Three-dimensional bicontinuous ultrafast-charge and -

Nature Nanotechnology 6, 277-281 DOI: 10.1038/nnano.2011.38

Citation Report

Сітат	ION REPORT	
	IF	CITATIONS
C Napofibar Scoffold for		

1	Highly Conductive, Mechanically Robust, and Electrochemically Inactive TiC/C Nanofiber Scaffold for High-Performance Silicon Anode Batteries. ACS Nano, 2011, 5, 8346-8351.	7.3	122
2	Magnesium nanocrystal-polymer composites: A new platform for designer hydrogen storage materials. Energy and Environmental Science, 2011, 4, 4882.	15.6	105
3	CNT/Ni hybrid nanostructured arrays: synthesis and application as high-performance electrode materials for pseudocapacitors. Energy and Environmental Science, 2011, 4, 5000.	15.6	125
4	Hybrid structure of cobalt monoxide nanowire @ nickel hydroxidenitrate nanoflake aligned on nickel foam for high-rate supercapacitor. Energy and Environmental Science, 2011, 4, 4496.	15.6	386
5	Symmetrical MnO ₂ –Carbon Nanotube–Textile Nanostructures for Wearable Pseudocapacitors with High Mass Loading. ACS Nano, 2011, 5, 8904-8913.	7.3	582
6	Batteries take charge. Nature Nanotechnology, 2011, 6, 262-263.	15.6	38
7	Enhancing Ni–Sn nanowire lithium-ion anode performance by tailoring active/inactive material interfaces. Journal of Power Sources, 2011, 196, 10207-10212.	4.0	36
8	Porous nanostructured V2O5 film electrode with excellent Li-ion intercalation properties. Electrochemistry Communications, 2011, 13, 1276-1279.	2.3	40
9	Surface modification and fabrication of 3D nanostructures by atomic layer deposition. MRS Bulletin, 2011, 36, 887-897.	1.7	59
10	Recharge of electrochemical energy storage devices at pulsed elevated rates. , 2011, , .		4
10	Recharge of electrochemical energy storage devices at pulsed elevated rates. , 2011, , . Inâ€Plane Vacancyâ€Enabled Highâ€Power Si–Graphene Composite Electrode for Lithiumâ€ion Batteries. Advanced Energy Materials, 2011, 1, 1079-1084.	10.2	4 405
	Inâ€Plane Vacancyâ€Enabled Highâ€Power Si–Graphene Composite Electrode for Lithiumâ€lon Batteries.	10.2 0.7	
11	Inâ€Plane Vacancyâ€Enabled Highâ€Power Si–Graphene Composite Electrode for Lithiumâ€Ion Batteries. Advanced Energy Materials, 2011, 1, 1079-1084. Advances in Graphene-Related Technologies: Synthesis, Devices and Outlook. Recent Patents on		405
11 12	Inâ€Plane Vacancyâ€Enabled Highâ€Power Si–Graphene Composite Electrode for Lithiumâ€ion Batteries. Advanced Energy Materials, 2011, 1, 1079-1084. Advances in Graphene-Related Technologies: Synthesis, Devices and Outlook. Recent Patents on Nanotechnology, 2012, 6, 79-98. Fast Recharge of Electrochemical Energy Storage Devices at Pulsed Elevated Rates. IEEE Transactions	0.7	405 33
11 12 13	Inâ€Plane Vacancyâ€Enabled Highâ€Power Si–Graphene Composite Electrode for Lithiumâ€ion Batteries. Advanced Energy Materials, 2011, 1, 1079-1084. Advances in Graphene-Related Technologies: Synthesis, Devices and Outlook. Recent Patents on Nanotechnology, 2012, 6, 79-98. Fast Recharge of Electrochemical Energy Storage Devices at Pulsed Elevated Rates. IEEE Transactions on Plasma Science, 2012, 40, 2416-2424. In situ atomic-scale imaging of electrochemical lithiation in silicon. Nature Nanotechnology, 2012, 7,	0.7	405 33 10
11 12 13 14	Inâ€Plane Vacancyâ€Enabled Highâ€Power Si–Graphene Composite Electrode for Lithiumâ€ion Batteries. Advanced Energy Materials, 2011, 1, 1079-1084. Advances in Graphene-Related Technologies: Synthesis, Devices and Outlook. Recent Patents on Nanotechnology, 2012, 6, 79-98. Fast Recharge of Electrochemical Energy Storage Devices at Pulsed Elevated Rates. IEEE Transactions on Plasma Science, 2012, 40, 2416-2424. In situ atomic-scale imaging of electrochemical lithiation in silicon. Nature Nanotechnology, 2012, 7, 749-756. Enhanced performance of a MnO2–graphene sheet cathode for lithium ion batteries using sodium	0.7 0.6 15.6	405 33 10 533
11 12 13 14 15	Inâ€Plane Vacancyâ€Enabled Highâ€Power Si–Graphene Composite Electrode for Lithiumâ€ion Batteries. Advanced Energy Materials, 2011, 1, 1079-1084. Advances in Graphene-Related Technologies: Synthesis, Devices and Outlook. Recent Patents on Nanotechnology, 2012, 6, 79-98. Fast Recharge of Electrochemical Energy Storage Devices at Pulsed Elevated Rates. IEEE Transactions on Plasma Science, 2012, 40, 2416-2424. In situ atomic-scale imaging of electrochemical lithiation in silicon. Nature Nanotechnology, 2012, 7, 749-756. Enhanced performance of a MnO2–graphene sheet cathode for lithium ion batteries using sodium alginate as a binder. Journal of Materials Chemistry, 2012, 22, 13002. Three-Dimensionally Engineered Porous Silicon Electrodes for Li Ion Batteries. Nano Letters, 2012, 12,	0.7 0.6 15.6 6.7	405 33 10 533 71

2

#

ARTICLE

	Сітатіс	on Report	
#	Article	IF	CITATIONS
20	Optimised metal foams for electrical power and energy storage. ATZelektronik Worldwide, 2012, 7, 4-9.	0.1	1
21	Controlled synthesis of three-dimensional CoNi microstructures composed of single crystal CoNi nanoleaves. CrystEngComm, 2012, 14, 2974.	1.3	18
22	A 3D porous architecture of Si/graphene nanocomposite as high-performance anode materials for Li-ion batteries. Journal of Materials Chemistry, 2012, 22, 7724.	6.7	193
23	Charging efficiency improvement by structuring lithium battery electrodes. Journal of Applied Physics, 2012, 111, .	1.1	2
24	Aligned Photoelectrodes with Large Surface Area Prepared by Pulsed Laser Deposition. Journal of Physical Chemistry C, 2012, 116, 8102-8110.	1.5	29
25	Three-Dimensional Ni/TiO ₂ Nanowire Network for High Areal Capacity Lithium Ion Microbattery Applications. Nano Letters, 2012, 12, 655-660.	4.5	225
26	A Nanonet-Enabled Li Ion Battery Cathode Material with High Power Rate, High Capacity, and Long Cycle Lifetime. ACS Nano, 2012, 6, 919-924.	7.3	65
27	A hierarchically assembled mesoporous ZnO hemisphere array and hollow microspheres for photocatalytic membrane water filtration. Physical Chemistry Chemical Physics, 2012, 14, 7481.	1.3	52
28	Electrochemistry at nanoporous interfaces: new opportunity for electrocatalysis. Physical Chemistry Chemical Physics, 2012, 14, 448-463.	1.3	157
29	Nanoporous metals: fabrication strategies and advanced electrochemical applications in catalysis, sensing and energy systems. Chemical Society Reviews, 2012, 41, 7016.	18.7	446
30	Flexible graphene-based lithium ion batteries with ultrafast charge and discharge rates. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 17360-17365.	3.3	728
31	Direct electrodeposition and superior pseudocapacitive property of ultrahigh porous silver-incorporated polyaniline films. Materials Letters, 2012, 87, 142-145.	1.3	43
32	A novel solution combustion synthesis of cobalt oxide nanoparticles as negative-electrode materials for lithium ion batteries. Journal of Alloys and Compounds, 2012, 513, 592-596.	2.8	55
33	Li3V2(PO4)3 nanocrystals embedded in a nanoporous carbon matrix supported on reduced graphene oxide sheets: Binder-free and high rate cathode material for lithium-ion batteries. Journal of Power Sources, 2012, 214, 171-177.	4.0	112
34	Monolithic co-aerogels of carbon/titanium dioxide as three dimensional nanostructured electrodes for energy storage. Journal of Power Sources, 2012, 218, 140-147.	4.0	20
35	3-dimensional carbon nanotube for Li-ion battery anode. Journal of Power Sources, 2012, 219, 364-370.	4.0	53
36	Recent Advances in Metal Oxideâ€based Electrode Architecture Design for Electrochemical Energy Storage. Advanced Materials, 2012, 24, 5166-5180.	11.1	2,251
37	Porous Electrode Materials for Lithiumâ€lon Batteries – How to Prepare Them and What Makes Them Special. Advanced Energy Materials, 2012, 2, 1056-1085.	10.2	594

#	Article	IF	CITATIONS
39	High-performance supercapacitors based on vertically aligned carbon nanotubes and nonaqueous electrolytes. Nanotechnology, 2012, 23, 155401.	1.3	140
40	High power rechargeable batteries. Current Opinion in Solid State and Materials Science, 2012, 16, 186-198.	5.6	176
41	Microstructural design considerations for Li-ion battery systems. Current Opinion in Solid State and Materials Science, 2012, 16, 153-162.	5.6	71
42	Enhanced Anode Performances of Polyaniline–TiO ₂ –Reduced Graphene Oxide Nanocomposites for Lithium Ion Batteries. Inorganic Chemistry, 2012, 51, 9544-9551.	1.9	84
43	Large-size porous ZnO flakes with superior gas-sensing performance. Applied Physics Letters, 2012, 100, 262111.	1.5	51
44	Hierarchical Co ₃ O ₄ nanosheet@nanowire arrays with enhanced pseudocapacitive performance. RSC Advances, 2012, 2, 1663-1668.	1.7	125
45	Self-assembly of ultrathin porous NiO nanosheets/graphene hierarchical structure for high-capacity and high-rate lithium storage. Journal of Materials Chemistry, 2012, 22, 2844.	6.7	248
46	A facile approach to nanoarchitectured three-dimensional graphene-based Li–Mn–O composite as high-power cathodes for Li-ion batteries. Beilstein Journal of Nanotechnology, 2012, 3, 513-523.	1.5	28
47	Maintaining the Structure of Templated Porous Materials for Reactive and High-Temperature Applications. Langmuir, 2012, 28, 7310-7324.	1.6	42
48	3D Nanoporous Nanowire Current Collectors for Thin Film Microbatteries. Nano Letters, 2012, 12, 1198-1202.	4.5	101
49	Three-Dimensional Metal Scaffold Supported Bicontinuous Silicon Battery Anodes. Nano Letters, 2012, 12, 2778-2783.	4.5	254
50	Laser Scribing of High-Performance and Flexible Graphene-Based Electrochemical Capacitors. Science, 2012, 335, 1326-1330.	6.0	3,627
51	Hierarchical Co3O4@Ni-Co-O supercapacitor electrodes with ultrahigh specific capacitance per area. Nano Research, 2012, 5, 369-378.	5.8	156
52	Novel nanostructures for next generation dye-sensitized solar cells. Energy and Environmental Science, 2012, 5, 8506.	15.6	162
53	Ultrathin Graphite Foam: A Three-Dimensional Conductive Network for Battery Electrodes. Nano Letters, 2012, 12, 2446-2451.	4.5	382
54	Flexible Electronics: The Next Ubiquitous Platform. Proceedings of the IEEE, 2012, 100, 1486-1517.	16.4	822
55	A novel evolution strategy to fabricate a 3D hierarchical interconnected core–shell Ni/MnO2 hybrid for Li-ion batteries. Chemical Communications, 2012, 48, 7471.	2.2	37
56	Small quantities of cobalt deposited on tin oxide as anode material to improve performance of lithium-ion batteries. Nanoscale, 2012, 4, 5731.	2.8	14

#	Article	IF	CITATIONS
57	α-Fe2O3 nanoparticles anchored on graphene with 3D quasi-laminated architecture: in situ wet chemistry synthesis and enhanced electrochemical performance for lithium ion batteries. New Journal of Chemistry, 2012, 36, 1589.	1.4	87
58	Hierarchical nanostructured conducting polymer hydrogel with high electrochemical activity. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 9287-9292.	3.3	1,025
59	Ultrahigh-rate supercapacitors based on eletrochemically reduced graphene oxide for ac line-filtering. Scientific Reports, 2012, 2, 247.	1.6	559
60	Materials for Rechargeable Lithium-Ion Batteries. Annual Review of Chemical and Biomolecular Engineering, 2012, 3, 445-471.	3.3	225
61	Level Set Photonic Quasicrystals with Phase Parameters. Advanced Functional Materials, 2012, 22, 1150-1157.	7.8	21
62	Highâ€Performance Energyâ€Storage Architectures from Carbon Nanotubes and Nanocrystal Building Blocks. Advanced Materials, 2012, 24, 2030-2036.	11.1	112
63	Nanoporous Walls on Macroporous Foam: Rational Design of Electrodes to Push Areal Pseudocapacitance. Advanced Materials, 2012, 24, 4186-4190.	11.1	239
64	Hybrid Nanostructures for Energy Storage Applications. Advanced Materials, 2012, 24, 5045-5064.	11.1	473
67	Nanoscale Porous Framework of Lithium Titanate for Ultrafast Lithium Insertion. Angewandte Chemie - International Edition, 2012, 51, 7459-7463.	7.2	155
68	An Energy Storage Principle using Bipolar Porous Polymeric Frameworks. Angewandte Chemie - International Edition, 2012, 51, 7850-7854.	7.2	177
69	Carbonâ€Coated Singleâ€Crystal LiMn ₂ O ₄ Nanoparticle Clusters as Cathode Material for Highâ€Energy and Highâ€Power Lithiumâ€Ion Batteries. Angewandte Chemie - International Edition, 2012, 51, 8748-8752.	7.2	307
70	Electropolymerized composite film of polypyrrole and functionalized multi-walled carbon nanotubes: effect of functionalization time on capacitive performance. Journal of Solid State Electrochemistry, 2012, 16, 1781-1789.	1.2	28
71	Surfactant-assisted electrodeposition and improved electrochemical capacitance of silver-doped manganese oxide pseudocapacitor electrodes. Journal of Solid State Electrochemistry, 2012, 16, 2623-2629.	1.2	40
72	Effects of pore diameters on the pseudocapacitive property of three-dimensionally ordered macroporous manganese oxide electrodes. Materials Letters, 2012, 68, 230-233.	1.3	31
73	Stable high areal capacity lithium-ion battery anodes based on three-dimensional Ni–Sn nanowire networks. Journal of Power Sources, 2012, 211, 46-51.	4.0	79
74	Diffusion induced stresses in buckling battery electrodes. Journal of the Mechanics and Physics of Solids, 2012, 60, 1103-1121.	2.3	56
75	Threeâ€Dimensionally Ordered Macroporous Nitroxide Polymer Brush Electrodes Prepared by Surfaceâ€Initiated Atom Transfer Polymerization for Organic Radical Batteries. Macromolecular Rapid Communications, 2012, 33, 107-113.	2.0	44
76	3D porous gear-like copper oxide and their high electrochemical performance as supercapacitors. CrystEngComm. 2013, 15, 7657.	1.3	63

#	Article	IF	CITATIONS
77	Facile and controllable fabrication of three-dimensionally quasi-ordered macroporous TiO2 for high performance lithium-ion battery applications. New Journal of Chemistry, 2013, 37, 1578.	1.4	33
78	Mesoporous NiO nanosheet networks as high performance anodes for Li ion batteries. Journal of Materials Chemistry A, 2013, 1, 4173.	5.2	259
79	Bicontinuous Alkaline Fuel Cell Membranes from Strongly Self-Segregating Block Copolymers. Macromolecules, 2013, 46, 7332-7340.	2.2	59
80	Renewable Energies and CO2. Lecture Notes in Energy, 2013, , .	0.2	14
81	A carbon modified MnO2 nanosheet array as a stable high-capacitance supercapacitor electrode. Journal of Materials Chemistry A, 2013, 1, 9809.	5.2	141
82	Enabling New Classes of Templated Materials through Mesoporous Carbon Colloidal Crystals. Advanced Optical Materials, 2013, 1, 300-304.	3.6	16
83	Colloidal crystals by electrospraying polystyrene nanofluids. Nanoscale Research Letters, 2013, 8, 26.	3.1	25
84	Ultrahigh capacitive performance from both Co(OH)2/graphene electrode and K3Fe(CN)6 electrolyte. Scientific Reports, 2013, 3, 2986.	1.6	158
85	Nanostructured SnO ₂ @TiO ₂ Coreâ€Shell Composites: A Highâ€Rate Liâ€ion Anode Material Usable without Conductive Additives. Energy Technology, 2013, 1, 567-572.	1.8	30
86	Ultrafast Li-ion battery anode with superlong life and excellent cycling stability from strongly coupled ZnO nanoparticle/conductive nanocarbon skeleton hybrid materials. Nano Energy, 2013, 2, 579-585.	8.2	92
87	Integrated Solid/Nanoporous Copper/Oxide Hybrid Bulk Electrodes for High-performance Lithium-Ion Batteries. Scientific Reports, 2013, 3, 2878.	1.6	53
88	One-Pot Facile Synthesis of Ant-Cave-Structured Metal Oxide–Carbon Microballs by Continuous Process for Use as Anode Materials in Li-Ion Batteries. Nano Letters, 2013, 13, 5462-5466.	4.5	151
89	Three-Dimensional Graphene Foam Supported Fe ₃ O ₄ Lithium Battery Anodes with Long Cycle Life and High Rate Capability. Nano Letters, 2013, 13, 6136-6143.	4.5	738
90	Double-Gyroid-Structured Functional Materials. Springer Theses, 2013, , .	0.0	42
91	Three-dimensional macroporous graphene architectures as high performance electrodes for capacitive deionization. Journal of Materials Chemistry A, 2013, 1, 11778.	5.2	262
92	Core-leaf onion-like carbon/MnO2 hybrid nano-urchins for rechargeable lithium-ion batteries. Carbon, 2013, 64, 230-236.	5.4	91
93	Mechanical properties of bioinspired bicontinuous nanocomposites. Computational Materials Science, 2013, 80, 71-78.	1.4	15
94	Nanoscroll Buffered Hybrid Nanostructural VO ₂ (B) Cathodes for Highâ€Rate and Longâ€Life Lithium Storage. Advanced Materials, 2013, 25, 2969-2973.	11.1	207

ARTICLE IF CITATIONS Flexible hierarchical nanocomposites based on MnO₂nanowires/CoAl 1.7 75 95 hydrotalcite/carbon fibers for high-performance supercapacitors. RSC Advances, 2013, 3, 1045-1049. Advanced Energyâ€Storage Architectures Composed of Spinel Lithium Metal Oxide Nanocrystal on 10.2 109 Carbon Textiles. Advanced Energy Materials, 2013, 3, 1484-1489. Nanoporous LiNi1/3Co1/3Mn1/3O2 as an ultra-fast charge cathode material for aqueous rechargeable 97 2.2 119 lithium batteries. Chemical Communications, 2013, 49, 9209. Monolithic 3D titania with ultrathin nanoshell structures for enhanced photocatalytic activity and 98 2.8 recyclability. Nanoscale, 2013, 5, 10384. Supercritically exfoliated ultrathin vanadium pentoxide nanosheets with high rate capability for 99 1.3 74 lithium batteries. Physical Chemistry Chemical Physics, 2013, 15, 16828. Synthesis of carbon nanofibers@MnO2 3D structures over copper foil as binder free anodes for lithium ion batteries. Journal of Energy Chemistry, 2013, 22, 78-86. 7.1 Binder-free three-dimensional silicon/carbon nanowire networks for high performance lithium-ion 101 8.2 47 battery anodes. Nano Energy, 2013, 2, 943-950. Hierarchically structured materials for lithium batteries. Nanotechnology, 2013, 24, 424004. 1.3 Electrochemical Fabrication of Coaxial Wavyâ€Channel Ni^{III}O(OH)/Ni Nanocomposites for 103 1.8 8 Highâ€Performance Supercapacitor Electrode Materials. Energy Technology, 2013, 1, 478-483. Coaxial Si/anodic titanium oxide/Si nanotube arrays for lithium-ion battery anodes. Nano Research, 104 5.8 2013, 6, 182-190. High performance LiV0.96Mn0.04PO4F/C cathodes for lithium-ion batteries. Journal of Materials 105 5.2 62 Chemistry A, 2013, 1, 2501. Design of Battery Electrodes with Dualâ€Scale Porosity to Minimize Tortuosity and Maximize 11.1 Performance. Advanced Materials, 2013, 25, 1254-1258. An elastic germaniumâ€"carbon nanotubesâ€"copper foam monolith as an anode for rechargeable lithium 107 1.7 38 batteries. RSC Advances, 2013, 3, 1336-1340. Facile synthesis of novel Si nanoparticles–graphene composites as high-performance anode materials for Li-ion batteries. Physical Chemistry Chemical Physics, 2013, 15, 11394. 1.3 54 Template-free synthesized Ni nanofoams as nanostructured current collectors for high-performance 109 5.236 electrodes in lithium ion batteries. Journal of Materials Chemistry A, 2013, 1, 10002. Enhanced electrochemical reactions of 1,4-benzoquinone at nanoporous electrodes. Physical Chemistry Chemical Physics, 2013, 15, 10645. NiTi layered double hydroxide thin films for advanced pseudocapacitor electrodes. Journal of 111 5.270 Materials Chemistry Å, 2013, 1, 10655. Silicon composite thick film electrodeposited on a nickel micro-nanocones hierarchical structured current collector for lithium batteries. Journal of Power Sources, 2013, 222, 503-509.

