A stretchable carbon nanotube strain sensor for human

Nature Nanotechnology 6, 296-301 DOI: 10.1038/nnano.2011.36

Citation Report

#	Article	IF	CITATIONS
19	High performance, freestanding and superthin carbon nanotube/epoxy nanocomposite films. Nanoscale, 2011, 3, 3731.	2.8	31
20	Stiffness, Strength, and Ductility of Nanoscale Thin Films and Membranes: A Combined Wrinkling–Cracking Methodology. Nano Letters, 2011, 11, 3361-3365.	4.5	125
21	Correlation between Droplet-Induced Strain Actuation and Voltage Generation in Single-Wall Carbon Nanotube Films. Nano Letters, 2011, 11, 5117-5122.	4.5	6
22	Stretchable, elastic materials and devices for solar energy conversion. Energy and Environmental Science, 2011, 4, 3314.	15.6	356
23	Electrospun PEDOT:PSS–PVA nanofiber based ultrahigh-strain sensors with controllable electrical conductivity. Journal of Materials Chemistry, 2011, 21, 18962.	6.7	177
24	Selective growth, characterization, and field emission performance of single-walled and few-walled carbon nanotubes by plasma enhanced chemical vapor deposition. Applied Surface Science, 2011, 258, 1366-1372.	3.1	13
25	Waterâ€Based Isotropically Conductive Adhesives: Towards Green and Low ost Flexible Electronics. Advanced Functional Materials, 2011, 21, 4582-4588.	7.8	88
26	PZT Nanoactive Fiber Composites for Acoustic Emission Detection. Advanced Materials, 2011, 23, 3965-3969.	11.1	26
27	High‣train Sensors Based on ZnO Nanowire/Polystyrene Hybridized Flexible Films. Advanced Materials, 2011, 23, 5440-5444.	11.1	497
28	Development of patterned carbon nanotubes on a 3D polymer substrate for the flexible tactile sensor application. Journal of Micromechanics and Microengineering, 2011, 21, 115012.	1.5	50
29	Wearable and Implantable Sensors: The Patient's Perspective. Sensors, 2012, 12, 16695-16709.	2.1	94
30	Next Generation Non-Vacuum, Maskless, Low Temperature Nanoparticle Ink Laser Digital Direct Metal Patterning for a Large Area Flexible Electronics. PLoS ONE, 2012, 7, e42315.	1.1	106
31	A Simple, Low-Cost Conductive Composite Material for 3D Printing of Electronic Sensors. PLoS ONE, 2012, 7, e49365.	1.1	633
32	Dynamic and Galvanic Stability of Stretchable Supercapacitors. Nano Letters, 2012, 12, 6366-6371.	4.5	182
33	Highly stretchable electric circuits from a composite material of silver nanoparticles and elastomeric fibres. Nature Nanotechnology, 2012, 7, 803-809.	15.6	782
34	Nanomaterials on flexible substrates to explore innovative functions: From energy harvesting to bio-integrated electronics. Thin Solid Films, 2012, 524, 1-19.	0.8	28
35	Hierarchical carbon nanotube membrane with high packing density and tunable porous structure for high voltage supercapacitors. Carbon, 2012, 50, 5167-5175.	5.4	87
36	Miniaturized platform with on-chip strain sensors for compression testing of arrayed materials. Lab on A Chip, 2012, 12, 4178.	3.1	18

#	Article	IF	CITATIONS
37	Hybrid effect of gas flow and light excitation in carbon/silicon Schottky solar cells. Journal of Materials Chemistry, 2012, 22, 3330.	6.7	12
38	Stretchable and highly sensitive graphene-on-polymer strain sensors. Scientific Reports, 2012, 2, 870.	1.6	517
39	Nanocomposites of reduced graphene oxide nanosheets and conducting polymer for stretchable transparent conducting electrodes. Journal of Materials Chemistry, 2012, 22, 23759.	6.7	89
40	Very long Ag nanowire synthesis and its application in a highly transparent, conductive and flexible metal electrode touch panel. Nanoscale, 2012, 4, 6408.	2.8	670
41	A dechlorination pathway for synthesis of horn shaped carbon nanotubes and its adsorption properties for CO2, CH4, CO and N2. Journal of Hazardous Materials, 2012, 227-228, 317-326.	6.5	30
42	Enhancing the Humidity Sensitivity of Ga ₂ O ₃ /SnO ₂ Core/Shell Microribbon by Applying Mechanical Strain and Its Application as a Flexible Strain Sensor. Small, 2012, 8, 3599-3604.	5.2	25
43	Hierarchical Three-Dimensional Layer-by-Layer Assembly of Carbon Nanotube Wafers for Integrated Nanoelectronic Devices. Nano Letters, 2012, 12, 4540-4545.	4.5	23
44	Evaluation of Solution-Processable Carbon-Based Electrodes for All-Carbon Solar Cells. ACS Nano, 2012, 6, 10384-10395.	7.3	154
45	Laser-Assisted Simultaneous Transfer and Patterning of Vertically Aligned Carbon Nanotube Arrays on Polymer Substrates for Flexible Devices. ACS Nano, 2012, 6, 7858-7866.	7.3	57
46	Rapid Electromechanical Transduction on a Single-Walled Carbon Nanotube Film: Sensing Fast Mechanical Loading via Detection of Electrical Signal Change. Industrial & Engineering Chemistry Research, 2012, 51, 14714-14721.	1.8	6
47	Solderable and electroplatable flexible electronic circuit on a porous stretchable elastomer. Nature Communications, 2012, 3, 977.	5.8	199
48	A simple infrared nanosensor array based on carbon nanoparticles. Frontiers of Optoelectronics, 2012, 5, 266-270.	1.9	3
49	Spray-coated carbon nanotube thin-film transistors with striped transport channels. Nanotechnology, 2012, 23, 505203.	1.3	13
50	A novel flexible strain gauge sensor fabricated using screen printing. , 2012, , .		15
51	Electronic Properties of Transparent Conductive Films of PEDOT:PSS on Stretchable Substrates. Chemistry of Materials, 2012, 24, 373-382.	3.2	503
52	Acoustic emission transducer based on PZT nanofibers. , 2012, , .		1
53	Flexible Tactile Sensor Using the Reversible Deformation of Poly(3-hexylthiophene) Nanofiber Assemblies. Langmuir, 2012, 28, 17593-17596.	1.6	84
54	Alignment Control of Carbon Nanotube Forest from Random to Nearly Perfectly Aligned by Utilizing the Crowding Effect. ACS Nano, 2012, 6, 5837-5844.	7.3	151

#	Article	IF	CITATIONS
55	Design and Fabrication of Single-Walled Carbon Nanonet Flexible Strain Sensors. Sensors, 2012, 12, 3269-3280.	2.1	17
56	Bundling dynamics regulates the active mechanics and transport in carbon nanotube networks and their nanocomposites. Nanoscale, 2012, 4, 3584.	2.8	19
57	A flexible and highly sensitive strain-gauge sensor using reversible interlocking of nanofibres. Nature Materials, 2012, 11, 795-801.	13.3	1,453
58	Highly Sensitive Skinâ€Mountable Strain Gauges Based Entirely on Elastomers. Advanced Functional Materials, 2012, 22, 4044-4050.	7.8	709
59	Visualizing Strain Evolution and Coordinated Buckling within CNT Arrays by In Situ Digital Image Correlation. Advanced Functional Materials, 2012, 22, 4686-4695.	7.8	35
60	Extrusion Printing of Flexible Electrically Conducting Carbon Nanotube Networks. Advanced Functional Materials, 2012, 22, 4790-4800.	7.8	60
61	Super‧tretchable Spring‣ike Carbon Nanotube Ropes. Advanced Materials, 2012, 24, 2896-2900.	11.1	193
62	Highly Conductive and Stretchable Silver Nanowire Conductors. Advanced Materials, 2012, 24, 5117-5122.	11.1	1,139
63	Surfaceâ€Grafted Polymerâ€Assisted Electroless Deposition of Metals for Flexible and Stretchable Electronics. Chemistry - an Asian Journal, 2012, 7, 862-870.	1.7	61
64	Assembly of one dimensional inorganic nanostructures into functional 2D and 3D architectures. Synthesis, arrangement and functionality. Chemical Society Reviews, 2012, 41, 5285.	18.7	237
65	Synthesis of vertically-aligned carbon nanotubes without a catalyst by hydrogen arc discharge. Carbon, 2012, 50, 2726-2730.	5.4	34
66	A highly-deformable composite composed of an entangled network of electrically-conductive carbon-nanotubes embedded in elastic polyurethane. Carbon, 2012, 50, 3446-3453.	5.4	97
67	Modified resistivity–strain behavior through the incorporation of metallic particles in conductive polymer composite fibers containing carbon nanotubes. Polymer International, 2013, 62, 134-140.	1.6	62
68	Stretchable and self-healing polymers and devices for electronic skin. Progress in Polymer Science, 2013, 38, 1961-1977.	11.8	539
69	Materials made of carbon nanotubes. The carbon nanotube forest. Russian Chemical Reviews, 2013, 82, 538-566.	2.5	39
70	User-interactive electronic skin for instantaneous pressure visualization. Nature Materials, 2013, 12, 899-904.	13.3	1,044
71	Dissipative optomechanical coupling between a single-wall carbon nanotube and a high- <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>Q</mml:mi>microcavity. Physical Review A, 2013, 88, .</mml:math 	1.0	20
72	A numerical investigation on piezoresistive behaviour of carbon nanotube/polymer composites: mechanism and optimizing principle. Nanotechnology, 2013, 24, 265704.	1.3	62

#	Article	IF	CITATIONS
73	High performance flexible sensor based on inorganic nanomaterials. Sensors and Actuators B: Chemical, 2013, 176, 522-533.	4.0	77
74	One hundred fold increase in current carrying capacity in a carbon nanotube–copper composite. Nature Communications, 2013, 4, 2202.	5.8	422
75	Highly Stretchable Patterned Gold Electrodes Made of Au Nanosheets. Advanced Materials, 2013, 25, 2707-2712.	11.1	159
76	Intrinsically Stretchable Supercapacitors Composed of Polypyrrole Electrodes and Highly Stretchable Gel Electrolyte. ACS Applied Materials & Interfaces, 2013, 5, 9008-9014.	4.0	190
77	Potentiometric sensors using cotton yarns, carbon nanotubes and polymeric membranes. Analyst, The, 2013, 138, 5208.	1.7	182
78	Flexible Sensors Based on Nanoparticles. ACS Nano, 2013, 7, 8366-8378.	7.3	435
79	An Attachable Clothing Sensor System for Measuring Knee Joint Angles. IEEE Sensors Journal, 2013, 13, 4090-4097.	2.4	57
80	Towards Tunable Sensitivity of Electrical Property to Strain for Conductive Polymer Composites Based on Thermoplastic Elastomer. ACS Applied Materials & Interfaces, 2013, 5, 5815-5824.	4.0	237
81	Facile diameter control of vertically aligned, narrow single-walled carbon nanotubes. RSC Advances, 2013, 3, 1434-1441.	1.7	22
82	Dry adhesives with sensing features. Smart Materials and Structures, 2013, 22, 085010.	1.8	5
83	A hierarchically structured graphene foam and its potential as a large-scale strain-gauge sensor. Nanoscale, 2013, 5, 12171.	2.8	176
84	Transparent graphene films with a tunable piezoresistive response. Journal of Materials Chemistry C, 2013, 1, 7208.	2.7	12
85	Printed electrically conductive composites: conductive filler designs and surface engineering. Journal of Materials Chemistry C, 2013, 1, 4052.	2.7	120
85 86		2.7 7.3	120 18
	Journal of Materials Chemistry C, 2013, 1, 4052.		
86	Journal of Materials Chemistry C, 2013, 1, 4052. Carbon Nanotube Core Graphitic Shell Hybrid Fibers. ACS Nano, 2013, 7, 10971-10977. Flexible piezoelectric nanofiber composite membranes as high performance acoustic emission sensors.	7.3	18
86 87	Journal of Materials Chemistry C, 2013, 1, 4052. Carbon Nanotube Core Graphitic Shell Hybrid Fibers. ACS Nano, 2013, 7, 10971-10977. Flexible piezoelectric nanofiber composite membranes as high performance acoustic emission sensors. Sensors and Actuators A: Physical, 2013, 199, 372-378. Cracked titanium film on an elastomeric substrate for highly flexible, transparent, and low-power	7.3 2.0	18 33

#	Article	IF	CITATIONS
91	Effect of Au nanotube size on molecular behavior of water/ethanol mixtures. RSC Advances, 2013, 3, 5860.	1.7	5
92	A Stretchable RF Antenna With Silver Nanowires. IEEE Electron Device Letters, 2013, 34, 544-546.	2.2	97
93	Stretchable conductive polyurethane elastomer in situ polymerized with multi-walled carbon nanotubes. Journal of Materials Chemistry C, 2013, 1, 2744.	2.7	52
94	Evaluation of Thumb-Operated Directional Pad Functionalities on a Glove-Based Optical Fiber Sensor. IEEE Transactions on Instrumentation and Measurement, 2013, 62, 2330-2337.	2.4	7
95	Graphene-based transparent strain sensor. Carbon, 2013, 51, 236-242.	5.4	711
96	A review of fabrication and applications of carbon nanotube film-based flexible electronics. Nanoscale, 2013, 5, 1727.	2.8	1,037
97	Micropatterned Stretchable Circuit and Strain Sensor Fabricated by Lithography on an Electrospun Nanofiber Mat. ACS Applied Materials & Interfaces, 2013, 5, 8766-8771.	4.0	43
98	Torsion-Sensing Material from Aligned Carbon Nanotubes Wound onto a Rod Demonstrating Wide Dynamic Range. ACS Nano, 2013, 7, 3177-3182.	7.3	18
99	Transparent, stretchable, carbon-nanotube-inlaid conductors enabled by standard replication technology for capacitive pressure, strain and touch sensors. Journal of Materials Chemistry A, 2013, 1, 3580.	5.2	123
100	High performance piezoelectric devices based on aligned arrays of nanofibers of poly(vinylidenefluoride-co-trifluoroethylene). Nature Communications, 2013, 4, 1633.	5.8	1,001
101	Organic/inorganic hybrid sensors: A review. Sensors and Actuators B: Chemical, 2013, 182, 467-481.	4.0	246
102	Ultrathin Two-Dimensional MnO ₂ /Graphene Hybrid Nanostructures for High-Performance, Flexible Planar Supercapacitors. Nano Letters, 2013, 13, 2151-2157.	4.5	818
103	Stretchable Conductors Based on Silver Nanowires: Improved Performance through a Binary Network Design. Angewandte Chemie - International Edition, 2013, 52, 1654-1659.	7.2	182
104	Highly Stretchable, Integrated Supercapacitors Based on Singleâ€Walled Carbon Nanotube Films with Continuous Reticulate Architecture. Advanced Materials, 2013, 25, 1058-1064.	11.1	496
105	Elastic carbon nanotube straight yarns embedded with helical loops. Nanoscale, 2013, 5, 2403.	2.8	44
106	Lightâ€Switchable Singleâ€Walled Carbon Nanotubes Based on Host–Guest Chemistry. Advanced Functional Materials, 2013, 23, 5010-5018.	7.8	37
107	Elastomeric transparent capacitive sensors based on an interpenetrating composite of silver nanowires and polyurethane. Applied Physics Letters, 2013, 102, .	1.5	284
108	Positive piezoresistive behavior of electrically conductive alkyl-functionalized graphene/polydimethylsilicone nanocomposites. Journal of Materials Chemistry C, 2013, 1, 515-521.	2.7	106

#	Article	IF	CITATIONS
109	Piezoelectric rubber films for highly sensitive impact measurement. Journal of Micromechanics and Microengineering, 2013, 23, 075009.	1.5	15
110	Carbon nanotube-based multicolor fluorescent peptide probes for highly sensitive multiplex detection of cancer-related proteases. Journal of Materials Chemistry B, 2013, 1, 3470.	2.9	19
111	Carbon Nanotube Spongeâ€Array Tandem Composites with Extended Energy Absorption Range. Advanced Materials, 2013, 25, 1185-1191.	11.1	47
113	Direct Desktop Printed-Circuits-on-Paper Flexible Electronics. Scientific Reports, 2013, 3, .	1.6	295
114	Fabrication and characterization of carbon nanotube–polyimide composite based high temperature flexible thin film piezoresistive strain sensor. Sensors and Actuators A: Physical, 2013, 199, 265-271.	2.0	51
115	Alignment of multi-wall carbon nanotubes by disentanglement in ultra-thin melt-drawn polymer films. Carbon, 2013, 60, 366-378.	5.4	15
116	Developing Polymer Composite Materials: Carbon Nanotubes or Graphene?. Advanced Materials, 2013, 25, 5153-5176.	11.1	398
117	Fabrication of curled conducting polymer microfibrous arrays via a novel electrospinning method for stretchable strain sensors. Nanoscale, 2013, 5, 7041.	2.8	97
118	A transparent and stretchable graphene-based actuator for tactile display. Nanotechnology, 2013, 24, 145501.	1.3	70
119	Tunable Touch Sensor and Combined Sensing Platform: Toward Nanoparticle-based Electronic Skin. ACS Applied Materials & Interfaces, 2013, 5, 5531-5541.	4.0	149
120	GEMINI: A Generic Multi-Modal Natural Interface Framework for Videogames. Advances in Intelligent Systems and Computing, 2013, , 873-884.	0.5	2
121	25th Anniversary Article: The Evolution of Electronic Skin (Eâ€Skin): A Brief History, Design Considerations, and Recent Progress. Advanced Materials, 2013, 25, 5997-6038.	11.1	2,001
122	Super-stretchable, Transparent Carbon Nanotube-Based Capacitive Strain Sensors for Human Motion Detection. Scientific Reports, 2013, 3, 3048.	1.6	573
123	Wearable skin sensor using programmable interlocking of nanofibers. , 2013, , .		2
124	Spontaneous Assembly of Carbon-Based Chains in Polymer Matrixes through Surface Charge Templates. Langmuir, 2013, 29, 15503-15510.	1.6	18
125	Deformable strain sensors based on patterned MWCNTs/polydimethylsiloxane composites. Journal of Polymer Science, Part B: Polymer Physics, 2013, 51, 1505-1512.	2.4	33
126	Piezoelectric Deflection Sensor for a Bi-Bellows Actuator. IEEE/ASME Transactions on Mechatronics, 2013, 18, 1226-1230.	3.7	25
127	Soft wearable motion sensing suit for lower limb biomechanics measurements. , 2013, , .		87

#	Article	IF	CITATIONS
128	Enhanced Skin Adhesive Patch with Modulus‶unable Composite Micropillars. Advanced Healthcare Materials, 2013, 2, 109-113.	3.9	139
129	Biaxially stretchable silver nanowire transparent conductors. Journal of Applied Physics, 2013, 113, .	1.1	48
130	Multi-shot printing of conductive tracks using a dry carbon nanotube ink. Circuit World, 2013, 39, 181-187.	0.7	2
131	Gauge Factor and Stretchability of Silicon-on-Polymer Strain Gauges. Sensors, 2013, 13, 8577-8594.	2.1	97
132	Free-standing nanocomposites with high conductivity and extensibility. Nanotechnology, 2013, 24, 165401.	1.3	21
133	Biaxially Stretchable Transparent Conductors That Use Metallic Single-Walled Carbon Nanotube Films. Materials Research Society Symposia Proceedings, 2013, 1505, 1.	0.1	0
134	Recent advances in flexible sensors for wearable and implantable devices. Journal of Applied Polymer Science, 2013, 130, 1429-1441.	1.3	382
135	Sensor and actuator integrated low-profile robotic origami. , 2013, , .		34
136	High strain biocompatible polydimethylsiloxane-based conductive graphene and multiwalled carbon nanotube nanocomposite strain sensors. Applied Physics Letters, 2013, 102, .	1.5	174
137	Design optimized membrane-based flexible paper accelerometer with silver nano ink. Applied Physics Letters, 2013, 103, .	1.5	23
138	A stretchable and transparent SWNT strain sensor encapsulated in thin PDMS films. , 2013, , .		3
139	Stretchable strain sensor based on metal nanoparticle thin film for human motion detection & flexible pressure sensing devices. , 2013, , .		6
140	Directly Writing Resistor, Inductor and Capacitor to Composite Functional Circuits: A Super-Simple Way for Alternative Electronics. PLoS ONE, 2013, 8, e69761.	1.1	47
141	Archimedean spiral design for extremely stretchable interconnects. Extreme Mechanics Letters, 2014, 1, 29-34.	2.0	51
142	Highly stretchable pseudocapacitors based on buckled reticulate hybrid electrodes. Nano Research, 2014, 7, 1680-1690.	5.8	47
143	Stretching Silver: Printed Metallic Nano Inks in Stretchable Conductor Applications. IEEE Nanotechnology Magazine, 2014, 8, 6-13.	0.9	19
144	Biaxially stretchable transparent conductors that use nanowire networks. Journal of Materials Research, 2014, 29, 2965-2972.	1.2	16
145	Wearable soft sensing suit for human gait measurement. International Journal of Robotics Research, 2014, 33, 1748-1764.	5.8	325

#	Article	IF	CITATIONS
146	Skin-inspired electronic devices. Materials Today, 2014, 17, 321-331.	8.3	487
147	Synthesis and Characterization of Nanostructured Copolymer-Grafted Multiwalled Carbon Nanotube Composite Thermoplastic Elastomers toward Unique Morphology and Strongly Enhanced Mechanical Properties. Industrial & Engineering Chemistry Research, 2014, 53, 20154-20167.	1.8	18
148	Finger movement based attender calling system for ICU patient management and rehabilitation. , 2014, ,		3
149	Stretchable and Flexible High-Strain Sensors Made Using Carbon Nanotubes and Graphite Films on Natural Rubber. Sensors, 2014, 14, 868-876.	2.1	163
150	SVAS3: Strain Vector Aided Sensorization of Soft Structures. Sensors, 2014, 14, 12748-12770.	2.1	58
151	An Ionic Liquid Based Strain Sensor for Large Displacements. Procedia Engineering, 2014, 87, 1123-1126.	1.2	16
152	Comparison of Piezoresistive Monofilament Polymer Sensors. Sensors, 2014, 14, 1278-1294.	2.1	52
153	Flexible Carbon Nanotube Films for High Performance Strain Sensors. Sensors, 2014, 14, 10042-10071.	2.1	249
154	Sensitive and stable strain sensors based on the wavy structured electrodes. , 2014, , .		5
155	Fabrication of silver nanorods embedded in PDMS film and its application for strain sensing. Journal Physics D: Applied Physics, 2014, 48, 445303.	1.3	9
156	Development of stretchable strain sensor using elastic membrane coated with conducting material. , 2014, , .		0
157	Electrical conduction of nanoparticle monolayer for accurate tracking of mechanical stimulus in finger touch sensing. Nanoscale, 2014, 6, 13809-13816.	2.8	16
158	Fabrication of Stretchable Singleâ€Walled Carbon Nanotube Logic Devices. Small, 2014, 10, 2910-2917.	5.2	9
159	Heavy duty piezoresistivity induced strain sensing natural rubber/carbon black nanocomposites reinforced with different carbon nanofillers. Materials Research Express, 2014, 1, 035029.	0.8	16
160	Reverseâ€Micelleâ€Induced Porous Pressureâ€6ensitive Rubber for Wearable Human–Machine Interfaces. Advanced Materials, 2014, 26, 4825-4830.	11.1	564
161	A highly stretchable, helical copper nanowire conductor exhibiting a stretchability of 700%. NPG Asia Materials, 2014, 6, e132-e132.	3.8	126
162	One-step fabrication of free-standing flexible membranes reinforced with self-assembled arrays of carbon nanotubes. Applied Physics Letters, 2014, 105, 153101.	1.5	6
163	Inkjet-printed stretchable single-walled carbon nanotube electrodes with excellent mechanical properties. Applied Physics Letters, 2014, 104, .	1.5	58

#	Article	IF	CITATIONS
164	Mechanical and electrical numerical analysis of soft liquid-embedded deformation sensors analysis. Extreme Mechanics Letters, 2014, 1, 42-46.	2.0	38
166	Ultrasensitive Piezoresistive Pressure Sensors Based on Interlocked Micropillar Arrays. BioNanoScience, 2014, 4, 349-355.	1.5	29
167	Strain-Driven and Ultrasensitive Resistive Sensor/Switch Based on Conductive Alginate/Nitrogen-Doped Carbon-Nanotube-Supported Ag Hybrid Aerogels with Pyramid Design. ACS Applied Materials & Interfaces, 2014, 6, 22823-22829.	4.0	58
168	Fully printed, large-scale, high sensitive strain sensor array for stress monitoring of infrastructures. , 2014, , .		0
169	Ultrasensitive mechanical crack-based sensor inspired by the spider sensory system. Nature, 2014, 516, 222-226.	13.7	1,196
170	Carbon-Based Nanomaterials for Drugs Sensing: A Review. Materials Science Forum, 2014, 807, 13-39.	0.3	3
171	Strainâ€Responsive Polyurethane/PEDOT:PSS Elastomeric Composite Fibers with High Electrical Conductivity. Advanced Functional Materials, 2014, 24, 2957-2966.	7.8	238
172	Torsion sensors of high sensitivity and wide dynamic range based on a graphene woven structure. Nanoscale, 2014, 6, 13053-13059.	2.8	48
173	Highly Sensitive Nonâ€Classical Strain Gauge Using Organic Heptazole Thinâ€Film Transistor Circuit on a Flexible Substrate. Advanced Functional Materials, 2014, 24, 4413-4419.	7.8	44
174	Alignment and structural control of nitrogen-doped carbon nanotubes by utilizing precursor concentration effect. Nanotechnology, 2014, 25, 475601.	1.3	8
175	Magnetically induced changes in diameter and deposition rate of single-walled carbon nanotubes in arc discharge. Japanese Journal of Applied Physics, 2014, 53, 02BD05.	0.8	5
176	Characteristics and Applications of Carbon Nanotubes with Different Numbers of Walls. , 2014, , 313-339.		5
177	Continuum analysis of carbon nanotube array buckling enabled by anisotropic elastic measurements and modeling. Carbon, 2014, 66, 377-386.	5.4	40
178	Progress on the morphological control of conductive network in conductive polymer composites and the use as electroactive multifunctional materials. Progress in Polymer Science, 2014, 39, 627-655.	11.8	553
179	A Flexible Reduced Graphene Oxide Fieldâ€Effect Transistor for Ultrasensitive Strain Sensing. Advanced Functional Materials, 2014, 24, 117-124.	7.8	132
180	Electrochemical determination of ascorbic acid, dopamine and uric acid based on an exfoliated graphite paper electrode: A high performance flexible sensor. Sensors and Actuators B: Chemical, 2014, 193, 492-500.	4.0	150
181	Bipolar strain sensor based on an ultra-thin film of single-walled carbon nanotubes. Journal of the Korean Physical Society, 2014, 64, 488-491.	0.3	2
182	Recent advances in flexible and stretchable electronic devices via electrospinning. Journal of Materials Chemistry C, 2014, 2, 1209-1219.	2.7	144

		CITATION REPORT		
#	Article		IF	CITATIONS
183	Stretchable, Wearable Dye ensitized Solar Cells. Advanced Materials, 2014, 26, 264	ł3-2647.	11.1	227
184	Rapid Prototyping for Softâ€Matter Electronics. Advanced Functional Materials, 2014,	24, 3351-3356.	7.8	173
185	Wearable, Humanâ€Interactive, Healthâ€Monitoring, Wireless Devices Fabricated by N Techniques. Advanced Functional Materials, 2014, 24, 3299-3304.	lacroscale Printing	7.8	392
186	Flexible and Transparent Nanocomposite of Reduced Graphene Oxide and P(VDFâ€TrF High Thermal Responsivity in a Fieldâ€Effect Transistor. Advanced Functional Materials 3438-3445.	E) Copolymer for 5, 2014, 24,	7.8	110
187	Working mechanisms of strain sensors utilizing aligned carbon nanotube network and printed electrodes. Carbon, 2014, 73, 303-309.	. aerosol jet	5.4	74
188	Highly Stretchable Transistors Using a Microcracked Organic Semiconductor. Advance 2014, 26, 4253-4259.	d Materials,	11.1	200
189	Unobtrusive Sensing and Wearable Devices for Health Informatics. IEEE Transactions c Engineering, 2014, 61, 1538-1554.	on Biomedical	2.5	607
190	Wearable and Highly Sensitive Graphene Strain Sensors for Human Motion Monitoring Functional Materials, 2014, 24, 4666-4670.	, Advanced	7.8	923
191	Strain-Engineering the Anisotropic Electrical Conductance of Few-Layer Black Phospho Letters, 2014, 14, 2884-2889.	rus. Nano	4.5	1,125
192	Highly Stretchable Piezoresistive Graphene–Nanocellulose Nanopaper for Strain Sen Materials, 2014, 26, 2022-2027.	sors. Advanced	11.1	1,009
193	Highly sensitive electronic whiskers based on patterned carbon nanotube and silver na composite films. Proceedings of the National Academy of Sciences of the United State 2014, 111, 1703-1707.	noparticle s of America,	3.3	234
194	Bandageâ€Based Wearable Potentiometric Sensor for Monitoring Wound pH. Electroa 1345-1353.	ınalysis, 2014, 26,	1.5	240
195	Molecularly Stretchable Electronics. Chemistry of Materials, 2014, 26, 3028-3041.		3.2	170
196	Bioinspired Carbon Nanotube Fuzzy Fiber Hair Sensor for Airâ€Flow Detection. Advanc 26, 3230-3234.	ed Materials, 2014,	11.1	91
197	Stretchable Silverâ€Zinc Batteries Based on Embedded Nanowire Elastic Conductors. A Materials, 2014, 4, 1301396.	Advanced Energy	10.2	127
198	Piezoresistive behavior of graphene nanoplatelets/carbon black/silicone rubber nanocc Journal of Applied Polymer Science, 2014, 131, .	mposite.	1.3	37
199	Hybrid ferroelectric–polymer microfluidic device for dielectrophoretic self-assembling nanoparticles. RSC Advances, 2014, 4, 2851-2857.	g of	1.7	29
200	A wearable and highly sensitive pressure sensor with ultrathin gold nanowires. Nature Communications, 2014, 5, 3132.		5.8	1,731

#	Article	IF	CITATIONS
201	Piezoelectric rubber films for autonomous physiological monitoring systems. Sensors and Actuators A: Physical, 2014, 215, 176-183.	2.0	18
202	An ultra-sensitive resistive pressure sensor based on hollow-sphere microstructure induced elasticity in conducting polymer film. Nature Communications, 2014, 5, 3002.	5.8	1,225
203	Wearable multifunctional sensors using printed stretchable conductors made of silver nanowires. Nanoscale, 2014, 6, 2345.	2.8	895
204	Smart fabric sensors and e-textile technologies: a review. Smart Materials and Structures, 2014, 23, 053001.	1.8	597
205	Highly Stretchable Resistive Pressure Sensors Using a Conductive Elastomeric Composite on a Micropyramid Array. Advanced Materials, 2014, 26, 3451-3458.	11.1	1,030
206	Strain gauge sensors based on thermoplastic nanocomposite for monitoring inflatable structures. , 2014, , .		23
207	ZnO nanoparticles embedded in polyethylene-glycol (PEG) matrix as sensitive strain gauge elements. Journal of Nanoparticle Research, 2014, 16, 1.	0.8	5
208	Manipulating the Morphology of Silver Nanoparticles with Local Plasmonâ€Mediated Control. Particle and Particle Systems Characterization, 2014, 31, 342-346.	1.2	10
209	Design of a glove-based optical fiber sensor for applications in biomechatronics. , 2014, , .		4
210	Flexible Optical Fiber Bending Transducer for Application in Glove-Based Sensors. IEEE Sensors Journal, 2014, 14, 3631-3636.	2.4	55
211	Ultrathin self-powered artificial skin. Energy and Environmental Science, 2014, 7, 3994-3999.	15.6	36
212	Bayesian recognition of safety relevant motion activities with inertial sensors and barometer. , 2014, ,		12
213	Non-wrinkled, highly stretchable piezoelectric devices by electrohydrodynamic direct-writing. Nanoscale, 2014, 6, 3289.	2.8	129
214	Tactile-Direction-Sensitive and Stretchable Electronic Skins Based on Human-Skin-Inspired Interlocked Microstructures. ACS Nano, 2014, 8, 12020-12029.	7.3	516
215	The resistivity–strain behavior of conductive polymer composites: stability and sensitivity. Journal of Materials Chemistry A, 2014, 2, 17085-17098.	5.2	185
216	Ultrafine PDMS fibers: preparation from in situ curing-electrospinning and mechanical characterization. RSC Advances, 2014, 4, 11782-11787.	1.7	42
217	Towards tunable resistivity–strain behavior through construction of oriented and selectively distributed conductive networks in conductive polymer composites. Journal of Materials Chemistry A, 2014, 2, 10048-10058.	5.2	82
218	Highly conductive and stretchable Ag nanowire/carbon nanotube hybrid conductors. Nanotechnology, 2014, 25, 285203.	1.3	46

#	Article	IF	CITATIONS
219	Stretchable Energyâ€Harvesting Tactile Electronic Skin Capable of Differentiating Multiple Mechanical Stimuli Modes. Advanced Materials, 2014, 26, 7324-7332.	11.1	481
220	Sensitive, High-Strain, High-Rate Bodily Motion Sensors Based on Graphene–Rubber Composites. ACS Nano, 2014, 8, 8819-8830.	7.3	708
221	Fully Printed, Highly Sensitive Multifunctional Artificial Electronic Whisker Arrays Integrated with Strain and Temperature Sensors. ACS Nano, 2014, 8, 3921-3927.	7.3	286
222	Synergistically Enhanced Stability of Highly Flexible Silver Nanowire/Carbon Nanotube Hybrid Transparent Electrodes by Plasmonic Welding. ACS Applied Materials & Interfaces, 2014, 6, 10974-10980.	4.0	84
223	Stretchable Energy Storage and Conversion Devices. Small, 2014, 10, 3443-3460.	5.2	126
224	Three-dimensionally deformable, highly stretchable, permeable, durable and washable fabric circuit boards. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2014, 470, 20140472.	1.0	56
225	Conductivity enhancement of stretchable PEDOT:PSS nanowire interconnect fabricated by fountain-pen lithography. Materials Chemistry and Physics, 2014, 147, 1171-1174.	2.0	13
226	A graphene force sensor with pressure-amplifying structure. Carbon, 2014, 78, 601-608.	5.4	60
227	Carbon nanotubes based high temperature vulcanized silicone rubber nanocomposite with excellent elasticity and electrical properties. Composites Part A: Applied Science and Manufacturing, 2014, 66, 135-141.	3.8	88
228	Dual functional transparent film for proximity and pressure sensing. Nano Research, 2014, 7, 1488-1496.	5.8	122
229	A stretchable strain sensor based on a metal nanoparticle thin film for human motion detection. Nanoscale, 2014, 6, 11932-11939.	2.8	529
230	Carbon nanotubes and graphene towards soft electronics. Nano Convergence, 2014, 1, 15.	6.3	112
231	Super-stretchy lithium-ion battery based on carbon nanotube fiber. Journal of Materials Chemistry A, 2014, 2, 11054.	5.2	167
232	Stretchable Conductive Polypyrrole/Polyurethane (PPy/PU) Strain Sensor with Netlike Microcracks for Human Breath Detection. ACS Applied Materials & amp; Interfaces, 2014, 6, 1313-1319.	4.0	223
233	Fiberâ€Based Wearable Electronics: A Review of Materials, Fabrication, Devices, and Applications. Advanced Materials, 2014, 26, 5310-5336.	11.1	1,689
234	Highly Stretchable and Sensitive Strain Sensor Based on Silver Nanowire–Elastomer Nanocomposite. ACS Nano, 2014, 8, 5154-5163.	7.3	1,957
235	Fiber-Based Generator for Wearable Electronics and Mobile Medication. ACS Nano, 2014, 8, 6273-6280.	7.3	543
236	Facile fabrication of robust superhydrophobic multilayered film based on bioinspired poly(dopamine)-modified carbon nanotubes. Physical Chemistry Chemical Physics, 2014, 16, 2936.	1.3	51

#	Article	IF	CITATIONS
237	Threeâ€Dimensional Carbon Nanotube Spongeâ€Array Architectures with High Energy Dissipation. Advanced Materials, 2014, 26, 1248-1253.	11.1	88
238	Stretchable RFID for Wireless Strain Sensing With Silver Nano Ink. IEEE Sensors Journal, 2014, 14, 4395-4401.	2.4	75
239	Stretchable organic memory: toward learnable and digitized stretchable electronic applications. NPG Asia Materials, 2014, 6, e87-e87.	3.8	74
240	Highâ€Performance and Tailorable Pressure Sensor Based on Ultrathin Conductive Polymer Film. Small, 2014, 10, 1466-1472.	5.2	189
241	Water Surface Assisted Synthesis of Largeâ€6cale Carbon Nanotube Film for Highâ€Performance and Stretchable Supercapacitors. Advanced Materials, 2014, 26, 4724-4729.	11.1	148
242	Hydrogen Storage in Porous Single-Walled Carbon Nanohorns Dispersed with Pd–Ni Alloy Nanoparticles. Journal of Physical Chemistry C, 2014, 118, 3402-3408.	1.5	40
243	Microstructured Graphene Arrays for Highly Sensitive Flexible Tactile Sensors. Small, 2014, 10, 3625-3631.	5.2	540
244	Materials and Structures for Stretchable Energy Storage and Conversion Devices. Advanced Materials, 2014, 26, 3592-3617.	11.1	363
245	Rubber-based substrates modified with carbon nanotubes inks to build flexible electrochemical sensors. Analytica Chimica Acta, 2014, 827, 95-102.	2.6	33
246	Elastic and Wearable Wireâ€5haped Lithiumâ€ŀon Battery with High Electrochemical Performance. Angewandte Chemie - International Edition, 2014, 53, 7864-7869.	7.2	306
247	Transferable self-supporting ZnO porous films for low-cost piezoresistive sensors. Semiconductor Science and Technology, 2014, 29, 045009.	1.0	10
248	Piezoresistivity of AG NWS-PDMS nanocomposite. , 2014, , .		10
249	Giant Tunneling Piezoresistance of Composite Elastomers with Interlocked Microdome Arrays for Ultrasensitive and Multimodal Electronic Skins. ACS Nano, 2014, 8, 4689-4697.	7.3	726
250	Embedded 3D Printing of Strain Sensors within Highly Stretchable Elastomers. Advanced Materials, 2014, 26, 6307-6312.	11.1	1,314
251	Simple and rapid micropatterning of conductive carbon composites and its application to elastic strain sensors. Carbon, 2014, 77, 199-207.	5.4	303
252	Advanced Strain Energy Accumulator: Materials, Modeling and Manufacturing. , 2014, , .		2
253	Selfâ€Powered Trajectory, Velocity, and Acceleration Tracking of a Moving Object/Body using a Triboelectric Sensor. Advanced Functional Materials, 2014, 24, 7488-7494.	7.8	161
254	Impedance spectroscopy of silicone rubber and vertically-aligned carbon nanotubes composites under tensile strain. Materials Research Society Symposia Proceedings, 2015, 1752, 83-88.	0.1	0

#	Article	IF	CITATIONS
255	A miniaturized electrolytic pump sensorized with a strain gauge based on thermoplastic nanocomposite for drug delivery systems. , 2015, 2015, 3205-8.		2
256	Paperâ€Based Active Tactile Sensor Array. Advanced Materials, 2015, 27, 7130-7136.	11.1	131
257	Recent Progress in Electronic Skin. Advanced Science, 2015, 2, 1500169.	5.6	789
258	Scalable Microaccordion Mesh for Deformable and Stretchable Metallic Films. Physical Review Applied, 2015, 4, .	1.5	14
259	Highly Stretchable Electrodes on Wrinkled Polydimethylsiloxane Substrates. Scientific Reports, 2015, 5, 16527.	1.6	101
260	Flexible CNT-array double helices Strain Sensor with high stretchability for Motion Capture. Scientific Reports, 2015, 5, 15554.	1.6	55
261	Computational analysis of metallic nanowire-elastomer nanocomposite based strain sensors. AIP Advances, 2015, 5, 117233.	0.6	16
262	Nearly isotropic piezoresistive response due to charge detour conduction in nanoparticle thin films. Scientific Reports, 2015, 5, 11939.	1.6	28
263	High resolution skin-like sensor capable of sensing and visualizing various sensations and three dimensional shape. Scientific Reports, 2015, 5, 12997.	1.6	29
264	Very large strain gauges based on single layer MoSe2 and WSe2 for sensing applications. Applied Physics Letters, 2015, 107, .	1.5	32
265	Graphene oxide/carbon nanoparticle thin film based IR detector: Surface properties and device characterization. AIP Advances, 2015, 5, .	0.6	30
266	Noncontact conductivity and dielectric measurement for high throughput roll-to-roll nanomanufacturing. Scientific Reports, 2015, 5, 17019.	1.6	13
267	Revealing bending and force in a soft body through a plant root inspired approach. Scientific Reports, 2015, 5, 8788.	1.6	45
268	Three-dimensional machining of carbon nanotube forests using water-assisted scanning electron microscope processing. Applied Physics Letters, 2015, 107, .	1.5	10
269	Biomedical Strain and Humidity Sensors Based on Carbon Nanotubes. Bio-Medical Engineering, 2015, 49, 50-53.	0.3	4
270	Stretchable glucose biofuel cell with wirings made of multiwall carbon nanotubes. Journal of Physics: Conference Series, 2015, 660, 012130.	0.3	2
271	Nanoscale Sensor Technologies for Disease Detection via Volatolomics. Small, 2015, 11, 6142-6164.	5.2	159
272	A Flexible, Stretchable and Shapeâ€Adaptive Approach for Versatile Energy Conversion and Selfâ€Powered Biomedical Monitoring. Advanced Materials, 2015, 27, 3817-3824.	11.1	227

#	Article	IF	CITATIONS
274	Flexible, Stretchable, and Rechargeable Fiberâ€Shaped Zinc–Air Battery Based on Crossâ€Stacked Carbon Nanotube Sheets. Angewandte Chemie - International Edition, 2015, 54, 15390-15394.	7.2	291
276	Handwritten, Soft Circuit Boards and Antennas Using Liquid Metal Nanoparticles. Small, 2015, 11, 6397-6403.	5.2	234
277	Highly Stretchable and Transparent Metal Nanowire Heater for Wearable Electronics Applications. Advanced Materials, 2015, 27, 4744-4751.	11.1	667
278	Aligned Carbon Nanotube–Based Flexible Gel Substrates for Engineering Biohybrid Tissue Actuators. Advanced Functional Materials, 2015, 25, 4486-4495.	7.8	146
279	Cellular Polypropylene Piezoelectret for Human Body Energy Harvesting and Health Monitoring. Advanced Functional Materials, 2015, 25, 4788-4794.	7.8	159
280	Sensitive Flexible Magnetic Sensors using Organic Transistors with Magneticâ€Functionalized Suspended Gate Electrodes. Advanced Materials, 2015, 27, 7979-7985.	11.1	52
282	Transparent Electrodes Printed with Nanocrystal Inks for Flexible Smart Devices. Angewandte Chemie - International Edition, 2015, 54, 9760-9774.	7.2	135
283	Highly Stretchable and Sensitive Strain Sensors Using Fragmentized Graphene Foam. Advanced Functional Materials, 2015, 25, 4228-4236.	7.8	560
284	Thicknessâ€Gradient Films for High Gauge Factor Stretchable Strain Sensors. Advanced Materials, 2015, 27, 6230-6237.	11.1	300
285	A Stretchable and Highly Sensitive Grapheneâ€Based Fiber for Sensing Tensile Strain, Bending, and Torsion. Advanced Materials, 2015, 27, 7365-7371.	11.1	673
286	Realizing both High Energy and High Power Densities by Twisting Three Carbonâ€Nanotubeâ€Based Hybrid Fibers. Angewandte Chemie - International Edition, 2015, 54, 11177-11182.	7.2	97
287	Modeling of a Pneumatic Strain Energy Accumulator for Variable System Configurations With Quantified Projections of Energy Efficiency Increases. , 2015, , .		2
288	E-textiles in Clinical Rehabilitation: A Scoping Review. Electronics (Switzerland), 2015, 4, 173-203.	1.8	54
289	The Application of Gas Dwell Time Control for Rapid Single Wall Carbon Nanotube Forest Synthesis to Acetylene Feedstock. Nanomaterials, 2015, 5, 1200-1210.	1.9	10
290	Processing and Characterization of a Novel Distributed Strain Sensor Using Carbon Nanotube-Based Nonwoven Composites. Sensors, 2015, 15, 17728-17747.	2.1	59
291	Carbon Nanotube Polymer Composites for High Performance Strain Sensors. , 2015, , .		4
292	Highly Stretchable and Wearable Graphene Strain Sensors with Controllable Sensitivity for Human Motion Monitoring. ACS Applied Materials & Interfaces, 2015, 7, 6317-6324.	4.0	533
293	Stretchable Silver Nanowire–Elastomer Composite Microelectrodes with Tailored Electrical Properties. ACS Applied Materials & Interfaces, 2015, 7, 13467-13475.	4.0	77

#	Article	IF	CITATIONS
294	Time-dependent mechanical-electrical coupled behavior in single crystal ZnO nanorods. Scientific Reports, 2015, 5, 9716.	1.6	3
295	Extremely Elastic Wearable Carbon Nanotube Fiber Strain Sensor for Monitoring of Human Motion. ACS Nano, 2015, 9, 5929-5936.	7.3	634
296	Highly Stretchy Black Gold Eâ€ S kin Nanopatches as Highly Sensitive Wearable Biomedical Sensors. Advanced Electronic Materials, 2015, 1, 1400063.	2.6	405
297	A Highly Sensitive and Reliable Strain Sensor Using a Hierarchical 3D and Ordered Network of Carbon Nanotubes. Small, 2015, 11, 2990-2994.	5.2	28
298	Wearable Electronics Sensors. Smart Sensors, Measurement and Instrumentation, 2015, , .	0.4	32
299	Reduced graphene oxide and polypyrrole/reduced graphene oxide composite coated stretchable fabric electrodes for supercapacitor application. Electrochimica Acta, 2015, 172, 12-19.	2.6	103
300	Polypyrrole/reduced graphene oxide coated fabric electrodes for supercapacitor application. Organic Electronics, 2015, 24, 153-159.	1.4	136
302	Carbon nanotubes-ecoflex nanocomposite for strain sensing with ultra-high stretchability. , 2015, , .		11
303	Whispering gallery mode sensors. Advances in Optics and Photonics, 2015, 7, 168.	12.1	752
304	Hyperelastically stretchable strain gauges based on liquid metals and platinum-catalyzed silicone elastomers. , 2015, , .		1
305	Development of stretchable strain sensor using elastic fibrous membrane coated with conducting polymer. , 2015, , .		0
306	Highly Stretchable and Transparent Microfluidic Strain Sensors for Monitoring Human Body Motions. ACS Applied Materials & Interfaces, 2015, 7, 27562-27570.	4.0	139
307	Highly Stretchable and Ultrasensitive Strain Sensor Based on Reduced Graphene Oxide Microtubes–Elastomer Composite. ACS Applied Materials & Interfaces, 2015, 7, 27432-27439.	4.0	189
308	Gum Sensor: A Stretchable, Wearable, and Foldable Sensor Based on Carbon Nanotube/Chewing Gum Membrane. ACS Applied Materials & Interfaces, 2015, 7, 26195-26205.	4.0	85
309	Performance of hybrid nanostructured conductive cotton threads as LPG sensor at ambient temperature: preparation and analysis. RSC Advances, 2015, 5, 99253-99269.	1.7	29
310	Design and fabrication of compliant proximity-tactile sensor using carbon micro coils. , 2015, , .		0
311	Silver nanowire strain sensors for wearable body motion tracking. , 2015, , .		3
312	Directly correlating the strain-induced electronic property change to the chirality of individual single-walled and few-walled carbon nanotubes. Nanoscale, 2015, 7, 13116-13124.	2.8	4

#	Article	IF	Citations
313	Design and response performance of capacitance meter for stretchable strain sensor. , 2015, , .		5
314	Carbon nanotube-reinforced elastomeric nanocomposites: a review. International Journal of Smart and Nano Materials, 2015, 6, 211-238.	2.0	81
315	Nanomaterials for new and emerging physical sensing applications: a review of recent developments. Sensor Review, 2015, 35, 321-328.	1.0	3
316	The effects of DMSO on structure and properties of PVA/PEDOT:PSS blended fiber. Fibers and Polymers, 2015, 16, 2578-2585.	1.1	26
317	Ultrasensitive self-powered pressure sensing system. Extreme Mechanics Letters, 2015, 2, 28-36.	2.0	78
318	Mechanical properties of two-dimensional graphyne sheet, analogous system of BN sheet and graphyne-like BN sheet. Solid State Communications, 2015, 212, 46-52.	0.9	45
319	Stretchable Selfâ€Powered Fiberâ€Based Strain Sensor. Advanced Functional Materials, 2015, 25, 1798-1803.	7.8	155
320	Integrated simulation of active carbon nanotube forest growth and mechanical compression. Carbon, 2015, 86, 26-37.	5.4	53
321	Highly Stretchable and Sensitive Unidirectional Strain Sensor via Laser Carbonization. ACS Applied Materials & Interfaces, 2015, 7, 4463-4470.	4.0	332
322	Enhanced Performance of ZnO Piezotronic Pressure Sensor through Electron-Tunneling Modulation of MgO Nanolayer. ACS Applied Materials & amp; Interfaces, 2015, 7, 1602-1607.	4.0	70
323	3D-Stacked Carbon Composites Employing Networked Electrical Intra-Pathways for Direct-Printable, Extremely Stretchable Conductors. ACS Applied Materials & Interfaces, 2015, 7, 4109-4117.	4.0	24
324	Highâ€Resolution Unpixelated Smart Patches with Antiparallel Thickness Gradients of Nanoparticles. Advanced Materials, 2015, 27, 1779-1784.	11.1	65
325	Progress of new label-free techniques for biosensors: a review. Critical Reviews in Biotechnology, 2016, 36, 1-17.	5.1	159
326	Nanosized graphene crystallite induced strong magnetism in pure carbon films. Nanoscale, 2015, 7, 4475-4481.	2.8	37
327	Ultra-sensitive graphene strain sensor for sound signal acquisition and recognition. Nano Research, 2015, 8, 1627-1636.	5.8	149
328	Polythiophene Nanofibril Bundles Surfaceâ€Embedded in Elastomer: A Route to a Highly Stretchable Active Channel Layer. Advanced Materials, 2015, 27, 1255-1261.	11.1	166
329	Mechanics for stretchable sensors. Current Opinion in Solid State and Materials Science, 2015, 19, 149-159.	5.6	70
330	Eardrumâ€Inspired Active Sensors for Selfâ€Powered Cardiovascular System Characterization and Throatâ€Attached Antiâ€Interference Voice Recognition. Advanced Materials, 2015, 27, 1316-1326.	11.1	487

