Building plasmonic nanostructures with DNA

Nature Nanotechnology 6, 268-276

DOI: 10.1038/nnano.2011.49

Citation Report

#	Article	IF	CITATIONS
2	Programmed placement of gold nanoparticles onto a slit-type DNA origami scaffold. Chemical Communications, 2011, 47, 10743.	2.2	35
3	Free-Standing Polymer–Nanoparticle Superlattice Sheets Self-Assembled at the Air–Liquid Interface. Crystal Growth and Design, 2011, 11, 4742-4746.	1.4	56
4	Crystalline Gibbs Monolayers of DNA-Capped Nanoparticles at the Air–Liquid Interface. ACS Nano, 2011, 5, 7978-7985.	7.3	53
5	Size Dependence of the Plasmon Ruler Equation for Two-Dimensional Metal Nanosphere Arrays. Journal of Physical Chemistry C, 2011, 115, 15915-15926.	1.5	57
6	DNA Directed Self-Assembly of Anisotropic Plasmonic Nanostructures. Journal of the American Chemical Society, 2011, 133, 17606-17609.	6.6	214
7	DNA-Enabled Self-Assembly of Plasmonic Nanoclusters. Nano Letters, 2011, 11, 4859-4864.	4.5	136
8	DNA architectures for templated material growth. , 2011, , .		1
9	Single metal nanoparticles: optical detection, spectroscopy and applications. Reports on Progress in Physics, 2011, 74, 106401.	8.1	233
10	Challenges and opportunities for structural DNA nanotechnology. Nature Nanotechnology, 2011, 6, 763-772.	15.6	1,169
11	UV/Ozone-Oxidized Large-Scale Graphene Platform with Large Chemical Enhancement in Surface-Enhanced Raman Scattering. ACS Nano, 2011, 5, 9799-9806.	7.3	350
12	DNA discrete modified gold nanoparticles. Nanoscale, 2011, 3, 4015.	2.8	30
13	Three-Dimensional Plasmon Rulers. Science, 2011, 332, 1407-1410.		
		6.0	522
14	Detecting Intruders on the Nanoscale. Science, 2011, 332, 1389-1390.	6.0	522
14			
	Detecting Intruders on the Nanoscale. Science, 2011, 332, 1389-1390. Synthesis and assembly of anisotropic nanoparticles. Korean Journal of Chemical Engineering, 2011, 28,	6.0	5
15	Detecting Intruders on the Nanoscale. Science, 2011, 332, 1389-1390. Synthesis and assembly of anisotropic nanoparticles. Korean Journal of Chemical Engineering, 2011, 28, 1641-1650.	6.0	5 23
15	Detecting Intruders on the Nanoscale. Science, 2011, 332, 1389-1390. Synthesis and assembly of anisotropic nanoparticles. Korean Journal of Chemical Engineering, 2011, 28, 1641-1650. Ein Plasmonenlineal vermisst Proteine. Physik in Unserer Zeit, 2011, 42, 266-267.	6.0 1.2 0.0	5 23 0

#	ARTICLE	IF	CITATIONS
20	Controllable plasmonic antennas with ultra narrow bandwidth based on silver nano-flags. Applied Physics Letters, 2012, 101, .	1.5	23
21	Are scaling laws of sub-optical wavelength electric field confinement in arrays of metal nanoparticles related to plasmonics or to geometry?. Optics Express, 2012, 20, 17591.	1.7	10
23	Multiplexed DNA Detection with DNA-Functionalized Silver and Silver/Gold Nanoparticle Superstructure Probes. Bulletin of the Korean Chemical Society, 2012, 33, 221-226.	1.0	13
24	Molecularly-mediated assemblies of plasmonic nanoparticles for Surface-Enhanced Raman Spectroscopy applications. Chemical Society Reviews, 2012, 41, 7085.	18.7	380
25	Self-assembly of noble metal nanocrystals: Fabrication, optical property, and application. Nano Today, 2012, 7, 564-585.	6.2	202
26	A mechanical metamaterial made from a DNA hydrogel. Nature Nanotechnology, 2012, 7, 816-820.	15.6	484
27	High catalytic performance of gold nanoparticle–gelatin mesoporous composite thin films. Journal of Materials Chemistry, 2012, 22, 21117.	6.7	15
28	From cells to DNA materials. Materials Today, 2012, 15, 190-194.	8.3	36
29	Spatially-Interactive Biomolecular Networks Organized by Nucleic Acid Nanostructures. Accounts of Chemical Research, 2012, 45, 1215-1226.	7.6	140
30	Self-assembly patterning of nanomaterials using electrostatic interaction in solution. , 2012, , .		0
31	Antibody-functionalized polymer-coated gold nanoparticles targeting cancer cells: an in vitro and in vivo study. Journal of Materials Chemistry, 2012, 22, 21305.	6.7	51
32	Heterogeneous nanoclusters assembled by PNA-templated double-stranded DNA. Nanoscale, 2012, 4, 6722.	2.8	12
33	Reversible Plasmonic Circular Dichroism of Au Nanorod and DNA Assemblies. Journal of the American Chemical Society, 2012, 134, 3322-3325.	6.6	307
34	Rolling Up Gold Nanoparticle-Dressed DNA Origami into Three-Dimensional Plasmonic Chiral Nanostructures. Journal of the American Chemical Society, 2012, 134, 146-149.	6.6	382
35	Solution Phase Gold Nanorings on a Viral Protein Template. Nano Letters, 2012, 12, 629-633.	4.5	68
36	Few-Atom Fluorescent Silver Clusters Assemble at Programmed Sites on DNA Nanotubes. Nano Letters, 2012, 12, 5464-5469.	4.5	61
37	Directional Synthesis and Assembly of Bimetallic Nanosnowmen with DNA. Journal of the American Chemical Society, 2012, 134, 5456-5459.	6.6	107
38	Nanoparticle Assemblies in Thin Films of Supramolecular Nanocomposites. Nano Letters, 2012, 12, 2610-2618.	4.5	74

#	Article	IF	Citations
39	DNA-Directed Assembly of Asymmetric Nanoclusters Using Janus Nanoparticles. ACS Nano, 2012, 6, 802-809.	7.3	93
40	DNA Origami Metallized Site Specifically to Form Electrically Conductive Nanowires. Journal of Physical Chemistry B, 2012, 116, 10551-10560.	1.2	90
41	Directed Assembly of DNA-Functionalized Gold Nanoparticles Using Pyrrole–Imidazole Polyamides. Journal of the American Chemical Society, 2012, 134, 8356-8359.	6.6	46
42	Robust DNA-Functionalized Core/Shell Quantum Dots with Fluorescent Emission Spanning from UV–vis to Near-IR and Compatible with DNA-Directed Self-Assembly. Journal of the American Chemical Society, 2012, 134, 17424-17427.	6.6	108
43	Synthetically programmable nanoparticle superlattices using a hollow three-dimensional spacer approach. Nature Nanotechnology, 2012, 7, 24-28.	15.6	158
44	Tunable Plasmon Coupling in Distance-Controlled Gold Nanoparticles. Langmuir, 2012, 28, 8862-8866.	1.6	85
45	Biochemical Investigation of the Formation of Three-Dimensional Networks from DNA-Grafted Large Silica Particles. Langmuir, 2012, 28, 2156-2165.	1.6	27
46	Rational design of oriented assembly of gold nanospheres with nanorods by biotin–streptavidin connectors. Nanoscale, 2012, 4, 6256.	2.8	8
47	Influence of a GC Base Pair on Excitation Energy Transfer in DNA-Assembled Phenanthrene π-Stacks. Bioconjugate Chemistry, 2012, 23, 2105-2113.	1.8	8
48	MesoBioNano explorer—A universal program for multiscale computer simulations of complex molecular structure and dynamics. Journal of Computational Chemistry, 2012, 33, 2412-2439.	1.5	115
49	Peptide assisted synthesis and functionalization of gold nanoparticles and their adsorption by chitosan particles in aqueous dispersion. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2012, 3, 045010.	0.7	3
50	Improved Size-Tunable Synthesis of Monodisperse Gold Nanorods through the Use of Aromatic Additives. ACS Nano, 2012, 6, 2804-2817.	7.3	749
51	DNA nanostructures as scaffolds for metal nanoparticles. Polymer Journal, 2012, 44, 452-460.	1.3	22
52	Self-Assembled Plasmonic Vesicles of SERS-Encoded Amphiphilic Gold Nanoparticles for Cancer Cell Targeting and Traceable Intracellular Drug Delivery. Journal of the American Chemical Society, 2012, 134, 13458-13469.	6.6	407
53	Gold Nanoparticle Deposition on Silica Nanohelices: A New Controllable 3D Substrate in Aqueous Suspension for Optical Sensing. Journal of Physical Chemistry C, 2012, 116, 23143-23152.	1.5	30
54	Fine-tuning longitudinal plasmon resonances of nanorods by thermal reshaping in aqueous media. Nanotechnology, 2012, 23, 105602.	1.3	50
55	Free-Standing Plasmonic-Nanorod Superlattice Sheets. ACS Nano, 2012, 6, 925-934.	7.3	132
56	Colorimetric and Ultrasensitive Bioassay Based on a Dual-Amplification System Using Aptamer and DNAzyme. Analytical Chemistry, 2012, 84, 4711-4717.	3.2	203

#	Article	IF	Citations
57	DNA: multiple architectures for use in electronics applications. Proceedings of SPIE, 2012, , .	0.8	0
58	Salt-mediated kinetics of the self-assembly of gold nanorods end-tethered with polymer ligands. Nanoscale, 2012, 4, 6574.	2.8	32
59	Giant Optical Activity of Helical Architectures of Plasmonic Nanorods. Journal of Physical Chemistry C, 2012, 116, 16674-16679.	1.5	50
60	DNA-Templating Mass Production of Gold Trimer Rings for Optical Metamaterials. Journal of Physical Chemistry C, 2012, 116, 15028-15033.	1.5	21
61	DNA Bimodified Gold Nanoparticles. Langmuir, 2012, 28, 1966-1970.	1.6	24
62	Three-Dimensional Chiral Plasmonic Oligomers. Nano Letters, 2012, 12, 2542-2547.	4.5	342
63	Size-Selective 2D Ordering of Gold Nanoparticles Using Surface Topography of Self-Assembled Diamide Template. ACS Nano, 2012, 6, 8498-8507.	7.3	13
64	Tuning the interparticle distance in nanoparticle assemblies in suspension via DNA-triplex formation: correlation between plasmonic and surface-enhanced Raman scattering responses. Chemical Science, 2012, 3, 2262.	3.7	52
65	Designed Diblock Oligonucleotide for the Synthesis of Spatially Isolated and Highly Hybridizable Functionalization of DNA–Gold Nanoparticle Nanoconjugates. Journal of the American Chemical Society, 2012, 134, 11876-11879.	6.6	452
66	Highly Size―and Shapeâ€Controlled Synthesis of Silver Nanoparticles via a Templated Tollens Reaction. Small, 2012, 8, 770-776.	5. 2	51
67	Beyond DNA origami: the unfolding prospects of nucleic acid nanotechnology. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2012, 4, 139-152.	3.3	36
68	DNAâ€based plasmonic nanoarchitectures: from structural design to emerging applications. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2012, 4, 587-604.	3.3	26
69	Topographically controlled growth of silver nanoparticle clusters. Physica Status Solidi - Rapid Research Letters, 2012, 6, 202-204.	1.2	0
70	Binary Assembly of Colloidal Semiconductor Nanorods with Spherical Metal Nanoparticles. Small, 2012, 8, 843-846.	5.2	26
71	Controlling the Formation of DNA Origami Structures with External Signals. Small, 2012, 8, 2016-2020.	5. 2	12
72	Formation of 1D and 2D Gold Nanoparticle Arrays by Divalent DNA–Gold Nanoparticle Conjugates. Small, 2012, 8, 2335-2340.	5.2	27
73	Photo-induced growth of DNA-capped silver nanoparticles. Nanotechnology, 2012, 23, 115607.	1.3	6
74	DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response. Nature, 2012, 483, 311-314.	13.7	1,868

#	Article	IF	CITATIONS
75	Magnetic assembly of gold core-shell necklace resonators. Applied Physics Letters, 2012, 100, 181106.	1.5	10
76	Nanoparticles in Measurement Science. Analytical Chemistry, 2012, 84, 541-576.	3.2	185
77	Twoâ€Dimensional Assembly of Symmetric Colloidal Dimers under Electric Fields. Advanced Functional Materials, 2012, 22, 4334-4343.	7.8	68
78	Selfâ€Assembled Ultraâ€High Aspect Ratio Silver Nanochains. Advanced Materials, 2012, 24, 5227-5235.	11.1	16
79	Transitioning DNAâ€Engineered Nanoparticle Superlattices from Solution to the Solid State. Advanced Materials, 2012, 24, 5181-5186.	11.1	136
82	Plasmon Shaping by using Protein Nanoarrays and Molecular Lithography to Engineer Structural Color. Angewandte Chemie - International Edition, 2012, 51, 3562-3566.	7.2	16
83	Biomimetic Surface Engineering of Lanthanideâ€Doped Upconversion Nanoparticles as Versatile Bioprobes. Angewandte Chemie - International Edition, 2012, 51, 6121-6125.	7.2	232
84	Photoswitchable Oligonucleotide-Modified Gold Nanoparticles: Controlling Hybridization Stringency with Photon Dose. Nano Letters, 2012, 12, 2530-2536.	4.5	89
85	Performance analysis of nitride alternative plasmonic materials for localized surface plasmon applications. Applied Physics B: Lasers and Optics, 2012, 107, 285-291.	1.1	132
86	Mutagenic effects of gold nanoparticles induce aberrant phenotypes in Drosophila melanogaster. Nanomedicine: Nanotechnology, Biology, and Medicine, 2012, 8, 1-7.	1.7	114
87	Nonlinear response via intrinsic rotation in metamaterials. Physical Review B, 2013, 87, .	1.1	36
88	Multipole Analysis of Self-assembled Metamaterials. Nano-optics and Nanophotonics, 2013, , 89-117.	0.2	2
89	Amorphous Nanophotonics. Nano-optics and Nanophotonics, 2013, , .	0.2	21
90	Nanoscale Structure and Microscale Stiffness of DNA Nanotubes. ACS Nano, 2013, 7, 6700-6710.	7.3	100
91	Amplification of Surface-Enhanced Raman Scattering in Photonic Crystal Fiber Using Offset Launch Method. Plasmonics, 2013, 8, 209-215.	1.8	10
92	DNA Nanotechnology. , 2013, , .		5
93	Integrative self-assembly of functional hybrid nanoconstructs by inorganic wrapping of single biomolecules, biomolecule arrays and organic supramolecular assemblies. Nanoscale, 2013, 5, 7161.	2.8	8
94	Tailorable Plasmonic Circular Dichroism Properties of Helical Nanoparticle Superstructures. Nano Letters, 2013, 13, 3256-3261.	4.5	221

