrarily oriented fluorophore. Optical Materials Express, 2018, 8, 37	ation 70.	1.6	5
1978	Versatile on-chip light coupling and (de)multiplexing from arbitrary polarizations to co waveguide modes using an integrated dielectric metasurface. Photonics Research, 202	ntrolled 0, 8, 564.	3.4	74
1979	Optical spherical dielectric resonator antenna for sensing and wireless communication 2021, 75, 49-59.	. Frequenz,	0.6	4
1980	Near-field spectrum retrieving through non-degenerate coupling emission. Nanophoto 235-243.	nics, 2020, 9,	2.9	6

# 1981	ARTICLE Multiparticle quantum plasmonics. Nanophotonics, 2020, 9, 1243-1269.	IF 2.9	CITATIONS
1982	Extraordinary optical transmission and second harmonic generation in sub–10-nm plasmonic coaxial aperture. Nanophotonics, 2020, 9, 3295-3302.	2.9	6
1983	Two-dimensional Au & Ag hybrid plasmonic nanoparticle network: broadband nonlinear optical response and applications for pulsed laser generation. Nanophotonics, 2020, 9, 2537-2548.	2.9	12
1984	Multipolar second-harmonic generation from high- <i>Q</i> quasi-BIC states in subwavelength resonators. Nanophotonics, 2020, 9, 3953-3963.	2.9	51
1985	Fabrication of highly uniform nanoprobe via the automated process for tip-enhanced Raman spectroscopy. Nanophotonics, 2020, 9, 2989-2996.	2.9	6
1986	Nanoscale control of single molecule Förster resonance energy transfer by a scanning photonic nanoantenna. Nanophotonics, 2020, 9, 4021-4031.	2.9	11
1987	Active plasmonic nanoantenna: an emerging toolbox from photonics to neuroscience. Nanophotonics, 2020, 9, 3805-3829.	2.9	15
1988	Topological nanophotonics for photoluminescence control. Nanophotonics, 2020, 10, 435-441.	2.9	16
1989	Polariton panorama. Nanophotonics, 2020, 10, 549-577.	2.9	155
1990	Significantly enhanced second-harmonic generations with all-dielectric antenna array working in the quasi-bound states in the continuum and excited by linearly polarized plane waves. Nanophotonics, 2021, 10, 1189-1196.	2.9	37
1991	Plasmonic enhancement of light trapping in photodetectors. Facta Universitatis - Series Electronics and Energetics, 2014, 27, 183-203.	0.6	2
1992	Sensors Based on Nanoantennas: Fundamentals. European Journal of Applied Physics, 2020, 2, .	0.1	8
1994	Lab-on-Antennas: Plasmonic Antennas for Single-Molecule Spectroscopy. , 2017, , 299-331.		2
1995	All-dielectric Mie-resonant metaphotonics. Comptes Rendus Physique, 2020, 21, 425-442.	0.3	9
1996	Recent progress on advanced infrared photodetectors. Wuli Xuebao/Acta Physica Sinica, 2019, 68, 120701.	0.2	38
1997	Mid-infrared nano-imaging of current patterns in patch antenna resonators. , 2021, , .		0
1998	Time for NanoNeuro. Nature Methods, 2021, 18, 1287-1293.	9.0	17
1999	Mirror-enhanced directional out-coupling of SERS by remote excitation of a nanowire-nanoparticle cavity. Journal of Optics (United Kingdom), 2021, 23, 124001.	1.0	1

		CITATION RE	PORT	
#	Article		IF	Citations
2000	Plasmonic hot-carriers and their applications: opinion. Optical Materials Express, 2021,	11, 3827.	1.6	5
2001	Waveguide-Fed Optical Plasmonic Patch Nano-Antenna. , 2012, , .			0
2002	Molding light propagation with phase discontinuities. , 2012, , .			2
2003	Plasmonic slot antennas. , 2012, , .			0
2004	Periodic structures in plasmonics. , 2012, , .			0
2005	Nature's Nonlinear Optical Antennas. , 2012, , .			0
2006	Hybrid Plasmonic Nanodevices for All-optical Control of Information. , 2012, , .			0
2007	Near-field phase analysis reveals unexpected scattering properties of optical antennas.	, 2012, , .		0
2008	Plasmonics for Enhanced Vibrational Signatures. Challenges and Advances in Computa Chemistry and Physics, 2013, , 103-124.	tional	0.6	3
2009	Passive Elements Enhance Nonlinear Conversion from Plasmonic Nanostructures. , 201	3,,.		0
2010	Plasmonic Nanoparticle-Based Metamaterials: From Electric to Magnetic Response. Na Nanophotonics, 2013, , 327-365.	no-optics and	0.2	0
2011	Quantitative mapping of plasmonic near-fields using infrared far-field vibrational spectr	юѕсору. , 2013,		0
2012	Optical Antennas and Enhanced Nonlinear Effects. , 2013, , 277-294.			1
2013	Development of computational 3D MoM algorithm for nanoplasmonics. Journal of Mic Optoelectronics and Electromagnetic Applications, 2013, 12, 569-579.	rowaves,	0.4	1
2014	Scanning Near-Field Optical Microscopy for Investigations of Bio-Matter. Neuromethoo 189-223.	ls, 2014, ,	0.2	0
2015	Multipolar Raman and chiral plasmon on gold nano-dumbbell. , 2014, , .			0
2016	Optical Antennas (Nantennas). Green Energy and Technology, 2014, , 241-261.		0.4	0
2019	Bidirectional Wavelength Multiplexing with an Optical Fano Nanoantenna. , 2014, , .			0