#	Article	IF	CITATIONS
331	Highly Sensitive and Multifunctional Tactile Sensor Using Free-standing ZnO/PVDF Thin Film with Graphene Electrodes for Pressure and Temperature Monitoring. Scientific Reports, 2015, 5, 7887.	1.6	160
332	Directed self-assembly of rhombic carbon nanotube nanomesh films for transparent and stretchable electrodes. Journal of Materials Chemistry C, 2015, 3, 2319-2325.	2.7	39
333	Sprayable Elastic Conductors Based on Block Copolymer Silver Nanoparticle Composites. ACS Nano, 2015, 9, 336-344.	7.3	81
334	Wearable silver nanowire dry electrodes for electrophysiological sensing. RSC Advances, 2015, 5, 11627-11632.	1.7	185
335	Chemical modification of carbon nanomaterials (SWCNTs, DWCNTs, MWCNTs and SWCNHs) with diphenyl dichalcogenides. Nanoscale, 2015, 7, 6007-6013.	2.8	18
336	Simultaneous enhancement in porosity and magnetic property of Fe-dispersing single-walled carbon nanohorns by oxidation using CO2. Chemical Engineering Journal, 2015, 271, 43-49.	6.6	11
337	Continuous graphene and carbon nanotube based high flexible and transparent pressure sensor arrays. Nanotechnology, 2015, 26, 115501.	1.3	25
338	Multi-modal natural interaction in game design: a comparative analysis of player experience in a large scale role-playing game. Journal on Multimodal User Interfaces, 2015, 9, 105-119.	2.0	6
339	Highly piezoresistive compliant nanofibrous sensors for tactile and epidermal electronic applications. Journal of Materials Research, 2015, 30, 121-129.	1.2	10
340	Reversible stretching of pre-strained water-filled carbon nanotubes under electric fields. Microfluidics and Nanofluidics, 2015, 18, 1201-1207.	1.0	5
341	Biomimicking Topographic Elastomeric Petals (Eâ€Petals) for Omnidirectional Stretchable and Printable Electronics. Advanced Science, 2015, 2, 1400021.	5.6	96
342	Flexible and Highly Sensitive Strain Sensors Fabricated by Pencil Drawn for Wearable Monitor. Advanced Functional Materials, 2015, 25, 2395-2401.	7.8	439
343	Multifunctional nano-accordion structures for stretchable transparent conductors. Materials Horizons, 2015, 2, 486-494.	6.4	29
344	Biaxially stretchable supercapacitors based on the buckled hybrid fiber electrode array. Nanoscale, 2015, 7, 12492-12497.	2.8	53
345	Stretchable biofuel cell with enzyme-modified conductive textiles. Biosensors and Bioelectronics, 2015, 74, 947-952.	5.3	67
346	A three-dimensional flexible supercapacitor with enhanced performance based on lightweight, conductive graphene-cotton fabric electrode. Journal of Power Sources, 2015, 296, 186-196.	4.0	111
347	The patterning mechanism of carbon nanotubes using surface acoustic waves: the acoustic radiation effect or the dielectrophoretic effect. Nanoscale, 2015, 7, 14047-14054.	2.8	49
348	Flexible self-healing nanocomposites for recoverable motion sensor. Nano Energy, 2015, 17, 1-9.	8.2	82

#	Article	IF	CITATIONS
349	Highly stretchable cell-cultured hydrogel sheet. RSC Advances, 2015, 5, 66334-66338.	1.7	3
350	Highly Sensitive and Stretchable Multidimensional Strain Sensor with Prestrained Anisotropic Metal Nanowire Percolation Networks. Nano Letters, 2015, 15, 5240-5247.	4.5	527
351	Strain Sensors in Wearable Devices. Smart Sensors, Measurement and Instrumentation, 2015, , 221-239.	0.4	7
352	Wearable sensors for athletes. , 2015, , 257-273.		8
353	Hierarchically buckled sheath-core fibers for superelastic electronics, sensors, and muscles. Science, 2015, 349, 400-404.	6.0	447
355	Soft piezoresistive sensor model and characterization with varying design parameters. Sensors and Actuators A: Physical, 2015, 233, 158-168.	2.0	32
356	Surface Modification of Multiwalled Carbon Nanotubes with Cationic Conjugated Polyelectrolytes: Fundamental Interactions and Intercalation into Conductive Poly(methyl methacrylate) Composites. ACS Applied Materials & Interfaces, 2015, 7, 12903-12913.	4.0	22
357	Risk Assessment of Work-Related Musculoskeletal Disorders in Construction: State-of-the-Art Review. Journal of Construction Engineering and Management - ASCE, 2015, 141, .	2.0	155
358	Tunable strain gauges based on two-dimensional silver nanowire networks. Nanotechnology, 2015, 26, 195504.	1.3	17
359	Electroâ€mechanical sensors based on conductive hybrid nanocomposites. Polymers for Advanced Technologies, 2015, 26, 889-897.	1.6	5
360	New Technological Advancements in Biomedical Variables Transducing. , 2015, , 351-360.		0
361	The effect of MWCNTs on the electrical properties of a stretchable carbon composite electrode. Composites Science and Technology, 2015, 114, 11-16.	3.8	15
362	Flexible cellulose acetate/graphene blueprints for vibrotactile actuator. RSC Advances, 2015, 5, 34432-34438.	1.7	56
363	Capacitive Soft Strain Sensors via Multicore–Shell Fiber Printing. Advanced Materials, 2015, 27, 2440-2446.	11.1	372
364	Respiration sensor made from indium tin oxide-coated conductive fabrics. Journal of the Korean Physical Society, 2015, 66, 629-634.	0.3	5
365	Nano-silver in situ hybridized collagen scaffolds for regeneration of infected full-thickness burn skin. Journal of Materials Chemistry B, 2015, 3, 4231-4241.	2.9	58
366	Stretchable, Transparent, Ultrasensitive, and Patchable Strain Sensor for Human–Machine Interfaces Comprising a Nanohybrid of Carbon Nanotubes and Conductive Elastomers. ACS Nano, 2015, 9, 6252-6261.	7.3	821
367	Temperature compensation in CNT-composite distributed strain sensors. , 2015, , .		4

#	Article	IF	CITATIONS
368	Highly selective flexible tactile strain and temperature sensors against substrate bending for an artificial skin. RSC Advances, 2015, 5, 30170-30174.	1.7	128
369	A facile prestrain-stick-release assembly of stretchable supercapacitors based on highly stretchable and sticky hydrogel electrolyte. Journal of Power Sources, 2015, 284, 400-408.	4.0	96
370	Flexible suspended gate organic thin-film transistors for ultra-sensitive pressure detection. Nature Communications, 2015, 6, 6269.	5.8	473
371	A colour-tunable, weavable fibre-shaped polymer light-emitting electrochemical cell. Nature Photonics, 2015, 9, 233-238.	15.6	372
372	Ultra-stretchable conductors based on buckled super-aligned carbon nanotube films. Nanoscale, 2015, 7, 10178-10185.	2.8	55
373	High-performance flexible lead-free nanocomposite piezoelectric nanogenerator for biomechanical energy harvesting and storage. Nano Energy, 2015, 15, 177-185.	8.2	200
374	Highly Conductive and Ultrastretchable Electric Circuits from Covered Yarns and Silver Nanowires. ACS Nano, 2015, 9, 3887-3895.	7.3	133
375	Polypyrrole/Silver Coaxial Nanowire Aero-Sponges for Temperature-Independent Stress Sensing and Stress-Triggered Joule Heating. ACS Nano, 2015, 9, 4244-4251.	7.3	175
376	Materials that couple sensing, actuation, computation, and communication. Science, 2015, 347, 1261689.	6.0	471
377	Allâ€Printed Stretchable Electrochemical Devices. Advanced Materials, 2015, 27, 3060-3065.	11.1	172
378	Interfacing Liquid Metals with Stretchable Metal Conductors. ACS Applied Materials & Interfaces, 2015, 7, 7920-7926.	4.0	42
379	Ultra-stretchable and skin-mountable strain sensors using carbon nanotubes–Ecoflex nanocomposites. Nanotechnology, 2015, 26, 375501.	1.3	646
380	Investigation of strain sensors based on thin graphite wires. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2015, 33, .	0.6	3
381	Sensors for Robotic Hands: A Survey of State of the Art. IEEE Access, 2015, 3, 1765-1782.	2.6	81
382	Promising wet chemical strategies to synthesize Cu nanowires for emerging electronic applications. Nanoscale, 2015, 7, 17195-17210.	2.8	77
383	Highly Stretchable Conductive Fibers from Few-Walled Carbon Nanotubes Coated on Poly(<i>m</i> -phenylene isophthalamide) Polymer Core/Shell Structures. ACS Nano, 2015, 9, 10252-10257.	7.3	58
384	The Design and Modeling of a Novel Resistive Stretch Sensor With Tunable Sensitivity. IEEE Sensors Journal, 2015, 15, 6390-6398.	2.4	16
385	Anomalous Stretchable Conductivity Using an Engineered Tricot Weave. ACS Nano, 2015, 9, 12214-12223.	7.3	35

#	Article	IF	CITATIONS
386	Conductive Polymer Fibers for Sensor Devices. , 2015, , 63-78.		1
387	Stretchable, transparent and molecular permeable honeycomb electrodes and their hydrogel hybrids prepared by the breath figure method and sputtering of metals. RSC Advances, 2015, 5, 88414-88418.	1.7	14
388	Carbon Nanotube Flexible and Stretchable Electronics. Nanoscale Research Letters, 2015, 10, 1013.	3.1	119
389	Fabric electrodes coated with polypyrrole nanorods for flexible supercapacitor application prepared via a reactive self-degraded template. Organic Electronics, 2015, 26, 292-299.	1.4	101
390	Extraordinarily High Conductivity of Stretchable Fibers of Polyurethane and Silver Nanoflowers. ACS Nano, 2015, 9, 10876-10886.	7.3	153
391	Highly Stretchable and Conductive Core–Sheath Chemical Vapor Deposition Graphene Fibers and Their Applications in Safe Strain Sensors. Chemistry of Materials, 2015, 27, 6969-6975.	3.2	111
392	3D braided yarns to create electrochemical cells. Electrochemistry Communications, 2015, 61, 27-31.	2.3	18
393	Rapid Structural Improvement of CVD-Grown Multi-Walled Carbon Nanotubes by Drastic Thermite Reaction. Nano, 2015, 10, 1550112.	0.5	2
394	Tactile Sensing System Based on Arrays of Graphene Woven Microfabrics: Electromechanical Behavior and Electronic Skin Application. ACS Nano, 2015, 9, 10867-10875.	7.3	258
395	Internal Electron Tunneling Enabled Ultrasensitive Position/Force Peapod Sensors. Nano Letters, 2015, 15, 7281-7287.	4.5	11
396	A chameleon-inspired stretchable electronic skin with interactive colour changing controlled by tactile sensing. Nature Communications, 2015, 6, 8011.	5.8	749
397	Transparent Stretchable Self-Powered Patchable Sensor Platform with Ultrasensitive Recognition of Human Activities. ACS Nano, 2015, 9, 8801-8810.	7.3	450
398	All-direction energy harvester based on nano/micro fibers as flexible and stretchable sensors for human motion detection. RSC Advances, 2015, 5, 67787-67794.	1.7	18
399	Tattoolike Polyaniline Microparticle-Doped Gold Nanowire Patches as Highly Durable Wearable Sensors. ACS Applied Materials & Interfaces, 2015, 7, 19700-19708.	4.0	273
400	Lightweight MWCNTs-g-PAN Carbon Fiber Precursors. Sensitive High Absorptivity and Novel Wide-Bandgap Conjugated Polymers. Industrial & Engineering Chemistry Research, 2015, 54, 9064-9071.	1.8	7
401	Fabrication of stretchable, flexible conductive thermoplastic polyurethane/graphene composites <i>via</i> foaming. RSC Advances, 2015, 5, 82034-82041.	1.7	41
402	Highly reproducible, hysteresis-free, flexible strain sensors by inkjet printing of carbon nanotubes. Carbon, 2015, 95, 1020-1026.	5.4	103
403	Knitted Strain Sensor Textiles of Highly Conductive All-Polymeric Fibers. ACS Applied Materials & Interfaces, 2015, 7, 21150-21158.	4.0	267

		REPORT	
#	Article	IF	CITATIONS
404	Small and light strain sensors based on graphene coated human hairs. Nanoscale, 2015, 7, 16361-16365.	2.8	61
405	Highly stretchable, sensitive, and flexible strain sensors based on silver nanoparticles/carbon nanotubes composites. Journal of Alloys and Compounds, 2015, 652, 48-54.	2.8	130
406	Design and fabrication of a flexible MEMS-based electro-mechanical sensor array for breast cancer diagnosis. Journal of Micromechanics and Microengineering, 2015, 25, 075025.	1.5	46
407	Dynamic Electrochemical Properties of Extremely Stretchable Electrochemical Capacitor Using Reduced Graphene Oxide/Single-Wall Carbon Nanotubes Composite. Journal of the Electrochemical Society, 2015, 162, A2351-A2355.	1.3	4
408	Piezoresistive behavior of a stretchable carbon nanotube-interlayered poly(dimethylsiloxane) sheet with a wrinkled structure. RSC Advances, 2015, 5, 73162-73168.	1.7	5
409	Performance of hybrid nanostructured conductive cotton materials as wearable devices: an overview of materials, fabrication, properties and applications. RSC Advances, 2015, 5, 107716-107770.	1.7	72
410	New materials and advances in making electronic skin for interactive robots. Advanced Robotics, 2015, 29, 1359-1373.	1.1	155
411	Direct growth of CNTs on in situ formed siliceous micro-flakes just by one-step pyrolyzation of polypropylene blends. Journal of Materials Science, 2015, 50, 1309-1316.	1.7	6
412	Ultrastretchable and Flexible Copper Interconnectâ€Based Smart Patch for Adaptive Thermotherapy. Advanced Healthcare Materials, 2015, 4, 665-673.	3.9	66
413	Wearable Organic Optoelectronic Sensors for Medicine. Advanced Materials, 2015, 27, 7638-7644.	11.1	166
414	Mimosaâ€Inspired Design of a Flexible Pressure Sensor with Touch Sensitivity. Small, 2015, 11, 1886-1891.	5.2	312
415	Self-adhesive epidermal carbon nanotube electronics for tether-free long-term continuous recording of biosignals. Scientific Reports, 2014, 4, 6074.	1.6	128
416	Superelastic Supercapacitors with High Performances during Stretching. Advanced Materials, 2015, 27, 356-362.	11.1	230
417	Self-powered sensing elements based on direct-write, highly flexible piezoelectric polymeric nano/microfibers. Nano Energy, 2015, 11, 671-677.	8.2	78
418	Large-Scale Horizontally Aligned ZnO Microrod Arrays with Controlled Orientation, Periodic Distribution as Building Blocks for Chip-in Piezo-Phototronic LEDs. Small, 2015, 11, 438-445.	5.2	29
419	Recent Advances in Wearable Sensors for Health Monitoring. IEEE Sensors Journal, 2015, 15, 3119-3126.	2.4	250
420	High elastic polyurethane/carbon nanotube composite laminate for structure health monitoring by gain shifting of antenna sensing element. IOP Conference Series: Materials Science and Engineering, 2016, 108, 012024.	0.3	0
421	Mechanical and Electrical Properties of Carbon Nanotube / Polydimethylsiloxane Composites Yarn. Journal of Engineered Fibers and Fabrics, 2016, 11, 155892501601100.	0.5	3

#	Article	IF	CITATIONS
422	Smart textiles in health. , 2016, , 9-32.		18
423	Stretchable Complementary Split Ring Resonator (CSRR)-Based Radio Frequency (RF) Sensor for Strain Direction and Level Detection. Sensors, 2016, 16, 1667.	2.1	46
424	Influence of Coalescence on the Anisotropic Mechanical and Electrical Properties of Nickel Powder/Polydimethylsiloxane Composites. Materials, 2016, 9, 239.	1.3	23
425	A Flexible 360-Degree Thermal Sound Source Based on Laser Induced Graphene. Nanomaterials, 2016, 6, 112.	1.9	18
426	Synchronously Tailoring Strain Sensitivity and Electrical Stability of Silicone Elastomer Composites by the Synergistic Effect of a Dual Conductive Network. Polymers, 2016, 8, 100.	2.0	10
427	Conductive Elastomers for Stretchable Electronics, Sensors and Energy Harvesters. Polymers, 2016, 8, 123.	2.0	96
428	Soft Pneumatic Bending Actuator with Integrated Carbon Nanotube Displacement Sensor. Robotics, 2016, 5, 7.	2.1	36
429	Development of an Integrated Evaluation System for a Stretchable Strain Sensor. Sensors, 2016, 16, 1114.	2.1	8
430	Flexible Pressure Sensor with Ag Wrinkled Electrodes Based on PDMS Substrate. Sensors, 2016, 16, 2131.	2.1	70
431	Soft Manipulators and Grippers: A Review. Frontiers in Robotics and Al, 0, 3, .	2.0	403
432	Selfâ€Powered Piezoionic Strain Sensor toward the Monitoring of Human Activities. Small, 2016, 12, 5074-5080.	5.2	105
433	Smart Clothing: Connecting Human with Clouds and Big Data for Sustainable Health Monitoring. Mobile Networks and Applications, 2016, 21, 825-845.	2.2	320
434	Theoretical Study of Cellular Piezoelectret Generators. Advanced Functional Materials, 2016, 26, 1964-1974.	7.8	58
435	Stretchable Silver Nanowire Microelectrodes for Combined Mechanical and Electrical Stimulation of Cells. Advanced Healthcare Materials, 2016, 5, 2045-2054.	3.9	14
436	Stretchable, Skinâ€Mountable, and Wearable Strain Sensors and Their Potential Applications: A Review. Advanced Functional Materials, 2016, 26, 1678-1698.	7.8	2,340
437	Carbon Nanotubes and Graphene for Flexible Electrochemical Energy Storage: from Materials to Devices. Advanced Materials, 2016, 28, 4306-4337.	11.1	595
438	Highly Stretchable Conductors Made by Laser Draw asting of Ultralong Metal Nanowires. Advanced Electronic Materials, 2016, 2, 1600003.	2.6	3
439	Polypyrroleâ€Coated PDMS Fibrous Membrane: Flexible Strain Sensor with Distinctive Resistance Responses at Different Strain Ranges. Macromolecular Materials and Engineering, 2016, 301, 707-713.	1.7	31

ARTICLE IF CITATIONS Pursuing prosthetic electronic skin. Nature Materials, 2016, 15, 937-950. 13.3 1,821 440 Graphene Reinforced Carbon Nanotube Networks for Wearable Strain Sensors. Advanced Functional 441 Materials, 2016, 26, 2078-2084. Wearable Keyboard Using Conducting Polymer Electrodes on Textiles. Advanced Materials, 2016, 28, 442 11.1 159 4485-4488. Recent Progress in Materials and Devices toward Printable and Flexible Sensors. Advanced Materials, 443 11.1 643 2016, 28, 4415-4440. Compositional Effects of Large Graphene Oxide Sheets on the Spinnability and Properties of 444 1.9 37 Polyurethane Composite Fibers. Advanced Materials Interfaces, 2016, 3, 1500672. Stretchable, Conductive, and Stable PEDOTâ€Modified Textiles through a Novel In Situ Polymerization Process for Stretchable Supercapacitors. Advanced Materials Technologies, 2016, 1, 1600009. 3.0 Two-Dimensional Atomic-Layered Alloy Junctions for High-Performance Wearable Chemical Sensor. 446 4.0 83 ACS Applied Materials & amp; Interfaces, 2016, 8, 19635-19642. Highly Flexible Wrinkled Carbon Nanotube Thin Film Strain Sensor to Monitor Human Movement. 154 Advanced Materials Technologies, 2016, 1, 1600053. Buckled Au@PVP Nanofiber Networks for Highly Transparent and Stretchable Conductors. Advanced 448 2.6 44 Electronic Materials, 2016, 2, 1500302. Novel Pliable Electrodes for Flexible Electrochemical Energy Storage Devices: Recent Progress and 449 10.2 Challenges. Advanced Energy Materials, 2016, 6, 1600490 Fabrication and characterisation of highly stretchable elastomeric strain sensors for prosthetic 450 2.0 44 hand applications. Sensors and Actuators A: Physical, 2016, 247, 514-521. Highly Sensitive Detection of the Lattice Distortion in Single Bent ZnO Nanowires by Second-Harmonic 3.2 26 Generation Microscopy. ACS Photonics, 2016, 3, 1308-1314. Anisotropic magnetoresistivity in structured elastomer composites: modelling and experiments. Soft 452 1.2 14 Matter, 2016, 12, 6430-6441. A Highly Stretchable ZnO@Fiberâ€Based Multifunctional Nanosensor for Strain/Temperature/UV 239 Detection. Advanced Functional Materials, 2016, 26, 3074-3081. Mechanically Durable and Highly Stretchable Transistors Employing Carbon Nanotube Semiconductor 454 234 11.1 and Electrodes. Advanced Materials, 2016, 28, 4441-4448. An Epidermal Stimulation and Sensing Platform for Sensorimotor Prosthetic Control, Management of 11.1 240 Lower Back Exertion, and Electrical Muscle Activation. Advanced Materials, 2016, 28, 4462-4471. Monitoring of Vital Signs with Flexible and Wearable Medical Devices. Advanced Materials, 2016, 28, 456 11.1 1,033 4373-4395. A Strainâ€Insensitive Stretchable Electronic Conductor: PEDOT:PSS/Acrylamide Organogels. Advanced 11.1 241 Materials, 2016, 28, 1636-1643.

#	Article	IF	CITATIONS
458	Downsized Sheath–Core Conducting Fibers for Weavable Superelastic Wires, Biosensors, Supercapacitors, and Strain Sensors. Advanced Materials, 2016, 28, 4998-5007.	11.1	131
459	Stretchable E‣kin Apexcardiogram Sensor. Advanced Materials, 2016, 28, 6359-6364.	11.1	182
460	A Mechanoluminescent ZnS:Cu/Rhodamine/SiO ₂ /PDMS and Piezoresistive CNT/PDMS Hybrid Sensor: Red-Light Emission and a Standardized Strain Quantification. ACS Applied Materials & Interfaces, 2016, 8, 34777-34783.	4.0	45
461	Stretchable Triboelectric Fiber for Self-powered Kinematic Sensing Textile. Scientific Reports, 2016, 6, 35153.	1.6	111
462	Synthesis of silver nanowires for highly conductive and transparent films. Nanomaterials and Nanotechnology, 2016, 6, 184798041666367.	1.2	8
463	Control of artificial human finger using wearable device and adaptive network-based fuzzy inference system. , 2016, , .		3
464	Development of MWCNT-based strain sensor using flexible substrate. , 2016, , .		2
465	Metal-organic Dual Layer Structure for Stretchable Interconnects. Procedia Engineering, 2016, 168, 1559-1562.	1.2	5
466	Conductive network formation of carbon nanotubes in elastic polymer microfibers and its effect on the electrical conductance: Experiment and simulation. Journal of Chemical Physics, 2016, 144, 194903.	1.2	11
467	Multiple thermal transitions and anisotropic thermal expansions of vertically aligned carbon nanotubes. Journal of Applied Physics, 2016, 120, 165110.	1.1	7
468	Atomic layer deposition on polymer fibers and fabrics for multifunctional and electronic textiles. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2016, 34, .	0.9	64
469	Stretchable strain sensor for distributed strain measurement and design of measurement circuit. International Journal of Applied Electromagnetics and Mechanics, 2016, 52, 1681-1688.	0.3	Ο
470	Reconstruction of in-plane strain maps using hybrid dense sensor network composed of sensing skin. Measurement Science and Technology, 2016, 27, 124016.	1.4	28
471	Shapeable magnetoelectronics. Applied Physics Reviews, 2016, 3, 011101.	5.5	141
472	Comparative study of piezoresistance effect of semiconducting carbon nanotube-Polydimethylsiloxane nanocomposite strain sensor. , 2016, , .		3
473	A flexible touch-pressure sensor array with wireless transmission system for robotic skin. Review of Scientific Instruments, 2016, 87, 065007.	0.6	28
474	Printing soft matter in three dimensions. Nature, 2016, 540, 371-378.	13.7	1,134
475	Cyber Physical Systems and Body Area Sensor Networks in Smart Cities. , 2016, , .		3

#	Article	IF	CITATIONS
476	Temperature dependence of contact resistance at metal/MWNT interface. Applied Physics Letters, 2016, 109, 021605.	1.5	5
477	Stretchable Bioelectronics for Medical Devices and Systems. Microsystems and Nanosystems, 2016, , .	0.1	90
478	First principles study on B/N pairs co-doping zigzag single-walled carbon nanotubes. Chemical Physics Letters, 2016, 653, 144-148.	1.2	7
479	A wearable piezocapacitive pressure sensor with a single layer of silver nanowire-based elastomeric composite electrodes. Journal of Materials Chemistry A, 2016, 4, 10435-10443.	5.2	120
480	Nanomaterials for Stretchable Energy Storage and Conversion Devices. Nanoscience and Technology, 2016, , 159-191.	1.5	3
481	Elastomeric Conducting Polyaniline Formed Through Topological Control of Molecular Templates. ACS Nano, 2016, 10, 5991-5998.	7.3	25
482	Ultraclean contact transfer of patterned Ag electrodes by thermal release tape for transparent conductive electrode. International Journal of Precision Engineering and Manufacturing, 2016, 17, 461-466.	1.1	10
483	Rapid-Response, Widely Stretchable Sensor of Aligned MWCNT/Elastomer Composites for Human Motion Detection. ACS Sensors, 2016, 1, 817-825.	4.0	165
484	Planar integration of flexible micro-supercapacitors with ultrafast charge and discharge based on interdigital nanoporous gold electrodes on a chip. Journal of Materials Chemistry A, 2016, 4, 9502-9510.	5.2	61
485	Highly Sensitive and Patchable Pressure Sensors Mimicking Ion-Channel-Engaged Sensory Organs. ACS Nano, 2016, 10, 4550-4558.	7.3	49
486	Transitions of Aggregation States for Concentrated Carbon Nanotube Dispersion. Journal of Physical Chemistry C, 2016, 120, 5776-5782.	1.5	14
487	A wireless strain sensor for wound monitoring with direct laser-defined patterning on a commercial dressing. , 2016, , .		2
488	Piezoresistive nanocomposite rubber elastomer for stretchable MEMS sensor. , 2016, , .		3
489	Highly Sensitive, Stretchable, and Wash-Durable Strain Sensor Based on Ultrathin Conductive Layer@Polyurethane Yarn for Tiny Motion Monitoring. ACS Applied Materials & Interfaces, 2016, 8, 9936-9945.	4.0	241
490	Paper-Based Triboelectric Nanogenerators Made of Stretchable Interlocking Kirigami Patterns. ACS Nano, 2016, 10, 4652-4659.	7.3	197
491	Conductive thermoplastic vulcanizates (TPVs) based on polypropylene (PP)/ethylene-propylene-diene rubber (EPDM) blend: From strain sensor to highly stretchable conductor. Composites Science and Technology, 2016, 128, 176-184.	3.8	120
492	Effects of uniaxial compressive strain on the electronic-transport properties of zigzag carbon nanotubes. Nano Research, 2016, 9, 1267-1275.	5.8	12
493	A study of conductive hydrogel composites of pH-responsive microgels and carbon nanotubes. Soft Matter, 2016, 12, 4142-4153.	1.2	27

#	Article	IF	CITATIONS
494	Nanomaterials-Based Skin-Like Electronics for the Unconscious and Continuous Monitoring of Body Status. Microsystems and Nanosystems, 2016, , 227-254.	0.1	1
495	Transparent, stretchable, and conductive SWNT films using supramolecular functionalization and layer-by-layer self-assembly. RSC Advances, 2016, 6, 29254-29263.	1.7	15
496	Flexible conductor fabrication via silver nanowire deposition on a polydopamine-modified pre-strained substrate. Journal of Materials Science: Materials in Electronics, 2016, 27, 3193-3201.	1.1	7
497	Printing of CNT/silicone rubber for a wearable flexible stretch sensor. Proceedings of SPIE, 2016, , .	0.8	1
498	Wearable Chemical Sensors: Present Challenges and Future Prospects. ACS Sensors, 2016, 1, 464-482.	4.0	596
499	Transparent stretchable composite conductor based on silver nanowires with hybrid structure. Journal of Materials Science, 2016, 51, 7211-7219.	1.7	8
500	Copper-based water repellent and antibacterial coatings by aerosol assisted chemical vapour deposition. Chemical Science, 2016, 7, 5126-5131.	3.7	87
501	One-to-One Correspondence Growth Mechanism of Gourd-like SiO _{<i>x</i>} Nanotubes. Crystal Growth and Design, 2016, 16, 3081-3086.	1.4	3
502	A mechanically and electrically self-healing graphite composite dough for stencil-printable stretchable conductors. Journal of Materials Chemistry C, 2016, 4, 4150-4154.	2.7	47
503	Highly sensitive, tunable, and durable gold nanosheet strain sensors for human motion detection. Journal of Materials Chemistry C, 2016, 4, 5642-5647.	2.7	89
504	Sensitive Electronic-Skin Strain Sensor Array Based on the Patterned Two-Dimensional α-In ₂ Se ₃ . Chemistry of Materials, 2016, 28, 4278-4283.	3.2	146
505	Strain Sensors with Adjustable Sensitivity by Tailoring the Microstructure of Graphene Aerogel/PDMS Nanocomposites. ACS Applied Materials & Interfaces, 2016, 8, 24853-24861.	4.0	195
506	Coiled Fiberâ€ S haped Stretchable Thermal Sensors for Wearable Electronics. Advanced Materials Technologies, 2016, 1, 1600170.	3.0	48
507	Knitted Carbon-Nanotube-Sheath/Spandex-Core Elastomeric Yarns for Artificial Muscles and Strain Sensing. ACS Nano, 2016, 10, 9129-9135.	7.3	189
508	Fabric Active Transducer Stimulated by Water Motion for Self-Powered Wearable Device. ACS Applied Materials & Interfaces, 2016, 8, 24579-24584.	4.0	20
509	Ultrasensitive Cracking-Assisted Strain Sensors Based on Silver Nanowires/Graphene Hybrid Particles. ACS Applied Materials & Interfaces, 2016, 8, 25563-25570.	4.0	223
510	Single-walled carbon nanotube release affects the microbial enzyme-catalyzed oxidation processes of organic pollutants and lignin model compounds in nature. Chemosphere, 2016, 163, 217-226.	4.2	52
511	Skin-mountable stretch sensor for wearable health monitoring. Nanoscale, 2016, 8, 17295-17303.	2.8	97

#	Article	IF	CITATIONS
512	Engineering Crack Formation in Carbon Nanotube-Silver Nanoparticle Composite Films for Sensitive and Durable Piezoresistive Sensors. Nanoscale Research Letters, 2016, 11, 422.	3.1	33
513	Machineâ€Washable Textile Triboelectric Nanogenerators for Effective Human Respiratory Monitoring through Loom Weaving of Metallic Yarns. Advanced Materials, 2016, 28, 10267-10274.	11.1	328
514	Performance quantification of strain sensors for flexible manipulators. , 2016, , .		3
515	Biosensors in Tissue and Organ Fabrication. Learning Materials in Biosciences, 2016, , 31-57.	0.2	8
516	Flexible, eco-friendly and highly sensitive paper antenna based electromechanical sensor for wireless human motion detection and structural health monitoring. Extreme Mechanics Letters, 2016, 9, 324-330.	2.0	40
517	Flexible, Highly Sensitive, and Wearable Pressure and Strain Sensors with Graphene Porous Network Structure. ACS Applied Materials & Interfaces, 2016, 8, 26458-26462.	4.0	387
518	Electrically Conductive Hierarchical Carbon Nanotube Networks with Tunable Mechanical Response. ACS Applied Materials & Interfaces, 2016, 8, 28004-28011.	4.0	9
519	Solvent-free fabrication of multi-walled carbon nanotube based flexible pressure sensors for ultra-sensitive touch pad and electronic skin applications. RSC Advances, 2016, 6, 95836-95845.	1.7	25
520	Highly Stretchable, Strain Sensing Hydrogel Optical Fibers. Advanced Materials, 2016, 28, 10244-10249.	11.1	327
521	Alkali-Resistant Quasi-Solid-State Electrolyte for Stretchable Supercapacitors. ACS Applied Materials & Interfaces, 2016, 8, 27701-27709.	4.0	17
522	Ultrafast optical reduction of graphene oxide sheets on colorless polyimide film for wearable chemical sensors. NPG Asia Materials, 2016, 8, e315-e315.	3.8	90
524	Piezoresistive Sensor with High Elasticity Based on 3D Hybrid Network of Sponge@CNTs@Ag NPs. ACS Applied Materials & Interfaces, 2016, 8, 22374-22381.	4.0	176
525	A flexible field-limited ordered ZnO nanorod-based self-powered tactile sensor array for electronic skin. Nanoscale, 2016, 8, 16302-16306.	2.8	76
526	Flexible and multifunctional electronics fabricated by a solvent-free and user-friendly method. RSC Advances, 2016, 6, 77267-77274.	1.7	27
527	Omnidirectionally and Highly Stretchable Conductive Electrodes Based on Noncoplanar Zigzag Mesh Silver Nanowire Arrays. Advanced Electronic Materials, 2016, 2, 1600158.	2.6	41
528	High-Performance Strain Sensors with Fish-Scale-Like Graphene-Sensing Layers for Full-Range Detection of Human Motions. ACS Nano, 2016, 10, 7901-7906.	7.3	500
529	Difunctional Graphene–Fe ₃ O ₄ Hybrid Nanosheet/Polydimethylsiloxane Nanocomposites with High Positive Piezoresistive and Superparamagnetism Properties as Flexible Touch Sensors. Advanced Materials Interfaces, 2016, 3, 1500418.	1.9	23
530	Advanced Materials for Self-Healing Applications. , 2016, , 316-349.		Ο

#	Article	IF	CITATIONS
531	Elastomeric ethylene copolymers with carbon nanostructures having tailored strain sensor behavior and their interpretation based on the excluded volume theory. Polymer International, 2016, 65, 1441-1448.	1.6	9
532	Graphene–Elastomer Composites with Segregated Nanostructured Network for Liquid and Strain Sensing Application. ACS Applied Materials & Interfaces, 2016, 8, 24143-24151.	4.0	120
533	Radiative loss-determined circular dichroism of plasmonic nanospirals with bendable stability of chiroptical activity. RSC Advances, 2016, 6, 84348-84353.	1.7	14
534	Biocompatible and Sustainable Optical Strain Sensors for Largeâ€Area Applications. Advanced Optical Materials, 2016, 4, 1950-1954.	3.6	94
535	Skin inspired fractal strain sensors using a copper nanowire and graphite microflake hybrid conductive network. Nanoscale, 2016, 8, 16596-16605.	2.8	60
536	Polymerâ€Enhanced Highly Stretchable Conductive Fiber Strain Sensor Used for Electronic Data Gloves. Advanced Materials Technologies, 2016, 1, 1600136.	3.0	122
537	Polyurethane/Cotton/Carbon Nanotubes Core-Spun Yarn as High Reliability Stretchable Strain Sensor for Human Motion Detection. ACS Applied Materials & Interfaces, 2016, 8, 24837-24843.	4.0	251
538	Strain sensors on water-soluble cellulose nanofibril paper by polydimethylsiloxane (PDMS) stencil lithography. RSC Advances, 2016, 6, 85427-85433.	1.7	26
539	A highly stretchable strain sensor based on electrospun carbon nanofibers for human motion monitoring. RSC Advances, 2016, 6, 79114-79120.	1.7	79
540	Highly Stable Carbon Nanotube/Polyaniline Porous Network for Multifunctional Applications. ACS Applied Materials & Interfaces, 2016, 8, 34027-34033.	4.0	55
541	Fully Printed Stretchable Thin-Film Transistors and Integrated Logic Circuits. ACS Nano, 2016, 10, 11459-11468.	7.3	118
542	Printed multifunctional flexible device with an integrated motion sensor for health care monitoring. Science Advances, 2016, 2, e1601473.	4.7	273
543	3D Printing of Highly Conductive Nanocomposites for the Functional Optimization of Liquid Sensors. Small, 2016, 12, 6076-6082.	5.2	91
544	Bio-inspired synthesis of hybrid tube-like structures based on CaCO ₃ and type I-collagen. RSC Advances, 2016, 6, 90509-90515.	1.7	13
545	Ultraâ€Stretchable and Forceâ€Sensitive Hydrogels Reinforced with Chitosan Microspheres Embedded in Polymer Networks. Advanced Materials, 2016, 28, 8037-8044.	11.1	274
546	Wideâ€Range Strain Sensors Based on Highly Transparent and Supremely Stretchable Graphene/Agâ€Nanowires Hybrid Structures. Small, 2016, 12, 5058-5065.	5.2	72
547	Carbon nanotube decorated NaTi ₂ (PO ₄) ₃ /C nanocomposite for a high-rate and low-temperature sodium-ion battery anode. RSC Advances, 2016, 6, 70277-70283.	1.7	51
548	Examining the structural contribution to the electrical character of single wall carbon nanotube forest by a height dependent study. Carbon, 2016, 108, 106-111.	5.4	0

			_
#	Article	IF	CITATIONS
549	Highly Stretchable and Sensitive Strain Sensor Based on Facilely Prepared Three-Dimensional Graphene Foam Composite. ACS Applied Materials & Interfaces, 2016, 8, 18954-18961.	4.0	176
550	Cotton modified with silver-nanowires/polydopamine for a wearable thermal management device. RSC Advances, 2016, 6, 67771-67777.	1.7	43
551	Flexible Textile Strain Wireless Sensor Functionalized with Hybrid Carbon Nanomaterials Supported ZnO Nanowires with Controlled Aspect Ratio. Advanced Functional Materials, 2016, 26, 6206-6214.	7.8	132
552	Selfâ€Powered Multimodal Temperature and Force Sensor Basedâ€On a Liquid Droplet. Angewandte Chemie - International Edition, 2016, 55, 15864-15868.	7.2	32
553	Selfâ€Powered Multimodal Temperature and Force Sensor Basedâ€On a Liquid Droplet. Angewandte Chemie, 2016, 128, 16096-16100.	1.6	4
554	Microwaveâ€Assisted Synthesis of Highly Monodispersed Singleâ€Walled Alunminosilicate Nanotubes. ChemistrySelect, 2016, 1, 6212-6216.	0.7	8
555	High performance flexible strain sensor based on self-locked overlapping graphene sheets. Nanoscale, 2016, 8, 20090-20095.	2.8	108
556	Self-powered liquid triboelectric microfluidic sensor for pressure sensing and finger motion monitoring applications. Nano Energy, 2016, 30, 450-459.	8.2	157
557	Highly stretchable, sensitive and flexible strain sensors based on MWCNTs fabriated by different methods. , 2016, , .		0
558	Emerging flexible and wearable physical sensing platforms for healthcare and biomedical applications. Microsystems and Nanoengineering, 2016, 2, 16043.	3.4	385
559	CNC–Al2O3–Ti: a new unit for micro scale strain sensing. RSC Advances, 2016, 6, 107683-107688.	1.7	10
560	A high-resolution strain-gauge nanolaser. Nature Communications, 2016, 7, 11569.	5.8	60
561	A FBG pulse wave demodulation method based on PCF modal interference filter. Proceedings of SPIE, 2016, , .	0.8	0
562	A toolkit of thread-based microfluidics, sensors, and electronics for 3D tissue embedding for medical diagnostics. Microsystems and Nanoengineering, 2016, 2, 16039.	3.4	162
563	Bio-inspired sensitive and reversible mechanochromisms via strain-dependent cracks and folds. Nature Communications, 2016, 7, 11802.	5.8	211
564	Simulation of water impregnation through vertically aligned CNT forests using a molecular dynamics method. Scientific Reports, 2016, 6, 32262.	1.6	10
565	Stretchable and compressible strain sensors based on carbon nanotube meshes. Nanoscale, 2016, 8, 19352-19358.	2.8	54
566	Piezo-resistive and thermo-resistance effects of highly-aligned CNT based macrostructures. RSC Advances, 2016, 6, 106090-106095.	1.7	20

#	Article	IF	CITATIONS
567	Ultrathin flexible memory devices based on organic ferroelectric transistors. Japanese Journal of Applied Physics, 2016, 55, 10TA04.	0.8	7
568	Understanding the Shape Memory Behavior of Selfâ€Bending Materials and Their Use as Sensors. Advanced Functional Materials, 2016, 26, 3282-3290.	7.8	72
569	Advances in Wearable Fiberâ€6haped Lithiumâ€ŀon Batteries. Advanced Materials, 2016, 28, 4524-4531.	11.1	201
570	Recent Advances in Flexible and Stretchable Bioâ€Electronic Devices Integrated with Nanomaterials. Advanced Materials, 2016, 28, 4203-4218.	11.1	894
571	An Allâ€Elastomeric Transparent and Stretchable Temperature Sensor for Bodyâ€Attachable Wearable Electronics. Advanced Materials, 2016, 28, 502-509.	11.1	715
572	Recent Advances in Stretchable and Transparent Electronic Materials. Advanced Electronic Materials, 2016, 2, 1500407.	2.6	245
573	Poisson Ratio and Piezoresistive Sensing: A New Route to Highâ€Performance 3D Flexible and Stretchable Sensors of Multimodal Sensing Capability. Advanced Functional Materials, 2016, 26, 2900-2908.	7.8	127
574	MoS ₂ â€Based Tactile Sensor for Electronic Skin Applications. Advanced Materials, 2016, 28, 2556-2562.	11.1	351
575	3D Porous Spongeâ€Inspired Electrode for Stretchable Lithiumâ€Ion Batteries. Advanced Materials, 2016, 28, 3578-3583.	11.1	247
576	Pre-Strain Stimulation of Electro-Mechanical Sensitivity of Carbon Nanotube Network/Polyurethane Composites. IEEE Sensors Journal, 2016, 16, 5898-5903.	2.4	10
577	Sensing human physiological response using wearable carbon nanotube-based fabrics. , 2016, , .		1
578	Development, fabrication, and modeling of highly sensitive conjugated polymer based piezoresistive sensors in electronic skin applications. , 2016, , .		0
579	Stretchable carbon nanotube conductors and their applications. Korean Journal of Chemical Engineering, 2016, 33, 2771-2787.	1.2	23
580	Beyond Cognitive and Affective Issues: Designing Smart Learning Environments for Psychomotor Personalized Learning. , 2016, , 1-24.		3
581	Printable skin adhesive stretch sensor for measuring multi-axis human joint angles. , 2016, , .		17
582	A highly sensitive flexible strain sensor based on the contact resistance change of carbon nanotube bundles. Nanotechnology, 2016, 27, 205502.	1.3	22
583	Training the Body: The Potential of AIED to Support Personalized Motor Skills Learning. International Journal of Artificial Intelligence in Education, 2016, 26, 730-755.	3.9	51
584	Highly flexible strain sensor based on ZnO nanowires and P(VDF-TrFE) fibers for wearable electronic device. Science China Materials, 2016, 59, 173-181.	3.5	41

#	Article	IF	CITATIONS
585	Low cost and highly conductive elastic composites for flexible and printable electronics. Journal of Materials Chemistry C, 2016, 4, 5839-5848.	2.7	64
586	Fabrication of graphite grids via stencil lithography for highly sensitive motion sensors. Carbon, 2016, 96, 491-496.	5.4	4
587	Highly Stretchable and Transparent Supercapacitor by Ag–Au Core–Shell Nanowire Network with High Electrochemical Stability. ACS Applied Materials & Interfaces, 2016, 8, 15449-15458.	4.0	243
588	Polymer Nanocomposites. Engineering Materials and Processes, 2016, , .	0.2	11
589	Fabrication of dual-side metal patterns onto textile substrates for wearable electronics by combining wax-dot printing with electroless plating. Journal of Materials Chemistry C, 2016, 4, 7156-7164.	2.7	27
590	Controllable deformation of salt water-filled carbon nanotubes using an electric field with application to molecular sieving. Nanotechnology, 2016, 27, 315702.	1.3	12
591	Flexible and Stretchable Physical Sensor Integrated Platforms for Wearable Humanâ€Activity Monitoringand Personal Healthcare. Advanced Materials, 2016, 28, 4338-4372.	11.1	1,594
592	Skinâ€Inspired Haptic Memory Arrays with an Electrically Reconfigurable Architecture. Advanced Materials, 2016, 28, 1559-1566.	11.1	173
593	Carbonized Silk Fabric for Ultrastretchable, Highly Sensitive, and Wearable Strain Sensors. Advanced Materials, 2016, 28, 6640-6648.	11.1	749
594	Transfer function and working principle of a pressure/temperature sensor based on carbon black/silicone rubber composites. Journal of Applied Polymer Science, 2016, 133, .	1.3	18
595	Enhancement in electrical conductive property of polypyrroleâ€coated cotton fabrics using cationic surfactant. Journal of Applied Polymer Science, 2016, 133, .	1.3	23
596	Highly flexible self-powered sensors based on printed circuit board technology for human motion detection and gesture recognition. Nanotechnology, 2016, 27, 095401.	1.3	35
597	Facile fabrication of stretchable Ag nanowire/polyurethane electrodes using high intensity pulsed light. Nano Research, 2016, 9, 401-414.	5.8	128
598	Cellulose nanowhisker modulated 3D hierarchical conductive structure of carbon black/natural rubber nanocomposites for liquid and strain sensing application. Composites Science and Technology, 2016, 124, 44-51.	3.8	118
599	Waterproof Electronic-Bandage with Tunable Sensitivity for Wearable Strain Sensors. ACS Applied Materials & Interfaces, 2016, 8, 2866-2871.	4.0	70
600	Electrically conductive thermoplastic elastomer nanocomposites at ultralow graphene loading levels for strain sensor applications. Journal of Materials Chemistry C, 2016, 4, 157-166.	2.7	484
601	Silver particles modified carbon nanotube paper/glassfiber reinforced polymer composite material for high temperature infrared stealth camouflage. Carbon, 2016, 98, 557-566.	5.4	51
602	Large-scale assembly of highly sensitive Si-based flexible strain sensors for human motion monitoring. Nanoscale, 2016, 8, 2123-2128.	2.8	65

ARTICLE IF CITATIONS # Direct Pen Writing of Adhesive Particle-Free Ultrahigh Silver Salt-Loaded Composite Ink for 603 7.3 78 Stretchable Circuits. ACS Nano, 2016, 10, 396-404. Highly stretchable and sensitive piezoresistive carbon nanotube/elastomeric trilsocyanate-crosslinked polytetrahydrofuran nanocomposites. Journal of Materials Chemistry C, 604 2.7 2016, 4, 460-467. High-performance strain sensors based on functionalized graphene nanoplates for damage 605 3.8 84 monitoring. Composites Science and Technology, 2016, 123, 32-38. Bioinspired, Highly Stretchable, and Conductive Dry Adhesives Based on 1D–2D Hybrid Carbon 606 354 Nanocomposites for All-in-One ECG Electrodes. ACS Nano, 2016, 10, 4770-4778. A facile approach to spinning multifunctional conductive elastomer fibres with nanocarbon fillers. 607 1.8 45 Smart Materials and Structures, 2016, 25, 035015. Deformable devices with integrated functional nanomaterials for wearable electronics. Nano 608 6.3 Convergence, 2016, 3, 4. Biocompatible and Ultra-Flexible Inorganic Strain Sensors Attached to Skin for Long-Term Vital Signs 609 2.2 59 Monitoring. IEEE Electron Device Letters, 2016, 37, 496-499. Highly Sensitive and Transparent Strain Sensor Based on Thin Elastomer Film. IEEE Electron Device 29 Letters, 2016, 37, 667-670. Solvent-free fabrication of a biodegradable all-carbon paper based field effect transistor for human 611 4.6 54 motion detection through strain sensing. Green Chemistry, 2016, 18, 3640-3646. Analysis of piezoresistive behavior of polyaniline-coated nylon Lycra fabrics for elbow angle 1.0 measurement. Journal of the Textile Institute, 2016, , 1-8. Roadmap for the Development of at-Home Telemonitoring Systems to Augment Occupational Therapy. 613 7 2.5 IEEE Transactions on Human-Machine Systems, 2016, 46, 569-580. Liquid-Wetting-Solid Strategy To Fabricate Stretchable Sensors for Human-Motion Detection. ACS 614 4.0 64 Sensors, 2016, 1, 303-311. Highly sensitive, wearable and wireless pressure sensor using free-standing ZnO nanoneedle/PVDF 615 8.2 188 hybrid thin film for heart rate monitoring. Nano Energy, 2016, 22, 95-104. Fabrication and design of metal nano-accordion structures using atomic layer deposition and 2.8 interference lithography. Nanoscale, 2016, 8, 4984-4990. Smart, stretchable and wearable supercapacitors: prospects and challenges. CrystEngComm, 2016, 18, 617 1.3 75 4218-4235. Parallel Microcracks-based Ultrasensitive and Highly Stretchable Strain Sensors. ACS Applied Materials & amp; Interfaces, 2016, 8, 5618-5626. Multi-Element Strain Gauge Modules for Soft Sensory Skins. IEEE Sensors Journal, 2016, 16, 2607-2616. 619 2.4 17 Stretchable Strain Sensor With Anisotropy and Application for Joint Angle Measurement. IEEE Sensors 2.4 Journal, 2016, 16, 3572-3579.