#	Article	IF	CITATIONS
113	Ultrahigh capacitance of nanoporous metal enhanced conductive polymer pseudocapacitors. Journal of Power Sources, 2013, 225, 304-310.	4.0	52
114	Imprintable, Bendable, and Shapeâ€Conformable Polymer Electrolytes for Versatileâ€Shaped Lithiumâ€Ion Batteries. Advanced Materials, 2013, 25, 1395-1400.	11.1	183
115	Oriented Arrays of Polyaniline Nanorods Grown on Graphite Nanosheets for an Electrochemical Supercapacitor. Langmuir, 2013, 29, 493-500.	1.6	140
116	Bottom-up assembly of photonic crystals. Chemical Society Reviews, 2013, 42, 2528-2554.	18.7	606
117	TiO ₂ nanotube arrays grafted with Fe ₂ O ₃ hollow nanorods as integrated electrodes for lithium-ion batteries. Journal of Materials Chemistry A, 2013, 1, 122-127.	5.2	130
118	Hydrogen treated, cap-opened Si nanotubes array anode for high power lithium ion battery. Journal of Power Sources, 2013, 244, 463-468.	4.0	37
119	Pure Protein Scaffolds from Pickering High Internal Phase Emulsion Template. Macromolecular Rapid Communications, 2013, 34, 169-174.	2.0	114
120	Synthesis and electrochemical performances of ZnO/MnO2 sea urchin-like sleeve array as anode materials for lithium-ion batteries. Electrochimica Acta, 2013, 112, 364-370.	2.6	34
121	A porous vanadium pentoxide nanomaterial as cathode material for rechargeable lithium batteries. Electrochimica Acta, 2013, 89, 292-299.	2.6	40
122	Superior Performance Asymmetric Supercapacitors Based on a Directly Grown Commercial Mass 3D Co ₃ O ₄ @Ni(OH) ₂ Core–Shell Electrode. ACS Applied Materials & Interfaces, 2013, 5, 10574-10582.	4.0	203
123	Microfabricated nickel-based electrodes for high-power battery applications. Journal of Micromechanics and Microengineering, 2013, 23, 114008.	1.5	6
124	Mesoscopic Models of Plants Composed of Metallic Nanowires. Journal of Bionic Engineering, 2013, 10, 368-376.	2.7	7
125	Effects of Inhomogeneities—Nanoscale to Mesoscale—on the Durability of Li-Ion Batteries. Journal of Physical Chemistry C, 2013, 117, 6481-6492.	1.5	228
127	Design and functionality of colloidal-crystal-templated materials—chemical applications of inverse opals. Chemical Society Reviews, 2013, 42, 2763-2803.	18.7	487
128	In Situ Synthesis of Porous Fe ₃ O ₄ /C Microbelts and Their Enhanced Electrochemical Performance for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2013, 5, 1698-1703.	4.0	72
129	Enhancing Pseudocapacitive Charge Storage in Polymer Templated Mesoporous Materials. Accounts of Chemical Research, 2013, 46, 1113-1124.	7.6	254
130	<i>In Situ</i> Fabrication of Porous Graphene Electrodes for High-Performance Energy Storage. ACS Nano, 2013, 7, 2422-2430.	7.3	394
131	Ultrathin nanoporous Fe3O4–carbon nanosheets with enhanced supercapacitor performance. Journal of Materials Chemistry A, 2013, 1, 1952.	5.2	168

	Сітатіо	n Report	
#	ARTICLE	IF	CITATIONS
132	Facile synthesis of manganese oxide/aligned carbon nanotubes over aluminium foil as 3D binder free cathodes for lithium ion batteries. Journal of Materials Chemistry A, 2013, 1, 3757.	5.2	43
133	Pt–Al ₂ O ₃ dual layer atomic layer deposition coating in high aspect ratio nanopores. Nanotechnology, 2013, 24, 015602.	1.3	42
134	High-power lithium ion microbatteries from interdigitated three-dimensional bicontinuous nanoporous electrodes. Nature Communications, 2013, 4, 1732.	5.8	513
135	Bottom-up Approach toward Single-Crystalline VO ₂ -Graphene Ribbons as Cathodes for Ultrafast Lithium Storage. Nano Letters, 2013, 13, 1596-1601.	4.5	263
136	High power lithium ion microbatteries with lithographically defined 3-D porous electrodes. , 2013, , .		4
137	High-performance supercapacitor of manganese oxide/reduced graphene oxide nanocomposite coated on flexible carbon fiber paper. Carbon, 2013, 60, 109-116.	5.4	237
138	An Efficient Threeâ€Ðimensional Oxygen Evolution Electrode. Angewandte Chemie - International Edition, 2013, 52, 5248-5253.	7.2	307
139	Enhanced Supercapacitor Performance of MnO ₂ by Atomic Doping. Angewandte Chemie - International Edition, 2013, 52, 1664-1667.	7.2	251
140	Graphene/Carbon-Coated Si Nanoparticle Hybrids as High-Performance Anode Materials for Li-Ion Batteries. ACS Applied Materials & Interfaces, 2013, 5, 3449-3455.	4.0	171
141	Three-dimensionally ordered macroporous Cu2O/Ni inverse opal electrodes for electrochemical supercapacitors. Physical Chemistry Chemical Physics, 2013, 15, 7479.	1.3	36
142	Homogeneous CoO on Graphene for Binderâ€Free and Ultralong‣ife Lithium Ion Batteries. Advanced Functional Materials, 2013, 23, 4345-4353.	7.8	333
143	Pyrolyzed Bacterial Cellulose: A Versatile Support for Lithium Ion Battery Anode Materials. Small, 2013, 9, 2399-2404.	5.2	158
144	Silicon Nanofibrils on a Flexible Current Collector for Bendable Lithiumâ€lon Battery Anodes. Advanced Functional Materials, 2013, 23, 2108-2114.	7.8	85
145	Bijel reinforcement by droplet bridging: a route to bicontinuous materials with large domains. Soft Matter, 2013, 9, 6773.	1.2	52
146	A Flexible TiO ₂ (B)â€Based Battery Electrode with Superior Power Rate and Ultralong Cycle Life. Advanced Materials, 2013, 25, 3462-3467.	11.1	286
147	Facile Synthesis of Free-Standing Silicon Membranes with Three-Dimensional Nanoarchitecture for Anodes of Lithium Ion Batteries. Nano Letters, 2013, 13, 3340-3346.	4.5	69
148	Three-Dimensional Nanolithography Using Light Scattering from Colloidal Particles. ACS Nano, 2013, 7, 6212-6218.	7.3	46
149	Grapheneâ€Networkâ€Backboned Architectures for Highâ€Performance Lithium Storage. Advanced Materials, 2013, 25, 3979-3984.	11.1	253

#	Article	IF	CITATIONS
150	Preparation of 3D nanoporous copper-supported cuprous oxide for high-performance lithium ion battery anodes. Nanoscale, 2013, 5, 1917.	2.8	91
151	Fast, Reversible Lithium Storage with a Sulfur/Longâ€Chainâ€Polysulfide Redox Couple. Chemistry - A European Journal, 2013, 19, 8621-8626.	1.7	58
152	Dependence of fractal dimension of DLCA clusters on size of primary particles. Advances in Colloid and Interface Science, 2013, 195-196, 41-49.	7.0	43
153	Threeâ€Dimensional (3D) Bicontinuous Au/Amorphousâ€Ge Thin Films as Fast and High apacity Anodes for Lithiumâ€Ion Batteries. Advanced Energy Materials, 2013, 3, 281-285.	10.2	115
154	3D Printing of Interdigitated Liâ€ion Microbattery Architectures. Advanced Materials, 2013, 25, 4539-4543.	11.1	1,074
155	Assembly of Tin Oxide/Graphene Nanosheets into 3D Hierarchical Frameworks for Highâ€Performance Lithium Storage. ChemSusChem, 2013, 6, 1510-1515.	3.6	89
156	Hierarchical Ni0.25Co0.75(OH)2 nanoarrays for a high-performance supercapacitor electrode prepared by an in situ conversion process. Journal of Materials Chemistry A, 2013, 1, 8327.	5.2	74
157	ZnO photonic crystals with enhanced photocatalytic activity and photostability. Journal of Materials Chemistry A, 2013, 1, 2744.	5.2	62
158	Synthesis and Applications of \hat{I}^3 -Tungsten Oxide Hierarchical Nanostructures. Crystal Growth and Design, 2013, 13, 759-769.	1.4	75
159	Self-assembling hybrid NiO/Co3O4 ultrathin and mesoporous nanosheets into flower-like architectures for pseudocapacitance. Journal of Materials Chemistry A, 2013, 1, 9107.	5.2	101
160	Construction of High-Capacitance 3D CoO@Polypyrrole Nanowire Array Electrode for Aqueous Asymmetric Supercapacitor. Nano Letters, 2013, 13, 2078-2085.	4.5	1,250
161	Nanostructured 3D Electrode Architectures for Highâ€Rate Liâ€Ion Batteries. Advanced Materials, 2013, 25, 3238-3243.	11.1	83
162	A brain-coral-inspired metal–carbon hybrid synthesized using agarose gel for ultra-fast charge and discharge supercapacitor electrodes. Chemical Communications, 2013, 49, 1554.	2.2	22
163	Rationally Designed Hierarchical TiO ₂ @Fe ₂ O ₃ Hollow Nanostructures for Improved Lithium Ion Storage. Advanced Energy Materials, 2013, 3, 737-743.	10.2	296
164	CuO/Cu2O composite hollow polyhedrons fabricated from metal–organic framework templates for lithium-ion battery anodes with a long cycling life. Nanoscale, 2013, 5, 4186.	2.8	326
165	ZnO-template-mediated synthesis of three-dimensional coral-like MnO2 nanostructure for supercapacitors. Journal of Power Sources, 2013, 239, 393-398.	4.0	58
166	Hierarchically structured MnO2 nanowires supported on hollow Ni dendrites for high-performance supercapacitors. Nanoscale, 2013, 5, 4379.	2.8	111
167	Wireless sensor networks for rehabilitation applications: Challenges and opportunities. Journal of Network and Computer Applications, 2013, 36, 1-15.	5.8	136

#	Article	IF	CITATIONS
168	Effects of pore size on the mechanical properties of three-dimensionally ordered macroporous nickel. Materials & Design, 2013, 45, 52-55.	5.1	18
169	Nanohole particle filling by electrospray. , 2013, , .		0
170	Flexible Coral-like Carbon Nanoarchitectures via a Dual Block Copolymer–Latex Templating Approach. Chemistry of Materials, 2013, 25, 4781-4790.	3.2	58
171	Electrochemical synthesis and lithium storage performance of Sn–Cu alloy on three-dimensional porous Cu substrate. Solid State Ionics, 2013, 237, 1-7.	1.3	17
172	Making a Robust Interfacial Scaffold: Bijel Rheology and its Link to Processability. Advanced Functional Materials, 2013, 23, 417-423.	7.8	77
173	A simple template-free 'sputtering deposition and selective etching' process for nanoporous thin films and its application to dye-sensitized solar cells. Nanotechnology, 2013, 24, 365604.	1.3	12
174	Metal Foam as Positive Electrode Current Collector for LiFePO ₄ -Based Li-Ion Battery. Japanese Journal of Applied Physics, 2013, 52, 10MB13.	0.8	7
175	Validity of the Bruggeman relation for porous electrodes. Modelling and Simulation in Materials Science and Engineering, 2013, 21, 074009.	0.8	179
176	A Review of Electrospun Carbon Fibers as Electrode Materials for Energy Storage. Current Organic Chemistry, 2013, 17, 1390-1401.	0.9	121
177	Electricity Storage. Lecture Notes in Energy, 2013, , 307-333.	0.2	2
178	Increasing the reactive surface area of a Li three dimensional negative electrode by morphology control. Applied Physics Letters, 2013, 103, 233901.	1.5	3
180	Carbon inverse opal entrapped with electrode active nanoparticles as high-performance anode for lithium-ion batteries. Scientific Reports, 2013, 3, 2317.	1.6	77
181	Fast Ionic Diffusion-Enabled Nanoflake Electrode by Spontaneous Electrochemical Pre-Intercalation for High-Performance Supercapacitor. Scientific Reports, 2013, 3, .	1.6	182
182	Wet hemical Preparation of Copper Foam Monoliths with Tunable Densities and Complex Macroscopic Shapes. Advanced Materials, 2013, 25, 5599-5604.	11.1	26
183	Phototropic growth control of nanoscale pattern formation in photoelectrodeposited Se-Te films. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 19707-19712.	3.3	25
184	3 Dimensional Carbon Nanostructures for Li-ion Battery Anode. Materials Research Society Symposia Proceedings, 2013, 1505, 1.	0.1	0
185	High power primary lithium ion microbatteries. Journal of Physics: Conference Series, 2013, 476, 012087.	0.3	3
186	Nanoparticles Engineering for Lithiumâ€lon Batteries. Particle and Particle Systems Characterization, 2013, 30, 737-753.	1.2	22

	CITATION	Report	
#	Article	IF	CITATIONS
187	Seamless Integration of an Elastomer with Electrode Matrix and its Inâ€5itu Conversion into a Solid State Electrolyte for Robust Liâ€ion Batteries. Advanced Functional Materials, 2013, 23, 5941-5951.	7.8	11
188	Electrodeposition of aluminum at near-ambient temperature. Keikinzoku/Journal of Japan Institute of Light Metals, 2013, 63, 234-242.	0.1	3
190	Quantification of bottlenecks to fast charging of lithium-ion-insertion cells for electric vehicles. Journal of Power Sources, 2014, 271, 622-632.	4.0	53
191	Aligned TiO ₂ nanotube/nanoparticle heterostructures with enhanced electrochemical performance as three-dimensional anode for lithium-ion microbatteries. Nanotechnology, 2014, 25, 455401.	1.3	11
192	Si-Based Anode Materials for Li-Ion Batteries: A Mini Review. Nano-Micro Letters, 2014, 6, 347-358.	14.4	339
193	X-Ray Microscopy for Hierarchical Multi-Scale Materials. Microscopy Today, 2014, 22, 16-21.	0.2	15
194	General Approach for Highâ€Power Liâ€ion Batteries: Multiscale Lithographic Patterning of Electrodes. ChemSusChem, 2014, 7, 3483-3490.	3.6	16
195	Na-doped Ni-rich LiNi _{0.5} Co _{0.2} Mn _{0.3} O ₂ cathode material with both high rate capability and high tap density for lithium ion batteries. Dalton Transactions, 2014, 43, 14824-14832.	1.6	180
196	Fabrication of Small Pore-Size Nickel Foams Using Electroless Plating of Solid-State Foamed Immiscible Polymer Blends. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 2014, 136, .	1.3	17
197	Structural Color Manipulation Using Tunable Photonic Crystals with Enhanced Switching Reliability. Advanced Optical Materials, 2014, 2, 535-541.	3.6	35
198	Designing 3D Conical-Shaped Lithium-Ion Microelectrodes. Journal of the Electrochemical Society, 2014, 161, A302-A307.	1.3	19
199	Integration and performance of regenerative braking and energy recovery technologies in vehicles. , 2014, , 541-563.		5
200	Engineering one-dimensional and two-dimensional birnessite manganese dioxides on nickel foam-supported cobalt–aluminum layered double hydroxides for advanced binder-free supercapacitors. RSC Advances, 2014, 4, 63901-63908.	1.7	21
201	Anisotropic Colloidal Templating of 3D Ceramic, Semiconducting, Metallic, and Polymeric Architectures. Advanced Materials, 2014, 26, 1740-1745.	11.1	20
202	Engraving Copper Foil to Give Largeâ€Scale Binderâ€Free Porous CuO Arrays for a Highâ€Performance Sodiumâ€Ion Battery Anode. Advanced Materials, 2014, 26, 2273-2279.	11.1	427
203	Ultrahigh Rate Capabilities of Lithiumâ€ion Batteries from 3D Ordered Hierarchically Porous Electrodes with Entrapped Active Nanoparticles Configuration. Advanced Materials, 2014, 26, 1296-1303.	11.1	138
204	Improving the Energy Storage Performance of Graphene through Insertion of Pristine CNTs and Ordered Mesoporous Carbon Coating. ChemElectroChem, 2014, 1, 772-778.	1.7	43
205	Facile 3D Metal Electrode Fabrication for Energy Applications via Inkjet Printing and Shape Memory Polymer. Journal of Physics: Conference Series, 2014, 557, 012006.	0.3	6

#	ARTICLE	IF	CITATIONS
206	Ni3S2 coated ZnO array for high-performance supercapacitors. Journal of Power Sources, 2014, 245, 463-467.	4.0	210
207	Large scale patternable 3-dimensional carbon nanotube–graphene structure for flexible Li-ion battery. Carbon, 2014, 68, 493-500.	5.4	46
208	Determination of the "NiOOH―charge and discharge mechanisms at ideal activity. Journal of Electroanalytical Chemistry, 2014, 717-718, 177-188.	1.9	64
209	Hybrid network CuS monolith cathode materials synthesized via facile in situ melt-diffusion for Li-ion batteries. Journal of Power Sources, 2014, 257, 192-197.	4.0	76
210	Electrodeposition of manganese oxide nanosheets on a continuous three-dimensional nickel porous scaffold for high performance electrochemical capacitors. Journal of Power Sources, 2014, 245, 1027-1034.	4.0	59
211	Ultrasmall Dispersible Crystalline Nickel Oxide Nanoparticles as Highâ€Performance Catalysts for Electrochemical Water Splitting. Advanced Functional Materials, 2014, 24, 3123-3129.	7.8	303
212	High-performance of PbO2 nanowire electrodes for lead-acid battery. Journal of Power Sources, 2014, 256, 72-79.	4.0	34
213	High areal capacity Li ion battery anode based on thick mesoporous Co3O4 nanosheet networks. Nano Energy, 2014, 5, 91-96.	8.2	112
214	Sulfur-impregnated MWCNT microball cathode for Li–S batteries. RSC Advances, 2014, 4, 16062.	1.7	13
215	Design Hierarchical Electrodes with Highly Conductive NiCo ₂ S ₄ Nanotube Arrays Grown on Carbon Fiber Paper for High-Performance Pseudocapacitors. Nano Letters, 2014, 14, 831-838.	4.5	1,045
216	Ordered 2D Colloidal Photonic Crystals on Gold Substrates by Surfactantâ€Assisted Fastâ€Rate Dip Coating. Small, 2014, 10, 1895-1901.	5.2	55
217	Conformal coating of TiO2 nanorods on a 3-D CNT scaffold by using a CNT film as a nanoreactor: a free-standing and binder-free Li-ion anode. Journal of Materials Chemistry A, 2014, 2, 2701.	5.2	46
218	Design and Fabrication of New Nanostructured SnO ₂ arbon Composite Microspheres for Fast and Stable Lithium Storage Performance. Small, 2014, 10, 3240-3245.	5.2	66
219	Threeâ€Dimensional Structural Engineering for Energyâ€Storage Devices: From Microscope to Macroscope. ChemElectroChem, 2014, 1, 975-1002.	1.7	53
220	Finite Volumes for Complex Applications VII-Elliptic, Parabolic and Hyperbolic Problems. Springer Proceedings in Mathematics and Statistics, 2014, , .	0.1	1
221	Graphite/Silicon Hybrid Electrodes using a 3D Current Collector for Flexible Batteries. Advanced Materials, 2014, 26, 2977-2982.	11.1	53
222	A hard-template process to prepare three-dimensionally macroporous polymer electrolyte for lithium-ion batteries. Electrochimica Acta, 2014, 121, 328-336.	2.6	35
223	Tortuosity Anisotropy in Lithiumâ€lon Battery Electrodes. Advanced Energy Materials, 2014, 4, 1301278.	10.2	309

#	Article	IF	CITATIONS
224	Electrodes engineering of high power, long life and excellent cycling stability for rechargeable lithium batteries. Nano Energy, 2014, 3, 16-25.	8.2	18
225	Particle Size Polydispersity in Li-Ion Batteries. Journal of the Electrochemical Society, 2014, 161, A422-A430.	1.3	98
226	Materials Chemistry in 3D Templates for Functional Photonics. Chemistry of Materials, 2014, 26, 277-286.	3.2	49
227	Self-supported Li4Ti5O12 nanosheet arrays for lithium ion batteries with excellent rate capability and ultralong cycle life. Energy and Environmental Science, 2014, 7, 1924.	15.6	252
228	Evaluating the performance of nanostructured materials as lithium-ion battery electrodes. Nano Research, 2014, 7, 1-62.	5.8	292
229	Perspective on the Influence of Interactions Between Hard and Soft Templates and Precursors on Morphology of Hierarchically Structured Porous Materials. Chemistry of Materials, 2014, 26, 259-276.	3.2	68
230	Nanostructured Pseudocapacitors Based on Atomic Layer Deposition of V ₂ O ₅ onto Conductive Nanocrystalâ€based Mesoporous ITO Scaffolds. Advanced Functional Materials, 2014, 24, 6717-6728.	7.8	76
231	Nanocasting of Carbon Films with Interdigitated Bimodal Three-Dimensionally Ordered Mesopores by Template-Replica Coassembly. Langmuir, 2014, 30, 12411-12420.	1.6	12
232	Knowing when small is better. Nature Nanotechnology, 2014, 9, 962-963.	15.6	13
233	Solvothermal hybridization of LiMn _{1/3} Ni _{1/3} Co _{1/3} O ₂ and reduced graphene oxide to promote lithium-ion cathode performance. RSC Advances, 2014, 4, 62615-62620.	1.7	7
234	Unravelling the Correlation between the Aspect Ratio of Nanotubular Structures and Their Electrochemical Performance To Achieve Highâ€Rate and Longâ€Life Lithiumâ€Ion Batteries. Angewandte Chemie - International Edition, 2014, 53, 13488-13492.	7.2	172
235	25th Anniversary Article: Metal Oxide Particles in Materials Science: Addressing All Length Scales. Advanced Materials, 2014, 26, 235-257.	11.1	112
236	Atomic layer deposition of functional films for Liâ€ion microbatteries. Physica Status Solidi (A) Applications and Materials Science, 2014, 211, 357-367.	0.8	51
237	Magnetic properties of periodically organized cobalt frameworks. Journal of Applied Physics, 2014, 116,	1.1	4
238	Direct Fabrication of Densely Packed Idiomorphic Li ₄ Ti ₅ O ₁₂ Crystal Layers on Substrates by Using a LiCl–NaCl Mixed Flux and Their Additive-Free Electrode Characteristics. Crystal Growth and Design, 2014, 14, 5634-5639.	1.4	10
239	A short-range ordered–disordered transition of a NiOOH/Ni(OH) ₂ pair induces switchable wettability. Nanoscale, 2014, 6, 15309-15315.	2.8	47
240	Thermal conduction in nanoporous copper inverse opal films. , 2014, , .		11
241	Novel mesoporous Si@C microspheres as anodes for lithium-ion batteries. Physical Chemistry Chemical Physics, 2014, 16, 4135.	1.3	87