#	Article	IF	Citations
95	Tunable Assembly of Gold Nanoparticles on Nanopatterned Poly(ethylene glycol) Brushes. Small, 2013, 9, 4168-4174.	5.2	28
96	A Triggered DNA Hydrogel Cover to Envelop and Release Single Cells. Advanced Materials, 2013, 25, 4714-4717.	11.1	122
97	Multiscaffold DNA Origami Nanoparticle Waveguides. Nano Letters, 2013, 13, 3850-3856.	4.5	73
98	Stimuli-responsive plasmonic core–satellite assemblies: i-motif DNA linker enabled intracellular pH sensing. Chemical Communications, 2013, 49, 5739.	2.2	56
99	Point-of-care nucleic acid detection using nanotechnology. Nanoscale, 2013, 5, 10141.	2.8	79
100	Octahedral Nobleâ€Metal Nanoparticles and Their Electrocatalytic Properties. ChemSusChem, 2013, 6, 1848-1857.	3.6	7
101	Self-assembled DNA tetrahedral optofluidic lasers with precise and tunable gain control. Lab on A Chip, 2013, 13, 3351.	3.1	59
102	Programmed self-assembly of DNA origami nanoblocks into anisotropic higher-order nanopatterns. Science Bulletin, 2013, 58, 2646-2650.	1.7	7
103	Nanoparticle Direct Doping: Novel Method for Manufacturing Threeâ€Dimensional Bulk Plasmonic Nanocomposites. Advanced Functional Materials, 2013, 23, 3443-3451.	7.8	48
104	Engineering the architectural diversity of heterogeneous metallic nanocrystals. Nature Communications, 2013, 4, 1454.	5.8	100
105	Lightweight, flexible, nanorod electrode with high electrocatalytic activity. Electrochemistry Communications, 2013, 27, 120-123.	2.3	10
106	Synthesis of Stable Peptide Nucleic Acidâ€Modified Gold Nanoparticles and their Assembly onto Gold Surfaces. Angewandte Chemie - International Edition, 2013, 52, 4217-4220.	7.2	23
107	Facile and Efficient Preparation of Anisotropic DNA-Functionalized Gold Nanoparticles and Their Regioselective Assembly. Journal of the American Chemical Society, 2013, 135, 17675-17678.	6.6	86
108	Biodegradable Theranostic Plasmonic Vesicles of Amphiphilic Gold Nanorods. ACS Nano, 2013, 7, 9947-9960.	7.3	176
109	Ultrasmooth, Highly Spherical Monocrystalline Gold Particles for Precision Plasmonics. ACS Nano, 2013, 7, 11064-11070.	7.3	125
110	Plasmonics for pulsed-laser cell nanosurgery: Fundamentals and applications. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2013, 17, 26-49.	5. 6	135
111	DNA functionalization of colloidal II–VI semiconductor nanowires for multiplex nanoheterostructures. Chemical Science, 2013, 4, 2234.	3.7	18
112	Preparation of gold nanoparticle dimers via streptavidin-induced interlinking. Journal of Nanoparticle Research, 2013, 15, 1.	0.8	2

#	Article	IF	CITATIONS
113	DNAzyme-Functionalized Gold Nanoparticles for Biosensing. Advances in Biochemical Engineering/Biotechnology, 2013, 140, 93-120.	0.6	20
114	Single-crystal caged gold nanorods with tunable broadband plasmon resonances. Chemical Communications, 2013, 49, 9630.	2.2	43
115	DNAâ€Guided Metalâ€Nanoparticle Formation on Graphene Oxide Surface. Advanced Materials, 2013, 25, 2319-2325.	11.1	137
116	Plasmonic tuning of silver nanowires by laser shock induced lateral compression. Nanoscale, 2013, 5, 6311.	2.8	13
117	Three-Dimensional Plasmonic Metamaterials and Their Fabrication Techniques. IEEE Journal of Selected Topics in Quantum Electronics, 2013, 19, 4700110-4700110.	1.9	7
118	Self-assembly of DNA nanoprisms with only two component strands. Chemical Communications, 2013, 49, 2807.	2.2	19
119	Simple Design for DNA Nanotubes from a Minimal Set of Unmodified Strands: Rapid, Room-Temperature Assembly and Readily Tunable Structure. ACS Nano, 2013, 7, 3022-3028.	7.3	48
120	DNA nanotemplates as an innovative material for optic application. , 2013, , .		0
121	Self-oscillations in nonlinear torsional metamaterials. New Journal of Physics, 2013, 15, 073036.	1.2	22
122	Chapter 1. Gold and silver nanostructures of controlled shape. SPR Nanoscience, 2013, , 1-22.	0.3	1
123	Broad-Band Giant Circular Dichroism in Metamaterials of Twisted Chains of Metallic Nanoparticles. Journal of Physical Chemistry C, 2013, 117, 1130-1135.	1.5	40
124	Toward functional nanocomposites: taking the best of nanoparticles, polymers, and small molecules. Chemical Society Reviews, 2013, 42, 2654-2678.	18.7	341
125	Design and applications of gold nanoparticle conjugates by exploiting biomolecule–gold nanoparticle interactions. Nanoscale, 2013, 5, 2589.	2.8	71
126	Optical properties of plasmonic dimer, trimer, tetramer and pentamer assemblies of gold nanoboxes. Journal of Quantitative Spectroscopy and Radiative Transfer, 2013, 125, 23-32.	1.1	14
127	SERS Tags: Novel Optical Nanoprobes for Bioanalysis. Chemical Reviews, 2013, 113, 1391-1428.	23.0	1,170
128	Linear–dendritic biodegradable block copolymers: from synthesis to application in bionanotechnology. Polymer Chemistry, 2013, 4, 46-52.	1.9	46
129	Nanoparticle-Modified Electrode with Size- and Shape-Dependent Electrocatalytic Activities. Langmuir, 2013, 29, 3125-3132.	1.6	95
130	DNAâ€Directed Gold Nanodimers with Tunable Sizes and Interparticle Distances and Their Surface Plasmonic Properties. Small, 2013, 9, 2308-2315.	5.2	58

#	Article	IF	CITATIONS
131	Geometrically Tunable Optical Properties of Metal Nanoparticles. , 2013, , 1-74.		3
132	Modeling and Optical Characterization of the Localized Surface Plasmon Resonances of Tailored Metal Nanoparticles., 2013,, 231-285.		3
133	Electronic Polymers and DNA Selfâ€Assembled in Nanowire Transistors. Small, 2013, 9, 363-368.	5.2	34
134	Tuning and assembling metal nanostructures with DNA. Chemical Communications, 2013, 49, 2597.	2.2	49
135	One-pot synthesis of water-dispersible Ag ₂ S quantum dots with bright fluorescent emission in the second near-infrared window. Nanotechnology, 2013, 24, 055706.	1.3	108
136	Nanometal plasmonpolaritons. Surface Science Reports, 2013, 68, 1-67.	3.8	31
137	Nanotheranostics of Circulating Tumor Cells, Infections and Other Pathological Features <i>in Vivo</i> . Molecular Pharmaceutics, 2013, 10, 813-830.	2.3	59
138	Metallized DNA nanolithography for encoding and transferring spatial information for graphene patterning. Nature Communications, 2013, 4, 1663.	5.8	155
139	DNA Patchy Particles. Advanced Materials, 2013, 25, 2779-2783.	11.1	126
140	Plasmonic nano-protractor based on polarization spectro-tomography. Nature Photonics, 2013, 7, 367-372.	15.6	34
141	A Selfâ€Organized Anisotropic Liquidâ€Crystal Plasmonic Metamaterial. Advanced Materials, 2013, 25, 1999-2004.	11.1	53
142	Self-assembled plasmonic metamaterials. Nanophotonics, 2013, 2, 211-240.	2.9	43
143	Smart Drug Delivery Nanocarriers with Selfâ€Assembled DNA Nanostructures. Advanced Materials, 2013, 25, 4386-4396.	11.1	378
144	A new green, ascorbic acid-assisted method for versatile synthesis of Au–graphene hybrids as efficient surface-enhanced Raman scattering platforms. Journal of Materials Chemistry C, 2013, 1, 4094.	2.7	111
145	Improving the understanding of oligonucleotide–nanoparticle conjugates using DNA-binding fluorophores. Nanoscale, 2013, 5, 4166.	2.8	3
146	DNAâ∈Based Selfâ∈Assembly for Functional Nanomaterials. Advanced Materials, 2013, 25, 3905-3914.	11.1	81
147	Bottom-up Organisation of Metallic Nanoparticles. Nano-optics and Nanophotonics, 2013, , 1-37.	0.2	8
148	<i>In Situ</i> Plasmonic Counter for Polymerization of Chains of Gold Nanorods in Solution. ACS Nano, 2013, 7, 5901-5910.	7.3	63

#	Article	IF	CITATIONS
149	Library Approach for Reliable Synthesis and Properties of DNA–Gold Nanorod Conjugates. Analytical Chemistry, 2013, 85, 6580-6586.	3.2	25
150	Discrete Nanocubes as Plasmonic Reporters of Molecular Chirality. Nano Letters, 2013, 13, 3145-3151.	4.5	178
151	Metal Nanoparticle-Functionalized DNA Tweezers: From Mechanically Programmed Nanostructures to Switchable Fluorescence Properties. Nano Letters, 2013, 13, 3791-3795.	4.5	63
152	Polymerase Chain Reaction-Free Variable-Number Tandem Repeat Typing Using Gold Nanoparticle–DNA Monoconjugates. ACS Nano, 2013, 7, 2627-2633.	7.3	11
153	Giant optical activity from the radiative electromagnetic interactions in plasmonic nanoantennas. Nanoscale, 2013, 5, 3889.	2.8	12
154	Silver Nanoassemblies Constructed from Boranephosphonate DNA. Journal of the American Chemical Society, 2013, 135, 6234-6241.	6.6	34
155	Freeâ€Standing 1D Assemblies of Plasmonic Nanoparticles. Advanced Materials, 2013, 25, 3968-3972.	11.1	42
156	Two-Color, Laser Excitation Improves Temporal Resolution for Detecting the Dynamic, Plasmonic Coupling between Metallic Nanoparticles. Analytical Chemistry, 2013, 85, 5095-5102.	3.2	3
157	Laser applications in nanotechnology: nanofabrication using laser ablation and laser nanolithography. Physics-Uspekhi, 2013, 56, 643-682.	0.8	74
158	Responsive Multidomain Free-Standing Films of Gold Nanoparticles Assembled by DNA-Directed Layer-by-Layer Approach. Nano Letters, 2013, 13, 4449-4455.	4.5	50
159	Epitaxial Growth of DNA-Assembled Nanoparticle Superlattices on Patterned Substrates. Nano Letters, 2013, 13, 6084-6090.	4.5	35
160	Effect of number density on optimal design of gold nanoshells for plasmonic photothermal therapy. Biomedical Optics Express, 2013, 4, 15.	1.5	41
161	Nanoplasmonic surfaces enabling strong surface-normal electric field enhancement. Optics Express, 2013, 21, 23097.	1.7	9
163	Powering the programmed nanostructure and function of gold nanoparticles with catenated DNA machines. Nature Communications, 2013, 4, 2000.	5.8	127
164	Molecular Selfâ€Assembly of Multifunctional Nanoparticle Composites with Arbitrary Shapes and Functions: Challenges and Strategies. Particle and Particle Systems Characterization, 2013, 30, 117-132.	1.2	29
165	Implementation of half adder and half subtractor with a simple and universal DNA-based platform. NPG Asia Materials, 2013, 5, e76-e76.	3.8	53
166	Controllable Optical Activity of Gold Nanorod and Chiral Quantum Dot Assemblies. Angewandte Chemie - International Edition, 2013, 52, 13571-13575.	7.2	71
167	MANUFACTURING DNA NANOWIRES WITH AIR BLOWING ASSEMBLY ON MICROPATTERNED SURFACE. Nano LIFE, 2013, 03, 1350001.	0.6	2

#	Article	IF	Citations
169	Simulation of nanofractal dynamics with MBN Explorer. Journal of Physics: Conference Series, 2013, 438, 012006.	0.3	4
170	Functional DNA Nanostructures for Photonic and Biomedical Applications. Small, 2013, 9, 2210-2222.	5.2	54
171	Self-Assembled DNA-Based Structures for Nanoelectronics. Journal of Self-Assembly and Molecular Electronics (SAME), 0, , .	0.0	5
172	Fabrication of Monodisperse "Coreâ€Satellite―Nanostructures by DNAâ€Programming: a Novel Class of Superstructured Building Blocks for Hierarchical Nanoassembly. Chinese Journal of Chemical Physics, 2013, 26, 601-606.	0.6	5
173	ENGINEERING PLASMONIC COLORS IN METAL NANOSTRUCTURES. Journal of Molecular and Engineering Materials, 2014, 02, 1440011.	0.9	7
174	Plasmonic metamaterials. Nanotechnology Reviews, 2014, 3, .	2.6	77
175	Flexible and Self-Assembled Plasmonics. Handbook of Surface Science, 2014, , 381-398.	0.3	0
176	Progress in molecular modelling of DNA materials. Molecular Simulation, 2014, 40, 777-783.	0.9	17
177	Janus hybrid hairy nanoparticles. Journal of Polymer Science, Part B: Polymer Physics, 2014, 52, 1620-1640.	2.4	31
178	Plasmonic molecules via glass annealing in hydrogen. Nanoscale Research Letters, 2014, 9, 606.	3.1	16
179	Investigation on silver nanoparticles-based plasmonic antireflection and its impact on electrical performance of mono c-Si solar cells. , 2014, , .		3
180	Optical response of threaded chain plasmons: from capacitive chains to continuous nanorods. Optics Express, 2014, 22, 23851.	1.7	13
181	Large-Scale Self-Assembly and Stretch-Induced Plasmonic Properties of Core–Shell Metal Nanoparticle Superlattice Sheets. Journal of Physical Chemistry C, 2014, 118, 26816-26824.	1.5	42
182	Plasmonic Core/Satellite Heterostructure with Hierarchical Nanogaps for Raman Spectroscopy Enhanced by Shellâ€Isolated Nanoparticles. Advanced Optical Materials, 2014, 2, 788-793.	3.6	7
183	Enhanced fluorescence from dye molecules by Au nanoparticles on asymmetric double-stranded DNA and mechanism. Applied Physics Letters, 2014, 104, .	1.5	5
185	Nanosized Gold and Silver Spherical, Spiky, and Multi-branched Particles. , 2014, , 179-212.		3
186	Self-assembling of nanocubes and nanoparticles. , 2014, , .		0
187	Gold Nanoparticle 3Dâ€DNA Building Blocks: High Purity Preparation and Use for Modular Access to Nanoparticle Assemblies. Small, 2014, 10, 660-666.	5.2	42