#	Article	IF	CITATIONS
621	Principles and validation of strain gauge shunt design for large dynamic strain measurement. Sensors and Actuators A: Physical, 2016, 241, 124-134.	2.0	8
622	Kinetic control of nanocrack formation in a palladium thin film on an elastomeric substrate for hydrogen gas sensing in air. Sensors and Actuators B: Chemical, 2016, 230, 367-373.	4.0	8
623	Continuous and scalable fabrication and multifunctional properties of carbon nanotube aerogels from the floating catalyst method. Carbon, 2016, 102, 409-418.	5.4	65
624	Direct-write polymeric strain sensors with arbitary contours on flexible substrates. , 2016, , .		2
625	Graphene coated nonwoven fabrics as wearable sensors. Journal of Materials Chemistry C, 2016, 4, 3224-3230.	2.7	108
626	Influence of rigid segment and carbon nanotube concentration on the cyclic piezoresistive and hysteretic behavior of multiwall carbon nanotube/segmented polyurethane composites. Composites Science and Technology, 2016, 128, 25-32.	3.8	88
627	Quasi In Situ Polymerization To Fabricate Copper Nanowire-Based Stretchable Conductor and Its Applications. ACS Applied Materials & amp; Interfaces, 2016, 8, 9297-9304.	4.0	44
628	Large-area, stretchable, super flexible and mechanically stable thermoelectric films of polymer/carbon nanotube composites. Journal of Materials Chemistry C, 2016, 4, 526-532.	2.7	152
629	Patterned, highly stretchable and conductive nanofibrous PANI/PVDF strain sensors based on electrospinning and in situ polymerization. Nanoscale, 2016, 8, 2944-2950.	2.8	129
630	Approaches to Stretchable Polymer Active Channels for Deformable Transistors. Macromolecules, 2016, 49, 433-444.	2.2	58
631	Micro/nanostructured surfaces for self-powered and multifunctional electronic skins. Journal of Materials Chemistry B, 2016, 4, 2999-3018.	2.9	116
632	A novel strain sensor based on graphene composite films with layered structure. Composites Part A: Applied Science and Manufacturing, 2016, 80, 95-103.	3.8	83
633	Nano-scale, planar and multi-tiered current pathways from a carbon nanotube–copper composite with high conductivity, ampacity and stability. Nanoscale, 2016, 8, 3888-3894.	2.8	65
634	Torsional failure of water-filled carbon nanotubes. International Journal of Damage Mechanics, 2016, 25, 87-97.	2.4	5
635	An intelligent skin based self-powered finger motion sensor integrated with triboelectric nanogenerator. Nano Energy, 2016, 19, 532-540.	8.2	178
636	Piezofilm yarn sensor-integrated knitted fabric for healthcare applications. Journal of Industrial Textiles, 2017, 47, 505-521.	1.1	29
637	Flexible, Cuttable, and Self-Waterproof Bending Strain Sensors Using Microcracked Gold Nanofilms@Paper Substrate. ACS Applied Materials & Interfaces, 2017, 9, 4151-4158.	4.0	107
638	Carbonized Silk Nanofiber Membrane for Transparent and Sensitive Electronic Skin. Advanced Functional Materials, 2017, 27, 1605657.	7.8	413

#	Article	IF	CITATIONS
639	Highly Sensitive Wearable Textile-Based Humidity Sensor Made of High-Strength, Single-Walled Carbon Nanotube/Poly(vinyl alcohol) Filaments. ACS Applied Materials & Interfaces, 2017, 9, 4788-4797.	4.0	201
640	Design and Evaluation of a 3-D Printed Optical Sensor for Monitoring Finger Flexion. IEEE Sensors Journal, 2017, 17, 1937-1944.	2.4	22
641	A wearable piezoelectric bending motion sensor for simultaneous detection of bending curvature and speed. RSC Advances, 2017, 7, 2520-2526.	1.7	34
642	Thermal convective inclinometer using carbon nanotube yarn. Microelectronic Engineering, 2017, 168, 50-54.	1.1	12
643	Flexible and low cost lead free composites with high dielectric constant. Ceramics International, 2017, 43, 3923-3926.	2.3	17
644	Mechanical and electromechanical properties of graphene and their potential application in MEMS. Journal Physics D: Applied Physics, 2017, 50, 053003.	1.3	73
645	Ultrafast Self-Healing Nanocomposites via Infrared Laser and Their Application in Flexible Electronics. ACS Applied Materials & Interfaces, 2017, 9, 3040-3049.	4.0	103
646	Ultra-sensitive Pressure sensor based on guided straight mechanical cracks. Scientific Reports, 2017, 7, 40116.	1.6	86
647	Eraser-based eco-friendly fabrication of a skin-like large-area matrix of flexible carbon nanotube strain and pressure sensors. Nanotechnology, 2017, 28, 095501.	1.3	44
648	Largely Enhanced Stretching Sensitivity of Polyurethane/Carbon Nanotube Nanocomposites via Incorporation of Cellulose Nanofiber. Journal of Physical Chemistry C, 2017, 121, 2108-2117.	1.5	65
649	Strain sensing behaviors of epoxy nanocomposites with carbon nanotubes under cyclic deformation. Polymer, 2017, 112, 1-9.	1.8	94
650	Ultrasensitive, Stretchable Strain Sensors Based on Fragmented Carbon Nanotube Papers. ACS Applied Materials & Interfaces, 2017, 9, 4835-4842.	4.0	184
651	Carbon nanotube growth inhibition in floating catalyst based chemical vapor deposition and its application in flexible circuit fabrication. Carbon, 2017, 116, 40-49.	5.4	9
652	Highly Sensitive Bendable and Foldable Paper Sensors Based on Reduced Graphene Oxide. ACS Applied Materials & Interfaces, 2017, 9, 4658-4666.	4.0	73
653	An ionic liquid based strain sensor for large displacement measurement. Biomedical Microdevices, 2017, 19, 1.	1.4	32
654	Strong Strain Sensing Performance of Natural Rubber Nanocomposites. ACS Applied Materials & Interfaces, 2017, 9, 4860-4872.	4.0	125
655	Printable stretchable interconnects. Flexible and Printed Electronics, 2017, 2, 013003.	1.5	141
656	Soft Nanocomposite Based Multi-point, Multi-directional Strain Mapping Sensor Using Anisotropic Electrical Impedance Tomography. Scientific Reports, 2017, 7, 39837.	1.6	90

#	Article	IF	CITATIONS
657	Paper: A promising material for human-friendly functional wearable electronics. Materials Science and Engineering Reports, 2017, 112, 1-22.	14.8	128
658	Highly Stretchable Microâ€Supercapacitor Arrays with Hybrid MWCNT/PANI Electrodes. Advanced Materials Technologies, 2017, 2, 1600282.	3.0	144
659	Solution-processed Au–Ag core–shell nanoparticle-decorated yarns for human motion monitoring. RSC Advances, 2017, 7, 10539-10544.	1.7	9
660	Ultraâ€Lightweight and Highly Adaptive Allâ€Carbon Elastic Conductors with Stable Electrical Resistance. Advanced Functional Materials, 2017, 27, 1606220.	7.8	78
661	Enhanced wideâ€range monotonic piezoresistivity, reliability of Ketjenblack/deproteinized natural rubber nanocomposite, and its biomedical application. Journal of Applied Polymer Science, 2017, 134, .	1.3	12
662	Highly Stretchable Potentiometric pH Sensor Fabricated via Laser Carbonization and Machining of Carbonâ^'Polyaniline Composite. ACS Applied Materials & Interfaces, 2017, 9, 9015-9023.	4.0	146
663	All-graphene strain sensor on soft substrate. Carbon, 2017, 116, 753-759.	5.4	164
664	Processing, characterisation and electromechanical behaviour of elastomeric multiwall carbon nanotubes-poly (glycerol sebacate) nanocomposites for piezoresistive sensors applications. Composites Science and Technology, 2017, 142, 163-170.	3.8	44
665	Three-dimensional conformal graphene microstructure for flexible and highly sensitive electronic skin. Nanotechnology, 2017, 28, 115501.	1.3	34
666	Effect of degree of crosslinking and polymerization of 3D printable polymer/ionic liquid composites on performance of stretchable piezoresistive sensors. Smart Materials and Structures, 2017, 26, 035043.	1.8	37
667	Electrospun polyetherimide electret nonwoven for bi-functional smart face mask. Nano Energy, 2017, 34, 562-569.	8.2	119
668	Transparent, stretchable, and rapid-response humidity sensor for body-attachable wearable electronics. Nano Research, 2017, 10, 2021-2033.	5.8	194
669	Flexible heartbeat sensor for wearable device. Biosensors and Bioelectronics, 2017, 94, 250-255.	5.3	117
670	Ferroelectric Zinc Oxide Nanowire Embedded Flexible Sensor for Motion and Temperature Sensing. ACS Applied Materials & Interfaces, 2017, 9, 9233-9238.	4.0	58
671	Highly stretchable printed strain sensors using multi-walled carbon nanotube/silicone rubber composites. Sensors and Actuators A: Physical, 2017, 259, 44-49.	2.0	97
672	Enhanced Sensitivity of Patterned Graphene Strain Sensors Used for Monitoring Subtle Human Body Motions. ACS Applied Materials & Interfaces, 2017, 9, 11176-11183.	4.0	75
673	Asymmetric Supercapacitor Electrodes and Devices. Advanced Materials, 2017, 29, 1605336.	11.1	1,021
674	Mussel-Inspired Adhesive and Tough Hydrogel Based on Nanoclay Confined Dopamine Polymerization. ACS Nano, 2017, 11, 2561-2574.	7.3	749

#	Article	IF	CITATIONS
675	Environment-friendly wearable thermal flow sensors for noninvasive respiratory monitoring. , 2017, ,		8
676	Stretchable, transparent and wearable sensor for multifunctional smart skins. , 2017, , .		4
677	Surface micro-structured, stretchable strain sensor towards biaxial sensitivity and performance enhancement. , 2017, , .		1
678	Highly Sensitive Textile Strain Sensors and Wireless User-Interface Devices Using All-Polymeric Conducting Fibers. ACS Applied Materials & amp; Interfaces, 2017, 9, 10190-10197.	4.0	153
679	Two-component spin-coated Ag/CNT composite films based on a silver heterogeneous nucleation mechanism adhesion-enhanced by mechanical interlocking and chemical grafting. Nanotechnology, 2017, 28, 105607.	1.3	12
680	Recent advances in wearable tactile sensors: Materials, sensing mechanisms, and device performance. Materials Science and Engineering Reports, 2017, 115, 1-37.	14.8	557
681	Magnetostrictive Fe–Ga/Cu Nanowires Array With GMR Sensor for Sensing Applied Pressure. IEEE Sensors Journal, 2017, 17, 2015-2020.	2.4	13
682	Engineering surface ligands of nanocrystals to design high performance strain sensor arrays through solution processes. Journal of Materials Chemistry C, 2017, 5, 2442-2450.	2.7	33
683	Stretchable electronic skin based on silver nanowire composite fiber electrodes for sensing pressure, proximity, and multidirectional strain. Nanoscale, 2017, 9, 3834-3842.	2.8	138
684	Electromechanical properties of a yarn strain sensor with graphene-sheath/polyurethane-core. Carbon, 2017, 118, 686-698.	5.4	113
685	3D Graphite–Polymer Flexible Strain Sensors with Ultrasensitivity and Durability for Realâ€Time Human Vital Sign Monitoring and Musical Instrument Education. Advanced Materials Technologies, 2017, 2, 1700070.	3.0	48
686	Light-activated humidity and gas sensing by ZnO nanowires grown on LED at room temperature. Sensors and Actuators B: Chemical, 2017, 249, 265-277.	4.0	70
687	Flexible and transparent strain sensors based on super-aligned carbon nanotube films. Nanoscale, 2017, 9, 6716-6723.	2.8	108
688	A General Surface Swellingâ€Induced Electroless Deposition Strategy for Fast Fabrication of Copper Circuits on Various Polymer Substrates. Advanced Materials Interfaces, 2017, 4, 1700052.	1.9	24
689	High-performance, flexible electronic skin sensor incorporating natural microcapsule actuators. Nano Energy, 2017, 36, 38-45.	8.2	160
690	Ultrasensitive Vertical Piezotronic Transistor Based on ZnO Twin Nanoplatelet. ACS Nano, 2017, 11, 4859-4865.	7.3	45
691	Crumpled Graphene Triboelectric Nanogenerators: Smaller Devices with Higher Output Performance. Advanced Materials Technologies, 2017, 2, 1700044.	3.0	78
692	A wearable strain sensor based on a carbonized nano-sponge/silicone composite for human motion detection. Nanoscale, 2017, 9, 6680-6685.	2.8	151

#	Article	IF	CITATIONS
693	Wearable carbon nanotube-based fabric sensors for monitoring human physiological performance. Smart Materials and Structures, 2017, 26, 055018.	1.8	57
694	Auxetic Foamâ€Based Contactâ€Mode Triboelectric Nanogenerator with Highly Sensitive Selfâ€Powered Strain Sensing Capabilities to Monitor Human Body Movement. Advanced Functional Materials, 2017, 27, 1606695.	7.8	156
695	Carbon-Based Pressure Sensors With Wavy Configuration. IEEE Electron Device Letters, 2017, 38, 979-982.	2.2	7
696	Polydimethylsiloxane and polyisoprene-based graphene composites for strain-sensing. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2017, 35, 03D106.	0.6	2
697	Stand-Alone Stretchable Absolute Pressure Sensing System for Industrial Applications. IEEE Transactions on Industrial Electronics, 2017, 64, 8739-8746.	5.2	20
698	Drop casting of stiffness gradients for chip integration into stretchable substrates. Journal of Micromechanics and Microengineering, 2017, 27, 045018.	1.5	10
699	An IoT Data Communication Framework for Authenticity and Integrity. , 2017, , .		22
700	Percolating Network of Ultrathin Gold Nanowires and Silver Nanowires toward "Invisible―Wearable Sensors for Detecting Emotional Expression and Apexcardiogram. Advanced Functional Materials, 2017, 27, 1700845.	7.8	257
701	Fully Printed Silverâ€Nanoparticleâ€Based Strain Gauges with Record High Sensitivity. Advanced Electronic Materials, 2017, 3, 1700067.	2.6	75
702	Three-Dimensional Continuous Conductive Nanostructure for Highly Sensitive and Stretchable Strain Sensor. ACS Applied Materials & amp; Interfaces, 2017, 9, 17369-17378.	4.0	114
703	Visualization Recording and Storage of Pressure Distribution through a Smart Matrix Based on the Piezotronic Effect. Advanced Materials, 2017, 29, 1701253.	11.1	59
704	3D Printed Stretchable Tactile Sensors. Advanced Materials, 2017, 29, 1701218.	11.1	336
705	A general strategy for high performance stretchable conductors based on carbon nanotubes and silver nanowires. RSC Advances, 2017, 7, 20167-20171.	1.7	5
706	Deformable and wearable carbon nanotube microwire-based sensors for ultrasensitive monitoring of strain, pressure and torsion. Nanoscale, 2017, 9, 604-612.	2.8	78
707	Flexible transparent tribotronic transistor for active modulation of conventional electronics. Nano Energy, 2017, 31, 533-540.	8.2	62
708	Wearable bio-instrument for detecting body movement based on strain gauges. , 2017, , .		3
709	A flexible, ultra-sensitive strain sensor based on carbon nanocoil network fabricated by an electrophoretic method. Nanoscale, 2017, 9, 9872-9878.	2.8	46
710	Wearable Sensing Systems with Mechanically Soft Assemblies of Nanoscale Materials. Advanced Materials Technologies, 2017, 2, 1700053.	3.0	89

#	Article	IF	CITATIONS
711	Effect of temperature on the electrical property of epoxy composites with carbon nanotube. Composites Science and Technology, 2017, 149, 48-54.	3.8	29
712	Rapid Fabrication of Flexible and Stretchable Strain Sensor by Chitosanâ€Based Water Ink for Plants Growth Monitoring. Advanced Materials Technologies, 2017, 2, 1700021.	3.0	65
713	A skin-integrated transparent and stretchable strain sensor with interactive color-changing electrochromic displays. Nanoscale, 2017, 9, 7631-7640.	2.8	160
714	Enhanced electrical conductivity and piezoresistive sensing in multi-wall carbon nanotubes/polydimethylsiloxane nanocomposites via the construction of a self-segregated structure. Nanoscale, 2017, 9, 11017-11026.	2.8	179
715	An ultrathin stretchable triboelectric nanogenerator with coplanar electrode for energy harvesting and gesture sensing. Journal of Materials Chemistry A, 2017, 5, 12361-12368.	5.2	86
716	Wearable Flexible Sensors: A Review. IEEE Sensors Journal, 2017, 17, 3949-3960.	2.4	379
717	A Planar, Multisensing Wearable Health Monitoring Device Integrated with Acceleration, Temperature, and Electrocardiogram Sensors. Advanced Materials Technologies, 2017, 2, 1700057.	3.0	35
718	Multiple Hydrogen Bonding Enables the Selfâ€Healing of Sensors for Human–Machine Interactions. Angewandte Chemie - International Edition, 2017, 56, 8795-8800.	7.2	398
719	Flexible Nanowire Cluster as a Wearable Colorimetric Humidity Sensor. Small, 2017, 13, 1700109.	5.2	46
720	Highly Stretchable Miniature Strain Sensor for Large Dynamic Strain Measurement. , 2017, 1, 1-4.		9
721	Self-powered pressure sensor for ultra-wide range pressure detection. Nano Research, 2017, 10, 3557-3570.	5.8	117
722	Broadband dynamic responses of flexible carbon black/poly (vinylidene fluoride) nanocomposites: A sensitivity study. Composites Science and Technology, 2017, 149, 246-253.	3.8	37
723	Stretchable electronic devices using graphene and its hybrid nanostructures. FlatChem, 2017, 3, 71-91.	2.8	34
724	Flexible Dual-Mode Tactile Sensor Derived from Three-Dimensional Porous Carbon Architecture. ACS Applied Materials & Interfaces, 2017, 9, 22685-22693.	4.0	41
725	MWCNTs based flexible and stretchable strain sensors. Journal of Semiconductors, 2017, 38, 053003.	2.0	10
726	Free-standing graphene films prepared via foam film method for great capacitive flexible supercapacitors. Applied Surface Science, 2017, 422, 975-984.	3.1	20
727	Low-dimensional carbon based sensors and sensing network for wearable health and environmental monitoring. Carbon, 2017, 121, 353-367.	5.4	93
728	Biological phytic acid as a multifunctional curing agent for elastomers: towards skin-touchable and flame retardant electronic sensors. Green Chemistry, 2017, 19, 3418-3427.	4.6	41

#	Article	IF	CITATIONS
729	Curving silver nanowires using liquid droplets for highly stretchable and durable percolation networks. Nanoscale, 2017, 9, 8938-8944.	2.8	19
730	Crumpled sheets of reduced graphene oxide as a highly sensitive, robust and versatile strain/pressure sensor. Nanoscale, 2017, 9, 9581-9588.	2.8	29
731	Nano-force sensor based on a single tellurium microwire. Semiconductor Science and Technology, 2017, 32, 074001.	1.0	6
732	Multiple Hydrogen Bonding Enables the Selfâ€Healing of Sensors for Human–Machine Interactions. Angewandte Chemie, 2017, 129, 8921-8926.	1.6	101
733	Enhanced oxidation resistance and electrical conductivity copper nanowires–graphene hybrid films for flexible strain sensors. New Journal of Chemistry, 2017, 41, 4950-4958.	1.4	25
734	Self-adapted and tunable graphene strain sensors for detecting both subtle and large human motions. Nanoscale, 2017, 9, 8266-8273.	2.8	100
735	Review of Flexible Temperature Sensing Networks for Wearable Physiological Monitoring. Advanced Healthcare Materials, 2017, 6, 1601371.	3.9	217
736	Highly Sensitive, Durable, and Multifunctional Sensor Inspired by a Spider. ACS Applied Materials & Interfaces, 2017, 9, 19955-19962.	4.0	89
737	From wheat bran derived carbonaceous materials to a highly stretchable and durable strain sensor. RSC Advances, 2017, 7, 22619-22626.	1.7	21
738	Carbonâ€Nanotubeâ€Templated, Sputterâ€Deposited, Flexible Superconducting NbN Nanowire Yarns. Advanced Functional Materials, 2017, 27, 1701108.	7.8	12
739	Conductive thermoplastic polyurethane composites with tunable piezoresistivity by modulating the filler dimensionality for flexible strain sensors. Composites Part A: Applied Science and Manufacturing, 2017, 101, 41-49.	3.8	155
740	Resistive electronic skin. Journal of Materials Chemistry C, 2017, 5, 5845-5866.	2.7	161
741	Sensitivity-Enhanced Wearable Active Voiceprint Sensor Based on Cellular Polypropylene Piezoelectret. ACS Applied Materials & Interfaces, 2017, 9, 23716-23722.	4.0	48
742	Stretchable and robust transistor of single wall carbon nanotube, gel and elastomeric materials. , 2017, , .		0
743	Extraordinarily Stretchable All arbon Collaborative Nanoarchitectures for Epidermal Sensors. Advanced Materials, 2017, 29, 1606411.	11.1	194
744	Excluded Volume Approach for Ultrathin Carbon Nanotube Network Stabilization: A Mesoscopic Distinct Element Method Study. ACS Applied Materials & Interfaces, 2017, 9, 13611-13618.	4.0	13
745	Ultrasensitive and stretchable resistive strain sensors designed for wearable electronics. Materials Horizons, 2017, 4, 502-510.	6.4	206
746	Tough Nanoâ€Architectured Conductive Textile Made by Capillary Splicing of Carbon Nanotubes. Advanced Engineering Materials, 2017, 19, 1600845.	1.6	9

#	Article	IF	CITATIONS
747	Stretchable Capacitive Sensors of Torsion, Strain, and Touch Using Double Helix Liquid Metal Fibers. Advanced Functional Materials, 2017, 27, 1605630.	7.8	257
748	Flexible wire-shaped strain sensor from cotton thread for human health and motion detection. Scientific Reports, 2017, 7, 45013.	1.6	103
749	Stretchable electromagnetic-interference shielding materials made of a long single-walled carbon-nanotube–elastomer composite. RSC Advances, 2017, 7, 10841-10847.	1.7	66
750	A highly sensitive graphene woven fabric strain sensor for wearable wireless musical instruments. Materials Horizons, 2017, 4, 477-486.	6.4	194
751	Can a wearable strain sensor based on a carbon nanotube network be an alternative to an isokinetic dynamometer for the measurement of knee-extensor muscle strength?. Measurement Science and Technology, 2017, 28, 045701.	1.4	5
752	Interface engineered carbon nanotubes with SiO2 for flexible infrared detectors. Applied Surface Science, 2017, 413, 308-316.	3.1	3
753	Fully printable, strain-engineered electronic wrap for customizable soft electronics. Scientific Reports, 2017, 7, 45328.	1.6	56
754	Versatile Electronic Skins for Motion Detection of Joints Enabled by Aligned Fewâ€Walled Carbon Nanotubes in Flexible Polymer Composites. Advanced Functional Materials, 2017, 27, 1606604.	7.8	119
755	Performance Study of Flexible Capacitive Pressure Sensor Based on Dielectric Structures. Lecture Notes in Electrical Engineering, 2017, , 515-523.	0.3	0
756	Influence of ethylene glycol vapor annealing on structure and property of wet-spun PVA/PEDOT:PSS blend fiber. Journal of Materials Science, 2017, 52, 6917-6927.	1.7	16
757	Stress sensitive electricity based on Ag/cellulose nanofiber aerogel for self-reporting. Carbohydrate Polymers, 2017, 168, 265-273.	5.1	38
758	Mechanical Properties of Poly(dopamine)â€Coated Graphene Oxide and Poly(vinyl alcohol) Composite Fibers Coated with Reduced Graphene Oxide and Their Use for Piezoresistive Sensing. Particle and Particle Systems Characterization, 2017, 34, 1600382.	1.2	11
759	Interactive wearable systems for upper body rehabilitation: a systematic review. Journal of NeuroEngineering and Rehabilitation, 2017, 14, 20.	2.4	245
760	A piezo-resistive graphene strain sensor with a hollow cylindrical geometry. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2017, 219, 20-27.	1.7	36
761	Large reduction in electrical contact resistance of flexible carbon nanotube/silicone rubber composites by trifluoroacetic acid treatment. Composites Science and Technology, 2017, 143, 98-105.	3.8	14
762	Novel Reversible Mechanochromic Elastomer with High Sensitivity: Bond Scission and Bending-Induced Multicolor Switching. ACS Applied Materials & Interfaces, 2017, 9, 11874-11881.	4.0	119
763	Carbon nanotube thin film strain sensors: comparison between experimental tests and numerical simulations. Nanotechnology, 2017, 28, 155502.	1.3	22
764	Detection of non-joint areas tiny strain and anti-interference voice recognition by micro-cracked metal thin film. Nano Energy, 2017, 34, 578-585.	8.2	128

#	Article	IF	CITATIONS
765	MuscleVR. , 2017, , .		1
766	Flexible Sensing Electronics for Wearable/Attachable Health Monitoring. Small, 2017, 13, 1602790.	5.2	690
767	Photoluminescence Tuning in Stretchable PDMS Film Grafted Doped Core/Multishell Quantum Dots for Anticounterfeiting. Advanced Functional Materials, 2017, 27, 1700051.	7.8	89
768	Omnidirectional Bending and Pressure Sensor Based on Stretchable CNT-PU Sponge. Advanced Functional Materials, 2017, 27, 1604434.	7.8	148
769	Advanced Materials for Printed Wearable Electrochemical Devices: A Review. Advanced Electronic Materials, 2017, 3, 1600260.	2.6	358
770	MEMS-Based Flexible Force Sensor for Tri-Axial Catheter Contact Force Measurement. Journal of Microelectromechanical Systems, 2017, 26, 264-272.	1.7	23
771	Development of water-based printable piezoresistive sensors for large strain applications. Composites Part B: Engineering, 2017, 112, 344-352.	5.9	70
772	Conductive Polymer-Coated Carbon Nanotubes To Construct Stretchable and Transparent Electrochemical Sensors. Analytical Chemistry, 2017, 89, 2032-2038.	3.2	84
773	Oneâ€Dimensional Nanomaterials for Soft Electronics. Advanced Electronic Materials, 2017, 3, 1600314.	2.6	271
774	Facilitated embedding of silver nanowires into conformally-coated iCVD polymer films deposited on cloth for robust wearable electronics. Nanoscale, 2017, 9, 3399-3407.	2.8	16
775	A covalently cross-linked reduced functionalized graphene oxide/polyurethane composite based on Diels–Alder chemistry and its potential application in healable flexible electronics. Journal of Materials Chemistry C, 2017, 5, 220-228.	2.7	72
776	Water-borne foldable polymer solar cells: one-step transferring free-standing polymer films onto woven fabric electrodes. Journal of Materials Chemistry A, 2017, 5, 782-788.	5.2	30
777	Digital microelectromechanical sensor with an engineered polydimethylsiloxane (PDMS) bridge structure. Nanoscale, 2017, 9, 1257-1262.	2.8	12
778	Highly Stretchable and Highly Conductive PEDOT:PSS/Ionic Liquid Composite Transparent Electrodes for Solution-Processed Stretchable Electronics. ACS Applied Materials & Interfaces, 2017, 9, 819-826.	4.0	195
779	Highly Stretchable, Hysteresis-Free Ionic Liquid-Based Strain Sensor for Precise Human Motion Monitoring. ACS Applied Materials & Interfaces, 2017, 9, 1770-1780.	4.0	331
780	Piezoresistive performance characterization of strain sensitive multi-walled carbon nanotube-epoxy nanocomposites. Sensors and Actuators A: Physical, 2017, 254, 61-68.	2.0	106
781	Superfast and high-sensitivity printable strain sensors with bioinspired micron-scale cracks. Nanoscale, 2017, 9, 1166-1173.	2.8	101
782	The effect of filler dimensionality on the electromechanical performance of polydimethylsiloxane based conductive nanocomposites for flexible strain sensors. Composites Science and Technology, 2017, 139, 64-73.	3.8	300

#	Article	IF	CITATIONS
783	Recent Progress of Selfâ€Powered Sensing Systems for Wearable Electronics. Small, 2017, 13, 1701791.	5.2	223
784	Designing Metallic and Insulating Nanocrystal Heterostructures to Fabricate Highly Sensitive and Solution Processed Strain Gauges for Wearable Sensors. Small, 2017, 13, 1702534.	5.2	40
785	A strong and flexible electronic vessel for real-time monitoring of temperature, motions and flow. Nanoscale, 2017, 9, 17821-17828.	2.8	19
786	Digitalized self-powered strain gauge for static and dynamic measurement. Nano Energy, 2017, 42, 129-137.	8.2	31
787	Three-Dimensional Flexible All-Organic Conductors for Multifunctional Wearable Applications. ACS Applied Materials & Interfaces, 2017, 9, 40580-40592.	4.0	15
788	Semiconducting carbon nanotube network thin-film transistors with enhanced inkjet-printed source and drain contact interfaces. Applied Physics Letters, 2017, 111, 173108.	1.5	14
789	A highly flexible and sensitive piezoresistive sensor based on MXene with greatly changed interlayer distances. Nature Communications, 2017, 8, 1207.	5.8	560
790	A stretchable fiber nanogenerator for versatile mechanical energy harvesting and self-powered full-range personal healthcare monitoring. Nano Energy, 2017, 41, 511-518.	8.2	124
791	A super stretchable and sensitive strain sensor based on a carbon nanocoil network fabricated by a simple peeling-off approach. Nanoscale, 2017, 9, 16404-16411.	2.8	48
792	Capillary assisted deposition of carbon nanotube film for strain sensing. Applied Physics Letters, 2017, 111, 173105.	1.5	14
793	Stretchable Electrode Based on Laterally Combed Carbon Nanotubes for Wearable Energy Harvesting and Storage Devices. Advanced Functional Materials, 2017, 27, 1704353.	7.8	110
794	A skin-attachable, stretchable integrated system based on liquid GalnSn for wireless human motion monitoring with multi-site sensing capabilities. NPG Asia Materials, 2017, 9, e443-e443.	3.8	223
795	Brush-paintable and highly stretchable Ag nanowire and PEDOT:PSS hybrid electrodes. Scientific Reports, 2017, 7, 14685.	1.6	73
796	Nature-Inspired Structural Materials for Flexible Electronic Devices. Chemical Reviews, 2017, 117, 12893-12941.	23.0	578
797	Highly stretchable, sensitive strain sensors with a wide linear sensing region based on compressed anisotropic graphene foam/polymer nanocomposites. Nanoscale, 2017, 9, 17396-17404.	2.8	70
798	Flexible graphene sound device based on laser reduced graphene. Applied Physics Letters, 2017, 111, .	1.5	24
799	Largeâ€Area Allâ€Textile Pressure Sensors for Monitoring Human Motion and Physiological Signals. Advanced Materials, 2017, 29, 1703700.	11.1	558
800	Flexible and Highly Sensitive Pressure Sensor Based on Microdome-Patterned PDMS Forming with Assistance of Colloid Self-Assembly and Replica Technique for Wearable Electronics. ACS Applied Materials & Interfaces, 2017, 9, 35968-35976.	4.0	200

#	Article	IF	CITATIONS
801	Highly Sensitive, Flexible MEMS Based Pressure Sensor with Photoresist Insulation Layer. Small, 2017, 13, 1702422.	5.2	50
802	Improved response time of flexible microelectromechanical sensors employing eco-friendly nanomaterials. Nanoscale, 2017, 9, 16915-16921.	2.8	13
803	Highly sensitive humidity sensor based on graphene oxide foam. Applied Physics Letters, 2017, 111, .	1.5	28
804	Engineering of carbon nanotube/polydimethylsiloxane nanocomposites with enhanced sensitivity for wearable motion sensors. Journal of Materials Chemistry C, 2017, 5, 11092-11099.	2.7	112
805	A modularized and flexible sensor based on MWCNT/PDMS composite film for on-site electrochemical analysis. Journal of Electroanalytical Chemistry, 2017, 806, 68-74.	1.9	13
806	Recent Advances in Sensing Applications of Graphene Assemblies and Their Composites. Advanced Functional Materials, 2017, 27, 1702891.	7.8	209
807	High-performance wearable strain sensors based on fragmented carbonized melamine sponges for human motion detection. Nanoscale, 2017, 9, 17948-17956.	2.8	75
808	Onâ€Skin Triboelectric Nanogenerator and Selfâ€Powered Sensor with Ultrathin Thickness and High Stretchability. Small, 2017, 13, 1702929.	5.2	108
809	Fabrication and characterization of stretchable copper electrodes on poly(dimethylsiloxane) substrate by direct deposition. Japanese Journal of Applied Physics, 2017, 56, 115801.	0.8	6
810	Highly Stretchable Variableâ€Transmittance Skin for Ultrasensitive and Wearable Strain Sensing. Advanced Materials Technologies, 2017, 2, 1700161.	3.0	21
811	Controllable assembly of silver nanoparticles based on the coffee-ring effect for high-sensitivity flexible strain gauges. Sensors and Actuators A: Physical, 2017, 264, 188-194.	2.0	7
812	Highly stretchable organic thermoelectrics with an enhanced power factor due to extended localization length. Organic Electronics, 2017, 50, 367-375.	1.4	17
813	Versatile Interpenetrating Polymer Network Approach to Robust Stretchable Electronic Devices. Chemistry of Materials, 2017, 29, 7645-7652.	3.2	101
814	Highly Stretchable, Ultrasensitive, and Wearable Strain Sensors Based on Facilely Prepared Reduced Graphene Oxide Woven Fabrics in an Ethanol Flame. ACS Applied Materials & Interfaces, 2017, 9, 32054-32064.	4.0	156
815	Stretchable and Electrically Conductive Composites Fabricated from Polyurethane and Silver Nano/Microstructures. , 2017, , .		7
816	Stretchable and waterproof elastomer-coated organic photovoltaics for washable electronic textile applications. Nature Energy, 2017, 2, 780-785.	19.8	369
817	A Flexible Capacitive Pressure Sensor for Wearable Respiration Monitoring System. IEEE Sensors Journal, 2017, , 1-1.	2.4	75
818	Mussel-inspired electroactive chitosan/graphene oxide composite hydrogel with rapid self-healing and recovery behavior for tissue engineering. Carbon, 2017, 125, 557-570.	5.4	253

~		_
Γιτατι	ON	Report
CIIAI		KLI OKI

#	Article	IF	CITATIONS
819	A crack-based nickel@graphene-wrapped polyurethane sponge ternary hybrid obtained by electrodeposition for highly sensitive wearable strain sensors. Journal of Materials Chemistry C, 2017, 5, 10167-10175.	2.7	61
820	Stretchable Dual-Capacitor Multi-Sensor for Touch-Curvature-Pressure-Strain Sensing. Scientific Reports, 2017, 7, 10854.	1.6	37
821	Design and Fabrication of Nanomaterial-Based Device for Pressure Sensorial Applications. , 2017, , 1-14.		0
822	Carbon Nanotube-Based Ion Selective Sensors for Wearable Applications. ACS Applied Materials & Interfaces, 2017, 9, 35169-35177.	4.0	88
823	Ultratransparent and stretchable graphene electrodes. Science Advances, 2017, 3, e1700159.	4.7	231
824	Self-powered Real-time Movement Monitoring Sensor Using Triboelectric Nanogenerator Technology. Scientific Reports, 2017, 7, 10521.	1.6	77
825	A Highly Stretchable Nanofiber-Based Electronic Skin with Pressure-, Strain-, and Flexion-Sensitive Properties for Health and Motion Monitoring. ACS Applied Materials & Interfaces, 2017, 9, 42951-42960.	4.0	147
826	Electronic Textile by Dyeing Method for Multiresolution Physical Kineses Monitoring. Advanced Electronic Materials, 2017, 3, 1700253.	2.6	69
827	Lab-on-Skin: A Review of Flexible and Stretchable Electronics for Wearable Health Monitoring. ACS Nano, 2017, 11, 9614-9635.	7.3	1,245
828	A Superhydrophobic Smart Coating for Flexible and Wearable Sensing Electronics. Advanced Materials, 2017, 29, 1702517.	11.1	348
829	A flexible and highly sensitive capacitive pressure sensor based on conductive fibers with a microporous dielectric for wearable electronics. Journal of Materials Chemistry C, 2017, 5, 10068-10076.	2.7	123
830	Hybrid 3D Printing of Soft Electronics. Advanced Materials, 2017, 29, 1703817.	11.1	501
831	Large area and ultra-thin compliant strain sensors for prosthetic devices. Sensors and Actuators A: Physical, 2017, 266, 56-64.	2.0	36
832	Crack-induced Ag nanowire networks for transparent, stretchable, and highly sensitive strain sensors. Scientific Reports, 2017, 7, 7959.	1.6	98
833	Advanced carbon materials for flexible and wearable sensors. Science China Materials, 2017, 60, 1026-1062.	3.5	170
834	Formation of large-area stretchable 3D graphene–nickel particle foams and their sensor applications. RSC Advances, 2017, 7, 35016-35026.	1.7	12
835	Paper-Based Bimodal Sensor for Electronic Skin Applications. ACS Applied Materials & Interfaces, 2017, 9, 26974-26982.	4.0	83
836	A Biâ€Sheath Fiber Sensor for Giant Tensile and Torsional Displacements. Advanced Functional Materials, 2017, 27, 1702134.	7.8	100

#	Article	IF	CITATIONS
837	Ultrastretchable Analog/Digital Signal Transmission Line with Carbon Nanotube Sheets. ACS Applied Materials & Interfaces, 2017, 9, 26286-26292.	4.0	13
838	A Simple and Scalable Fabrication Method for Organic Electronic Devices on Textiles. Journal of Visualized Experiments, 2017, , .	0.2	Ο
839	A flexible and stackable 3D interconnect system using growth-engineered carbon nanotube scaffolds. Flexible and Printed Electronics, 2017, 2, 025003.	1.5	6
840	Selfâ€Powered Realâ€Time Arterial Pulse Monitoring Using Ultrathin Epidermal Piezoelectric Sensors. Advanced Materials, 2017, 29, 1702308.	11.1	495
841	A Highly Stretchable Capacitiveâ€Based Strain Sensor Based on Metal Deposition and Laser Rastering. Advanced Materials Technologies, 2017, 2, 1700081.	3.0	90
842	Batch Fabrication of Customizable Siliconeâ€Textile Composite Capacitive Strain Sensors for Human Motion Tracking. Advanced Materials Technologies, 2017, 2, 1700136.	3.0	301
843	Recent progresses on flexible tactile sensors. Materials Today Physics, 2017, 1, 61-73.	2.9	227
844	Transparent, Flexible Strain Sensor Based on a Solution-Processed Carbon Nanotube Network. ACS Applied Materials & Interfaces, 2017, 9, 26279-26285.	4.0	134
845	Self-reinforcing graphene coatings on 3D printed elastomers for flexible radio frequency antennas and strain sensors. Flexible and Printed Electronics, 2017, 2, 035001.	1.5	29
846	3D Printing of Freeâ€Standing Stretchable Electrodes with Tunable Structure and Stretchability. Advanced Engineering Materials, 2017, 19, 1700341.	1.6	55
847	Single wearable sensing energy device based on photoelectric biofuel cells for simultaneous analysis of perspiration and illuminance. Nanoscale, 2017, 9, 11846-11850.	2.8	35
848	Highly Elastic Grapheneâ€Based Electronics Toward Electronic Skin. Advanced Functional Materials, 2017, 27, 1701513.	7.8	123
849	Enhancing the Elasticity of Ultrathin Single-Wall Carbon Nanotube Films with Colloidal Nanocrystals. Langmuir, 2017, 33, 7889-7895.	1.6	13
850	Supercapacitive Iontronic Nanofabric Sensing. Advanced Materials, 2017, 29, 1700253.	11.1	187
851	Passive and Space-Discriminative Ionic Sensors Based on Durable Nanocomposite Electrodes toward Sign Language Recognition. ACS Nano, 2017, 11, 8590-8599.	7.3	73
852	Vertically aligned carbon nanotubes forest based flexible strain sensor for Internet of Things applications. , 2017, , .		2
853	High resolution flexible strain sensors for biological signal measurements. , 2017, , .		12
854	Flexible polycaprolactone (PCL) supercapacitor based on reduced graphene oxide (rGO)/single-wall carbon nanotubes (SWNTs) composite electrodes. Journal of Alloys and Compounds, 2017, 727, 721-727.	2.8	16

~			~	
CI	TAT	ION	Repo)RT

#	ARTICLE	IF	CITATIONS
855	Flexible polydimethylsiloxane/multi-walled carbon nanotubes membranous metacomposites with negative permittivity. Polymer, 2017, 125, 50-57.	1.8	379
856	Real-Time, Wearable, Biomechanical Movement Capture of Both Humans and Robots with Metal-Free Electrodes. ACS Omega, 2017, 2, 4132-4142.	1.6	15
857	QoS in Body Area Networks. ACM Transactions on Sensor Networks, 2017, 13, 1-46.	2.3	22
858	Strengthening Nickel by In Situ Graphene Synthesis. Advanced Engineering Materials, 2017, 19, 1700475.	1.6	8
859	Hyper-stretchable self-powered sensors based on electrohydrodynamically printed, self-similar piezoelectric nano/microfibers. Nano Energy, 2017, 40, 432-439.	8.2	150
860	Fingertip-inspired electronic skin based on triboelectric sliding sensing and porous piezoresistive pressure detection. Nano Energy, 2017, 40, 65-72.	8.2	120
861	Graphene welded carbon nanotube crossbars for biaxial strain sensors. Carbon, 2017, 123, 786-793.	5.4	44
862	Electrical Characterization and Nanoindentation of Opto-electro-mechanical Percolative Composites from 2D Layered Materials. MRS Advances, 2017, 2, 3741-3747.	0.5	0
863	Miniaturized Stretchable and High-Rate Linear Supercapacitors. Nanoscale Research Letters, 2017, 12, 448.	3.1	7
864	Two-probe versus van der Pauw method in studying the piezoresistivity of single-wall carbon nanotube thin films. Nanotechnology, 2017, 28, 445501.	1.3	10
865	Graphene-Paper Pressure Sensor for Detecting Human Motions. ACS Nano, 2017, 11, 8790-8795.	7.3	572
866	Kirigami-patterned highly stretchable conductors from flexible carbon nanotube-embedded polymer films. Journal of Materials Chemistry C, 2017, 5, 8714-8722.	2.7	63
867	A wearable, fibroid, self-powered active kinematic sensor based on stretchable sheath-core structural triboelectric fibers. Nano Energy, 2017, 39, 673-683.	8.2	71
868	Human skin interactive self-powered wearable piezoelectric bio-e-skin by electrospun poly- <scp>l</scp> -lactic acid nanofibers for non-invasive physiological signal monitoring. Journal of Materials Chemistry B, 2017, 5, 7352-7359.	2.9	104
869	Synthesis of a Soft Nanocomposite for Flexible, Wearable Bioelectronics. , 2017, , .		2
870	Bionic ion channel and single-ion conductor design for artificial skin sensors. Journal of Materials Chemistry B, 2017, 5, 7126-7132.	2.9	32
871	Centimeter-Long Single-Crystalline Si Nanowires. Nano Letters, 2017, 17, 7323-7329.	4.5	29
872	Application of Highly flexible self-powered sensors via sequentially deposited piezoelectric fibers on printed circuit board for wearable electronics devices. Sensors and Actuators A: Physical, 2017, 268, 148-154.	2.0	11

		CITATION REI	PORT	
#	Article		IF	Citations
873	Fabrication and characterization of carbon-based flexible strain sensor. , 2017, , .			2
874	Highly Stretchable Conductors Based on Expanded Graphite Macroconfined in Tubular Rubb Applied Materials & Interfaces, 2017, 9, 43239-43249.	er. ACS	4.0	15
875	Omni-Purpose Stretchable Strain Sensor Based on a Highly Dense Nanocracking Structure fo Whole-Body Motion Monitoring. ACS Applied Materials & Interfaces, 2017, 9, 41712-41		4.0	83
876	Catalysts for the growth of carbon nanotube "forests―and superaligned arrays. MRS BL 42, 802-808.	lletin, 2017,	1.7	20
877	iSoft. , 2017, , .			41
878	Properties Of Thin Metal Layers Deposited On Textile Composites By Using The Pvd Method Textronic Applications. Autex Research Journal, 2017, 17, 229-237.	For	0.6	24
880	Highly stretchable metallic silver electrodes on poly(dimethylsiloxane) substrate. AIP Advance 7, .	es, 2017,	0.6	2
881	Surface coatings of silver nanowires lead to effective, high conductivity, high-strain, ultrathir sensors. Nanoscale, 2017, 9, 18507-18515.		2.8	48
882	Liquid metal fiber composed of a tubular channel as a high-performance strain sensor. Journa Materials Chemistry C, 2017, 5, 12483-12491.	ll of	2.7	94
883	Fully stretchable and highly durable triboelectric nanogenerators based on gold-nanosheet electrodes for self-powered human-motion detection. Nano Energy, 2017, 42, 300-306.		8.2	126
884	Precise Engineering of Conductive Pathway by Frictional Direct-Writing for Ultrasensitive Fle Strain Sensors. ACS Applied Materials & Interfaces, 2017, 9, 41078-41086.	xible	4.0	26
885	Flexible and Transparent Strain Sensors with Embedded Multiwalled Carbon Nanotubes Mesl Applied Materials & Interfaces, 2017, 9, 40681-40689.	nes. ACS	4.0	114
886	Friction of extensible strips: An extended shear lag model with experimental evaluation. Inter Journal of Solids and Structures, 2017, 124, 125-134.	national	1.3	11
887	Highly flexible fabric strain sensor based on graphene nanoplatelet–polyaniline nanocomp human gesture recognition. Journal of Applied Polymer Science, 2017, 134, 45340.	osites for	1.3	75
888	Capacitive behavior of carbon nanotube thin film induced by deformed ZnO microspheres. Nanotechnology, 2017, 28, 395101.		1.3	3
889	Facile Fabrication of Ultra-Stretchable Metallic Nanocluster Films for Wearable Electronics. A Applied Materials & Interfaces, 2017, 9, 28010-28018.	CS	4.0	11
890	Ultrastretchable and Self-Healing Double-Network Hydrogel for 3D Printing and Strain Senso Applied Materials & Interfaces, 2017, 9, 26429-26437.	r. ACS	4.0	374
891	Thin-film flexible sensor for omnidirectional strain measurements. Sensors and Actuators A: F 2017, 263, 391-397.	Physical,	2.0	24

#	Article	IF	CITATIONS
892	Ultra-broadband frequency responsive sensor based on lightweight and flexible carbon nanostructured polymeric nanocomposites. Carbon, 2017, 121, 490-501.	5.4	46
893	Conductive herringbone structure carbon nanotube/thermoplastic polyurethane porous foam tuned by epoxy for high performance flexible piezoresistive sensor. Composites Science and Technology, 2017, 149, 166-177.	3.8	99
894	Laser-engraved carbon nanotube paper for instilling high sensitivity, high stretchability, and high linearity in strain sensors. Nanoscale, 2017, 9, 10897-10905.	2.8	75
895	A wearable and highly sensitive strain sensor based on a polyethylenimine–rGO layered nanocomposite thin film. Journal of Materials Chemistry C, 2017, 5, 7746-7752.	2.7	64
896	Carbonized silk georgette as an ultrasensitive wearable strain sensor for full-range human activity monitoring. Journal of Materials Chemistry C, 2017, 5, 7604-7611.	2.7	147
897	A flexible and self-formed sandwich structure strain sensor based on AgNW decorated electrospun fibrous mats with excellent sensing capability and good oxidation inhibition properties. Journal of Materials Chemistry C, 2017, 5, 7035-7042.	2.7	100
898	Carbonized Cotton Fabric for Highâ€Performance Wearable Strain Sensors. Advanced Functional Materials, 2017, 27, 1604795.	7.8	383
899	Highâ€Adhesion Stretchable Electrodes Based on Nanopile Interlocking. Advanced Materials, 2017, 29, 1603382.	11.1	168
900	Electrically Driving Sensors Based onÂPolymer. , 2017, , 287-323.		0
901	Recent Progress on Stretchable Electronic Devices with Intrinsically Stretchable Components. Advanced Materials, 2017, 29, 1603167.	11.1	367
902	Lightweight conductive graphene/thermoplastic polyurethane foams with ultrahigh compressibility for piezoresistive sensing. Journal of Materials Chemistry C, 2017, 5, 73-83.	2.7	576
903	Mechanoresponsive materials for drug delivery: Harnessing forces for controlled release. Advanced Drug Delivery Reviews, 2017, 108, 68-82.	6.6	84
904	Wearable strain sensor made of carbonized cotton cloth. Journal of Materials Science: Materials in Electronics, 2017, 28, 3535-3541.	1.1	30
905	Advanced Mechatronics and MEMS Devices II. Microsystems and Nanosystems, 2017, , .	0.1	10
906	Carbon Nanotubes for Defect Monitoring in Fiber-Reinforced Polymer Composites. , 2017, , 71-99.		4
907	Wearable Carbon Nanotube Devices for Sensing. , 2017, , 179-199.		7
908	A Musselâ€Inspired Conductive, Selfâ€Adhesive, and Selfâ€Healable Tough Hydrogel as Cell Stimulators and Implantable Bioelectronics. Small, 2017, 13, 1601916.	5.2	543
909	Flexible Electronic Devices for Biomedical Applications. Microsystems and Nanosystems, 2017, , 341-366.	0.1	4