#	Article	IF	CITATIONS
242	Novel phosphorus-doped PbO2–MnO2 bicontinuous electrodes for oxygen evolution reaction. RSC Advances, 2014, 4, 24020.	1.7	43
243	2D and 3D vanadium oxide inverse opals and hollow sphere arrays. CrystEngComm, 2014, 16, 10804-10815.	1.3	37
244	Templated 3D Ultrathin CVD Graphite Networks with Controllable Geometry: Synthesis and Application As Supercapacitor Electrodes. ACS Applied Materials & Interfaces, 2014, 6, 18413-18417.	4.0	24
245	Design of new anode materials based on hierarchical, three dimensional ordered macro-mesoporous TiO2 for high performance lithium ion batteries. Journal of Materials Chemistry A, 2014, 2, 9699.	5.2	124
246	Electrochemical Nanowire Devices for Energy Storage. IEEE Nanotechnology Magazine, 2014, 13, 10-15.	1.1	9
247	Fabrication of porous carbon spheres for high-performance electrochemical capacitors. RSC Advances, 2014, 4, 7538.	1.7	83
248	3D interconnected SnO ₂ -coated Cu foam as a high-performance anode for lithium-ion batteryÂapplications. RSC Advances, 2014, 4, 58059-58063.	1.7	34
249	Multi-functionalities of natural polysaccharide for enhancing electrochemical performance of macroporous Si anodes. RSC Advances, 2014, 4, 3070-3074.	1.7	16
250	Three-dimensional NiAl-mixed metal oxide film: preparation and capacitive deionization performances. RSC Advances, 2014, 4, 41642-41648.	1.7	25
251	An interface nanostructured array guided high performance electrochemical actuator. Journal of Materials Chemistry A, 2014, 2, 16836-16841.	5.2	50
252	High power nano-structured V ₂ O ₅ thin film cathodes by atomic layer deposition. Journal of Materials Chemistry A, 2014, 2, 15044-15051.	5.2	52
253	A unique hollow Li ₃ VO ₄ /carbon nanotube composite anode for high rate long-life lithium-ion batteries. Nanoscale, 2014, 6, 11072-11077.	2.8	96
254	Interface chemistry engineering in electrode systems for electrochemical energy storage. RSC Advances, 2014, 4, 37491-37502.	1.7	7
255	Ultralong H ₂ V ₃ O ₈ nanowire bundles as a promising cathode for lithium batteries. New Journal of Chemistry, 2014, 38, 2075-2080.	1.4	39
256	Hydrous RuO 2 /carbon nanowalls hierarchical structures for all-solid-state ultrahigh-energy-density micro-supercapacitors. Nano Energy, 2014, 10, 288-294.	8.2	176
257	Electrodeposition of three-dimensional macro-/mesoporous Co3O4 nanosheet arrays as for ultrahigh rate lithium-ion battery. Electrochimica Acta, 2014, 142, 268-275.	2.6	34
258	Structural evolution in ordered mesoporous TiO ₂ anatase electrodes. Chemical Communications, 2014, 50, 8997.	2.2	10
259	Inverse opals for fluid delivery in electronics cooling systems. , 2014, , .		16

ARTICLE IF CITATIONS # Mesoporous VO₂ nanowires with excellent cycling stability and enhanced rate capability 260 1.7 47 for lithium batteries. RSC Advances, 2014, 4, 33332-33337. Encapsulation of nanoscale metal oxides into an ultra-thin Ni matrix for superior Li-ion batteries: a 2.8 versatile strategy. Nanoscale, 2014, 6, 12990-13000. Enhanced photocatalytic behavior and excellent electrochemical performance of hierarchically 262 1.7 22 structured NiO microspheres. RSC Advances, 2014, 4, 35614-35619. An electrochemically grown three-dimensional porous Si@Ni inverse opal structure for 5.2 high-performance Li ion battery anodes. Journal of Materials Chemistry A, 2014, 2, 6396-6401. Electrode architectures for high capacity multivalent conversion compounds: iron (ii and iii) 264 1.7 39 fluoride. RSC Advances, 2014, 4, 6730. Robust and Optimal Consumption Policies for Deadline-Constrained Deferrable Loads. IEEE Transactions on Smart Grid, 2014, 5, 1823-1834. 6.2 Dendritic Niâ€Pâ€Coated Melamine Foam for a Lightweight, Lowâ€Cost, and Amphipathic Threeâ€Dimensional 266 11.1 103 Current Collector for Binderâ€Free Electrodes. Advanced Materials, 2014, 26, 7264-7270. Fabrication of microcellular metal foams with sphere template electrodeposition. Manufacturing 1.1 Letters, 2014, 2, 118-121. **One-Pot Synthesized Bicontinuous Hierarchical** 268 Li₃V₂(PO₄)₃/C Mesoporous Nanowires for High-Rate 4.5 230 and Ultralong-Life Lithium-ion Batteries. Nano Letters, 2014, 14, 1042-1048. Architecture Dependence on the Dynamics of Nano-LiFePO4 Electrodes. Electrochimica Acta, 2014, 137, 2.6 245-257. Hollow nickel nanocorn arrays as three-dimensional and conductive support for metal oxides to 270 2.8 42 boost supercapacitive performance. Nanoscale, 2014, 6, 5691-5697. Hierarchical NiAl Layered Double Hydroxide/Multiwalled Carbon Nanotube/Nickel Foam Electrodes 271 4.0 with Excellent Pseudocapacitive Properties. ACS Applied Materials & amp; Interfaces, 2014, 6, 16304-16311. Hydrothermal Fabrication of Threeâ€Dimensional Secondary Battery Anodes. Advanced Materials, 2014, 272 11.1 48 26, 7096-7101. Electrochemical performance of laser micro-structured nickel oxyhydroxide cathodes. Journal of Power Sources, 2014, 271, 42-47. Photoelectrochemical Behavior of Hierarchically Structured Si/WO₃ Coreâ€"Shell Tandem 274 78 4.5Photoanodes. Nano Letters, 2014, 14, 2310-2317. Costâ€effective Atomic Layer Deposition Synthesis of Pt Nanotube Arrays: Application for High Performance Supercapacitor. Small, 2014, 10, 3162-3168. An alginic acid assisted rheological phase synthesis of carbon coated Li3V2(PO4)3 with high-rate 276 2.8 14 performance. Journal of Alloys and Compounds, 2014, 616, 32-41. 3D Carbon/Cobaltâ€Nickel Mixedâ€Oxide Hybrid Nanostructured Arrays for Asymmetric Supercapacitors. 146 Small, 2014, 10, 2937-2945.

#	Article	IF	CITATIONS
278	Building Robust Carbon Nanotube-Interweaved-Nanocrystal Architecture for High-Performance Anode Materials. ACS Nano, 2014, 8, 9265-9273.	7.3	46
280	Sulfur Refines MoO ₂ Distribution Enabling Improved Lithium Ion Battery Performance. Journal of Physical Chemistry C, 2014, 118, 18387-18396.	1.5	100
281	Fabrication of LiCoO ₂ Crystal Layers Using a Flux Method and Their Application for Additive-Free Lithium-Ion Rechargeable Battery Cathodes. Crystal Growth and Design, 2014, 14, 1882-1887.	1.4	40
282	Enhanced Electrode Performance of Fe ₂ O ₃ Nanoparticle-Decorated Nanomesh Graphene As Anodes for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2014, 6, 7189-7197.	4.0	87
283	Interconnected MnO2 nanoflakes supported by 3D nanostructured stainless steel plates for lithium ion battery anodes. Electrochimica Acta, 2014, 121, 415-420.	2.6	34
284	Engineering Three-Dimensionally Electrodeposited Si-on-Ni Inverse Opal Structure for High Volumetric Capacity Li-Ion Microbattery Anode. ACS Applied Materials & Interfaces, 2014, 6, 9842-9849.	4.0	40
285	Ideal Threeâ€Ðimensional Electrode Structures for Electrochemical Energy Storage. Advanced Materials, 2014, 26, 2440-2445.	11.1	223
286	Lithographically defined porous Ni–carbon nanocomposite supercapacitors. Nanoscale, 2014, 6, 2629-2633.	2.8	10
287	Modular converter architecture for medium voltage ultra fast EV charging stations: Dual half-bridge-based isolation stage. , 2014, , .		14
288	Mechanical Forceâ€Driven Growth of Elongated Bending TiO ₂ â€based Nanotubular Materials for Ultrafast Rechargeable Lithium Ion Batteries. Advanced Materials, 2014, 26, 6111-6118.	11.1	386
289	Hierarchically porous three-dimensional electrodes of CoMoO ₄ and ZnCo ₂ O ₄ and their high anode performance for lithium ion batteries. Nanoscale, 2014, 6, 10556.	2.8	77
290	Nanostructured (Co, Ni)-Based Compounds Coated on a Highly Conductive Three Dimensional Hollow Carbon Nanorod Array (HCNA) Scaffold for High Performance Pseudocapacitors. ACS Applied Materials & Interfaces, 2014, 6, 7735-7742.	4.0	68
291	Micelle templated NiO hollow nanospheres as anode materials in lithium ion batteries. Journal of Materials Chemistry A, 2014, 2, 7337-7344.	5.2	80
292	Materials and Structures for Stretchable Energy Storage and Conversion Devices. Advanced Materials, 2014, 26, 3592-3617.	11.1	363
293	Electrochemical performance studies of Li-rich cathode materials with different primary particle sizes. Journal of Power Sources, 2014, 251, 208-214.	4.0	66
294	Outstanding rate capability and long cycle stability induced by homogeneous distribution of nitrogen doped carbon and titanium nitride on the surface and in the bulk of spinel lithium titanate. Electrochimica Acta, 2014, 132, 230-238.	2.6	24
295	Kilohertz ultrafast electrochemical supercapacitors based on perpendicularly-oriented graphene grown inside of nickel foam. Carbon, 2014, 71, 94-101.	5.4	147
296	Microwave- or conventional–hydrothermal synthesis of Co-based materials for electrochemical energy storage. Ceramics International, 2014, 40, 8183-8188.	2.3	9

#	Article	IF	CITATIONS
297	MnO2 nanosheets grown on the ZnO-nanorod-modified carbon fibers for supercapacitor electrode materials. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 444, 232-239.	2.3	57
298	The effect of pore size and porosity on thermal management performance of phase change material infiltrated microcellular metal foams. Applied Thermal Engineering, 2014, 64, 147-154.	3.0	176
299	Carbon@MnO2 core–shell nanospheres for flexible high-performance supercapacitor electrode materials. Journal of Power Sources, 2014, 259, 219-226.	4.0	182
300	Electrochemical impedance analysis of electrodeposited Si–O–C composite thick film on Cu microcones-arrayed current collector for lithium ion battery anode. Journal of Power Sources, 2014, 256, 226-232.	4.0	34
301	Three-Dimensional Nanoelectrode by Metal Nanowire Nonwoven Clothes. Nano Letters, 2014, 14, 1932-1937.	4.5	48
302	Flexible Energy‣torage Devices: Design Consideration and Recent Progress. Advanced Materials, 2014, 26, 4763-4782.	11.1	1,153
303	Enhanced Electrocatalytic Activity and Durability of Pt Particles Supported on Ordered Mesoporous Carbon Spheres. ACS Catalysis, 2014, 4, 1926-1930.	5.5	100
304	A Layered Carbon Nanotube Architecture for High Power Lithium Ion Batteries. Journal of the Electrochemical Society, 2014, 161, A989-A995.	1.3	19
305	Three-Dimensional Thin Film for Lithium-Ion Batteries and Supercapacitors. ACS Nano, 2014, 8, 7279-7287.	7.3	50
306	Structuring materials for lithium-ion batteries: advancements in nanomaterial structure, composition, and defined assembly on cell performance. Journal of Materials Chemistry A, 2014, 2, 9433.	5.2	144
307	VO2(B)/Graphene Forest for High-Rate Li-Ion Battery. Materials Research Society Symposia Proceedings, 2015, 1773, 7-14.	0.1	0
308	Advanced Materials for Lithium-Ion Batteries. Electrochemical Energy Storage and Conversion, 2015, , 79-142.	0.0	0
310	Effects of the positive feedback loop in polymerization on the reaction-induced phase separation of polymer mixtures. Chaos, 2015, 25, 064305.	1.0	8
311	Fabrication of Nanoparticle Films Applying Directed Self-assembly. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2015, 28, 643-647.	0.1	2
312	Heteroâ€Nanonet Rechargeable Paper Batteries: Toward Ultrahigh Energy Density and Origami Foldability. Advanced Functional Materials, 2015, 25, 6029-6040.	7.8	111
313	Design Considerations for Unconventional Electrochemical Energy Storage Architectures. Advanced Energy Materials, 2015, 5, 1402115.	10.2	271
314	Critical Requirements for Rapid Charging of Rechargeable Al―and Liâ€Ion Batteries. Angewandte Chemie - International Edition, 2015, 54, 9452-9455.	7.2	59
315	Assembly of Colloidal Molecules, Polymers, and Crystals in Acoustic and Magnetic Fields. Advanced Materials, 2015, 27, 4725-4731.	11.1	31

#	Article	IF	CITATIONS
317	Superior Lithiumâ€lon Storage Properties of Mesoporous CuO–Reduced Graphene Oxide Composite Powder Prepared by a Two‧tep Sprayâ€Drying Process. Chemistry - A European Journal, 2015, 21, 9179-9184.	1.7	25
318	Polystyreneâ€Templated Aerosol Synthesis of MoS ₂ –Amorphous Carbon Composite with Open Macropores as Battery Electrode. ChemSusChem, 2015, 8, 2260-2267.	3.6	32
319	Fabrication of Cu@M <i>_x</i> O <i>_y</i> (M = Cu, Mn, Co, Fe) Nanocable Arrays for Lithiumâ€Ion Batteries with Long Cycle Lives and High Rate Capabilities. Particle and Particle Systems Characterization, 2015, 32, 1083-1091.	1.2	4
320	High Fullâ€Electrode Basis Capacity Templateâ€Free 3D Nanocomposite Secondary Battery Anodes. Small, 2015, 11, 6265-6271.	5.2	14
321	In Operando Strain Measurement of Bicontinuous Siliconâ€Coated Nickel Inverse Opal Anodes for Liâ€lon Batteries. Advanced Energy Materials, 2015, 5, 1500466.	10.2	30
322	Morphology and Phase Evolution of CoAl Layered Double Hydroxides in an Alkaline Environment with Enhanced Pseudocapacitive Performance. ChemElectroChem, 2015, 2, 679-683.	1.7	16
323	Phase separation of polymer mixtures induced by light and heat: a comparative study by light scattering. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2015, 6, 045002.	0.7	6
324	Enhanced Secondary Battery Anodes Based on Si and Fe ₃ O ₄ Nanoparticle Infilled Monodisperse Carbon Starburst Colloidal Crystals. Particle and Particle Systems Characterization, 2015, 32, 928-933.	1.2	3
325	Ultraâ€light Hierarchical Graphene Electrode for Binderâ€Free Supercapacitors and Lithiumâ€lon Battery Anodes. Small, 2015, 11, 4922-4930.	5.2	67
326	Vanadium Pentoxideâ€Based Cathode Materials for Lithiumâ€ion Batteries: Morphology Control, Carbon Hybridization, and Cation Doping. Particle and Particle Systems Characterization, 2015, 32, 276-294.	1.2	69
327	NiCo ₂ O ₄ @NiO hybrid arrays with improved electrochemical performance for pseudocapacitors. Journal of Materials Chemistry A, 2015, 3, 13900-13905.	5.2	147
328	Three-dimensional carbon-coated Si/rGO nanostructures anchored by nickel foam with carbon nanotubes for Li-ion battery applications. Nano Energy, 2015, 15, 679-687.	8.2	55
329	Artificial opal photonic crystals and inverse opal structures – fundamentals and applications from optics to energy storage. Journal of Materials Chemistry C, 2015, 3, 6109-6143.	2.7	254
330	Transport properties of track-etched membranes having variable effective pore-lengths. Nanotechnology, 2015, 26, 485502.	1.3	32
331	Stabilizing bijels using a mixture of fumed silica nanoparticles. Chemical Communications, 2015, 51, 16984-16987.	2.2	36
332	High-performance supercapacitor of electrodeposited porous 3D polyaniline nanorods on functionalized carbon fiber paper: Effects of hydrophobic and hydrophilic surfaces of conductive carbon paper substrates. Materials Today Communications, 2015, 4, 176-185.	0.9	19
333	Assembly of micro/nanomaterials into complex, three-dimensional architectures by compressive buckling. Science, 2015, 347, 154-159.	6.0	745
334	Electronic dura mater for long-term multimodal neural interfaces. Science, 2015, 347, 159-163.	6.0	845

#	Article	IF	Citations
# 335	A three-dimensional porous LiFePO ₄ cathode material modified with a nitrogen-doped graphene aerogel for high-power lithium ion batteries. Energy and Environmental Science, 2015, 8,	15.6	412
	869-875.		
336	Supercapacitor Electrodes Based on Threeâ€Dimensional Copper Structures with Precisely Controlled Dimensions. ChemElectroChem, 2015, 2, 236-245.	1.7	7
337	Three-dimensional crisscross porous manganese oxide/carbon composite networks for high performance supercapacitor electrodes. Electrochimica Acta, 2015, 161, 32-39.	2.6	14
338	Nanoflakeâ€Assembled Hierarchical Na ₃ V ₂ (PO ₄) ₃ /C Microflowers: Superior Li Storage Performance and Insertion/Extraction Mechanism. Advanced Energy Materials, 2015, 5, 1401963.	10.2	169
339	Nanomaterial with High Antimicrobial Efficacy—Copper/Polyaniline Nanocomposite. ACS Applied Materials & Interfaces, 2015, 7, 1955-1966.	4.0	140
340	Nonfaradaic Nanoporous Electrochemistry for Conductometry at High Electrolyte Concentration. Analytical Chemistry, 2015, 87, 2443-2451.	3.2	9
341	Ultrathin porous nickel–cobalt hydroxide nanosheets for high-performance supercapacitor electrodes. RSC Advances, 2015, 5, 17007-17013.	1.7	62
342	Electrospinning preparation of ultra-long aligned nanofibers thin films for high performance fully flexible lithium-ion batteries. Nano Energy, 2015, 12, 339-346.	8.2	81
343	A facile electrochemical synthesis of three-dimensional porous Sn-Cu alloy/carbon nanotube nanocomposite as anode of high-power lithium-ion battery. Ionics, 2015, 21, 1909-1917.	1.2	10
344	Preparation and enhanced supercapacitance performance of porous carbon spheres with a high degree of graphitization. RSC Advances, 2015, 5, 2088-2095.	1.7	24
345	NiMoO ₄ nanowire @ MnO ₂ nanoflake core/shell hybrid structure aligned on carbon cloth for high-performance supercapacitors. RSC Advances, 2015, 5, 10681-10687.	1.7	37
346	Hierarchically Ordered Porous CoOOH Thinâ€Film Electrodes for Highâ€Performance Supercapacitors. ChemElectroChem, 2015, 2, 497-502.	1.7	39
347	Template-directed construction of nanostructure arrays for highly-efficient energy storage and conversion. Nano Energy, 2015, 13, 790-813.	8.2	95
348	Two-dimensional nanosheets based Li-ion full batteries with high rate capability and flexibility. Nano Energy, 2015, 12, 816-823.	8.2	99
349	Sn@CNT nanopillars grown perpendicularly on carbon paper: A novel free-standing anode for sodium ion batteries. Nano Energy, 2015, 13, 208-217.	8.2	185
350	Unveiling Surface Redox Charge Storage of Interacting Two-Dimensional Heteronanosheets in Hierarchical Architectures. Nano Letters, 2015, 15, 2269-2277.	4.5	80
351	Electrocatalysis of Lithium Polysulfides: Current Collectors as Electrodes in Li/S Battery Configuration. Scientific Reports, 2015, 5, 8763.	1.6	181
352	Bicontinuous Structure of Li ₃ V ₂ (PO ₄) ₃ Clustered via Carbon Nanofiber as High-Performance Cathode Material of Li-Ion Batteries. ACS Applied Materials & Interfaces, 2015, 7, 13934-13943.	4.0	53

#	Article	IF	CITATIONS
353	Three-dimensional carbon foam supported tin oxide nanocrystallites with tunable size range: Sulfonate anchoring synthesis and high rate lithium storage properties. Journal of Power Sources, 2015, 294, 208-215.	4.0	28
354	Anatase TiO2 ultrathin nanobelts derived from room-temperature-synthesized titanates for fast and safe lithium storage. Scientific Reports, 2015, 5, 11804.	1.6	75
355	Hierarchical nanosheet-constructed yolk–shell TiO ₂ porous microspheres for lithium batteries with high capacity, superior rate and long cycle capability. Nanoscale, 2015, 7, 12979-12989.	2.8	51
356	Fabrication and structural optimization of porous single-crystal α-Fe ₂ O ₃ microrices for high-performance lithium-ion battery anodes. Journal of Materials Chemistry A, 2015, 3, 16544-16550.	5.2	29
357	Nanostructured conducting polymer hydrogels for energy storage applications. Nanoscale, 2015, 7, 12796-12806.	2.8	160
358	Nanocomposite Architecture for Rapid, Spectrally-Selective Electrochromic Modulation of Solar Transmittance. Nano Letters, 2015, 15, 5574-5579.	4.5	179
359	Microscale characterization of coupled degradation mechanism of graded materials in lithium batteries of electric vehicles. Renewable and Sustainable Energy Reviews, 2015, 50, 1445-1461.	8.2	17
360	New science at the meso frontier: Dense nanostructure architectures for electrical energy storage. Current Opinion in Solid State and Materials Science, 2015, 19, 227-234.	5.6	14
361	Nanostructured conductive polymers for advanced energy storage. Chemical Society Reviews, 2015, 44, 6684-6696.	18.7	719
362	Kinetics of colloidal deposition, assembly, and crystallization in steady electric fields. Soft Matter, 2015, 11, 3599-3611.	1.2	17
363	Pyrite (FeS ₂) nanocrystals as inexpensive high-performance lithium-ion cathode and sodium-ion anode materials. Nanoscale, 2015, 7, 9158-9163.	2.8	167
364	Facile preparation of a three-dimensional Fe ₃ O ₄ /macroporous graphene composite for high-performance Li storage. Journal of Materials Chemistry A, 2015, 3, 12031-12037.	5.2	51
365	Three-Dimensionally Mesostructured Fe ₂ O ₃ Electrodes with Good Rate Performance and Reduced Voltage Hysteresis. Chemistry of Materials, 2015, 27, 2803-2811.	3.2	74
366	Pushing the Limits: 3D Layer-by-Layer-Assembled Composites for Cathodes with 160 C Discharge Rates. ACS Nano, 2015, 9, 5009-5017.	7.3	40
367	Controlled fabrication of porous metals from the nanometer to the macroscopic scale. Materials Horizons, 2015, 2, 359-377.	6.4	69
368	Multi-walled carbon nanotube-reinforced porous iron oxide as a superior anode material for lithium ion battery. Journal of Alloys and Compounds, 2015, 640, 8-14.	2.8	10
369	Electrochemically deposited interconnected porous Co3O4 nanoflakes as anodes with excellent rate capability for lithium ion batteries. RSC Advances, 2015, 5, 36117-36121.	1.7	8
370	Self-Assembly of Monodisperse Starburst Carbon Spheres into Hierarchically Organized Nanostructured Supercapacitor Electrodes. ACS Applied Materials & Interfaces, 2015, 7, 9128-9133.	4.0	36