#	Article	IF	CITATIONS
188	Fabrication of nanoparticles with 3D shape control for X-ray scattering experiments. Microelectronic Engineering, 2014, 121, 127-130.	1.1	6
189	Non-spherical Janus microgels driven by thiolated DNA interactions. Polymer, 2014, 55, 2340-2346.	1.8	2
190	DNA-templated synthesis of nickel cobaltite oxide nanoflake for high-performance electrochemical capacitors. Electrochimica Acta, 2014, 121, 270-277.	2.6	17
191	Using Micro to Manipulate Nano. Small, 2014, 10, 258-264.	5.2	21
192	Surface-confined core–shell structures based on gold nanoparticles and metal–organic networks. Chemical Communications, 2014, 50, 4635-4638.	2.2	4
193	3D plasmonic chiral colloids. Nanoscale, 2014, 6, 2077.	2.8	98
194	Self-assembled plasmonic nanostructures. Chemical Society Reviews, 2014, 43, 3976.	18.7	276
195	Survey of Plasmonic Nanoparticles: From Synthesis to Application. Particle and Particle Systems Characterization, 2014, 31, 721-744.	1.2	40
196	Quantum dots on vertically aligned gold nanorod monolayer: plasmon enhanced fluorescence. Nanoscale, 2014, 6, 5592-5598.	2.8	53
197	DNA origami based assembly of gold nanoparticle dimers for surface-enhanced Raman scattering. Nature Communications, 2014, 5, 3448.	5.8	377
198	DNA based strategy to nanoparticle superlattices. Methods, 2014, 67, 215-226.	1.9	12
199	Plasmonic Circular Dichroism Study of DNA–Gold Nanoparticles Bioconjugates. Plasmonics, 2014, 9, 273-281.	1.8	16
200	Shaping cancer nanomedicine: the effect of particle shape on the <i>in vivo</i> journey of nanoparticles. Nanomedicine, 2014, 9, 121-134.	1.7	493
201	Self-assembly of gold nanorods into vertically aligned, rectangular microplates with a supercrystalline structure. Nanoscale, 2014, 6, 996-1004.	2.8	36
202	DNA-bonded 'atoms'. Nature Materials, 2014, 13, 121-122.	13.3	7
203	Seedless synthesis of high aspect ratio gold nanorods with high yield. Journal of Materials Chemistry A, 2014, 2, 3528.	5.2	81
204	Rationally designed multifunctional plasmonic nanostructures for surface-enhanced Raman spectroscopy: a review. Reports on Progress in Physics, 2014, 77, 116502.	8.1	74
205	Strongly Coupled Plasmonic Modes on Macroscopic Areas via Template-Assisted Colloidal Self-Assembly. Nano Letters, 2014, 14, 6863-6871.	4.5	162

#	Article	IF	CITATIONS
206	In situ green synthesis of Au nanoparticles onto polydopamine-functionalized graphene for catalytic reduction of nitrophenol. RSC Advances, 2014, 4, 64816-64824.	1.7	95
207	Cation-Size-Dependent DNA Adsorption Kinetics and Packing Density on Gold Nanoparticles: An Opposite Trend. Langmuir, 2014, 30, 13228-13234.	1.6	28
208	Controlled formation of nanoparticle clusters mediated by electrostatic interaction. RSC Advances, 2014, 4, 43105-43109.	1.7	1
209	DNA Sequence-Dependent Morphological Evolution of Silver Nanoparticles and Their Optical and Hybridization Properties. Journal of the American Chemical Society, 2014, 136, 15195-15202.	6.6	89
210	Transferring Biomarker into Molecular Probe: Melanin Nanoparticle as a Naturally Active Platform for Multimodality Imaging. Journal of the American Chemical Society, 2014, 136, 15185-15194.	6.6	338
211	Symmetry Breaking in Tetrahedral Chiral Plasmonic Nanoparticle Assemblies. ACS Photonics, 2014, 1, 1189-1196.	3.2	43
212	DNA origami nanopores: developments, challenges and perspectives. Nanoscale, 2014, 6, 14121-14132.	2.8	63
213	DNA induced intense plasmonic circular dichroism of highly purified gold nanobipyramids. Nanoscale, 2014, 6, 4498-4502.	2.8	34
214	Polymer-directed assembly of colloidal nanoparticle heterojunctions. CrystEngComm, 2014, 16, 9434-9440.	1.3	8
215	A simple and effective strategy for the directed and high-yield assembly of large-sized gold nanoparticles driven by bithiol-modified complementary dsDNA architectures. RSC Advances, 2014, 4, 31515-31520.	1.7	2
216	Plasmonic caged gold nanorods for near-infrared light controlled drug delivery. Nanoscale, 2014, 6, 14388-14393.	2.8	49
217	An in situ approach for facile fabrication of robust and scalable SERS substrates. Nanoscale, 2014, 6, 7232-7236.	2.8	10
218	Hybrid magnetic nanoparticle/nanogold clusters and their distance-dependent metal-enhanced fluorescence effect via DNA hybridization. Nanoscale, 2014, 6, 8681-8693.	2.8	22
219	Capsules with a hierarchical shell structure assembled by aminoglycosides and DNA via the kinetic path. Chemical Communications, 2014, 50, 9525.	2.2	2
220	Magnetic separation–enrichment-mediated signal amplification for a simple and sensitive fluorometric assay of biotin. Analytical Methods, 2014, 6, 2091-2095.	1.3	2
221	Synergistically controlled nano-templated growth of tunable gold bud-to-blossom nanostructures: a pragmatic growth mechanism. Journal of Materials Chemistry C, 2014, 2, 3795-3804.	2.7	25
222	Synthesis of a multibranched porphyrin–oligonucleotide scaffold for the construction of DNA-based nano-architectures. Organic and Biomolecular Chemistry, 2014, 12, 2778-2783.	1.5	34
223	Asymmetrically Coupled Plasmonic Core and Nanotriplet Satellites. Journal of Physical Chemistry C, 2014, 118, 18659-18667.	1.5	11

#	Article	IF	CITATIONS
224	Casting inorganic structures with DNA molds. Science, 2014, 346, 1258361.	6.0	251
225	Multicomponent nanoarchitectures for the design of optical sensing and diagnostic tools. RSC Advances, 2014, 4, 916-942.	1.7	25
226	Coarse-grained modeling of DNA oligomer hybridization: Length, sequence, and salt effects. Journal of Chemical Physics, 2014, 141, 035102.	1.2	58
227	Using DNA to Design Plasmonic Metamaterials with Tunable Optical Properties. Advanced Materials, 2014, 26, 653-659.	11.1	157
228	Dynamic and Quantitative Control of the DNAâ€Mediated Growth of Gold Plasmonic Nanostructures. Angewandte Chemie - International Edition, 2014, 53, 8338-8342.	7.2	63
229	Hierarchical Assembly of Plasmonic Nanostructures Using Virus Capsid Scaffolds on DNA Origami Templates. ACS Nano, 2014, 8, 7896-7904.	7.3	33
230	Controlled accommodation of metal nanostructures within the matrices of polymer architectures through solution-based synthetic strategies. Progress in Polymer Science, 2014, 39, 1878-1907.	11.8	25
231	Modular-DNA Programmed Molecular Construction of "Fixed―of 2D and 3D-Au Nanoparticle Arrays. Chemistry of Materials, 2014, 26, 5499-5505.	3.2	4
232	Thiolated DNA-Based Chemistry and Control in the Structure and Optical Properties of Plasmonic Nanoparticles with Ultrasmall Interior Nanogap. Journal of the American Chemical Society, 2014, 136, 14052-14059.	6.6	122
233	Giant Plasmene Nanosheets, Nanoribbons, and Origami. ACS Nano, 2014, 8, 11086-11093.	7.3	134
234	Plasmonic Nanosnowmen with a Conductive Junction as Highly Tunable Nanoantenna Structures and Sensitive, Quantitative and Multiplexable Surface-Enhanced Raman Scattering Probes. Nano Letters, 2014, 14, 6217-6225.	4.5	127
235	DNAâ€templated lithography and nanofabrication for the fabrication of nanoscale electronic circuitry. Critical Reviews in Analytical Chemistry, 2014, 44, 354-370.	1.8	25
236	Structural DNA Nanotechnology: State of the Art and Future Perspective. Journal of the American Chemical Society, 2014, 136, 11198-11211.	6.6	492
237	Applications of Synchrotronâ€Based Spectroscopic Techniques in Studying Nucleic Acids and Nucleic Acidâ€Functionalized Nanomaterials. Advanced Materials, 2014, 26, 7849-7872.	11.1	19
238	Conductance Control in VO ₂ Nanowires by Surface Doping with Gold Nanoparticles. ACS Applied Materials & Samp; Interfaces, 2014, 6, 14812-14818.	4.0	11
239	Sensitive aptamer-based fluorescence polarization assay for mercury(II) ions and cysteine using silver nanoparticles as a signal amplifier. Mikrochimica Acta, 2014, 181, 1423-1430.	2.5	41
240	From Cascaded Catalytic Nucleic Acids to Enzyme–DNA Nanostructures: Controlling Reactivity, Sensing, Logic Operations, and Assembly of Complex Structures. Chemical Reviews, 2014, 114, 2881-2941.	23.0	573
241	Surface plasmon resonance coupled circular dichroism of DNA–gold nanorods assembly. Journal Physics D: Applied Physics, 2014, 47, 315401.	1.3	11

#	Article	IF	CITATIONS
242	Fluorescent silver nanoclusters stabilized by DNA scaffolds. Chemical Communications, 2014, 50, 9800.	2.2	155
243	Engineering DNA Binding Sites to Assemble and Tune Plasmonic Nanostructures. Advanced Materials, 2014, 26, 4286-4292.	11.1	9
244	Nucleic Acids Nanotechnology. Methods, 2014, 67, 103-104.	1.9	0
245	Finite-Difference Time-Domain (FDTD) design of gold nanoparticle chains with specific surface plasmon resonance. Journal of Molecular Structure, 2014, 1072, 137-143.	1.8	54
246	Deterministic nanoparticle assemblies: from substrate to solution. Nanotechnology, 2014, 25, 155302.	1.3	4
247	A Family of Metalâ€Organic Frameworks Exhibiting Sizeâ€Selective Catalysis with Encapsulated Nobleâ€Metal Nanoparticles. Advanced Materials, 2014, 26, 4056-4060.	11.1	396
248	Massively Parallel and Highly Quantitative Single-Particle Analysis on Interactions between Nanoparticles on Supported Lipid Bilayer. Journal of the American Chemical Society, 2014, 136, 4081-4088.	6.6	48
249	A design strategy for the hierarchical fabrication of colloidal hybrid mesostructures. Nature Communications, 2014, 5, 3882.	5.8	73
250	Plasmonic Color Palettes for Photorealistic Printing with Aluminum Nanostructures. Nano Letters, 2014, 14, 4023-4029.	4.5	501
251	DNA as a Powerful Tool for Morphology Control, Spatial Positioning, and Dynamic Assembly of Nanoparticles. Accounts of Chemical Research, 2014, 47, 1881-1890.	7.6	205
252	DNA Materials: Bridging Nanotechnology and Biotechnology. Accounts of Chemical Research, 2014, 47, 1902-1911.	7.6	228
253	Tetrahedron DNA dendrimers and their encapsulation of gold nanoparticles. Bioorganic and Medicinal Chemistry, 2014, 22, 4391-4394.	1.4	16
254	Integrative Nanomedicine: treating Cancer with Nanoscale Natural Products. Global Advances in Health and Medicine, 2014, 3, 36-53.	0.7	24
256	Crystallization of DNAâ€Capped Gold Nanoparticles in Highâ€Concentration, Divalent Salt Environments. Angewandte Chemie - International Edition, 2014, 53, 1316-1319.	7.2	46
257	(Non-) Covalently Modified DNA with Novel Functions. , 2015, , 1-77.		1
259	Selfâ€assembly of Micrometerâ€long DNA Nanoribbons with Four Oligonucleotides. Chinese Journal of Chemistry, 2015, 33, 522-526.	2.6	2
260	Deterministic Construction of Plasmonic Heterostructures in Wellâ€Organized Arrays for Nanophotonic Materials. Advanced Materials, 2015, 27, 7314-7319.	11.1	31
261	Dualâ€Coded Plasmene Nanosheets as Nextâ€Generation Anticounterfeit Security Labels. Advanced Optical Materials, 2015, 3, 1710-1717.	3.6	78

#	Article	IF	CITATIONS
263	Ultrathin Plasmene Nanosheets as Soft and Surfaceâ€Attachable SERS Substrates with High Signal Uniformity. Advanced Optical Materials, 2015, 3, 919-924.	3.6	66
264	Clickable Nucleic Acids: Sequenceâ€Controlled Periodic Copolymer/Oligomer Synthesis by Orthogonal Thiolâ€X Reactions. Angewandte Chemie - International Edition, 2015, 54, 14462-14467.	7.2	75
265	Bioâ€Enabled Gold Superstructures with Builtâ€In and Accessible Electromagnetic Hotspots. Advanced Healthcare Materials, 2015, 4, 1502-1509.	3.9	21
267	Modulation of Interparticle Distance in Discrete Gold Nanoparticle Dimers and Trimers by DNA Singleâ€Base Pairing. Small, 2015, 11, 3153-3161.	5.2	32
269	Spatial regulation of synthetic and biological nanoparticles by DNA nanotechnology. NPG Asia Materials, 2015, 7, e161-e161.	3.8	21
270	A low-cost optical transducer utilizing common electronics components for the gold nanoparticle-based immunosensing application. Sensors and Actuators B: Chemical, 2015, 220, 233-242.	4.0	19
271	Aluminum Nanoarrays for Plasmon-Enhanced Light Harvesting. ACS Nano, 2015, 9, 6206-6213.	7.3	82
272	Magnetochirality in hierarchical magnetoplasmonic clusters. Solid State Communications, 2015, 217, 47-52.	0.9	11
273	On the interaction between gold and silver metal atoms and DNA/RNA nucleobases – a comprehensive computational study of ground state properties. Nanotechnology Reviews, 2015, 4, 173-191.	2.6	23
274	Custom-shaped metal nanostructures based on DNA origami silhouettes. Nanoscale, 2015, 7, 11267-11272.	2.8	57
275	Optically Resolving the Dynamic Walking of a Plasmonic Walker Couple. Nano Letters, 2015, 15, 8392-8396.	4.5	86
276	Artificially Controllable Nanodevices Constructed by DNA Origami Technology. Springer Theses, 2015,	0.0	1
277	Focusing in on applications. Nature Nanotechnology, 2015, 10, 1-1.	15.6	75
278	DNA-Assembled Nanoparticle Rings Exhibit Electric and Magnetic Resonances at Visible Frequencies. Nano Letters, 2015, 15, 1368-1373.	4.5	105
279	Reversible Control of Nanoparticle Functionalization and Physicochemical Properties by Dynamic Covalent Exchange. Angewandte Chemie, 2015, 127, 4261-4265.	1.6	14
280	Controlling Structure and Porosity in Catalytic Nanoparticle Superlattices with DNA. Journal of the American Chemical Society, 2015, 137, 1658-1662.	6.6	78
281	Multilayered core–satellite nanoassemblies with fine-tunable broadband plasmon resonances. Nanoscale, 2015, 7, 3445-3452.	2.8	42
282	Plasmonic core–shell nanoparticles for SERS detection of the pesticide thiram: size- and shape-dependent Raman enhancement. Nanoscale, 2015, 7, 2862-2868.	2.8	153