#	Article	IF	CITATIONS
910	Organic strain sensor comprised of heptazole-based thin film transistor and Schottky diode. Organic Electronics, 2017, 40, 24-29.	1.4	7
911	Conducting Polymer Nanocomposites: Recent Developments and Future Prospects. Springer Series on Polymer and Composite Materials, 2017, , 1-44.	0.5	13
912	Extremely Stretchable Strain Sensors Based on Conductive Selfâ€Healing Dynamic Cross‣inks Hydrogels for Humanâ€Motion Detection. Advanced Science, 2017, 4, 1600190.	5.6	728
913	Mechanical properties of graphyne and its analogous decorated with Na and Pt. Superlattices and Microstructures, 2017, 101, 602-608.	1.4	19
914	Structural optimization and shear performances of the nanopins based on Y-junction carbon nanotubes. Physica B: Condensed Matter, 2017, 504, 13-22.	1.3	2
915	Industrial Internet of Things. Springer Series in Wireless Technology, 2017, , .	1.1	172
916	A pressure-induced bending sensitive capacitor based on an elastomer-free, extremely thin transparent conductor. Journal of Materials Chemistry A, 2017, 5, 3221-3229.	5.2	26
917	From sewing thread to sensor: Nylon® fiber strain and pressure sensors. Sensors and Actuators B: Chemical, 2017, 240, 1083-1090.	4.0	58
918	Soft actuation and sensing towards robot-assisted facial rehabilitation. , 2017, , .		4
919	One and two dimensional nanocarbon materials for innovative functional devices. , 2017, , .		1
920	HOPG/ZnO/HOPG pressure sensor. Journal of Physics: Conference Series, 2017, 939, 012018.	0.3	0
921	Largely Deformable and Highly Sensitive Strain Sensor Using Carbon Nanomaterials. , 2017, , .		0
922	Warp-Knitted Textile as a Strain Sensor: Characterization Procedure and Application in a Comfortable Wearable Goniometer. IEEE Sensors Journal, 2017, 17, 5927-5936.	2.4	25
923	Wearable side-polished fiber Bragg grating sensor for pulse wave and throat sound detection. , 2017, ,		1
923 924	Wearable side-polished fiber Bragg grating sensor for pulse wave and throat sound detection. , 2017, , A semitransparent snake-like tactile and olfactory bionic sensor with reversibly stretchable properties. NPG Asia Materials, 2017, 9, e437-e437.	3.8	1 22
	A semitransparent snake-like tactile and olfactory bionic sensor with reversibly stretchable	3.8	
924	A semitransparent snake-like tactile and olfactory bionic sensor with reversibly stretchable properties. NPG Asia Materials, 2017, 9, e437-e437.	3.8 0.3	22

#	Article	IF	CITATIONS
928	Improvement of mechanical Q-factor towards carbon nanotube resonator through adopting the length of MWCNTs. , 2017, , .		0
929	Design and fabrication of a soft-bodied gripper with integrated curvature sensors. , 2017, , .		9
930	Triboelectric energy harvester in hollow tube structure and its sensor property. , 2017, , .		1
931	Fabrication of a sensitive pressure sensor using carbon nanotube micro-yarns. , 2017, , .		2
932	Dielectric Elastomer Sensors. , 0, , .		13
933	7 Graphene/Polymer Composite Materials: Processing, Properties and Applications. , 2017, , 349-419.		19
934	Proposal and numerical study of a flexible visible photonic crystal defect cavity for nanoscale strain sensors. Optics Express, 2017, 25, 23645.	1.7	4
935	Highly flexible and stretchable optical strain sensing for human motion detection. Optica, 2017, 4, 1285.	4.8	143
936	Smart Sensor Systems for Wearable Electronic Devices. Polymers, 2017, 9, 303.	2.0	185
937	A Micro-Pressure Sensing Method Based on the Micropatterned Electrodes Filled with the Microspheres. Materials, 2017, 10, 1439.	1.3	14
938	Quantification of a Low-Cost Stretchable Conductive Sensor Using an Expansion/Contraction Simulator Machine: A Step towards Validation of a Noninvasive Cardiac and Respiration Monitoring Prototype. Machines, 2017, 5, 22.	1.2	6
939	Materials, Mechanics, and Patterning Techniques for Elastomer-Based Stretchable Conductors. Micromachines, 2017, 8, 7.	1.4	46
940	Highly Sensitive and Stretchable Strain Sensor Based on Ag@CNTs. Nanomaterials, 2017, 7, 424.	1.9	42
941	A Two-Axis Goniometric Sensor for Tracking Finger Motion. Sensors, 2017, 17, 770.	2.1	21
942	Improvement of the Measurement Range and Temperature Characteristics of a Load Sensor Using a Quartz Crystal Resonator with All Crystal Layer Components. Sensors, 2017, 17, 1067.	2.1	23
943	The Boom in 3D-Printed Sensor Technology. Sensors, 2017, 17, 1166.	2.1	235
944	Simultaneous Detection of Displacement, Rotation Angle, and Contact Pressure Using Sandpaper Molded Elastomer Based Triple Electrode Sensor. Sensors, 2017, 17, 2040.	2.1	9
945	Soft Smart Garments for Lower Limb Joint Position Analysis. Sensors, 2017, 17, 2314.	2.1	75

#	Article	IF	CITATIONS
946	The Development of an IMU Integrated Clothes for Postural Monitoring Using Conductive Yarn and Interconnecting Technology. Sensors, 2017, 17, 2560.	2.1	28
947	Multifunctional Woven Structure Operating as Triboelectric Energy Harvester, Capacitive Tactile Sensor Array, and Piezoresistive Strain Sensor Array. Sensors, 2017, 17, 2582.	2.1	51
948	Mechanisms and Materials of Flexible and Stretchable Skin Sensors. Micromachines, 2017, 8, 69.	1.4	46
949	Ultrathin epidermal strain sensor based on an elastomer nanosheet with an inkjet-printed conductive polymer. Applied Physics Express, 2017, 10, 087201.	1.1	38
950	Reinforced standing multi-walled carbon nanotube film for stretchable strain sensor. , 2017, , .		0
951	Predicting Linear Elongation With Conductive Thread-Based Sensors. IEEE Sensors Journal, 2017, 17, 6537-6548.	2.4	4
952	Identification of whispering gallery modes in a fiber based sensor platform. , 2017, , .		0
953	Soft Wearable Robotics Technologies for Body Motion Sensing. , 2017, , 161-184.		1
954	Highly stretchable and conductive fibers enabled by liquid metal dip-coating. Smart Materials and Structures, 2018, 27, 035019.	1.8	37
955	3D printed stretchable capacitive sensors for highly sensitive tactile and electrochemical sensing. Nanotechnology, 2018, 29, 185501.	1.3	57
956	Electronic Circuits Integration in Textiles for Data Processing in Wearable Technologies. Advanced Materials Technologies, 2018, 3, 1700320.	3.0	57
958	Flexible Normalâ€Tangential Force Sensor with Opposite Resistance Responding for Highly Sensitive Artificial Skin. Advanced Functional Materials, 2018, 28, 1707503.	7.8	167
959	Highly Sensitive and Stretchable Resistive Strain Sensors Based on Microstructured Metal Nanowire/Elastomer Composite Films. Small, 2018, 14, e1704232.	5.2	156
961	Dispenser printing of piezo-resistive nanocomposite on woven elastic fabric and hysteresis compensation for skin-mountable stretch sensing. Smart Materials and Structures, 2018, 27, 025017.	1.8	16
962	Lightweight, compressible and electrically conductive polyurethane sponges coated with synergistic multiwalled carbon nanotubes and graphene for piezoresistive sensors. Nanoscale, 2018, 10, 7116-7126.	2.8	243
963	Surface-agnostic highly stretchable and bendable conductive MXene multilayers. Science Advances, 2018, 4, eaaq0118.	4.7	229
964	Highly stretchable carbon aerogels. Nature Communications, 2018, 9, 881.	5.8	202
965	Through-Layer Buckle Wavelength-Gradient Design for the Coupling of High Sensitivity and Stretchability in a Single Strain Sensor. ACS Applied Materials & amp: Interfaces, 2018, 10, 9653-9662.	4.0	29

#	Article	IF	CITATIONS
966	Electrically conductive PDMS-grafted CNTs-reinforced silicone elastomer. Composites Science and Technology, 2018, 159, 208-215.	3.8	40
967	Kirigami enhances film adhesion. Soft Matter, 2018, 14, 2515-2525.	1.2	74
968	A photonic sintering derived Ag flake/nanoparticle-based highly sensitive stretchable strain sensor for human motion monitoring. Nanoscale, 2018, 10, 7890-7897.	2.8	108
969	Dense Brushes of Tilted Metallic Nanorods Grown onto Stretchable Substrates for Optical Strain Sensing. ACS Applied Nano Materials, 2018, 1, 2347-2355.	2.4	25
970	A Stretchable and Flexible Strain Sensor Based on Graphene Sponge. , 2018, , 379-387.		2
971	Skin-Inspired Electronics: An Emerging Paradigm. Accounts of Chemical Research, 2018, 51, 1033-1045.	7.6	407
972	Block copolymer structural color strain sensor. NPG Asia Materials, 2018, 10, 328-339.	3.8	97
973	Vertical CNT–Ecoflex nanofins for highly linear broad-range-detection wearable strain sensors. Journal of Materials Chemistry C, 2018, 6, 5132-5139.	2.7	63
974	Mussel-Inspired Cellulose Nanocomposite Tough Hydrogels with Synergistic Self-Healing, Adhesive, and Strain-Sensitive Properties. Chemistry of Materials, 2018, 30, 3110-3121.	3.2	627
975	Printed strain sensors for early damage detection in engineering structures. Japanese Journal of Applied Physics, 2018, 57, 05GD05.	0.8	10
976	Interface-Controlled Conductive Fibers for Wearable Strain Sensors and Stretchable Conducting Wires. ACS Applied Materials & Interfaces, 2018, 10, 14087-14096.	4.0	87
977	Flexible Polydimethylsiloxane Foams Decorated with Multiwalled Carbon Nanotubes Enable Unprecedented Detection of Ultralow Strain and Pressure Coupled with a Large Working Range. ACS Applied Materials & Interfaces, 2018, 10, 13877-13885.	4.0	119
978	Network cracks-based wearable strain sensors for subtle and large strain detection of human motions. Journal of Materials Chemistry C, 2018, 6, 5140-5147.	2.7	164
979	A Bubbleâ€Derived Strategy to Prepare Multiple Grapheneâ€Based Porous Materials. Advanced Functional Materials, 2018, 28, 1705879.	7.8	85
980	Kirigamiâ€Inspired Nanoconfined Polymer Conducting Nanosheets with 2000% Stretchability. Advanced Materials, 2018, 30, e1706390.	11.1	94
981	Plasticizing Silk Protein for Onâ€ S kin Stretchable Electrodes. Advanced Materials, 2018, 30, e1800129.	11.1	230
982	Highly sensitive wearable sensor based on a flexible multi-layer graphene film antenna. Science Bulletin, 2018, 63, 574-579.	4.3	97
983	Highly Sensitive Multifilament Fiber Strain Sensors with Ultrabroad Sensing Range for Textile Electronics. ACS Nano, 2018, 12, 4259-4268.	7.3	207

#	Article	IF	CITATIONS
984	Battery-free, wireless sensors for full-body pressure and temperature mapping. Science Translational Medicine, 2018, 10, .	5.8	247
985	Piezoresistivity, Strain, and Damage Selfâ€Sensing of Polymer Composites Filled with Carbon Nanostructures. Advanced Engineering Materials, 2018, 20, 1701159.	1.6	107
986	Skin-Attachable, Stretchable Electrochemical Sweat Sensor for Glucose and pH Detection. ACS Applied Materials & Interfaces, 2018, 10, 13729-13740.	4.0	314
987	Highly sensitive wearable strain sensor based on silver nanowires and nanoparticles. Nanotechnology, 2018, 29, 255202.	1.3	80
988	Fully flexible strain sensor from core-spun elastic threads with integrated electrode and sensing cell based on conductive nanocomposite. Composites Science and Technology, 2018, 159, 42-49.	3.8	47
989	In-Place Printing of Carbon Nanotube Transistors at Low Temperature. ACS Applied Nano Materials, 2018, 1, 1863-1869.	2.4	32
990	Synthesis of highly-stretchable graphene – poly(glycerol sebacate) elastomeric nanocomposites piezoresistive sensors for human motion detection applications. Composites Science and Technology, 2018, 162, 14-22.	3.8	45
991	Highly Stretchable and Wearable Strain Sensor Based on Printable Carbon Nanotube Layers/Polydimethylsiloxane Composites with Adjustable Sensitivity. ACS Applied Materials & Interfaces, 2018, 10, 7371-7380.	4.0	189
992	Recent developments of truly stretchable thin film electronic and optoelectronic devices. Nanoscale, 2018, 10, 5764-5792.	2.8	91
993	Flexible strain sensor based on aerogel-spun carbon nanotube yarn with a core-sheath structure. Composites Part A: Applied Science and Manufacturing, 2018, 108, 107-113.	3.8	55
994	One millimeter per minute growth rates for single wall carbon nanotube forests enabled by porous metal substrates. RSC Advances, 2018, 8, 7810-7817.	1.7	12
995	Ink-jet printed stretchable strain sensor based on graphene/ZnO composite on micro-random ridged PDMS substrate. Composites Part A: Applied Science and Manufacturing, 2018, 107, 519-528.	3.8	58
996	Low-cost ultra-stretchable strain sensors for monitoring human motion and bio-signals. Sensors and Actuators A: Physical, 2018, 271, 182-191.	2.0	72
997	Graphene Size-Dependent Multifunctional Properties of Unidirectional Graphene Aerogel/Epoxy Nanocomposites. ACS Applied Materials & Interfaces, 2018, 10, 6580-6592.	4.0	71
998	Development of a smart garment for monitoring body postures based on FBG and flex sensing technologies. Sensors and Actuators A: Physical, 2018, 272, 153-160.	2.0	33
999	Highly stretchable strain sensors with reduced graphene oxide sensing liquids for wearable electronics. Nanoscale, 2018, 10, 5264-5271.	2.8	144
1000	Strain induced graphite/PDMS sensors for biomedical applications. Sensors and Actuators A: Physical, 2018, 271, 257-269.	2.0	87
1001	A semi-permanent and durable nanoscale-crack-based sensor by on-demand healing. Nanoscale, 2018, 10, 4354-4360.	2.8	52

#	Article	IF	CITATIONS
1002	Customizable, Flexible Pressure, and Temperature Step Sensors with Human Skinlike Color. ACS Omega, 2018, 3, 1110-1116.	1.6	15
1003	Flexible fiber-shaped energy storage devices: principles, progress, applications and challenges. Flexible and Printed Electronics, 2018, 3, 013001.	1.5	34
1004	Auxetic Mechanical Metamaterials to Enhance Sensitivity of Stretchable Strain Sensors. Advanced Materials, 2018, 30, e1706589.	11.1	349
1005	Highly Stretchable Core–Sheath Fibers via Wet-Spinning for Wearable Strain Sensors. ACS Applied Materials & Interfaces, 2018, 10, 6624-6635.	4.0	228
1006	Simple and cost-effective method of highly conductive and elastic carbon nanotube/polydimethylsiloxane composite for wearable electronics. Scientific Reports, 2018, 8, 1375.	1.6	185
1007	Graphene-based flexible and wearable electronics. Journal of Semiconductors, 2018, 39, 011007.	2.0	76
1008	Skin-inspired highly stretchable and conformable matrix networks for multifunctional sensing. Nature Communications, 2018, 9, 244.	5.8	1,034
1009	Oxide-based thin film transistors for flexible electronics. Journal of Semiconductors, 2018, 39, 011005.	2.0	34
1010	Recent progress of flexible and wearable strain sensors for human-motion monitoring. Journal of Semiconductors, 2018, 39, 011012.	2.0	93
1011	Printed stretchable circuit on soft elastic substrate for wearable application. Journal of Semiconductors, 2018, 39, 015002.	2.0	27
1012	Versatile, Highâ€Power, Flexible, Stretchable Carbon Nanotube Sheet Heating Elements Tolerant to Mechanical Damage and Severe Deformation. Advanced Functional Materials, 2018, 28, 1706007.	7.8	57
1013	Poisson effect enhances compression force sensing with oxidized carbon nanotube network/polyurethane sensor. Sensors and Actuators A: Physical, 2018, 271, 76-82.	2.0	13
1014	Characterization and optimization of flexible dual mode sensor based on Carbon Micro Coils. Materials Research Express, 2018, 5, 015604.	0.8	5
1015	A Selfâ€Powered Sensor Mimicking Slow―and Fastâ€Adapting Cutaneous Mechanoreceptors. Advanced Materials, 2018, 30, e1706299.	11.1	119
1016	Thermo-compression-aligned functional graphene showing anisotropic response to in-plane stretching and out-of-plane bending. Journal of Materials Science, 2018, 53, 6574-6585.	1.7	17
1017	Cellulose Nanopapers. , 2018, , 121-173.		15
1018	Flexible devices: from materials, architectures to applications. Journal of Semiconductors, 2018, 39, 011010.	2.0	56
1019	Recent advances in flexible and wearable organic optoelectronic devices. Journal of Semiconductors, 2018, 39, 011011.	2.0	27

#	Article	IF	CITATIONS
1020	Hybrid functional microfibers for textile electronics and biosensors. Journal of Semiconductors, 2018, 39, 011009.	2.0	4
1021	Mechanoâ€Based Transductive Sensing for Wearable Healthcare. Small, 2018, 14, e1702933.	5.2	91
1022	Highly Exfoliated MWNT–rGO Ink-Wrapped Polyurethane Foam for Piezoresistive Pressure Sensor Applications. ACS Applied Materials & Interfaces, 2018, 10, 5185-5195.	4.0	208
1023	Highly sensitive and selective multidimensional resistive strain sensors based on a stiffness-variant stretchable substrate. Nanoscale, 2018, 10, 5105-5113.	2.8	67
1024	Enhanced Piezocapacitive Effect in CaCu ₃ Ti ₄ O ₁₂ –Polydimethylsiloxane Composited Sponge for Ultrasensitive Flexible Capacitive Sensor. ACS Applied Nano Materials, 2018, 1, 274-283.	2.4	54
1025	Recent Developments in Grapheneâ€Based Tactile Sensors and Eâ€Skins. Advanced Materials Technologies, 2018, 3, 1700248.	3.0	153
1026	An Acrylonitrile–Butadiene–Lignin Renewable Skin with Programmable and Switchable Electrical Conductivity for Stress/Strain-Sensing Applications. Macromolecules, 2018, 51, 115-127.	2.2	38
1027	Simultaneously Detecting Subtle and Intensive Human Motions Based on a Silver Nanoparticles Bridged Graphene Strain Sensor. ACS Applied Materials & Interfaces, 2018, 10, 3948-3954.	4.0	118
1028	Graphene and its sensor-based applications: A review. Sensors and Actuators A: Physical, 2018, 270, 177-194.	2.0	475
1029	Dual-Function Metal–Organic Framework-Based Wearable Fibers for Gas Probing and Energy Storage. ACS Applied Materials & Interfaces, 2018, 10, 2837-2842.	4.0	68
1030	Ultrasensitive Flexible Proximity Sensor Based on Organic Crystal for Location Detection. ACS Applied Materials & Interfaces, 2018, 10, 2785-2792.	4.0	51
1031	Research Advances of Bio-Inspired Carbon Nanotubes-Based Sensors. MRS Advances, 2018, 3, 1-11.	0.5	8
1032	Bioinspired Artificial Eyes: Optic Components, Digital Cameras, and Visual Prostheses. Advanced Functional Materials, 2018, 28, 1705202.	7.8	174
1033	Integration of Stiff Graphene and Tough Silk for the Design and Fabrication of Versatile Electronic Materials. Advanced Functional Materials, 2018, 28, 1705291.	7.8	148
1034	2D end-to-end carbon nanotube conductive networks in polymer nanocomposites: a conceptual design to dramatically enhance the sensitivities of strain sensors. Nanoscale, 2018, 10, 2191-2198.	2.8	83
1035	Organic/Inorganic Hybrid Stretchable Piezoelectric Nanogenerators for Selfâ€Powered Wearable Electronics. Advanced Materials Technologies, 2018, 3, 1700249.	3.0	107
1036	Highly washable e-textile prepared by ultrasonic nanosoldering of carbon nanotubes onto polymer fibers. Journal of Materials Chemistry C, 2018, 6, 883-889.	2.7	53
1037	Transparent and Self-Powered Multistage Sensation Matrix for Mechanosensation Application. ACS Nano, 2018, 12, 254-262.	7.3	81

#	Article	IF	CITATIONS
1038	Micro-patterned graphene-based sensing skins for human physiological monitoring. Nanotechnology, 2018, 29, 105503.	1.3	21
1039	A highly stretchable and stable strain sensor based on hybrid carbon nanofillers/polydimethylsiloxane conductive composites for large human motions monitoring. Composites Science and Technology, 2018, 156, 276-286.	3.8	276
1040	Polydimethylsiloxane Composites for Optical Ultrasound Generation and Multimodality Imaging. Advanced Functional Materials, 2018, 28, 1704919.	7.8	81
1041	Highly Sensitive and Very Stretchable Strain Sensor Based on a Rubbery Semiconductor. ACS Applied Materials & Interfaces, 2018, 10, 5000-5006.	4.0	103
1042	Developing nanocomposite 3D printing filaments for enhanced integrated device fabrication. International Journal of Advanced Manufacturing Technology, 2018, 95, 4191-4198.	1.5	20
1043	Immobilization of Ag nanowire into zinc phthalocyanine doped copolyester elastomer for optoelectric flexible strain sensor. Chemical Physics Letters, 2018, 693, 55-59.	1.2	6
1044	Twisting patterning: electrochemical deposition of stretchable spiral metallic conductors on elastic polymer threads. Journal of Materials Chemistry C, 2018, 6, 1215-1223.	2.7	2
1045	A review on in-tire sensor systems for tire-road interaction studies. Sensor Review, 2018, 38, 231-238.	1.0	29
1046	Noncontact Heartbeat and Respiration Monitoring Based on a Hollow Microstructured Self-Powered Pressure Sensor. ACS Applied Materials & amp; Interfaces, 2018, 10, 3660-3667.	4.0	119
1047	Transparent Polymeric Strain Sensors for Monitoring Vital Signs and Beyond. ACS Applied Materials & Interfaces, 2018, 10, 3895-3901.	4.0	85
1048	Flexible graphite films with high conductivity for radio-frequency antennas. Carbon, 2018, 130, 164-169.	5.4	105
1049	Energetically Autonomous, Wearable, and Multifunctional Sensor. ACS Sensors, 2018, 3, 113-120.	4.0	32
1050	Optically transparent and high dielectric constant reduced graphene oxide (RGO)-PDMS based flexible composite for wearable and flexible sensors. Sensors and Actuators A: Physical, 2018, 277, 26-34.	2.0	40
1051	A comparative study of graphene and graphite-based field effect transistor on flexible substrate. Pramana - Journal of Physics, 2018, 90, 1.	0.9	15
1052	A Highly Stretchable, Sensitive, and Transparent Strain Sensor Based on Binary Hybrid Network Consisting of Hierarchical Multiscale Metal Nanowires. Advanced Materials Technologies, 2018, 3, 1800020.	3.0	55
1053	A Transferâ€Printed, Stretchable, and Reliable Strain Sensor Using PEDOT:PSS/Ag NW Hybrid Films Embedded into Elastomers. Advanced Materials Technologies, 2018, 3, 1800030.	3.0	42
1054	Biocompatible, self-healing, highly stretchable polyacrylic acid/reduced graphene oxide nanocomposite hydrogel sensors via mussel-inspired chemistry. Carbon, 2018, 136, 63-72.	5.4	282
1055	Full fabric sensing network with large deformation for continuous detection of skin temperature. Smart Materials and Structures, 2018, 27, 105017.	1.8	22

#	Article	IF	CITATIONS
1056	3D Synergistical MXene/Reduced Graphene Oxide Aerogel for a Piezoresistive Sensor. ACS Nano, 2018, 12, 3209-3216.	7.3	654
1057	Bioinspired Flexible and Highly Responsive Dual-Mode Strain/Magnetism Composite Sensor. ACS Applied Materials & Interfaces, 2018, 10, 11197-11203.	4.0	31
1058	Stretchable Conductive Composites from Cu–Ag Nanowire Felt. ACS Nano, 2018, 12, 3689-3698.	7.3	57
1059	Continuous production of stretchable conductive multifilaments in kilometer scale enables facile knitting of wearable strain sensing textiles. Applied Materials Today, 2018, 11, 255-263.	2.3	59
1060	Polyurethane sponges decorated with reduced graphene oxide and silver nanowires for highly stretchable gas sensors. Sensors and Actuators B: Chemical, 2018, 265, 609-616.	4.0	44
1061	Smart cellulose/graphene composites fabricated by <i>in situ</i> chemical reduction of graphene oxide for multiple sensing applications. Journal of Materials Chemistry A, 2018, 6, 7777-7785.	5.2	118
1062	Interfacial aspects of carbon composites. Composite Interfaces, 2018, 25, 539-605.	1.3	51
1063	A Biomimetic Conductive Tendril for Ultrastretchable and Integratable Electronics, Muscles, and Sensors. ACS Nano, 2018, 12, 3898-3907.	7.3	115
1064	Biotechnologies toward Mitigating, Curing, and Ultimately Preventing Edema through Compression Therapy. Trends in Biotechnology, 2018, 36, 537-548.	4.9	10
1065	Resistivity-strain analysis of graphene-based ink coated fabrics for wearable electronics. , 2018, , .		2
1066	A Wearable Detector for Simultaneous Finger Joint Motion Measurement. IEEE Transactions on Biomedical Circuits and Systems, 2018, 12, 644-654.	2.7	45
1067	Effect of multi-walled carbon nanotubes on the cross-linking density of the poly(glycerol sebacate) elastomeric nanocomposites. Journal of Colloid and Interface Science, 2018, 521, 24-32.	5.0	24
1068	Wearable strain sensing textile based on one-dimensional stretchable and weavable yarn sensors. Nano Research, 2018, 11, 5799-5811.	5.8	99
1069	A knitted glove sensing system with compression strain for finger movements. Smart Materials and Structures, 2018, 27, 055016.	1.8	30
1070	Highly sensitive strain sensors based on fragmentized carbon nanotube/polydimethylsiloxane composites. Nanotechnology, 2018, 29, 235501.	1.3	64
1071	High durability conductive textile using MWCNT for motion sensing. Sensors and Actuators A: Physical, 2018, 274, 50-56.	2.0	25
1072	Towards development of nanofibrous large strain flexible strain sensors with programmable shape memory properties. Smart Materials and Structures, 2018, 27, 055002.	1.8	23
1073	Fully Printed Wearable Vital Sensor for Human Pulse Rate Monitoring using Ferroelectric Polymer. Scientific Reports, 2018, 8, 4442.	1.6	90

#	Article	IF	Citations
1074	Energy absorption capacity of ferroelectrets based on porous polypropylene. Polymer Engineering and Science, 2018, 58, 300-309.	1.5	10
1075	Developing enhanced carbon nanotube reinforced composites for full-scale 3D printed components. Reinforced Plastics, 2018, 62, 212-215.	0.5	4
1076	Flexible electrically resistive-type strain sensors based on reduced graphene oxide-decorated electrospun polymer fibrous mats for human motion monitoring. Carbon, 2018, 126, 360-371.	5.4	367
1077	Touch-actuated transdermal delivery patch for quantitative skin permeation control. Sensors and Actuators B: Chemical, 2018, 256, 18-26.	4.0	27
1078	Dip-coating processed sponge-based electrodes for stretchable Zn-MnO2 batteries. Nano Research, 2018, 11, 1554-1562.	5.8	51
1079	Stretchable and insulating characteristics of chemically bonded graphene and carbon nanotube composite materials. Journal of Materials Science, 2018, 53, 1148-1156.	1.7	2
1080	A low-cost, printable, and stretchable strain sensor based on highly conductive elastic composites with tunable sensitivity for human motion monitoring. Nano Research, 2018, 11, 1938-1955.	5.8	99
1081	Musselâ€Inspired Adhesive and Conductive Hydrogel with Longâ€Lasting Moisture and Extreme Temperature Tolerance. Advanced Functional Materials, 2018, 28, 1704195.	7.8	788
1082	Wearable sensors: modalities, challenges, and prospects. Lab on A Chip, 2018, 18, 217-248.	3.1	778
1083	Nanomaterialâ€Enabled Wearable Sensors for Healthcare. Advanced Healthcare Materials, 2018, 7, 1700889.	3.9	412
1084	Ag-Doped PEDOT:PSS/CNT composites for thin-film all-solid-state supercapacitors with a stretchability of 480%. Journal of Materials Chemistry A, 2018, 6, 941-947.	5.2	107
1085	Surface Strain Redistribution on Structured Microfibers to Enhance Sensitivity of Fiberâ€Shaped Stretchable Strain Sensors. Advanced Materials, 2018, 30, 1704229.	11.1	208
1086	Highly sensitive and stretchable piezoresistive strain sensor based on conductive poly(styrene-butadiene-styrene)/few layer graphene composite fiber. Composites Part A: Applied Science and Manufacturing, 2018, 105, 291-299.	3.8	157
1087	Facile Fabrication of Electrically Conductive Low-Density Polyethylene/Carbon Fiber Tubes for Novel Smart Materials via Multiaxial Orientation. ACS Applied Materials & Interfaces, 2018, 10, 1005-1016.	4.0	33
1088	Highly sensitive, durable and stretchable plastic strain sensors using sandwich structures of PEDOT:PSS and an elastomer. Materials Chemistry Frontiers, 2018, 2, 355-361.	3.2	58
1089	Ultrasensitive and Highly Stable Resistive Pressure Sensors with Biomaterial-Incorporated Interfacial Layers for Wearable Health-Monitoring and Human–Machine Interfaces. ACS Applied Materials & Interfaces, 2018, 10, 1067-1076.	4.0	84
1090	Effect of pre-strain and KMnO4 oxidation of carbon nanotubes embedded in polyurethane on strain dependent electrical resistance of the composite. Sensor Review, 2018, 38, 163-170.	1.0	2
1091	Highly Stretchable and Reliable, Transparent and Conductive Entangled Graphene Mesh Networks. Advanced Materials, 2018, 30, 1704626.	11.1	53

#	Article	IF	CITATIONS
1092	Development of wearable and flexible insole type capacitive pressure sensor for continuous gait signal analysis. Organic Electronics, 2018, 53, 213-220.	1.4	54
1093	Fabrication of a Highly Sensitive Stretchable Strain Sensor Utilizing a Microfibrous Membrane and a Cracking Structure on Conducting Polymer. Macromolecular Materials and Engineering, 2018, 303, 1700389.	1.7	22
1094	Stretchable Ti ₃ C ₂ T _{<i>x</i>} MXene/Carbon Nanotube Composite Based Strain Sensor with Ultrahigh Sensitivity and Tunable Sensing Range. ACS Nano, 2018, 12, 56-62.	7.3	696
1095	A Highly Selective 3D Spiked Ultraflexible Neural (SUN) Interface for Decoding Peripheral Nerve Sensory Information. Advanced Healthcare Materials, 2018, 7, 1700987.	3.9	36
1096	Sliced graphene foam films for dual-functional wearable strain sensors and switches. Nanoscale Horizons, 2018, 3, 35-44.	4.1	84
1097	RGO-coated elastic fibres as wearable strain sensors for full-scale detection of human motions. Smart Materials and Structures, 2018, 27, 015014.	1.8	25
1098	Design of a wearable and shape-memory fibriform sensor for the detection of multimodal deformation. Nanoscale, 2018, 10, 118-123.	2.8	58
1099	CVD growth of fingerprint-like patterned 3D graphene film for an ultrasensitive pressure sensor. Nano Research, 2018, 11, 1124-1134.	5.8	185
1100	Wearable carbon nanotube based dry-electrodes for electrophysiological sensors. Japanese Journal of Applied Physics, 2018, 57, 05GD02.	0.8	16
1101	Materials and Structures toward Soft Electronics. Advanced Materials, 2018, 30, e1801368.	11.1	445
1102	Flexible Integrated Sensor Array for Pressure, Humidity and Temperature Sensing*. , 2018, , .		0
1103	Manipulation of spin and magnetic anisotropy in bilayer magnetic molecular junctions. Physical Chemistry Chemical Physics, 2018, 20, 26396-26404.	1.3	18
1104	Ultrastretchable carbon nanotube composite electrodes for flexible lithium-ion batteries. Nanoscale, 2018, 10, 19972-19978.	2.8	46
1105	Highly sensitive metal-grid strain sensors <i>via</i> water-based solution processing. RSC Advances, 2018, 8, 42153-42159.	1.7	8
1106	Crisscross-designed piezoresistive strain sensors with a cracked microtectonic architecture for direction-selective tensile perception. Journal of Materials Chemistry C, 2018, 6, 11170-11177.	2.7	15
1107	Visible colorimetric fluoride and hydroxide sensing by asymmetric tris-urea receptors: combined experimental and theoretical studies. RSC Advances, 2018, 8, 39394-39407.	1.7	12
1108	Superhydrophobic and superelastic conductive rubber composite for wearable strain sensors with ultrahigh sensitivity and excellent anti-corrosion property. Journal of Materials Chemistry A, 2018, 6, 24523-24533.	5.2	89
1109	Electrically conductive polymer composites for smart flexible strain sensors: a critical review. Journal of Materials Chemistry C, 2018, 6, 12121-12141.	2.7	522

#	Article	IF	CITATIONS
1110	Flexible strain sensors fabricated using carbon-based nanomaterials: A review. Current Opinion in Solid State and Materials Science, 2018, 22, 213-228.	5.6	161
1111	Flexible strain sensors based on CNTs/PDMS nanocomposite. , 2018, , .		3
1112	Kirigami Strain Sensors Microfabricated From Thin-Film Parylene C. Journal of Microelectromechanical Systems, 2018, 27, 1082-1088.	1.7	17
1113	Synthesis of polyvinyl alcohol (PVA) infiltrated MWCNTs buckypaper for strain sensing application. Scientific Reports, 2018, 8, 17295.	1.6	59
1114	Ultrasensitive Wearable Pressure Sensors Assembled by Surface-Patterned Polyolefin Elastomer Nanofiber Membrane Interpenetrated with Silver Nanowires. ACS Applied Materials & Interfaces, 2018, 10, 42706-42714.	4.0	47
1115	Recent Advances in Smart Wearable Sensing Systems. Advanced Materials Technologies, 2018, 3, 1800444.	3.0	128
1116	Wearable, Luminescent Oxygen Sensor for Transcutaneous Oxygen Monitoring. ACS Applied Materials & Interfaces, 2018, 10, 41026-41034.	4.0	38
1117	Thiolated Graphene@Polyester Fabric-Based Multilayer Piezoresistive Pressure Sensors for Detecting Human Motion. ACS Applied Materials & Interfaces, 2018, 10, 41784-41792.	4.0	91
1118	Human Motion Recognition Using E-textile Sensor and Adaptive Neuro-Fuzzy Inference System. Fibers and Polymers, 2018, 19, 2657-2666.	1.1	17
1119	Ultra-Stretchable Conductive Iono-Elastomer And Motion Strain Sensor System Developed Therefrom. Technology and Innovation, 2018, 19, 613-626.	0.2	9
1120	Stretchable Location Sensor Based on Transparent AgNWs Electrodes. , 2018, , .		3
1121	Measurement and analysis of K-shell lines of silicon ions in laser plasmas. High Power Laser Science and Engineering, 2018, 6, .	2.0	4
1122	Highly-Stretchable Biomechanical Strain Sensor using Printed Liquid Metal Paste. , 2018, , .		16
1123	Soft Robotic Finger with Integrated Stretchable Strain Sensor. , 2018, , .		13
1124	EIS. , 2018, 2, 1-22.		13
1125	A High Compressibility Pressure—Sensitive Structure Based on CB@PU Yarn Network. Sensors, 2018, 18, 4141.	2.1	8
1126	Recent Development of Flexible and Stretchable Antennas for Bio-Integrated Electronics. Sensors, 2018, 18, 4364.	2.1	42
1127	A highly sensitive and flexible capacitive pressure sensor based on a micro-arrayed polydimethylsiloxane dielectric layer. Journal of Materials Chemistry C, 2018, 6, 13232-13240.	2.7	160

#	Article	IF	Citations
1128	A Liquid Metal Based Super-Stretchable Strain Sensor. , 2018, , .		4
1129	Reversible conductivity recovery of highly sensitive flexible devices by water vapor. Npj Flexible Electronics, 2018, 2, .	5.1	15
1130	Breathable and Skin-Mountable Strain Sensor with Tunable Stretchability, Sensitivity, and Linearity via Surface Strain Delocalization for Versatile Skin Activities' Recognition. ACS Applied Materials & Interfaces, 2018, 10, 42826-42836.	4.0	60
1131	Printing Carbon Nanotube-Embedded Silicone Elastomers via Direct Writing. ACS Applied Materials & Interfaces, 2018, 10, 44796-44802.	4.0	27
1132	Carbon Nanotubes and Related Nanomaterials: Critical Advances and Challenges for Synthesis toward Mainstream Commercial Applications. ACS Nano, 2018, 12, 11756-11784.	7.3	388
1133	Sustainable production of highly conductive multilayer graphene ink for wireless connectivity and IoT applications. Nature Communications, 2018, 9, 5197.	5.8	206
1134	Sensing at Your Fingertips: Gloveâ€based Wearable Chemical Sensors. Electroanalysis, 2019, 31, 428-436.	1.5	43
1135	Direct 3D Printing of Graphene Nanoplatelet/Silver Nanoparticleâ€Based Nanocomposites for Multiaxial Piezoresistive Sensor Applications. Advanced Materials Technologies, 2019, 4, 1800500.	3.0	39
1136	Flashâ€Induced Stretchable Cu Conductor via Multiscaleâ€Interfacial Couplings. Advanced Science, 2018, 5, 1801146.	5.6	36
1137	Interface Design Strategy for the Fabrication of Highly Stretchable Strain Sensors. ACS Applied Materials & amp; Interfaces, 2018, 10, 36483-36492.	4.0	57
1138	Ultrasensitive and Stretchable Strain Sensors Based on Mazelike Vertical Graphene Network. ACS Applied Materials & Interfaces, 2018, 10, 36312-36322.	4.0	116
1139	Compliant plant wearables for localized microclimate and plant growth monitoring. Npj Flexible Electronics, 2018, 2, .	5.1	119
1140	Waferâ€Scale Vertically Aligned Carbon Nanotubes Locked by In Situ Hydrogelation toward Strengthening Static and Dynamic Compressive Responses. Macromolecular Materials and Engineering, 2018, 303, 1800024.	1.7	6
1141	Highly stretchable and fatigue resistant hydrogels with low Young's modulus as transparent and flexible strain sensors. Journal of Materials Chemistry C, 2018, 6, 11193-11201.	2.7	70
1142	Ultrasensitive, Mechanically Responsive Optical Metasurfaces <i>via</i> Strain Amplification. ACS Nano, 2018, 12, 10683-10692.	7.3	34
1143	Flexible Strain Sensor Based on Carbon Black/Silver Nanoparticles Composite for Human Motion Detection. Materials, 2018, 11, 1836.	1.3	76
1144	Ultrastretchable Strain Sensors and Arrays with High Sensitivity and Linearity Based on Super Tough Conductive Hydrogels. Chemistry of Materials, 2018, 30, 8062-8069.	3.2	318
1145	Thermoplastic Elastomer Systems Containing Carbon Nanofibers as Soft Piezoresistive Sensors. ACS Omega, 2018, 3, 12648-12657.	1.6	22

#	Article	IF	CITATIONS
1146	High-Performance Structural Flexible Strain Sensors Based on Graphene-Coated Glass Fabric/Silicone Composite. ACS Applied Materials & Interfaces, 2018, 10, 35503-35509.	4.0	68
1148	Broad bandwidth piezoelectric energy harvester by a flexible buckled bridge. Applied Physics Letters, 2018, 113, .	1.5	31
1149	Estimation of Knee Joint Angle Using a Fabric-Based Strain Sensor and Machine Learning: A Preliminary Investigation. , 2018, , .		26
1150	Conformal Physical Vapor Deposition Assisted by Atomic Layer Deposition and Its Application for Stretchable Conductors. Advanced Materials Interfaces, 2018, 5, 1801379.	1.9	4
1151	A built-in sensor with carbon nanotubes coated by Ag clusters for deformation monitoring of glass fibre/epoxy composites. Journal of Physics: Conference Series, 2018, 987, 012017.	0.3	0
1152	Quantification of Textile-Based Stretch Sensors Using Machine Learning: An Exploratory Study. , 2018, , .		3
1153	Solution-Processed Resistive Pressure Sensors Based on Sandwich Structures Using Silver Nanowires and Conductive Polymer. IEEE Sensors Journal, 2018, 18, 9919-9924.	2.4	19
1154	Electrical Adaptiveness and Electromechanical Response in Gel Composites of Carbon Nanomaterials. ChemElectroChem, 2018, 5, 3589-3596.	1.7	7
1155	Selfâ€Healable and Mechanically Reinforced Multidimensional arbon/Polyurethane Dielectric Nanocomposite Incorporates Various Functionalities for Capacitive Strain Sensor Applications. Macromolecular Chemistry and Physics, 2018, 219, 1800369.	1.1	17
1156	Compliant multi-layer tactile sensing for enhanced identification of human touch. Smart Materials and Structures, 2018, 27, 125009.	1.8	11
1157	Piezoelectric Response of Porous Nanotubes Derived from Hexagonal Boron Nitride under Strain Influence. ACS Omega, 2018, 3, 13413-13421.	1.6	10
1158	Strain sensing behaviors of stretchable conductive polymer composites loaded with different dimensional conductive fillers. Composites Science and Technology, 2018, 168, 388-396.	3.8	89
1159	Blending Electronics with the Human Body: A Pathway toward a Cybernetic Future. Advanced Science, 2018, 5, 1700931.	5.6	83
1160	Development of a Waterproof Crack-Based Stretchable Strain Sensor Based on PDMS Shielding. Sensors, 2018, 18, 1171.	2.1	33
1161	Highly responsive flexible strain sensor using polystyrene nanoparticle doped reduced graphene oxide for human health monitoring. Carbon, 2018, 140, 286-295.	5.4	76
1162	Iono-Elastomer-Based Wearable Strain Sensor with Real-Time Thermomechanical Dual Response. ACS Applied Materials & Interfaces, 2018, 10, 32435-32443.	4.0	27
1163	Highly sensitive, stretchable and wearable strain sensors using fragmented conductive cotton fabric. Journal of Materials Chemistry C, 2018, 6, 10524-10531.	2.7	80
1164	Ultrastretchable Multilayered Fiber with a Hollow-Monolith Structure for High-Performance Strain Sensor. ACS Applied Materials & Interfaces, 2018, 10, 34592-34603.	4.0	81

#	Article	IF	CITATIONS
1165	Standing Enokitake-like Nanowire Films for Highly Stretchable Elastronics. ACS Nano, 2018, 12, 9742-9749.	7.3	130
1166	Highly Stretchable, Self-Healable Elastomers from Hydrogen-Bonded Interpolymer Complex (HIPC) and Their Use as Sensitive, Stable Electric Skin. ACS Omega, 2018, 3, 11368-11382.	1.6	19
1167	Mechano-regulated metal–organic framework nanofilm for ultrasensitive and anti-jamming strain sensing. Nature Communications, 2018, 9, 3813.	5.8	57
1168	On the Evaluation of the Sensitivity Coefficient of Strain Sensors. Advanced Electronic Materials, 2018, 4, 1800353.	2.6	31
1169	Making a Bilateral Compression/Tension Sensor by Pre-Stretching Open-Crack Networks in Carbon Nanotube Papers. ACS Applied Materials & Interfaces, 2018, 10, 33507-33515.	4.0	39
1170	The Development of Highly Flexible Stretch Sensors for a Robotic Hand. Robotics, 2018, 7, 54.	2.1	38
1171	Closing the Wearable Gap: Mobile Systems for Kinematic Signal Monitoring of the Foot and Ankle. Electronics (Switzerland), 2018, 7, 117.	1.8	22
1172	Stretchable and Washable Strain Sensor Based on Cracking Structure for Human Motion Monitoring. Scientific Reports, 2018, 8, 13241.	1.6	101
1173	Rapid dip-dry MWNT-rGO ink wrapped polyester elastic band (PEB) for piezoresistive strain sensor applications. Applied Physics Letters, 2018, 113, .	1.5	6
1174	Buckling-Based Non-Linear Mechanical Sensor. Sensors, 2018, 18, 2637.	2.1	5
1175	Patchable micro/nanodevices interacting with skin. Biosensors and Bioelectronics, 2018, 122, 189-204.	5.3	47
1176	Effect of Metal Thickness on the Sensitivity of Crack-Based Sensors. Sensors, 2018, 18, 2872.	2.1	22
1177	Flexible and Anisotropic Strain Sensor Based on Carbonized Crepe Paper with Aligned Cellulose Fibers. Advanced Functional Materials, 2018, 28, 1802547.	7.8	228
1178	Crack-enhanced mechanosensitivity of cost-effective piezoresistive flexible strain sensors suitable for motion detection. Smart Materials and Structures, 2018, 27, 105049.	1.8	17
1179	Flexible Strain Sensors Fabricated by Meniscus-Guided Printing of Carbon Nanotube–Polymer Composites. ACS Applied Materials & Interfaces, 2018, 10, 19999-20005.	4.0	71
1180	Highly Stretchable Multifunctional Wearable Devices Based on Conductive Cotton and Wool Fabrics. ACS Applied Materials & Interfaces, 2018, 10, 20845-20853.	4.0	128
1181	Temperature-independent piezoresistive sensors based on carbon nanotube/polymer nanocomposite. Carbon, 2018, 137, 188-195.	5.4	49
1182	Towards Subâ€Microscale Liquid Metal Patterns: Cascade Phase Change Mediated Pickâ€nâ€Place Transfer of Liquid Metals Printed and Stretched over a Flexible Substrate. Advanced Functional Materials, 2018, 28, 1800380.	7.8	47

#	Article	IF	CITATIONS
1183	Highly Oriented Electrospun P(VDFâ€TrFE) Fibers via Mechanical Stretching for Wearable Motion Sensing. Advanced Materials Technologies, 2018, 3, 1800033.	3.0	46
1184	Wearable strain sensors based on electrically conductive natural fiber yarns. Materials and Design, 2018, 154, 217-227.	3.3	76
1185	Stretchable Conductive Fibers Based on a Cracking Control Strategy for Wearable Electronics. Advanced Functional Materials, 2018, 28, 1801683.	7.8	100
1186	Highly pressure-sensitive graphene sponge fabricated by Î ³ -ray irradiation reduction. Science China Materials, 2018, 61, 1596-1604.	3.5	6
1187	3D Multifunctional Composites Based on Largeâ€Area Stretchable Circuit with Thermoforming Technology. Advanced Electronic Materials, 2018, 4, 1800071.	2.6	27
1188	High-performance flexible strain sensor with bio-inspired crack arrays. Nanoscale, 2018, 10, 15178-15186.	2.8	115
1189	Piezoresistive stretchable strain sensors with human machine interface demonstrations. Sensors and Actuators A: Physical, 2018, 279, 46-52.	2.0	96
1190	An ultrasensitive strain sensor with a wide strain range based on graphene armour scales. Nanoscale, 2018, 10, 11524-11530.	2.8	77
1191	Freestanding Organic Charge-Transfer Conformal Electronics. Nano Letters, 2018, 18, 4346-4354.	4.5	10
1192	A carbon nanotube based NTC thermistor using additive print manufacturing processes. Sensors and Actuators A: Physical, 2018, 279, 1-9.	2.0	108
1193	Stretchable and compressible strain sensor based on carbon nanotube foam/polymer nanocomposites with three-dimensional networks. Composites Science and Technology, 2018, 163, 162-170.	3.8	65
1194	Fractal Gold Nanoframework for Highly Stretchable Transparent Strain-Insensitive Conductors. Nano Letters, 2018, 18, 3593-3599.	4.5	62
1195	Design of Engineered Elastomeric Substrate for Stretchable Active Devices and Sensors. Advanced Functional Materials, 2018, 28, 1705132.	7.8	47
1196	Multi-dimensional strain sensor based on carbon nanotube film with aligned conductive networks. Composites Science and Technology, 2018, 165, 190-197.	3.8	72
1197	Ultra-stretchable and highly sensitive strain sensor based on gradient structure carbon nanotubes. Nanoscale, 2018, 10, 13599-13606.	2.8	80
1198	Highly-sensitive and highly-correlative flexible motion sensors based on asymmetric piezotronic effect. Nano Energy, 2018, 51, 185-191.	8.2	29
1199	The effect of dual-scale carbon fibre network on sensitivity and stretchability of wearable sensors. Composites Science and Technology, 2018, 165, 131-139.	3.8	31
1200	Highly Stable Battery Pack via Insulated, Reinforced, Bucklingâ€Enabled Interconnect Array. Small, 2018, 14, e1800938.	5.2	35

		CITATION REPORT		
#	Article		IF	CITATIONS
1201	6.13 Additive Manufacturing of Multifunctional Nanocomposites and Composites. , 20)18, , 380-407.		0
1202	A Composite Elastic Conductor with High Dynamic Stability Based on 3D alabash B Network Structure for Wearable Devices. Advanced Electronic Materials, 2018, 4, 1800		2.6	57
1203	Superflexible Multifunctional Polyvinylpolydimethylsiloxaneâ€Based Aerogels as Efficie Thermal Superinsulators, and Strain Sensors. Angewandte Chemie, 2018, 130, 9870-9		1.6	16
1204	Superflexible Multifunctional Polyvinylpolydimethylsiloxaneâ€Based Aerogels as Efficie Thermal Superinsulators, and Strain Sensors. Angewandte Chemie - International Editio 9722-9727.	nt Absorbents, on, 2018, 57,	7.2	108
1205	Buckypaper embedded self-sensing composite for real-time fatigue damage diagnosis a Carbon, 2018, 139, 353-360.	and prognosis.	5.4	24
1206	Enhanced sensing performance of carboxyl graphene–ionic liquid attached ionic polynanocomposite based polymer strain sensors. Journal of Materials Chemistry C, 2018,	ymer–metal 6, 8395-8404.	2.7	19
1207	Highly transparent tactile sensor based on a percolated carbon nanotube network. AIP 8, 065109.	Advances, 2018,	0.6	11
1208	Joint angle measurement by stretchable strain sensor. Journal of Ambient Intelligence a Computing, 2023, 14, 14623-14628.	and Humanized	3.3	8
1209	Potential of Graphene for Miniature Sensors and Conducting Devices for Biomedical Ap 2018, , .	pplications. ,		0
1210	Silver Nanowire-Based Flexible Transparent Composite Film for Curvature Measuremen Nano Materials, 2018, 1, 3859-3866.	ts. ACS Applied	2.4	12
1211	Biofriendly, Stretchable, and Reusable Hydrogel Electronics as Wearable Force Sensors 14, e1801711.	. Small, 2018,	5.2	144
1212	Microscale local strain gauges based on visible micro-disk lasers embedded in a flexible Optics Express, 2018, 26, 16797.	substrate.	1.7	14
1213	A Highly Sensitive Capacitive-type Strain Sensor Using Wrinkled Ultrathin Gold Films. N 2018, 18, 5610-5617.	Vano Letters,	4.5	212
1214	A location- and sharpness-specific tactile electronic skin based on staircase-like nanow Nanoscale Horizons, 2018, 3, 640-647.	ire patches.	4.1	49
1215	Shape estimation based on Kalman filtering: Towards fully soft proprioception. , 2018,	,.		22
1216	Innovative evolution of buckling structures for flexible electronics. Composite Structur 487-499.	res, 2018, 204,	3.1	15
1217	Directional sensing based on flexible aligned carbon nanotube film nanocomposites. N 10, 14938-14946.	anoscale, 2018,	2.8	37
1218	High performance strain sensor based on buckypaper for full-range detection of human Nanoscale, 2018, 10, 14966-14975.	n motions.	2.8	48