#	Article	IF	CITATIONS
371	Vertically aligned VO ₂ (B) nanobelt forest and its three-dimensional structure on oriented graphene for energy storage. Journal of Materials Chemistry A, 2015, 3, 10787-10794.	5.2	57
372	Desired crystal oriented LiFePO ₄ nanoplatelets in situ anchored on a graphene cross-linked conductive network for fast lithium storage. Nanoscale, 2015, 7, 8819-8828.	2.8	107
373	Enhanced durability of gold-coated current collectors for high power electrochemical devices. RSC Advances, 2015, 5, 43956-43960.	1.7	1
374	Chemical vapor deposition and atomic layer deposition for advanced lithium ion batteries and supercapacitors. Energy and Environmental Science, 2015, 8, 1889-1904.	15.6	236
375	Hierarchical micro-architectures of electrodes for energy storage. Journal of Power Sources, 2015, 284, 435-445.	4.0	70
376	Graded porous inorganic materials derived from self-assembled block copolymer templates. Nanoscale, 2015, 7, 5826-5834.	2.8	21
377	Amorphous titanate-crosslinking N-rich carbon hybrid with 3D channels for fast lithium storage. RSC Advances, 2015, 5, 34088-34093.	1.7	5
378	Holographic patterning of high-performance on-chip 3D lithium-ion microbatteries. Proceedings of the United States of America, 2015, 112, 6573-6578.	3.3	179
379	Three-Dimensional Au Microlattices as Positive Electrodes for Li–O ₂ Batteries. ACS Nano, 2015, 9, 5876-5883.	7.3	80
380	Coaxial Zn2GeO4@carbon nanowires directly grown on Cu foils as high-performance anodes for lithium ion batteries. Physical Chemistry Chemical Physics, 2015, 17, 5109-5114.	1.3	39
381	Growth of Hierarchal Mesoporous NiO Nanosheets on Carbon Cloth as Binder-free Anodes for High-performance Flexible Lithium-ion Batteries. Scientific Reports, 2014, 4, 7413.	1.6	119
382	Graphene for flexible lithium-ion batteries: Applications and prospects. Chinese Science Bulletin, 2015, 60, 630-644.	0.4	4
383	A Membrane-Free Ferrocene-Based High-Rate Semiliquid Battery. Nano Letters, 2015, 15, 4108-4113.	4.5	118
384	A new approach towards the synthesis of nitrogen-doped graphene/MnO ₂ hybrids for ultralong cycle-life lithium ion batteries. Journal of Materials Chemistry A, 2015, 3, 6291-6296.	5.2	52
385	Rational material design for ultrafast rechargeable lithium-ion batteries. Chemical Society Reviews, 2015, 44, 5926-5940.	18.7	857
386	Interconnected MnO2 nanoflakes assembled on graphene foam as a binder-free and long-cycle life lithium battery anode. Carbon, 2015, 92, 177-184.	5.4	78
388	Novel solid metal–organic self-propagation combustion for controllable synthesis of hierarchically porous metal monoliths. Journal of Materials Chemistry A, 2015, 3, 10179-10182.	5.2	7
389	Materials for positive electrodes in rechargeable lithium-ion batteries. , 2015, , 21-39.		1

#	Article	IF	CITATIONS
390	Cu/Li4Ti5O12 scaffolds as superior anodes for lithium-ion batteries. NPG Asia Materials, 2015, 7, e171-e171.	3.8	37
391	Materials for suspension (semi-solid) electrodes for energy and water technologies. Chemical Society Reviews, 2015, 44, 8664-8687.	18.7	142
392	Self-assembled novel dandelion-like NiCo ₂ O ₄ microspheres@nanomeshes with superior electrochemical performance for supercapacitors and lithium-ion batteries. Journal of Materials Chemistry A, 2015, 3, 22393-22403.	5.2	78
393	High Cycling Stability and Extreme Rate Performance in Nanoscaled LiMn ₂ O ₄ Thin Films. ACS Applied Materials & Interfaces, 2015, 7, 22413-22420.	4.0	59
394	Three-dimensionally scaffolded Co3O4 nanosheet anodes with high rate performance. Journal of Power Sources, 2015, 299, 40-48.	4.0	21
395	Structural design for anodes of lithium-ion batteries: emerging horizons from materials to electrodes. Materials Horizons, 2015, 2, 553-566.	6.4	115
396	Mass-scalable synthesis of 3D porous germanium–carbon composite particles as an ultra-high rate anode for lithium ion batteries. Energy and Environmental Science, 2015, 8, 3577-3588.	15.6	201
397	Seed-assisted synthesis of hierarchical manganese dioxide/carbonaceous sphere composites with enhanced supercapacitor performance. Electrochimica Acta, 2015, 180, 1033-1040.	2.6	18
398	Uniform GeO ₂ dispersed in nitrogen-doped porous carbon core–shell architecture: an anode material for lithium ion batteries. Journal of Materials Chemistry A, 2015, 3, 21722-21732.	5.2	41
399	A mechanically driven form of Kirigami as a route to 3D mesostructures in micro/nanomembranes. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 11757-11764.	3.3	429
400	Perforated Metal Oxide–Carbon Nanotube Composite Microspheres with Enhanced Lithium-Ion Storage Properties. ACS Nano, 2015, 9, 10173-10185.	7.3	91
401	Porous mixed metal oxides: design, formation mechanism, and application in lithium-ion batteries. Nanoscale, 2015, 7, 17211-17230.	2.8	139
402	The Contradiction Between the Half-Cell and Full-Battery Evaluations on the Tungsten-Coating LiNi0.5Co0.2Mn0.3O2 Cathode. Electrochimica Acta, 2015, 180, 604-609.	2.6	24
403	Electrodeposited Structurally Stable V ₂ O ₅ Inverse Opal Networks as High Performance Thin Film Lithium Batteries. ACS Applied Materials & Interfaces, 2015, 7, 27006-27015.	4.0	81
404	Bioinspired Synthesis of Hierarchical Porous Graphitic Carbon Spheres with Outstanding High-Rate Performance in Lithium-Ion Batteries. Chemistry of Materials, 2015, 27, 336-342.	3.2	80
405	A bottom-up synthesis of α-Fe ₂ O ₃ nanoaggregates and their composites with graphene as high performance anodes in lithium-ion batteries. Journal of Materials Chemistry A, 2015, 3, 2158-2165.	5.2	45
406	Hierarchical TiO ₂ –SnO ₂ –graphene aerogels for enhanced lithium storage. Physical Chemistry Chemical Physics, 2015, 17, 1580-1584.	1.3	28
407	Multidimensional Vascularized Polymers using Degradable Sacrificial Templates. Advanced Functional Materials, 2015, 25, 1043-1052.	7.8	55

#	Article	IF	CITATIONS
408	Nanopatterned Surfaces Based on Templateâ€Assisted Multilayer Electrodeposition. Small, 2015, 11, 1912-1918.	5.2	7
409	Sculpting Asymmetric, Hollowâ€Core, Threeâ€Dimensional Nanostructures Using Colloidal Particles. Small, 2015, 11, 1285-1292.	5.2	21
410	Three dimensional (3D) flexible graphene foam/polypyrrole composite: towards highly efficient supercapacitors. RSC Advances, 2015, 5, 3999-4008.	1.7	44
411	A binary A _x B _{1â^'x} ionic alkaline pseudocapacitor system involving manganese, iron, cobalt, and nickel: formation of electroactive colloids via in situ electric field assisted coprecipitation. Nanoscale, 2015, 7, 1161-1166.	2.8	45
412	A three-dimensional carbon nano-network for high performance lithium ion batteries. Nano Energy, 2015, 11, 500-509.	8.2	48
413	NiCo ₂ S ₄ Nanosheets Grown on Nitrogenâ€Doped Carbon Foams as an Advanced Electrode for Supercapacitors. Advanced Energy Materials, 2015, 5, 1400977.	10.2	729
414	A Modular Multiport Power Electronic Transformer With Integrated Split Battery Energy Storage for Versatile Ultrafast EV Charging Stations. IEEE Transactions on Industrial Electronics, 2015, 62, 3213-3222.	5.2	205
415	Mesoporous NiCo2O4 nanoneedles grown on 3D graphene-nickel foam for supercapacitor and methanol electro-oxidation. Electrochimica Acta, 2015, 151, 99-108.	2.6	222
416	Self-Assembled Coffee-Ring Colloidal Crystals for Structurally Colored Contact Lenses. Small, 2015, 11, 926-930.	5.2	43
417	Graphene models and nano-scale characterization technologies for fuel cell vehicle electrodes. Renewable and Sustainable Energy Reviews, 2015, 42, 66-77.	8.2	19
418	Constructing hierarchical submicrotubes from interconnected TiO2 nanocrystals for high reversible capacity and long-life lithium-ion batteries. Scientific Reports, 2015, 4, 4479.	1.6	41
419	One-pot synthesis of manganese oxide-carbon composite microspheres with three dimensional channels for Li-ion batteries. Scientific Reports, 2014, 4, 5751.	1.6	37
420	Hybrid supercapacitor-battery materials for fast electrochemical charge storage. Scientific Reports, 2014, 4, 4315.	1.6	274
421	Development of Electrolytes towards Achieving Safe and Highâ€Performance Energyâ€Storage Devices: A Review. ChemElectroChem, 2015, 2, 22-36.	1.7	299
422	Oxygen Bubble-Templated Hierarchical Porous ε-MnO ₂ as a Superior Catalyst for Rechargeable Li-O ₂ Batteries. Small, 2015, 11, 809-813.	5.2	90
423	Three-Dimensional Carbon Nanostructures for Advanced Lithium-Ion Batteries. Journal of Carbon Research, 2016, 2, 23.	1.4	6
424	Electrochemical construction of three-dimensional porous Mn ₃ O ₄ nanosheet arrays as an anode for the lithium ion battery. Physical Chemistry Chemical Physics, 2016, 18, 22224-22234.	1.3	20
425	Highly Efficient Materials Assembly Via Electrophoretic Deposition for Electrochemical Energy Conversion and Storage Devices. Advanced Energy Materials, 2016, 6, 1502018.	10.2	50

#	Article	IF	CITATIONS
426	An Ultralong, Highly Oriented Nickelâ€Nanowireâ€Array Electrode Scaffold for Highâ€Performance Compressible Pseudocapacitors. Advanced Materials, 2016, 28, 4105-4110.	11.1	171
427	Bridging Unilamellar Nanosheets for High Performance Additiveâ€Free Supercapacitor Electrodes. Advanced Materials Interfaces, 2016, 3, 1600108.	1.9	3
428	Colorâ€Coded Batteries – Electroâ€Photonic Inverse Opal Materials for Enhanced Electrochemical Energy Storage and Optically Encoded Diagnostics. Advanced Materials, 2016, 28, 5681-5688.	11.1	44
429	Integration: An Effective Strategy to Develop Multifunctional Energy Storage Devices. Advanced Energy Materials, 2016, 6, 1501867.	10.2	138
430	Nanoarchitectured Array Electrodes for Rechargeable Lithium―and Sodiumâ€Ion Batteries. Advanced Energy Materials, 2016, 6, 1502514.	10.2	169
431	Three dimensional V2O5/NaV6O15 hierarchical heterostructures: Controlled synthesis and synergistic effect investigated by in situ X-ray diffraction. Nano Energy, 2016, 27, 147-156.	8.2	61
432	Nanostructured TiO ₂ â€Based Anode Materials for Highâ€Performance Rechargeable Lithiumâ€Ion Batteries. ChemNanoMat, 2016, 2, 764-775.	1.5	111
433	Mechanical properties of Al2O3 inverse opals by means of nanoindentation. Journal Physics D: Applied Physics, 2016, 49, 455303.	1.3	6
434	Flexible, three-dimensional ordered macroporous TiO2 electrode with enhanced electrode–electrolyte interaction in high-power Li-ion batteries. Nano Energy, 2016, 24, 72-77.	8.2	91
435	Nanomaterials for Stretchable Energy Storage and Conversion Devices. Nanoscience and Technology, 2016, , 159-191.	1.5	3
436	A fiber-shaped aqueous lithium ion battery with high power density. Journal of Materials Chemistry A, 2016, 4, 9002-9008.	5.2	132
437	Soft-template construction of three-dimensionally ordered inverse opal structure from Li ₂ FeSiO ₄ /C composite nanofibers for high-rate lithium-ion batteries. Nanoscale, 2016, 8, 12202-12214.	2.8	44
438	Electrochemical codeposition of graphene/polypyrrole composites on carbon paper for electrochemical capacitors. Current Applied Physics, 2016, 16, 520-526.	1.1	13
439	Fabrication of bulk graded microcellular nickel foams using combined electroless and electroplating of polymer sphere template. Manufacturing Letters, 2016, 8, 1-5.	1.1	3
440	Flexible NiO–Graphene–Carbon Fiber Mats Containing Multifunctional Graphene for High Stability and High Specific Capacity Lithium-Ion Storage. ACS Applied Materials & Interfaces, 2016, 8, 11507-11515.	4.0	28
441	An electron injection promoted highly efficient electrocatalyst of FeNi ₃ @CR@Fe-NiOOH for oxygen evolution and rechargeable metal–air batteries. Journal of Materials Chemistry A, 2016, 4, 7762-7771.	5.2	70
442	Permeability of microporous wicks with geometric inverse to sintered particles. International Journal of Heat and Mass Transfer, 2016, 92, 298-302.	2.5	22
443	Surfactant-templating strategy for ultrathin mesoporous TiO2 coating on flexible graphitized carbon supports for high-performance lithium-ion battery. Nano Energy, 2016, 25, 80-90.	8.2	103

#	Article	IF	CITATIONS
444	Electrodeposition of three dimensional-porous Ni/Ni(OH) 2 hierarchical nano composite via etching the Ni/Zn/Ni(OH) 2 precursor as a high performance pseudocapacitor. Chemical Engineering Journal, 2016, 299, 282-291.	6.6	33
445	A two-step etching route to ultrathin carbon nanosheets for high performance electrical double layer capacitors. Nanoscale, 2016, 8, 11136-11142.	2.8	53
446	Scanning Electrochemical Microscopy Study of Electron-Transfer Kinetics and Catalysis at Nanoporous Electrodes. Journal of Physical Chemistry C, 2016, 120, 20651-20658.	1.5	21
447	A three-dimensionally stretchable high performance supercapacitor. Journal of Materials Chemistry A, 2016, 4, 14968-14973.	5.2	52
448	Synthesis of ZnO inverse opals with high crystalline quality by a three-dimensional colloidal crystal template-assisted hydrothermal method over a seed layer. CrystEngComm, 2016, 18, 7780-7786.	1.3	11
449	In situ electrochemical activation of Ni-based colloids from an NiCl ₂ electrode and their advanced energy storage performance. Nanoscale, 2016, 8, 17090-17095.	2.8	28
450	2D and 3D photonic crystal materials for photocatalysis and electrochemical energy storage and conversion. Science and Technology of Advanced Materials, 2016, 17, 563-582.	2.8	77
451	Electrochemical Fabrication of Monolithic Electrodes with Core/Shell Sandwiched Transition Metal Oxide/Oxyhydroxide for High-Performance Energy Storage. ACS Applied Materials & Interfaces, 2016, 8, 25888-25895.	4.0	20
452	Effect of meniscus on the permeability of mono-layered and multi-layered packed spheres. Applied Thermal Engineering, 2016, 107, 1287-1293.	3.0	7
453	Electrodeposition of NiO Films and Inverse Opal Organized Layers from Polar Aprotic Solvent-Based Electrolyte. Electrochimica Acta, 2016, 219, 638-646.	2.6	16
455	Structure design of NiCo ₂ O ₄ electrodes for high performance pseudocapacitors and lithium-ion batteries. Journal of Materials Chemistry A, 2016, 4, 17394-17402.	5.2	53
456	Dehydrated layered double hydroxides: Alcohothermal synthesis and oxygen evolution activity. Nano Research, 2016, 9, 3152-3161.	5.8	30
457	Ice Templated Free‧tanding Hierarchically WS ₂ /CNTâ€rGO Aerogel for Highâ€Performance Rechargeable Lithium and Sodium Ion Batteries. Advanced Energy Materials, 2016, 6, 1601057.	10.2	276
458	Highâ€Rate Charging Induced Intermediate Phases and Structural Changes of Layerâ€Structured Cathode for Lithiumâ€Ion Batteries. Advanced Energy Materials, 2016, 6, 1600597.	10.2	110
459	Self-healing of cracks formed in Silicon-Aluminum anodes electrochemically cycled at high lithiation rates. Journal of Power Sources, 2016, 328, 300-310.	4.0	17
460	Improved Electrochromic Performance of Poly(3,4â€ethylenedioxythiophene) by Incorporating a Threeâ€Đimensionally Ordered Macroporous Structure. Chemistry - an Asian Journal, 2016, 11, 2882-2888.	1.7	24
461	Probing Structural Evolution and Charge Storage Mechanism of NiO ₂ H <i>_x</i> Electrode Materials using In Operando Resonance Raman Spectroscopy. Advanced Science, 2016, 3, 1500433.	5.6	90
462	Direct Optical Fabrication of Fluorescent, Multilevel 3D Nanostructures for Highly Efficient Chemosensing Platforms. Advanced Functional Materials, 2016, 26, 7170-7177.	7.8	28

#	Article	IF	CITATIONS
463	First Synthesis of Continuous Mesoporous Copper Films with Uniformly Sized Pores by Electrochemical Soft Templating. Angewandte Chemie - International Edition, 2016, 55, 12746-12750.	7.2	50
464	Controllable synthesis of bowl-like cu array prepared by electrodeposition through multilayer colloidal template. Surface and Coatings Technology, 2016, 307, 177-181.	2.2	4
465	First Synthesis of Continuous Mesoporous Copper Films with Uniformly Sized Pores by Electrochemical Soft Templating. Angewandte Chemie, 2016, 128, 12938-12942.	1.6	15
466	Microscale Silicon Origami. Small, 2016, 12, 5401-5406.	5.2	34
467	Effect of Side-Plane Width on Lithium-Ion Transportation in Additive-Free LiCoO ₂ Crystal Layer-Based Cathodes for Rechargeable Lithium-Ion Batteries. Journal of Physical Chemistry C, 2016, 120, 18496-18502.	1.5	5
468	Flexible and Freestanding Supercapacitor Electrodes Based on Nitrogen-Doped Carbon Networks/Graphene/Bacterial Cellulose with Ultrahigh Areal Capacitance. ACS Applied Materials & Interfaces, 2016, 8, 33608-33618.	4.0	138
469	3D graphene-based anode materials for Li-ion batteries. Current Opinion in Chemical Engineering, 2016, 13, 124-132.	3.8	21
470	Multiscale metallic metamaterials. Nature Materials, 2016, 15, 1100-1106.	13.3	584
471	Physical properties of low-dimensional <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mrow><mml:msup><mml:mrow><mml:mi>s</mml:mi><mml:mi>p</mml:mi> carbon nanostructures. Reviews of Modern Physics, 2016, 88, .</mml:mrow></mml:msup></mml:mrow></mml:math>	w> 16 2∰l:n	nro 1⊮6 €xmml:m
472	Structural model, size effect and nano-energy system design for more sustainable energy of solid state automotive battery. Renewable and Sustainable Energy Reviews, 2016, 65, 685-697.	8.2	11
473	Graphene-coated mesoporous Co ₃ O ₄ fibers as an efficient anode material for Li-ion batteries. RSC Advances, 2016, 6, 71006-71011.	1.7	20
474	Graphene Sandwiched Mesostructured Liâ€ion Battery Electrodes. Advanced Materials, 2016, 28, 7696-7702.	11.1	86
475	Magnetically aligned graphite electrodes for high-rate performance Li-ion batteries. Nature Energy, 2016, 1, .	19.8	480
476	3D macroporous electrode and high-performance in lithium-ion batteries using SnO2 coated on Cu foam. Scientific Reports, 2016, 6, 18626.	1.6	48
477	One-step Preparation of Nanoarchitectured TiO2 on Porous Al as Integrated Anode for High-performance Lithium-ion Batteries. Scientific Reports, 2016, 6, 20138.	1.6	27
478	Carbon-Coated Na ₃ V ₂ (PO ₄) ₃ Anchored on Freestanding Graphite Foam for High-Performance Sodium-Ion Cathodes. ACS Applied Materials & Interfaces, 2016, 8, 32360-32365.	4.0	50
479	Influence of Conductive Carbon Content Using a Three-Dimensional Foam-Type Current Collector for Lithium Ion Battery. Journal of the Electrochemical Society, 2016, 163, A2981-A2987.	1.3	9
480	Stochastic microstructure modeling and electrochemical simulation of lithium-ion cell anodes in 3D. Journal of Power Sources, 2016, 336, 161-171.	4.0	43