#	Article	IF	CITATIONS
283	Reversible Control of Nanoparticle Functionalization and Physicochemical Properties by Dynamic Covalent Exchange. Angewandte Chemie - International Edition, 2015, 54, 4187-4191.	7.2	56
284	Overcoming the Coupling Dilemma in DNAâ€Programmable Nanoparticle Assemblies by "Ag ⁺ Soldering― Small, 2015, 11, 2247-2251.	5.2	36
285	Tunable plasmon polaritons in arrays of interacting metallic nanoparticles. European Physical Journal B, 2015, 88, 1.	0.6	17
286	Flexible One-Dimensional Nanostructures: A Review. Journal of Materials Science and Technology, 2015, 31, 607-615.	5.6	27
287	Engineering DNA scaffolds for delivery of anticancer therapeutics. Biomaterials Science, 2015, 3, 1018-1024.	2.6	57
288	Dynamic Tuning of DNA-Nanoparticle Superlattices by Molecular Intercalation of Double Helix. Journal of the American Chemical Society, 2015, 137, 4030-4033.	6.6	48
289	Tuning the photoluminescence and ultrasensitive trace detection properties of few-layer MoS2 by decoration with gold nanoparticles. RSC Advances, 2015, 5, 24188-24193.	1.7	52
290	Probing Soft Corona Structures of DNA-Capped Nanoparticles by Small Angle Neutron Scattering. Journal of Physical Chemistry C, 2015, 119, 18773-18778.	1.5	10
291	Defect tolerance and the effect of structural inhomogeneity in plasmonic DNA-nanoparticle superlattices. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 10292-10297.	3.3	35
292	Constructing one dimensional assembly of poly methylacrylic acid capping gold nanoparticles for selective and colorimetric detection of aminoglycoside antibiotics. RSC Advances, 2015, 5, 65690-65696.	1.7	8
293	Entropy-Driven Crystallization Behavior in DNA-Mediated Nanoparticle Assembly. Nano Letters, 2015, 15, 5545-5551.	4.5	39
294	Investigating nanoparticle properties in plasmonic nanoarchitectures with DNA by surface plasmon resonance imaging. Chemical Communications, 2015, 51, 6587-6590.	2.2	14
295	Melting Temperature of Metallic Nanoparticles. , 2015, , 1-25.		3
296	DNA-based plasmonic nanostructures. Materials Today, 2015, 18, 326-335.	8.3	68
297	A platinum shell for ultraslow ligand exchange: unmodified DNA adsorbing more stably on platinum than thiol and dithiol on gold. Chemical Communications, 2015, 51, 12084-12087.	2.2	21
298	Strong Magnetochiral Dichroism in Suspensions of Magnetoplasmonic Nanohelices. ACS Photonics, 2015, 2, 1030-1038.	3.2	29
299	Asymmetric gold nanodimer arrays: electrostatic self-assembly and SERS activity. Journal of Materials Chemistry A, 2015, 3, 240-249.	5.2	63
300	Regiospecific Hetero-Assembly of DNA-Functionalized Plasmonic Upconversion Superstructures. Journal of the American Chemical Society, 2015, 137, 5272-5275.	6.6	67

#	Article	IF	CITATIONS
301	Chiral spin crossover nanoparticles and gels with switchable circular dichroism. Journal of Materials Chemistry C, 2015, 3, 4737-4741.	2.7	41
302	Nanoimprint lithography of plasmonic platforms for SERS applications. Applied Physics A: Materials Science and Processing, 2015, 121, 443-449.	1.1	18
303	Stepwise assembly of a cross-linked free-standing nanoparticle sheet with controllable shape. Nanoscale, 2015, 7, 11033-11039.	2.8	12
304	Conformal, Macroscopic Crystalline Nanoparticle Sheets Assembled with DNA. Advanced Materials, 2015, 27, 3159-3163.	11.1	15
305	Hierarchical Assembly of Plasmonic Nanoparticles. Chemistry - A European Journal, 2015, 21, 9956-9963.	1.7	29
306	Clicking DNA to gold nanoparticles: poly-adenine-mediated formation of monovalent DNA-gold nanoparticle conjugates with nearly quantitative yield. NPG Asia Materials, 2015, 7, e159-e159.	3.8	107
307	DNA-Directed Assembly of Gold Nanohalo for Quantitative Plasmonic Imaging of Single-Particle Catalysis. Journal of the American Chemical Society, 2015, 137, 4292-4295.	6.6	125
308	Rapid and simple preparation of remarkably stable binary nanoparticle planet–satellite assemblies. Chemical Communications, 2015, 51, 7812-7815.	2.2	16
309	Nanoscale form dictates mesoscale function in plasmonic DNA–nanoparticle superlattices. Nature Nanotechnology, 2015, 10, 453-458.	15.6	169
310	Self-Assembled Nanocube-Based Plasmene Nanosheets as Soft Surface-Enhanced Raman Scattering Substrates toward Direct Quantitative Drug Identification on Surfaces. Analytical Chemistry, 2015, 87, 5263-5269.	3.2	82
311	A reusable optical biosensor for the ultrasensitive and selective detection of unamplified human genomic DNA with gold nanostars. Biosensors and Bioelectronics, 2015, 74, 981-988.	5.3	45
312	Internal optical forces in plasmonic nanostructures. Optics Express, 2015, 23, 20143.	1.7	18
313	Tunable plasmonic surfaces via colloid assembly. Journal of Materials Chemistry C, 2015, 3, 11449-11457.	2.7	43
314	Gel electrophoresis as a nanoseparation tool serving DNA nanotechnology. Chinese Chemical Letters, 2015, 26, 1435-1438.	4.8	25
315	Seedless synthesis of gold nanorods using dopamine as a reducing agent. RSC Advances, 2015, 5, 91587-91593.	1.7	42
316	Free-Standing Bilayered Nanoparticle Superlattice Nanosheets with Asymmetric Ionic Transport Behaviors. ACS Nano, 2015, 9, 11218-11224.	7.3	45
317	Application of Nanoparticles in Manufacturing. , 2015, , 1-53.		4
318	Modular and Chemically Responsive Oligonucleotide "Bonds―in Nanoparticle Superlattices. Journal of the American Chemical Society, 2015, 137, 13566-13571.	6.6	23

#	Article	IF	CITATIONS
319	DNA-mediated control of Au shell nanostructure and controlled intra-nanogap for a highly sensitive and broad plasmonic response range. Journal of Materials Chemistry C, 2015, 3, 10728-10733.	2.7	15
320	DNA origami based assembly of gold nanoparticle dimers for SERS detection. Proceedings of SPIE, 2015,	0.8	1
321	Key parameters governing metallic nanoparticle electrocatalysis. Nanoscale, 2015, 7, 16151-16164.	2.8	45
322	Tannic acid functionalized graphene hydrogel for entrapping gold nanoparticles with high catalytic performance toward dye reduction. Journal of Hazardous Materials, 2015, 300, 615-623.	6.5	104
323	Thermodynamics versus Kinetics in Nanosynthesis. Angewandte Chemie - International Edition, 2015, 54, 2022-2051.	7.2	400
324	Nonlinear optical properties of Au/Ag alloyed nanoboxes and their applications in both in vitro and in vivo bioimaging under long-wavelength femtosecond laser excitation. RSC Advances, 2015, 5, 2851-2856.	1.7	9
325	1D Copper Nanostructures: Progress, Challenges and Opportunities. Small, 2015, 11, 1232-1252.	5.2	173
326	Repeat protein mediated synthesis of gold nanoparticles: effect of protein shape on the morphological and optical properties. RSC Advances, 2015, 5, 2062-2069.	1.7	23
327	Colloidal self-assembly concepts for light management in photovoltaics. Materials Today, 2015, 18, 185-205.	8.3	129
328	Gold nanoparticle assemblies stabilized by bis(phthalocyaninato)lanthanide(III) complexes through van der Waals interactions. Scientific Reports, 2015, 4, 3758.	1.6	20
329	Water-soluble acetylated chitosan-stabilized gold nanosphere bioprobes. Materials Chemistry and Physics, 2015, 149-150, 324-332.	2.0	4
330	Colloidal polymers from inorganic nanoparticle monomers. Progress in Polymer Science, 2015, 40, 85-120.	11.8	67
331	Learning from Nature: Binary Cooperative Complementary Nanomaterials. Small, 2015, 11, 1072-1096.	5.2	88
332	DNA Nanotechnology Mediated Gold Nanoparticle Conjugates and Their Applications in Biomedicine. Chinese Journal of Chemistry, 2016, 34, 299-307.	2.6	21
333	Molecular dynamics simulation of DNAâ€directed assembly of nanoparticle superlattices using patterned templates. Journal of Polymer Science, Part B: Polymer Physics, 2016, 54, 1687-1692.	2.4	3
334	Optical and Infrared Helical Metamaterials. Nanophotonics, 2016, 5, 510-523.	2.9	61
335	Construction of DNA nanotubes with controllable diameters and patterns using hierarchical DNA sub-tiles. Nanoscale, 2016, 8, 14785-14792.	2.8	43
336	Selfâ€Assembly of DNA Functionalized Gold Nanoparticles at the Liquidâ€Vapor Interface. Advanced Materials Interfaces, 2016, 3, 1600180.	1.9	17

#	Article	IF	CITATIONS
337	A Threeâ€Enzyme Pathway with an Optimised Geometric Arrangement to Facilitate Substrate Transfer. ChemBioChem, 2016, 17, 1097-1101.	1.3	54
338	Applications of DNA Nanotechnology in Synthesis and Assembly of Inorganic Nanomaterials. Chinese Journal of Chemistry, 2016, 34, 291-298.	2.6	20
339	Mechanical Response of DNA–Nanoparticle Crystals to Controlled Deformation. ACS Central Science, 2016, 2, 614-620.	5.3	13
340	Self-Assembled Active Plasmonic Waveguide with a Peptide-Based Thermomechanical Switch. ACS Nano, 2016, 10, 11377-11384.	7.3	40
341	Programmable DNA Nanosystem for Molecular Interrogation. Scientific Reports, 2016, 6, 27413.	1.6	13
342	Liquid crystals from mesogens containing gold nanoparticles. Series in Sof Condensed Matter, 2016, , 571-602.	0.1	1
343	Direct Fabrication of Monodisperse Silica Nanorings from Hollow Spheres – A Template for Core–Shell Nanorings. ACS Applied Materials & Direct Fabrication of Monodisperse Silica Nanorings from Hollow Spheres – A Template for Core–Shell Nanorings. ACS Applied Materials & Direct Fabrication of Monodisperse Silica Nanorings from Hollow Spheres – A Template for Core–Shell Nanorings. ACS Applied Materials & Direct Fabrication of Monodisperse Silica Nanorings from Hollow Spheres – A Template for Core–Shell Nanorings. ACS Applied Materials & Direct Fabrication of Monodisperse Silica Nanorings from Hollow Spheres – A Template for Core–Shell Nanorings. ACS Applied Materials & Direct Fabrica Nanorings from Hollow Spheres — A Template for Core–Shell Nanorings. ACS Applied Materials & Direct Fabrica Nanorings from Hollow Spheres — A Template for Core–Shell Nanorings. ACS Applied Materials & Direct Fabrica Nanorings from Hollow Spheres — A Template for Core–Shell Nanorings. ACS Applied Materials & Direct Fabrica Nanorings from Hollow Spheres from Holl	4.0	16
344	A nanosensor for inÂvivo selenol imaging based on the formation of Au Se bonds. Biomaterials, 2016, 92, 81-89.	5 . 7	30
345	Tip-enhanced Raman spectroscopy: plasmid-free vs. plasmid-embedded DNA. Analyst, The, 2016, 141, 3251-3258.	1.7	27
346	Shape and Interhelical Spacing of DNA Origami Nanostructures Studied by Small-Angle X-ray Scattering. Nano Letters, 2016, 16, 4282-4287.	4. 5	70
347	Size-Selective Nanoparticle Assembly on Substrates by DNA Density Patterning. ACS Nano, 2016, 10, 5679-5686.	7.3	40
348	Nanoparticles and DNA – a powerful and growing functional combination in bionanotechnology. Nanoscale, 2016, 8, 9037-9095.	2.8	181
349	Toward Self-Assembled Plasmonic Devices: High-Yield Arrangement of Gold Nanoparticles on DNA Origami Templates. ACS Nano, 2016, 10, 5374-5382.	7.3	128
350	Cellular processing and destinies of artificial DNA nanostructures. Chemical Society Reviews, 2016, 45, 4199-4225.	18.7	146
351	Gold nanoflowers with tunable sheet-like petals: facile synthesis, SERS performances and cell imaging. Journal of Materials Chemistry B, 2016, 4, 7112-7118.	2.9	33
352	Plasmonically Engineered Nanoprobes for Biomedical Applications. Journal of the American Chemical Society, 2016, 138, 14509-14525.	6.6	183
353	Modular assembly of superstructures from polyphenol-functionalized building blocks. Nature Nanotechnology, 2016, 11, 1105-1111.	15.6	337
354	Rapid, Surfactant-Free, and Quantitative Functionalization of Gold Nanoparticles with Thiolated DNA under Physiological pH and Its Application in Molecular Beacon-Based Biosensor. ACS Applied Materials & Date (1988) amp; Interfaces, 2016, 8, 27298-27304.	4.0	32