		CITATION REPORT	
#	Article	IF	CITATIONS
1219	Ultrastretchable Fiber Sensor with High Sensitivity in Whole Workable Range for Wearable Electronics and Implantable Medicine. Advanced Science, 2018, 5, 1800558.	5.6	119
1220	Multifunctional Thermal Barrier Application Composite with SiC Nanowires Enhanced Structural Health Monitoring Sensitivity and Interface Performance. ACS Applied Materials & amp; Interfaces, 10, 27955-27964.	2018, 4.0	14
1221	A One-Step Method of Hydrogel Modification by Single-Walled Carbon Nanotubes for Highly Stretchable and Transparent Electronics. ACS Applied Materials & Interfaces, 2018, 10, 2806	9-28075. 4.0	75
1222	Flexible and Stretchable Bio-Integrated Electronics Based on Carbon Nanotube and Graphene. Materials, 2018, 11, 1163.	1.3	54
1223	Flexible and Stretchable Smart Display: Materials, Fabrication, Device Design, and System Integrat Advanced Functional Materials, 2018, 28, 1801834.	ion. 7.8	357
1224	Preparation, electrical properties, and supercapacitor applications of fibrous aggregates of single-walled carbon nanohorns. Carbon, 2018, 138, 379-383.	5.4	6
1225	Wearable Sensors for Upper Limb Monitoring. , 2018, , 113-134.		5
1226	Multilayer Graphene Epidermal Electronic Skin. ACS Nano, 2018, 12, 8839-8846.	7.3	257
1227	Flexible Electronics Based on Micro/Nanostructured Paper. Advanced Materials, 2018, 30, e18015	88. 11.1	249
1228	Polydimethylsiloxane (PDMS)-Based Flexible Resistive Strain Sensors for Wearable Applications. Applied Sciences (Switzerland), 2018, 8, 345.	1.3	170
1229	Refreshable Tactile Display Based on a Bistable Electroactive Polymer and a Stretchable Serpentine Joule Heating Electrode. ACS Applied Materials & Interfaces, 2018, 10, 24807-24815.	2 4.0	44
1230	Rectangular Patch Antenna Strain Sensor with Plastic Substrate for Curvature Measurements. IEEE Latin America Transactions, 2018, 16, 1358-1363.	1.2	4
1231	A Highly Sensitive Resistive Pressure Sensor Based on a Carbon Nanotube-Liquid Crystal-PDMS Composite. Nanomaterials, 2018, 8, 413.	1.9	52
1232	Fabrication of Stretchable Copper Coated Carbon Nanotube Conductor for Non-Enzymatic Glucos Detection Electrode with Low Detection Limit and Selectivity. Polymers, 2018, 10, 375.	e 2.0	13
1233	3D Printing Technologies for Flexible Tactile Sensors toward Wearable Electronics and Electronic Skin. Polymers, 2018, 10, 629.	2.0	183
1234	Using Micro-Molding and Stamping to Fabricate Conductive Polydimethylsiloxane-Based Flexible High-Sensitivity Strain Gauges. Sensors, 2018, 18, 618.	2.1	23
1235	Flexible, Stretchable Sensors for Wearable Health Monitoring: Sensing Mechanisms, Materials, Fabrication Strategies and Features. Sensors, 2018, 18, 645.	2.1	258
1236	Theory, technology and applications of piezoresistive sensors: A review. Sensors and Actuators A: Physical, 2018, 281, 156-175.	2.0	298

#	Article	IF	CITATIONS
1237	Ultra-stretchable, sensitive and durable strain sensors based on polydopamine encapsulated carbon nanotubes/elastic bands. Journal of Materials Chemistry C, 2018, 6, 8160-8170.	2.7	131
1238	Cantilever-based microring lasers embedded in a deformable substrate for local strain gauges. AIP Advances, 2018, 8, .	0.6	7
1239	Liquid Metal Enabled Wearable Electronics. Springer Series in Biomaterials Science and Engineering, 2018, , 369-416.	0.7	0
1240	A Highly Skinâ€Conformal and Biodegradable Grapheneâ€Based Strain Sensor. Small Methods, 2018, 2, 1700374.	4.6	41
1241	Superelastic active graphene aerogels dried in natural environment for sensitive supercapacitor-type stress sensor. Electrochimica Acta, 2018, 283, 1390-1400.	2.6	24
1242	Stretchable array of high-performance micro-supercapacitors charged with solar cells for wireless powering of an integrated strain sensor. Nano Energy, 2018, 49, 644-654.	8.2	146
1243	Mechanical Properties of Isolated Carbon Nanotube. , 2018, , 173-199.		4
1244	Skinlike Disposable Tattoo on Elastic Rubber Adhesive with Silver Particles Penetrated Electrode for Multipurpose Applications. ACS Applied Materials & Interfaces, 2018, 10, 16932-16938.	4.0	5
1245	Multi-functional stretchable and flexible sensor array to determine the location, shape, and pressure: Application in a smart robot. Science China Technological Sciences, 2018, 61, 1137-1143.	2.0	24
1246	Kirigami-Inspired Highly Stretchable Nanoscale Devices Using Multidimensional Deformation of Monolayer MoS ₂ . Chemistry of Materials, 2018, 30, 6063-6070.	3.2	66
1247	Fibrous strain sensor with ultra-sensitivity, wide sensing range, and large linearity for full-range detection of human motion. Nanoscale, 2018, 10, 17512-17519.	2.8	46
1248	Graphene Nanoplatelets-Based Advanced Materials and Recent Progress in Sustainable Applications. Applied Sciences (Switzerland), 2018, 8, 1438.	1.3	201
1249	Graphene Textile Strain Sensor with Negative Resistance Variation for Human Motion Detection. ACS Nano, 2018, 12, 9134-9141.	7.3	455
1250	Mechanical Stretchability of Screen-Printed Ag Nanoparticles Electrodes on Polyurethane Substrate for Stretchable Interconnectors and Thin Film Heaters. ECS Journal of Solid State Science and Technology, 2018, 7, P468-P472.	0.9	14
1251	One-Step Laser Encapsulation of Nano-Cracking Strain Sensors. Sensors, 2018, 18, 2673.	2.1	8
1252	Fabrication of Highly Stretchable, Washable, Wearable, Water-Repellent Strain Sensors with Multi-Stimuli Sensing Ability. ACS Applied Materials & Interfaces, 2018, 10, 31655-31663.	4.0	82
1253	Multifunctional Highly Sensitive Multiscale Stretchable Strain Sensor Based on a Graphene/Glycerol–KCl Synergistic Conductive Network. ACS Applied Materials & Interfaces, 2018, 10, 31716-31724.	4.0	97
1254	3D Graphene Films Enable Simultaneously High Sensitivity and Large Stretchability for Strain Sensors. Advanced Functional Materials, 2018, 28, 1803221.	7.8	89

#	Article	IF	CITATIONS
1255	Singleâ€Crackâ€Activated Ultrasensitive Impedance Strain Sensor. Advanced Materials Interfaces, 2018, 5, 1800616.	1.9	21
1256	Novel fabrication of polymer/carbon nanotube composite coated Janus paper for humidity stress sensor. Journal of Colloid and Interface Science, 2018, 532, 517-526.	5.0	29
1257	Interdigitated Electrodeâ€Based Triboelectric Sliding Sensor for Security Monitoring. Advanced Materials Technologies, 2018, 3, 1800189.	3.0	50
1258	Highâ€Performance Biscrolled MXene/Carbon Nanotube Yarn Supercapacitors. Small, 2018, 14, e1802225.	5.2	158
1259	A Triple-Mode Flexible E-Skin Sensor Interface for Multi-Purpose Wearable Applications. Sensors, 2018, 18, 78.	2.1	30
1260	3D Printing of Highly Stretchable Strain Sensors Based on Carbon Nanotube Nanocomposites. Advanced Engineering Materials, 2018, 20, 1800425.	1.6	96
1261	Stretchable Transparent Conductive Films from Long Carbon Nanotube Metals. Small, 2018, 14, e1802625.	5.2	39
1262	Conductive Polymer Protonated Nanocellulose Aerogels for Tunable and Linearly Responsive Strain Sensors. ACS Applied Materials & Interfaces, 2018, 10, 27902-27910.	4.0	88
1263	Decoration of polyfluorene-wrapped carbon nanotube thin films <i>via</i> strain-promoted azide–alkyne cycloaddition. Polymer Chemistry, 2018, 9, 4460-4467.	1.9	20
1264	Stretchable, Printable and Electrically Conductive Composites for Wearable RF Antennas. , 2018, , .		5
1265	Artificial Soft Elastic Media with Periodic Hard Inclusions for Tailoring Strainâ€Sensitive Thinâ€Film Responses. Advanced Materials, 2018, 30, e1802190.	11.1	6
1266	Highly Stable and Flexible Pressure Sensors with Modified Multi-Walled Carbon Nanotube/Polymer Composites for Human Monitoring. Sensors, 2018, 18, 1338.	2.1	47
1267	Pâ€136: Resistive Type 2D Mapping Positional Strain Sensor Array for Advanced Tactile Displays. Digest of Technical Papers SID International Symposium, 2018, 49, 1909-1912.	0.1	0
1268	A textile-based triboelectric nanogenerator with humidity-resistant output characteristic and its applications in self-powered healthcare sensors. Nano Energy, 2018, 50, 513-520.	8.2	217
1268 1269	A textile-based triboelectric nanogenerator with humidity-resistant output characteristic and its applications in self-powered healthcare sensors. Nano Energy, 2018, 50, 513-520. Deep-Learning Technique To Convert a Crude Piezoresistive Carbon Nanotube-Ecoflex Composite Sheet into a Smart, Portable, Disposable, and Extremely Flexible Keypad. ACS Applied Materials & amp; Interfaces, 2018, 10, 20862-20868.	8.2 4.0	217 21
	applications in self-powered healthcare sensors. Nano Energy, 2018, 50, 513-520. Deep-Learning Technique To Convert a Crude Piezoresistive Carbon Nanotube-Ecoflex Composite Sheet into a Smart, Portable, Disposable, and Extremely Flexible Keypad. ACS Applied Materials & amp;		
1269	 applications in self-powered healthcare sensors. Nano Energy, 2018, 50, 513-520. Deep-Learning Technique To Convert a Crude Piezoresistive Carbon Nanotube-Ecoflex Composite Sheet into a Smart, Portable, Disposable, and Extremely Flexible Keypad. ACS Applied Materials & amp; Interfaces, 2018, 10, 20862-20868. Highly Stretchable and Biocompatible Strain Sensors Based on Mussel-Inspired Super-Adhesive Self-Healing Hydrogels for Human Motion Monitoring. ACS Applied Materials & amp; Interfaces, 2018, 10, 	4.0	21

#	Article	IF	CITATIONS
1273	Facile fabrication and performance of robust polymer/carbon nanotube coated spandex fibers for strain sensing. Composites Part A: Applied Science and Manufacturing, 2018, 112, 186-196.	3.8	66
1274	SWCNT–Ag nanowire composite for transparent stretchable film heater with enhanced electrical stability. Journal of Materials Science, 2018, 53, 12284-12294.	1.7	25
1275	PDMS with designer functionalities—Properties, modifications strategies, and applications. Progress in Polymer Science, 2018, 83, 97-134.	11.8	478
1276	Stretchable strain sensors based on PDMS composites with cellulose sponges containing one- and two-dimensional nanocarbons. Sensors and Actuators A: Physical, 2018, 279, 90-100.	2.0	62
1277	Synergy between nanomaterials and volatile organic compounds for non-invasive medical evaluation. Chemical Society Reviews, 2018, 47, 4781-4859.	18.7	205
1278	Fabrication of flexible strain sensors via roll-to-roll gravure printing of silver ink. Smart Materials and Structures, 2018, 27, 085014.	1.8	19
1279	Optimising composite viscosity leads to high sensitivity electromechancial sensors. 2D Materials, 2018, 5, 035042.	2.0	16
1280	Carbon-Based Polymer Nanocomposites for Sensing Applications. , 2018, , 331-360.		2
1281	High Yield Single-Walled Carbon Nanotube Synthesis Through Multilayer Porous Mesh Substrates. E-Journal of Surface Science and Nanotechnology, 2018, 16, 279-282.	0.1	5
1282	Highly stretchable and ultrathin nanopaper composites for epidermal strain sensors. Nanotechnology, 2018, 29, 355304.	1.3	56
1283	De Novo Synthesis and Assembly of Flexible and Biocompatible Physical Sensing Platforms. Advanced Materials Technologies, 2019, 4, 1800141.	3.0	6
1284	Textileâ€Only Capacitive Sensors for Facile Fabric Integration without Compromise of Wearability. Advanced Materials Technologies, 2019, 4, 1900485.	3.0	57
1285	Nanomaterials-based flexible and stretchable bioelectronics. MRS Bulletin, 2019, 44, 643-656.	1.7	30
1286	A water-resilient carbon nanotube based strain sensor for monitoring structural integrity. Journal of Materials Chemistry A, 2019, 7, 19996-20005.	5.2	36
1287	Dynamically Modulated GaN Whispering Gallery Lasing Mode for Strain Sensor. Advanced Functional Materials, 2019, 29, 1905051.	7.8	56
1288	Stretchable/flexible silver nanowire electrodes for energy device applications. Nanoscale, 2019, 11, 20356-20378.	2.8	90
1289	Closing the Wearable Gap—Part II: Sensor Orientation and Placement for Foot and Ankle Joint Kinematic Measurements. Sensors, 2019, 19, 3509.	2.1	22
1290	Stretchable and Transparent Kirigami Conductor of Nanowire Percolation Network for Electronic Skin Applications. Nano Letters, 2019, 19, 6087-6096.	4.5	276

#	Article	IF	CITATIONS
1291	Electrical Percolation in Metal Wire Network-Based Strain Sensors. IEEE Sensors Journal, 2019, 19, 10373-10378.	2.4	4
1292	Flexible Smart Noncontact Control Systems with Ultrasensitive Humidity Sensors. Small, 2019, 15, e1902801.	5.2	110
1293	Porous Fibers Composed of Polymer Nanoball Decorated Graphene for Wearable and Highly Sensitive Strain Sensors. Advanced Functional Materials, 2019, 29, 1903732.	7.8	111
1294	A Deformable Interface for Human Touch Recognition Using Stretchable Carbon Nanotube Dielectric Elastomer Sensors and Deep Neural Networks. Soft Robotics, 2019, 6, 611-620.	4.6	35
1295	Ultraâ€Stretchable Porous Fiberâ€Shaped Strain Sensor with Exponential Response in Full Sensing Range and Excellent Antiâ€Interference Ability toward Buckling, Torsion, Temperature, and Humidity. Advanced Electronic Materials, 2019, 5, 1900538.	2.6	63
1296	Direct Patterning of a Carbon Nanotube Thin Layer on a Stretchable Substrate. Micromachines, 2019, 10, 530.	1.4	7
1297	Superhydrophobic, Transparent, and Stretchable 3D Hierarchical Wrinkled Filmâ€Based Sensors for Wearable Applications. Advanced Materials Technologies, 2019, 4, 1900230.	3.0	60
1298	Stretchable Conductive Fibers of Ultrahigh Tensile Strain and Stable Conductance Enabled by a Worm-Shaped Graphene Microlayer. Nano Letters, 2019, 19, 6592-6599.	4.5	126
1299	Recent progress in stretchable organic field-effect transistors. Science China Technological Sciences, 2019, 62, 1255-1276.	2.0	18
1300	Opto-electro-mechanical percolative composites from 2D layered materials: Properties and applications in strain sensing. Composites Science and Technology, 2019, 182, 107687.	3.8	13
1301	PtSe ₂ grown directly on polymer foil for use as a robust piezoresistive sensor. 2D Materials, 2019, 6, 045029.	2.0	33
1302	Screen printing of silver nanowires: balancing conductivity with transparency while maintaining flexibility and stretchability. Npj Flexible Electronics, 2019, 3, .	5.1	67
1303	Recoverable Electrical Breakdown Strength and Dielectric Constant in Ultralow- <i>k</i> Nanolattice Capacitors. Nano Letters, 2019, 19, 5689-5696.	4.5	7
1304	Conformal Printing of Graphene for Single―and Multilayered Devices onto Arbitrarily Shaped 3D Surfaces. Advanced Functional Materials, 2019, 29, 1807933.	7.8	40
1305	Flexible and Washable Poly(Ionic Liquid) Nanofibrous Membrane with Moisture Proof Pressure Sensing for Real-Life Wearable Electronics. ACS Applied Materials & Interfaces, 2019, 11, 27200-27209.	4.0	109
1306	Polymer thin film adhesion utilizing the transition from surface wrinkling to delamination. Soft Matter, 2019, 15, 6375-6382.	1.2	11
1307	Ti ₃ C ₂ MXene as a new nanofiller for robust and conductive elastomer composites. Nanoscale, 2019, 11, 14712-14719.	2.8	52
1308	Effect of Solvent on Segregated Network Morphology in Elastomer Composites for Tunable Piezoresistivity. Macromolecular Materials and Engineering, 2019, 304, 1900278.	1.7	13

	CITATION REI	PORT	
#	Article	IF	CITATIONS
1309	In situ monitoring of the morphology evolution of interfacially-formed conductive nanocomposite films and their use as strain sensors. Journal of Colloid and Interface Science, 2019, 554, 305-314.	5.0	2
1310	Multifunctional Fibers to Shape Future Biomedical Devices. Advanced Functional Materials, 2019, 29, 1902834.	7.8	74
1311	A flexible sandwich structure strain sensor based on silver nanowires and PDMS with excellent sensing capability. , 2019, , .		1
1312	A Selfâ€Conformable Smart Skin with Sensing and Variable Stiffness Functions. Advanced Intelligent Systems, 2019, 1, 1900054.	3.3	14
1313	Highly Stretchable Metallic Nanowire Networks Reinforced by the Underlying Randomly Distributed Elastic Polymer Nanofibers via Interfacial Adhesion Improvement. Advanced Materials, 2019, 31, e1903446.	11.1	106
1314	An Active Self-Driven Piezoelectric Sensor Enabling Real-Time Respiration Monitoring. Sensors, 2019, 19, 3241.	2.1	17
1315	Flexible Grapheneâ€, Grapheneâ€Oxideâ€, and Carbonâ€Nanotubeâ€Based Supercapacitors and Batteries. Annale Der Physik, 2019, 531, 1800507.	²ⁿ 0.9	44
1316	Prevulcanized natural rubber and carbon black: High-deformation piezoresistive composites. Materials Letters, 2019, 253, 427-429.	1.3	6
1317	Small and sensitive force sensors based on contact resistance. Microelectronic Engineering, 2019, 216, 111058.	1.1	3
1318	Stretchable Power-Generating Sensor Array in Textile Structure Using Piezoelectric Functional Threads with Hemispherical Dome Structures. International Journal of Precision Engineering and Manufacturing - Green Technology, 2019, 6, 699-710.	2.7	22
1319	Mechanocombinatorially Screening Sensitivity of Stretchable Strain Sensors. Advanced Materials, 2019, 31, e1903130.	11.1	82
1320	High-performance strain sensor based on a 3D conductive structure for wearable electronics. Journal Physics D: Applied Physics, 2019, 52, 395401.	1.3	16
1321	Bioinspired Cilia Sensors with Graphene Sensing Elements Fabricated Using 3D Printing and Casting. Nanomaterials, 2019, 9, 954.	1.9	57
1322	Conjuncted Pyroâ€Piezoelectric Effect for Selfâ€Powered Simultaneous Temperature and Pressure Sensing. Advanced Materials, 2019, 31, e1902831.	11.1	113
1323	Strainâ€Isolation Bridge Structure to Improve Stretchability of Highly Sensitive Strain Sensors. Advanced Materials Technologies, 2019, 4, 1900309.	3.0	18
1324	A flexible, conductive and simple pressure sensor prepared by electroless silver plated polyester fabric. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 578, 123554.	2.3	25
1325	Carbonized Chinese Art Paper-Based High-Performance Wearable Strain Sensor for Human Activity Monitoring. ACS Applied Electronic Materials, 2019, 1, 2415-2421.	2.0	38
1326	A Dualâ€Functional Grapheneâ€Based Selfâ€Alarm Healthâ€Monitoring Eâ€Skin. Advanced Functional Materials, 2019, 29, 1904706.	7.8	88

	Сітатіс	CITATION REPORT	
# 1327	ARTICLE Electronic Skin: Recent Progress and Future Prospects for Skinâ€Attachable Devices for Health	IF 11.1	CITATIONS 936
1327	Monitoring, Robotics, and Prosthetics. Advanced Materials, 2019, 31, e1904765.	11.1	930
1328	Bibliometric Analysis of Wearable Devices and Their Applications to English Education. , 2019, , .		3
1329	Self-Powered Transparent Stretchable 3D Motion Sensor. , 2019, , .		4
1330	Hydrated ruthenium dioxides @ graphene based fiber supercapacitor for wearable electronics. Journal of Power Sources, 2019, 440, 227143.	4.0	35
1331	Devices for promising applications. , 2019, , 247-314.		0
1332	A simple and cost-effective method for improving the sensitivity of flexible strain sensors based on conductive polymer composites. Sensors and Actuators A: Physical, 2019, 298, 111608.	2.0	23
1333	Crumpled Quaternary Nanoarchitecture of Sulfur-Doped Nickel Cobalt Selenide Directly Grown on Carbon Cloth for Making Stronger Ionic Soft Actuators. ACS Applied Materials & Interfaces, 2019, 11, 40451-40460.	4.0	21
1334	Inspiration from Daily Goods: A Low-Cost, Facilely Fabricated, and Environment-Friendly Strain Sensor Based on Common Carbon Ink and Elastic Core-Spun Yarn. ACS Sustainable Chemistry and Engineering, 2019, 7, 17474-17481.	3.2	76
1335	Practical and Durable Flexible Strain Sensors Based on Conductive Carbon Black and Silicone Blends for Large Scale Motion Monitoring Applications. Sensors, 2019, 19, 4553.	2.1	15
1336	Crack Control in Biotemplated Gold Films for Wideâ€Range, Highly Sensitive Strain Sensing. Advanced Materials Interfaces, 2019, 6, 1901223.	1.9	17
1337	Photo-thermoelectric effect induced electricity in stretchable graphene-polymer nanocomposites for ultrasensitive strain sensing. Nano Research, 2019, 12, 2982-2987.	5.8	39
1338	An ultra-stretchable, highly sensitive and biocompatible capacitive strain sensor from an ionic nanocomposite for on-skin monitoring. Nanoscale, 2019, 11, 1570-1578.	2.8	137
1339	High-Performance Paper-Based Capacitive Flexible Pressure Sensor and Its Application in Human-Related Measurement. Nanoscale Research Letters, 2019, 14, 183.	3.1	40
1340	Design and applications of stretchable and self-healable conductors for soft electronics. Nano Convergence, 2019, 6, 25.	6.3	83
1341	Leatherâ€Based Strain Sensor with Hierarchical Structure for Motion Monitoring. Advanced Materials Technologies, 2019, 4, 1900442.	3.0	37
1342	A Flexible Strain Sensor of Ba(Ti, Nb)O ₃ /Mica with a Broad Working Temperature Range. Advanced Materials Technologies, 2019, 4, 1900578.	3.0	19
1343	2D Metal Carbides and Nitrides (MXenes). , 2019, , .		240
1344	Cellular Graphene: Fabrication, Mechanical Properties, and Strain-Sensing Applications. Matter, 2019, 1, 1148-1202.	5.0	46

#	Article	IF	CITATIONS
1345	Direct Patterning of Carbon Nanotube via Stamp Contact Printing Process for Stretchable and Sensitive Sensing Devices. Nano-Micro Letters, 2019, 11, 92.	14.4	56
1347	Ultrasensitive Anti-Interference Voice Recognition by Bio-Inspired Skin-Attachable Self-Cleaning Acoustic Sensors. ACS Nano, 2019, 13, 13293-13303.	7.3	122
1348	Development of a Highly Stretchable Strain Sensor Based on Patterned and Rolled Carbon Nanotubes. , 2019, , .		2
1349	Preparation and Characterization of Hybrid Structured MWCNT/UHMWPE Fiber Sensors for Strain Sensing and Load Bearing of Composite Structures. Advanced Materials Technologies, 2019, 4, 1900807.	3.0	7
1350	Flexible Integrated Sensors: Transverse Piezoresistance and Longitudinal Thermal Resistance of One Single Carbon Fiber Beam. Advanced Materials Technologies, 2019, 4, 1900802.	3.0	15
1351	Measurement of finger joint angle using stretchable carbon nanotube strain sensor. PLoS ONE, 2019, 14, e0225164.	1.1	23
1352	Preparation of a Highly Sensitive and Stretchable Strain Sensor of MXene/Silver Nanocomposite-Based Yarn and Wearable Applications. ACS Applied Materials & Interfaces, 2019, 11, 45930-45938.	4.0	128
1353	Stretchable, Patchâ€Type Calorieâ€Expenditure Measurement Device Based on Popâ€Up Shaped Nanoscale Crackâ€Based Sensor. Advanced Healthcare Materials, 2019, 8, e1801593.	3.9	21
1354	Ultracompliant Carbon Nanotube Direct Bladder Device. Advanced Healthcare Materials, 2019, 8, e1900477.	3.9	18
1355	Carbon Nanotubes for Mechanical Sensor Applications. Physica Status Solidi (A) Applications and Materials Science, 2019, 216, 1900584.	0.8	12
1356	Two-Sided Topological Architecture on a Monolithic Flexible Substrate for Ultrasensitive Strain Sensors. ACS Applied Materials & Interfaces, 2019, 11, 43543-43552.	4.0	27
1357	Changes in real-life practice for hepatocellular carcinoma patients in the Republic of Korea over a 12-year period: A nationwide random sample study. PLoS ONE, 2019, 14, e0223678.	1.1	14
1358	Application-Based Production and Testing of a Core–Sheath Fiber Strain Sensor for Wearable Electronics: Feasibility Study of Using the Sensors in Measuring Tri-Axial Trunk Motion Angles. Sensors, 2019, 19, 4288.	2.1	22
1360	Strong, stretchable and ultrasensitive MWCNT/TPU nanocomposites for piezoresistive strain sensing. Composites Part B: Engineering, 2019, 177, 107285.	5.9	97
1361	Micro-/nano-voids guided two-stage film cracking on bioinspired assemblies for high-performance electronics. Nature Communications, 2019, 10, 3862.	5.8	38
1362	Highly Compressible and Sensitive Pressure Sensor under Large Strain Based on 3D Porous Reduced Graphene Oxide Fiber Fabrics in Wide Compression Strains. ACS Applied Materials & Interfaces, 2019, 11, 37051-37059.	4.0	74
1363	Ultralightweight and 3D Squeezable Graphene-Polydimethylsiloxane Composite Foams as Piezoresistive Sensors. ACS Applied Materials & Interfaces, 2019, 11, 35201-35211.	4.0	96
1364	Tunable Negative Permittivity in Flexible Graphene/PDMS Metacomposites. Journal of Physical Chemistry C, 2019, 123, 23635-23642.	1.5	178

#	Article	IF	Citations
1365	InGaN microtube optical resonator with sub-wavelength wall thickness and its application to refractive index sensing. Journal of Applied Physics, 2019, 126, 075708.	1.1	4
1366	Tactile Sensors for Advanced Intelligent Systems. Advanced Intelligent Systems, 2019, 1, 1900090.	3.3	80
1367	A graphene rheostat for highly durable and stretchable strain sensor. InformaÄnÃ-Materiály, 2019, 1, 396-406.	8.5	35
1368	Fabric Circuit Board Connecting to Flexible Sensors or Rigid Components for Wearable Applications. Sensors, 2019, 19, 3745.	2.1	14
1369	Flexible and Optical Fiber Sensors Composited by Graphene and PDMS for Motion Detection. Polymers, 2019, 11, 1433.	2.0	65
1370	Carbon-Nanotube-Coated 3D Microspring Force Sensor for Medical Applications. ACS Applied Materials & Interfaces, 2019, 11, 35577-35586.	4.0	32
1371	An ultrahigh resolution pressure sensor based on percolative metal nanoparticle arrays. Nature Communications, 2019, 10, 4024.	5.8	79
1372	An overview of stretchable strain sensors from conductive polymer nanocomposites. Journal of Materials Chemistry C, 2019, 7, 11710-11730.	2.7	315
1373	Kirigami Cross-Shaped 3D Buckling Active Sensor for Detecting Stretching and Bending. , 2019, , .		0
1374	Response characteristics of strain sensors based on closely spaced nanocluster films with controlled coverage. Chinese Journal of Chemical Physics, 2019, 32, 213-217.	0.6	5
1375	Highly sensitive capacitive pressure sensors based on elastomer composites with carbon filler hybrids. Composites Part A: Applied Science and Manufacturing, 2019, 126, 105614.	3.8	59
1376	A Highly Sensitive and Stretchable Yarn Strain Sensor for Human Motion Tracking Utilizing a Wrinkle-Assisted Crack Structure. ACS Applied Materials & Interfaces, 2019, 11, 36052-36062.	4.0	141
1377	High Resolution Micro-patterning of Stretchable Polymer Electrodes through Directed Wetting Localization. Scientific Reports, 2019, 9, 13066.	1.6	13
1378	Human-interactive drone system remotely controlled by printed strain/pressure sensors consisting of carbon-based nanocomposites. Composites Science and Technology, 2019, 182, 107784.	3.8	19
1379	Stretchable MoS ₂ Electromechanical Sensors with Ultrahigh Sensitivity and Large Detection Range for Skin-on Monitoring. ACS Applied Materials & Interfaces, 2019, 11, 37035-37042.	4.0	28
1380	Flexible Multimodal Sensors for Electronic Skin: Principle, Materials, Device, Array Architecture, and Data Acquisition Method. Proceedings of the IEEE, 2019, 107, 2065-2083.	16.4	59
1381	Highly Stretchable and Sensitive Strain Sensor with Porous Segregated Conductive Network. ACS Applied Materials & Interfaces, 2019, 11, 37094-37102.	4.0	116
1382	Ultra-Sensitive OPTO-Piezoresistive Sensors Utilising 3C-SiC/Si Heterostructures. , 2019, , .		3

#	Article	IF	CITATIONS
1383	Fabrication of Soft Sensor Using Laser Processing Techniques: For the Alternative 3D Printing Process. Materials, 2019, 12, 2955.	1.3	9
1384	Soft and Stretchable Polymeric Optical Waveguide-Based Sensors for Wearable and Biomedical Applications. Sensors, 2019, 19, 3771.	2.1	60
1385	Multipoint-Detection Strain Sensor with a Single Electrode Using Optical Ultrasound Generated by Carbon Nanotubes. Sensors, 2019, 19, 3877.	2.1	5
1386	Fabrication of the large-area flexible transparent heaters using electric-field-driven jet deposition micro-scale 3D printing. Advanced Optical Technologies, 2019, 8, 217-223.	0.9	4
1387	A method to fabricate uniform silver nanowires transparent electrode using Meyer rod coating and dynamic heating. Journal of Materials Science: Materials in Electronics, 2019, 30, 18702-18709.	1.1	10
1388	Fabrication of agarose hydrogel with patterned silver nanowires for motion sensor. Bio-Design and Manufacturing, 2019, 2, 269-277.	3.9	27
1389	Highly Stretchable, Directionally Oriented Carbon Nanotube/PDMS Conductive Films with Enhanced Sensitivity as Wearable Strain Sensors. ACS Applied Materials & Interfaces, 2019, 11, 39560-39573.	4.0	75
1390	A smart glove with integrated triboelectric nanogenerator for self-powered gesture recognition and language expression. Science and Technology of Advanced Materials, 2019, 20, 964-971.	2.8	58
1391	Soft and Deformable Sensors Based on Liquid Metals. Sensors, 2019, 19, 4250.	2.1	57
1392	Investigation of strain sensing mechanisms on ultra-thin carbon nanotube networks with different densities. Carbon, 2019, 155, 421-431.	5.4	16
1393	A radio frequencyâ€based antenna sensor as a protractor. Microwave and Optical Technology Letters, 2019, 61, 1301-1306.	0.9	1
1394	Printed nanofilms mechanically conforming to living bodies. Biomaterials Science, 2019, 7, 520-531.	2.6	36
1395	Design of solvent-free functional fluids <i>via</i> molecular nanoarchitectonics approaches. Molecular Systems Design and Engineering, 2019, 4, 78-90.	1.7	16
1396	Highly bright and stable electroluminescent devices with extraordinary stretchability and ultraconformability. Journal of Materials Chemistry C, 2019, 7, 484-489.	2.7	18
1397	All-printed, low-cost, tunable sensing range strain sensors based on Ag nanodendrite conductive inks for wearable electronics. Journal of Materials Chemistry C, 2019, 7, 809-818.	2.7	82
1398	Design of injectable agar/NaCl/polyacrylamide ionic hydrogels for high performance strain sensors. Carbohydrate Polymers, 2019, 211, 322-328.	5.1	90
1399	Bio-Integrated Wearable Systems: A Comprehensive Review. Chemical Reviews, 2019, 119, 5461-5533.	23.0	822
1400	Soft robot perception using embedded soft sensors and recurrent neural networks. Science Robotics, 2019, 4, .	9.9	383

#	Article	IF	CITATIONS
1401	Use of flexible sensor to characterize biomechanics of canine skin. BMC Veterinary Research, 2019, 15, 40.	0.7	3
1402	Multiple Weak H-Bonds Lead to Highly Sensitive, Stretchable, Self-Adhesive, and Self-Healing Ionic Sensors. ACS Applied Materials & Interfaces, 2019, 11, 7755-7763.	4.0	264
1403	Smart Golden Leaves Fabricated by Integrating Au Nanoparticles and Cellulose Nanofibers. ChemNanoMat, 2019, 5, 581-585.	1.5	1
1404	Soft, Skin-Integrated Multifunctional Microfluidic Systems for Accurate Colorimetric Analysis of Sweat Biomarkers and Temperature. ACS Sensors, 2019, 4, 379-388.	4.0	239
1405	Toward Secure and Efficient Communication for the Internet of Things. IEEE/ACM Transactions on Networking, 2019, 27, 621-634.	2.6	21
1406	Hybrid carbon nanostructured fibers: stepping stone for intelligent textile-based electronics. Nanoscale, 2019, 11, 3046-3101.	2.8	57
1408	High-pressure triggered quantum tunneling tuning through classical percolation in a single nanowire of a binary composite. Nano Research, 2019, 12, 1333-1338.	5.8	7
1409	Achieving high-resolution pressure mapping via flexible GaN/ ZnO nanowire LEDs array by piezo-phototronic effect. Nano Energy, 2019, 58, 633-640.	8.2	120
1410	Significant Stretchability Enhancement of a Crack-Based Strain Sensor Combined with High Sensitivity and Superior Durability for Motion Monitoring. ACS Applied Materials & Interfaces, 2019, 11, 7405-7414.	4.0	243
1411	Ultra-stretchable MWCNT–Ecoflex piezoresistive sensors for human motion detection applications. Composites Science and Technology, 2019, 173, 118-124.	3.8	80
1412	3D-Printed Liquid Metal Interconnects for Stretchable Electronics. IEEE Sensors Journal, 2019, 19, 3832-3840.	2.4	57
1413	Solution-processed wrinkled electrodes enable the development of stretchable electrochemical biosensors. Analyst, The, 2019, 144, 172-179.	1.7	24
1414	Study of chromatographic fractions from carbon dots isolated by column chromatography and a binary gradient elution <i>via</i> RP-HPLC. Analytical Methods, 2019, 11, 760-766.	1.3	14
1415	Morphological/nanostructural control toward intrinsically stretchable organic electronics. Chemical Society Reviews, 2019, 48, 1741-1786.	18.7	117
1416	Textile strain sensors: a review of the fabrication technologies, performance evaluation and applications. Materials Horizons, 2019, 6, 219-249.	6.4	289
1417	A sunlight self-healable transparent strain sensor with high sensitivity and durability based on a silver nanowire/polyurethane composite film. Journal of Materials Chemistry A, 2019, 7, 2315-2325.	5.2	86
1418	Flexible and wearable strain sensors based on tough and self-adhesive ion conducting hydrogels. Journal of Materials Chemistry B, 2019, 7, 24-29.	2.9	165
1419	Nanotechnology in Sport Clothing. , 2019, , 521-568.		5

#	Article	IF	CITATIONS
1420	Monolithic 3D printing of embeddable and highly stretchable strain sensors using conductive ionogels. Nanotechnology, 2019, 30, 364002.	1.3	11
1421	Carbon nanotube-based strain sensor for structural health monitoring. Japanese Journal of Applied Physics, 2019, 58, SDDJ07.	0.8	6
1422	A facile approach to fabricate highly sensitive, flexible strain sensor based on elastomeric/graphene platelet composite film. Journal of Materials Science, 2019, 54, 10856-10870.	1.7	50
1423	Ferroelectric polymer-based fully printed flexible strain rate sensors and their application for human motion capture. Sensors and Actuators A: Physical, 2019, 295, 93-98.	2.0	29
1424	Stretchable Transparent Conductors: from Micro/Macromechanics to Applications. Advanced Materials, 2019, 31, e1900756.	11.1	52
1425	Flexible and Pressure-Responsive Sensors from Cellulose Fibers Coated with Multiwalled Carbon Nanotubes. ACS Applied Electronic Materials, 2019, 1, 1179-1188.	2.0	46
1426	Highly sensitive graphene platelets and multi-walled carbon nanotube-based flexible strain sensor for monitoring human joint bending. Applied Physics A: Materials Science and Processing, 2019, 125, 1.	1.1	33
1427	A flexible bimodal sensor based on an electrospun nanofibrous structure for simultaneous pressure–temperature detection. Nanoscale, 2019, 11, 14242-14249.	2.8	41
1428	Recent Progress in Self-Powered Skin Sensors. Sensors, 2019, 19, 2763.	2.1	34
1429	Paper-based porous graphene/single-walled carbon nanotubes supported Pt nanoparticles as freestanding catalyst for electro-oxidation of methanol. Applied Catalysis B: Environmental, 2019, 257, 117886.	10.8	46
1430	Evaluating the forces generated during carbon nanotube forest growth and self-assembly. Materialia, 2019, 7, 100371.	1.3	18
1431	Wearable high-powered biofuel cells using enzyme/carbon nanotube composite fibers on textile cloth. Biosensors and Bioelectronics, 2019, 141, 111471.	5.3	76
1432	Colorimetric and plasmonic pressure sensors based on polyacrylamide/Au nanoparticles. Sensors and Actuators A: Physical, 2019, 295, 503-511.	2.0	24
1433	Extremely Stretchable and Self-Healable Electrical Skin with Mechanical Adaptability, an Ultrawide Linear Response Range, and Excellent Temperature Tolerance. ACS Applied Materials & Interfaces, 2019, 11, 24639-24647.	4.0	67
1434	Ultrastretchable Wearable Strain and Pressure Sensors Based on Adhesive, Tough, and Self-healing Hydrogels for Human Motion Monitoring. ACS Applied Materials & Interfaces, 2019, 11, 25613-25623.	4.0	161
1435	Nano-Cracked Strain Sensor with High Sensitivity and Linearity by Controlling the Crack Arrangement. Sensors, 2019, 19, 2834.	2.1	26
1436	Electrically Conductive Coatings for Fiber-Based E-Textiles. Fibers, 2019, 7, 51.	1.8	69
1437	A Wrinkled Ag/CNTs-PDMS Composite Film for a High-Performance Flexible Sensor and Its Applications in Human-Body Single Monitoring. Nanomaterials, 2019, 9, 850.	1.9	31

щ		IF	Citations
#	ARTICLE Highly stretchable and sensitive strain sensors based on single-walled carbon nanotube-coated nylon	IF	CHATIONS
1438	textile. Korean Journal of Chemical Engineering, 2019, 36, 800-806.	1.2	15
1439	A bioinspired multi-functional wearable sensor with an integrated light-induced actuator based on an asymmetric graphene composite film. Journal of Materials Chemistry C, 2019, 7, 6879-6888.	2.7	42
1440	A Textile Sensor for Long Durations of Human Motion Capture. Sensors, 2019, 19, 2369.	2.1	16
1441	Transparent, Highly Stretchable, Rehealable, Sensing, and Fully Recyclable Ionic Conductors Fabricated by Oneâ€5tep Polymerization Based on a Small Biological Molecule. Advanced Functional Materials, 2019, 29, 1902467.	7.8	154
1442	Development of strain sensor using conductive poly(vinylidene fluoride) (PVDF) nanocomposite membrane reinforced with ionic liquid (IL) & carbon nanofiber (CNF). Composites Part B: Engineering, 2019, 173, 106990.	5.9	44
1443	Highly Sensitive Solvent-free Silver Nanoparticle Strain Sensors with Tunable Sensitivity Created Using an Aerodynamically Focused Nanoparticle Printer. ACS Applied Materials & Interfaces, 2019, 11, 26421-26432.	4.0	20
1444	Multifunctional graphitic tracks on flexible polymer sheet as strain, acoustic vibration and human motion sensor. Measurement: Journal of the International Measurement Confederation, 2019, 146, 9-14.	2.5	19
1445	Simulation of electrical conductivity for nanoparticles and nanotubes composite sensor according to geometrical properties of nanomaterials. Composites Part B: Engineering, 2019, 174, 107003.	5.9	9
1446	Wearable graphene film strain sensors encapsulated with nylon fabric for human motion monitoring. Sensors and Actuators A: Physical, 2019, 295, 200-209.	2.0	25
1447	MoS ₂ -Decorated Laser-Induced Graphene for a Highly Sensitive, Hysteresis-free, and Reliable Piezoresistive Strain Sensor. ACS Applied Materials & Interfaces, 2019, 11, 22531-22542.	4.0	120
1448	Elastic carbon dot/polymer films for fluorescent tensile sensing and mechano-optical tuning. Carbon, 2019, 152, 363-371.	5.4	42
1449	Direct Current-Powered High-Performance Ionic Hydrogel Strain Sensor Based on Electrochemical Redox Reaction. ACS Applied Materials & amp; Interfaces, 2019, 11, 24289-24297.	4.0	21
1450	Highly Uniform and Low Hysteresis Piezoresistive Pressure Sensors Based on Chemical Grafting of Polypyrrole on Elastomer Template with Uniform Pore Size. Small, 2019, 15, e1901744.	5.2	82
1451	Graphite-on-paper-based resistive sensing device for aqueous chemical identification. Chemical Papers, 2019, 73, 2845-2855.	1.0	10
1452	Hydrogel-Templated Transfer-Printing of Conductive Nanonetworks for Wearable Sensors on Topographic Flexible Substrates. Nano Letters, 2019, 19, 3684-3691.	4.5	54
1453	Towards ultra-wide operation range and high sensitivity: Graphene film based pressure sensors for fingertips. Biosensors and Bioelectronics, 2019, 139, 111296.	5.3	26
1454	A highly flexible and multifunctional strain sensor based on a network-structured MXene/polyurethane mat with ultra-high sensitivity and a broad sensing range. Nanoscale, 2019, 11, 9949-9957.	2.8	150
1455	Cableâ€Shaped Lithium–Sulfur Batteries Based on Nitrogenâ€Đoped Carbon/Carbon Nanotube Composite Yarns. Macromolecular Materials and Engineering, 2019, 304, 1900201.	1.7	5

#	Article	IF	CITATIONS
1456	Recent Advances in Applications of Sorted Singleâ€Walled Carbon Nanotubes. Advanced Functional Materials, 2019, 29, 1902273.	7.8	67
1457	Mechanically Flexible Conductors for Stretchable and Wearable Eâ€Skin and Eâ€Textile Devices. Advanced Materials, 2019, 31, e1901408.	11.1	313
1458	Highly Sensitive, Stretchable Strain Sensor Based on Ag@COOHâ€Functionalized CNTs for Stroke and Pronunciation Recognition. Advanced Electronic Materials, 2019, 5, 1900227.	2.6	31
1459	Stretchable elastomer composites with segregated filler networks: effect of carbon nanofiller dimensionality. Nanoscale Advances, 2019, 1, 2337-2347.	2.2	32
1460	Improvement of Piezoresistive Properties of Suspended Singleâ€Walled Carbon Nanotube Arrays via Selective Trimming. Advanced Electronic Materials, 2019, 5, 1800992.	2.6	1
1461	Ultrastretchable Conductive Polymer Complex as a Strain Sensor with a Repeatable Autonomous Self-Healing Ability. ACS Applied Materials & Interfaces, 2019, 11, 20453-20464.	4.0	98
1462	Piezo-impedance response of carbon nanotube/polydimethylsiloxane nanocomposites. APL Materials, 2019, 7, .	2.2	29
1463	A 3D-printed stretchable strain sensor for wind sensing. Smart Materials and Structures, 2019, 28, 084001.	1.8	37
1464	Graphene/Glycerin Solution-Based Multifunctional Stretchable Strain Sensor with Ultra-High Stretchability, Stability, and Sensitivity. Nanomaterials, 2019, 9, 617.	1.9	15
1465	Ultrathin, flexible and transparent graphene-based triboelectric nanogenerators for attachable curvature monitoring. Journal Physics D: Applied Physics, 2019, 52, 314002.	1.3	12
1466	Improvement of piezoresistive sensing behavior of graphene sponge by polyaniline nanoarrays. Journal of Materials Chemistry C, 2019, 7, 7386-7394.	2.7	34
1467	Highly Stretchable Supercapacitors via Crumpled Vertically Aligned Carbon Nanotube Forests. Advanced Energy Materials, 2019, 9, 1900618.	10.2	74
1468	Progress in the Development of Intrinsically Conducting Polymer Composites as Biosensors. Macromolecular Chemistry and Physics, 2019, 220, 1800561.	1.1	86
1469	Ultrasensitive embedded sensor for composite joints based on a highly aligned carbon nanotube web. Carbon, 2019, 149, 380-389.	5.4	30
1470	Flexible Capacitive Pressure Sensor Enhanced by Tilted Micropillar Arrays. ACS Applied Materials & Interfaces, 2019, 11, 17796-17803.	4.0	292
1471	Multifunctional sensing platform with pulsed-laser-deposited silver nanoporous structures. Sensors and Actuators A: Physical, 2019, 293, 136-144.	2.0	6
1472	Polypyrrole-Doped Conductive Supramolecular Elastomer with Stretchability, Rapid Self-Healing, and Adhesive Property for Flexible Electronic Sensors. ACS Applied Materials & Interfaces, 2019, 11, 18720-18729.	4.0	135
1473	High-sensitive and stretchable resistive strain gauges: Parametric design and DIW fabrication. Composite Structures, 2019, 223, 110955.	3.1	20

#	Article	IF	CITATIONS
1474	Flexible and Stretchable Photonic Sensors Based on Modulation of Light Transmission. Advanced Optical Materials, 2019, 7, 1900329.	3.6	49
1475	Viskoelastische konjugierte polymere Fluide. Angewandte Chemie, 2019, 131, 9682-9686.	1.6	6
1476	Interwoven Carbon Nanotube Wires for High-Performing, Mechanically Robust, Washable, and Wearable Supercapacitors. ACS Applied Materials & Interfaces, 2019, 11, 18285-18294.	4.0	33
1477	Viscoelastic Conjugated Polymer Fluids. Angewandte Chemie - International Edition, 2019, 58, 9581-9585.	7.2	40
1478	Development of Compact Load Cell Using Multiwall Carbon Nanotube/Cotton Composites and Its Application to Human Health and Activity Monitoring. Journal of Nanomaterials, 2019, 2019, 1-15.	1.5	5
1479	Bioinspired Pretextured Reduced Graphene Oxide Patterns with Multiscale Topographies for High-Performance Mechanosensors. ACS Applied Materials & Interfaces, 2019, 11, 18645-18653.	4.0	15
1480	Humidity and Strain Rate Determine the Extent of Phase Shift in the Piezoresistive Response of PEDOT:PSS. ACS Applied Materials & amp; Interfaces, 2019, 11, 16888-16895.	4.0	12
1481	A flexible and skin-mountable elastic fiber-based sensor patch for healthcare monitoring. Biomedical Physics and Engineering Express, 2019, 5, 045011.	0.6	9
1482	Wearable and Skinâ€Mountable Fiberâ€Optic Strain Sensors Interrogated by a Freeâ€Running, Dualâ€Comb Fiber Laser. Advanced Optical Materials, 2019, 7, 1900086.	3.6	76
1483	Functional nanocomposites for 3D printing of stretchable and wearable sensors. Applied Nanoscience (Switzerland), 2019, 9, 2071-2083.	1.6	51
1484	Physical and Chemical Sensing With Electronic Skin. Proceedings of the IEEE, 2019, 107, 2155-2167.	16.4	56
1485	Flexible Sandwich Structural Strain Sensor Based on Silver Nanowires Decorated with Selfâ€Healing Substrate. Macromolecular Materials and Engineering, 2019, 304, 1900074.	1.7	187
1486	Recent advances in nanomaterial-enabled acoustic devices for audible sound generation and detection. Nanoscale, 2019, 11, 5839-5860.	2.8	38
1487	Combining High Sensitivity and Dynamic Range: Wearable Thin-Film Composite Strain Sensors of Graphene, Ultrathin Palladium, and PEDOT:PSS. ACS Applied Nano Materials, 2019, 2, 2222-2229.	2.4	58
1488	Extremely Versatile Deformability beyond Materiality: A New Material Platform through Simple Cutting for Rugged Batteries. Advanced Engineering Materials, 2019, 21, 1900206.	1.6	15
1489	A Facile Oneâ€ 5 tep Approach for Constructing Multidimensional Ordered Nanowire Micropatterns via Fibrous Elastocapillary Coalescence. Advanced Materials, 2019, 31, e1900534.	11.1	15
1490	Skin-Mountable Biosensors and Therapeutics: A Review. Annual Review of Biomedical Engineering, 2019, 21, 299-323.	5.7	45
1491	Flexible perovskite solar cell-driven photo-rechargeable lithium-ion capacitor for self-powered wearable strain sensors. Nano Energy, 2019, 60, 247-256.	8.2	180