#	Article	IF	CITATIONS
481	Growth of copper oxide nanocrystals in metallic nanotubes for high performance battery anodes. Nanoscale, 2016, 8, 19994-20000.	2.8	20
482	Mechanical assembly of complex, 3D mesostructures from releasable multilayers of advanced materials. Science Advances, 2016, 2, e1601014.	4.7	200
483	Hollow Carbon Cloth Enhances the Performance of Red Phosphorus for Flexible Lithium Ion Battery. Journal of the Electrochemical Society, 2016, 163, A2938-A2942.	1.3	12
484	Highâ€Performance Mesostructured Organic Hybrid Pseudocapacitor Electrodes. Advanced Functional Materials, 2016, 26, 903-910.	7.8	63
485	Conductive Inks Based on a Lithium Titanate Nanotube Gel for Highâ€Rate Lithiumâ€Ion Batteries with Customized Configuration. Advanced Materials, 2016, 28, 1567-1576.	11.1	178
486	Facile Synthesis of a 3D Nanoarchitectured Li ₄ Ti ₅ O ₁₂ Electrode for Ultrafast Energy Storage. Advanced Energy Materials, 2016, 6, 1500924.	10.2	88
487	Remarkable Improvements in Volumetric Energy and Power of 3D MnO ₂ Microsupercapacitors by Tuning Crystallographic Structures. Advanced Functional Materials, 2016, 26, 1830-1839.	7.8	112
488	Three-Dimensional Bicontinuous Nanocomposite from a Self-Assembled Block Copolymer for a High-Capacity All-Solid-State Lithium Battery Cathode. Chemistry of Materials, 2016, 28, 4453-4459.	3.2	49
489	Two-Dimensional Organic–Inorganic Hybrid Perovskite Photonic Films. Nano Letters, 2016, 16, 4166-4173.	4.5	105
490	MnO2 Nanosheets Grown on Internal Surface of Macroporous Carbon with Enhanced Electrochemical Performance for Supercapacitors. ACS Sustainable Chemistry and Engineering, 2016, 4, 3641-3648.	3.2	33
491	High Volumetric Capacity Three-Dimensionally Sphere-Caged Secondary Battery Anodes. Nano Letters, 2016, 16, 4501-4507.	4.5	62
492	Three-dimensional Co3O4@NiO hierarchical nanowire arrays for solid-state symmetric supercapacitor with enhanced electrochemical performances. Chemical Engineering Journal, 2016, 304, 223-231.	6.6	146
493	Production of Ni(OH) ₂ nanosheets by liquid phase exfoliation: from optical properties to electrochemical applications. Journal of Materials Chemistry A, 2016, 4, 11046-11059.	5.2	71
494	Size dependent electrochemical detection of trace heavy metal ions based on nano-patterned carbon sphere electrodes. Nanoscale, 2016, 8, 13695-13700.	2.8	15
495	Optimizing the design of 3D-pillar microbatteries using finite element modelling. Electrochimica Acta, 2016, 209, 138-148.	2.6	22
496	Uniquely Monodispersing NiFe Alloyed Nanoparticles in Three-Dimensional Strongly Linked Sandwiched Graphitized Carbon Sheets for High-Efficiency Oxygen Evolution Reaction. ACS Catalysis, 2016, 6, 4477-4485.	5.5	112
497	Bifunctional Porous NiFe/NiCo ₂ O ₄ /Ni Foam Electrodes with Triple Hierarchy and Double Synergies for Efficient Whole Cell Water Splitting. Advanced Functional Materials, 2016, 26, 3515-3523.	7.8	545
498	3D Scaffolded Nickel–Tin Liâ€lon Anodes with Enhanced Cyclability. Advanced Materials, 2016, 28, 742-747.	11.1	90

#	Article	IF	CITATIONS
499	High Power–High Energy Sodium Battery Based on Threefold Interpenetrating Network. Advanced Materials, 2016, 28, 2409-2416.	11.1	205
500	An overview of AB ₂ O ₄ - and A ₂ BO ₄ -structured negative electrodes for advanced Li-ion batteries. RSC Advances, 2016, 6, 21448-21474.	1.7	76
501	A review of fabrication strategies and applications of porous ceramics prepared by freeze-casting method. Ceramics International, 2016, 42, 2907-2925.	2.3	177
502	Perpendicular edge oriented graphene foam supporting orthogonal TiO2(B) nanosheets as freestanding electrode for lithium ion battery. Nano Energy, 2016, 21, 162-171.	8.2	58
503	Hierarchical structures composed of MnCo ₂ O ₄ @MnO ₂ core–shell nanowire arrays with enhanced supercapacitor properties. Dalton Transactions, 2016, 45, 572-578.	1.6	88
504	Realizing ordered arrays of nanostructures: A versatile platform for converting and storing energy efficiently. Nano Energy, 2016, 19, 328-362.	8.2	66
505	Microstructural tunability of co-continuous bijel-derived electrodes to provide high energy and power densities. Journal of Materials Chemistry A, 2016, 4, 1000-1007.	5.2	56
506	Construction of cobalt sulfide/nickel core-branch arrays and their application as advanced electrodes for electrochemical energy storage. Electrochimica Acta, 2016, 195, 184-191.	2.6	10
507	Growth of vertically aligned MoS ₂ nanosheets on a Ti substrate through a self-supported bonding interface for high-performance lithium-ion batteries: a general approach. Journal of Materials Chemistry A, 2016, 4, 5932-5941.	5.2	51
508	3D printing of liquid metals as fugitive inks for fabrication of 3D microfluidic channels. Lab on A Chip, 2016, 16, 1812-1820.	3.1	174
509	Hollow carbon sphere/metal oxide nanocomposites anodes for lithium-ion batteries. Energy, 2016, 103, 100-106.	4.5	35
510	Ultrahighâ€Power Pseudocapacitors Based on Ordered Porous Heterostructures of Electronâ€Correlated Oxides. Advanced Science, 2016, 3, 1500319.	5.6	47
511	Integration of high capacity materials into interdigitated mesostructured electrodes for high energy and high power density primary microbatteries. Journal of Power Sources, 2016, 315, 308-315.	4.0	32
512	Quasi-ballistic Electronic Thermal Conduction in Metal Inverse Opals. Nano Letters, 2016, 16, 2754-2761.	4.5	72
513	High-rate in-plane micro-supercapacitors scribed onto photo paper using in situ femtolaser-reduced graphene oxide/Au nanoparticle microelectrodes. Energy and Environmental Science, 2016, 9, 1458-1467.	15.6	202
514	3D interconnected macro-mesoporous electrode with self-assembled NiO nanodots for high-performance supercapacitor-like Li-ion battery. Nano Energy, 2016, 22, 269-277.	8.2	115
515	Designing Hierarchically Nanostructured Conductive Polymer Gels for Electrochemical Energy Storage and Conversion. Chemistry of Materials, 2016, 28, 2466-2477.	3.2	205
516	A promising cathode for Li-ion batteries: Li3V2(PO4)3. Energy Storage Materials, 2016, 4, 15-58.	9.5	129

# 517	ARTICLE Manganous-Manganic Oxide@Carbon Core-Shell Nanorods for Supercapacitors with High Cycle Retention. ECS Journal of Solid State Science and Technology, 2016, 5, M5-M11.	IF 0.9	CITATIONS
518	Electrochemical fabrication of metal nanostructures by using a hydrophilic/hydrophobic sponge-like NiOOH/Ni(OH)2 template. Thin Solid Films, 2016, 603, 1-7.	0.8	5
519	Natural collagen fiber-enabled facile synthesis of carbon@Fe ₃ O ₄ core–shell nanofiber bundles and their application as ultrahigh-rate anode materials for Li-ion batteries. RSC Advances, 2016, 6, 10824-10830.	1.7	17
520	Ultrafine nickel–copper carbonate hydroxide hierarchical nanowire networks for high-performance supercapacitor electrodes. Chemical Engineering Journal, 2016, 290, 353-360.	6.6	79
521	Self-standing porous LiMn 2 O 4 nanowall arrays as promising cathodes for advanced 3D microbatteries and flexible lithium-ion batteries. Nano Energy, 2016, 22, 475-482.	8.2	166
522	Numerical and experimental investigation of (de)lithiation-induced strains in bicontinuous silicon-coated nickel inverse opal anodes. Acta Materialia, 2016, 107, 289-297.	3.8	19
523	High performance inverse opal Li-ion battery with paired intercalation and conversion mode electrodes. Journal of Materials Chemistry A, 2016, 4, 4448-4456.	5.2	34
524	Electrical Characterization of Ultrathin RF-Sputtered LiPON Layers for Nanoscale Batteries. ACS Applied Materials & Interfaces, 2016, 8, 7060-7069.	4.0	63
525	Li ₃ V ₂ (PO ₄) ₃ encapsulated flexible free-standing nanofabric cathodes for fast charging and long life-cycle lithium-ion batteries. Nanoscale, 2016, 8, 7408-7415.	2.8	49
526	A mini review on nickel-based electrocatalysts for alkaline hydrogen evolution reaction. Nano Research, 2016, 9, 28-46.	5.8	773
527	Carbon-supported and nanosheet-assembled vanadium oxide microspheres for stable lithium-ion battery anodes. Nano Research, 2016, 9, 128-138.	5.8	64
528	Strong contribution of pore morphology to the high-rate electrochemical performance of lithium-ion batteries. Chemical Communications, 2016, 52, 803-806.	2.2	20
529	Structural, energetic, and electronic properties of gyroidal graphene nanostructures. Carbon, 2016, 96, 998-1007.	5.4	9
530	Nano-energy system coupling model and failure characterization of lithium ion battery electrode in electric energy vehicles. Renewable and Sustainable Energy Reviews, 2016, 54, 1250-1261.	8.2	18
531	Dynamics of dissipative self-assembly of particles interacting through oscillatory forces. Faraday Discussions, 2016, 186, 399-418.	1.6	15
532	A colloidoscope of colloid-based porous materials and their uses. Chemical Society Reviews, 2016, 45, 281-322.	18.7	256
533	Designing disordered materials using DNA-coated colloids of bacteriophage fd and gold. Faraday Discussions, 2016, 186, 473-488.	1.6	6
534	Alternative coating technologies for metal–ceramic nanocomposite films: potential application for solar thermal absorber. International Journal of Low-Carbon Technologies, 2016, 11, 370-374.	1.2	2

#	Article	IF	CITATIONS
535	Using X-ray Microscopy To Understand How Nanoporous Materials Can Be Used To Reduce the Large Volume Change in Alloy Anodes. Nano Letters, 2017, 17, 870-877.	4.5	48
536	Analytical Investigation of Binder's Role on the Diffusion Induced Stresses in Lithium Ion Battery through a Representative System of Spherical Isolated Electrode Particle Enclosed by Binder. Journal of the Electrochemical Society, 2017, 164, A608-A621.	1.3	29
537	Pseudocapacitance-Enhanced Li-Ion Microbatteries Derived by a TiN@TiO2 Nanowire Anode. CheM, 2017, 2, 404-416.	5.8	90
538	Three-dimensional colloidal interference lithography. Nanotechnology, 2017, 28, 125302.	1.3	3
539	Template-free formation of various V ₂ O ₅ hierarchical structures as cathode materials for lithium-ion batteries. Journal of Materials Chemistry A, 2017, 5, 6522-6531.	5.2	50
540	Three-dimensional microarchitected materials and devices using nanoparticle assembly by pointwise spatial printing. Science Advances, 2017, 3, e1601986.	4.7	141
541	High volumetric energy density annealed-MXene-nickel oxide/MXene asymmetric supercapacitor. RSC Advances, 2017, 7, 11000-11011.	1.7	166
542	Rutile TiO ₂ Inverse Opal Anodes for Liâ€lon Batteries with Long Cycle Life, Highâ€Rate Capability, and High Structural Stability. Advanced Energy Materials, 2017, 7, 1602291.	10.2	93
543	3D microporous Sn-Sb-Ni alloy impregnated Ni foam as high-performance negative electrode for lithium-ion batteries. Journal of Alloys and Compounds, 2017, 705, 290-300.	2.8	37
544	Design and synthesis of H-TiO2/MnO2 core–shell nanotube arrays with high capacitance and cycling stability for supercapacitors. Journal of Materials Science, 2017, 52, 7744-7753.	1.7	16
545	Electroplating lithium transition metal oxides. Science Advances, 2017, 3, e1602427.	4.7	62
547	Mechanicallyâ€Guided Deterministic Assembly of 3D Mesostructures Assisted by Residual Stresses. Small, 2017, 13, 1700151.	5.2	32
548	Thin‣ayered Cobaltâ€Based Catalysts on Stainlessâ€Steel Microfibers for the Efficient Electrolysis of Water. ChemCatChem, 2017, 9, 3814-3820.	1.8	4
549	Biomimetic Spiderâ€Webâ€Like Composites for Enhanced Rate Capability and Cycle Life of Lithium Ion Battery Anodes. Advanced Energy Materials, 2017, 7, 1700331.	10.2	60
550	The Influence of Colloidal Opal Template and Substrate Type on 3D Macroporous Single and Binary Vanadium Oxide Inverse Opal Electrodeposition. Journal of the Electrochemical Society, 2017, 164, D111-D119.	1.3	7
551	Highâ€Power Graphene–Carbon Nanotube Hybrid Supercapacitors. ChemNanoMat, 2017, 3, 436-446.	1.5	39
552	Unraveling the Nature of Anomalously Fast Energy Storage in T-Nb ₂ O ₅ . Journal of the American Chemical Society, 2017, 139, 7071-7081.	6.6	171
553	Nano energy system model and nanoscale effect of graphene battery in renewable energy electric vehicle. Renewable and Sustainable Energy Reviews, 2017, 69, 652-663.	8.2	47

#	Article	IF	CITATIONS
554	In situ surface engineering of nickel inverse opal for enhanced overall electrocatalytic water splitting. Journal of Materials Chemistry A, 2017, 5, 14873-14880.	5.2	31
555	Lithium Batteries with Nearly Maximum Metal Storage. ACS Nano, 2017, 11, 6362-6369.	7.3	180
556	Performance Modeling and Design of Ultra-High Power Microbatteries. Journal of the Electrochemical Society, 2017, 164, E3122-E3131.	1.3	22
557	Gas phase infiltration of carbon nanotubes in Ni Nanofoam via liquid injection chemical vapor deposition. Diamond and Related Materials, 2017, 77, 92-96.	1.8	0
558	Model-assisted development of microfabricated 3D Ni(OH) 2 electrodes with rapid charging capabilities. Journal of Power Sources, 2017, 358, 101-111.	4.0	5
559	Construct hierarchical electrode with Ni x Co 3-x S 4 nanosheet coated on NiCo 2 O 4 nanowire arrays grown on carbon fiber paper for high-performance asymmetric supercapacitors. Journal of Power Sources, 2017, 359, 262-269.	4.0	117
560	High-performance Li-ion Sn anodes with enhanced electrochemical properties using highly conductive TiN nanotubes array as a 3D multifunctional support. Journal of Power Sources, 2017, 360, 189-195.	4.0	17
561	Kirigami pattern design of mechanically driven formation of complex 3D structures through topology optimization. Extreme Mechanics Letters, 2017, 15, 139-144.	2.0	39
562	Assembly of Heterogeneous Materials for Biology and Electronics: From Bio-Inspiration to Bio-Integration. Journal of Electronic Packaging, Transactions of the ASME, 2017, 139, .	1.2	12
563	Monodispersed Carbon-Coated Cubic NiP ₂ Nanoparticles Anchored on Carbon Nanotubes as Ultra-Long-Life Anodes for Reversible Lithium Storage. ACS Nano, 2017, 11, 3705-3715.	7.3	231
564	Printing, folding and assembly methods for forming 3D mesostructures in advanced materials. Nature Reviews Materials, 2017, 2, .	23.3	463
565	Self-Assembled Array of Tethered Manganese Oxide Nanoparticles for the Next Generation of Energy Storage. Scientific Reports, 2017, 7, 44191.	1.6	10
566	Unique interconnected graphene/SnO ₂ nanoparticle spherical multilayers for lithium-ion battery applications. Nanoscale, 2017, 9, 4439-4444.	2.8	53
567	Interconnected LiCuVO ₄ networks with in situ Cu generation as high-performance lithium-ion battery anode. Physical Chemistry Chemical Physics, 2017, 19, 13341-13347.	1.3	15
568	Highly Ordered Macroporous Electrodes. , 2017, , 143-206.		6
569	Transition Metal Dichalcogenide Atomic Layers for Lithium Polysulfides Electrocatalysis. Journal of the American Chemical Society, 2017, 139, 171-178.	6.6	325
570	Recent advances in multifunctional electrochromic energy storage devices and photoelectrochromic devices. Science China Chemistry, 2017, 60, 13-37.	4.2	92
571	Oneâ€&tep Synthesis of Co ₃ O ₄ /Graphene Aerogels and Their Allâ€&olidâ€&tate Asymmetric Supercapacitor. European Journal of Inorganic Chemistry, 2017, 2017, 1143-1152.	1.0	34

#	Article	IF	CITATIONS
572	Design principles and energy system scale analysis technologies of new lithium-ion and aluminum-ion batteries for sustainable energy electric vehicles. Renewable and Sustainable Energy Reviews, 2017, 71, 645-651.	8.2	59
573	Low Molecular Weight Spandex as a Promising Polymeric Binder for LiFePO ₄ Electrodes. Advanced Energy Materials, 2017, 7, 1602147.	10.2	27
574	Constructing Three-Dimensional Mesoporous Bouquet-Posy-like TiO ₂ Superstructures with Radially Oriented Mesochannels and Single-Crystal Walls. Journal of the American Chemical Society, 2017, 139, 517-526.	6.6	76
575	Metal nanofoams via a facile microwave-assisted solvothermal process. Chemical Communications, 2017, 53, 865-868.	2.2	12
576	Progress in 3D Printing of Carbon Materials for Energyâ€Related Applications. Advanced Materials, 2017, 29, 1603486.	11.1	364
578	Solution-combustion synthesis of nanomaterials for lithium storage. International Journal of Self-Propagating High-Temperature Synthesis, 2017, 26, 187-198.	0.2	8
579	A pinecone-inspired hierarchical vertically aligned nanosheet array electrode for high-performance asymmetric supercapacitors. Journal of Materials Chemistry A, 2017, 5, 23349-23360.	5.2	41
580	Improving rate capability of lithium-ion batteries using holey graphene as the anode material. Journal of the Taiwan Institute of Chemical Engineers, 2017, 80, 511-517.	2.7	22
581	Multi-shell tin phosphide nanospheres as high performance anode material for a sodium ion battery. Sustainable Energy and Fuels, 2017, 1, 1944-1949.	2.5	29
582	Recent developed different structural nanomaterials and their performance for supercapacitor application. Applied Materials Today, 2017, 9, 300-313.	2.3	62
583	A review for the synthesis methods of lithium vanadium phosphate cathode materials. Journal of Materials Science: Materials in Electronics, 2017, 28, 18269-18295.	1.1	10
584	Improved electrode materials for Li-ion batteries using microscale and sub-micrometer scale porous materials - A review. Journal of Alloys and Compounds, 2017, 729, 463-474.	2.8	20
585	Recent progress in layered double hydroxide based materials for electrochemical capacitors: design, synthesis and performance. Nanoscale, 2017, 9, 15206-15225.	2.8	156
586	Nonaqueous Hybrid Lithiumâ€ion and Sodiumâ€ion Capacitors. Advanced Materials, 2017, 29, 1702093.	11.1	699
587	Microscale Liquid Transport in Polycrystalline Inverse Opals across Grain Boundaries. Scientific Reports, 2017, 7, 10465.	1.6	37
589	Porous-Nickel-Scaffolded Tin–Antimony Anodes with Enhanced Electrochemical Properties for Li/Na-Ion Batteries. ACS Applied Materials & Interfaces, 2017, 9, 25250-25256.	4.0	34
590	Improved Performance in FeF ₂ Conversion Cathodes through Use of a Conductive 3D Scaffold and Al ₂ O ₃ ALD Coating. Advanced Functional Materials, 2017, 27, 1702783.	7.8	55
591	Bifunctional MOFâ€Derived Carbon Photonic Crystal Architectures for Advanced Zn–Air and Li–S Batteries: Highly Exposed Graphitic Nitrogen Matters. Advanced Functional Materials, 2017, 27, 1701971.	7.8	156

#	Article	IF	CITATIONS
592	High performance asymmetric V ₂ O ₅ –SnO ₂ nanopore battery by atomic layer deposition. Nanoscale, 2017, 9, 11566-11573.	2.8	22
593	Novel Co ₂ VO ₄ Anodes Using Ultralight 3D Metallic Current Collector and Carbon Sandwiched Structures for Highâ€Performance Liâ€Ion Batteries. Small, 2017, 13, 1701260.	5.2	49
594	Electrodeposited high strength, thermally stable spectrally selective rhenium nickel inverse opals. Nanoscale, 2017, 9, 11187-11194.	2.8	14
595	Facile synthesis of bicontinuous Ni3Fe alloy for efficient electrocatalytic oxygen evolution reaction. Journal of Alloys and Compounds, 2017, 726, 875-884.	2.8	49
596	In situ facile bubble-templated fabrication of new-type urchin-like (Li,Mo)-doped Li _x (Mo _{0.3} V _{0.7}) ₂ O ₅ for Zn ²⁺ storage. Journal of Materials Chemistry A, 2017, 5, 18253-18260.	5.2	10
597	Hierarchical Structured Cu/Ni/TiO ₂ Nanocomposites as Electrodes for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2017, 9, 28695-28703.	4.0	21
598	H ₂ V ₃ O ₈ Nanowires as High-Capacity Cathode Materials for Magnesium-Based Battery. ACS Applied Materials & Interfaces, 2017, 9, 28667-28673.	4.0	97
599	Controllable fabrication of metallic photonic crystals for ultra-sensitive SERS and photodetectors. RSC Advances, 2017, 7, 55851-55858.	1.7	5
600	The nanoscale circuitry of battery electrodes. Science, 2017, 358, .	6.0	235
601	Electrodeposition of Adherent Submicron to Micron Thick Manganese Dioxide Films with Optimized Current Collector Interface for 3D Li-Ion Electrodes. Journal of the Electrochemical Society, 2017, 164, D954-D963.	1.3	14
602	Electroless Deposition of Palladium on Macroscopic 3D-Printed Polymers with Dense Microlattice Architectures for Development of Multifunctional Composite Materials. Journal of the Electrochemical Society, 2017, 164, D867-D874.	1.3	15
603	Photoinduced Charge Transfer in Poly(3-hexylthiophene)/TiO2 Hybrid Inverse Opals: Photonic vs Interfacial Effects. Journal of Physical Chemistry C, 2017, 121, 26987-26996.	1.5	6
604	Naturally three-dimensional laminated porous carbon network structured short nano-chains bridging nanospheres for energy storage. Journal of Materials Chemistry A, 2017, 5, 15759-15770.	5.2	72
605	Graphene-coupled nitrogen-enriched porous carbon nanosheets for energy storage. Journal of Materials Chemistry A, 2017, 5, 16732-16739.	5.2	42
606	Hydrolysis-Coupled Redox Reaction to 3D Cu/Fe ₃ O ₄ Nanorod Array Electrodes for High-Performance Lithium-Ion Batteries. Inorganic Chemistry, 2017, 56, 7657-7667.	1.9	17
607	3D printed functional nanomaterials for electrochemical energy storage. Nano Today, 2017, 15, 107-120.	6.2	302
608	Fabrication of Nanoshell-Based 3D Periodic Structures by Templating Process using Solution-derived ZnO. Nanoscale Research Letters, 2017, 12, 419.	3.1	16
609	Engineered Elastomer Substrates for Guided Assembly of Complex 3D Mesostructures by Spatially Nonuniform Compressive Buckling. Advanced Functional Materials, 2017, 27, 1604281.	7.8	50