#	Article	IF	Citations
355	Kinetically guided colloidal structure formation. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 8577-8582.	3.3	17
356	Plasmene origami. Materials Today, 2016, 19, 363-364.	8.3	14
357	Fast Dynamic Color Switching in Temperatureâ€Responsive Plasmonic Films. Advanced Optical Materials, 2016, 4, 877-882.	3.6	56
358	Efficient, designable, and broad-bandwidth optical extinction via aspect-ratio-tailored silver nanodisks. Optics Express, 2016, 24, 10806.	1.7	2
359	Covalently linked multimers of gold nanoclusters Au ₁₀₂ (p-MBA) ₄₄ and Au _{â^1/4250} (p-MBA) _n . Nanoscale, 2016, 8, 18665-18674.	2.8	59
360	DNA Scaffolds for the Dictated Assembly of Left-/Right-Handed Plasmonic Au NP Helices with Programmed Chiro-Optical Properties. Journal of the American Chemical Society, 2016, 138, 9895-9901.	6.6	45
361	Number-controlled spatial arrangement of gold nanoparticles with DNA dendrimers. RSC Advances, 2016, 6, 70553-70556.	1.7	9
362	Nanomanipulation and controlled self-assembly of metal nanoparticles and nanocrystals for plasmonics. Chemical Society Reviews, 2016, 45, 5672-5716.	18.7	159
363	Hierarchical Directed Selfâ€Assembly of Diblock Copolymers for Modified Pattern Symmetry. Advanced Functional Materials, 2016, 26, 6462-6470.	7.8	16
364	Enzymatically Controlled Vacancies in Nanoparticle Crystals. Nano Letters, 2016, 16, 5114-5119.	4.5	3
365	Controlling DNA–nanoparticle serum interactions. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 13600-13605.	3.3	62
366	Magneto-Optical Response of Cobalt Interacting with Plasmonic Nanoparticle Superlattices. Journal of Physical Chemistry Letters, 2016, 7, 4732-4738.	2.1	13
367	Effects of Chain–Chain Associations on Hybridization in DNA Brushes. Langmuir, 2016, 32, 12603-12610.	1.6	6
368	Gold-Planet–Silver-Satellite Nanostructures Using RAFT Star Polymer. ACS Macro Letters, 2016, 5, 1227-1231.	2.3	28
369	Plasmonic Metallurgy Enabled by DNA. Advanced Materials, 2016, 28, 2790-2794.	11.1	30
370	Minimalist Approach to Complexity: Templating the Assembly of DNA Tile Structures with Sequentially Grown Input Strands. ACS Nano, 2016, 10, 6542-6551.	7.3	21
371	DNA templated synthesis of branched gold nanostructures with highly efficient near-infrared photothermal therapeutic effects. RSC Advances, 2016, 6, 51658-51661.	1.7	8
372	Purcell factor based understanding of enhancements in surface plasmon-coupled emission with DNA architectures. Physical Chemistry Chemical Physics, 2016, 18, 681-684.	1.3	23

#	Article	IF	CITATIONS
373	Tumor cell-specific photothermal killing by SELEX-derived DNA aptamer-targeted gold nanorods. Nanoscale, 2016, 8, 187-196.	2.8	35
374	Robust Nanoparticle–DNA Conjugates Based on Mussel-Inspired Polydopamine Coating for Cell Imaging and Tailored Self-Assembly. Bioconjugate Chemistry, 2016, 27, 815-823.	1.8	39
375	Nanomanufacturing: A Perspective. ACS Nano, 2016, 10, 2995-3014.	7.3	176
376	A light-driven three-dimensional plasmonic nanosystem that translates molecular motion into reversible chiroptical function. Nature Communications, 2016, 7, 10591.	5.8	259
377	3D nanostructures fabricated by advanced stencil lithography. Nanoscale, 2016, 8, 4945-4950.	2.8	23
378	Matryoshka-caged gold nanorods: Synthesis, plasmonic properties, and catalytic activity. Nano Research, 2016, 9, 415-423.	5.8	31
379	The Energy Landscape for the Self-Assembly of a Two-Dimensional DNA Origami Complex. ACS Nano, 2016, 10, 1836-1844.	7.3	15
380	Engineering molecularly-active nanoplasmonic surfaces for DNA detection via colorimetry and Raman scattering. Proceedings of SPIE, 2016, , .	0.8	0
381	Controlled growth of high-density CdS and CdSe nanorod arrays on selective facets of two-dimensional semiconductor nanoplates. Nature Chemistry, 2016, 8, 470-475.	6.6	177
382	Engineering the Structure and Properties of DNA-Nanoparticle Superstructures Using Polyvalent Counterions. Journal of the American Chemical Society, 2016, 138, 4565-4572.	6.6	46
383	Transfer of molecular recognition information from DNA nanostructures to gold nanoparticles. Nature Chemistry, 2016, 8, 162-170.	6.6	205
384	Orientational nanoparticle assemblies and biosensors. Biosensors and Bioelectronics, 2016, 79, 220-236.	5.3	34
385	Two-Dimensional Bipyramid Plasmonic Nanoparticle Liquid Crystalline Superstructure with Four Distinct Orientational Packing Orders. ACS Nano, 2016, 10, 967-976.	7.3	101
386	Photodynamic assembly of nanoparticles towards designable patterning. Nanoscale Horizons, 2016, 1, 201-211.	4.1	16
387	Multi-Band High Refractive Index Susceptibility of Plasmonic Structures with Network-Type Metasurface. Plasmonics, 2016, 11, 677-682.	1.8	22
388	Anisotropic Self-Assembly of Supramolecular Polymers and Plasmonic Nanoparticles at the Liquid–Liquid Interface. Journal of the American Chemical Society, 2017, 139, 2345-2350.	6.6	61
389	Plasmonic Photothermal Therapy in Third and Fourth Biological Windows. Journal of Physical Chemistry C, 2017, 121, 684-690.	1.5	30
390	Self-Assembly of Hierarchical DNA Nanotube Architectures with Well-Defined Geometries. ACS Nano, 2017, 11, 1927-1936.	7.3	41

#	Article	IF	CITATIONS
391	Interfacial self-assembly approach of plasmonic nanostructures for efficient SERS and recyclable catalysts applications. Chemical Research in Chinese Universities, 2017, 33, 135-142.	1.3	1
392	A Singlet Oxygen Generating Agent by Chiralityâ€dependent Plasmonic Shellâ€Satellite Nanoassembly. Advanced Materials, 2017, 29, 1606864.	11.1	101
393	Analyzing DNA Nanotechnology: A Call to Arms For The Analytical Chemistry Community. Analytical Chemistry, 2017, 89, 2646-2663.	3.2	70
394	Core–Shell Nanoparticle-Enhanced Raman Spectroscopy. Chemical Reviews, 2017, 117, 5002-5069.	23.0	819
396	Bottom-Up Strategy To Prepare Nanoparticles with a Single DNA Strand. Journal of the American Chemical Society, 2017, 139, 3623-3626.	6.6	30
397	Enhancement of fluorescent resonant energy transfer and the antenna effect in DNA structures with multiple fluorescent dyes. RSC Advances, 2017, 7, 14902-14909.	1.7	0
398	Chiral Inorganic Nanostructures. Chemical Reviews, 2017, 117, 8041-8093.	23.0	656
399	Polyâ€cytosine DNA as a Highâ€Affinity Ligand for Inorganic Nanomaterials. Angewandte Chemie, 2017, 129, 6304-6308.	1.6	21
400	Polyâ€cytosine DNA as a Highâ€Affinity Ligand for Inorganic Nanomaterials. Angewandte Chemie - International Edition, 2017, 56, 6208-6212.	7.2	132
401	Effect of water-DNA interactions on elastic properties of DNA self-assembled monolayers. Scientific Reports, 2017, 7, 536.	1.6	33
402	Charge transfer plasmons: Recent theoretical and experimental developments. Applied Physics Reviews, 2017, 4, .	5.5	51
403	Triplexâ€DNAâ€Nanostrukturen: von grundlegenden Eigenschaften zu Anwendungen. Angewandte Chemie, 2017, 129, 15410-15434.	1.6	42
404	Bifunctional plasmonic-magnetic particles for an enhanced microfluidic SERS immunoassay. Nanoscale, 2017, 9, 7822-7829.	2.8	53
405	Enhanced Thermal Conductivity of Copper Nanofluids: The Effect of Filler Geometry. ACS Applied Materials & Samp; Interfaces, 2017, 9, 18925-18935.	4.0	72
406	Triplex DNA Nanostructures: From Basic Properties to Applications. Angewandte Chemie - International Edition, 2017, 56, 15210-15233.	7.2	257
407	Recent advances in the rational design of electrocatalysts towards the oxygen reduction reaction. Chinese Journal of Catalysis, 2017, 38, 951-969.	6.9	49
408	DNA Origami: Scaffolds for Creating Higher Order Structures. Chemical Reviews, 2017, 117, 12584-12640.	23.0	834
409	When lithography meets self-assembly: a review of recent advances in the directed assembly of complex metal nanostructures on planar and textured surfaces. Nanotechnology, 2017, 28, 282002.	1.3	98

#	Article	IF	CITATIONS
410	Chip-Scale Plasmonic Sum Frequency Generation. IEEE Photonics Journal, 2017, 9, 1-8.	1.0	4
411	Mode Evolution in Strongly Coupled Plasmonic Dolmens Fabricated by Templated Assembly. ACS Photonics, 2017, 4, 1661-1668.	3.2	11
412	Modulating the Kinetics of Nanoparticle Adsorption for Simple and High‥ield Fabrication of Plasmonic Heterostructures as SERS Substrates. ChemPhysChem, 2017, 18, 2114-2122.	1.0	16
413	Resistive electronic skin. Journal of Materials Chemistry C, 2017, 5, 5845-5866.	2.7	161
414	Synergetic SERS Enhancement in a Metal-Like/Metal Double-Shell Structure for Sensitive and Stable Application. ACS Applied Materials & Samp; Interfaces, 2017, 9, 13564-13570.	4.0	22
415	Molecular control over colloidal assembly. Chemical Communications, 2017, 53, 4414-4428.	2.2	33
416	Catalysisâ€Driven Selfâ€Thermophoresis of Janus Plasmonic Nanomotors. Angewandte Chemie, 2017, 129, 530-533.	1.6	23
417	Catalysisâ€Driven Selfâ€Thermophoresis of Janus Plasmonic Nanomotors. Angewandte Chemie - International Edition, 2017, 56, 515-518.	7.2	93
418	Morphogenesis of cement hydrate. Journal of Materials Chemistry A, 2017, 5, 3798-3811.	5.2	45
419	Self-assembling DNA nanotubes to connect molecular landmarks. Nature Nanotechnology, 2017, 12, 312-316.	15.6	81
420	Colorimetric detection of DNA by using target catalyzed DNA nanostructure assembly and unmodified gold nanoparticles. Mikrochimica Acta, 2017, 184, 4809-4815.	2.5	22
421	DNA-Nanotechnology-Enabled Chiral Plasmonics: From Static to Dynamic. Accounts of Chemical Research, 2017, 50, 2906-2914.	7.6	141
422	Three-Dimensional SERS Substrates Formed with Plasmonic Core-Satellite Nanostructures. Scientific Reports, 2017, 7, 13066.	1.6	37
423	Poly(N-isopropylacrylamide) capped plasmonic nanoparticles as resonance intensity-based temperature sensors with linear correlation. Journal of Materials Chemistry C, 2017, 5, 10926-10932.	2.7	19
424	Enzymeâ€Driven Hasselbackâ€Like DNAâ€Based Inorganic Superstructures. Advanced Functional Materials, 2017, 27, 1704213.	7.8	33
425	Photon Management through Virusâ€Programmed Supramolecular Arrays. Advanced Biology, 2017, 1, 1700088.	3.0	2
426	Form Follows Function: Nanoparticle Shape and Its Implications for Nanomedicine. Chemical Reviews, 2017, 117, 11476-11521.	23.0	464
428	Humidityâ€Responsive Singleâ€Nanoparticleâ€Layer Plasmonic Films. Advanced Materials, 2017, 29, 1606796.	11.1	25

#	Article	IF	Citations
429	Stacking modular DNA circuitry in cascading self-assembly of spherical nucleic acids. Journal of Materials Chemistry B, 2017, 5, 6256-6265.	2.9	6
430	Cationic comb-type copolymer promotes DNA assembly on gold nanoparticles while enhancing particle dispersibility. Macromolecular Research, 2017, 25, 500-503.	1.0	0
431	Application Progress of DNA Nanostructures in Drug Delivery and Smart Drug Carriers. Chinese Journal of Analytical Chemistry, 2017, 45, 1078-1087.	0.9	8
432	Tunable Fluorescence of a Semiconducting Polythiophene Positioned on DNA Origami. Nano Letters, 2017, 17, 5163-5170.	4.5	36
433	Light controlled assembly of silver nanoparticles. Scientific Reports, 2017, 7, 45144.	1.6	9
434	Chirality and Chiroptical Effects in Metal Nanostructures: Fundamentals and Current Trends. Advanced Optical Materials, 2017, 5, 1700182.	3.6	265
436	DNAâ€Mediated Assembly of Gold Nanoparticles and Applications in Bioanalysis. ChemNanoMat, 2017, 3, 725-735.	1.5	16
437	Selfâ€Correction Strategy for Precise, Massive, and Parallel Macroscopic Supramolecular Assembly. Advanced Materials, 2017, 29, 1702444.	11.1	49
438	Understanding and Reducing Photothermal Forces for the Fabrication of Au Nanoparticle Dimers by Optical Printing. Nano Letters, 2017, 17, 5747-5755.	4.5	81
439	Auric Chloride Induced Micellization on Fractal Patterned Dicationic Amphiphiles and Stabilization of Gold Nanoparticles. ACS Omega, 2017, 2, 3539-3550.	1.6	4
440	DNA tetrahedron nanostructures for biological applications: biosensors and drug delivery. Analyst, The, 2017, 142, 3322-3332.	1.7	115
441	The Structure of Short and Genomic DNA at the Interparticle Junctions of Cationic Nanoparticles. Advanced Materials Interfaces, 2017, 4, 1700724.	1.9	17
443	Visualization of periodic electric polarizability of helical nanofibers formed by self-assembly of nucleotide-bearing bolaamphiphiles and natural-source DNA as a template. Soft Matter, 2017, 13, 8293-8299.	1.2	3
444	Free-standing nanoparticle superlattice sheets: From design to applications. Europhysics Letters, 2017, 119, 48004.	0.7	14
445	Freezing Directed Construction of Bio/Nano Interfaces: Reagentless Conjugation, Denser Spherical Nucleic Acids, and Better Nanoflares. Journal of the American Chemical Society, 2017, 139, 9471-9474.	6.6	303
446	Spatial Organization of Enzyme Cascade on a DNA Origami Nanostructure. Methods in Molecular Biology, 2017, 1500, 153-164.	0.4	1
447	Depletion sphere: Explaining the number of Ag islands on Au nanoparticles. Chemical Science, 2017, 8, 430-436.	3.7	57
448	Toward biomaterial-based implantable photonic devices. Nanophotonics, 2017, 6, 414-434.	2.9	52