#	Article	IF	CITATIONS
2020	Helium ion beam milling for plasmonic nanoantennas. SPIE Newsroom, 0, , .	0.1	0
2021	Nanophotonic Approaches for Nanoscale Imaging and Single- Molecule Detection at Ultrahigh Concentrations. , 2014, , 474-493.		0
2022	LSPR in Plasmonic Nanostructures: Theoretical Study with Application to Sensor Design. , 2015, , 1-8.		0
2023	Manipulating Multiple Coupling in Plasmonic Nanoantenna Arrays. , 2015, , .		0
2024	Coupling Nano-Antennas to Microcavities: Radiative Interactions Cause Strong and Tunable Frequency Shifts. , 2015, , .		0
2025	Fabrication and Optical Transmission Properties of ZnO Nanowire Waveguide Arrays. , 2015, , .		0
2026	Plasmonic Fano Nanoantenna for On-chip Wavelength Demultiplexing. , 2015, , .		0
2027	Earth Long-Wave Infrared Emission, New Ways to Harvest Energy. Advances in Environmental Engineering and Green Technologies Book Series, 2015, , 1-25.	0.3	0
2028	Controlling Electric and Magnetic Resonances for Ultra-Compact Nanoantennas with Switchable Directionality. , 2015, , .		0
2029	Effective wavelength and resonance characteristics of carbon nanotube optical antenna. Wuli Xuebao/Acta Physica Sinica, 2016, 65, 097801.	0.2	0
2030	Bi-directional emission control with multilayered metal-dielectric nanoantenna. , 2016, , .		0
2031	Numerical Modeling in Antenna Engineering. , 2016, , 1-71.		0
2032	Ultrafast All-Optical Switching Based on Strong Coupling between Excitons and Localized Surface Plasmons. , 2016, , .		1
2033	Shifted plasmonic nanorods to enhance the density of hot-spots for surface-based nonlinear optics. , 2016, , .		0
2034	LSPR in Plasmonic Nanostructures: Theoretical Study with Application to Sensor Design. , 2016, , 1819-1826.		0
2035	Miniaturiser les antennes pour la lumière visible. , 2016, , 95-99.	0.1	0
2036	Controlled Interaction of Single Nitrogen Vacancy Centers with Surface Plasmons. Springer Series in Solid-state Sciences, 2017, , 73-95.	0.3	0
2037	Plasmonics and Surface Plasmons. , 2016, , 1062-1082.		0

# 2038	ARTICLE Earth Long-Wave Infrared Emission, New Ways to Harvest Energy. , 2017, , 1875-1899.	IF	CITATIONS
2039	Hybrid plasmonics optical leaky wave antenna array with high gain and broadband. , 2017, , .		0
2040	Towards planar dielectric metasurfaces. , 2017, , .		0
2041	Lab-on-Antennas: Plasmonic Antennas for Single-Molecule Spectroscopy. , 2017, , 299-331.		0
2042	Chapter 12: Photodetectors. Series in Optics and Optoelectronics, 2017, , 257-274.	0.0	0
2043	Nanoantenna integrated infrared pixels. , 2017, , .		0
2044	Surface-Enhanced Fluorescence-Based Biosensors. , 2017, , 241-258.		0
2046	The Super absorbing Ag-Au Metasurfaces for Surface-Enhanced Raman Spectroscopy Sensing of Drugs and Chemicals. , 2018, , .		0
2047	Relaxation of Inverted Quantum System Coupled with Metallic Nanoobjects. Springer Series in Optical Sciences, 2018, , 271-285.	0.5	0
2048	Plasmonic-Dielectric Mushroom Nanoantenna for Fluorescence Enhancement. , 2018, , .		0
2049	Design and Analysis of a Cross V-shaped Nanoantenna for Visible Region. , 2018, , .		0
2050	Multiresonant Antennas for Polarization Control. , 2018, , .		0
2051	Sum rules & power–bandwidth limits to near-field optical response. , 2018, , .		0
2052	Second Harmonic Generation in Geometric-Phase Resonant Dielectric Metasurfaces. , 2018, , .		0
2053	Fictitious Particle Approach for Light Scattering Investigation from the Line Features of a Substrate Based on the Discrete Sources Method. Springer Series on Atomic, Optical, and Plasma Physics, 2018, , 71-91.	0.1	0
2054	Resonant coupling from photonic crystal surfaces to plasmonic nanoantennas: principles, detection instruments, and applications in digital resolution biosensing. , 2018, , .		0
2055	Multicomponent-multilayer hybrid plasmonic leaky-wave optical antenna with improved directivity and matching. , 2018, , .		3
2056	Design analysis of hybrid silicon-on-nothing photonic crystal–nanoantenna structures for engineering of midinfrared radiative properties. Journal of Nanophotonics, 2018, 12, 1.	0.4	0