#	Article	IF	CITATIONS
610	High Performance Graphene/Ni ₂ P Hybrid Anodes for Lithium and Sodium Storage through 3D Yolk–Shell‣ike Nanostructural Design. Advanced Materials, 2017, 29, 1604015.	11.1	220
611	Nickel Network Derived from a Block Copolymer Template for MnO ₂ Electrodes as Dimensionally Stabilized Lithiumâ€lon Battery Anodes. Energy Technology, 2017, 5, 715-724.	1.8	4
612	Structure models and nano energy system design for proton exchange membrane fuel cells in electric energy vehicles. Renewable and Sustainable Energy Reviews, 2017, 67, 160-172.	8.2	43
613	Multi-Scale Porous Copper Foam Current Collector for High Performance Lithium Ion Battery. Procedia Engineering, 2017, 215, 136-144.	1.2	7
614	Controlling the Growth of Ni ₃ S ₂ Anode with Tunable Sodium Storage. Advanced Materials Interfaces, 2018, 5, 1701684.	1.9	10
615	Li Si C anode material with amorphous core – nanocomposite shell structure. Materials Today Energy, 2018, 7, 122-128.	2.5	1
616	Lithium Trapping in Microbatteries Based on Lithium―and Cu ₂ O oated Copper Nanorods. ChemistrySelect, 2018, 3, 2311-2314.	0.7	8
618	Template-Free Synthesis of Nanoporous Nickel and Alloys as Binder-Free Current Collectors of Li Ion Batteries. ACS Applied Nano Materials, 2018, 1, 2206-2218.	2.4	24
619	Directionally assembled MoS ₂ with significantly expanded interlayer spacing: a superior anode material for high-rate lithium-ion batteries. Materials Chemistry Frontiers, 2018, 2, 1441-1448.	3.2	12
620	Heterogeneous nanostructure array for electrochemical energy conversion and storage. Nano Today, 2018, 20, 33-57.	6.2	68
621	Hierarchical 1D nanofiber-2D nanosheet-shaped self-standing membranes for high-performance supercapacitors. Journal of Materials Chemistry A, 2018, 6, 9161-9171.	5.2	45
622	Synergistically enhanced hydrogen evolution electrocatalysis by <i>in situ</i> exsolution of metallic nanoparticles on perovskites. Journal of Materials Chemistry A, 2018, 6, 13582-13587.	5.2	85
623	Nano-micro structure VO2/CNTs composite as a potential anode material for lithium ion batteries. Ceramics International, 2018, 44, 13113-13121.	2.3	46
624	Woodâ€Inspired Highâ€Performance Ultrathick Bulk Battery Electrodes. Advanced Materials, 2018, 30, e1706745.	11.1	205
625	Hierarchical and Well-Ordered Porous Copper for Liquid Transport Properties Control. ACS Applied Materials & Interfaces, 2018, 10, 16015-16023.	4.0	25
626	Two-dimensional materials in functional three-dimensional architectures with applications in photodetection and imaging. Nature Communications, 2018, 9, 1417.	5.8	189
627	Nickel nanopore arrays as promising current collectors for constructing solid-state supercapacitors with ultrahigh rate performance. Frontiers of Chemical Science and Engineering, 2018, 12, 339-345.	2.3	12
628	Inkjet printed polyethylene glycol as a fugitive ink for the fabrication of flexible microfluidic systems. Materials and Design, 2018, 150, 182-187.	3.3	17

#	Article	IF	CITATIONS
629	Pack Aluminization Assisted Enhancement of Thermo-mechanical Properties in Nickel Inverse Opal Structures. Chemistry of Materials, 2018, 30, 1648-1654.	3.2	10
630	Hierarchically carbon-coated Na3V2(PO4)3 nanoflakes for high-rate capability and ultralong cycle-life sodium ion batteries. Chemical Engineering Journal, 2018, 339, 162-169.	6.6	67
631	3D-cathode design with foam-like aluminum current collector for high energy density lithium-ion batteries. Journal of Energy Storage, 2018, 16, 125-132.	3.9	26
632	Tools and Functions of Reconfigurable Colloidal Assembly. Langmuir, 2018, 34, 11205-11219.	1.6	29
633	Melt impregnation as a post processing treatment for performance enhancement in high capacity 3D microporous tin-copper-nickel intermetallic anode for Li-ion battery supported by electrodeposited nickel scaffold: A structural study. Applied Surface Science, 2018, 441, 965-977.	3.1	10
634	Thin Film Condensation on Nanostructured Surfaces. Advanced Functional Materials, 2018, 28, 1707000.	7.8	60
635	Direct Imprinting of Scalable, High-Performance Woodpile Electrodes for Three-Dimensional Lithium-Ion Nanobatteries. ACS Applied Materials & Interfaces, 2018, 10, 5447-5454.	4.0	25
636	Cost-effective and environmentally friendly synthesis of 3D Ni ₂ P from scrap nickel for highly efficient hydrogen evolution in both acidic and alkaline media. Journal of Materials Chemistry A, 2018, 6, 4088-4094.	5.2	46
637	Carbon Nanotube Web with Carboxylated Polythiophene "Assist―for High-Performance Battery Electrodes. ACS Nano, 2018, 12, 3126-3139.	7.3	51
638	A Study on the Effect of Electrodeposition Parameters on the Morphology of Porous Nickel Electrodeposits. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2018, 49, 920-937.	1.1	27
639	Recent advances in three-dimensional graphene based materials for catalysis applications. Chemical Society Reviews, 2018, 47, 2165-2216.	18.7	412
640	Integrated nanomaterials for extreme thermal management: a perspective for aerospace applications. Nanotechnology, 2018, 29, 154003.	1.3	42
642	Oxygen-deficient Ta2O5 nanoporous films as self-supported electrodes for lithium microbatteries. Nano Energy, 2018, 45, 407-412.	8.2	63
643	An Ostwald ripening route towards Ni-rich layered cathode material with cobalt-rich surface for lithium ion battery. Science China Materials, 2018, 61, 719-727.	3.5	32
644	Recent advances in direct ink writing of electronic components and functional devices. Progress in Additive Manufacturing, 2018, 3, 65-86.	2.5	67
645	Ultrafast Sodiation of Single-Crystalline Sn Anodes. ACS Applied Materials & Interfaces, 2018, 10, 560-568.	4.0	22
646	A review of laser electrode processing for development and manufacturing of lithium-ion batteries. Nanophotonics, 2018, 7, 549-573.	2.9	134
647	Bilayered nanoporous graphene/molybdenum oxide for high rate lithium ion batteries. Nano Energy, 2018, 45, 273-279.	8.2	54

#	Article	IF	CITATIONS
648	Hierarchical nanorod-based TiO2 microspheres for superior electrochemical energy storage. Journal of Electroanalytical Chemistry, 2018, 820, 32-40.	1.9	4
649	Hierarchically Bicontinuous Porous Copper as Advanced 3D Skeleton for Stable Lithium Storage. ACS Applied Materials & Interfaces, 2018, 10, 13552-13561.	4.0	95
650	3D Printing of Customized Liâ€lon Batteries with Thick Electrodes. Advanced Materials, 2018, 30, e1703027.	11.1	304
651	Deterministic Design of Chemistry and Mesostructure in Li-Ion Battery Electrodes. ACS Nano, 2018, 12, 3060-3064.	7.3	20
652	Advanced flower-like Co3O4 with ultrathin nanosheets and 3D rGO aerogels as double ion-buffering reservoirs for asymmetric supercapacitors. Electrochimica Acta, 2018, 271, 379-387.	2.6	48
653	Mesoscale characterization of local property distributions in heterogeneous electrodes. Journal of Power Sources, 2018, 386, 1-9.	4.0	28
654	Superelastic 3D few-layer MoS2/carbon framework heterogeneous electrodes for highly reversible sodium-ion batteries. Nano Energy, 2018, 48, 526-535.	8.2	99
655	Graphene-based ordered mesoporous carbon hybrids with large surface areas for supercapacitors. New Journal of Chemistry, 2018, 42, 7043-7048.	1.4	12
656	Highly sensitive microfluidic paper-based photoelectrochemical sensing platform based on reversible photo-oxidation products and morphology-preferable multi-plate ZnO nanoflowers. Biosensors and Bioelectronics, 2018, 110, 58-64.	5.3	43
657	Polypyrrole/graphene oxide deposited on two metalized surfaces of porous polypropylene films as all-in-one flexible supercapacitors. Electrochimica Acta, 2018, 270, 490-500.	2.6	71
658	Improving Li-ion battery charge rate acceptance through highly ordered hierarchical electrode design. Ionics, 2018, 24, 2935-2943.	1.2	34
659	3D open-worked inverse opal TiO2 and GeO2 materials for long life, high capacity Li-ion battery anodes. Solid State Ionics, 2018, 314, 195-203.	1.3	21
660	Revitalized interest in vanadium pentoxide as cathode material for lithium-ion batteries and beyond. Energy Storage Materials, 2018, 11, 205-259.	9.5	221
661	Electrocatalytically Active Niobium Sulfide Modified Carbon Cloth for Lithium–Sulfur Batteries. Journal of Electrochemical Energy Conversion and Storage, 2018, 15, .	1.1	8
662	Microwave absorption properties of holey graphene/silicone rubber composites. Composites Part B: Engineering, 2018, 135, 119-128.	5.9	67
663	Selfâ€Supported 3D Array Electrodes for Sodium Microbatteries. Advanced Functional Materials, 2018, 28, 1704880.	7.8	108
664	FUNDAMENTALS OF RECHARGEABLE BATTERIES AND ELECTROCHEMICAL POTENTIALS OF ELECTRODE MATERIALS. , 2018, , 397-451.		3
665	REVITALIZED INTEREST IN VANADIUM PENTOXIDE AS CATHODE MATERIAL FOR ALKALI-ION BATTERIES. , 2018, , 453-580.		0

#	Article	IF	CITATIONS
666	Pathways to Mesoporous Resin/Carbon Thin Films with Alternating Gyroid Morphology. ACS Nano, 2018, 12, 347-358.	7.3	35
667	Hierarchical hole-enhanced 3D graphene assembly for highly efficient capacitive deionization. Carbon, 2018, 129, 95-103.	5.4	112
668	High capacity binder-free nanocrystalline GeO2 inverse opal anodes for Li-ion batteries with long cycle life and stable cell voltage. Nano Energy, 2018, 43, 11-21.	8.2	78
669	Design and Performance of Rechargeable Sodium Ion Batteries, and Symmetrical Liâ€Ion Batteries with Supercapacitorâ€Like Power Density Based upon Polyoxovanadates. Advanced Energy Materials, 2018, 8, 1701021.	10.2	58
670	Synthesis and electrochemical performance of three-dimensional ordered hierarchically porous Li4Ti5O12 for high performance lithium ion Batteries. Ceramics International, 2018, 44, 1296-1303.	2.3	28
671	Dendritic nanostructured FeS ₂ -based high stability and capacity Li-ion cathodes. RSC Advances, 2018, 8, 38745-38750.	1.7	2
672	Recent advances in pseudocapacitor electrode materials: Transition metal oxides and nitrides. Transactions of Nonferrous Metals Society of China, 2018, 28, 1980-2001.	1.7	88
673	Organic Matrix Stabilized Ultraâ€Fine Bismuth Oxide Particles for Electrochemical Energy Storage Application. ChemistrySelect, 2018, 3, 12057-12064.	0.7	10
674	Scientific worth of polymer and graphene foam-based nanomaterials. Journal of the Chinese Advanced Materials Society, 2018, 6, 779-800.	0.7	5
675	ZnO@Ni–Co–S Core–Shell Nanorods-Decorated Carbon Fibers as Advanced Electrodes for High-Performance Supercapacitors. Nano, 2018, 13, 1850148.	0.5	6
676	Effects of Nanowire Length on Charge Transport in Vertically Aligned Gold Nanowire Array Electrodes. Langmuir, 2018, 34, 15674-15680.	1.6	8
677	3Dâ€Printed Microelectrodes with a Developed Conductive Network and Hierarchical Pores toward High Areal Capacity for Microbatteries. Advanced Materials Technologies, 2019, 4, 1800402.	3.0	51
678	In situ grown Co3O4 nanocubes on N-doped graphene as a synergistic hybrid for applications in nickel metal hydride batteries. International Journal of Hydrogen Energy, 2018, 43, 18421-18435.	3.8	24
679	Polymer-Promoted Synthesis of Porous TiO ₂ Nanofibers Decorated with N-Doped Carbon by Mechanical Stirring for High-Performance Li-Ion Storage. ACS Applied Materials & Interfaces, 2018, 10, 35060-35068.	4.0	17
680	Composite Cathode Material Using Spark Plasma Sintering for Bulk-Type Hybrid Solid-State Batteries. Journal of the Korean Physical Society, 2018, 73, 1019-1024.	0.3	2
681	Nano Graphene Shell for Silicon Nanoparticles: A Novel Strategy for a High Stability Rechargeable Battery Anode. ChemistrySelect, 2018, 3, 11190-11199.	0.7	5
682	Approaching Theoretical Capacities in Thick Lithium Vanadium Phosphate Electrodes at High Charge/Discharge Rates. ACS Sustainable Chemistry and Engineering, 2018, 6, 15608-15617.	3.2	14
683	Selfâ€Assembled 3D Hierarchical Porous Hybrid as Platinumâ€Like Bifunctional Nonprecious Metal Catalyst toward Oxygen Reduction Reaction and Hydrogen Evolution Reaction. Advanced Materials Interfaces, 2018, 5, 1801296.	1.9	5

ARTICLE IF CITATIONS # The synthesis, characterization and electrochemical performance of hollow sandwich microtubules composed of ultrathin Co₃O₄ nanosheets and porous carbon using a 684 5.2 24 bio-template. Journal of Materials Chemistry A, 2018, 6, 18987-18993. Tetrahedral framework of inverse opal photonic crystals defines the optical response and photonic 1.1 band gap. Journal of Applied Physics, 2018, 124, . Self-Assembly of Metallacages into Multidimensional Suprastructures with Tunable Emissions. 686 63 6.6 Journal of the American Chemical Society, 2018, 140, 12819-12828. Engineering Hollow Carbon Architecture for High-Performance K-Ion Battery Anode. Journal of the American Chemical Society, 2018, 140, 7127-7134. Value added transformation of ubiquitous substrates into highly efficient and flexible electrodes for 688 5.8 126 water splitting. Nature Communications, 2018, 9, 2014. Development of Highly Energy Densified Ink for 3D Printable Batteries. Energy Technology, 2018, 6, 1.8 2058-2064. All-round utilization of biomass derived all-solid-state asymmetric carbon-based supercapacitor. 690 5.0 70 Journal of Colloid and Interface Science, 2018, 528, 349-359. An Ultrahigh Output Rechargeable Electrode of a Hydrophilic Radical Polymer/Nanocarbon Hybrid with an Exceptionally Large Current Density beyond 1 A cm^{â^{*2}2}. Advanced Matérials, 2018, 30, 11.1 e1800900. Gradual "OHâ^'-incursion―outside-inside strategy in construction of 3D flower-like 692 Co3O4-CNT>N-PEGm hierarchical microspheres for supercapacitors. Materials Today Energy, 2018, 9, 2.5 15 27-38. Controlled mechanical assembly of complex 3D mesostructures and strain sensors by tensile 5.1 buckling. Npj Flexible Electronics, 2018, 2, . Review of Hybrid Ion Capacitors: From Aqueous to Lithium to Sodium. Chemical Reviews, 2018, 118, 694 23.0 741 6457-6498. Three-Dimensional in Situ Electron-Beam Lithography Using Water Ice. Nano Letters, 2018, 18, 5036-5041. 4.5 46 Scalable Fabrication of Nanostructured Tin Oxide Anodes for High-Energy Lithium-Ion Batteries. ACS 696 4.0 30 Applied Materials & amp; Interfaces, 2018, 10, 27019-27029. Selfâ€Integrated Porous Leafâ€like CuO Nanoplate Arrayâ€Based Anodes for Highâ€Performance Lithiumâ€Ion 1.7 Batteries. ChemElectroChem, 2018, 5, 2774-2780. Hierarchical NiO nanobelt film array as an anode for lithium-ion batteries with enhanced 698 1.7 21 electrochemical performance. RSC Advances, 2018, 8, 26589-26595. Paper with Power: Engraving 2D Materials on 3D Structures for Printed, Highâ€Performance, 699 Binderâ€Free, and Allã€Solidâ€State Supercapacitors. Advanced Functional Materials, 2018, 28, 1803600. (010) facets dominated LiFePO4 nano-flakes confined in 3D porous graphene network as a 700 2.324 high-performance Li-ion battery cathode. Ceramics International, 2018, 44, 18181-18188. Wet chemical synthesis of metal oxide nanoparticles: a review. CrystEngComm, 2018, 20, 5091-5107. 1.3 296

#	Article	IF	CITATIONS
702	Materials Engineering of High-Performance Anodes as Layered Composites with Self-Assembled Conductive Networks. Journal of Physical Chemistry C, 2018, 122, 14014-14028.	1.5	7
703	Designed synthesis of ultrafine NiO nanocrystals bonded on a three dimensional graphene framework for high-capacity lithium-ion batteries. New Journal of Chemistry, 2018, 42, 9901-9910.	1.4	24
704	High-performance double ion-buffering reservoirs of asymmetric supercapacitors based on flower-like Co ₃ O ₄ -G>N-PEGm microspheres and 3D rGO-CNT>N-PEGm aerogels. Nanoscale, 2018, 10, 17293-17303.	2.8	26
705	Advanced 3D Current Collectors for Lithiumâ€Based Batteries. Advanced Materials, 2018, 30, e1802014.	11.1	218
706	High-power lithium-ion microbatteries from imprinted 3D electrodes of sub-10â€ ⁻ nm LiMn2O4/Li4Ti5O12 nanocrystals and a copolymer gel electrolyte. Nano Energy, 2018, 52, 431-440.	8.2	37
707	Tailoring Permeability of Microporous Copper Structures through Template Sintering. ACS Applied Materials & Interfaces, 2018, 10, 30487-30494.	4.0	18
708	Hierarchy Design in Metal Oxides as Anodes for Advanced Lithiumâ€ l on Batteries. Small Methods, 2018, 2, 1800171.	4.6	69
709	Reprogrammable 3D Mesostructures Through Compressive Buckling of Thin Films with Prestrained Shape Memory Polymer. Acta Mechanica Solida Sinica, 2018, 31, 589-598.	1.0	17
710	Germanium nanoparticles supported by 3D ordered macroporous nickel frameworks as high-performance free-standing anodes for Li-ion batteries. Chemical Engineering Journal, 2018, 354, 616-622.	6.6	36
711	Analysis of the 3D microstructure of experimental cathode films for lithiumâ€ion batteries under increasing compaction. Journal of Microscopy, 2018, 272, 96-110.	0.8	20
712	Enhanced Capillaryâ€Fed Boiling in Copper Inverse Opals via Template Sintering. Advanced Functional Materials, 2018, 28, 1803689.	7.8	46
713	Modeling 3D-microbatteries based on carbon foams. Electrochimica Acta, 2018, 281, 665-675.	2.6	4
714	A method for quantifying in plane permeability of porous thin films. Journal of Colloid and Interface Science, 2018, 530, 667-674.	5.0	5
715	Holographic Fabrication of 3D Nanostructures. Advanced Materials Interfaces, 2018, 5, 1800330.	1.9	17
716	Anion insertion enhanced electrodeposition of robust metal hydroxide/oxide electrodes for oxygen evolution. Nature Communications, 2018, 9, 2373.	5.8	336
717	Integrated nanospheres occupancy-removal and thermoforming into bulk piezoelectric and triboelectric hybrid nanogenerators with inverse opal nanostructure. Nano Energy, 2019, 64, 103957.	8.2	13
718	Co-spray printing of LiFePO ₄ and PEO-Li _{1.5} Al _{0.5} Ge _{1.5} (PO ₄) ₃ hybrid electrodes for all-solid-state Li-ion battery applications. Journal of Materials Chemistry A, 2019, 7, 19094-19103.	5.2	25
719	High-performance functional nanocomposites using 3D ordered and continuous nanostructures generated from proximity-field nanopatterning. Functional Composites and Structures, 2019, 1, 032002.	1.6	27

#	Article	IF	CITATIONS
720	Free-standing transition metal oxide electrode architectures for electrochemical energy storage. Journal of Materials Science, 2019, 54, 13045-13069.	1.7	20
721	Microstructural characteristics of bijel-templated porous materials. Materialia, 2019, 7, 100393.	1.3	17
722	Multifunctional Mechanical Metamaterials Based on Triply Periodic Minimal Surface Lattices. Advanced Engineering Materials, 2019, 21, 1900524.	1.6	353
723	Pore-graded and conductor- and binder-free FeS ₂ films deposited by spray pyrolysis for high-performance lithium-ion batteries. Journal of Materials Research, 2019, 34, 2456-2471.	1.2	16
724	Flexible, three-dimensional ordered macroporous ZnO electrode with enhanced electrochemical performance in lithium-ion batteries. Microporous and Mesoporous Materials, 2019, 289, 109618.	2.2	18
725	Going Nano with Confined Effects to Construct Pomegranate-like Cathode for High-Energy and High-Power Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2019, 11, 28934-28942.	4.0	3
726	Harnessing the interface mechanics of hard films and soft substrates for 3D assembly by controlled buckling. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 15368-15377.	3.3	54
727	Homogeneous Core/Shell NiMoO4@NiMoO4 and Activated Carbon for High Performance Asymmetric Supercapacitor. Nanomaterials, 2019, 9, 1033.	1.9	12
728	Thick Electrode Batteries: Principles, Opportunities, and Challenges. Advanced Energy Materials, 2019, 9, 1901457.	10.2	407
729	Hierarchical NiCo ₂ S ₄ @Nickel–Cobalt Layered Double Hydroxide Nanotube Arrays on Metallic Cotton Yarns for Flexible Supercapacitors. ACS Applied Materials & Interfaces, 2019, 11, 30384-30390.	4.0	99
730	Facile synthesis of macroporus SnS microspheres as a potential anode material for enhanced sodium ion batteries. Journal of Industrial and Engineering Chemistry, 2019, 80, 130-135.	2.9	8
731	Bridging functional nanocomposites to robust macroscale devices. Science, 2019, 364, .	6.0	118
732	An amorphous Zn–P/graphite composite with chemical bonding for ultra-reversible lithium storage. Journal of Materials Chemistry A, 2019, 7, 16785-16792.	5.2	30
733	The influence of chitosan concentration on morphology and conductivity of lithium aluminium titanate phosphate for solid electrolytes of lithium-ion battery application. IOP Conference Series: Materials Science and Engineering, 0, 509, 012021.	0.3	3
734	Synthesis of sandwich-like porous nanostructure of Co3O4-rGO for flexible all-solid-state high-performance asymmetric supercapacitors. Materials Today Energy, 2019, 13, 342-352.	2.5	39
735	Three-Dimensional-Ordered Porous Nanostructures for Lithium–Sulfur Battery Anodes and Cathodes Confer Superior Energy Storage Performance. ACS Nano, 2019, 13, 13037-13046.	7.3	39
736	Electrodeposition Technologies for Liâ€Based Batteries: New Frontiers of Energy Storage. Advanced Materials, 2020, 32, e1903808.	11.1	70
737	Femtosecond Laser Processing of Thick Film Cathodes and Its Impact on Lithium-Ion Diffusion Kinetics. Applied Sciences (Switzerland), 2019, 9, 3588.	1.3	18