#	Article	IF	CITATIONS
449	Nanoscale topographical control of capillary assembly of nanoparticles. Nature Nanotechnology, 2017, 12, 73-80.	15.6	266
451	Simultaneous Determination of Ascorbic Acid, Dopamine and Uric Acid Based on Graphene/Polyaniline/Glod Nanohybrids. International Journal of Electrochemical Science, 2017, 12, 2540-2551.	0.5	10
452	Naturally-derived biopolymer nanocomposites: Interfacial design, properties and emerging applications. Materials Science and Engineering Reports, 2018, 125, 1-41.	14.8	182
453	DNA Nanotechnology-Enabled Drug Delivery Systems. Chemical Reviews, 2019, 119, 6459-6506.	23.0	768
454	Nanowire arrays restore vision in blind mice. Nature Communications, 2018, 9, 786.	5.8	89
455	Application of ordered nanoparticle self-assemblies in surface-enhanced spectroscopy. Materials Chemistry Frontiers, 2018, 2, 835-860.	3.2	42
456	Significance of DNA bond strength in programmable nanoparticle thermodynamics and dynamics. Soft Matter, 2018, 14, 2665-2670.	1.2	10
457	Recent Advances in Multicomponent Particle Assembly. Chemistry - A European Journal, 2018, 24, 16196-16208.	1.7	11
458	Single-Molecule Analysis of MicroRNA and Logic Operations Using a Smart Plasmonic Nanobiosensor. Journal of the American Chemical Society, 2018, 140, 3988-3993.	6.6	97
459	Two-dimensional gold trisoctahedron nanoparticle superlattice sheets: self-assembly, characterization and immunosensing applications. Nanoscale, 2018, 10, 5065-5071.	2.8	50
460	Liquid interfaces with pH-switchable nanoparticle arrays. Soft Matter, 2018, 14, 3929-3934.	1.2	14
461	Synthesis of Branched DNA Scaffolded Superâ€Nanoclusters with Enhanced Antibacterial Performance. Small, 2018, 14, e1800185.	5.2	53
462	Effect of interstitial palladium on plasmon-driven charge transfer in nanoparticle dimers. Nature Communications, 2018, 9, 1608.	5.8	28
463	Platzierung einzelner Proteine in den SERSâ€Hotâ€ s pots selbstorganisierter Silbernanolinsen. Angewandte Chemie, 2018, 130, 7566-7569.	1.6	4
464	Placement of Single Proteins within the SERS Hot Spots of Selfâ€Assembled Silver Nanolenses. Angewandte Chemie - International Edition, 2018, 57, 7444-7447.	7.2	58
465	Folding of Nanoparticle Chains into 2D Arrays: Structural Change of DNAâ€Functionalized Gold Nanoparticle Assemblies. Advanced Materials Interfaces, 2018, 5, 1800189.	1.9	11
466	Templateâ€Directed Solidification of Eutectic Optical Materials. Advanced Optical Materials, 2018, 6, 1800071.	3.6	19
467	Electrodynamic multiple-scattering method for the simulation of optical trapping atop periodic metamaterials. Journal of Modern Optics, 2018, 65, 1507-1514.	0.6	1

#	Article	IF	CITATIONS
468	Accordion-like plasmonic silver nanorod array exhibiting multiple electromagnetic responses. NPG Asia Materials, 2018, 10, 190-196.	3.8	11
469	Plasmonic nanostructures through DNA-assisted lithography. Science Advances, 2018, 4, eaap8978.	4.7	117
470	DNA Origami Directed Assembly of Gold Bowtie Nanoantennas for Singleâ€Molecule Surfaceâ€Enhanced Raman Scattering. Angewandte Chemie - International Edition, 2018, 57, 2846-2850.	7.2	150
471	DNA Origami Directed Assembly of Gold Bowtie Nanoantennas for Singleâ€Molecule Surfaceâ€Enhanced Raman Scattering. Angewandte Chemie, 2018, 130, 2896-2900.	1.6	17
472	DNA-Assembled Advanced Plasmonic Architectures. Chemical Reviews, 2018, 118, 3032-3053.	23.0	313
473	Controlling Polyelectrolyte Adsorption onto Carbon Nanotubes by Tuning Ion–Image Interactions. Journal of Physical Chemistry B, 2018, 122, 1545-1550.	1.2	4
474	Facile Nondestructive Assembly of Tyrosineâ€Rich Peptide Nanofibers as a Biological Glue for Multicomponentâ€Based Nanoelectrode Applications. Advanced Functional Materials, 2018, 28, 1705729.	7.8	18
475	Advances in the delivery of antisense oligonucleotides for combating bacterial infectious diseases. Nanomedicine: Nanotechnology, Biology, and Medicine, 2018, 14, 745-758.	1.7	68
476	DNA Origami Route for Nanophotonics. ACS Photonics, 2018, 5, 1151-1163.	3.2	171
477	A Reconfigurable DNA Accordion Rack. Angewandte Chemie - International Edition, 2018, 57, 2811-2815.	7.2	28
478	Optoelectronic fowl adenovirus detection based on local electric field enhancement on graphene quantum dots and gold nanobundle hybrid. Biosensors and Bioelectronics, 2018, 103, 45-53.	5.3	38
479	Freeze the Moment: High Speed Capturing of Weakly Bonded Dynamic Nanoparticle Assemblies in Solution by Ag Ion Soldering. Small, 2018, 14, 1703303.	5.2	7
480	Shape Transformation of Constituent Building Blocks within Self-Assembled Nanosheets and Nano-origami. ACS Nano, 2018, 12, 1014-1022.	7.3	18
481	DNA nanostructure-directed assembly of metal nanoparticle superlattices. Journal of Nanoparticle Research, 2018, 20, 119.	0.8	49
482	Mixing Assisted "Hot Spots―Occupying SERS Strategy for Highly Sensitive In Situ Study. Analytical Chemistry, 2018, 90, 4535-4543.	3.2	29
483	Individually Dispersed Gold Nanoshell-Bearing Cellulose Nanocrystals with Tailorable Plasmon Resonance. Langmuir, 2018, 34, 4427-4436.	1.6	11
484	Bromide as a Robust Backfiller on Gold for Precise Control of DNA Conformation and High Stability of Spherical Nucleic Acids. Journal of the American Chemical Society, 2018, 140, 4499-4502.	6.6	91
485	Plasmon polaritons in cubic lattices of spherical metallic nanoparticles. Physical Review B, 2018, 97, .	1.1	18

#	Article	IF	CITATIONS
486	Analysis of the Optical Properties of Chiral Au Nanorod Stacks. Plasmonics, 2018, 13, 2061-2066.	1.8	2
487	CdS nanowires formed by chemical synthesis using conjugated single-stranded DNA molecules. Physica E: Low-Dimensional Systems and Nanostructures, 2018, 97, 64-68.	1.3	3
488	Progress and Opportunities in Soft Photonics and Biologically Inspired Optics. Advanced Materials, 2018, 30, 1702669.	11.1	102
489	Nanoparticle Superlattices: The Roles of Soft Ligands. Advanced Science, 2018, 5, 1700179.	5. 6	170
490	Spermine induced reversible collapse of deoxyribonucleic acid-bridged nanoparticle-based assemblies. Nano Research, 2018, 11, 383-396.	5.8	5
491	Plasmonic Metamaterials and Metasurfaces. Springer Series in Materials Science, 2018, , 129-153.	0.4	2
492	Facing Challenges in Real-Life Application of Surface-Enhanced Raman Scattering: Design and Nanofabrication of Surface-Enhanced Raman Scattering Substrates for Rapid Field Test of Food Contaminants. Journal of Agricultural and Food Chemistry, 2018, 66, 6525-6543.	2.4	99
493	Advances in optoplasmonic sensors – combining optical nano/microcavities and photonic crystals with plasmonic nanostructures and nanoparticles. Nanophotonics, 2018, 7, 1-38.	2.9	109
494	Encapsulation of Gold Nanoparticles into DNA Minimal Cages for 3Dâ€Anisotropic Functionalization and Assembly. Small, 2018, 14, 1702660.	5.2	26
495	DNA-imprinted polymer nanoparticles with monodispersity and prescribed DNA-strand patterns. Nature Chemistry, 2018, 10, 184-192.	6.6	80
496	Bidirectional plasmonic coloration with gold nanoparticles by wavelength-switched photoredox reaction. Nanoscale, 2018, 10, 21910-21917.	2.8	6
498	PolyBrick 3.0: live signatures through DNA hydrogels and digital ceramics. International Journal of Rapid Manufacturing, 2018, 7, 203.	0.5	5
499	Emerging nanophotonics., 0,, 380-428.		0
500	Plasmon nanolaser: current state and prospects. Physics-Uspekhi, 2018, 61, 846-870.	0.8	28
501	Controlled Symmetry Breaking in Colloidal Crystal Engineering with DNA. ACS Nano, 2019, 13, 1412-1420.	7.3	16
502	Nano-assembly and welding of gold nanorods based on DNA origami and plasmon-induced laser irradiation. International Journal of Intelligent Robotics and Applications, 2018, 2, 445-453.	1.6	6
503	DNA-Assisted Assembly of Gold Nanostructures and Their Induced Optical Properties. Nanomaterials, 2018, 8, 994.	1.9	17
504	Photothermal Convection Lithography for Rapid and Direct Assembly of Colloidal Plasmonic Nanoparticles on Generic Substrates. Small, 2018, 14, e1803055.	5.2	37

#	Article	IF	CITATIONS
505	Encoding function into polypeptide-oligonucleotide precision biopolymers. Chemical Communications, 2018, 54, 11797-11800.	2.2	3
506	Dynamic Plasmonic System That Responds to Thermal and Aptamer-Target Regulations. Nano Letters, 2018, 18, 7395-7399.	4.5	76
507	Effect of Chain Rigidity on the Crystallization of DNA-Directed Nanoparticle System. Macromolecules, 2018, 51, 8372-8376.	2.2	10
508	DNA-nanostructure-templated precise biomineralization. National Science Review, 2018, 5, 789-791.	4.6	3
509	MicroRNA Detection through DNAzyme-Mediated Disintegration of Magnetic Nanoparticle Assemblies. ACS Sensors, 2018, 3, 1884-1891.	4.0	35
510	Size-Defined Cracked Vesicle Formation via Self-Assembly of Gold Nanoparticles Covered with Carboxylic Acid-Terminated Surface Ligands. Langmuir, 2018, 34, 12445-12451.	1.6	7
511	Quantitative Nanoplasmonics. ACS Central Science, 2018, 4, 1303-1314.	5.3	38
512	DNA-assisted synthesis of nickel cobalt sulfide nanosheets as high-performance battery-type electrode materials. Journal of Colloid and Interface Science, 2018, 528, 100-108.	5.0	5
513	Artificial Plasmonic Molecules and Their Interaction with Real Molecules. Chemical Reviews, 2018, 118, 5539-5580.	23.0	80
514	Assembly Dynamics of Plasmonic DNA-Capped Gold Nanoparticle Monolayers. Langmuir, 2018, 34, 14711-14720.	1.6	2
515	A Reconfigurable DNA Accordion Rack. Angewandte Chemie, 2018, 130, 2861-2865.	1.6	6
516	Comparing proteins and nucleic acidsÂfor next-generation biomolecularÂengineering. Nature Reviews Chemistry, 2018, 2, 113-130.	13.8	44
517	DNA-Assisted Molecular Lithography. Methods in Molecular Biology, 2018, 1811, 299-314.	0.4	2
518	Functional Two- and Three-Dimensional Architectures of Immobilized Metal Nanoparticles. CheM, 2018, 4, 2301-2328.	5.8	14
519	Bioinspired gold nanoparticles decorated reduced graphene oxide nanocomposite using Syzygium cumini seed extract: Evaluation of its biological applications. Materials Science and Engineering C, 2018, 93, 191-205.	3.8	59
520	Origin of the Plasmonic Chirality of Gold Nanorod Trimers Templated by DNA Origami. ACS Applied Materials & Samp; Interfaces, 2018, 10, 26835-26840.	4.0	35
521	Fluorescent ZnO–Au Nanocomposite as a Probe for Elucidating Specificity in DNA Interaction. ACS Omega, 2018, 3, 7494-7507.	1.6	23
522	External-Stimuli-Assisted Control over Assemblies of Plasmonic Metals. Materials, 2018, 11, 794.	1.3	11

#	Article	IF	Citations
523	Close-Packed Colloidal Monolayers of Ultra-Smooth Gold Nanospheres by Controlled Trapping onto Polymer Thin Films. Macromolecular Research, 2018, 26, 539-543.	1.0	3
524	Necessary Experimental Conditions for Single-Shot Diffraction Imaging of DNA-Based Structures with X-ray Free-Electron Lasers. ACS Nano, 2018, 12, 7509-7518.	7.3	24
525	Different Microtubule Structures Assembled by Kinesin Motors. Langmuir, 2018, 34, 9768-9773.	1.6	4
526	2D Binary Plasmonic Nanoassemblies with Semiconductor n/pâ€Dopingâ€Like Properties. Advanced Materials, 2018, 30, e1801118.	11.1	28
527	Plasmon heating of one-dimensional gold nanoparticle chains. Solar Energy, 2018, 173, 665-674.	2.9	13
528	Mercury ion–DNA specificity triggers a distinctive photoluminescence depression in organic semiconductor probes guided with a thymine-rich oligonucleotide sequence. Nanoscale, 2018, 10, 17540-17545.	2.8	8
529	Protein-sheathed SWNT as a versatile scaffold for nanoparticle assembly and superstructured nanowires. Science China Chemistry, 2018, 61, 1128-1133.	4.2	3
530	Structuring polarity-inverted TBA to G-quadruplex for selective recognition of planarity of natural isoquinoline alkaloids. Analyst, The, 2018, 143, 4907-4914.	1.7	9
531	DNA Origami Nanophotonics and Plasmonics at Interfaces. Langmuir, 2018, 34, 14911-14920.	1.6	39
532	Creating metamaterial building blocks with directed photochemical metallization of silver onto DNA origami templates. Nanotechnology, 2018, 29, 355603.	1.3	19
533	DNA Nanotechnology. Methods in Molecular Biology, 2018, , .	0.4	3
534	Time-Dependent Growth of Gold Nanoparticles: Experimental Correlation of van der Waals Contact between DNA and Amino Acids with Polar Uncharged Side Chains. Journal of Physical Chemistry C, 2019, 123, 20319-20324.	1.5	4
535	Surface enhanced Raman scattering (SERS) effect using flexible and self-closing ZnO nanowire-Au nanoparticle heterostructures. Applied Surface Science, 2019, 496, 143681.	3.1	18
536	Self-assembly and characterization of 2D plasmene nanosheets. Nature Protocols, 2019, 14, 2691-2706.	5.5	37
537	Controllable 1D Patterned Assembly of Colloidal Quantum Dots on PbSO ₄ Nanoribbons. Advanced Functional Materials, 2019, 29, 1905175.	7.8	3
538	Long-Term Functional Stability of Functional Nucleic Acid–Gold Nanoparticle Conjugates with Different Secondary Structures. Langmuir, 2019, 35, 11791-11798.	1.6	10
539	One-step synthesis of Fe–Au core–shell magnetic-plasmonic nanoparticles driven by interface energy minimization. Nanoscale Horizons, 2019, 4, 1326-1332.	4.1	62
540	Utilizing the Organizational Power of DNA Scaffolds for New Nanophotonic Applications. Advanced Optical Materials, 2019, 7, 1900562.	3.6	30