#	Article	IF	CITATIONS
2057	Resonant light scattering properties of a single wavelength-scale nanorod structure. , 2018, , .		0
2058	Temporal dynamics of strongly coupled exciton-localized surface plasmons beyond Rabi oscillations. , 2018, , .		0
2059	Hyperbolic metamaterial-based plasmoelectronic nanodevices for detection and harvesting of infrared radiation. , 2018, , .		0
2060	Plasmonic dipole nanoantennas on a SiO2/Si substrate and their characterization. , 2018, , .		0
2061	Improvement of the IR detectors by plasmon resonance using transparent nanoparticles obtained by the colloid dispersion synthesis: overview. , 2018, , .		0
2062	Design and analysis of a hollow bowtie nanoantenna. , 2018, , .		0
2063	Advances in dynamically tunable plasmonic materials and devices. Wuli Xuebao/Acta Physica Sinica, 2019, 68, 147303.	0.2	2
2065	Lithography-free hybrid Agâ \in "Au super absorbing metasurfaces for addictive drug sensing. , 2019, , .		0
2066	Interactions between photons and excitons in micro-nano photonic structures. Wuli Xuebao/Acta Physica Sinica, 2019, 68, 144201.	0.2	1
2067	Deep subwavelength plasmonic metamaterial absorbers for infrared detection. , 2019, , .		0
2068	Simulation of unconventional lithography with a metasurface comprised of bow-tie nanoantennas. Journal of the Optical Society of America B: Optical Physics, 2019, 36, 500.	0.9	1
2070	Fabrication and optical characterization of hyperbolic nanoparticles on a transparent substrate. , 2019, , .		0
2071	Dual-band directional scattering with all-dielectric trimer in the near-infrared region. Applied Optics, 2019, 58, 5082.	0.9	3
2073	Luminescence enhancement by collective Mie-resonances. , 2019, , .		0
2074	Scattering of electromagnetic waves by cylinder inside uniaxial hyperbolic medium. , 2019, , .		0
2075	Collective modes of self-assembled supercluster metamaterials: towards label-free sensing. , 2019, , .		0
2076	Dual-polarization star-gap nano-antenna. Journal of the Optical Society of America B: Optical Physics, 2019, 36, 2913.	0.9	0
2077	The Mathematical Model of the Fluorescence Processes Accounting for the Quantum Effect of the Nonlocal Screening. Mathematical Models and Computer Simulations, 2019, 11, 1041-1051.	0.1	3

#	Article	IF	CITATIONS
2078	Enhanced two-photon photoluminescence assisted by multi-resonant characteristics of a gold nanocylinder. Nanophotonics, 2020, 9, 4009-4019.	2.9	6
2079	Enhanced light emission from gap plasmons in nano-strip MIM tunnel junctions. Journal of Optics (United Kingdom), 2020, 22, 095006.	1.0	2
2080	Photonic Gap Antennas Based on High-Index-Contrast Slot Waveguides. Physical Review Applied, 2021, 16, .	1.5	2
2081	Reactive helicity and reactive power in nanoscale optics: Evanescent waves. Kerker conditions. Optical theorems and reactive dichroism. Physical Review Research, 2021, 3, .	1.3	22
2082	Tuning the optical response of a plasmonic T-shaped dimer with nanowire loads for improved SERS and sensing applications. Journal Physics D: Applied Physics, 2021, 54, 084001.	1.3	8
2083	Mie scattering study of dielectric nanoparticles and nanoantennas applications. Revista De La Academia Colombiana De Ciencias Exactas, Fisicas Y Naturales, 2020, 44, 974-983.	0.0	0
2084	Limiting amplitude principle and resonances in plasmonic structures with corners: Numerical investigation. Computer Methods in Applied Mechanics and Engineering, 2022, 388, 114207.	3.4	1
2085	Strong coupling effects in a plexciton system of gold nanostars and J-aggregates. Journal of Luminescence, 2022, 242, 118557.	1.5	13
2086	Tunable metasurfaces based on phase-change materials. Wuli Xuebao/Acta Physica Sinica, 2020, 69, 154202.	0.2	5
2088	Novel concept for contactless all-optical temperature measurement based on diffusion-inspired phosphorescent decay in nanostructured environment. AIP Conference Proceedings, 2020, , .	0.3	0
2089	Advanced Function Control of Photochemical Reactions Using Mesoscopic Structures. , 2020, , 93-116.		0
2090	Enabling Efficient Unidirectional Forward Scattering via Metal-dielectric Heterodimer. , 2021, , .		0
2091	Optical Anisotropy in van der Waals materials: Impact on Direct Excitation of Plasmons and Photons by Quantum Tunneling. Light: Science and Applications, 2021, 10, 230.	7.7	7
2092	Introductory Study of a Broadband, High-Efficiency Nanoloop Optical Communications Platform. , 2020, , .		0
2093	Enhanced emission of in-situ fabricated perovskite-polymer composite films on gold nanoparticle substrates. Optical Materials Express, 2020, 10, 1659.	1.6	2
2094	Probing plasmonic excitation mechanisms and far-field radiation of single-crystalline gold tapers with electrons. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2020, 378, 20190599.	1.6	2
2095	Plasmonic Optical Antenna and Its Enhancement to Infrared Photodetectors. , 2020, , 20-1-20-13.		0
2096	Selective excitation of individual nanoantennas by pure spectral phase control in the ultrafast coherent regime. Nanophotonics, 2020, 10, 597-606.	2.9	3