#	Article	IF	CITATIONS
738	Ultrahigh Rate Performance of a Robust Lithium Nickel Manganese Cobalt Oxide Cathode with Preferentially Orientated Li-Diffusing Channels. ACS Applied Materials & Interfaces, 2019, 11, 41178-41187.	4.0	20
739	Architected materials for advanced electrochemical systems. MRS Bulletin, 2019, 44, 789-795.	1.7	10
740	Carbon materials from melamine sponges for supercapacitors and lithium battery electrode materials: A review. , 2019, 1, 253-275.		135
741	Fabrication of nanoporous NiO@CoO composites by dealloying method as ultra-high capacitance electrodes. Journal of Materials Science: Materials in Electronics, 2019, 30, 20311-20319.	1.1	2
742	3D Solarâ€Blind Ga ₂ O ₃ Photodetector Array Realized Via Origami Method. Advanced Functional Materials, 2019, 29, 1906040.	7.8	120
743	Preparation and Characterization of Oxygen-Deficient Li ₄ Ti ₅ O ₁₂ Anode Material in Reducing Atmosphere for Lithium Ion Batteries. IOP Conference Series: Earth and Environmental Science, 0, 252, 022039.	0.2	1
744	Structured multimaterial filaments for 3D printing of optoelectronics. Nature Communications, 2019, 10, 4010.	5.8	74
745	The synthesis of Co3O4/C composite with aloe juice as the carbon aerogel substrate for asymmetric supercapacitors. Carbon, 2019, 155, 147-154.	5.4	50
746	A paradigm of storage batteries. Energy and Environmental Science, 2019, 12, 3203-3224.	15.6	154
747	Boosting Oxygen Reduction Performance of Manganese Oxide in Alkaline Media by Three-Dimensional Highly Ordered Conductive Porous Framework. Frontiers in Materials, 2019, 6, .	1.2	5
748	Electrochemical Capacitive Characteristics of TiO2 Coated on Vertically Aligned Carbon Nanotubes. International Journal of Electrochemical Science, 2019, , 7758-7772.	0.5	3
749	Construction of porous nanoscale NiO/NiCo2O4 heterostructure for highly enhanced electrocatalytic oxygen evolution activity. Journal of Catalysis, 2019, 379, 1-9.	3.1	75
750	Correlating Selective Electrocatalysis of Dopamine and Ascorbic Acid Electrooxidation at Nanoporous Gold Surfaces with Structural-Defects. Journal of the Electrochemical Society, 2019, 166, H704-H711.	1.3	22
751	Bio-inspired, nitrogen doped CNT-graphene hybrid with amphiphilic properties as a porous current collector for lithium-ion batteries. Carbon, 2019, 145, 677-689.	5.4	32
752	3D printed graphene/nickel electrodes for high areal capacitance electrochemical storage. Journal of Materials Chemistry A, 2019, 7, 4055-4062.	5.2	63
753	Synthesis and applications of three-dimensional graphene network structures. Materials Today Nano, 2019, 5, 100027.	2.3	60
754	Diffusion-free Grotthuss topochemistry for high-rate and long-life proton batteries. Nature Energy, 2019, 4, 123-130.	19.8	446
755	High strength metallic wood from nanostructured nickel inverse opal materials. Scientific Reports, 2019, 9, 719.	1.6	36

#	Article	IF	CITATIONS
756	Unraveling the Correlation between Structures of Carbon Nanospheres Derived from Polymeric Spheres and Their Electrochemical Performance to Achieve Highâ€Rate Supercapacitors. Macromolecular Rapid Communications, 2019, 40, e1800770.	2.0	20
757	Fiber-Shaped Electrochemical Capacitors Based on Plasma-Engraved Graphene Fibers with Oxygen Vacancies for Alternating Current Line Filtering Performance. ACS Applied Energy Materials, 2019, 2, 993-999.	2.5	16
758	Recent developments in electrode materials for potassium-ion batteries. Journal of Materials Chemistry A, 2019, 7, 4334-4352.	5.2	214
759	The formation of yolk–shell structured NiO nanospheres with enhanced lithium storage capacity. Materials Chemistry Frontiers, 2019, 3, 1619-1625.	3.2	15
760	Stereolithographic 3D Printing-Based Hierarchically Cellular Lattices for High-Performance Quasi-Solid Supercapacitor. Nano-Micro Letters, 2019, 11, 46.	14.4	62
761	Nanoscale Parallel Circuitry Based on Interpenetrating Conductive Assembly for Flexible and Highâ€Power Zinc Ion Battery. Advanced Functional Materials, 2019, 29, 1901336.	7.8	145
762	Traditional Nanostructures and Nanomaterials in Batteries. , 2019, , 313-357.		0
763	Recent progress in near-field nanolithography using light interactions with colloidal particles: from nanospheres to three-dimensional nanostructures. Nanotechnology, 2019, 30, 352002.	1.3	50
764	Nanostructures and Nanomaterials for Batteries. , 2019, , .		12
765	Hydrogenated nanowire-constructed TiO2 microspheres transformed from hollow TiO2 microspheres as an advanced Li-ion battery anode. Journal of Nanoparticle Research, 2019, 21, 1.	0.8	8
766	Self-smoothing anode for achieving high-energy lithium metal batteries under realistic conditions. Nature Nanotechnology, 2019, 14, 594-601.	15.6	451
767	Polymers Bearing Catechol Pendants as Universal Hosts for Aqueous Rechargeable H ⁺ , Li-Ion, and Post-Li-ion (Mono-, Di-, and Trivalent) Batteries. ACS Applied Energy Materials, 2019, 2, 3035-3041.	2.5	55
768	Quantifying the factors limiting rateÂperformance in battery electrodes. Nature Communications, 2019, 10, 1933.	5.8	185
769	High Volumetric and Gravimetric Capacity Electrodeposited Mesostructured Sb ₂ O ₃ Sodium Ion Battery Anodes. Small, 2019, 15, e1900258.	5.2	46
770	Two-Dimensional Cr-Doped MoO2.5(OH)0.5 Nanosheets: A Promising Anode Material for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2019, 11, 13405-13415.	4.0	10
771	Electrochemical Performance of a Lithium Ion Battery with Different Nanoporous Current Collectors. Batteries, 2019, 5, 21.	2.1	6
772	Improved ionic conductivity of porous Li ₄ Ti ₅ O ₁₂ synthesized by sol-gel method using eggshell membrane as soft template. Materials Research Express, 2019, 6, 075030.	0.8	9
773	Ni <i>_x</i> Mn <i>_y</i> Co <i>_z</i> O Nanowire/CNT Composite Microspheres with 3D Interconnected Conductive Network Structure via Sprayâ€Drying Method: A High apacity and Long ycleâ€Life Anode Material for Lithiumâ€Ion Batteries. Small, 2019, 15, e1900069.	5.2	10

		CITATION REPORT		
#	Article		IF	CITATIONS
774	Fast Charging Lithium Batteries: Recent Progress and Future Prospects. Small, 2019, 15,	e1805389.	5.2	277
775	Surface-Modified Sulfur Nanorods Immobilized on Radially Assembled Open-Porous Grap Microspheres for Lithium–Sulfur Batteries. ACS Nano, 2019, 13, 5163-5171.	hene	7.3	88
776	Three-dimensional ordered porous electrode materials for electrochemical energy storag Materials, 2019, 11, .	e. NPG Asia	3.8	215
777	In Situ SEM Observation of Structured Si/C Anodes Reactions in an Ionic-Liquid-Based Lit Battery. Applied Sciences (Switzerland), 2019, 9, 956.	hium-lon	1.3	17
778	Phase Modulating of Cu–Ni Nanowires Enables Active and Stable Electrocatalysts for t Oxidation Reaction. Chemistry - A European Journal, 2019, 25, 7218-7224.	he Methanol	1.7	21
779	Toward High Powerâ€High Energy Sodium Cathodes: A Case Study of Bicontinuous Orde 3D Porous Na ₃ (VO) ₂ (PO ₄) ₂ F/rGO Pseudocapacitance Effect. Small, 2019, 15, e1900356.	ered Network of with	5.2	54
780	Electrophoretic deposition of LiFePO4 onto 3-D current collectors for high areal loading cathodes. Materials Science and Engineering B: Solid-State Materials for Advanced Techr 241, 42-47.		1.7	21
781	Onâ€Chip Ni–Zn Microbattery Based on Hierarchical Ordered Porous Ni@Ni(OH) <sub Microelectrode with Ultrafast Ion and Electron Transport Kinetics. Advanced Functional I 2019, 29, 1808470.</sub 		7.8	88
782	Prussian White Hierarchical Nanotubes with Surfaceâ€Controlled Charge Storage for So Batteries. Advanced Functional Materials, 2019, 29, 1806405.	diumâ€ i on	7.8	124
783	Ultrafine Copper Nanopalm Treeâ€Like Framework Decorated with Iron Oxide for Liâ€lor with Exceptional Rate Capability and Cycling Stability. Advanced Energy Materials, 2019		10.2	17
784	Chemically monodisperse tin nanoparticles on monolithic 3D nanoporous copper for lith battery anodes with ultralong cycle life and stable lithium storage properties. Nanoscale, 4885-4894.	ium ion , 2019, 11,	2.8	22
785	Energy storage: The future enabled by nanomaterials. Science, 2019, 366, .		6.0	1,119
786	Development of a nickel oxide/oxyhydroxide-modified printed carbon electrode as an all sensor for potentiometric phosphate detection. New Journal of Chemistry, 2019, 43, 18		1.4	28
787	Nanoconfinement effects of N-doped hierarchical carbon on thermal behaviors of organi change materials. Energy Storage Materials, 2019, 18, 280-288.	c phase	9.5	86
788	Design and Fabrication of Heterogeneous, Deformable Substrates for the Mechanically C Assembly. ACS Applied Materials & amp; Interfaces, 2019, 11, 3482-3492.	Juided 3D	4.0	23
789	Rational Design of Hierarchically Openâ€Porous Spherical Hybrid Architectures for Lithiu Batteries. Advanced Energy Materials, 2019, 9, 1802816.	mâ€ l on	10.2	48
790	Electrode based on nanoporous (Co-Ni)@(CoO,NiO) nanocomposites with ultrahigh cap activation. Journal of Alloys and Compounds, 2019, 778, 239-246.	acitance after	2.8	10
791	High capacity 3D structured tin-based electroplated Li-ion battery anodes. Energy Storag 2019, 17, 151-156.	ge Materials,	9.5	36

#	Article	IF	CITATIONS
792	The Origin of Electrochemical Actuation of MnO ₂ /Ni Bilayer Film Derived by Redox Pseudocapacitive Process. Advanced Functional Materials, 2019, 29, 1806778.	7.8	59
793	A Stretchable and Selfâ€Healing Energy Storage Device Based on Mechanically and Electrically Restorative Liquidâ€Metal Particles and Carboxylated Polyurethane Composites. Advanced Materials, 2019, 31, e1805536.	11.1	209
794	Freestanding 3D Mesostructures, Functional Devices, and Shapeâ€Programmable Systems Based on Mechanically Induced Assembly with Shape Memory Polymers. Advanced Materials, 2019, 31, e1805615.	11.1	105
795	Review on Nanoarchitectured Current Collectors for Pseudocapacitors. Small Methods, 2019, 3, 1800341.	4.6	43
796	Designed Nanoarchitectures by Electrostatic Spray Deposition for Energy Storage. Advanced Materials, 2019, 31, e1803408.	11.1	48
797	Nanomaterials. , 2020, , 515-539.		3
798	Strategien für kostengünstige und leistungsstarke Dualâ€lonenâ€Batterien. Angewandte Chemie, 2020, 132 3830-3861.	' 1.6	40
799	Strategies towards Lowâ€Cost Dualâ€Ion Batteries with High Performance. Angewandte Chemie - International Edition, 2020, 59, 3802-3832.	7.2	242
800	Recent nanosheet-based materials for monovalent and multivalent ions storage. Energy Storage Materials, 2020, 25, 382-403.	9.5	14
801	Scalable three-dimensional Ni3P-based composite networks for flexible asymmertric supercapacitors. Chemical Engineering Journal, 2020, 380, 122621.	6.6	21
802	Additive Manufacturing of Batteries. Advanced Functional Materials, 2020, 30, 1906244.	7.8	176
803	Effectiveness of PANI/Cu/TiO ₂ ternary nanocomposite on antibacterial and antistatic behaviors in polyurethane coatings. Journal of Applied Polymer Science, 2020, 137, 48825.	1.3	6
804	Developing models to fit capacity–rate data in battery systems. Current Opinion in Electrochemistry, 2020, 21, 1-6.	2.5	10
805	Nanofabrication approaches for functional three-dimensional architectures. Nano Today, 2020, 30, 100825.	6.2	37
806	All-Day Mobile Healthcare Monitoring System Based on Heterogeneous Stretchable Sensors for Medical Emergency. IEEE Transactions on Industrial Electronics, 2020, 67, 8808-8816.	5.2	34
807	Rate performance enhancement of lithium-ion battery using precise thickness-controllable-carbon-coated titanium dioxide nanowire array electrode via atomic layer deposition. Electrochimica Acta, 2020, 334, 135596.	2.6	9
808	Nanoscale Phenomena in Lithium-Ion Batteries. Chemical Reviews, 2020, 120, 6684-6737.	23.0	142
809	Microfluidicâ€Architected Nanoarrays/Porous Core–Shell Fibers toward Robust Microâ€Energyâ€Storage. Advanced Science, 2020, 7, 1901931.	5.6	47

#	Article	IF	CITATIONS
810	Hierarchical micro-flowers self-assembled from SnS monolayers and nitrogen-doped graphene lamellar nanosheets as advanced anode for lithium-ion battery. Electrochimica Acta, 2020, 331, 135292.	2.6	24
811	Quantitative Analysis of Multi-Scale Heterogeneities in Complex Electrode Microstructures. Journal of the Electrochemical Society, 2020, 167, 054506.	1.3	9
812	Ultralight and fire-extinguishing current collectors for high-energy and high-safety lithium-ion batteries. Nature Energy, 2020, 5, 786-793.	19.8	168
813	3D Architectures for Batteries and Electrodes. Advanced Energy Materials, 2020, 10, 2002457.	10.2	40
814	2D Mesoporous Nanomesh from N-Doped Carbon-Encapsulated V ₂ O ₃ Nanowires as an Anode for Lithium-Ion Batteries. Journal of Physical Chemistry C, 2020, 124, 24073-24080.	1.5	18
815	Self-assembled materials for electrochemical energy storage. MRS Bulletin, 2020, 45, 815-822.	1.7	7
816	Quantifying the Effect of Electronic Conductivity on the Rate Performance of Nanocomposite Battery Electrodes. ACS Applied Energy Materials, 2020, 3, 2966-2974.	2.5	75
817	Nanostructured Electrode Enabling Fast and Fully Reversible MnO ₂ -to-Mn ²⁺ Conversion in Mild Buffered Aqueous Electrolytes. ACS Applied Energy Materials, 2020, 3, 7610-7618.	2.5	23
818	Hydrous Nickel–Iron Turnbull's Blue as a High-Rate and Low-Temperature Proton Electrode. ACS Applied Materials & Interfaces, 2020, 12, 9201-9208.	4.0	49
819	Lithium-Ion Battery—3D Micro-/Nano-Structuring, Modification and Characterization. Springer Series in Materials Science, 2020, , 313-347.	0.4	2
820	Experimental and Modeling Analysis of Holey Graphene Electrodes for High-Power-Density Li-Ion Batteries. Crystals, 2020, 10, 1063.	1.0	5
821	Surface modification and carbon coating effect on a high-performance K and S doped LiMn2O4. Applied Surface Science, 2020, 531, 147138.	3.1	24
822	Effect of isotropic and anisotropic porous microstructure on electrochemical performance of Li ion battery cathodes: An experimental and computational study. Journal of Power Sources, 2020, 474, 228490.	4.0	11
823	Knitting Controllable Oxygen-Functionalized Carbon Fiber for Ultrahigh Capacitance Wire-Shaped Supercapacitors. ACS Applied Materials & Interfaces, 2020, 12, 44866-44873.	4.0	20
824	Long Cycle Life, Highly Ordered SnO ₂ /GeO ₂ Nanocomposite Inverse Opal Anode Materials for Liâ€lon Batteries. Advanced Functional Materials, 2020, 30, 2005073.	7.8	39
825	Functional inks and extrusion-based 3D printing of 2D materials: a review of current research and applications. Nanoscale, 2020, 12, 19007-19042.	2.8	78
826	Bicontinuous phase separation of lithium-ion battery electrodes for ultrahigh areal loading. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 21155-21161.	3.3	42
827	Electroplated Functional Materials with 3D Nanostructures Defined by Advanced Optical Lithography and Their Emerging Applications. Applied Sciences (Switzerland), 2020, 10, 8780.	1.3	11

ARTICLE IF CITATIONS In-situ growth of TiO2 film on carbonized eggshell membrane as 3D electrode for high-performance 828 4.7 7 lithium storage. Green Energy and Environment, 2022, 7, 485-491. Synergistic effect of hierarchical nanopores in Co-doped cobalt oxide 3D flowers for 829 1.7 electrochemical energy storage. RSC Advances, 2020, 10, 43825-43833. Recent progress on germanium-based anodes for lithium ion batteries: Efficient lithiation strategies 830 9.5 80 and mechanisms. Energy Storage Materials, 2020, 30, 146-169. Preparation of a Polypyrrole/Graphene Oxide Composite Electrode by Electrochemical Codeposition for Capacitor Deionization. ACS Omega, 2020, 5, 10995-11004. A Chronicle Review of Nonsilicon (Sn, Sb, Ge)â€Based Lithium/Sodiumâ€Ion Battery Alloying Anodes. Small 832 4.6 220 Methods, 2020, 4, 2000218. Nitrogen Doped Multi-channel Graphite for High Rate and High Capacity Li Ion Battery. Journal Wuhan University of Technology, Materials Science Edition, 2020, 35, 65-70. 0.4 Surface controlled pseudo-capacitive reactions enabling ultra-fast charging and long-life organic 834 2.530 lithium ion batteries. Sustainable Energy and Fuels, 2020, 4, 4179-4185. Cathode Architectures for Rechargeable Ion Batteries: Progress and Perspectives. Advanced Materials, 11.1 2020, 32, e2000288. Comparison of conductive additives for high-power applications of Li-ion batteries. Ionics, 2020, 26, 836 1.2 11 4277-4286. Chemical processes of metal oxide powders., 2020, , 189-208. Self-supported materials for battery technology-A review. Journal of Alloys and Compounds, 2020, 831, 838 2.8 10 154844. Singleâ€Atom Catalytic Materials for Advanced Battery Systems. Advanced Materials, 2020, 32, e1906548. 11.1 156 840 Supramolecular Energy Materials. Advanced Materials, 2020, 32, e1907247. 11.1 101 3D Porous Self-Standing Sb Foam Anode with a Conformal Indium Layer for Enhanced Sodium Storage. ACS Applied Materials & amp; Interfaces, 2020, 12, 20344-20353. 841 4.0 Interconnected Ni nanowires integrated with Li_xMnO₂ as fast charging and 842 high volumetric capacity cathodes for Li-ion batteries. Journal of Materials Chemistry A, 2020, 8, 5.25 14178-14189. ZIF-derived ZnO/Sb composite scaffolded on carbon framework for Ni-Zn batteries. Journal of Colloid 843 and Interface Science, 2020, 579, 823-831. Exploring Anomalous Charge Storage in Anode Materials for Next-Generation Li Rechargeable 844 23.0 382 Batteries. Chemical Reviews, 2020, 120, 6934-6976. Insight into the charge/discharge behaviour of intercalation cathode materials: relation between 845 delivered capacity and applied rate and analysis of multi-particle intercalation mechanisms. Physical 1.3 Chemistry Chemical Physics, 2020, 22, 6351-6360.