#	Article	IF	CITATIONS
541	Colloidal Gold Nanorings and Their Plasmon Coupling with Gold Nanospheres. Small, 2019, 15, e1902608.	5.2	39
542	Statistical Modeling of Ligand-Mediated Multimeric Nanoparticle Assembly. Journal of Physical Chemistry C, 2019, 123, 21195-21206.	1.5	4
543	Biological and Bio-inspired Nanomaterials. Advances in Experimental Medicine and Biology, 2019, , .	0.8	8
544	Individually Silicaâ€Embedded Gold Nanorod Superlattice for High Thermal and Solvent Stability and Recyclable SERS Application. Advanced Materials Interfaces, 2019, 6, 1900986.	1.9	8
545	Multi-level patterning nucleic acid photolithography. Nature Communications, 2019, 10, 3805.	5.8	29
546	Reconfigurable Optical Heptamer Disk Absorber Based on an Optical Switch. IEEE Photonics Technology Letters, 2019, 31, 779-782.	1.3	16
547	Fabrication and Biomedical Applications of "Polymer-Like―Nucleic Acids Enzymatically Produced by Rolling Circle Amplification. ACS Applied Bio Materials, 2019, 2, 4106-4120.	2.3	33
548	Rationally Engineered Nucleic Acid Architectures for Biosensing Applications. Chemical Reviews, 2019, 119, 11631-11717.	23.0	207
549	Exploration of solid-state nanopores in characterizing reaction mixtures generated from a catalytic DNA assembly circuit. Chemical Science, 2019, 10, 1953-1961.	3.7	39
550	Diverse chiral assemblies of nanoparticles directed by achiral block copolymers via nanochannel confinement. Nanoscale, 2019, 11, 474-484.	2.8	24
551	Softening gold for elastronics. Chemical Society Reviews, 2019, 48, 1668-1711.	18.7	138
552	Direct Observation of Plasmon Band Formation and Delocalization in Quasi-Infinite Nanoparticle Chains. Nano Letters, 2019, 19, 3854-3862.	4.5	32
553	Hierarchic Interfacial Nanocube Assembly for Sensitive, Selective, and Quantitative DNA Detection with Surface-Enhanced Raman Scattering. Analytical Chemistry, 2019, 91, 10467-10476.	3.2	31
554	Simply Constructed and Highly Efficient Classified Cargo-Discharge DNA Robot: A DNA Walking Nanomachine Platform for Ultrasensitive Multiplexed Sensing. Analytical Chemistry, 2019, 91, 8123-8128.	3.2	55
555	Level shift and decay dynamics of a quantum emitter around a plasmonic nanostructure. Physical Review A, 2019, 99, .	1.0	9
556	Covalent-Cross-Linked Plasmene Nanosheets. ACS Nano, 2019, 13, 6760-6769.	7.3	19
558	Advances in intracellular delivery through supramolecular self-assembly of oligonucleotides and peptides. Theranostics, 2019, 9, 3191-3212.	4.6	50
559	Nonviolent Self-Catabolic DNAzyme Nanosponges for Smart Anticancer Drug Delivery. ACS Nano, 2019, 13, 5852-5863.	7.3	133

#	Article	IF	CITATIONS
560	Dopamine-Mediated Assembly of Citrate-Capped Plasmonic Nanoparticles into Stable Core–Shell Nanoworms for Intracellular Applications. ACS Nano, 2019, 13, 5864-5884.	7.3	57
561	Nanoplasmonic biodetection based on bright-field imaging of resonantly coupled gold-silver nanoparticles. Photonics and Nanostructures - Fundamentals and Applications, 2019, 36, 100708.	1.0	6
562	Liquid–Solid Interfacial Assemblies of Soft Materials for Functional Freestanding Layered Membrane–Based Devices toward Electrochemical Energy Systems. Advanced Energy Materials, 2019, 9, 1804005.	10.2	18
563	First Step Towards Larger DNA-Based Assemblies of Fluorescent Silver Nanoclusters: Template Design and Detailed Characterization of Optical Properties. Nanomaterials, 2019, 9, 613.	1.9	14
564	DNA-enabled rational design of fluorescence-Raman bimodal nanoprobes for cancer imaging and therapy. Nature Communications, 2019, 10, 1926.	5.8	86
565	Oriented Gold Nanorod Arrays: Selfâ€Assembly and Optoelectronic Applications. Angewandte Chemie, 2019, 131, 12082-12092.	1.6	11
566	Oriented Gold Nanorod Arrays: Selfâ€Assembly and Optoelectronic Applications. Angewandte Chemie - International Edition, 2019, 58, 11956-11966.	7.2	94
567	Precise Selfâ€Assembly of Nanoparticles into Ordered Nanoarchitectures Directed by Tobacco Mosaic Virus Coat Protein. Advanced Materials, 2019, 31, e1901485.	11.1	38
568	A rapidly self-assembling soft-brush DNA hydrogel based on RCA products. Chemical Communications, 2019, 55, 5375-5378.	2.2	24
569	Substrate Mediated Synthesis of Ti–Si–N Nanoâ€andâ€Micro Structures for Optoelectronic Applications. Advanced Engineering Materials, 2019, 21, 1900061.	1.6	5
570	Three-Dimensional Molecular Transfer from DNA Nanocages to Inner Gold Nanoparticle Surfaces. ACS Nano, 2019, 13, 4174-4182.	7.3	43
571	DNAâ€Mediated Selfâ€Assembly of Plasmonic Antennas with a Single Quantum Dot in the Hot Spot. Small, 2019, 15, e1804418.	5.2	29
572	Gold nanoparticle based fluorescent oligonucleotide probes for imaging and therapy in living systems. Analyst, The, 2019, 144, 1052-1072.	1.7	37
573	Crystal engineering with DNA. Nature Reviews Materials, 2019, 4, 201-224.	23.3	178
574	From DNA Nanotechnology to Material Systems Engineering. Advanced Materials, 2019, 31, e1806294.	11.1	119
575	Machine learning based temperature prediction of poly(<i>N</i> -isopropylacrylamide)-capped plasmonic nanoparticle solutions. Physical Chemistry Chemical Physics, 2019, 21, 24808-24819.	1.3	2
576	Multicomponent Plasmonic Nanoparticles: From Heterostructured Nanoparticles to Colloidal Composite Nanostructures. Chemical Reviews, 2019, 119, 12208-12278.	23.0	289
577	The design and biomedical applications of self-assembled two-dimensional organic biomaterials. Chemical Society Reviews, 2019, 48, 5564-5595.	18.7	110

#	Article	IF	CITATIONS
578	Self-assembly of spherical and rod-shaped nanoparticles with full positional control. Nanoscale, 2019, 11, 22841-22848.	2.8	14
579	Colloidal Selfâ€Assembly Concepts for Plasmonic Metasurfaces. Advanced Optical Materials, 2019, 7, 1800564.	3.6	108
580	Versatile reorganization of metal-polyphenol coordination on CNTs for dispersion, assembly, and transformation. Carbon, 2019, 144, 402-409.	5.4	10
581	Design strategies for programmable oligonucleotide nanotherapeutics. Drug Discovery Today, 2020, 25, 73-88.	3.2	7
582	Noble Metal–Based Nanosensors for Environmental Detection. , 2020, , 39-78.		4
583	Directed Nanoparticle Assembly through Polymer Crystallization. Chemistry - A European Journal, 2020, 26, 349-361.	1.7	30
584	Freeâ€Standing 2D Nanoassemblies. Advanced Functional Materials, 2020, 30, 1902301.	7.8	45
585	Writing chemical patterns using electrospun fibers as nanoscale inkpots for directed assembly of colloidal nanocrystals. Nanoscale, 2020, 12, 895-903.	2.8	6
586	Programmable dynamic covalent nanoparticle building blocks with complementary reactivity. Chemical Science, 2020, 11, 372-383.	3.7	14
587	Programming nanoparticle valence bonds with single-stranded DNA encoders. Nature Materials, 2020, 19, 781-788.	13.3	166
588	Independent control over size, valence, and elemental composition in the synthesis of DNA–nanoparticle conjugates. Chemical Science, 2020, 11, 1564-1572.	3.7	7
589	Three-dimensional nanoparticle assemblies with tunable plasmonics via a layer-by-layer process. Nano Today, 2020, 30, 100823.	6.2	10
590	Distance-Dependence Study of Plasmon Resonance Energy Transfer with DNA Spacers. Analytical Chemistry, 2020, 92, 14278-14283.	3.2	12
591	Position―and Orientationâ€Controlled Growth of Wulffâ€Shaped Colloidal Crystals Engineered with DNA. Advanced Materials, 2020, 32, e2005316.	11.1	12
592	Biomolecule-tailored assembly and morphology of gold nanoparticles for LSPR applications. Nano Today, 2020, 35, 101005.	6.2	65
593	DNA Self-Assembly Mediated by Programmable Soft-Patchy Interactions. ACS Nano, 2020, 14, 13524-13535.	7.3	6
594	Reconfiguring DNA Nanotube Architectures <i>via</i> Selective Regulation of Terminating Structures. ACS Nano, 2020, 14, 13451-13462.	7.3	14
595	Tuning properties of silver nanoclusters with RNA nanoring assemblies. Nanoscale, 2020, 12, 16189-16200.	2.8	23

#	Article	IF	CITATIONS
596	DNA-Mediated Three-Dimensional Assembly of Hollow Au–Ag Alloy Nanocages as Plasmonic Crystals. ACS Applied Nano Materials, 2020, 3, 8068-8074.	2.4	8
597	Mechanism of Coupling Nanoparticle Stiffness with Shape for Endocytosis: From Rodlike Penetration to Wormlike Wriggling. Journal of Physical Chemistry B, 2020, 124, 11145-11156.	1.2	15
598	Enzyme-based fabrication of physical DNA hydrogels: new materials and applications. Polymer Journal, 2020, 52, 891-898.	1.3	11
599	Strong Circular Dichroism in Single Gyroid Optical Metamaterials. Advanced Optical Materials, 2020, 8, 1902131.	3.6	32
600	Valence-programmable nanoparticle architectures. Nature Communications, 2020, 11, 2279.	5.8	37
601	Hierarchical Fabrication of Plasmonic Superlattice Membrane by Aspect-Ratio Controllable Nanobricks for Label-Free Protein Detection. Frontiers in Chemistry, 2020, 8, 307.	1.8	5
602	Parahydrophobic 3D nanohybrid substrates with two pathways of molecular enrichment and multilevel plasmon hybridization. Sensors and Actuators B: Chemical, 2020, 320, 128357.	4.0	13
603	Colloidal Assembly and Active Tuning of Coupled Plasmonic Nanospheres. Trends in Chemistry, 2020, 2, 593-608.	4.4	34
604	Self-assembly of multifunctional hydrogels with polyoxometalates helical arrays using nematic peptide liquid crystal template. Journal of Colloid and Interface Science, 2020, 578, 218-228.	5.0	16
605	DNA-Modulated Plasmon Resonance: Methods and Optical Applications. ACS Applied Materials & lnterfaces, 2020, 12, 14741-14760.	4.0	21
606	Tuning the optical response of cross-linked Fe@Au nanoparticles. Applied Surface Science, 2020, 514, 145921.	3.1	0
607	Enabling Sensitive Phenotypic Profiling of Cancer-Derived Small Extracellular Vesicles Using Surface-Enhanced Raman Spectroscopy Nanotags. ACS Sensors, 2020, 5, 764-771.	4.0	66
608	Multiscale Patterned Plasmonic Arrays for Highly Sensitive and Uniform SERS Detection. Advanced Materials Interfaces, 2020, 7, 2000248.	1.9	7
609	Robustness of Optical Response for Selfâ€Assembled Plasmonic Metamaterials with Morphological Disorder and Surface Roughness. Advanced Optical Materials, 2020, 8, 1901794.	3.6	3
610	Biopolymeric photonic structures: design, fabrication, and emerging applications. Chemical Society Reviews, 2020, 49, 983-1031.	18.7	138
611	Controlling the pinning time of a receding contact line under forced wetting conditions. Journal of Colloid and Interface Science, 2020, 565, 449-457.	5.0	7
612	New Selfâ€Organization Route to Tunable Narrowband Optical Filters and Polarizers Demonstrated with ZnOâ€"ZnWO ₄ Eutectic Composite. Advanced Optical Materials, 2020, 8, 1901617.	3.6	19
613	Localized Surface Plasmon Resonance-Induced Welding of Gold Nanotriangles and the Local Plasmonic Properties for Multicolor Sensing and Light-Harvesting Applications. ACS Applied Nano Materials, 2020, 3, 5172-5177.	2.4	16

#	Article	IF	CITATIONS
614	Polymerization-Induced Self-Assembly (PISA) and "Host–Guest―Complexation-Directed Polymer/Gold Nanocomposites. , 2020, 2, 492-498.		24
615	Perspektiven gekoppelter organischâ€anorganischer Nanostrukturen fýr Ladungs―und Energietransferanwendungen. Angewandte Chemie, 2021, 133, 1168-1194.	1.6	1
616	Prospects of Coupled Organic–Inorganic Nanostructures for Charge and Energy Transfer Applications. Angewandte Chemie - International Edition, 2021, 60, 1152-1175.	7.2	39
617	Flexible synthesis of high-purity plasmonic assemblies. Nano Research, 2021, 14, 635-645.	5.8	11
618	Self-assembly of colloidal inorganic nanocrystals: nanoscale forces, emergent properties and applications. Chemical Society Reviews, 2021, 50, 2074-2101.	18.7	54
619	Recent Advances in Bioâ€Templated Metallic Nanomaterial Synthesis and Electrocatalytic Applications. ChemSusChem, 2021, 14, 758-791.	3.6	24
620	Translational and rotational diffusion coefficients of gold nanorods functionalized with a high molecular weight, thermoresponsive ligand: a depolarized dynamic light scattering study. Soft Matter, 2021, 17, 4019-4026.	1.2	12
621	Engineered nano-sphere array of gold-DNA core–shells and junctions as opto-plasmonic sensors for biodetection. RSC Advances, 2021, 11, 27215-27225.	1.7	3
622	Optimizing the dynamic and thermodynamic properties of hybridization in DNA-mediated nanoparticle self-assembly. Physical Chemistry Chemical Physics, 2021, 23, 11774-11783.	1.3	3
623	State-of-art plasmonic photonic crystals based on self-assembled nanostructures. Journal of Materials Chemistry C, 2021, 9, 3368-3383.	2.7	9
624	Modular Imaging Scaffold for Single-Particle Electron Microscopy. ACS Nano, 2021, 15, 4186-4196.	7.3	7
625	Synthesis of sea urchin-shaped Au nanocrystals by double-strand diblock oligonucleotides for surface-enhanced Raman scattering and catalytic application. Nanotechnology, 2021, 32, 175501.	1.3	6
626	Flash Synthesis of Spherical Nucleic Acids with Record DNA Density. Journal of the American Chemical Society, 2021, 143, 3065-3069.	6.6	89
627	The Effects of Temperature on the Assembly of Gold Nanoparticle by Interpolymer Complexation. Journal of Physical Chemistry Letters, 2021, 12, 1461-1467.	2.1	11
628	Theoretical studies on the electronic and optoelectronic properties of DNA/RNA hybrid-metal complexes. Polyhedron, 2021, 196, 115015.	1.0	2
629	Review of optical sensing and manipulation of chiral molecules and nanostructures with the focus on plasmonic enhancements [Invited]. Optics Express, 2021, 29, 12543.	1.7	22
630	Solvo-Driven Dimeric Nanoplasmon Coupling Under DNA Direction. CCS Chemistry, 2021, 3, 1359-1367.	4.6	6
631	Unconventional-Phase Crystalline Materials Constructed from Multiscale Building Blocks. Chemical Reviews, 2021, 121, 5830-5888.	23.0	57