#	Article	IF	CITATIONS
1492	Highly compliant planar Hall effect sensor with sub 200 nT sensitivity. Npj Flexible Electronics, 2019, 3,	5.1	52
1494	Stretchable and electrically conductive polyurethane- silver/graphene composite fibers prepared by wet-spinning process. Composites Part B: Engineering, 2019, 167, 573-581.	5.9	84
1495	1-D polymer ternary composites: Understanding materials interaction, percolation behaviors and mechanism toward ultra-high stretchable and super-sensitive strain sensors. Science China Materials, 2019, 62, 995-1004.	3.5	22
1496	Flexible 64 × 64 Pixel AMOLED Displays Driven by Uniform Carbon Nanotube Thin-Film Transistors. ACS Applied Materials & Interfaces, 2019, 11, 11699-11705.	4.0	33
1497	The Opposite Anisotropic Piezoresistive Effect of ReS ₂ . ACS Nano, 2019, 13, 3310-3319.	7.3	55
1498	Highly Stretchable Strain Sensors Comprising Double Network Hydrogels Fabricated by Microfluidic Devices. Advanced Materials Technologies, 2019, 4, 1800739.	3.0	46
1499	Ultra-sensitive flexible strain sensor based on graphene nanocrystallite carbon film with wrinkle structures. Carbon, 2019, 147, 227-235.	5.4	77
1500	Rapid fabrication of wearable carbon nanotube/graphite strain sensor for real-time monitoring of plant growth. Carbon, 2019, 147, 295-302.	5.4	68
1501	Moisture Sensitive Smart Yarns and Textiles from Selfâ€Balanced Silk Fiber Muscles. Advanced Functional Materials, 2019, 29, 1808241.	7.8	200
1502	Vertically Aligned Carbon Nanotubes Capacitive Sensors. IEEE Sensors Journal, 2019, 19, 4375-4380.	2.4	8
1503	Elastomer Composites with a Tailored Interface Network toward Tunable Piezoresistivity: Effect of Elastomer Particle Size. ACS Applied Polymer Materials, 2019, 1, 714-721.	2.0	22
1504	Multifunctional Skinâ€Inspired Flexible Sensor Systems for Wearable Electronics. Advanced Materials Technologies, 2019, 4, 1800628.	3.0	431
1505	Highly sensitive and flexible strain sensor based on AuNPs/CNTs' synergic conductive network. Applied Nanoscience (Switzerland), 2019, 9, 1469-1478.	1.6	20
1506	Superstretchable and Processable Silicone Elastomers by Digital Light Processing 3D Printing. ACS Applied Materials & Interfaces, 2019, 11, 14391-14398.	4.0	85
1507	Soft Piezoionic/Piezoelectric Nanocomposites Based on Ionogel/BaTiO ₃ Nanoparticles for Low Frequency and Directional Discriminative Pressure Sensing. ACS Macro Letters, 2019, 8, 414-420.	2.3	53
1508	High-Performance Liquid Alloy Patterning of Epidermal Strain Sensors for Local Fine Skin Movement Monitoring. Soft Robotics, 2019, 6, 414-421.	4.6	20
1509	Small strain effect on the mechanical vibration behavior of cross-linked functionalized carbon nanotubes with polyethylene: A molecular-dynamics study. Europhysics Letters, 2019, 125, 43001.	0.7	10
1510	Carbon-Based, Ultraelastic, Hierarchically Coated Fiber Strain Sensors with Crack-Controllable Beads. ACS Applied Materials & Interfaces, 2019, 11, 15079-15087.	4.0	40

#	Article	IF	CITATIONS
1511	A novel flex sensor-based flexible smart garment for monitoring body postures. Journal of Industrial Textiles, 2019, 49, 262-274.	1.1	17
1512	Multifunctional WS ₂ &M-AgNPs superhydrophobic conductive sponges for application in various sensors. New Journal of Chemistry, 2019, 43, 5287-5296.	1.4	6
1513	Freestanding Functional Structures by Aerosolâ€Jet Printing for Stretchable Electronics and Sensing Applications. Advanced Materials Technologies, 2019, 4, 1900048.	3.0	42
1514	A Sprayed Graphene Pattern-Based Flexible Strain Sensor with High Sensitivity and Fast Response. Sensors, 2019, 19, 1077.	2.1	22
1515	Highly stretchable multi-walled carbon nanotube/thermoplastic polyurethane composite fibers for ultrasensitive, wearable strain sensors. Nanoscale, 2019, 11, 5884-5890.	2.8	162
1516	Highly Stretchable Polymer-based Optical Strain Sensor for Integration with Soft Actuator. , 2019, , .		3
1517	Motion sensors achieved from a conducting polymer-metal Schottky contact. RSC Advances, 2019, 9, 6576-6582.	1.7	7
1518	Wearable eye health monitoring sensors based on peacock tail-inspired inverse opal carbon. Sensors and Actuators B: Chemical, 2019, 288, 734-741.	4.0	43
1519	Three-Dimensionally Printed Stretchable Conductors from Surfactant-Mediated Composite Pastes. ACS Applied Materials & Interfaces, 2019, 11, 12622-12631.	4.0	22
1520	Integrated Soft Ionotronic Skin with Stretchable and Transparent Hydrogel–Elastomer Ionic Sensors for Hand-Motion Monitoring. Soft Robotics, 2019, 6, 368-376.	4.6	98
1521	Stretchable sensors for environmental monitoring. Applied Physics Reviews, 2019, 6, .	5.5	83
1523	Graphene-Based Fully Transparent Thin Film Surface Acoustic Wave Devices for Sensing and Lab-on-Chip Applications. Journal of the Electrochemical Society, 2019, 166, B432-B440.	1.3	15
1524	Flexible and Highly Sensitive Pressure Sensors Based on Microstructured Carbon Nanowalls Electrodes. Nanomaterials, 2019, 9, 496.	1.9	31
1525	The use of complex impedance spectroscopy measurements for improving strain sensor performance. Sensors and Actuators A: Physical, 2019, 293, 101-107.	2.0	4
1526	Highly Stretchable and Air-Stable PEDOT:PSS/Ionic Liquid Composites for Efficient Organic Thermoelectrics. Chemistry of Materials, 2019, 31, 3519-3526.	3.2	81
1527	A Shape Memory Highâ€Voltage Supercapacitor with Asymmetric Organic Electrolytes for Driving an Integrated NO ₂ Gas Sensor. Advanced Functional Materials, 2019, 29, 1901996.	7.8	44
1528	Piezoresistive Graphene/P(VDF-TrFE) Heterostructure Based Highly Sensitive and Flexible Pressure Sensor. ACS Applied Materials & Interfaces, 2019, 11, 16006-16017.	4.0	58
1529	Temperature-directed synthesis of N-doped carbon-based nanotubes and nanosheets decorated with Fe (Fe ₃ O ₄ , Fe ₃ C) nanomaterials. Nanoscale, 2019, 11, 9155-9162.	2.8	37

#	Article	IF	CITATIONS
1530	Fabrication of bagel-like graphene aerogels and its application in pressure sensors. Smart Materials and Structures, 2019, 28, 055020.	1.8	8
1531	Highly sensitive and multifunctional piezoresistive sensor based on polyaniline foam for wearable Human-Activity monitoring. Composites Part A: Applied Science and Manufacturing, 2019, 121, 510-516.	3.8	78
1532	Buckled carbon nanotube network thin-film fabricated using chemically swelled elastomer substrates. Nanotechnology, 2019, 30, 285501.	1.3	4
1533	A Facile and Efficient Protocol for Preparing Residual-Free Single-Walled Carbon Nanotube Films for Stable Sensing Applications. Nanomaterials, 2019, 9, 471.	1.9	21
1534	Highly stretchable fiber transistors with all-stretchable electronic components and graphene hybrid electrodes. Organic Electronics, 2019, 69, 320-328.	1.4	18
1535	Aggregate-driven reconfigurations of carbon nanotubes in thin networks under strain: in-situ characterization. Scientific Reports, 2019, 9, 5513.	1.6	3
1536	Graphite-Polydimethylsiloxane Sensor. Smart Sensors, Measurement and Instrumentation, 2019, , 169-192.	0.4	0
1537	Binder-Free Graphene/Silver Nanowire Gel-Like Composite with Tunable Properties and Multifunctional Applications. ACS Applied Materials & Interfaces, 2019, 11, 15028-15037.	4.0	11
1538	Heterocoerdianthrone derivative as dispersant for single-walled carbon nanotubes and formation of thin film. Progress in Organic Coatings, 2019, 132, 221-226.	1.9	1
1539	Transparent and stretchable triboelectric nanogenerator for self-powered tactile sensing. Nano Energy, 2019, 59, 302-310.	8.2	285
1540	A Path Beyond Metal and Silicon:Polymer/Nanomaterial Composites for Stretchable Strain Sensors. Advanced Functional Materials, 2019, 29, 1806306.	7.8	147
1541	Buckled Structures: Fabrication and Applications in Wearable Electronics. Small, 2019, 15, e1804805.	5.2	83
1542	Control of tunneling gap between nanocrystals by introduction of solution processed interfacial layers for wearable sensor applications. Journal of Industrial and Engineering Chemistry, 2019, 73, 214-220.	2.9	8
1543	Piezoresistive and Mechanical Characteristics of Graphene Foam Nanocomposites. ACS Applied Nano Materials, 2019, 2, 1402-1411.	2.4	30
1544	Fabrication of Largeâ€Area Bimodal Sensors by Allâ€Inkjetâ€Printing. Advanced Materials Technologies, 2019, 4, 1800703.	3.0	40
1545	Highly Sensitive and Large-Range Strain Sensor with a Self-Compensated Two-Order Structure for Human Motion Detection. ACS Applied Materials & Interfaces, 2019, 11, 8527-8536.	4.0	113
1546	A wearable strain sensor based on the ZnO/graphene nanoplatelets nanocomposite with large linear working range. Journal of Materials Science, 2019, 54, 7048-7061.	1.7	46
1547	Soft, skin-interfaced wearable systems for sports science and analytics. Current Opinion in Biomedical Engineering, 2019, 9, 47-56.	1.8	84

#	Article	IF	CITATIONS
1548	Highly Sensitive, Stretchable Chopped Carbon Fiber/Silicon Rubber Based Sensors for Human Joint Motion Detection. Fibers and Polymers, 2019, 20, 35-44.	1.1	18
1549	Biomimetic strain sensors based on patterned polydimethylsiloxane and Ir nanoparticles decorated multi-walled carbon nanotubes. Sensors and Actuators A: Physical, 2019, 289, 57-64.	2.0	19
1550	Carbon Nanotubeâ€Modified Fabric for Wearable Smart Electronicâ€skin with Exclusive Normalâ€Tangential Force Sensing Ability. Advanced Materials Technologies, 2019, 4, 1800680.	3.0	28
1551	Kirigamiâ€Enabled, Passive Resonant Sensors for Wireless Deformation Monitoring. Advanced Materials Technologies, 2019, 4, 1800683.	3.0	20
1552	Investigation of Lightweight and Flexible Carbon Nanofiber/Poly Dimethylsiloxane Nanocomposite Sponge for Piezoresistive Sensor Application. Advanced Engineering Materials, 2019, 21, 1801068.	1.6	47
1553	<i>Enokitake</i> Mushroom-like Standing Gold Nanowires toward Wearable Noninvasive Bimodal Glucose and Strain Sensing. ACS Applied Materials & Interfaces, 2019, 11, 9724-9729.	4.0	91
1554	Effect of MWCNT content on the mechanical and strain-sensing performance of Thermoplastic Polyurethane composite fibers. Carbon, 2019, 146, 701-708.	5.4	77
1555	The research status and challenges of shape memory polymer-based flexible electronics. Materials Horizons, 2019, 6, 931-944.	6.4	139
1556	Polyimide/Graphene Nanocomposite Foamâ€Based Windâ€Driven Triboelectric Nanogenerator for Selfâ€Powered Pressure Sensor. Advanced Materials Technologies, 2019, 4, 1800723.	3.0	86
1557	Bioinspired Self-Healing Liquid Films for Ultradurable Electronics. ACS Nano, 2019, 13, 3225-3231.	7.3	36
1558	Highly stretchable and autonomously healable epidermal sensor based on multi-functional hydrogel frameworks. Journal of Materials Chemistry A, 2019, 7, 5949-5956.	5.2	187
1559	Ultrasensitive Strain Sensor Based on Separation of Overlapped Carbon Nanotubes. Small, 2019, 15, e1805120.	5.2	144
1560	Multilayered Ag NP–PEDOT–Paper Composite Device for Human–Machine Interfacing. ACS Applied Materials & Interfaces, 2019, 11, 10380-10388.	4.0	51
1561	Strain Sensors with a High Sensitivity and a Wide Sensing Range Based on a Ti ₃ C ₂ T <i>_x</i> (MXene) Nanoparticle–Nanosheet Hybrid Network. Advanced Functional Materials, 2019, 29, 1807882.	7.8	187
1562	Ultrastretchable and Stable Strain Sensors Based on Antifreezing and Self-Healing Ionic Organohydrogels for Human Motion Monitoring. ACS Applied Materials & Interfaces, 2019, 11, 9405-9414.	4.0	285
1563	Flexible polypyrrole-coated conductive fabric sensor for large deformation measurement. International Journal of Clothing Science and Technology, 2019, 31, 609-618.	0.5	2
1564	Silicon-Based Micromachining Process for Flexible Electronics. , 2019, , .		1
1566	3-D Printed Strain Sensor for Structural Health Monitoring. , 2019, , .		14

		15	Circumian
#	ARTICLE Carbon Nanotube Coated Textile Sensors with Ultrahigh Sensitivity for Human Motion Detection. ,	IF	CITATIONS
1567	2019, , .		4
1568	Multifunctional Carbon Nanotubes Enhanced Structural Composites with Improved Toughness and Damage Monitoring. Journal of Composites Science, 2019, 3, 109.	1.4	10
1569	A Three-Dimensional Strain Rosette Sensor Based on Graphene Composite with Piezoresistive Effect. Journal of Sensors, 2019, 2019, 1-12.	0.6	3
1570	An Antenna Sensor to Identify Finger Postures. , 2019, , .		4
1572	Flexible Carbon Nanotube Sensors with Screen Printed and Interdigitated Electrodes. , 2019, , .		1
1573	Highly Flexible and Stretchable Structure Based on Au/Graphene Film and Polyurethane Yarn. , 2019, , .		1
1574	Flexible and Highly Sensitive Strain Sensor Based on Laser-Induced Graphene Pattern Fabricated by 355 nm Pulsed Laser. Sensors, 2019, 19, 4867.	2.1	40
1575	Flexible Surface Electrodes Targeting Biopotential Signals from Forearm Muscles for Control of Prosthetic Hands: Part 2 - Characterization of Substrates for Strain Sensors. , 2019, , .		1
1576	Monitoring respiratory rates with a wearable system using a stretchable strain sensor during moderate exercise. Medical and Biological Engineering and Computing, 2019, 57, 2741-2756.	1.6	31
1577	Optimization of MWCNTs/Epoxy for High Strain Sensor Performance. , 2019, , .		0
1578	Control of highly anisotropic electrical conductance of tellurene by strain-engineering. Nanoscale, 2019, 11, 21775-21781.	2.8	11
1579	A highly durable textile-based sensor as a human-worn material interface for long-term multiple mechanical deformation sensing. Journal of Materials Chemistry C, 2019, 7, 14651-14663.	2.7	32
1580	An integrated self-healable and robust conductive hydrogel for dynamically self-adhesive and highly conformable electronic skin. Journal of Materials Chemistry C, 2019, 7, 15208-15218.	2.7	67
1581	Recent advances in lithographic fabrication of micro-/nanostructured polydimethylsiloxanes and their soft electronic applications. Journal of Semiconductors, 2019, 40, 111605.	2.0	26
1582	Nanotechnology Characterization Tools for Environment, Health, and Safety. , 2019, , .		2
1583	A Low-Cost Strain Gauge Displacement Sensor Fabricated via Shadow Mask Printing. Sensors, 2019, 19, 4713.	2.1	16
1584	Implantable Neural Interfaces and Wearable Tactile Systems for Bidirectional Neuroprosthetics Systems. Advanced Healthcare Materials, 2019, 8, e1801345.	3.9	32
1585	Soft tactile sensor and curvature sensor for caterpillar-like soft robot's adaptive motion. , 2019, , .		4

#	Article	IF	CITATIONS
1586	Research on finger movement sensing performance of conductive gloves. Journal of Engineered Fibers and Fabrics, 2019, 14, 155892501988762.	0.5	14
1587	One-pot preparation and applications of self-healing, self-adhesive PAA-PDMS elastomers. Journal of Semiconductors, 2019, 40, 112602.	2.0	4
1588	Stretchable Graphene Thin Film Enabled Yarn Sensors with Tunable Piezoresistivity for Human Motion Monitoring. Scientific Reports, 2019, 9, 18644.	1.6	17
1589	A Skin-Inspired Stretchable, Self-Healing and Electro-Conductive Hydrogel with a Synergistic Triple Network for Wearable Strain Sensors Applied in Human-Motion Detection. Nanomaterials, 2019, 9, 1737.	1.9	74
1590	A stretchable, conformable, and biocompatible graphene strain sensor based on a structured hydrogel for clinical application. Journal of Materials Chemistry A, 2019, 7, 27099-27109.	5.2	61
1591	Highly stretchable, rapid-response strain sensor based on SWCNTs/CB nanocomposites coated on rubber/latex polymer for human motion tracking. Sensor Review, 2019, 39, 233-245.	1.0	13
1592	Controllably Enhancing Stretchability of Highly Sensitive Fiber-Based Strain Sensors for Intelligent Monitoring. ACS Applied Materials & Interfaces, 2019, 11, 2431-2440.	4.0	47
1593	Heterogeneous Strain Distribution of Elastomer Substrates To Enhance the Sensitivity of Stretchable Strain Sensors. Accounts of Chemical Research, 2019, 52, 82-90.	7.6	52
1594	Highly Stretchable, Sensitive, and Transparent Strain Sensors with a Controllable In-Plane Mesh Structure. ACS Applied Materials & Interfaces, 2019, 11, 5316-5324.	4.0	44
1595	Spider-Web-Inspired Stretchable Graphene Woven Fabric for Highly Sensitive, Transparent, Wearable Strain Sensors. ACS Applied Materials & Interfaces, 2019, 11, 2282-2294.	4.0	105
1596	Touchpoint-Tailored Ultrasensitive Piezoresistive Pressure Sensors with a Broad Dynamic Response Range and Low Detection Limit. ACS Applied Materials & Interfaces, 2019, 11, 2551-2558.	4.0	108
1597	Full 3D Printing of Stretchable Piezoresistive Sensor with Hierarchical Porosity and Multimodulus Architecture. Advanced Functional Materials, 2019, 29, 1807569.	7.8	172
1598	Multiwalled Carbon Nanotube Film Composite for Active Vibration Control of Cantilevered Beam. IEEE Sensors Journal, 2019, 19, 2466-2473.	2.4	3
1599	Highly Stretchable Capacitive Sensor with Printed Carbon Black Electrodes on Barium Titanate Elastomer Composite. Sensors, 2019, 19, 42.	2.1	43
1600	Significance of Nanomaterials in Wearables: A Review on Wearable Actuators and Sensors. Advanced Materials, 2019, 31, e1805921.	11.1	438
1601	Highly Sensitive, Low Voltage Operation, and Low Power Consumption Resistive Strain Sensors Based on Vertically Oriented Graphene Nanosheets. Advanced Materials Technologies, 2019, 4, 1800572.	3.0	15
1602	Wearable Bandage-Based Strain Sensor for Home Healthcare: Combining 3D Aerosol Jet Printing and Laser Sintering. ACS Sensors, 2019, 4, 218-226.	4.0	113
1603	A flexible pressure sensor by induced ordered nano cracks filled with multilayer graphene oxide composite film as a conductive fine-wire network for higher sensitivity. Flexible and Printed Electronics, 2019, 4, 015003.	1.5	14

#	Article	IF	CITATIONS
1604	Hierarchical Reduced Graphene Oxide Ridges for Stretchable, Wearable, and Washable Strain Sensors. ACS Applied Materials & Interfaces, 2019, 11, 1283-1293.	4.0	40
1605	Crack propagation design in transparent polymeric conductive films via carbon nanotube fiber-reinforcement and its application for highly sensitive and mechanically durable strain sensors. Smart Materials and Structures, 2019, 28, 025008.	1.8	14
1606	Direct printing of highly sensitive, stretchable, and durable strain sensor based on silver nanoparticles/multi-walled carbon nanotubes composites. Composites Part B: Engineering, 2019, 161, 395-401.	5.9	99
1607	Stretchable, Bifacial Si-Organic Hybrid Solar Cells by Vertical Array of Si Micropillars Embedded into Elastomeric Substrates. ACS Applied Materials & Interfaces, 2019, 11, 3290-3298.	4.0	13
1608	Skin-Like, Dynamically Stretchable, Planar Supercapacitors with Buckled Carbon Nanotube/Mn–Mo Mixed Oxide Electrodes and Air-Stable Organic Electrolyte. ACS Nano, 2019, 13, 855-866.	7.3	81
1609	Model-Based Compensation of Rate-Dependent Hysteresis in a Piezoresistive Strain Sensor. IEEE Transactions on Industrial Electronics, 2019, 66, 8205-8213.	5.2	31
1610	Design of High-Performance Wearable Energy and Sensor Electronics from Fiber Materials. ACS Applied Materials & Interfaces, 2019, 11, 2120-2129.	4.0	52
1611	Bioinspired Ultrasensitive and Stretchable MXene-Based Strain Sensor via Nacre-Mimetic Microscale "Brick-and-Mortar―Architecture. ACS Nano, 2019, 13, 649-659.	7.3	320
1612	Ultrafast response of spray-on nanocomposite piezoresistive sensors to broadband ultrasound. Carbon, 2019, 143, 743-751.	5.4	33
1613	Highly stretchable and wearable strain sensors using conductive wool yarns with controllable sensitivity. Sensors and Actuators A: Physical, 2019, 285, 142-148.	2.0	35
1614	Highly Sensitive and Flexible Tactile Sensor Based on Porous Graphene Sponges for Distributed Tactile Sensing in Monitoring Human Motions. Journal of Microelectromechanical Systems, 2019, 28, 154-163.	1.7	48
1615	Stretchable gelatin/silver nanowires composite hydrogels for detecting human motion. Materials Letters, 2019, 237, 53-56.	1.3	66
1616	Long-term stress relaxation behavior of Polyaniline-EPDM blends using the time-temperature-strain superposition method. Materials Research Express, 2019, 6, 025318.	0.8	9
1617	Adhesionâ€Free Thinâ€Filmâ€Like Curvature Sensors Integrated on Flexible and Wearable Electronics for Monitoring Bending of Joints and Various Body Gestures. Advanced Materials Technologies, 2019, 4, 1800327.	3.0	41
1618	Development of a Radial Pulse Monitoring System Based on a Graphene-Coated Fiber. IEEE Sensors Journal, 2019, 19, 1995-2002.	2.4	2
1619	Laser Direct Writing of Ultrahigh Sensitive SiCâ€Based Strain Sensor Arrays on Elastomer toward Electronic Skins. Advanced Functional Materials, 2019, 29, 1806786.	7.8	147
1620	Surface acoustic wave devices with graphene interdigitated transducers. Journal of Micromechanics and Microengineering, 2019, 29, 015006.	1.5	11
1621	Conformal Stretch Sensors for High Resolution Motion Sensing and Control. Macromolecular Materials and Engineering, 2019, 304, 1800520.	1.7	5

#	Article	IF	CITATIONS
1622	Design of Helically Double-Leveled Gaps for Stretchable Fiber Strain Sensor with Ultralow Detection Limit, Broad Sensing Range, and High Repeatability. ACS Applied Materials & Interfaces, 2019, 11, 4345-4352.	4.0	91
1623	Synergism of binary carbon nanofibres and graphene nanoplates in improving sensitivity and stability of stretchable strain sensors. Composites Science and Technology, 2019, 172, 7-16.	3.8	86
1624	Bioinspired Electronics for Artificial Sensory Systems. Advanced Materials, 2019, 31, e1803637.	11.1	195
1625	Highly Conductive Polydimethylsiloxane/Carbon Nanofiber Composites for Flexible Sensor Applications. Advanced Materials Technologies, 2019, 4, 1800398.	3.0	72
1626	Highly sensitive and flexible strain sensor based on Au thin film. Journal of Micromechanics and Microengineering, 2019, 29, 015001.	1.5	7
1627	The Recent Advance in Fiberâ€ S haped Energy Storage Devices. Advanced Electronic Materials, 2019, 5, 1800456.	2.6	103
1628	Intrinsically stretchable multi-functional fiber with energy harvesting and strain sensing capability. Nano Energy, 2019, 55, 348-353.	8.2	86
1629	Electrochemical performances of highly stretchable polyurethane (PU) supercapacitors based on nanocarbon materials composites. Journal of Alloys and Compounds, 2019, 777, 67-72.	2.8	25
1630	High-performance stretchable conductive nanocomposites: materials, processes, and device applications. Chemical Society Reviews, 2019, 48, 1566-1595.	18.7	400
1631	Single-step synthesis of wrinkled MoSe2 thin films. Current Applied Physics, 2019, 19, 273-278.	1.1	7
1632	Stretchable Thermoplastic Elastomer Optical Fibers for Sensing of Extreme Deformations. Advanced Functional Materials, 2019, 29, 1802629.	7.8	85
1633	Stretchable electronics: functional materials, fabrication strategies and applications. Science and Technology of Advanced Materials, 2019, 20, 187-224.	2.8	245
1634	Advanced Carbon for Flexible and Wearable Electronics. Advanced Materials, 2019, 31, e1801072.	11.1	779
1635	Highly stretchable sensors for wearable biomedical applications. Journal of Materials Science, 2019, 54, 5187-5223.	1.7	49
1636	Highly stretchable and durable strain sensor based on carbon nanotubes decorated thermoplastic polyurethane fibrous network with aligned wave-like structure. Chemical Engineering Journal, 2019, 360, 762-777.	6.6	190
1637	Flexible electronic skin with nanostructured interfaces via flipping over electroless deposited metal electrodes. Journal of Colloid and Interface Science, 2019, 534, 618-624.	5.0	14
1638	Stretchable and multifunctional strain sensors based on 3D graphene foams for active and adaptive tactile imaging. Science China Materials, 2019, 62, 555-565.	3.5	25
1639	Stretchable strain sensor facilely fabricated based on multi-wall carbon nanotube composites with excellent performance. Journal of Materials Science, 2019, 54, 2170-2180.	1.7	60

#	Article	IF	CITATIONS
1640	Multifunctional SENSING using 3D printed CNTs/BaTiO ₃ /PVDF nanocomposites. Journal of Composite Materials, 2019, 53, 1319-1328.	1.2	25
1641	A comparative study of in-field motion capture approaches for body kinematics measurement in construction. Robotica, 2019, 37, 928-946.	1.3	19
1642	Stretchable e-Skin Patch for Gesture Recognition on the Back of the Hand. IEEE Transactions on Industrial Electronics, 2020, 67, 647-657.	5.2	32
1643	Highly sensitive and flexible strain sensors based on natural rubber/graphene foam composites: the role of pore sizes of graphene foam. Journal of Materials Science: Materials in Electronics, 2020, 31, 125-133.	1.1	14
1644	Haptic Telerobotic Cardiovascular Intervention: A Review of Approaches, Methods, and Future Perspectives. IEEE Reviews in Biomedical Engineering, 2020, 13, 32-50.	13.1	54
1645	Carbon nanotubes reinforced hydrogel as flexible strain sensor with high stretchability and mechanically toughness. Chemical Engineering Journal, 2020, 382, 122832.	6.6	328
1646	Multifunctional and high-performance electronic skin based on silver nanowires bridging graphene. Carbon, 2020, 156, 253-260.	5.4	67
1647	Thermal, electrical, and sensing properties of rubber nanocomposites. , 2020, , 149-175.		10
1648	Flexible Piezoelectric Acoustic Sensors and Machine Learning for Speech Processing. Advanced Materials, 2020, 32, e1904020.	11.1	155
1649	Materialâ€Based Approaches for the Fabrication of Stretchable Electronics. Advanced Materials, 2020, 32, e1902743.	11.1	243
1650	A fiber Bragg grating-based smart wearable belt for monitoring knee joint postures. Textile Reseach Journal, 2020, 90, 386-394.	1.1	27
1651	Highly sensitive and stretchable strain sensors based on chopped carbon fibers sandwiched between silicone rubber layers for human motion detections. Journal of Composite Materials, 2020, 54, 423-434.	1.2	19
1652	Flexible Hybrid Sensors for Health Monitoring: Materials and Mechanisms to Render Wearability. Advanced Materials, 2020, 32, e1902133.	11.1	232
1653	Wearable Electronics Based on 2D Materials for Human Physiological Information Detection. Small, 2020, 16, e1901124.	5.2	97
1654	Recent advances in integration of 2D materials with soft matter for multifunctional robotic materials. Materials Horizons, 2020, 7, 54-70.	6.4	55
1655	Kirigami-inspired strain-insensitive sensors based on atomically-thin materials. Materials Today, 2020, 34, 58-65.	8.3	65
1656	Macroscopically aligned carbon nanotubes for flexible and high-temperature electronics, optoelectronics, and thermoelectrics. Journal Physics D: Applied Physics, 2020, 53, 063001.	1.3	19
1657	Flexible Neuromorphic Electronics for Computing, Soft Robotics, and Neuroprosthetics. Advanced Materials, 2020, 32, e1903558.	11.1	289

#	Article	IF	CITATIONS
1658	Textileâ€Based Strain Sensor for Human Motion Detection. Energy and Environmental Materials, 2020, 3, 80-100.	7.3	159
1659	Graphene-based fiber sensors with high stretchability and sensitivity by direct ink extrusion. 2D Materials, 2020, 7, 015025.	2.0	18
1660	Directly monitoring and power generation from pulsating 3D heart model with organic flexible piezoelectric device. Japanese Journal of Applied Physics, 2020, 59, SDDF02.	0.8	4
1661	An ambient-stable and stretchable ionic skin with multimodal sensation. Materials Horizons, 2020, 7, 477-488.	6.4	103
1662	Flexible and stretchable inorganic electronics: Conductive materials, fabrication strategy, and applicable devices. , 2020, , 199-252.		2
1663	Morphologically modulated laser-patterned reduced graphene oxide strain sensors for human fatigue recognition. Smart Materials and Structures, 2020, 29, 015009.	1.8	13
1664	Highly stretchable, breathable and negative resistance variation textile strain sensor with excellent mechanical stability for wearable electronics. Journal of Materials Science, 2020, 55, 2439-2453.	1.7	35
1665	Sensors based on CNT yarns. , 2020, , 213-241.		0
1666	Nonâ€oxidized graphene/elastomer composite films for wearable strain and pressure sensors with ultraâ€high flexibility and sensitivity. Polymers for Advanced Technologies, 2020, 31, 214-225.	1.6	20
1667	Disruptive, Soft, Wearable Sensors. Advanced Materials, 2020, 32, e1904664.	11.1	272
1668	Multiscale Soft–Hard Interface Design for Flexible Hybrid Electronics. Advanced Materials, 2020, 32, e1902278.	11.1	65
1669	Nanomaterialâ€Enabled Flexible and Stretchable Sensing Systems: Processing, Integration, and Applications. Advanced Materials, 2020, 32, e1902343.	11.1	198
1670	Flexible and Stretchable Antennas for Biointegrated Electronics. Advanced Materials, 2020, 32, e1902767.	11.1	158
1671	Hybrid systems of threeâ€dimensional carbon nanostructures with low dimensional fillers for piezoresistive sensors. Polymer Composites, 2020, 41, 468-477.	2.3	24
1672	Environment-friendly paper-based flexible pressure sensors with carbon nanotubes and liquid metal. Applied Physics Express, 2020, 13, 027001.	1.1	5
1673	A Fractal-designed stretchable and transparent microsupercapacitor as a Skin-attachable energy storage device. Chemical Engineering Journal, 2020, 387, 124076.	6.6	58
1674	Review—Energy Autonomous Wearable Sensors for Smart Healthcare: A Review. Journal of the Electrochemical Society, 2020, 167, 037516.	1.3	74
1675	Graphene-based wearable piezoresistive physical sensors. Materials Today, 2020, 36, 158-179.	8.3	262

# 1676	ARTICLE 3D Printing Mechanically Robust and Transparent Polyurethane Elastomers for Stretchable Electronic Sensors. ACS Applied Materials & amp; Interfaces, 2020, 12, 6479-6488.	IF 4.0	CITATIONS
1677	Tough polyacrylamide-tannic acid-kaolin adhesive hydrogels for quick hemostatic application. Materials Science and Engineering C, 2020, 109, 110649.	3.8	75
1678	A high-resolution flexible sensor array based on PZT nanofibers. Nanotechnology, 2020, 31, 155503.	1.3	27
1679	Human-tissue-inspired anti-fatigue-fracture hydrogel for a sensitive wide-range human–machine interface. Journal of Materials Chemistry A, 2020, 8, 2074-2082.	5.2	94
1680	Drop-on-demand high-speed 3D printing of flexible milled carbon fiber/silicone composite sensors for wearable biomonitoring devices. Additive Manufacturing, 2020, 32, 101016.	1.7	40
1681	Reviews of wearable healthcare systems: Materials, devices and system integration. Materials Science and Engineering Reports, 2020, 140, 100523.	14.8	215
1682	Highly Conductive PVA/Ag Coating by Aqueous in Situ Reduction and Its Stretchable Structure for Strain Sensor. ACS Applied Materials & amp; Interfaces, 2020, 12, 1427-1435.	4.0	36
1683	Carbon Nanotubeâ€Based Piezoresistive Sensors Fabricated by Microwave Irradiation. Advanced Engineering Materials, 2020, 22, 1901068.	1.6	16
1684	Recent progress on flexible and stretchable piezoresistive strain sensors: From design to application. Progress in Materials Science, 2020, 114, 100617.	16.0	267
1685	High-output, transparent, stretchable triboelectric nanogenerator based on carbon nanotube thin film toward wearable energy harvesters. Nano Energy, 2020, 67, 104297.	8.2	64
1686	Ionoskins: Nonvolatile, Highly Transparent, Ultrastretchable Ionic Sensory Platforms for Wearable Electronics. Advanced Functional Materials, 2020, 30, 1907290.	7.8	146
1687	Foldable and washable fully textile-based pressure sensor. Smart Materials and Structures, 2020, 29, 055010.	1.8	26
1688	An ultraflexible polyurethane yarn-based wearable strain sensor with a polydimethylsiloxane infiltrated multilayer sheath for smart textiles. Nanoscale, 2020, 12, 4110-4118.	2.8	75
1689	Hybrid nano-textured nanogenerator and self-powered sensor for on-skin triggered biomechanical motions. Nanotechnology, 2020, 31, 155502.	1.3	22
1690	Stable Wearable Strain Sensors on Textiles by Direct Laser Writing of Graphene. ACS Applied Nano Materials, 2020, 3, 283-293.	2.4	73
1691	Flexible Multiâ€Material Fibers for Distributed Pressure and Temperature Sensing. Advanced Functional Materials, 2020, 30, 1908915.	7.8	48
1692	Investigation into tensile hysteresis of polyurethane-containing textile substrates for coated strain sensors. Materials and Design, 2020, 188, 108451.	3.3	19
1693	Wearable Sensors for Monitoring Human Motion: A Review on Mechanisms, Materials, and Challenges. SLAS Technology, 2020, 25, 9-24.	1.0	106

#	Article	IF	CITATIONS
1694	Multiscale Disordered Porous Fibers for Self-Sensing and Self-Cooling Integrated Smart Sportswear. ACS Nano, 2020, 14, 559-567.	7.3	162
1695	A review on stretchable magnetic field sensorics. Journal Physics D: Applied Physics, 2020, 53, 083002.	1.3	37
1696	Self-standing Substrates. Engineering Materials, 2020, , .	0.3	2
1697	Polymerization of moldable self-healing hydrogel with liquid metal nanodroplets for flexible strain-sensing devices. Chemical Engineering Journal, 2020, 392, 123788.	6.6	93
1698	Carbon nanotube electronics for IoT sensors. Nano Futures, 2020, 4, 012001.	1.0	40
1700	Rollerâ€Assisted Adhesion Imprinting for Highâ€Throughput Manufacturing of Wearable and Stretchable Organic Lightâ€Emitting Devices. Advanced Optical Materials, 2020, 8, 1901525.	3.6	20
1701	Localized modulus-controlled PDMS substrate for 2D and 3D stretchable electronics. Journal of Microengineering, 2020, 30, 045001.	1.5	9
1702	Strain sensor for full-scale motion monitoring based on self-assembled PDMS/MWCNTs layers. Journal Physics D: Applied Physics, 2020, 53, 095405.	1.3	15
1703	Low temperature growth of carbon nanotubes $\hat{a} \in \hat{A}$ review. Carbon, 2020, 158, 24-44.	5.4	80
1704	Mulberry paper-based graphene strain sensor for wearable electronics with high mechanical strength. Sensors and Actuators A: Physical, 2020, 301, 111697.	2.0	48
1705	Atomic Selfâ€reconstruction of Catalyst Dominated Growth Mechanism of Graphite Structures. ChemCatChem, 2020, 12, 1316-1324.	1.8	6
1706	Strainâ€Induced Bandâ€Gap Tuning of 2Dâ€5nSSe Flakes for Application in Flexible Sensors. Advanced Materials Technologies, 2020, 5, 1900853.	3.0	21
1707	A novel combination of graphene and silver nanowires for entirely stretchable and ultrasensitive strain sensors: sandwich-based sensing films. Nanotechnology, 2020, 31, 135501.	1.3	16
1708	A three-electrode multi-module sensor for accurate bodily-kinesthetic monitoring. Nano Energy, 2020, 68, 104316.	8.2	21
1709	Wireless Monitoring Using a Stretchable and Transparent Sensor Sheet Containing Metal Nanowires. Advanced Materials, 2020, 32, e1902684.	11.1	75
1710	Human Motion Recognition of Knitted Flexible Sensor in Walking Cycle. Sensors, 2020, 20, 35.	2.1	26
1711	Multi-modal strain and temperature sensor by hybridizing reduced graphene oxide and PEDOT:PSS. Composites Science and Technology, 2020, 187, 107959.	3.8	46
1712	Flexible Electronics: Status, Challenges and Opportunities. Frontiers in Electronics, 2020, 1, .	2.0	133

#	Article	IF	CITATIONS
1713	Highly stretchable, healable, sensitive double-network conductive hydrogel for wearable sensor. Polymer, 2020, 211, 123095.	1.8	38
1714	Wearable strain sensors enabled by integrating one-dimensional polydopamine-enhanced graphene/polyurethane sensing fibers into textile structures. Journal of Materials Science, 2020, 55, 17266-17283.	1.7	9
1715	Centimeter-long III-Nitride nanowires and continuous-wave pumped lasing enabled by graphically epitaxial lift-off. Nano Energy, 2020, 78, 105404.	8.2	14
1716	Flexible and breathable strain sensor with high performance based on MXene/nylon fabric network. Sensors and Actuators A: Physical, 2020, 315, 112192.	2.0	43
1717	Impact of MWCNT concentration on the piezo-impedance response of porous MWCNT/PDMS composites. Sensors and Actuators A: Physical, 2020, 315, 112332.	2.0	10
1718	Patterned Carbon Nanotube Bundles as Stretchable Strain Sensors for Human Motion Detection. ACS Applied Nano Materials, 2020, 3, 11408-11415.	2.4	13
1719	Development and Application of Resistance Strain Force Sensors. Sensors, 2020, 20, 5826.	2.1	62
1720	Substrate-Free Multilayer Graphene Electronic Skin for Intelligent Diagnosis. ACS Applied Materials & Interfaces, 2020, 12, 49945-49956.	4.0	43
1721	Control of silver nanowire-elastomer nanocomposite networks through elaborate direct printing for ultrathin and stretchable strain sensors. Composites Science and Technology, 2020, 200, 108471.	3.8	10
1722	Polypyrrole (PPy) attached on porous conductive sponge derived from carbonized graphene oxide coated polyurethane (PU) and its application in pressure sensor. Composites Communications, 2020, 22, 100426.	3.3	54
1723	Investigation on the Coupling Effect Induced by Bilayer Structure of Thin Au Film and Graphene Nanoplates for Strain Gauge. , 2020, , .		0
1724	A review on fabrication, characterization and implementation of wearable strain sensors. Sensors and Actuators A: Physical, 2020, 315, 112355.	2.0	79
1725	Highly aligned carbon nanotubes and their sensor applications. Nanoscale, 2020, 12, 21447-21458.	2.8	31
1726	Rippled Metallicâ€Nanowire/Graphene/Semiconductor Nanostack for a Gateâ€Tunable Ultrahighâ€Performance Stretchable Phototransistor. Advanced Optical Materials, 2020, 8, 2000859.	3.6	5
1727	One-dimensional carbon nanomaterials-based adsorbents. , 2020, , 195-224.		8
1728	Surface structure engineering for a bionic fiber-based sensor toward linear, tunable, and multifunctional sensing. Materials Horizons, 2020, 7, 2450-2459.	6.4	47
1729	CNT-coated magnetic self-assembled elastomer micropillar arrays for sensing broad-range pressures. Nanotechnology, 2020, 31, 435501.	1.3	4
1730	PEDOT:PSS Microchannelâ€Based Highly Sensitive Stretchable Strain Sensor. Advanced Electronic Materials, 2020, 6, 2000445.	2.6	97

#	Article	IF	CITATIONS
1731	Triode-Mimicking Graphene Pressure Sensor with Positive Resistance Variation for Physiology and Motion Monitoring. ACS Nano, 2020, 14, 10104-10114.	7.3	180
1732	Microdome-Induced Strain Localization for Biaxial Strain Decoupling toward Stretchable and Wearable Human Motion Detection. Langmuir, 2020, 36, 8939-8946.	1.6	26
1733	Enhancement of linearity range of stretchable ultrasensitive metal crack strain sensor <i>via</i> superaligned carbon nanotube-based strain engineering. Materials Horizons, 2020, 7, 2662-2672.	6.4	54
1734	Stretchable respiration sensors: Advanced designs and multifunctional platforms for wearable physiological monitoring. Biosensors and Bioelectronics, 2020, 166, 112460.	5.3	129
1735	Challenges in Design and Fabrication of Flexible/Stretchable Carbon- and Textile-Based Wearable Sensors for Health Monitoring: A Critical Review. Sensors, 2020, 20, 3927.	2.1	65
1736	Resistance change characteristics of spray-deposited carbon nanotube thin film with bending deformation. Japanese Journal of Applied Physics, 2020, 59, SGGH07.	0.8	3
1737	Flexible and highly sensitive graphene/carboxymethyl cellulose films for bending sensing. Journal of Materials Science: Materials in Electronics, 2020, 31, 14118-14127.	1.1	4
1738	Fabrication and Characterization of Flexible Three-Phase ZnO-Graphene-Epoxy Electro-Active Thin-Film Nanocomposites: Towards Applications in Wearable Biomedical Devices. Journal of Composites Science, 2020, 4, 88.	1.4	4
1739	Stretchable Sensor Made of MWCNT/ZnO Nanohybrid Particles in PDMS. Advanced Materials Technologies, 2020, 5, 2000229.	3.0	14
1740	Nanomesh pressure sensor for monitoring finger manipulation without sensory interference. Science, 2020, 370, 966-970.	6.0	361
1741	Strain-Discriminable Pressure/Proximity Sensing of Transparent Stretchable Electronic Skin Based on PEDOT:PSS/SWCNT Electrodes. ACS Applied Materials & Interfaces, 2020, 12, 55083-55093.	4.0	79
1742	Emerging flexible sensors based on nanomaterials: recent status and applications. Journal of Materials Chemistry A, 2020, 8, 25499-25527.	5.2	106
1743	Recent trends of biocompatible triboelectric nanogenerators toward selfâ€powered eâ€skin. EcoMat, 2020, 2, e12065.	6.8	49
1744	Wearable sensors for continuous oral cavity and dietary monitoring toward personalized healthcare and digital medicine. Analyst, The, 2020, 145, 7796-7808.	1.7	19
1745	Advances in Stimuli-Responsive Soft Robots with Integrated Hybrid Materials. Actuators, 2020, 9, 115.	1.2	18
1746	Multifunctional flexible and stretchable graphite-silicone rubber composites. Journal of Materials Research and Technology, 2020, 9, 15621-15630.	2.6	22
1747	Domiciliary Hospitalization through Wearable Biomonitoring Patches: Recent Advances, Technical Challenges, and the Relation to Covid-19. Sensors, 2020, 20, 6835.	2.1	25
1748	Spinnable carbon nanotube forest synthesis in nitrogen environment. Diamond and Related Materials, 2020, 110, 108155.	1.8	3

		CITATION I	Report	
#	Article		IF	CITATIONS
1749	Ultra-sensitive and resilient compliant strain gauges for soft machines. Nature, 2020, 5	87, 219-224.	13.7	279
1750	A wearable strain sensor based on carbon derived from linen fabrics. New Carbon Mate 522-530.	rials, 2020, 35,	2.9	14
1751	Stretchable distributed fiber-optic sensors. Science, 2020, 370, 848-852.		6.0	246
1752	Co ₃ O ₄ Exsolved Defective Layered Perovskite Oxide for Ener Systems. ACS Energy Letters, 2020, 5, 3828-3836.	rgy Storage	8.8	25
1753	Numerical Investigation of Auxetic Textured Soft Strain Gauge for Monitoring Animal S 2020, 20, 4185.	kin. Sensors,	2.1	8
1754	Transparent Stretchable Dual-Network Ionogel with Temperature Tolerance for High-Pe Flexible Strain Sensors. ACS Applied Materials & Interfaces, 2020, 12, 37597-3760		4.0	92
1755	Device Development for Detecting Thumb Opposition Impairment Using Carbon Nanot Sensors. Sensors, 2020, 20, 3998.	ube-Based Strain	2.1	5
1756	Piezoresistive carbon-based composites for sensor applications: Effects of polarity and components on shape recovery. EXPRESS Polymer Letters, 2020, 14, 970-986.	non-rubber	1.1	6
1757	Dusting Thermoplastic Polyurethane Granules with Carbon Nanotubes toward Highly S Conductive Elastomer Composites. ACS Applied Polymer Materials, 2020, 2, 4037-404		2.0	20
1758	Wearable MXene nanocomposites-based strain sensor with tile-like stacked hierarchica microstructure for broad-range ultrasensitive sensing. Nano Energy, 2020, 78, 105187		8.2	140
1759	Skin-Like Strain Sensors Enabled by Elastomer Composites for Human–Machine Inter 2020, 10, 711.	faces. Coatings,	1.2	15
1760	A durable nanomesh on-skin strain gauge for natural skin motion monitoring with mini mechanical constraints. Science Advances, 2020, 6, eabb7043.	mum	4.7	155
1761	Intrinsically Stretchable and Selfâ€Healing Electroconductive Composites Based on Su Organic Polymer Embedded with Copper Microparticles. Advanced Electronic Materials 2000527.	pramolecular 5, 2020, 6,	2.6	8
1762	Innovation of Pencil Lead Drawn Paper Sensors (PLDPS) Using Electrical Resistance (ER II. Load, Micro-Damage, and Thermal Sensing on Composites by PLDPS. Fibers and Poly 1566-1572.) Measurement: mers, 2020, 21,	1.1	0
1763	Ultrahigh-Sensitivity Molecular Sensing with Carbon Nanotube Terahertz Metamaterial Materials & Interfaces, 2020, 12, 40629-40634.	s. ACS Applied	4.0	55
1764	Highly sensitive strain sensor based on stretchable sandwich-type composite of carbon poly(styrene–butadiene–styrene). Sensors and Actuators A: Physical, 2020, 315, 1	nanotube and 12357.	2.0	12
1765	Inorganic Photonic Microspheres with Localized Concentric Ordering for Deep Pattern Triple Sensory Microsensor. Small, 2020, 16, e2003638.	Encoding and	5.2	10
1766	A spongy electrode-brush-structured dual-mode triboelectric nanogenerator for harvest mechanical energy and self-powered trajectory tracking. Nano Energy, 2020, 78, 1053	ting 81.	8.2	53