#	Article	IF	CITATIONS
846	NiCo2O4/biomass-derived carbon composites as anode for high-performance lithium ion batteries. Journal of Power Sources, 2020, 451, 227761.	4.0	71
847	Advanced Electrode Materials Comprising of Structureâ€Engineered Quantum Dots for Highâ€Performance Asymmetric Microâ€Supercapacitors. Advanced Energy Materials, 2020, 10, 1903724.	10.2	36
848	An ultrafast supercapacitor built by Co3O4 with tertiary hierarchical architecture. Vacuum, 2020, 174, 109219.	1.6	37
849	In-situ formation of atomic-level Mn-Sn interfacial compounds for enhanced Li-ion integrated anode. Applied Surface Science, 2020, 508, 145243.	3.1	3
850	Construction of Dualâ€Carbon Coâ€Modified LiFePO 4 Nanocrystals via Microreactor Strategy for Highâ€Performance Lithium Ion Batteries. Energy Technology, 2020, 8, 2000171.	1.8	5
851	Boiling Heat Transfer with a Well-Ordered Microporous Architecture. ACS Applied Materials & Interfaces, 2020, 12, 19174-19183.	4.0	26
852	Polymer Precursor Derived Li _{<i>x</i>} PON Electrolytes: Toward Li–S Batteries. ACS Applied Materials & Interfaces, 2020, 12, 20548-20562.	4.0	7
853	Three-dimensional ordered macroporous ZnO/ZnS heterostructure on carbon cloth as a free-standing anode with high areal capacity for sodium-ion batteries. Journal of Alloys and Compounds, 2020, 835, 155156.	2.8	29
854	Recent Insights into Rate Performance Limitations of Liâ€ion Batteries. Batteries and Supercaps, 2021, 4, 268-285.	2.4	55
855	Conductive polyaniline hydrogel enhanced methane production from anaerobic wastewater treatment. Journal of Colloid and Interface Science, 2021, 581, 314-322.	5.0	31
856	Non-metallic charge carriers for aqueous batteries. Nature Reviews Materials, 2021, 6, 109-123.	23.3	250
857	Multi-redox phenazine/non-oxidized graphene/cellulose nanohybrids as ultrathick cathodes for high-energy organic batteries. Nano Research, 2021, 14, 1382-1389.	5.8	24
858	Expeditious and controllable synthesis of micron flower-like architecture Cu7S4@LSC via Ni ions morphology confinement for asymmetric button supercapacitor. Electrochimica Acta, 2021, 366, 137362.	2.6	6
859	Facile synthesis and high lithium storage properties of mesoporous polypyrrole coated CoFe2O4 nanofibers. Journal of Alloys and Compounds, 2021, 858, 158324.	2.8	12
860	Threeâ€Dimensional Numerical Simulations on the Effect of Particle Porosity of Lithiumâ€Nickel–Manganese–Cobalt–Oxide on the Performance of Positive Lithiumâ€Ion Battery Electrodes. Energy Technology, 2021, 9, 2000676.	1.8	4
861	Microstructure Generation via Generative Adversarial Network for Heterogeneous, Topologically Complex 3D Materials. Jom, 2021, 73, 90-102.	0.9	56
862	An oriented Ni–Co-MOF anchored on solution-free 1D CuO: a p–n heterojunction for supercapacitive energy storage. Journal of Materials Chemistry A, 2021, 9, 17790-17800.	5.2	86
863	Nickel-iron layered double hydroxides for an improved Ni/Fe hybrid battery-electrolyser. Materials Advances, 2021, 2, 5076-5088.	2.6	6

#	Article	IF	CITATIONS
864	Electrospun Nanostructured Iron Oxides for High-Performance Lithium Ion Batteries. Materials Horizons, 2021, , 277-318.	0.3	1
865	Properties and Applications of the Electrochemically Synthesized Metal Oxide Thin Films. , 2021, , 29-48.		0
866	Surface and Interface Engineering of Nanoarrays toward Advanced Electrodes and Electrochemical Energy Storage Devices. Advanced Materials, 2021, 33, e2004959.	11.1	113
867	Three-Dimensional Ordered Porous Nanostructures for Lithium–Selenium Battery Cathodes That Confer Superior Energy-Storage Performance. ACS Applied Materials & Interfaces, 2021, 13, 9955-9964.	4.0	17
868	Measurement and Prediction of Decomposed Energy Efficiencies of Lithium Ion Batteries With Two Charge Models. Journal of Electrochemical Energy Conversion and Storage, 2021, 18, .	1.1	4
869	Electrochemical performance of SnO2 rods and SnO2/rGO, SnO2/MWCNTs composite materials as an anode for lithium-ion battery application-A comparative study. Journal of Materials Science: Materials in Electronics, 2021, 32, 7619-7629.	1.1	6
870	Hierarchically Porous Ceramics via Direct Writing of Binary Colloidal Gel Foams. ACS Applied Materials & Interfaces, 2021, 13, 8976-8984.	4.0	34
871	Continuous fast pyrolysis synthesis of TiO ₂ /C nanohybrid lithiumâ€ion battery anode. Nano Select, 2021, 2, 1770-1778.	1.9	1
872	Ultralow Thermal Conductivity in Nanoporous Crystalline Fe ₃ O ₄ . Journal of Physical Chemistry C, 2021, 125, 6897-6908.	1.5	12
873	3D ordered nanoelectrodes for energy conversion applications: thermoelectric, piezoelectric, and electrocatalytic applications. Journal of the Korean Ceramic Society, 2021, 58, 379-398.	1.1	12
874	Materials and technologies for multifunctional, flexible or integrated supercapacitors and batteries. Materials Today, 2021, 48, 176-197.	8.3	66
875	Thick electrode with thickness-independent capacity enabled by assembled two-dimensional porous nanosheets. Energy Storage Materials, 2021, 36, 265-271.	9.5	30
876	A Ge/Carbon Atomic cale Hybrid Anode Material: A Micro–Nano Gradient Porous Structure with High Cycling Stability. Angewandte Chemie - International Edition, 2021, 60, 12539-12546.	7.2	41
877	Synthesis of Au sponges based on agarose template. Scripta Materialia, 2021, 196, 113769.	2.6	3
878	Ultra-high conductive 3D aluminum photonic crystal as sulfur immobilizer for high-performance lithium-sulfur batteries. Nano Research, 2021, 14, 4776-4782.	5.8	13
879	Modeling and Simulation of Flexible Vector Shear Flow Sensor Based on COMSOL Multiphysics. , 2021, , ,		1
880	A Ge/Carbon Atomic‣cale Hybrid Anode Material: A Micro–Nano Gradient Porous Structure with High Cycling Stability. Angewandte Chemie, 2021, 133, 12647-12654.	1.6	4
881	Two-dimensional Conducting Metal-Organic Frameworks Enabled Energy Storage Devices. Energy Storage Materials, 2021, 37, 396-416.	9.5	44

#	Article	IF	CITATIONS
882	Electrodeposition of atmosphere-sensitive ternary sodium transition metal oxide films for sodium-based electrochemical energy storage. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	9
883	Ultra-high-energy lithium-ion batteries enabled by aligned structured thick electrode design. Rare Metals, 2022, 41, 14-20.	3.6	48
884	Genetic Control of Aerogel and Nanofoam Properties, Applied to Ni–MnO <i>_x</i> Cathode Design. Advanced Functional Materials, 2021, 31, 2010867.	7.8	3
885	Boosting the capacitive property of cobalt sulfide through interface engineering for high-performance supercapacitors. Ceramics International, 2021, 47, 24973-24981.	2.3	14
886	Fibrin biopolymer hydrogel-templated 3D interconnected Si@C framework for lithium ion battery anodes. Applied Surface Science, 2021, 551, 149439.	3.1	9
887	Two advantages by a single move: Core-bishell electrode design for ultrahigh-rate capacity and ultralong-life cyclability of lithium ion batteries. Composites Part B: Engineering, 2021, 216, 108883.	5.9	14
888	Nanoimprint Lithography Processing of Inorganic-Based Materials. Chemistry of Materials, 2021, 33, 5464-5482.	3.2	25
889	Conjugated microporous polymers for energy storage: Recent progress and challenges. Nano Energy, 2021, 85, 105958.	8.2	110
890	Three-dimensional mesostructured binder-free nickel-based TiO2/RGO lithium-ion battery negative electrodes with enhanced volumetric capacity. Ceramics International, 2021, 47, 21381-21387.	2.3	6
891	Optimal electrode-scale design of Li-ion electrodes: A general correlation. Energy Storage Materials, 2021, 39, 176-185.	9.5	16
892	Dendrite-Free and Ultra-Long-Life Lithium Metal Anode Enabled via a Three-Dimensional Ordered Porous Nanostructure. ACS Applied Materials & Interfaces, 2021, 13, 41744-41752.	4.0	11
893	Soft, Bistable Actuators for Reconfigurable 3D Electronics. ACS Applied Materials & Interfaces, 2021, 13, 41968-41977.	4.0	11
894	Ultralight and High Thermal Conductive Current Collector Derived from Polyimide for Advanced LIBs. ACS Applied Energy Materials, 2021, 4, 9721-9730.	2.5	7
895	Electrospun deposited Mn2O3/GO nanofiber composite electrode for hybrid coin cell supercapacitor devices. Journal of Materials Science: Materials in Electronics, 2022, 33, 8844-8857.	1.1	1
896	Toward Deterministic 3D Energy Storage Electrode Architectures via Electrodeposition of Molybdenum Oxide onto CNT Foams. Energy & Fuels, 0, , .	2.5	3
897	Electrodeâ€Less MnO ₂ â€Metal Batteries with Deposition and Stripping Chemistry. Small, 2021, 17, e2103921.	5.2	35
898	Threeâ€dimensional printing of grapheneâ€based materials for energy storage and conversion. SusMat, 2021, 1, 304-323.	7.8	78
899	Ionic Liquid-Mediated Mass Transport Channels for Ultrahigh Rate Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2021, 13, 46756-46762.	4.0	6

#	Article	IF	CITATIONS
900	A Coralâ€Like FeP@NC Anode with Increasing Cycle Capacity for Sodiumâ€Ion and Lithiumâ€Ion Batteries Induced by Particle Refinement. Angewandte Chemie - International Edition, 2021, 60, 25013-25019.	7.2	66
901	A Coralâ€Like FeP@NC Anode with Increasing Cycle Capacity for Sodiumâ€Ion and Lithiumâ€Ion Batteries Induced by Particle Refinement. Angewandte Chemie, 2021, 133, 25217-25223.	1.6	9
902	One-Pot Structure Direction of Large-Pore Co-Continuous Carbon Monoliths from Ultralarge Linear Diblock Copolymers. Chemistry of Materials, 2021, 33, 7731-7742.	3.2	2
903	Orderly stacked graphene sheets supporting SnO2 nanoparticles as an anode material for lithium-ion batteries with incremental capacity. Applied Surface Science, 2021, 564, 150265.	3.1	12
904	Highly elastic and low resistance deformable current collectors for safe and high-performance silicon and metallic lithium anodes. Journal of Power Sources, 2021, 511, 230418.	4.0	9
905	Core-sheath 3D printing of highly conductive and MoS2-loaded electrode with pseudocapacitive behavior. Chemical Engineering Journal, 2021, 423, 130304.	6.6	19
906	Bioinspired Redoxâ€Active Catecholâ€Bearing Polymers as Ultrarobust Organic Cathodes for Lithium Storage. Advanced Materials, 2017, 29, 1703373.	11.1	101
907	Surface-Engineered Li4Ti5O12 Nanostructures for High-Power Li-Ion Batteries. Nano-Micro Letters, 2020, 12, 30.	14.4	31
908	Composite Structured Surfaces for Durable Dropwise Condensation. International Journal of Heat and Mass Transfer, 2020, 156, 119890.	2.5	25
909	Continuous roll-to-roll patterning of three-dimensional periodic nanostructures. Microsystems and Nanoengineering, 2020, 6, 22.	3.4	21
910	Post-processing Bijels for Applications. RSC Soft Matter, 2020, , 34-60.	0.2	3
911	Understanding the sodium storage mechanisms of organic electrodes in sodium ion batteries: issues and solutions. Energy and Environmental Science, 2020, 13, 1568-1592.	15.6	140
912	Ultrafine antimony (Sb) nanoparticles encapsulated into a carbon microfiber framework as an excellent LIB anode with a superlong life of more than 5000 cycles. Nanotechnology, 2020, 31, 215403.	1.3	8
913	Neutron sub-micrometre tomography from scattering data. IUCrJ, 2020, 7, 893-900.	1.0	10
914	Nanorobotic Applications in Medicine: Current Proposals and Designs. American Journal of Robotic Surgery, 2014, 1, 4-11.	0.2	71
916	Recent Advances in High-performance Functional Ceramics using 3D Nanostructuring Techniques. Ceramist, 2019, 22, 230-242.	0.0	1
917	SnO2-Coated 3D Etched Cu Foam for Lithium-ion Battery Anode. Journal of Electrochemical Science and Technology, 2020, 11, 92-98.	0.9	6
918	Threeâ€dimensional mesostructured single crystalline Fe 3 O 4 for ultrafast electrochemical capacitor electrode with AC line filtering performance. International Journal of Energy Research, 0, , .	2.2	3

#	Article	IF	CITATIONS
919	The Non-local Effects Induced by Rapid Transient Mass Diffusion in a Spherical Silicon Electrode of Lithium-ion Batteries. Acta Mechanica Solida Sinica, 2022, 35, 174-184.	1.0	3
920	Production and characterization of high-performance cobalt–nickel selenide catalyst with excellent activity in HER. Journal of Materials Research and Technology, 2021, 15, 3942-3950.	2.6	3
922	Templating of Metal Oxides by Electrodeposition. Springer Theses, 2013, , 85-115.	0.0	0
923	Primary Batteries for Medical Applications. , 2014, , 1713-1720.		0
924	Comparison of Two Approaches for Treatment of the Interface Conditions in FV Discretization of Pore Scale Models for Li-Ion Batteries. Springer Proceedings in Mathematics and Statistics, 2014, , 731-738.	0.1	0
925	Recent Progress in Layer-by-layer Assembly of Nanomaterials for Electrochemical Energy Storage Applications. Journal of the Korean Electrochemical Society, 2014, 17, 139-148.	0.1	0
927	Analytic Model for Predicting the Permeability of Foam-type Wick. Transactions of the Korean Society of Mechanical Engineers, B, 2016, 40, 391-396.	0.0	0
928	Enhancement Performance of Rechargeable Batteries via Homogenous 3D Nano Cavity Structure. Journal of the Institute of Science and Technology, 0, , 265-271.	0.3	0
929	Daedal Construction for One-Dimensional/One-Dimensional Analogue Nanomaterials. SpringerBriefs in Materials, 2020, , 19-33.	0.1	0
930	Progress in additive manufacturing of MoS2-based structures for energy storage applications – A review. Materials Science in Semiconductor Processing, 2022, 139, 106331.	1.9	24
931	Prussian blue-graphene oxide composite cathode for a sodium-ion capacitor with improved cyclic stability and energy density. Journal of Alloys and Compounds, 2022, 898, 162952.	2.8	7
933	A review on carbon nanomaterials for <scp>Kâ€ion</scp> battery anode: Progress and perspectives. International Journal of Energy Research, 2022, 46, 4033-4070.	2.2	9
934	Two-Dimensional Metal–Organic Framework Nanosheets Grown on Carbon Fiber Paper Interwoven with Polyaniline as an Electrode for Supercapacitors. Energy & Fuels, 2021, 35, 19818-19826.	2.5	22
935	Rational modulation of emerging MXene materials for zincâ€ion storage. , 2022, 4, 60-76.		46
936	Fiber Electrodes Mesostructured on Carbon Fibers for Energy Storage. ACS Applied Energy Materials, 2021, 4, 13716-13724.	2.5	5
937	Impact of nanomaterials on Li-ion battery anodes. Frontiers of Nanoscience, 2021, 19, 55-98.	0.3	1
938	Highly Efficient Oxygenâ€Modulated Ruâ€Based HER Electrocatalyst in a Wide pH Range. ChemElectroChem, 2022, 9, .	1.7	3
939	Gold Sunflower Microelectrode Arrays with Dendritic Nanostructures on the Lateral Surfaces for Antireflection and Surface-Enhanced Raman Scattering. ACS Applied Nano Materials, 2022, 5, 1873-1890.	2.4	12

#	Article	IF	CITATIONS
940	Compact 3D Metal Collectors Enabled by Rollâ€ŧoâ€Roll Nanoimprinting for Improving Capacitive Energy Storage. Small Methods, 2022, 6, e2101539.	4.6	5
941	3D Interdigital Electrodes Dielectric Capacitor Array for Energy Storage Based on Through Glass Vias. Advanced Materials Technologies, 2022, 7, .	3.0	5
942	3D Continuously Porous Graphene for Energy Applications. Advanced Materials, 2022, 34, e2108750.	11.1	53
943	Intrinsic electrochemical activity of Ni in Ni3Sn4 anode accommodating high capacity and mechanical stability for fast-charging lithium-ion batteries. Journal of Energy Chemistry, 2022, 71, 470-477.	7.1	7
945	3D printing auxetic draft-angle structures towards tunable buckling complexity. Smart Materials and Structures, 2022, 31, 055010.	1.8	3
946	Controlling the Crystallographic Orientation of Graphite Electrodes for Fast-Charging Li-Ion Batteries. ACS Applied Materials & Interfaces, 2022, 14, 891-899.	4.0	12
947	Laser-Processed Stretchable-Gradient Interconnection-Based Temperature Sensor for a Real-Time Monitoring System. ACS Applied Electronic Materials, 2021, 3, 5601-5607.	2.0	5
948	Controllable 3D Porous Ni Current Collector Coupled with Surface Phosphorization Enhances Na Storage of Ni ₃ S ₂ Nanosheet Arrays. Small, 2022, 18, e2106161.	5.2	14
949	3D Ordered Porous Nanostructure Confers Fast Charge Transfer Rate and Reduces the Electrode Polarization in Thick Electrode. Small, 2022, 18, e2104224.	5.2	12
951	Modern practices in electrophoretic deposition to manufacture energy storage electrodes. International Journal of Energy Research, 2022, 46, 13205-13250.	2.2	17
952	Defects Collaborative 3d Cu2se Nanoarrays Boosts High Rate Na-Ion Storage. SSRN Electronic Journal, 0, , .	0.4	0
953	Free-standing and binder-free porous monolithic electrodes prepared via sol–gel processes. Journal of Sol-Gel Science and Technology, 2022, 103, 637-679.	1.1	5
954	Epitaxial Electrocrystallization of Magnesium <i>via</i> Synergy of Magnesiophilic Interface, Lattice Matching, and Electrostatic Confinement. ACS Nano, 2022, 16, 9894-9907.	7.3	26
955	Three-Dimensional, Submicron Porous Electrode with a Density Gradient to Enhance Charge Carrier Transport. ACS Nano, 2022, 16, 9762-9771.	7.3	17
957	Co3Se4 quantum dots encapsulated with nitrogen-doped porous nanocarbon as ultrastable electrode material for water-based all-solid asymmetric supercapacitors. Journal of Colloid and Interface Science, 2022, 627, 10-20.	5.0	4
958	Preparation of Manganese Dioxide Supercapacitors by Secondary Construction of Three-Dimensional Substrates and Ion Embedding. Electronic Materials Letters, 2022, 18, 475-488.	1.0	2
959	All‣olid‣tate Thin Film Lithium/Lithiumâ€ŀon Microbatteries for Powering the Internet of Things. Advanced Materials, 2023, 35, .	11.1	38
960	Biomass derived carbonaceous materials with tailored superstructures designed for advanced supercapacitor electrodes. Industrial Crops and Products, 2022, 187, 115457.	2.5	17

#	ARTICLE	IF	CITATIONS
961	Integration and performance of regenerative braking and energy recovery technologies in vehicles. , 2022, , 545-568.		0
962	Emerging Technological Applications of Additive Manufacturing. , 2022, , 169-238.		2
963	Carbon-Based Nanomaterials for Metal-Ion Batteries. Springer Series in Materials Science, 2022, , 209-226.	0.4	0
964	Dislocation-Induced Defect Formation in a Double-Gyroid Network. Macromolecules, 2022, 55, 8143-8149.	2.2	5
965	Laser-assisted growth of hierarchically architectured 2D MoS ₂ crystals on metal substrate for potential energy applications. International Journal of Extreme Manufacturing, 2022, 4, 045102.	6.3	4
966	Stretchable separator/current collector composite for superior battery safety. Energy and Environmental Science, 2022, 15, 5313-5323.	15.6	16
968	Enhanced Capillary Wicking through Hierarchically Porous Constructs Derived from Bijel Templates. Langmuir, 2022, 38, 14063-14072.	1.6	1
969	Devisable three-dimensional Cu2Se nanoarrays boosts high rate Na-Ion storage. Applied Surface Science, 2023, 612, 155725.	3.1	8
970	Are Three-Dimensional Batteries Beneficial? Analyzing Historical Data to Elucidate Performance Advantages. ACS Energy Letters, 2023, 8, 296-305.	8.8	5
971	All-Aqueous Bicontinuous Structured Liquid Crystal Emulsion through Intraphase Trapping of Cellulose Nanoparticles. Biomacromolecules, 0, , .	2.6	5
972	3D Coâ€Đoping αâ€Ni(OH) ₂ Nanosheets for Ultrastable, Highâ€Rate Niâ€Zn Battery. Small, 2023,	195.2	10
973	Hierarchical Multiscale Engineered Fe ₃ O ₄ /Ni Electrodes with Ultrafast Supercapacitive Energy Storage for Alternate Current Lineâ€Filtering. Small Science, 0, , 2200074.	5.8	0
974	Shape-Preserving Transformation of Electrodeposited Macroporous Microparticles for Single-Particle SERS Applications. ACS Applied Materials & Interfaces, 2023, 15, 8286-8297.	4.0	4
975	Uniform Formation of a Characteristic Nanocomposite Structure of Biogenous Iron Oxide for High Rate Performance as the Anode of Lithium-Ion Batteries. Journal of Physical Chemistry C, 2023, 127, 2223-2230.	1.5	2
976	Achieving Functionality and Multifunctionality through Bulk and Interfacial Structuring of Colloidal-Crystal-Templated Materials. Langmuir, 2023, 39, 2890-2910.	1.6	2
977	Redox active cement-based electrolyte towards high-voltage asymmetric solid supercapacitor. Cement and Concrete Composites, 2023, 138, 104987.	4.6	7
978	Kirkendall effect induced NiFe: WS2 core-shell nanocubes for Dye-sensitized solar cell and battery-type Supercapacitor applications. Journal of Energy Storage, 2023, 63, 106964.	3.9	10
979	Electrodeposition of Li-Ion Cathode Materials: The Fascinating Alternative for Li-Ion Micro-Batteries Fabrication. Journal of the Electrochemical Society, 2023, 170, 020509.	1.3	3

#	Article	IF	CITATIONS
980	Research progress towards the corrosion and protection of electrodes in energy-storage batteries. Energy Storage Materials, 2023, 57, 371-399.	9.5	12
981	Multiscale architected porous materials for renewable energy conversion and storage. Energy Storage Materials, 2023, 59, 102768.	9.5	6
987	Aerogels for Electrochemical Energy Storage Applications. Springer Handbooks, 2023, , 1305-1332.	0.3	0
988	Nanoporous oxide electrodes for energy conversion and storage devices. , 2024, 1, 11-42.		Ο
993	Synthesis of Vanadium-Based Nanomaterials. , 2023, , 49-86.		0
1000	Copper tetrathiovanadate (Cu3VS4): a new emerging electrode for rechargeable aqueous aluminum-ion battery. Dalton Transactions, 0, , .	1.6	0