#	Article	IF	CITATIONS
632	Optothermally Assembled Nanostructures. Accounts of Materials Research, 2021, 2, 352-363.	5.9	21
633	Graphene Metapixels for Dynamically Switchable Structural Color. ACS Nano, 2021, 15, 8930-8939.	7.3	16
634	Bottom-Up Fabrication of DNA-Templated Electronic Nanomaterials and Their Characterization. Nanomaterials, $2021,11,1655.$	1.9	14
635	Assemblies and composites of gold nanostructures for functional devices. Aggregate, 2022, 3, e57.	5.2	10
636	Plasmonic Newton's cradle for low-loss subwavelength energy transport: Homogeneous or heterogeneous nanoparticle chains?. Current Applied Physics, 2021, 27, 66-72.	1.1	1
637	Fabrication of plasmonic structures with well-controlled nanometric features: a comparison between lift-off and ion beam etching. Nanotechnology, 2021, 32, 475202.	1.3	14
638	A multiplexed circulating tumor DNA detection platform engineered from 3D-coded interlocked DNA rings. Bioactive Materials, 2022, 10, 68-78.	8.6	7
639	Surface-enhanced Raman Scattering of Self-assembled Superstructures. Chemical Research in Chinese Universities, 2021, 37, 989-1007.	1.3	6
640	The hierarchical assembly of a multi-level DNA ring-based nanostructure in a precise order and its application for screening tumor cells. Biomaterials Science, 2021, 9, 2262-2270.	2.6	1
641	Active strain engineering of soft plasmene nanosheets by thermoresponsive hydrogels. Journal of Materials Chemistry C, 2021, 9, 12720-12726.	2.7	5
642	DNA structures embedded with functionalized nanomaterials for biophysical applications. Journal of the Korean Physical Society, 2021, 78, 449-460.	0.3	3
643	Building ordered nanoparticle assemblies inspired by atomic epitaxy. Physical Chemistry Chemical Physics, 2021, 23, 20028-20037.	1.3	1
645	Fineâ€Tuning Au@Pd Nanocrystals for Maximum Plasmonâ€Enhanced Catalysis. Advanced Materials Interfaces, 2021, 8, 2001686.	1.9	17
646	Parallel and Scalable Computation and Spatial Dynamics with DNA-Based Chemical Reaction Networks on a Surface. Lecture Notes in Computer Science, 2014, , 114-131.	1.0	37
647	Application of Nanoparticles in Manufacturing. , 2016, , 1219-1278.		3
648	Melting Temperature of Metallic Nanoparticles. , 2016, , 661-690.		19
649	Fabrication, Properties and Applications of Plasmene Nanosheet. International Journal of Behavioral and Consultation Therapy, 2017, , 109-136.	0.4	1
650	DNA-Directed Assembly of Nanophase Materials: An Updated Review., 2013,, 157-183.		2

#	Article	IF	CITATIONS
651	DNA Nanotechnology for Building Sensors, Nanopores and Ion-Channels. Advances in Experimental Medicine and Biology, 2019, 1174, 331-370.	0.8	6
652	Results for the electrostatic potential of a uniformly charged square plate. Results in Physics, 2020, 19, 103671.	2.0	8
653	Diversifying Nanoparticle Assemblies in Supramolecule Nanocomposites Via Cylindrical Confinement. Nano Letters, 2017, 17, 6847-6854.	4.5	45
654	Analyzing fidelity and reproducibility of DNA templated plasmonic nanostructures. Nanoscale, 2019, 11, 20693-20706.	2.8	17
655	Green synthesis of proanthocyanidins-functionalized Au/Ag bimetallic nanoparticles. Green Chemistry Letters and Reviews, 2021, 14, 45-50.	2.1	16
656	DNA-induced assembly of gold nanoprisms and polystyrene beads into 3D plasmonic SERS substrates. Nanotechnology, 2021, 32, 025506.	1.3	8
657	Designing optical gates using metal–organic–metal transmission lines with multivalue and reconfigurable characteristics. Journal of Nanophotonics, 2019, 13, 1.	0.4	5
658	Hairy gold nanorods: gold nanowire growth on nanosubstrates [Invited]. Optical Materials Express, 2020, 10, 342.	1.6	5
659	APLICACIONES BIOMÉDICAS, TEXTILES Y ALIMENTARIAS DE NANOESTRUCTURAS ELABORADAS POR ELECTROHILADO. Biotecnia, 2015, 16, 44.	0.1	8
660	The Growth of Cu Nanostructures Induced by Au Nanobipyramids. Journal of Advances in Nanomaterials, 2017, 2, 219-227.	0.4	2
662	Design Approaches and Computational Tools for DNA Nanostructures. IEEE Open Journal of Nanotechnology, 2021, 2, 86-100.	0.9	6
663	Soft Plasmonics: Design, Fabrication, Characterization, and Applications. Advanced Optical Materials, 2022, 10, 2101436.	3.6	12
664	Nanophotonic Approaches for Chirality Sensing. ACS Nano, 2021, 15, 15538-15566.	7.3	111
665	Plasmonic Nano-protractor Based on Polarization Spectro-Tomography. , 2012, , .		0
666	Biomolecular Architecture for Nanotechnology. Nanoscience and Technology, 2012, , 151-172.	1.5	0
667	The Biological Significance of "Nano―interactions. Springer Series in Biophysics, 2013, , 1-20.	0.4	0
668	Deterministic Amorphous Metamaterials and Their Optical Far-Field Response. Nano-optics and Nanophotonics, 2013, , 143-167.	0.2	0
670	Properties of DNA-Capped Nanoparticles. , 2014, , 1227-1262.		0

#	ARTICLE	IF	CITATIONS
671	Arrangement of Gold Nanoparticles onto a Slit-Type DNA Nanostructure in Various Patterns. Springer Theses, 2015, , 67-73.	0.0	0
672	Assemblies and Superstructures of Inorganic Colloidal Nanocrystals. Nanostructure Science and Technology, 2017, , 293-335.	0.1	0
673	DNA self-assembly-based fabrication of metallic nanostructures and related nanophotonics. Wuli Xuebao/Acta Physica Sinica, 2017, 66, 147101.	0.2	2
674	DNA scaffold nanostructures for efficient and directional propagation of light harvesting cascades., 2017,,.		0
675	Optical response of gold and upconversion nanoparticles assembled via DNA interaction. , 2019, , .		1
676	Weak Measurements in Nano-optics. Current Nanomaterials, 2020, 5, 191-213.	0.2	3
677	DNA-mediated hierarchical organization of gold nanoprisms into 3D aggregates and their application in surface-enhanced Raman scattering. Physical Chemistry Chemical Physics, 2021, 23, 25256-25263.	1.3	2
678	Gold Nanopolyhedron-Based Superlattice Sheets as Flexible Surface-Enhanced Raman Scattering Sensors for Detection of 4-Aminothiophenol. ACS Applied Nano Materials, 2021, 4, 12498-12505.	2.4	8
679	Selfâ€Assembly of Upconversion Nanoparticles Based Materials and Their Emerging Applications. Small, 2022, 18, e2103241.	5.2	17
680	Building Polyvalent DNAâ€Functionalized Anisotropic AuNPs using Polyâ€Guanineâ€Mediated <i>Inâ€Situ</i> Synthesis for LSPRâ€Based Assays: Case Study on OncomiRâ€155. Photochemistry and Photobiology, 2022, 98, 1043-1049.	1.3	2
681	Plasmonic Nanostructures for Sensing. , 2022, , .		1
682	Chemical and Physical Properties of Photonic Nobleâ€Metal Nanomaterials. Advanced Materials, 2023, 35, e2108104.	11.1	10
683	Centimeter-Scale Superlattices of Three-Dimensionally Orientated Plasmonic Dimers with Highly Tunable Collective Properties. ACS Nano, 2022, 16, 4609-4618.	7.3	10
684	Thin film block copolymer self-assembly for nanophotonics. Nanotechnology, 2022, 33, 292001.	1.3	15
685	Chiral biosensing using terahertz twisted chiral metamaterial. Optics Express, 2022, 30, 14651.	1.7	15
686	DNA Nanodevice-Based Drug Delivery Systems. Biomolecules, 2021, 11, 1855.	1.8	9
687	Plasmonic Nanoarchitectures for Singleâ∈Molecule Explorations: An Overview. Advanced Photonics Research, 2022, 3, .	1.7	9
688	DNA origami enabled assembly of nanophotonic structures and their applications [Invited]. Optical Materials Express, 2022, 12, 284.	1.6	2

#	Article	IF	CITATIONS
689	Fingerprint-Inspired Strain Sensor with Balanced Sensitivity and Strain Range Using Laser-Induced Graphene. ACS Applied Materials & Samp; Interfaces, 2022, 14, 1315-1325.	4.0	56
690	Molecular Structure of Single-Stranded DNA on the ZnS Surface of Quantum Dots. ACS Nano, 2022, 16, 6666-6675.	7.3	2
692	Designing a High-Crystallinity Nano-Gapped Particle Superlattice via DNA-Guided Colloidal Crystallization and Dehydration. Crystal Growth and Design, 0, , .	1.4	1
693	A reversibly gated protein-transporting membrane channel made of DNA. Nature Communications, 2022, 13, 2271.	5.8	30
695	Suppressing high-dimensional crystallographic defects for ultra-scaled DNA arrays. Nature Communications, 2022, 13, 2707.	5.8	2
696	Evaporative Drying: A General and Readily Scalable Route to Spherical Nucleic Acids with Quantitative, Fully Tunable, and Recordâ€High DNA Loading. Small, 2022, 18, e2202458.	5.2	3
697	Plasmonic Polycrystals within Microbowl Arrays. Advanced Optical Materials, 2022, 10, .	3.6	4
698	Constitutionally Selective Dynamic Covalent Nanoparticle Assembly. Journal of the American Chemical Society, 2022, 144, 14310-14321.	6.6	8
699	DNA-POINT: DNA Patterning of Optical Imprint for Nanomaterials Topography. ACS Applied Materials & Samp; Interfaces, 2022, 14, 38388-38397.	4.0	2
700	Patterning Gold Nanorod Assemblies by Deep-UV Lithography. Journal of Physical Chemistry C, 2022, 126, 13729-13738.	1.5	1
701	DNA-assisted nanoparticle assembly. , 2023, , 128-148.		1
702	Universal linker-free assembly of core–satellite hetero-superstructures. Chemical Science, 2022, 13, 11792-11797.	3.7	5
703	DNA-mediated dynamic plasmonic nanostructures: assembly, actuation, optical properties, and biological applications. Physical Chemistry Chemical Physics, 0, , .	1.3	2
704	Controlled 3D assembly and stimuli responsive behavior of DNA and peptide functionalized gold nanoparticles in solutions. Physical Chemistry Chemical Physics, 2022, 24, 19552-19563.	1.3	1
705	Conjugation strategies of <scp>DNA</scp> to gold nanoparticles. Bulletin of the Korean Chemical Society, 2022, 43, 1298-1306.	1.0	11
706	Plasmonic/magnetic nanoarchitectures: From controllable design to biosensing and bioelectronic interfaces. Biosensors and Bioelectronics, 2022, , 114744 .	5.3	3
707	Molecular Plasmonics with Metamaterials. Chemical Reviews, 2022, 122, 15031-15081.	23.0	23
708	Large Area Patterning of Highly Reproducible and Sensitive SERS Sensors Based on 10-nm Annular Gap Arrays. Nanomaterials, 2022, 12, 3842.	1.9	4

#	Article	IF	CITATIONS
709	Assembly and Biomineralization of Polymorphic Gold–Peptide Superstructures Using Tyrosineâ€Rich Short Peptides. Advanced Functional Materials, 2023, 33, .	7.8	1
710	Trimer structures formed by target-triggered AuNPs self-assembly inducing electromagnetic hot spots for SERS-fluorescence dual-signal detection of intracellular miRNAs. Biosensors and Bioelectronics, 2023, 224, 115051.	5.3	4
711	Tuning Plasmonic Properties of Gold Nanoparticles by Employing Nanoscale DNA Hydrogel Scaffolds. Biosensors, 2023, 13, 20.	2.3	3
712	Halogen Bonding-Driven Reversible Self-Assembly of Plasmonic Colloidal Molecules. ACS Nano, 2023, 17, 3047-3054.	7.3	6
713	Soft Plasmene Helical Nanostructures. Advanced Materials Technologies, 2023, 8, .	3.0	3
714	A facile post-assembly approach for the fabrication of non-close-packed gold nanocrystal arrays from binary nanocrystal superlattices. Nanoscale, 2023, 15, 5188-5192.	2.8	0
715	Molecular Engineering of Colloidal Atoms. Small, 2023, 19, .	5.2	12
716	Plasmon-enhanced nano-photosensitizers: game-changers in photodynamic therapy of cancers. Journal of Materials Chemistry B, 2023, 11 , $3537-3566$.	2.9	9
717	Software-defined nanophotonic devices and systems empowered by machine learning. Progress in Quantum Electronics, 2023, 89, 100469.	3.5	10
718	A general method for precise chain assembly of noble metal nanoparticles. Materials Chemistry Frontiers, 0, , .	3.2	0
719	Insights on adsorption properties of a DNA base, guanine on nano metal cages (Ag24/Au24/Cu24): DFT, SERS, NCI and solvent effects. Journal of Molecular Structure, 2023, 1285, 135541.	1.8	4
720	Emerging monoelemental 2D materials (Xenes) for biosensor applications. Nano Research, 2023, 16, 7030-7052.	5.8	3
722	A facile method for purifying DNA-modified small particles and soft materials using aqueous two-phase systems. Chemical Communications, 2023, 59, 9130-9133.	2.2	2
727	Plasmonic nanomaterials: noble metals and beyond. , 2024, , 35-72.		0
728	A Review of Fabrication of DNA Origami Plasmonic Structures for the Development of Surface-Enhanced Raman Scattering (SERS) Platforms. Plasmonics, 0, , .	1.8	2
734	Introduction to Nanotechnology. Advances in Chemical and Materials Engineering Book Series, 2024, , 1-35.	0.2	О