# 2097	ARTICLE Conical dielectric resonator antenna for terahertz applications. Frequenz, 2021, 75, 211-220.	IF 0.6	CITATIONS 3
2098	A 3.3 V Output Voltage Optical Plasmonic Solar Energy Harvester. , 2021, , .		2
2099	Far-IR to deep-UV adaptive supercontinuum generation using semiconductor nano-antennas via carrier injection rate modulation. Applied Nanoscience (Switzerland), 2022, 12, 1-16.	1.6	8
2100	Nanoantennas Inversely Designed to Couple Free Space and a Metal–Insulator–Metal Waveguide. Nanomaterials, 2021, 11, 3219.	1.9	2
2101	Optical meta-waveguides for integrated photonics and beyond. Light: Science and Applications, 2021, 10, 235.	7.7	196
2102	Roadmap on multimode light shaping. Journal of Optics (United Kingdom), 2022, 24, 013001.	1.0	41
2103	Damage Induced to DNA and Its Constituents by 0–3 eV UV Photoelectrons ^{â€} . Photochemistry and Photobiology, 2022, 98, 546-563.	1.3	5
2104	Overcoming Intensity Saturation in Nonlinear Multipleâ€Quantumâ€Well Metasurfaces for Highâ€Efficiency Frequency Upconversion. Advanced Materials, 2021, , 2106902.	11.1	1
2105	Usability of Tilted Plasmon Antenna with Structured Light. Photonics, 2021, 8, 504.	0.9	0
2106	Revealing the Three-Dimensional Orientation and Interplay between Plasmons and Interband Transitions for Single Gold Bipyramids by Photoluminescence Excitation Pattern Imaging. Journal of Physical Chemistry C, 2021, 125, 26978-26985.	1.5	3
2107	Optimization of optical waveguide antennas for directive emission of light. Journal of the Optical Society of America B: Optical Physics, 2022, 39, 83.	0.9	5
2108	Spontaneous emission mediated by graphene/hexagonal boron nitride/graphene sandwich structure. Europhysics Letters, 2021, 136, 37001.	0.7	3
2109	A tunable nonlinear plasmonic multiplexer/demultiplexer device based on nanoscale ring resonators. Photonic Network Communications, 2021, 42, 209-218.	1.4	8
2110	Broadband unidirectional scattering in the transverse direction and angular radiation realized by using a silicon hollow nanodisk under a radially polarized beam. Journal Physics D: Applied Physics, 2022, 55, 095111.	1.3	2
2111	Reversal and control the tip-enhanced Raman scattering efficiency of rough plasmonic probes fabricated using UV-ozone and hydrazine. Applied Surface Science, 2022, 577, 151937.	3.1	2
2112	Integrated enhanced Raman scattering: a review. Nano Convergence, 2021, 8, 41.	6.3	7
2113	Interfacial Dynamics, Chemistry, and Photochemistry of Molecular Ligands on Plasmonic Nanoparticle Surfaces: Insights From Surface-Enhanced Raman Spectroscopy. , 2021, , .		0
2114	Luminol chemiluminescence enhancement via the localized surface plasmon resonance in metal nanoparticles. , 2021, , .		0

#	Article	IF	CITATIONS
2115	Nanobridged rhombic antennas supporting both dipolar and high-order plasmonic modes with spatially superimposed hotspots in the mid-infrared. Opto-Electronic Advances, 2021, 4, 210076-210076.	6.4	27
2117	Tunable Anomalous Scattering and Negative Asymmetry Parameter in a Gain-Functionalized Low Refractive Index Sphere. ACS Omega, 2022, 7, 2170-2176.	1.6	3
2118	Quadruple plasmon-induced transparency and tunable multi-frequency switch in monolayer graphene terahertz metamaterial. Journal Physics D: Applied Physics, 2022, 55, 155101.	1.3	15
2119	Tuning the Optical Properties of a MoSe ₂ Monolayer Using Nanoscale Plasmonic Antennas. Nano Letters, 2022, 22, 561-569.	4.5	11
2120	Optical Plasmonic Nanoantenna-MWCNT diode Energy Harvester for Solar Powered Wireless Sensors. , 2021, , .		2
2121	A 28.3 THz Plasmonic Graphene Arrow-bowtie Nanoantenna for Energy Harvesting. , 2021, , .		1
2122	Comparing Commercial Metal-Coated AFM Tips and Home-Made Bulk Gold Tips for Tip-Enhanced Raman Spectroscopy of Polymer Functionalized Multiwalled Carbon Nanotubes. Nanomaterials, 2022, 12, 451.	1.9	4
2123	Tip-enhanced Raman spectroscopy of confined carbon chains. Journal of Chemical Physics, 2022, 156, 044203.	1.2	4
2124	Aluminum Cayley trees as scalable, broadband, multiresonant optical antennas. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	6
2125	Third-harmonic generation in optical nanoantennas: efficiency enhancement. European Physical Journal Plus, 2022, 137, 1.	1.2	2
2126	Advances and applications of nanophotonic biosensors. Nature Nanotechnology, 2022, 17, 5-16.	15.6	308
2127	Perspective on 2D material polaritons and innovative fabrication techniques. Applied Physics Letters, 2022, 120, .	1.5	11
2128	Electrical Tuning of Plasmonic Conducting Polymer Nanoantennas. Advanced Materials, 2022, 34, e2107172.	11.1	32
2129	Stimulated Raman scattering: Ensembles to single molecules. , 2022, , 41-65.		0
2130	Highly tunable directional optical antennas with large local angular chiroptical effects. Journal of Applied Physics, 2022, 131, 033103.	1.1	0
2131	Biosensing with a scanning planar Yagi-Uda antenna. Biomedical Optics Express, 2022, 13, 539.	1.5	1
2132	Atomic-scale control of plasmon modes in graphene nanoribbons. Physical Review B, 2022, 105, .	1.1	2
2134	Controllable polarization dependence in quantum dots and silver nanowire coupling system. Optics Communications, 2022, 510, 127973.	1.0	0