#	Article	IF	CITATIONS
1767	Galinstan-based flexible microfluidic device for wireless human-sensor applications. Sensors and Actuators A: Physical, 2020, 315, 112344.	2.0	17
1768	Enhanced Performance of a Soft Strain Sensor by Combining Microcracks with Wrinkled Structures. Physica Status Solidi - Rapid Research Letters, 2020, 14, 2000400.	1.2	6
1769	Inkjet printed self-healable strain sensor based on graphene and magnetic iron oxide nano-composite on engineered polyurethane substrate. Scientific Reports, 2020, 10, 18234.	1.6	18
1770	Deciphering facial movements. Nature Biomedical Engineering, 2020, 4, 935-936.	11.6	0
1771	A highly stretchable and intrinsically self-healing strain sensor produced by 3D printing. Virtual and Physical Prototyping, 2020, 15, 520-531.	5.3	41
1772	Soft Controllable Carbon Fibre-based Piezoresistive Self-Sensing Actuators. Actuators, 2020, 9, 79.	1.2	14
1773	Highly stretchable, self-adhesive, biocompatible, conductive hydrogels as fully polymeric strain sensors. Journal of Materials Chemistry A, 2020, 8, 20474-20485.	5.2	147
1774	Nanocomposite hydrogel-based strain and pressure sensors: a review. Journal of Materials Chemistry A, 2020, 8, 18605-18623.	5.2	230
1775	1D Nanomaterialâ€Based Highly Stretchable Strain Sensors for Human Movement Monitoring and Human–Robotic Interactive Systems. Advanced Electronic Materials, 2020, 6, 2000547.	2.6	28
1776	Synergistic combination of carbon-black and graphene for 3D printable stretchable conductors. Materials Technology, 2020, , 1-10.	1.5	10
1777	Nearâ€Field Electrospinning Enabled Highly Sensitive and Anisotropic Strain Sensors. Advanced Materials Technologies, 2020, 5, 2000550.	3.0	18
1778	State of the art recent progress in two dimensional MXenes based gas sensors and biosensors: A comprehensive review. Coordination Chemistry Reviews, 2020, 424, 213514.	9.5	169
1779	Applications of Cellulose Nanomaterials in Stimuli-Responsive Optics. Journal of Agricultural and Food Chemistry, 2020, 68, 12940-12955.	2.4	29
1780	Study of Performance of Knitted Conductive Sleeves as Wearable Textile Strain Sensors for Joint Motion Tracking. , 2020, 2020, 4555-4558.		8
1781	The Evolution of Flexible Electronics: From Nature, Beyond Nature, and To Nature. Advanced Science, 2020, 7, 2001116.	5.6	185
1782	Crack-based and Hair-like Sensors Inspired from Arthropods: A Review. Journal of Bionic Engineering, 2020, 17, 867-898.	2.7	20
1783	Dual Cross-Linked Ion-Based Temperature-Responsive Conductive Hydrogels with Multiple Sensors and Steady Electrocardiogram Monitoring. Chemistry of Materials, 2020, 32, 7670-7678.	3.2	54
1784	Using Stretchable PPy@PVA Composites as a High-Sensitivity Strain Sensor To Monitor Minute Motion. ACS Applied Materials & Interfaces, 2020, 12, 45373-45382.	4.0	48

#	Article	IF	CITATIONS
1785	M13 Bacteriophage-Assisted Morphological Engineering of Crack-Based Sensors for Highly Sensitive and Wide Linear Range Strain Sensing. ACS Applied Materials & Interfaces, 2020, 12, 45590-45601.	4.0	16
1786	Double-Walled Carbon Nanotubes Ink for High-Conductivity Flexible Electrodes. ACS Applied Nano Materials, 2020, 3, 9385-9392.	2.4	11
1787	Organic Thin Film Transistors in Mechanical Sensors. Advanced Functional Materials, 2020, 30, 2004700.	7.8	21
1788	Overlarge Gauge Factor Yields a Large Measuring Error for Resistiveâ€Type Stretchable Strain Sensors. Advanced Electronic Materials, 2020, 6, 2000618.	2.6	12
1789	Highly stretchable electro-conductive yarn via wrapping carbon nanotube yarn on multifilament polyester yarn. Journal of Industrial Textiles, 2020, , 152808372095740.	1.1	3
1790	Buckle-Delamination-Enabled Stretchable Silver Nanowire Conductors. ACS Applied Materials & Interfaces, 2020, 12, 41696-41703.	4.0	36
1791	Engineered Microstructure Derived Hierarchical Deformation of Flexible Pressure Sensor Induces a Supersensitive Piezoresistive Property in Broad Pressure Range. Advanced Science, 2020, 7, 2000154.	5.6	100
1792	Biocompatible, Flexible Strain Sensor Fabricated with Polydopamine-Coated Nanocomposites of Nitrile Rubber and Carbon Black. ACS Applied Materials & Interfaces, 2020, 12, 42140-42152.	4.0	78
1793	Highly-Sensitive Textile Pressure Sensors Enabled by Suspended-Type All Carbon Nanotube Fiber Transistor Architecture. Micromachines, 2020, 11, 1103.	1.4	9
1794	Flexible Strain Sensor with Tunable Sensitivity via Microscale Electrical Breakdown in Graphene/Polyimide Thin Films. ACS Applied Materials & Interfaces, 2020, 12, 58317-58325.	4.0	35
1795	Occupational falls: interventions for fall detection, prevention and safety promotion. Theoretical Issues in Ergonomics Science, 2020, , 1-16.	1.0	3
1796	Ultra-stretchable supercapacitors based on biaxially pre-strained super-aligned carbon nanotube films. Nanoscale, 2020, 12, 24259-24265.	2.8	9
1797	Stretchable piezoresistive vs. capacitive silicon sensors integrated into ski base layer pants for measuring the knee flexion angle. Sports Engineering, 2020, 23, 1.	0.5	11
1798	Design, development and analysis of a conductive fabric based flexible and stretchable strain sensor. IOP Conference Series: Materials Science and Engineering, 2020, 912, 022009.	0.3	2
1799	Controllable Fabrication of Percolative Metal Nanoparticle Arrays Applied for Quantum Conductance-Based Strain Sensors. Materials, 2020, 13, 4838.	1.3	3
1800	Ultrahigh Sensitive Carbonâ€Based Conducting Rubbers for Flexible and Wearable Human–Machine Intelligence Sensing. Advanced Materials Technologies, 2020, 5, 2000690.	3.0	20
1801	High precision epidermal radio frequency antenna via nanofiber network for wireless stretchable multifunction electronics. Nature Communications, 2020, 11, 5629.	5.8	48
1802	Heterogeneous integration of rigid, soft, and liquid materials for self-healable, recyclable, and reconfigurable wearable electronics. Science Advances, 2020, 6, .	4.7	118

#	Article	IF	CITATIONS
1803	Design and Optimization of Piezoresistive PEO/PEDOT:PSS Electrospun Nanofibers for Wearable Flex Sensors. Nanomaterials, 2020, 10, 2166.	1.9	22
1804	Nanoparticle circuits inside elastomers for flexible electronics: High conductivity under cyclic deformation. Manufacturing Letters, 2020, 26, 37-41.	1.1	3
1805	Vibration monitoring based on flexible multi-walled carbon nanotube/polydimethylsiloxane film sensor and the application on motion signal acquisition. Nanotechnology, 2020, 31, 335504.	1.3	23
1806	Homecare Robotic Systems for Healthcare 4.0: Visions and Enabling Technologies. IEEE Journal of Biomedical and Health Informatics, 2020, 24, 2535-2549.	3.9	94
1807	In Situ Dynamic Manipulation of Graphene Strain Sensor with Drastically Sensing Performance Enhancement. Advanced Electronic Materials, 2020, 6, 2000269.	2.6	23
1808	Single and bundled carbon nanofibers as ultralightweight and flexible piezoresistive sensors. Npj Flexible Electronics, 2020, 4, .	5.1	30
1809	A conductive polyacrylamide/double bond chitosan/polyaniline hydrogel for flexible sensing. Journal of Materials Science: Materials in Electronics, 2020, 31, 10381-10389.	1.1	11
1810	Wrist flexible heart pulse sensor integrated with a soft pump and a pneumatic balloon membrane. RSC Advances, 2020, 10, 17353-17358.	1.7	6
1811	Flexible Janus Textileâ€Based Electroosmotic Pump for Largeâ€Area Unidirectional Positive Water Transport. Advanced Materials Interfaces, 2020, 7, 1902133.	1.9	12
1812	Progress and challenges in fabrication of wearable sensors for health monitoring. Sensors and Actuators A: Physical, 2020, 312, 112105.	2.0	153
1813	Nano-copper enhanced flexible device for simultaneous measurement of human respiratory and electro-cardiac activities. Journal of Nanobiotechnology, 2020, 18, 82.	4.2	4
1814	Wearable Skin Sensors and Their Challenges: A Review of Transdermal, Optical, and Mechanical Sensors. Biosensors, 2020, 10, 56.	2.3	52
1815	Selective crack formation on stretchable silver nano-particle based thin films for customized and integrated strain-sensing system. Thin Solid Films, 2020, 707, 138068.	0.8	7
1816	Effect of carbonyl iron powder incorporation on the piezoresistive sensing characteristics of CNT-based polymeric sensor. Composite Structures, 2020, 244, 112260.	3.1	37
1817	Highly Sensitive Strain Sensor Based on a Stretchable and Conductive Poly(vinyl alcohol)/Phytic Acid/NH ₂ -POSS Hydrogel with a 3D Microporous Structure. ACS Applied Materials & Interfaces, 2020, 12, 26496-26508.	4.0	95
1818	Facile fabrication of stretchable and compressible strain sensors by coating and integrating low-cost melamine foam scaffolds with reduced graphene oxide and poly (styrene-b-ethylene-butylene-b-styrene). Chemical Engineering Journal, 2020, 398, 125429.	6.6	32
1819	3D-printed highly stable flexible strain sensor based on silver-coated-glass fiber-filled conductive silicon rubber. Materials and Design, 2020, 193, 108788.	3.3	34
1820	Plasma-jet-induced programmable wettability on stretchable carbon nanotube films. Materials Today Physics, 2020, 14, 100227.	2.9	10

#	Article	IF	CITATIONS
1821	A strain localization directed crack control strategy for designing MXene-based customizable sensitivity and sensing range strain sensors for full-range human motion monitoring. Nano Energy, 2020, 74, 104814.	8.2	77
1822	Advanced thermal properties of carbon-based aerogels. , 2020, , 221-269.		4
1823	Self-sensing behavior and mechanical properties of carbon nanotubes/epoxy resin composite for asphalt pavement strain monitoring. Construction and Building Materials, 2020, 257, 119404.	3.2	44
1824	Flexible Graphene-Assembled Film-Based Antenna for Wireless Wearable Sensor with Miniaturized Size and High Sensitivity. ACS Omega, 2020, 5, 12937-12943.	1.6	49
1825	Modulating the sensitivity of a flexible sensor using conductive glass fibre with a controlled structure profile. Composites Communications, 2020, 20, 100367.	3.3	3
1826	Nanofiber/nanowires-based flexible and stretchable sensors. Journal of Semiconductors, 2020, 41, 041605.	2.0	64
1827	Flexible and high-sensitivity piezoresistive sensor based on MXene composite with wrinkle structure. Ceramics International, 2020, 46, 23592-23598.	2.3	73
1828	Ionically Conductive Hydrogel with Fast Selfâ€Recovery and Low Residual Strain as Strain and Pressure Sensors. Macromolecular Rapid Communications, 2020, 41, e2000185.	2.0	62
1829	Bath Electrospinning of Continuous and Scalable Multifunctional MXeneâ€Infiltrated Nanoyarns. Small, 2020, 16, e2002158.	5.2	81
1830	Skin-Interfaced Sensors in Digital Medicine: from Materials to Applications. Matter, 2020, 2, 1414-1445.	5.0	134
1831	Graphene: an exotic condensed matter and its impact on technology. Emerging Materials Research, 2020, 9, 564-617.	0.4	3
1832	Strain-invariant conductance in an elastomeric nanocomposite mesh conductor for stretchable		17
	electronics. Journal of Materials Chemistry C, 2020, 8, 9440-9448.	2.7	17
1833		2.7 2.2	17
1833 1834	electronics. Journal of Materials Chemistry C, 2020, 8, 9440-9448. Flexible Pressure Sensors Based on Silicon Nanowire Array Built by Metal-Assisted Chemical Etching.		
	electronics. Journal of Materials Chemistry C, 2020, 8, 9440-9448. Flexible Pressure Sensors Based on Silicon Nanowire Array Built by Metal-Assisted Chemical Etching. IEEE Electron Device Letters, 2020, 41, 1233-1236. Soft Materials for Wearable/Flexible Electrochemical Energy Conversion, Storage, and Biosensor	2.2	10
1834	electronics. Journal of Materials Chemistry C, 2020, 8, 9440-9448. Flexible Pressure Sensors Based on Silicon Nanowire Array Built by Metal-Assisted Chemical Etching. IEEE Electron Device Letters, 2020, 41, 1233-1236. Soft Materials for Wearable/Flexible Electrochemical Energy Conversion, Storage, and Biosensor Devices. Materials, 2020, 13, 2733. Carbon nanotube film based multifunctional composite materials: an overview. Functional	2.2 1.3	10 29
1834 1835	electronics. Journal of Materials Chemistry C, 2020, 8, 9440-9448. Flexible Pressure Sensors Based on Silicon Nanowire Array Built by Metal-Assisted Chemical Etching. IEEE Electron Device Letters, 2020, 41, 1233-1236. Soft Materials for Wearable/Flexible Electrochemical Energy Conversion, Storage, and Biosensor Devices. Materials, 2020, 13, 2733. Carbon nanotube film based multifunctional composite materials: an overview. Functional Composites and Structures, 2020, 2, 022002. Thermoplastic elastomer composite filaments for strain sensing applications extruded with a fused	2.2 1.3 1.6	10 29 30

#	Article	IF	CITATIONS
1839	Special Session: Physically Flexible Devices for Health and Activity Monitoring: Challenges from Design to Test. , 2020, , .		3
1840	Wearable and Stretchable Strain Sensors: Materials, Sensing Mechanisms, and Applications. Advanced Intelligent Systems, 2020, 2, 2000039.	3.3	327
1841	Laserâ€Printed, Flexible Graphene Pressure Sensors. Global Challenges, 2020, 4, 2000001.	1.8	34
1842	Direct Current Fabric Triboelectric Nanogenerator for Biomotion Energy Harvesting. ACS Nano, 2020, 14, 4585-4594.	7.3	170
1843	A Supersensitive, Multidimensional Flexible Strain Gauge Sensor Based on Ag/PDMS for Human Activities Monitoring. Scientific Reports, 2020, 10, 4639.	1.6	29
1844	Damage monitoring of adhesively bonded composite-metal hybrid joints using carbon nanotube-based sensing layer. Nanocomposites, 2020, 6, 12-21.	2.2	9
1845	Electronic Skin Wearable Sensors for Detecting Lumbar–Pelvic Movements. Sensors, 2020, 20, 1510.	2.1	21
1846	Stretchable electrolytes for stretchable/flexible energy storage systems – Recent developments. Energy Storage Materials, 2020, 28, 315-324.	9.5	27
1847	Ultraminiaturized Stretchable Strain Sensors Based on Single Silicon Nanowires for Imperceptible Electronic Skins. Nano Letters, 2020, 20, 2478-2485.	4.5	51
1848	Sim-To-Real Transfer Learning Approach for Tracking Multi-DOF Ankle Motions Using Soft Strain Sensors. IEEE Robotics and Automation Letters, 2020, 5, 3525-3532.	3.3	9
1849	Morphology and properties of PEDOT:PSS/soft polymer blends through hydrogen bonding interaction and their pressure sensor application. Journal of Materials Chemistry C, 2020, 8, 6013-6024.	2.7	44
1850	Multi-Arch-Structured All-Carbon Aerogels with Superelasticity and High Fatigue Resistance as Wearable Sensors. ACS Applied Materials & Interfaces, 2020, 12, 16822-16830.	4.0	40
1851	Nano- And Microfiber-Based Fully Fabric Triboelectric Nanogenerator For Wearable Devices. Polymers, 2020, 12, 658.	2.0	24
1852	Highly flexible graphene nanoplatelet-polydimethylsiloxane strain sensors with proximity-sensing capability. Materials Research Express, 2020, 7, 045603.	0.8	15
1853	Sandwich structured dielectrics for air-stable and flexible low-voltage organic transistors in ultrasensitive pressure sensing. Materials Chemistry Frontiers, 2020, 4, 1459-1470.	3.2	21
1854	The Piezoresistive Highly Elastic Sensor Based on Carbon Nanotubes for the Detection of Breath. Polymers, 2020, 12, 713.	2.0	26
1855	Enhancing Piezoresistive Pressure Response Device Sensitivity by Orders of Magnitude. Advanced Materials Interfaces, 2020, 7, 1902202.	1.9	7
1856	Temperature/near-infrared light-responsive conductive hydrogels for controlled drug release and real-time monitoring. Nanoscale, 2020, 12, 8679-8686.	2.8	49

#	Article	IF	CITATIONS
1857	A Stretchable Inductor With Integrated Strain Sensing and Wireless Signal Transfer. IEEE Sensors Journal, 2020, 20, 7384-7391.	2.4	11
1858	Recent advances in hybrid organic-inorganic materials with spatial architecture for state-of-the-art applications. Progress in Materials Science, 2020, 112, 100663.	16.0	196
1859	Opto-electronic coupling in semiconductors: towards ultrasensitive pressure sensing. Journal of Materials Chemistry C, 2020, 8, 4713-4721.	2.7	22
1861	Highly stretchable and strain sensitive fibers based on braid-like structure and sliver nanowires. Applied Materials Today, 2020, 19, 100610.	2.3	19
1862	Highly Air/Water-Permeable Hierarchical Mesh Architectures for Stretchable Underwater Electronic Skin Patches. ACS Applied Materials & Interfaces, 2020, 12, 14425-14432.	4.0	34
1863	Highly stretchable and self-healing strain sensors for motion detection in wireless human-machine interface. Nano Energy, 2020, 76, 105064.	8.2	118
1864	Coupled electromechanical modeling of piezoresistive behavior of CNT-reinforced nanocomposites with varied morphology and concentration. European Journal of Mechanics, A/Solids, 2020, 84, 104053.	2.1	10
1865	Knee injury prevention in alpine skiing. A technological paradigm shift towards a mechatronic ski binding. Journal of Science and Medicine in Sport, 2021, 24, 1038-1043.	0.6	14
1866	Sign-to-speech translation using machine-learning-assisted stretchable sensor arrays. Nature Electronics, 2020, 3, 571-578.	13.1	513
1867	Stretchable and calibratable graphene sensors for accurate strain measurement. Materials Advances, 2020, 1, 235-243.	2.6	22
1868	Advances in Materials for Soft Stretchable Conductors and Their Behavior under Mechanical Deformation. Polymers, 2020, 12, 1454.	2.0	11
1869	Highly Tough, Stretchable, Selfâ€Adhesive and Strainâ€ S ensitive DNAâ€Inspired Hydrogels for Monitoring Human Motion. Chemistry - A European Journal, 2020, 26, 11604-11613.	1.7	13
1870	Printed Strain Sensor with High Sensitivity and Wide Working Range Using a Novel Brittle–Stretchable Conductive Network. ACS Applied Materials & Interfaces, 2020, 12, 35282-35290.	4.0	43
1871	Structure–property relationship of assembled nanowire materials. Materials Chemistry Frontiers, 2020, 4, 2881-2903.	3.2	24
1872	Orientation-dependent impedance response of highly aligned carbon nanotube sheets. Sensors and Actuators A: Physical, 2020, 313, 112187.	2.0	3
1873	Fabrication, Characterization and Investigation of Novel PVDF/ZnO and PVDF-TrFE/ZnO Nanocomposites with Enhanced β-Phase and Dielectricity. Materials Science Forum, 0, 977, 277-282.	0.3	3
1874	Ferroelectric Polymer PVDF-Based Nanogenerator. , 0, , .		3
1875	Development of ultrastretchable and skin attachable nanocomposites for human motion monitoring via embedded 3D printing. Composites Part B: Engineering, 2020, 200, 108224.	5.9	34

#	Article	IF	Citations
1876	Effect of sorted, homogeneous electronic grade single-walled carbon nanotube on the electromagnetic shielding effectiveness. Carbon, 2020, 167, 523-529.	5.4	12
1877	Liquid‣tate Optoelectronics Using Liquid Metal. Advanced Electronic Materials, 2020, 6, 1901135.	2.6	14
1878	Biofunctional Silk Kirigami With Engineered Properties. ACS Applied Materials & Interfaces, 2020, 12, 12436-12444.	4.0	16
1879	The low resistance and high sensitivity in stretchable electrode assembled by liquid-phase exfoliated graphene. Polymer, 2020, 192, 122301.	1.8	7
1880	Sustainable manufacturing of sensors onto soft systems using self-coagulating conductive Pickering emulsions. Science Robotics, 2020, 5, .	9.9	50
1881	Advances in Rational Design and Materials of Highâ€Performance Stretchable Electromechanical Sensors. Small, 2020, 16, e1905707.	5.2	46
1882	3D-printed sensors: Current progress and future challenges. Sensors and Actuators A: Physical, 2020, 305, 111916.	2.0	184
1883	Skin-like Ultrasensitive Strain Sensor for Full-Range Detection of Human Health Monitoring. ACS Applied Materials & Interfaces, 2020, 12, 13287-13295.	4.0	85
1884	Electrochemical Sensing of Cannabinoids in Biofluids: A Noninvasive Tool for Drug Detection. ACS Sensors, 2020, 5, 620-636.	4.0	50
1885	Strain-Insensitive Elastic Surface Electromyographic (sEMG) Electrode for Efficient Recognition of Exercise Intensities. Micromachines, 2020, 11, 239.	1.4	8
1886	Linear piezoresistive strain sensor based on graphene/g-C ₃ N ₄ /PDMS heterostructure. Nanotechnology, 2020, 31, 295501.	1.3	35
1887	Stretchable and compressible strain sensors for gait monitoring constructed using carbon nanotube/graphene composite. Materials Research Express, 2020, 7, 035006.	0.8	6
1888	Molybdenum Disulfide Nanosheets Aligned Vertically on Carbonized Silk Fabric as Smart Textile for Wearable Pressure-Sensing and Energy Devices. ACS Applied Materials & Interfaces, 2020, 12, 11825-11832.	4.0	67
1889	Enhanced Stretchable and Sensitive Strain Sensor via Controlled Strain Distribution. Nanomaterials, 2020, 10, 218.	1.9	18
1890	Predicting whether aromatic molecules would prefer to enter a carbon nanotube: A density functional theory study. Journal of Computational Chemistry, 2020, 41, 1261-1270.	1.5	6
1891	Scalable manufacturing of real-time self-healing strain sensors based on brominated natural rubber. Chemical Engineering Journal, 2020, 389, 124448.	6.6	72
1892	Solution-Processed Sensing Textiles with Adjustable Sensitivity and Linear Detection Range Enabled by Twisting Structure. ACS Applied Materials & Interfaces, 2020, 12, 12155-12164.	4.0	28
1893	Lattice dynamics of twisted ZnO nanowires under generalized Born–von Karman boundary conditions. New Journal of Physics, 2020, 22, 023004.	1.2	3

#	Article	IF	CITATIONS
1894	Preparation of antibacterial conductive cotton fabrics via silane-modified polypyrrole. Journal of Industrial Textiles, 2022, 51, 7172S-7187S.	1.1	2
1895	A Flexible Strain Sensor Based on the Porous Structure of a Carbon Black/Carbon Nanotube Conducting Network for Human Motion Detection. Sensors, 2020, 20, 1154.	2.1	60
1896	Recyclable conductive epoxy composites with segregated filler network structure for EMI shielding and strain sensing. Composites Part A: Applied Science and Manufacturing, 2020, 132, 105837.	3.8	61
1897	Moisture-Resilient Graphene-Dyed Wool Fabric for Strain Sensing. ACS Applied Materials & Interfaces, 2020, 12, 13265-13274.	4.0	60
1898	A PVDF/Au/PEN Multifunctional Flexible Human-Machine Interface for Multidimensional Sensing and Energy Harvesting for the Internet of Things. IEEE Sensors Journal, 2020, 20, 7556-7568.	2.4	27
1899	Stretchable conductive Ni@Fe3O4@Polyester fabric strain sensor with negative resistance variation and electromagnetic interference shielding. Organic Electronics, 2020, 81, 105677.	1.4	23
1900	Highly sensitive, piezoresistive, silicone/carbon fiber-based auxetic sensor for low strain values. Sensors and Actuators A: Physical, 2020, 305, 111939.	2.0	43
1901	Stretchable Lithium-Ion Battery Based on Re-entrant Micro-honeycomb Electrodes and Cross-Linked Gel Electrolyte. ACS Nano, 2020, 14, 3660-3668.	7.3	74
1902	Solution-Processed Mixed-Dimensional Hybrid Perovskite/Carbon Nanotube Electronics. ACS Nano, 2020, 14, 3969-3979.	7.3	30
1903	Thin film chemiresistive gas sensor on single-walled carbon nanotubes-functionalized with polyethylenimine (PEI) for \$\${hbox {NO}}_{2}\$\$ gas sensing. Bulletin of Materials Science, 2020, 43, 1.	0.8	29
1904	Flexible inorganic bioelectronics. Npj Flexible Electronics, 2020, 4, .	5.1	134
1905	A biomimeticâ€structured woodâ€derived carbon sponge with highly compressible and biocompatible properties for humanâ€motion detection. InformaÄnÃ-Materiály, 2020, 2, 1225-1235.	8.5	34
1906	Feasibility of pristine, Al-doped and Ga-doped Boron Nitride nanotubes for detecting SF4 gas: A DFT, NBO and QTAIM investigation. Applied Surface Science, 2020, 510, 145490.	3.1	63
1907	Materials, systems, and devices for wearable bioelectronics. , 2020, , 1-48.		0
1908	E-skin and wearable systems for health care. , 2020, , 133-178.		9
1909	Direct printing of sub-30 14 m liquid metal patterns on three-dimensional surfaces for stretchable electronics. Journal of Micromechanics and Microengineering, 2020, 30, 034001.	1.5	26
1910	Environmentally Friendly and Biodegradable Ultrasensitive Piezoresistive Sensors for Wearable Electronics Applications. ACS Applied Materials & Interfaces, 2020, 12, 8761-8772.	4.0	55
1911	A highly flexible, electrically conductive, and mechanically robust graphene/epoxy composite film for its selfâ€damage detection. Journal of Applied Polymer Science, 2020, 137, 48991.	1.3	16

		CITATION REPORT	
# 1912	ARTICLE Enhanced electromechanics of morphology-immobilized co-continuous polymer blend/carbon nanotube high-range piezoresistive sensor. Chemical Engineering Journal, 2020, 389, 124112.	IF 6.6	Citations
1913	Highly Sensitive and Stretchable Carbon Nanotube/Fluoroelastomer Nanocomposite with a Doubleâ€Percolated Network for Wearable Electronics. Advanced Electronic Materials, 2020, 6, 1	901067. ^{2.6}	41
1914	Wearable Device Oriented Flexible and Stretchable Energy Harvester Based on Embedded Liquid-N Electrodes and FEP Electret Film. Sensors, 2020, 20, 458.	Netal 2.1	9
1915	Multiaxially-stretchable kirigami-patterned mesh design for graphene sensor devices. Nano Resear 2020, 13, 1406-1412.	ch, 5.8	33
1916	Chemically and mechanically robust SWCNT based strain sensor with monotonous piezoresistive response for infrastructure monitoring. Chemical Engineering Journal, 2020, 388, 124174.	6.6	24
1917	Dual-Mode Carbon Aerogel/Iron Rubber Sensor. ACS Applied Materials & Interfaces, 2020, 12 8674-8680.	, 4.0	14
1918	Stretchable and tough conductive hydrogels for flexible pressure and strain sensors. Journal of Materials Chemistry B, 2020, 8, 3437-3459.	2.9	372
1919	Evaluation of Joint Motion Sensing Efficiency According to the Implementation Method of SWCNT-Coated Fabric Motion Sensor. Sensors, 2020, 20, 284.	2.1	12
1920	Microstructured hybrid nanocomposite flexible piezoresistive sensor and its sensitivity analysis by mechanical finite-element simulation. Nanotechnology, 2020, 31, 185502.	1.3	17
1921	Dualâ€Mode Wearable Strain Sensor Based on Graphene/Colloidal Crystal Films for Simultaneous Detection of Subtle and Large Human Motions. Advanced Materials Technologies, 2020, 5, 19010		23
1922	Cyber–Physiochemical Interfaces. Advanced Materials, 2020, 32, e1905522.	11.1	64
1923	Interfaceless Strain and Pressureâ€Sensitive Stretchable Capacitor Based on Selfâ€Bonding and S Morphology Control of a Reversibly Crosslinkable Silicone Elastomer. Advanced Materials Technologies, 2020, 5, 1900757.	urface 3.0	5
1924	Poly(octadecyl acrylate)-Grafted Multiwalled Carbon Nanotube Composites for Wearable Temperature Sensors. ACS Applied Nano Materials, 2020, 3, 2288-2301.	2.4	16
1925	Nanofiber-guided orientation of electrospun carbon nanotubes and fabrication of aligned CNT electrodes for biodevice applications. Materials Chemistry and Physics, 2020, 245, 122745.	2.0	9
1926	Fabrication and Performance Evaluation of Highly Sensitive Flexible Strain Sensors with Aligned Silver Nanowires. Micromachines, 2020, 11, 156.	1.4	22
1927	Stretchable graphene electrodes. , 2020, , 175-204.		2
1928	MXene Composite and Coaxial Fibers with High Stretchability and Conductivity for Wearable Stra Sensing Textiles. Advanced Functional Materials, 2020, 30, 1910504.	in 7.8	308
1929	A Soft Resistive Acoustic Sensor Based on Suspended Standing Nanowire Membranes with Point Design. Advanced Functional Materials, 2020, 30, 1910717.	Crack 7.8	68

#	Article	IF	CITATIONS
1930	Identification of Upper-Limb Movements Based on Muscle Shape Change Signals for Human-Robot Interaction. Computational and Mathematical Methods in Medicine, 2020, 2020, 1-14.	0.7	10
1931	Effect of the Elastomer Matrix on Thermoplastic Elastomer-Based Strain Sensor Fiber Composites. Sensors, 2020, 20, 2399.	2.1	21
1932	Stretchable and High-performance Sensor films Based on Nanocomposite of Polypyrrole/SWCNT/Silver Nanowire. Nanomaterials, 2020, 10, 696.	1.9	17
1933	Simultaneously Achieving Ultrahigh Sensitivity and Wide Detection Range for Stretchable Strain Sensors with an Interface‣ocking Strategy. Advanced Materials Technologies, 2020, 5, 2000008.	3.0	24
1934	Preparation of MWCNT/PDMS Conductive Micro-Patterned Nanocomposites. Macromolecular Research, 2020, 28, 733-738.	1.0	7
1935	Orientation Distribution Dependence of Piezoresistivity of Metal Nanowire-Polymer Composite. Multiscale Science and Engineering, 2020, 2, 54-62.	0.9	5
1936	Metallic Sandwiched-Aerogel Hybrids Enabling Flexible and Stretchable Intelligent Sensor. Nano Letters, 2020, 20, 3449-3458.	4.5	87
1937	Scalable Alignment and Selective Deposition of Nanoparticles for Multifunctional Sensor Applications. Nano Letters, 2020, 20, 3199-3206.	4.5	25
1938	An intrinsically stretchable and ultrasensitive nanofiber-based resistive pressure sensor for wearable electronics. Journal of Materials Chemistry C, 2020, 8, 5361-5369.	2.7	44
1939	A highly stretchable strain sensor based on CNT/graphene/fullerene-SEBS. RSC Advances, 2020, 10, 11225-11232.	1.7	45
1940	Ultra-Sensitive Strain Sensor Using High Density Self-Aligned Nano-Cracks. , 2020, , .		3
1941	Ultrasensitive micro/nanocrack-based graphene nanowall strain sensors derived from the substrate's Poisson's ratio effect. Journal of Materials Chemistry A, 2020, 8, 10310-10317.	5.2	28
1942	A high gauge-factor wearable strain sensor array via 3D printed mold fabrication and size optimization of silver-coated carbon nanotubes. Nanotechnology, 2020, 31, 305501.	1.3	14
1943	Antiâ€liquidâ€Interfering and Bacterially Antiadhesive Strategy for Highly Stretchable and Ultrasensitive Strain Sensors Based on Cassieâ€Baxter Wetting State. Advanced Functional Materials, 2020, 30, 2000398.	7.8	172
1944	Water-Borne Fabrication of Stretchable and Durable Microfibers for High-Performance Underwater Strain Sensors. ACS Applied Materials & Interfaces, 2020, 12, 20965-20972.	4.0	19
1945	Elastic Single-Ion Conducting Polymer Electrolytes: Toward a Versatile Approach for Intrinsically Stretchable Functional Polymers. Macromolecules, 2020, 53, 3591-3601.	2.2	41
1946	Flexible piezoresistive strain sensor with high sensitivity based on carbonised waste thermosetting resin. Plastics, Rubber and Composites, 2020, 49, 300-306.	0.9	2
1947	Study on electromechanical property of polypyrrole-coated strain sensors based on polyurethane and its hybrid covered yarns. Sensors and Actuators A: Physical, 2020, 306, 111958.	2.0	13

#	Article	IF	Citations
1948	Nonlinear vibration analysis of two-phase local/nonlocal nanobeams with size-dependent nonlinearity by using Galerkin method. JVC/Journal of Vibration and Control, 2021, 27, 378-391.	1.5	23
1949	Flexible Capacitive Curvature Sensor with One-Time Calibration for Amphibious Gait Monitoring. Soft Robotics, 2021, 8, 164-174.	4.6	21
1950	Controlling the laser induction and cutting process on polyimide films for kirigami-inspired supercapacitor applications. Science China Technological Sciences, 2021, 64, 651-661.	2.0	19
1951	Flexible, self-powered and multi-functional strain sensors comprising a hybrid of carbon nanocoils and conducting polymers. Chemical Engineering Journal, 2021, 404, 126064.	6.6	71
1952	Star-nose-inspired multi-mode sensor for anisotropic motion monitoring. Nano Energy, 2021, 80, 105559.	8.2	21
1953	An <i>in situ</i> and rapid self-healing strategy enabling a stretchable nanocomposite with extremely durable and highly sensitive sensing features. Materials Horizons, 2021, 8, 250-258.	6.4	24
1954	A wearable fiber-optic sensor for monitoring human elbow and wrist joint motion. Advanced Robotics, 2021, 35, 400-412.	1.1	8
1955	Smart nanosensors for textiles: an introduction. , 2021, , 7-25.		4
1956	Ultraconformable organic devices. , 2021, , 437-478.		3
1957	Recent developments in biosensors for healthcare and biomedical applications: A review. Measurement: Journal of the International Measurement Confederation, 2021, 167, 108293.	2.5	130
1958	Constructing conductive titanium carbide nanosheet (MXene) network on polyurethane/polyacrylonitrile fibre framework for flexible strain sensor. Journal of Colloid and Interface Science, 2021, 584, 1-10.	5.0	86
1959	A new approach for an ultra-thin piezoresistive sensor based on solidified carbon ink film. Journal of Materials Science, 2021, 56, 607-614.	1.7	20
1960	Electronic Skins for Healthcare Monitoring and Smart Prostheses. Annual Review of Control, Robotics, and Autonomous Systems, 2021, 4, 629-650.	7.5	12
1961	Nanoengineered highly sensitive and stable soft strain sensor built from cracked carbon nanotube network/composite bilayers. Carbon, 2021, 173, 849-856.	5.4	17
1962	Smart Stretchable Electronics for Advanced Human–Machine Interface. Advanced Intelligent Systems, 2021, 3, 2000157.	3.3	38
1963	A new analytical model for predicting the electrical conductivity of carbon nanotube nanocomposites. Composites Communications, 2021, 23, 100577.	3.3	32
1964	Significance of nano-materials, designs consideration and fabrication techniques on performances of strain sensors - A review. Materials Science in Semiconductor Processing, 2021, 123, 105581.	1.9	36
1965	Nanocellulose-based materials/composites for sensors. , 2021, , 185-214.		4

#	Article	IF	CITATIONS
1966	Soft Electronics Based on Stretchable and Conductive Nanocomposites for Biomedical Applications. Advanced Healthcare Materials, 2021, 10, e2001397.	3.9	39
1967	Biomimetic underwater self-perceptive actuating soft system based on highly compliant, morphable and conductive sandwiched thin films. Nano Energy, 2021, 81, 105617.	8.2	29
1968	Conductive Thermoplastic Elastomer Composite Capacitive Strain Sensors and Their Application in a Wearable Device for Quantitative Joint Angle Prediction. ACS Applied Polymer Materials, 2021, 3, 122-129.	2.0	20
1969	Coco Stretch: Strain Sensors Based on Natural Coconut Oil and Carbon Black Filled Elastomers. Advanced Materials Technologies, 2021, 6, 2000780.	3.0	13
1970	Microstructured MXene/polyurethane fibrous membrane for highly sensitive strain sensing with ultra-wide and tunable sensing range. Composites Communications, 2021, 23, 100586.	3.3	27
1971	Flexible and bio-compatible temperature sensors based on carbon nanotube composites. Measurement: Journal of the International Measurement Confederation, 2021, 172, 108889.	2.5	16
1972	Graphene Kâ€Tape Meshes for Densely Distributed Human Motion Monitoring. Advanced Materials Technologies, 2021, 6, .	3.0	22
1973	Structural Engineering for Highâ€Performance Flexible and Stretchable Strain Sensors. Advanced Intelligent Systems, 2021, 3, 2000194.	3.3	22
1974	Intrinsically adhesive, highly sensitive and temperature tolerant flexible sensors based on double network organohydrogels. Chemical Engineering Journal, 2021, 413, 127544.	6.6	72
1975	Recent Progress in Artificial Muscles for Interactive Soft Robotics. Advanced Materials, 2021, 33, e2003088.	11.1	139
1976	Solubilization, characterization, and protein coupling analysis to multiwalled carbon nanotubes. High Performance Polymers, 2021, 33, 338-344.	0.8	1
1977	Stretchable Electronics Based on PDMS Substrates. Advanced Materials, 2021, 33, e2003155.	11.1	319
1978	Resistance-strain sensitive rubber composites filled by multiwalled carbon nanotubes for structuraldeformation monitoring. Nanomaterials and Nanotechnology, 2021, 11, 184798042110113.	1.2	13
1979	Self-healable tactile sensors. , 2021, , 263-289.		0
1980	Head motion classification using thread-based sensor and machine learning algorithm. Scientific Reports, 2021, 11, 2646.	1.6	12
1981	An ultra-broad-range pressure sensor based on a gradient stiffness design. Materials Horizons, 2021, 8, 2260-2272.	6.4	24
1982	Latex-Based Carbon Nanotube Composites. , 2021, , 1-24.		1
1983	Potential of Graphene for Miniature Sensors and Conducting Devices in Biomedical Applications. , 2022, , 96-108.		0

# 1984	ARTICLE Recent Advances in Wearable Devices for Non-Invasive Sensing. Applied Sciences (Switzerland), 2021, 11, 1235.	IF 1.3	CITATIONS 23
1985	Electrically conductive NBR/CB flexible composite film for ultrastretchable strain sensors: fabrication and modeling. Applied Nanoscience (Switzerland), 2021, 11, 429-439.	1.6	15
1986	A highly conductive self-assembled multilayer graphene nanosheet film for electronic tattoos in the applications of human electrophysiology and strain sensing. Nanoscale, 2021, 13, 10798-10806.	2.8	14
1987	Detecting subtle yet fast skeletal muscle contractions with ultrasoft and durable graphene-based cellular materials. National Science Review, 2022, 9, nwab184.	4.6	4
1988	Effect of matrix viscoelasticity on piezoresistivity of carbon nanotube polymer composites. , 2021, , .		0
1989	Ultra-stretchable, self-adhesive, transparent, and ionic conductive organohydrogel for flexible sensor. APL Materials, 2021, 9, .	2.2	23
1990	Sensing Materials: Nanocomposites. , 2023, , 305-315.		1
1991	Inkjet Printing of Highly Sensitive, Transparent, Flexible Linear Piezoresistive Strain Sensors. Coatings, 2021, 11, 51.	1.2	8
1992	NFC-Based Wearable Optoelectronics Working with Smartphone Application for Untact Healthcare. Sensors, 2021, 21, 878.	2.1	13
1993	Polymer-based electro-active smart composites as stretchable strain sensors. , 2021, , 291-320.		0
1994	A highly sensitive strain sensor based on a silica@polyaniline core–shell particle reinforced hydrogel with excellent flexibility, stretchability, toughness and conductivity. Soft Matter, 2021, 17, 2142-2150.	1.2	32
1995	Thigh Skin Strain Model for Human Gait Movement. , 2021, , .		1
1996	Fabrication and application of macroscopic nanowire aerogels. Nanoscale, 2021, 13, 7430-7446.	2.8	8
1997	Correction: Recent advances in integration of 2D materials with soft matter for multifunctional robotic materials. Materials Horizons, 2021, 8, 284-284.	6.4	2
1998	Self-Powered, Hybrid, Multifunctional Sensor for a Human Biomechanical Monitoring Device. Applied Sciences (Switzerland), 2021, 11, 519.	1.3	5
1999	Advances in ultrasensitive piezoresistive sensors: from conventional to flexible and stretchable applications. Materials Horizons, 2021, 8, 2123-2150.	6.4	61
2000	Thermally Drawn Stretchable Electrical and Optical Fiber Sensors for Multimodal Extreme Deformation Sensing. Advanced Optical Materials, 2021, 9, 2001815.	3.6	31
2001	Graphene: A two dimensional super material for sensor applications. Materials Today: Proceedings, 2021, 43, 203-208.	0.9	12

#	Article	IF	CITATIONS
2002	A hierarchical porous carbon-nanotube skeleton for sensing films with ultrahigh sensitivity, stretchability, and mechanical compliance. Journal of Materials Chemistry A, 2021, 9, 4317-4325.	5.2	11
2003	The Effect of Encapsulation on Crack-Based Wrinkled Thin Film Soft Strain Sensors. Materials, 2021, 14, 364.	1.3	10
2004	Carbon Nanotubes Reinforced Natural Rubber Composites. , 0, , .		4
2005	Research and Application Progress of Intelligent Wearable Devices. Chinese Journal of Analytical Chemistry, 2021, 49, 159-171.	0.9	21
2006	Permeable superelastic liquid-metal fibre mat enables biocompatible and monolithic stretchable electronics. Nature Materials, 2021, 20, 859-868.	13.3	407
2007	Comprehensive performance characterization of conductive fabric made of reduced graphene oxide (rGO). Journal of Applied Polymer Science, 2021, 138, 50524.	1.3	4
2008	Ultra‣ensitive and Stretchable Ionic Skins for Highâ€Precision Motion Monitoring. Advanced Functional Materials, 2021, 31, 2010199.	7.8	60
2009	Oxygen-Deficient Stannic Oxide/Graphene for Ultrahigh-Performance Supercapacitors and Gas Sensors. Nanomaterials, 2021, 11, 372.	1.9	7
2010	Ultrasensitive Wearable Strain Sensors based on a VACNT/PDMS Thin Film for a Wide Range of Human Motion Monitoring. ACS Applied Materials & Interfaces, 2021, 13, 8871-8879.	4.0	55
2011	Conditions for CNT – Coated Textile Sensors Applied to Wearable Platforms to Monitor Limb Joint Motion. Journal of Medical Systems, 2021, 45, 41.	2.2	2
2012	Reliable sensors based on graphene textile with negative resistance variation in three dimensions. Nano Research, 2021, 14, 2810-2818.	5.8	9
2013	Ultrathin and Ultrasensitive Printed Carbon Nanotube-Based Temperature Sensors Capable of Repeated Uses on Surfaces of Widely Varying Curvatures and Wettabilities. ACS Applied Materials & Interfaces, 2021, 13, 10257-10270.	4.0	28
2014	An Ultra-Stretchable and Highly Sensitive Photoelectric Effect-Based Strain Sensor: Implementation and Applications. IEEE Sensors Journal, 2021, 21, 4365-4376.	2.4	16
2015	Machine Embroidered Sensors for Limb Joint Movement-Monitoring Smart Clothing. Sensors, 2021, 21, 949.	2.1	7
2016	Scalable Superior Chemical Sensing Performance of Stretchable Ionotronic Skin via a Ï€â€Hole Receptor Effect. Advanced Materials, 2021, 33, e2007605.	11.1	25
2017	Recent Advancements in Development of Wearable Gas Sensors. Advanced Materials Technologies, 2021, 6, .	3.0	109
2018	All-Polymeric Pressure Sensors Based on PEDOT:PSS-Modified Polyurethane Foam. ACS Applied Polymer Materials, 2021, 3, 1563-1572.	2.0	23
2019	Wearable Carbon-Based Resistive Sensors for Strain Detection: A Review. IEEE Sensors Journal, 2021, 21, 4030-4043.	2.4	40

#	Article	IF	CITATIONS
2020	Biodegradable Metallic Glass for Stretchable Transient Electronics. Advanced Science, 2021, 8, 2004029.	5.6	21
2022	Stable Flexible Piezoresistive Sensors with Viscoelastic Ni Nanowiresâ€PDMS Composites and Ni Foam Electrodes. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2021, 647, 1031-1037.	0.6	1
2023	Smart Bandage With Wireless Strain and Temperature Sensors and Batteryless NFC Tag. IEEE Internet of Things Journal, 2021, 8, 5093-5100.	5.5	123
2024	Highly Sensitive and Durable Sea-Urchin-Shaped Silver Nanoparticles Strain Sensors for Human-Activity Monitoring. ACS Applied Materials & Interfaces, 2021, 13, 14479-14488.	4.0	25
2025	Highly Conductive Silicone Elastomers via Environmentâ€Friendly Swelling and In Situ Synthesis of Silver Nanoparticles. Advanced Materials Interfaces, 2021, 8, 2100137.	1.9	10
2026	Highly sensitive and flexible capacitive elastomeric sensors for compressive strain measurements. Materials Today Communications, 2021, 26, 102023.	0.9	12
2027	Effect of Viscosity on the Formation of Porous Polydimethylsiloxane for Wearable Device Applications. Molecules, 2021, 26, 1471.	1.7	3
2028	Fluidâ€Dynamicsâ€Processed Highly Stretchable, Conductive, and Printable Graphene Inks for Realâ€Time Monitoring Sweat during Stretching Exercise. Advanced Functional Materials, 2021, 31, 2011059.	7.8	44
2029	Sensorized tissue analogues enabled by a 3D-printed conductive organogel. Npj Flexible Electronics, 2021, 5, .	5.1	11
2030	Customizable Textile Sensors Based on Helical Core–Spun Yarns for Seamless Smart Garments. Langmuir, 2021, 37, 3122-3129.	1.6	24
2031	Synthesis of silver nanoparticles embedded with single-walled carbon nanotubes for printable elastic electrodes and sensors with high stability. Scientific Reports, 2021, 11, 5140.	1.6	9
2032	Visualising the knowledge structure and evolution of wearable device research. Journal of Medical Engineering and Technology, 2021, 45, 207-222.	0.8	3
2033	Eggshell membrane and expanded polytetrafluoroethylene piezoelectricâ€enhanced triboelectric bioâ€nanogenerators for energy harvesting. International Journal of Energy Research, 2021, 45, 11053-11064.	2.2	23
2034	Highly Flexible, Stretchable, and Self-Powered Strain-Temperature Dual Sensor Based on Free-Standing PEDOT:PSS/Carbon Nanocoils–Poly(vinyl) Alcohol Films. ACS Sensors, 2021, 6, 1120-1128.	4.0	40
2035	The Triboelectric Nanogenerator as an Innovative Technology toward Intelligent Sports. Advanced Materials, 2021, 33, e2004178.	11.1	279
2036	A review on threeâ€dimensional graphene: Synthesis, electronic and biotechnology applicationsâ€The Unknown Riddles. IET Nanobiotechnology, 2021, 15, 348-357.	1.9	10
2037	Ultrahigh sensitivity and wide strain range of porous pressure sensor based on binary conductive fillers by in-situ polymerization. Journal of Polymer Research, 2021, 28, 1.	1.2	10

	CITATION REF	PORT	
#	Article	IF	CITATIONS
2039	Electrospun nanofiber-based soft electronics. NPG Asia Materials, 2021, 13, .	3.8	127
2040	Self-powered trajectory-tracking microsystem based on electrode-miniaturized triboelectric nanogenerator. Nano Energy, 2021, 82, 105730.	8.2	30
2041	Highly stretchable conductors comprising composites of silver nanowires and silver flakes. Journal of Nanoparticle Research, 2021, 23, 1.	0.8	9
2042	A Highly Stable and Durable Capacitive Strain Sensor Based on Dynamically Superâ€Tough Hydro/Organoâ€Gels. Advanced Functional Materials, 2021, 31, 2010830.	7.8	84
2043	Highly Sensitive and Flexible Tactile Sensor Based on the Fabrication of Porous Graphene/Silicone Rubber Composites. , 2021, , .		0
2044	The new material science of robots. Current Opinion in Solid State and Materials Science, 2021, 25, 100894.	5.6	3
2045	A Three-Dimensional Printable Liquid Metal-Like Ag Nanoparticle Ink for Making a Super-Stretchable and Highly Cyclic Durable Strain Sensor. ACS Applied Materials & Interfaces, 2021, 13, 18021-18032.	4.0	17
2046	Silk Fibroin As an Immobilization Matrix for Sensing Applications. ACS Biomaterials Science and Engineering, 2021, 7, 2015-2042.	2.6	27
2047	Highly stretchable and sensitive strain sensor based on polypyrrole coated bacterial cellulose fibrous network for human motion detection. Composites Part B: Engineering, 2021, 211, 108665.	5.9	51
2048	Green and stable piezoresistive pressure sensor based on lignin-silver hybrid nanoparticles/polyvinyl alcohol hydrogel. International Journal of Biological Macromolecules, 2021, 176, 78-86.	3.6	60
2049	Printable Gâ€Putty for Frequency―and Rateâ€Independent, Highâ€Performance Strain Sensors. Small, 2021, 17, e2006542.	5.2	16
2050	A whispering gallery mode strain sensor based on microtube resonator. Optoelectronics Letters, 2021, 17, 199-204.	0.4	3
2051	Design and Application of Galinstan Liquid Metal Fully Flexible Angular Displacement Sensor. Advances in Science and Technology, 0, 105, 202-210.	0.2	0
2052	Strain Sensor with High Sensitivity and Large Response Range Based on Self-Assembled Elastic-Sliding Conductive Networks. ACS Applied Electronic Materials, 2021, 3, 1758-1770.	2.0	14
2053	Printable wet-resistive textile strain sensors using bead-blended composite ink for robustly integrative wearable electronics. Composites Part B: Engineering, 2021, 210, 108674.	5.9	29
2054	Ionic Elastomers for Electric Actuators and Sensors. Engineering, 2021, 7, 581-602.	3.2	44
2055	Highly Skin-Conformal Laser-Induced Graphene-Based Human Motion Monitoring Sensor. Nanomaterials, 2021, 11, 951.	1.9	33
2056	Potentially Wearable Thermoâ€Electrochemical Cells for Body Heat Harvesting: From Mechanism, Materials, Strategies to Applications. Advanced Science, 2021, 8, 2100669.	5.6	50