~		_
	ION	REPORT
CITAI		REPORT

#	Article	IF	CITATIONS
2135	Revealing local molecular distribution, orientation, phase separation, and formation of domains in artificial lipid layers: Towards comprehensive characterization of biological membranes. Advances in Colloid and Interface Science, 2022, 301, 102614.	7.0	9
2136	Gold nanolens for chiral single molecule spectroscopy. Laser Physics Letters, 2022, 19, 035701.	0.6	0
2137	Silicon cuboid nanoantenna with simultaneous large Purcell factor for electric dipole, magnetic dipole and electric quadrupole emission. Opto-Electronic Advances, 2022, 5, 210024-210024.	6.4	13
2138	Passive near-field optical scanning imaging based on semiconductor nanowire/tapered microfiber probe. Wuli Xuebao/Acta Physica Sinica, 2022, 71, 044201.	0.2	1
2139	Broadband Enhancement of the Spontaneous Emission by an Optical Dipole Nanoantenna on Metallic Substrate: an Intuitive Model of Surface Plasmon Polariton. Wuli Xuebao/Acta Physica Sinica, 2022, .	0.2	0
2140	Microporous Multiresonant Plasmonic Meshes by Hierarchical Micro–Nanoimprinting for Bioâ€Interfaced SERS Imaging and Nonlinear Nanoâ€Optics. Small, 2022, 18, e2106887.	5.2	13
2141	Nanoscale electromagnetism with the boundary element method. Physical Review B, 2022, 105, .	1.1	4
2142	Interaction of Chiral Gold Nanotubes with an Alternating Magnetic Field. Russian Journal of Inorganic Chemistry, 2022, 67, 188-192.	0.3	0
2143	Plexcitonic Quantum Light Emission from Nanoparticle-on-Mirror Cavities. Nano Letters, 2022, 22, 2365-2373.	4.5	9
2144	Simulation on non-axisymmetric ring resonator with nano-antenna for heat-assisted magnetic recording. Japanese Journal of Applied Physics, 0, , .	0.8	0
2145	Directing monolayer tungsten disulfide photoluminescence using a bent-plasmonic nanowire on a mirror cavity. European Physical Journal: Special Topics, 2022, 231, 807-813.	1.2	3
2146	Recent advances in ultrafast plasmonics: from strong field physics to ultraprecision spectroscopy. Nanophotonics, 2022, 11, 2393-2431.	2.9	7
2147	Quantum mechanical solution to spectral lineshape in strongly-coupled atom–nanocavity system. Chinese Physics B, 2022, 31, 043202.	0.7	0
2148	Enhanced third-harmonic generation via gold nanospheres localized surface plasmonic resonance. Journal Physics D: Applied Physics, 2022, 55, 305103.	1.3	2
2149	SPASER as Nanoprobe for Biological Applications: Current State and Opportunities. Laser and Photonics Reviews, 2022, 16, .	4.4	3
2150	Ultraviolet optical horn antennas for label-free detection of single proteins. Nature Communications, 2022, 13, 1842.	5.8	14
2151	Transition Metal Dichalcogenide Dimer Nanoantennas for Tailored Light–Matter Interactions. ACS Nano, 2022, 16, 6493-6505.	7.3	15
2153	Epsilon-Near-Zero Plasmonics. Lecture Notes in Nanoscale Science and Technology, 2022, , 27-55.	0.4	1

~			<u> </u>	
C	ΙΤΑΤΙ	ON	REPC	DRT

#	Article	IF	CITATIONS
2154	\$mathrm{A}2.6 mathrm{V}-10 mu mathrm{A}\$ Nanorectenna Harvester based on thermal radiation of the car exhaust system. , 2021, , .		0
2155	Controlling the polarization of chiral dipolar emission with a spherical dielectric nanoantenna. Journal of Chemical Physics, 2021, 155, 224110.	1.2	2
2156	Super-resolution imaging: when biophysics meets nanophotonics. Nanophotonics, 2022, 11, 169-202.	2.9	6
2157	Metasurface Photodetectors. Micromachines, 2021, 12, 1584.	1.4	12
2158	Plasmon–Exciton Coupling Effect on Plasmon Damping. Advanced Photonics Research, 0, , 2100281.	1.7	2
2159	Generalization of the Optical Theorem to an Arbitrary Multipole Excitation of a Particle near a Transparent Substrate. Mathematics, 2021, 9, 3244.	1.1	4
2160	Band-edge emission enhancement in sputtered ZnO thin films with ultraviolet surface lattice resonances. Journal of Applied Physics, 2021, 130, .	1.1	3
2161	All-dielectric χ ⁽²⁾ metasurfaces: recent progress. Opto-Electronic Advances, 2022, 5, 210093-210093.	6.4	32
2162	Hybrid epsilon-near-zero modes of photonic gap antennas. Physical Review B, 2022, 105, .	1.1	1
2163	Probing the role of grain boundaries in single Cu nanoparticle oxidation by <i>in situ</i> plasmonic scattering. Physical Review Materials, 2022, 6, .	0.9	4
2164	Broadband optical Ta ₂ O ₅ antennas for directional emission of light. Optics Express, 2022, 30, 19288.	1.7	5
2166	Effect of surface modification of metallic nanorod on the spontaneous emission enhancement. Wuli Xuebao/Acta Physica Sinica, 2022, .	0.2	0
2167	Quantum surface effects in the electromagnetic coupling between a quantum emitter and a plasmonic nanoantenna: time-dependent density functional theory vs. semiclassical Feibelman approach. Optics Express, 2022, 30, 21159.	1.7	7
2168	Polaritonic critical coupling in a hybrid quasibound states in the continuum cavity– <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mi> WS </mml:mi> <mml:mn> 2 monolayer system. Physical Review B, 2022, 105, .</mml:mn></mml:msub></mml:math 	nn ».1 /mml	:msub>
2169	Infrared Nano-Focusing by a Novel Plasmonic Bundt Optenna. , 0, , .		1
2170	Surface plasmon polariton at the interface of dielectric and graphene medium using the Doppler broadening effect. Laser Physics, 2022, 32, 065206.	0.6	2
2171	Multifunctional and Transformative Metaphotonics with Emerging Materials. Chemical Reviews, 2022, 122, 15414-15449.	23.0	23
2172	Chemical Interface Damping in Nonstoichiometric Semiconductor Plasmonic Nanocrystals: An Effect of the Surrounding Environment. Langmuir, 2022, 38, 5339-5350.	1.6	3

#	Article	IF	CITATIONS
2173	Etching-free high-throughput intersectional nanofabrication of diverse optical nanoantennas for nanoscale light manipulation. Journal of Colloid and Interface Science, 2022, 622, 950-959.	5.0	6
2175	Two-Photon-Excited Single-Molecule Fluorescence Enhanced by Gold Nanorod Dimers. Nano Letters, 2022, 22, 4215-4222.	4.5	3
2176	Nanoscale Electrically Driven Light Source Based on Hybrid Semiconductor/Metal Nanoantenna. Journal of Physical Chemistry Letters, 2022, 13, 4612-4620.	2.1	5
2177	Mode-dependent energy exchange between near- and far-field through silicon-supported single silver nanorods. Nanoscale, 2022, 14, 8362-8373.	2.8	3
2178	Magnetic and electric Purcell factor control through geometry optimization of high index dielectric nanostructures. Optics Express, 2022, 30, 20360.	1.7	18
2179	Optical metalenses: fundamentals, dispersion manipulation, and applications. Frontiers of Optoelectronics, 2022, 15, .	1.9	18
2180	Reconfigurable flexural waves manipulation by broadband elastic metasurface. Mechanical Systems and Signal Processing, 2022, 179, 109371.	4.4	14
2181	Broadband enhancement of spontaneous emission by optical dipole nanoantenna on metallic substrate: An intuitive model of surface plasmon polariton. Wuli Xuebao/Acta Physica Sinica, 2022, 71, 118101.	0.2	0
2182	Spoof surface plasmon photonics. Reviews of Modern Physics, 2022, 94, .	16.4	60
2183	Inclusion of the sample-tip interaction term in the theory of tip-enhanced Raman spectroscopy. Physical Review B, 2022, 105, .	1.1	3
2184	Enhanced Purcell factor for nanoantennas supporting interfering resonances. Physical Review Research, 2022, 4, .	1.3	10
2185	Nonlinear and Ultrafast All-Dielectric Metasurfaces at the Center for Integrated Nanotechnologies. Nanotechnology, 0, , .	1.3	2
2186	High-Q collective Mie resonances in monocrystalline silicon nanoantenna arrays for the visible light. Fundamental Research, 2023, 3, 822-830.	1.6	11
2187	A New Method to Analyse the Role of Surface Plasmon Polaritons on Dielectric-Metal Interfaces. IEEE Photonics Journal, 2022, 14, 1-9.	1.0	7
2188	Ðbsorption of diffuse light by 2D arrays of spherical particles. Journal of Quantitative Spectroscopy and Radiative Transfer, 2022, 289, 108291.	1.1	4
2189	Optical Sensing by Metamaterials and Metasurfaces: From Physics to Biomolecule Detection. Advanced Optical Materials, 2022, 10, .	3.6	24
2190	Mirror-coupled microsphere can narrow the angular distribution of photoluminescence from WS2 monolayers. Applied Physics Letters, 2022, 120, .	1.5	2
2191	Doped semiconducting polymer nanoantennas for tunable organic plasmonics. Communications Materials, 2022, 3, .	2.9	9

#	Article	IF	Citations
2192	Modeling of Multimodal Scattering by Conducting Bodies in Quantum Optics: The Method of Characteristic Modes. Physical Review Applied, 2022, 18, .	1.5	2
2193	Optimization of tip-enhanced Raman spectroscopy for probing the chemical structure of DNA. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2022, 281, 121595.	2.0	2
2194	Circularly polarized tunable graphene-patch over SiO2 substrate for THz applications. Optical and Quantum Electronics, 2022, 54, .	1.5	2
2195	Tip-Enhanced Raman Spectroscopy Based on Spiral Plasmonic Lens Excitation. Sensors, 2022, 22, 5636.	2.1	3
2196	DNA-Templated Ultracompact Optical Antennas for Unidirectional Single-Molecule Emission. Nano Letters, 2022, 22, 6402-6408.	4.5	8
2197	Super-Operator Linear Equations and Their Applications to Quantum Antennas and Quantum Light Scattering. Applied Sciences (Switzerland), 2022, 12, 8498.	1.3	2
2198	Coherent Control of the Nonlinear Emission of Single Plasmonic Nanoantennas by Dualâ€Beam Pumping. Advanced Optical Materials, 0, , 2200757.	3.6	6
2199	Origin of Zenneck-like waves excited by optical nanoantennas in non-plasmonic transition metals. Optics Express, 0, , .	1.7	0
2200	Optical Ultracompact Directional Antennas Based on a Dimer Nanorod Structure. Nanomaterials, 2022, 12, 2841.	1.9	3
2201	Computation of eigenfrequency sensitivities using Riesz projections for efficient optimization of nanophotonic resonators. Communications Physics, 2022, 5, .	2.0	4
2202	Maximum RF Input Signal on the Electro-Optic Modulator Transmission Boundary Area for Harmonic Distortion Compensation in Analog Radio Over Fiber. IEEE Access, 2022, 10, 100079-100093.	2.6	0
2203	Tunable directional emission from electrically driven nano-strip metal–insulator–metal tunnel junctions. Nanoscale Advances, 2022, 4, 3609-3616.	2.2	3
2204	Conical Optical Dielectric Resonator Antenna for Retinal Prosthesis Applications. SSRN Electronic Journal, 0, , .	0.4	0
2205	WS ₂ –Flake-Sandwiched, Au-Nanodisk-Enabled High-Quality Fabry–Pérot Nanoresonators for Photoluminescence Modulation. ACS Nano, 2022, 16, 14874-14884.	7.3	5
2207	Cupric Oxide Mie Resonators. Journal of Physical Chemistry C, 2022, 126, 16272-16279.	1.5	3
2208	Nano Spherical Dielectric Resonator Antenna for Rectenna Application. Wireless Personal Communications, 2023, 128, 161-172.	1.8	2
2209	Types of Nonlinear Interactions between Plasmonic-Excitonic Hybrids. , 0, , .		0
2210	Plasmonic Resonance-Enhanced Low Dark Current and High-Speed InP/InGaAs Uni-Traveling-Carrier Photodiode. ACS Applied Electronic Materials, 2022, 4, 5034-5039.	2.0	0

#	Article	IF	CITATIONS
2211	Kerker scattering of electrons: Towards futuristic thermoelectric materials. Physical Review B, 2022, 106, .	1.1	1
2212	DNA Self-Assembly of Single Molecules with Deterministic Position and Orientation. ACS Nano, 2022, 16, 16924-16931.	7.3	18
2213	Joint Communication and Bio-Sensing With Plasmonic Nano-Systems to Prevent the Spread of Infectious Diseases in the Internet of Nano-Bio Things. IEEE Journal on Selected Areas in Communications, 2022, 40, 3271-3284.	9.7	1
2214	Effect of the excitation setup in the improved enhancement factor of covered-gold-nanorod-dimer antennas. Physical Chemistry Chemical Physics, 2022, 24, 25602-25610.	1.3	0
2215	Time-Evolving Chirality Loss in Molecular Photodissociation Monitored by X-ray Circular Dichroism Spectroscopy. Journal of the American Chemical Society, 2022, 144, 20400-20410.	6.6	3
2216	Farâ€Field Polarization Engineering from Nonlinear Nanoresonators. Laser and Photonics Reviews, 2022, 16, .	4.4	4
2217	Super-resolved three-dimensional near-field mapping by defocused imaging and tracking of fluorescent emitters. Nanophotonics, 2022, .	2.9	2
2218	On the Use of Polymer-Based Composites for the Creation of Optical Sensors: A Review. Polymers, 2022, 14, 4448.	2.0	16
2219	Enhanced quantum efficiency and Purcell factor of incoherent light-emitting source modulators coupled with nanoantennas: DDA modeling and optimization. Journal of the Optical Society of America B: Optical Physics, 2023, 40, 94.	0.9	1
2220	Fractionalâ€Order Localized Spoof Surface Plasmons for Inâ€Phase or Outâ€ofâ€Phase Power Division. Advanced Theory and Simulations, 2023, 6, .	1.3	1
2221	Directivity at Optical Frequencies Using Nanoantenna Array. , 2022, , .		0
2222	Infrared Thermoelectric Nanoantenna with Maximum Output Voltage Using Grounded and Openâ€Ended SiO ₂ . Advanced Optical Materials, 0, , 2201767.	3.6	0
2223	Deep ultraviolet spontaneous emission enhanced by layer dependent black phosphorus plasmonics. Optics Express, 2022, 30, 47152.	1.7	5
2224	Plasmonic Silverâ€Nanoparticle atalysed Hydrogen Abstraction from the C(<i>sp</i> ^{<i>3</i>) Tj ETQq Angewandte Chemie, 0, , .}	1 1 0.784 1.6	314 rgBT / 0
2225	Plasmonic Silverâ€Nanoparticleâ€Catalysed Hydrogen Abstraction from the C(<i>sp</i> ^{<i>3</i>})â^`H Bond of the Benzylic C _α atom for Cleavage of Alkyl Aryl Ether Bonds. Angewandte Chemie - International Edition, 2023, 62, .	7.2	11
2226	Perfect Nonradiating Modes in Dielectric Nanoparticles. Photonics, 2022, 9, 1005.	0.9	4
2227	Advanced refractive index sensor using 3-dimensional metamaterial based nanoantenna array. Journal of Physics: Conference Series, 2022, 2407, 012054.	0.3	1
2229	Funneling of Oblique Incident Light through Subwavelength Metallic Slits. Nanomaterials, 2023, 13, 61.	1.9	1

#	Article	IF	Citations
2230	Dielectric Mie voids: confining light in air. Light: Science and Applications, 2023, 12, .	7.7	19
2231	Roomâ€Temperature Selfâ€Powered Terahertz Photodetection in Geâ€Intercalated Topological Insulator GeBi ₄ Te ₇ . Physica Status Solidi - Rapid Research Letters, 0, , 2200484.	1.2	0
2232	Resonance Expansion of Quadratic Quantities with Regularized Quasinormal Modes. Physica Status Solidi (A) Applications and Materials Science, 2023, 220, .	0.8	1
2233	Gold Nanorod DNA Origami Antennas for 3 Orders of Magnitude Fluorescence Enhancement in NIR. ACS Nano, 2023, 17, 1327-1334.	7.3	13
2235	Ultrafast hot electron dynamics in plasmonic nanostructures: experiments, modelling, design. Nanophotonics, 2023, 12, 1-28.	2.9	13
2236	Computational Investigation of Advanced Refractive Index Sensor Using 3-Dimensional Metamaterial Based Nanoantenna Array. Sensors, 2023, 23, 1290.	2.1	4
2237	Orientation-Dependent Interaction between the Magnetic Plasmons in Gold Nanocups and the Excitons in WS ₂ Monolayer and Multilayer. ACS Nano, 2023, 17, 2356-2367.	7.3	6
2238	Spontaneous emission enhancement and directional emission by an optical nanonatenna array on a metallic mirror. Wuli Xuebao/Acta Physica Sinica, 2023, 72, 078101.	0.2	1
2239	Fano asymmetry in zero–detuned exciton–plasmon systems. Optics Express, 2023, 31, 10297.	1.7	3
2240	Trilayered Gires–Tournois Resonator with Ultrasensitive Slow-Light Condition for Colorimetric Detection of Bioparticles. Nanomaterials, 2023, 13, 319.	1.9	5
2241	Tailoring the directional dependent emitter interaction based plasmonic antenna character of Ag–Au heterodimer. Optics and Laser Technology, 2023, 162, 109254.	2.2	0
2242	A Circular Dipole Nanoantenna with Improved Performance. , 2022, , .		0
2243	Colorization of passive radiative cooling coatings using plasmonic effects. Solar Energy Materials and Solar Cells, 2023, 253, 112225.	3.0	7
2244	Recent progress in dielectric resonator antenna: Materials, designs, fabrications, and their performance. Applied Physics Reviews, 2023, 10, .	5.5	19
2245	Terahertz electromagnetic signal enhancement in split ring resonators featuring waveguide modes. Optics Express, 2023, 31, 8081.	1.7	0
2246	Smart Magnetic Optical Antenna for Automatic Nanoalignment and Photon Beaming from Prepatterned Single Quantum Dot Nanospot. Nano Letters, 2023, 23, 1539-1545.	4.5	0
2247	Electric field enhancement of coupled plasmonic nanostructures for optical amplification. PhotoniX, 2023, 4, .	5.5	4
2248	Theory of Edge Effects and Conductance for Applications in Graphene-Based Nanoantennas. Applied Sciences (Switzerland), 2023, 13, 2221.	1.3	2

#	Article	IF	Citations
2249	Temperature-modulated superradiance near phase transition material. Optical Materials, 2023, 137, 113568.	1.7	1
2250	Plasmon-mediated chemical reactions. Nature Reviews Methods Primers, 2023, 3, .	11.8	18
2251	Density of states effects on emission and scattering of photons in plasmas. Physica Scripta, 2023, 98, 045614.	1.2	1
2252	Does the chemical contribution have a secondary role in SERS?. Journal of the Optical Society of America B: Optical Physics, 2023, 40, C78.	0.9	2
2253	Advances in Metaphotonics Empowered Single Photon Emission. Advanced Optical Materials, 2023, 11, .	3.6	10
2254	Asymmetrical Plasmon Distribution in Hybrid AuAg Hollow/Solid Coded Nanotubes. Nanomaterials, 2023, 13, 992.	1.9	0
2255	Nanomechanics with plasmonic nanoantennas: ultrafast and local exchange between electromagnetic and mechanical energy. Journal of the Optical Society of America B: Optical Physics, 2023, 40, 1196.	0.9	6
2256	Radiothermal Emission of Nanoparticles with a Complex Shape as a Tool for the Quality Control of Pharmaceuticals Containing Biologically Active Nanoparticles. Pharmaceutics, 2023, 15, 966.	2.0	2
2257	Transverse Scattering from Nanodimers Tunable with Generalized Cylindrical Vector Beams. Laser and Photonics Reviews, 2023, 17, .	4.4	0
2258	Nanophotonic Devices and Platforms. Springer Series in Optical Sciences, 2023, , 35-76.	0.5	0
2259	Plasmonic Optical Nano-Antenna for Biomedical Applications. , 0, , .		0
2260	Next-generation nanophotonic-enabled biosensors for intelligent diagnosis of SARS-CoV-2 variants. Science of the Total Environment, 2023, 880, 163333.	3.9	20
2261	Achieving High Temporal Resolution in Singleâ€Molecule Fluorescence Techniques Using Plasmonic Nanoantennas. Advanced Optical Materials, 2023, 11, .	3.6	4
2262	Au-based heterostructure composites for photo and electro catalytic energy conversions. Sustainable Materials and Technologies, 2023, 36, e00609.	1.7	4
2263	Raman enhancement in bowtie-shaped aperture-particle hybrid nanostructures fabricated with DNA-assisted lithography. Nanoscale, 2023, 15, 8589-8596.	2.8	1
2271	DNA Origami Assembled Nanoantennas for Manipulating Single-Molecule Spectral Emission. Nano Letters, 0, , .	4.5	0
2279	Routing the Exciton Emissions of WS ₂ Monolayer with the High-Order Plasmon Modes of Ag Nanorods. Nano Letters, 2023, 23, 4183-4190.	4.5	6
2280	Nanoworld. , 2023, , 39-54.		0

#	Article	IF	CITATIONS
2289	Scanning Probe Microscopies (SPMs). Lecture Notes in Nanoscale Science and Technology, 2023, , 243-282.	0.4	0
2290	Multipolarized gold dipole nanoantennas for IR focal plane arrays: an infrared detection approach. , 2023, , .		0
2299	Probing the Optical Near-Field. Springer Series in Optical Sciences, 2023, , 137-196.	0.5	0
2301	Aerogel-Like Metals Produced Through Physical Vapor Deposition. Springer Handbooks, 2023, , 1189-1210.	0.3	0
2335	Nanophotonic biosensors. , 2024, , 197-218.		0