#	Article	IF	CITATIONS
2057	Quasi-Passive Resistive Exosuit for Space Activities: Proof of Concept. Applied Sciences (Switzerland), 2021, 11, 3576.	1.3	10
2058	A digital nervous system aiming toward personalized IoT healthcare. Scientific Reports, 2021, 11, 7757.	1.6	15
2059	A Robust Wearable Pointâ€ofâ€Care CNTâ€Based Strain Sensor for Wirelessly Monitoring Throatâ€Related Illnesses. Advanced Functional Materials, 2021, 31, 2103375.	7.8	67
2060	All-Fabric Ultrathin Capacitive Sensor with High Pressure Sensitivity and Broad Detection Range for Electronic Skin. ACS Applied Materials & amp; Interfaces, 2021, 13, 24062-24069.	4.0	56
2061	A review of geometric and structural design for reliable flexible electronics. Journal of Micromechanics and Microengineering, 2021, 31, 074001.	1.5	8
2062	Sensing of joint and spinal bending or stretching via a retractable and wearable badge reel. Nature Communications, 2021, 12, 2950.	5.8	114
2063	High-Performance Auxetic Bilayer Conductive Mesh-Based Multi-Material Integrated Stretchable Strain Sensors. ACS Applied Materials & Interfaces, 2021, 13, 23038-23048.	4.0	25
2064	A soft and transparent contact lens for the wireless quantitative monitoring of intraocular pressure. Nature Biomedical Engineering, 2021, 5, 772-782.	11.6	100
2065	Self-Powered, Stretchable, and Wearable Ion Gel Mechanoreceptor Sensors. ACS Sensors, 2021, 6, 1940-1948.	4.0	20
2066	Carbonized Cellulose Nanofibril with Individualized Fibrous Morphology: toward Multifunctional Applications in Polycaprolactone Conductive Composites. ACS Applied Bio Materials, 2021, 4, 5169-5179.	2.3	3
2067	Soft Electronic Materials with Combinatorial Properties Generated <i>via</i> Mussel-Inspired Chemistry and Halloysite Nanotube Reinforcement. ACS Nano, 2021, 15, 9531-9549.	7.3	46
2068	Super-stretchable multi-sensing triboelectric nanogenerator based on liquid conductive composite. Nano Energy, 2021, 83, 105823.	8.2	54
2069	A Fully 3Dâ€Printed Wearable Piezoresistive Strain and Tactile Sensing Array for Robot Hand. Advanced Materials Technologies, 2021, 6, 2100038.	3.0	28
2070	Ultrasensitive and Wearable Carbon Hybrid Fiber Devices as Robust Intelligent Sensors. ACS Applied Materials & Interfaces, 2021, 13, 23905-23914.	4.0	29
2071	Liquid Metalâ€Based Strain Sensor with Ultralow Detection Limit for Human–Machine Interface Applications. Advanced Intelligent Systems, 2021, 3, 2000235.	3.3	33
2072	Recent Applications of Different Microstructure Designs in High Performance Tactile Sensors: A Review. IEEE Sensors Journal, 2021, 21, 10291-10303.	2.4	27
2073	No-core PDMS fiber for large-scale strain and concentration measurement. Optical Fiber Technology, 2021, 63, 102531.	1.4	5
2074	Anisotropic, Wrinkled, and Crack-Bridging Structure for Ultrasensitive, Highly Selective Multidirectional Strain Sensors. Nano-Micro Letters, 2021, 13, 122.	14.4	74

#	Article	IF	CITATIONS
2075	Piezoresistive Sensing Approaches for Structural Health Monitoring of Polymer Composites—A Review. Eng, 2021, 2, 197-226.	1.2	33
2076	Ultra‣tretchable Monofilament Flexible Sensor with Low Hysteresis and Linearity based on MWCNTs/Ecoflex Composite Materials. Macromolecular Materials and Engineering, 2021, 306, 2100113.	1.7	23
2077	A fully integrated wearable electronic device with breathable and washable properties for long-term health monitoring. Sensors and Actuators A: Physical, 2021, 322, 112611.	2.0	30
2078	Facile fabrication of Ag-doped graphene fiber with improved strength and conductivity for wearable sensor via the ion diffusion during fiber coagulation. Synthetic Metals, 2021, 275, 116741.	2.1	3
2079	Sensing mechanism of a carbon nanocomposite-printed fabric as a strain sensor. Composites Part A: Applied Science and Manufacturing, 2021, 144, 106350.	3.8	25
2080	Design and Fabrication of Flexible Capacitive Sensor With Cellular Structured Dielectric Layer via 3D Printing. IEEE Sensors Journal, 2021, 21, 10473-10482.	2.4	22
2081	Corrugated Compliant Capacitor towards Smart Bandage Application. , 2021, , .		2
2082	Multi-functionalization Strategies Using Nanomaterials: A Review and Case Study in Sensing Applications. International Journal of Precision Engineering and Manufacturing - Green Technology, 2022, 9, 323-347.	2.7	23
2083	All-Printed MXene–Graphene Nanosheet-Based Bimodal Sensors for Simultaneous Strain and Temperature Sensing. ACS Applied Electronic Materials, 2021, 3, 2341-2348.	2.0	48
2084	Strong, high stretchable and ultrasensitive SEBS/CNTs hybrid fiber for high-performance strain sensor. Composites Communications, 2021, 25, 100735.	3.3	42
2085	Thread-based wearable devices. MRS Bulletin, 2021, 46, 502-511.	1.7	16
2086	Graphene-based pressure sensor and strain sensor for detecting human activities. Smart Materials and Structures, 2021, 30, 085027.	1.8	17
2087	Recent Advancement for the Synthesis of MXene Derivatives and Their Sensing Protocol. Advanced Materials Technologies, 2021, 6, 2001197.	3.0	16
2088	Stretchable Strain Sensor with Controllable Negative Resistance Sensitivity Coefficient Based on Patterned Carbon Nanotubes/Silicone Rubber Composites. Micromachines, 2021, 12, 716.	1.4	4
2089	Anisotropic Carbon Nanotube Structures with High Aspect Ratio Nanopores for Li-Ion Battery Anodes. ACS Applied Nano Materials, 2021, 4, 6299-6305.	2.4	7
2090	Preparation and performance of graphene/carbon black silicone rubber composites used for highly sensitive and flexible strain sensors. Sensors and Actuators A: Physical, 2021, 323, 112659.	2.0	30
2091	Advances in organic thermoelectric materials and devices for smart applications. SmartMat, 2021, 2, 426-445.	6.4	62
2092	Ready-to-wear strain sensing gloves for human motion sensing. IScience, 2021, 24, 102525.	1.9	10

#	Article	IF	CITATIONS
2093	Highly stretchable and sensitive strain sensor based on silver nanowires/carbon nanotubes on hair band for human motion detection. Progress in Natural Science: Materials International, 2021, 31, 379-386.	1.8	13
2094	Highly Sensitive, Flexible, Stable, and Hydrophobic Biofoam Based on Wheat Flour for Multifunctional Sensor and Adjustable EMI Shielding Applications. ACS Applied Materials & Interfaces, 2021, 13, 30020-30029.	4.0	33
2095	Silk Sericin As a Green Adhesive to Fabricate a Textile Strain Sensor with Excellent Electromagnetic Shielding Performance. ACS Applied Materials & amp; Interfaces, 2021, 13, 28832-28842.	4.0	41
2096	Two-Dimensional MOF Modulated Fiber Nanogenerator for Effective Acoustoelectric Conversion and Human Motion Detection. Langmuir, 2021, 37, 7107-7117.	1.6	31
2097	Energy-dissipative dual-crosslinked hydrogels for dynamically super-tough sensors. Science China Materials, 2021, 64, 2764-2776.	3.5	15
2098	Development of Highly Sensitive Strain Sensor Using Area-Arrayed Graphene Nanoribbons. Nanomaterials, 2021, 11, 1701.	1.9	12
2099	Piezoelectric Nanogenerators Derived Selfâ€Powered Sensors for Multifunctional Applications and Artificial Intelligence. Advanced Functional Materials, 2021, 31, 2102983.	7.8	163
2100	Dielectrophoretic Assembly of Carbon Nanotube Chains in Aqueous Solution. Advanced Fiber Materials, 2021, 3, 312-320.	7.9	4
2101	Sensation and Perception of a Bioinspired Flexible Smart Sensor System. ACS Nano, 2021, 15, 9238-9243.	7.3	17
2102	MXene/air-laid paper composite sensors for both tensile and torsional deformations detection. Composites Communications, 2021, 25, 100768.	3.3	5
2103	Highly stretchable self-sensing actuator based on conductive photothermally-responsive hydrogel. Materials Today, 2021, 50, 35-43.	8.3	105
2104	Stamp-Perforation-Inspired Micronotch for Selectively Tearing Fiber-Bridged Carbon Nanotube Thin Films and Its Applications for Strain Classification. ACS Applied Materials & Interfaces, 2021, 13, 32307-32315.	4.0	2
2105	Hierarchically Microstructure-Bioinspired Flexible Piezoresistive Bioelectronics. ACS Nano, 2021, 15, 11555-11563.	7.3	163
2106	Composite materials fabricated from a conductive polymer with additions of battery waste powders and recycled copper wires. Journal of Composite Materials, 0, , 002199832110312.	1.2	1
2107	CNT–rGO Hydrogel-Integrated Fabric Composite Synthesized via an Interfacial Gelation Process for Wearable Supercapacitor Electrodes. ACS Omega, 2021, 6, 19578-19585.	1.6	13
2108	Achieving Super Sensitivity in Capacitive Strain Sensing by Electrode Fragmentation. ACS Applied Materials & Interfaces, 2021, 13, 36062-36070.	4.0	12
2109	Multifunctional composites obtained from the combination of a conductive polymer with different contents of primary battery waste powders. Sustainable Materials and Technologies, 2021, 28, e00281.	1.7	4
2110	Fatigue Testing of Wearable Sensing Technologies: Issues and Opportunities. Materials, 2021, 14, 4070.	1.3	10

#	Article	IF	CITATIONS
2111	Mechanomaterials: A Rational Deployment of Forces and Geometries in Programming Functional Materials. Advanced Materials, 2021, 33, e2007977.	11.1	34
2112	Polyacrylamide/Chitosan-Based Conductive Double Network Hydrogels with Outstanding Electrical and Mechanical Performance at Low Temperatures. ACS Applied Materials & amp; Interfaces, 2021, 13, 34942-34953.	4.0	63
2113	Novel insights into the design of stretchable electrical systems. Science Advances, 2021, 7, .	4.7	3
2114	Modeling and optimization of an inertial triboelectric motion sensor. Nano Energy, 2021, 85, 105952.	8.2	13
2115	An Antiâ€Freezing, Ambientâ€Stable and Highly Stretchable Ionic Skin with Strong Surface Adhesion for Wearable Sensing and Soft Robotics. Advanced Functional Materials, 2021, 31, 2104665.	7.8	140
2116	Flexible strain sensors: from devices to array integration. Flexible and Printed Electronics, 2021, 6, 043002.	1.5	4
2117	A Flexible Strain Sensor Based on Embedded Ionic Liquid. Sensors, 2021, 21, 5760.	2.1	14
2118	Chlorosulfonic Acid Stretched Carbon Nanotube Sheet for Flexible and Low-Voltage Heating Applications. Nanomaterials, 2021, 11, 2132.	1.9	6
2119	Highly stretchable and rehealable wearable strain sensor based on dynamic covalent thermoset and liquid metal. Smart Materials and Structures, 2021, 30, 105001.	1.8	9
2120	Tuning Mechanical and Electrical Properties of Elastomer Composites with Hybrid Filler Network Containing Graphene for Stretchable Strain Sensors. Advanced Engineering Materials, 2022, 24, 2100703.	1.6	8
2121	Tuning Strain Sensor Performance via Programmed Thin-Film Crack Evolution. ACS Applied Materials & Interfaces, 2021, 13, 38105-38113.	4.0	16
2122	Copolymer composition tailored carbon nanotube network breakdown and piezoresistivity of ethylene-vinyl acetate electroconductive composites. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2021, 270, 115194.	1.7	1
2124	Liquid–Metalâ€Superlyophilic and Conductivity–Strainâ€Enhancing Scaffold for Permeable Superelastic Conductors. Advanced Functional Materials, 2021, 31, 2105587.	7.8	64
2125	Resistive and capacitive strain sensors based on customized compliant electrode: Comparison and their wearable applications. Sensors and Actuators A: Physical, 2021, 326, 112720.	2.0	47
2126	Implantable application of polymerâ€based biosensors. Journal of Polymer Science, 2022, 60, 328-347.	2.0	24
2127	Carbon nanotube-based CMOS transistors and integrated circuits. Science China Information Sciences, 2021, 64, 1.	2.7	4
2128	Effect of metal's inherent characteristics on sensibility of flexible metal-based composite sensor and its applications. Sensors and Actuators A: Physical, 2021, 327, 112754.	2.0	2
2129	16.4: A multifunctional flexible resistive sensor with a Carbon Nanotubeâ€Liquid Crystalâ€PDMS Composite. Digest of Technical Papers SID International Symposium, 2021, 52, 224-227.	0.1	0

#	Article	IF	CITATIONS
2130	Ultrasensitive Strain Sensors Based on Cuâ€Al Alloy Films with Voided Cluster Boundaries. Advanced Materials Technologies, 2021, 6, 2100524.	3.0	8
2131	Fully Soft Pressure Sensor Based on Bionic Spine–Pillar Structure for Robotics Motion Monitoring. Soft Robotics, 2022, 9, 518-530.	4.6	12
2132	Strain Sensing by Electrical Capacitive Variation: From Stretchable Materials to Electronic Interfaces. Advanced Electronic Materials, 2021, 7, 2100190.	2.6	17
2133	Graphdiyne-based flexible respiration sensors for monitoring human health. Nano Today, 2021, 39, 101214.	6.2	66
2134	Development of Ti ₃ C ₂ T _{<i>x</i>} /MoS _{2<i>x</i>} Se _{2(1–<i>x</i>)} Nanohybrid Multilayer Structures for Piezoresistive Mechanical Transduction. ACS Applied Electronic Materials, 2021, 3, 4091-4104.	2.0	9
2135	From ultrastiff to soft materials: Exploiting dynamic metal–ligand cross-links to access polymer hydrogels combining customized mechanical performance and tailorable functions by controlling hydrogel mechanics. Chemical Engineering Journal, 2021, 419, 129528.	6.6	22
2136	Transparent, flexible, and multifunctional starch-based double-network hydrogels as high-performance wearable electronics. Carbohydrate Polymers, 2021, 267, 118198.	5.1	73
2137	Microâ€Crack Assisted Wrinkled PEDOT: PSS to Detect and Distinguish Tensile Strain and Pressure Based on a Triboelectric Nanogenerator. Advanced Materials Technologies, 2022, 7, 2100423.	3.0	14
2138	Analysis of the Radiation Pattern Stability of Flexible, Eco-Friendly Microstrip and Folded Dipole Antennas in Graphene Design. , 2021, , .		1
2139	Conductive, sensing stable and mechanical robust silicone rubber composites for largeâ€ s train sensors. Polymer Composites, 2021, 42, 6394-6402.	2.3	20
2140	Highly Stretchable and Kirigami-Structured Strain Sensors with Long Silver Nanowires of High Aspect Ratio. Machines, 2021, 9, 186.	1.2	5
2141	Transferred Laserâ€6cribed Grapheneâ€Based Durable and Permeable Strain Sensor. Advanced Materials Interfaces, 2021, 8, 2100625.	1.9	5
2142	Review of Materials and Fabrication Methods for Flexible Nano and Micro-Scale Physical and Chemical Property Sensors. Applied Sciences (Switzerland), 2021, 11, 8563.	1.3	17
2143	Residence time effect on single-walled carbon nanotube synthesis in an aerosol CVD reactor. Chemical Engineering Journal, 2021, 420, 129869.	6.6	21
2144	Fluid Bath-Assisted 3D Printing for Biomedical Applications: From Pre- to Postprinting Stages. ACS Biomaterials Science and Engineering, 2021, 7, 4736-4756.	2.6	28
2145	Superhydrophobic antibacterial wearable metallized fabric as supercapacitor, multifunctional sensors, and heater. Journal of Power Sources, 2021, 506, 230142.	4.0	28
2146	Flashlight-material interaction for wearable and flexible electronics. Materials Today, 2021, 51, 525-551.	8.3	23
2147	Optical Microfiber Neuron for Finger Motion Perception. Advanced Fiber Materials, 2022, 4, 226-234.	7.9	13

ARTICLE IF CITATIONS Synthesis and plasma treatment of nitrogen-doped graphene fibers for high-performance 2.3 7 2148 supercapacitors. Ceramics International, 2022, 48, 2058-2067. Applications of Carbon Nanotubes in the Internet of Things Era. Nano-Micro Letters, 2021, 13, 191. 2149 14.4 28 E-Skin: The Dawn of a New Era of On-Body Monitoring Systems. Micromachines, 2021, 12, 1091. 1.4 2150 23 Stretchable graphene and carbon nanofiber capacitive touch sensors for robotic skin applications. 2.9 23 Journal of Industrial and Engineering Chemistry, 2021, 101, 348-358. Design and fabrication of flexible strain sensor based on ZnO-decorated PVDF via atomic layer 2152 3.1 16 deposition. Applied Surface Science, 2021, 562, 150126. A new mussel-inspired highly self-adhesive & amp; conductive poly (vinyl alcohol)-based hydrogel for wearable sensors. Applied Surface Science, 2021, 562, 150162. 3.1 A biomimetic skin-like sensor with multiple sensory capabilities based on hybrid ionogel. Sensors and 2154 2.0 8 Actuators A: Physical, 2021, 330, 112855. A liquid power-ultrasound based green fabrication process for flexible strain sensors at room 2.0 temperature and normal pressure. Sensors and Actuators A: Physical, 2021, 329, 112822. Designing functional materials: DNA/Poly(3,4-ethylenedioxythiophene) interfaces for advanced DNA 2156 direct electrochemistry and DNA-Drug interaction detection. Materials Science and Engineering B: 1.7 6 Solid-State Materials for Advanced Technology, 2021, 272, 115382. Stretchable conductive elastomer composites based on a processing of Ag+ swelling, in situ reduction, and drying shrinkage. Composites Part A: Applied Science and Manufacturing, 2021, 149, 3.8 106565. Acrylate-based nanocomposite zirconium-dispersed polymer dielectric for flexible oxide thin-film 2158 1.4 5 transistors with a curvature radius of 2Âmm. Organic Electronics, 2021, 98, 106302. A highly stretchable hydrogel sensor for soft robot multi-modal perception. Sensors and Actuators 2.0 26 A: Physical, 2021, 331, 113006. Deep learning-based surrogate modeling via physics-informed artificial image (PiAI) for strongly 2160 4.0 4 coupled multidisciplinary engineering systems. Knowledge-Based Systems, 2021, 232, 107446. A highly stretchable and breathable polyurethane fibrous membrane sensor for human motion monitoring and voice signal recognition. Sensors and Actuators A: Physical, 2021, 331, 112974. Ultralight, flexible and conductive silver nanowire/nanofibrillated cellulose aerogel for 2162 6.6 55 multifunctional strain sensor. Chemical Engineering Journal, 2021, 424, 130565. Enhancing the reactivity of carbon-nanotube for carbon monoxide detection by mono- and co-doping of boron and nitrogen heteroatoms: A DFT and TD-DFT study. Journal of Physics and Chemistry of 1.9 Solids, 2021, 158, 110230. A highly sensitive stretchable strain sensor based on multi-functionalized fabric for respiration 2164 6.6 51 monitoring and identification. Chemical Engineering Journal, 2021, 426, 130869. Knitted Ti3C2T MXene based fiber strain sensor for human–computer interaction. Journal of Colloid and Interface Science, 2021, 604, 643-649.

#	ARTICLE High resolution screen-printing of carbon black/carbon nanotube composite for stretchable and	IF	CITATIONS
2166	wearable strain sensor with controllable sensitivity. Sensors and Actuators A: Physical, 2021, 332, 113098.	2.0	16
2167	Highly conductive and stretching-insensitive films for wearable accurate pressure perception. Chemical Engineering Journal, 2022, 429, 132488.	6.6	16
2168	Highly Sensitive Strain Sensors Based on Molecules–Gold Nanoparticles Networks for Highâ€Resolution Human Pulse Analysis. Small, 2021, 17, e2007593.	5.2	47
2169	High-Dynamic-Range Chipless Microwave Resonator-Based Strain Sensor. IEEE Transactions on Instrumentation and Measurement, 2021, 70, 1-7.	2.4	12
2170	Expressions for Resonant Frequency of Wirelessly Accessible Planar Mirrored-Coil Sensor in Biomedicine. IEEE Transactions on Microwave Theory and Techniques, 2022, 70, 556-564.	2.9	0
2171	Wearable and Implantable Intraocular Pressure Biosensors: Recent Progress and Future Prospects. Advanced Science, 2021, 8, 2002971.	5.6	28
2172	Various Applications of Nanowires. Advances in Computer and Electrical Engineering Book Series, 2021, , 17-53.	0.2	3
2173	Gold Nanoparticle Thin Film-Based Strain Sensors for Monitoring Human Pulse. ACS Applied Nano Materials, 2021, 4, 1712-1718.	2.4	19
2174	Aligned wave-like elastomer fibers with robust conductive layers <i>via</i> electroless deposition for stretchable electrode applications. Journal of Materials Chemistry B, 2021, 9, 8801-8808.	2.9	5
2175	Upgrading of diesel engine exhaust waste into onion-like carbon nanoparticles for integrated degradation sensing in nano-biocomposites. New Journal of Chemistry, 2021, 45, 3675-3682.	1.4	26
2176	Materials, Devices, and Applications for Wearable and Implantable Electronics. ACS Applied Electronic Materials, 2021, 3, 485-503.	2.0	37
2177	Nanotechnology-enabled polymer-based flexible electronics and their potential applications. , 2021, , 321-340.		1
2178	Three-dimensional functionalized film printing for health monitoring. , 2021, , 243-258.		0
2179	Recent advances in stretchable field-effect transistors. Journal of Materials Chemistry C, 2021, 9, 7796-7828.	2.7	15
2180	Tunable piezoresistivity of low percolation threshold micro-nickel wires/PDMS conductive composite regulated by magnetic field. Journal of Materials Chemistry C, 2021, 9, 5908-5919.	2.7	8
2181	Flexible smart nanosensors. , 2021, , 145-182.		0
2182	Highly contrastive, real-time modulation of light intensity by reversible stress-whitening of spontaneously formed nanocomposites: application to wearable strain sensors. Journal of Materials Chemistry C, 2021, 9, 8496-8505.	2.7	2
2183	Self-powered ultrasensitive and highly stretchable temperature–strain sensing composite yarns. Materials Horizons, 2021, 8, 2513-2519.	6.4	21

#	Article	IF	CITATIONS
2184	Development of an Ultrastretchable Double-Network Hydrogel for Flexible Strain Sensors. ACS Applied Materials & Interfaces, 2021, 13, 12814-12823.	4.0	97
2185	MXene derivatives: synthesis and applications in energy convention and storage. RSC Advances, 2021, 11, 16065-16082.	1.7	25
2186	Textile triboelectric nanogenerators for self-powered biomonitoring. Journal of Materials Chemistry A, 2021, 9, 19149-19178.	5.2	55
2188	Wireless Monitoring of Small Strains in Intelligent Robots via a Joule Heating Effect in Stretchable Graphene–Polymer Nanocomposites. Advanced Functional Materials, 2020, 30, 1910809.	7.8	68
2189	Wearable Soft Technologies for Haptic Sensing and Feedback. Advanced Functional Materials, 2021, 31, 2007428.	7.8	126
2190	Wearable Sensorsâ€Enabled Human–Machine Interaction Systems: From Design to Application. Advanced Functional Materials, 2021, 31, 2008936.	7.8	322
2191	Toward Printed Molecular Electronics: Direct Printing of Liquid Metal Microelectrode on Selfâ€Assembled Monolayers. Advanced Electronic Materials, 2021, 7, 2000829.	2.6	16
2192	Inkjet Printing of Curing Agent on Thin PDMS for Local Tailoring of Mechanical Properties. Macromolecular Rapid Communications, 2020, 41, 1900569.	2.0	4
2193	Ultrasensitive Physical, Bio, and Chemical Sensors Derived from 1â€, 2â€, and 3â€D Nanocellulosic Materials. Small, 2020, 16, e1906567.	5.2	122
2194	PZT Nano Active Fiber Composites-Based Acoustic Emission Sensor. , 2013, , 9-22.		2
2195	Carbon Nanotube Four-Terminal Devices for Pressure Sensing Applications. Smart Innovation, Systems and Technologies, 2019, , 199-207.	0.5	1
2196	Biomedical Applications of MXenes. , 2019, , 503-524.		11
2197	Mechanical Sensing for Lower Limb Soft Exoskeletons: Recent Progress and Challenges. Advances in Experimental Medicine and Biology, 2019, 1170, 69-85.	0.8	2
2198	Gellan. , 2015, , 1627-1682.		7
2199	Electronic Applications of Polyurethane and Its Composites. Springer Series on Polymer and Composite Materials, 2016, , 87-134.	0.5	3
2200	Undesirable Aspects of Fatigue on Stretchable Elastomer Sensors. NATO Science for Peace and Security Series B: Physics and Biophysics, 2020, , 95-105.	0.2	2
2201	AgNW Treated PU Nanofiber/PDMS Composites as Wearable Strain Sensors for Joint Flexion Monitoring. Fibers and Polymers, 2020, 21, 2479-2484.	1.1	14
2202	Wire-Shaped 3D-Hybrid Supercapacitors as Substitutes for Batteries. Nano-Micro Letters, 2020, 12, 28.	14.4	26

#	Article	IF	CITATIONS
2203	Micro-nano hybrid-structured conductive film with ultrawide range pressure-sensitivity and bioelectrical acquirability for ubiquitous wearable applications. Applied Materials Today, 2020, 20, 100651.	2.3	8
2204	Biocompatible and self-healing ionic gel skin as shape-adaptable and skin-adhering sensor of human motions. Chemical Engineering Journal, 2020, 398, 125540.	6.6	46
2205	Wearable multimode sensors with amplified piezoelectricity due to the multi local strain using 3D textile structure for detecting human body signals. Nano Energy, 2020, 74, 104932.	8.2	64
2206	High conductive graphene assembled films with porous micro-structure for freestanding and ultra-low power strain sensors. Science Bulletin, 2020, 65, 1363-1370.	4.3	38
2208	Low-Hysteresis and Ultrasensitive Microcellular Structures for Wearable Electronic Applications. ACS Applied Materials & Interfaces, 2021, 13, 1632-1643.	4.0	11
2209	Highly stretchable and sensitive strain sensors using nano-graphene coated natural rubber. Plastics, Rubber and Composites, 2017, 46, 301-305.	0.9	14
2210	A stretchable petal patterned strain sensor comprising Ir nanoparticles-modified multi-walled carbon nanotubes for human-motion detection. Journal Physics D: Applied Physics, 2020, 53, 505402.	1.3	6
2212	Exploration of Carbon Nanotube Forest Synthesis-Structure Relationships Using Physics-Based Simulation and Machine Learning. , 2019, , .		7
2213	Joint Entropy-Based Morphology Optimization of Soft Strain Sensor Networks for Functional Robustness. IEEE Sensors Journal, 2020, 20, 10801-10810.	2.4	18
2214	Printed Machine Learning Classifiers. , 2020, , .		12
2214 2215	Printed Machine Learning Classifiers. , 2020, , . Capturing subtle changes during plant growth using wearable mechanical sensors fabricated through liquid-phase fusion. , 2020, , .		12 2
	Capturing subtle changes during plant growth using wearable mechanical sensors fabricated	0.1	
2215	Capturing subtle changes during plant growth using wearable mechanical sensors fabricated through liquid-phase fusion. , 2020, , .	0.1	2
2215 2216	Capturing subtle changes during plant growth using wearable mechanical sensors fabricated through liquid-phase fusion. , 2020, , . Wearable skin sensors for in vitro diagnostics. SPIE Newsroom, 0, , . Wearable piezoresistive strain sensor based on graphene-coated three-dimensional micro-porous		2
2215 2216 2217	Capturing subtle changes during plant growth using wearable mechanical sensors fabricated through liquid-phase fusion. , 2020, , . Wearable skin sensors for in vitro diagnostics. SPIE Newsroom, 0, , . Wearable piezoresistive strain sensor based on graphene-coated three-dimensional micro-porous PDMS sponge. Micro and Nano Systems Letters, 2019, 7, .		2 2 28
2215 2216 2217 2218	Capturing subtle changes during plant growth using wearable mechanical sensors fabricated through liquid-phase fusion. , 2020, , . Wearable skin sensors for in vitro diagnostics. SPIE Newsroom, 0, , . Wearable piezoresistive strain sensor based on graphene-coated three-dimensional micro-porous PDMS sponge. Micro and Nano Systems Letters, 2019, 7, . Development of a Multifunctional Stretchable Sensor Network for Smart Structures. , 0, , . Stretchable and upconversion-luminescent polymeric optical sensor for wearable multifunctional	1.7	2 2 28 4
2215 2216 2217 2218 2219	Capturing subtle changes during plant growth using wearable mechanical sensors fabricated through liquid-phase fusion. , 2020, , . Wearable skin sensors for in vitro diagnostics. SPIE Newsroom, 0, , . Wearable piezoresistive strain sensor based on graphene-coated three-dimensional micro-porous PDMS sponge. Micro and Nano Systems Letters, 2019, 7, . Development of a Multifunctional Stretchable Sensor Network for Smart Structures. , 0, , . Stretchable and upconversion-luminescent polymeric optical sensor for wearable multifunctional sensing. Optics Letters, 2019, 44, 5747.	1.7	2 2 28 4 24

#	Article	IF	CITATIONS
2223	Fabrication of strain sensor based on Graphene/Polyurethane nanoweb and respiration measurement. Korean Society for Emotion and Sensibility, 2019, 22, 15-22.	0.0	4
2224	Influence of Catalyst Film Thickness Deposited by Atomic Layer Deposition on the Growth of Aligned Carbon Nanotubes. Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2016, 31, 681.	0.6	1
2225	Mechanism of Electrical Conductivity in Metallic Fiber-Based Yarns. Autex Research Journal, 2020, 20, 63-68.	0.6	7
2226	Out-of-plane Strain Measurement of A Silicone Elastomer by means of A Cholesteric Liquid Crystal Sensor. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2020, 33, 81-84.	0.1	4
2227	Fabric-Based Triboelectric Nanogenerators. Research, 2019, 2019, 1091632.	2.8	36
2228	Piezotronic effect in AlGaN/AlN/GaN heterojunction nanowires used as a flexible strain sensor. Beilstein Journal of Nanotechnology, 2020, 11, 1847-1853.	1.5	5
2229	MPTMS Treated Au/PDMS Membrane for Flexible and Stretchable Strain Sensors. Journal of Sensor Science and Technology, 2016, 25, 247-251.	0.1	3
2230	Wearable Textile Strain Sensors. Fashion & Textile Research Journal, 2016, 18, 733-745.	0.1	8
2231	Trends in Epidermal Stretchable Electronics for Noninvasive Long-term Healthcare Applications. International Journal of Automation and Smart Technology, 2017, 7, 37-52.	0.4	10
2232	Highly Stretchable Strain Sensor With Spiral Fiber for Curvature Sensing of a Soft Pneumatic Gripper. IEEE Sensors Journal, 2021, 21, 23880-23888.	2.4	15
2233	Ultrastretchable conductive liquid metal composites enabled by adaptive interfacial polarization. Materials Horizons, 2021, 8, 3399-3408.	6.4	17
2234	Structures and Materials in Stretchable Electroluminescent Devices. Advanced Materials, 2022, 34, e2106184.	11.1	40
2236	3D Printed Reduced Graphene Oxide/Elastomer Resin Composite with Structural Modulated Sensitivity for Flexible Strain Sensor. Advanced Engineering Materials, 2022, 24, 2101068.	1.6	21
2237	Solvent-free adhesive ionic elastomer for multifunctional stretchable electronics. Nano Energy, 2022, 91, 106611.	8.2	54
2238	Carbonâ€Based Nanomaterials and Sensing Tools for Wearable Health Monitoring Devices. Advanced Materials Technologies, 2022, 7, 2100572.	3.0	38
2239	<scp>Oneâ€step</scp> fabrication of bulk nanocomposites reinforced by carbon nanotube array fragments. Polymer Composites, 2022, 43, 94-110.	2.3	4
2240	2D materials inks toward smart flexible electronics. Materials Today, 2021, 50, 116-148.	8.3	57
2241	A Super‣tretchable and Highly Sensitive Carbon Nanotube Capacitive Strain Sensor for Wearable Applications and Soft Robotics. Advanced Materials Technologies, 2022, 7, 2100769.	3.0	36

#	Article	IF	CITATIONS
2242	Highly Sensitive Strain Sensor from Topological‣tructure Modulated Dielectric Elastic Nanocomposites. Advanced Materials Technologies, 2022, 7, 2101190.	3.0	5
2243	Electrospun bundled carbon nanofibers for skin-inspired tactile sensing, proprioception and gesture tracking applications. Npj Flexible Electronics, 2021, 5, .	5.1	37
2244	Soft wearable sensors for monitoring symptoms of COVID-19 and other respiratory diseases: a review. Progress in Biomedical Engineering, 2022, 4, 012001.	2.8	12
2245	Smart Chemical Engineeringâ€Based Lightweight and Miniaturized Attachable Systems for Advanced Drug Delivery and Diagnostics. Advanced Materials, 2022, 34, e2106701.	11.1	13
2246	A wearable and sensitive carbon black-porous polydimethylsiloxane based pressure sensor for human physiological signals monitoring. Journal of Materials Science: Materials in Electronics, 2021, 32, 27656-27665.	1.1	7
2247	Boosting carrier transfer at flexible schottky junctions with moisture: A strategy for high-performance wearable direct-current nanogenerators. Nano Energy, 2021, 90, 106593.	8.2	14
2248	Development of Strain Sensor Using Aligned Carbon Nanotubes. Communications in Computer and Information Science, 2011, , 381-386.	0.4	0
2249	A Do-It-Yourself (DIY) Guide to Using Carbon Nanotubes for Stretchable Electronics and Sensors. Lecture Notes in Nanoscale Science and Technology, 2013, , 225-244.	0.4	0
2250	Gellan. , 2014, , 1-46.		1
2251	Conductive Polymer Fibers for Sensor Devices. , 2014, , 1-15.		0
2252	Preparation and force-sensitive properties of carbon nanotube/polydimethylsiloxane composites films. Wuli Xuebao/Acta Physica Sinica, 2014, 63, 237306.	0.2	4
2254	Other Applications. RSC Nanoscience and Nanotechnology, 2014, , 268-291.	0.2	0
2256	Fiber-Based Generator and Strain Sensor for Wearable Electronics and Healthy Monitoring. , 2015, , .		0
2257	Flexible Fabric Strain Sensors. , 2015, , 293-316.		2
2258	Gellan. , 2015, , 1-48.		0
2259	Flexible Fabric Strain Sensors. , 2015, , 1-20.		0
2260	Ag Electrode Strain Sensor Fabrication Using Laser Direct Writing Process. Journal of Sensor Science and Technology, 2015, 24, 215-218.	0.1	1
2262	Hydrogen Sensing Properties of Multiwall Carbon Nanotubes Decorated with TiO ₂ Nanoparticles at Room Temperature. Journal of the Korean Institute of Surface Engineering, 2015, 48, 309-314.	0.1	0

#	Article	IF	CITATIONS
2263	Applications and Outlook. Engineering Materials and Processes, 2016, , 279-297.	0.2	0
2264	Measurement Technologies of Mechanical Properties of Polymers used for Flexible and Stretchable Electronic Packaging. Journal of the Microelectronics and Packaging Society, 2016, 23, 19-28.	0.1	1
2265	12 Wearable Nanoenabled Biosensors. , 2016, , 325-350.		0
2266	Emerging Nanotechnology for Strain Gauge Sensor. , 2016, , 435-472.		0
2267	Transfer Printing for Cyber-Manufacturing Systems. Springer Series in Wireless Technology, 2017, , 671-690.	1.1	1
2268	Data Modelling for Dynamic Monitoring of Vital Signs: Challenges and Perspectives. Lecture Notes in Computer Science, 2017, , 16-25.	1.0	0
2269	Experimental and theoretical analysis of integrated circuit (IC) chips on flexible substrates subjected to bending. Journal of Applied Physics, 2017, 122, .	1.1	2
2270	Polymer nanofiber-carbon nanotube network generating circuits. , 2018, , .		0
2271	Capacitive coupling as a new form of signal transmission in underwater dielectric elastomer sensing. , 2018, , .		1
2272	Updating the finite element model for electrical impedance tomography using self-organizing map. , 2018, , .		0
2273	Graphite Line on Paper as an Aqueous Chemical Sensor. Advances in Intelligent Systems and Computing, 2019, , 764-770.	0.5	0
2274	Rosette Strain Sensors Based on Stretchable Metal Nanowire Piezoresistive Electrodes. Journal of Korean Institute of Metals and Materials, 2018, 56, 835-843.	0.4	1
2275	Nursing Movement Monitoring System Utilizing Hetero-core Fiber Optic Sensors Embedded in Medical Thin Films. IEEJ Transactions on Sensors and Micromachines, 2018, 138, 525-532.	0.0	0
2276	Fabrication and characterization of vapor grown carbon nanofiber reinforced flexible polymer composites. Research on Engineering Structures and Materials, 2019, , .	0.2	0
2277	Layers of Composite Nanomaterials as Prototype of a Tensoresistor Sensor. Springer Proceedings in Physics, 2019, , 523-535.	0.1	1
2278	Nanoparticles-Based Flexible Wearable Sensors for Health Monitoring Applications. , 2019, , 245-284.		1
2279	Improving the electrical conductivity of multi-phase polymer composites via plasticizer assisted nanoparticle dispersion. , 2019, , .		0
2280	Fully rubbery stretchable electronics, sensors, and smart skins. , 2019, , .		0

#	Article	IF	Citations
2281	Progress on the Fabrication of Smart Textiles Based on Soft Strain Sensors. AATCC Journal of Research, 2019, 6, 1-12.	0.3	5
2282	Self-supported Materials for Flexible/Stretchable Sensors. Engineering Materials, 2020, , 269-296.	0.3	0
2283	Graphene: Preparation and Applications. RSC Smart Materials, 2020, , 100-130.	0.1	0
2284	Dynamic strain measurements on a cantilevered beam using CNT based strain sensor. AIP Conference Proceedings, 2020, , .	0.3	0
2285	Tight-binding Hamiltonian considering up to the third nearest neighbours for trans polyacetylene. Journal of Physics Condensed Matter, 2020, 32, 285401.	0.7	2
2286	Wearable Devices for Monitoring Work related Musculoskeletal and Gait Disorders. , 2020, , .		1
2287	Tip Tracking of Surgical Navigation Stylets Using Integrated Strain Sensors. , 2020, , .		1
2288	Ultra‣ensitive and Highly Stretchable Strain Sensors for Monitoring of Human Physiology. Macromolecular Materials and Engineering, 2022, 307, 2100666.	1.7	9
2289	Preparation of stretchable and self-healable dual ionically cross-linked hydrogel based on chitosan/polyacrylic acid with anti-freezing property for multi-model flexible sensing and detection. International Journal of Biological Macromolecules, 2021, 193, 629-637.	3.6	32
2290	A soft tactile sensor featuring subcutaneous tissue structure with collagen fibers. Advanced Robotics, 2021, 35, 308-319.	1.1	2
2291	Capacitive Stretchable Strain Sensor With Low Hysteresis Based on Wavy-Shape Interdigitated Metal Electrodes. IEEE Sensors Journal, 2021, 21, 27335-27342.	2.4	7
2292	Highly sensitive and flexible tactile sensor with truncated pyramid-shaped porous graphene/silicone rubber composites for human motion detection. Composites Science and Technology, 2022, 217, 109078.	3.8	43
2293	Carbon Nanotube Synthesis and Applications. RSC Smart Materials, 2020, , 174-213.	0.1	0
2294	Soft and Stretchable Electronics Design. , 2023, , 258-286.		2
2295	Flexible Substrate-Based Sensors in Health Care and Biosensing Applications. Nanotechnology in the Life Sciences, 2020, , 431-454.	0.4	1
2296	Wearable Antenna Materials. Advances in Mechatronics and Mechanical Engineering, 2020, , 139-162.	1.0	0
2297	A Microfiber Probe-Based Wearable Sensor for Human Healthcare Monitoring. , 2021, , .		1
2298	Printed Electronics-Enabled Wearable/Portable Physical and Chemical Sensors for Personal Digital Healthcare Usage. , 2021, , .		0

#	Article	IF	CITATIONS
2299	Flexible and highly pressure-sensitive ternary composites-wrapped polydimethylsiloxane sponge based on synergy of multi-dimensional components. Composites Part B: Engineering, 2022, 229, 109466.	5.9	17
2300	Highly efficient patterning technique for silver nanowire electrodes by electrospray deposition and its application to self-powered triboelectric tactile sensor. Scientific Reports, 2021, 11, 21437.	1.6	20
2301	Scalably Nanomanufactured Atomically Thin Materialsâ€Based Wearable Health Sensors. Small Structures, 2022, 3, 2100120.	6.9	16
2302	Durable and highly sensitive flexible sensors for wearable electronic devices with PDMS-MXene/TPU composite films. Ceramics International, 2022, 48, 4977-4985.	2.3	29
2303	Flexible Piezoelectric Nanogenerator: PVDF-CsPbBr3 Nanocomposite. Springer Proceedings in Physics, 2021, , 121-129.	0.1	0
2304	Development of an Elastic Piezoelectric Yarn for the Application of a Muscle Patch Sensor. ACS Omega, 2020, 5, 29427-29438.	1.6	1
2305	A stretching-insensitive, self-powered and wearable pressure sensor. Nano Energy, 2022, 91, 106695.	8.2	40
2306	A facile structural strategy for a wearable strain sensor based on carbon nanotube modified helical yarns. Nanoscale Advances, 2021, 4, 250-257.	2.2	6
2307	Biomimetic integration of tough polymer elastomer with conductive hydrogel for highly stretchable, flexible electronic. Nano Energy, 2022, 92, 106735.	8.2	43
2308	A bioinspired three-dimensional integrated e-skin for multiple mechanical stimuli recognition. Nano Energy, 2022, 92, 106777.	8.2	25
2309	SIMULATION OF A FLEXIBLE LINEAR GRAPHENE ANTENNA ARRAY ON A PAPER SUBSTRATE. Interexpo GEO-Siberia, 2021, 8, 307-313.	0.0	0
2310	Experimental study of the impact of electrospinning parameters on the electromechanical properties of strain sensitive electrospun multiwalled carbon nanotubes/ thermoplastic polyurethane nanofibers. Advanced Composite Materials, 2022, 31, 335-350.	1.0	5
2311	Flexible sensors based on assembled carbon nanotubes. Aggregate, 2021, 2, e143.	5.2	18
2312	Surface modulation and structural engineering of graphitic carbon nitride for electrochemical sensing applications. Journal of Nanostructure in Chemistry, 2022, 12, 765-807.	5.3	32
2313	Joule Heating-Driven Transformation of Hard-Carbons to Onion-like Carbon Monoliths for Efficient Capture of Volatile Organic Compounds. ACS Materials Au, 2022, 2, 154-162.	2.6	7
2314	Highly Conductive Strong Healable Nanocomposites via Diels–Alder Reaction and Fillerâ€Polymer Covalent Bifunctionalization. Small, 2021, , 2104764.	5.2	1
2315	Flexible Copper Nanowire Electronics for Wireless Dynamic Pressure Sensing. ACS Applied Electronic Materials, 2021, 3, 5468-5474.	2.0	12
2316	Enabling Longitudinal Respiration Monitoring Using Vapor-Coated Conducting Textiles. ACS Omega, 2021, 6, 31869-31875.	1.6	14

#	Article	IF	CITATIONS
2317	Recent Development of Multifunctional Sensors Based on Low-Dimensional Materials. Sensors, 2021, 21, 7727.	2.1	4
2318	Flexible and Wearable Ultrasound Device for Medical Applications: A Review on Materials, Structural Designs, and Current Challenges. Advanced Materials Technologies, 2022, 7, 2100798.	3.0	26
2319	Electrically Conducting Elastomeric Fibers with High Stretchability and Stability. Small, 2022, 18, e2102813.	5.2	3
2320	Multidimensional Force Sensors Based on Triboelectric Nanogenerators for Electronic Skin. ACS Applied Materials & Interfaces, 2021, 13, 56320-56328.	4.0	30
2321	MWCNT-coated cotton yarn array for piezoresistive force and bending sensor applications in Internet of Things systems. Sensors and Actuators A: Physical, 2021, 332, 113209.	2.0	3
2322	Simulation of piezoresistance and deformation behavior of a flexible 3D printed sensor considering the nonlinear mechanical behavior of materials. Sensors and Actuators A: Physical, 2021, 332, 113214.	2.0	10
2323	Flexible and Stable Carbon Nanotube Film Strain Sensors with Self-Derived Integrated Electrodes. ACS Applied Materials & Interfaces, 2021, 13, 55600-55610.	4.0	8
2324	Conductive Polymer Composites for Soft Tactile Sensors. Macromolecular Research, 2021, 29, 761-775.	1.0	15
2325	Strain-Durable High-Conductivity Nylon-6 Fiber with 1D Nanomaterial Lamellar Cladding for Massive Production. ACS Applied Materials & Interfaces, 2021, 13, 57759-57767.	4.0	5
2326	Programmable Sensitivity Screening of Strain Sensors by Local Electrical and Mechanical Properties Coupling. ACS Nano, 2021, 15, 20590-20599.	7.3	13
2327	Flexible strain sensor based on embedded three-dimensional annular cracks with high mechanical robustness and high sensitivity. Applied Materials Today, 2021, 25, 101247.	2.3	11
2328	Inherently Conductive Poly(dimethylsiloxane) Elastomers Synergistically Mediated by Nanocellulose/Carbon Nanotube Nanohybrids toward Highly Sensitive, Stretchable, and Durable Strain Sensors. ACS Applied Materials & Interfaces, 2021, 13, 59142-59153.	4.0	70
2329	Wireless Passive Flexible Strain Sensor Based on Aluminium Nitride Film. IEEE Sensors Journal, 2022, 22, 3074-3079.	2.4	8
2330	Ultrasensitive and highly stretchable fibers with dual conductive microstructural sheaths for human motion and micro vibration sensing. Nanoscale, 2022, 14, 1962-1970.	2.8	18
2331	Relaxation of Electrical Resistance in Carbon Nanotube Polymer Composites. , 2022, , .		1
2332	Ultrahigh sensitivity wearable sensors enabled by electrophoretic deposition of carbon nanostructured composites onto everyday fabrics. Journal of Materials Chemistry C, 2022, 10, 1617-1624.	2.7	13
2333	Recent Advances in Zwitterionic Hydrogels: Preparation, Property, and Biomedical Application. Gels, 2022, 8, 46.	2.1	45
2334	Nitrogen-doped graphene fiber electrodes with optimal micro-/meso-/macro-porosity ratios for high-performance flexible supercapacitors. Journal of Power Sources, 2022, 520, 230866	4.0	13

#	Article	IF	CITATIONS
2335	Facile fabrication of silicone rubber composite foam with dual conductive networks and tunable porosity for intelligent sensing. European Polymer Journal, 2022, 164, 110980.	2.6	15
2336	Flexible strain sensors for wearable applications fabricated using novel functional nanocomposites: A review. Composite Structures, 2022, 284, 115214.	3.1	85
2337	Ultrasensitive wearable sensor with novel hybrid structures of silver nanowires and carbon nanotubes in fluoroelastomer: Multi-directional sensing for human health monitoring and stretchable electronics. Applied Materials Today, 2022, 26, 101295.	2.3	22
2338	Development of an Elastic Piezoelectric Yarn for the Application of a Muscle Patch Sensor. ACS Omega, 2020, 5, 29427-29438.	1.6	6
2339	Light-material interfaces for self-powered optoelectronics. Journal of Materials Chemistry A, 2021, 9, 25694-25705.	5.2	4
2340	Ultrasensitive strain sensor enhanced by Bonded Light Emitting Diodes. , 2021, , .		0
2341	A Capacitive and Piezoresistive Hybrid Sensor for Longâ€Distance Proximity and Wideâ€Range Force Detection in Human–Robot Collaboration. Advanced Intelligent Systems, 2022, 4, .	3.3	12
2342	Influence of Defect Number, Distribution Continuity and Orientation on Tensile Strengths of the CNT-Based Networks: A Molecular Dynamics Study. Nanoscale Research Letters, 2022, 17, 15.	3.1	2
2343	Excellent reversibility of resistive nanocomposite strain sensor composed of silver nanoflowers, polyurethane, and polyester rubber band. Composites Science and Technology, 2022, 221, 109305.	3.8	9
2344	Self-Rebound Cambered Triboelectric Nanogenerator Array for Self-Powered Sensing in Kinematic Analytics. ACS Nano, 2022, 16, 1271-1279.	7.3	18
2345	Recent progress in graphene-based wearable piezoresistive sensors: From 1D to 3D device geometries. Nano Materials Science, 2023, 5, 247-264.	3.9	20
2346	Smartphone-based chemical sensors and biosensors for biomedical applications. , 2022, , 307-332.		0
2347	Tunable Largeâ€Scale Compressive Strain Sensor Based on Carbon Nanotube/Polydimethylsiloxane Foam Composites by Additive Manufacturing. Advanced Engineering Materials, 2022, 24, .	1.6	8
2348	Electrically Conductive Nanocomposite Fibers for Flexible and Structural Electronics. Applied Sciences (Switzerland), 2022, 12, 941.	1.3	3
2349	Graphene-based strain sensing in composites for structural and health monitoring applications. SN Applied Sciences, 2022, 4, 1.	1.5	4
2351	Graphene oxide-based composite organohydrogels with high strength and low temperature resistance for strain sensors. Soft Matter, 2022, 18, 1201-1208.	1.2	9
2352	Novel Conductive Polymer Composites for Asphalt Pavement Structure in Situ Strain Monitoring: Influence of CB/CNT and GNP/CNT Nano/Micro Hybrid Fillers on Strain Sensing Behavior. IEEE Sensors Journal, 2022, 22, 3945-3956.	2.4	9
2353	Flexible Strain Sensors for Wearable Hand Gesture Recognition: From Devices to Systems. Advanced Intelligent Systems, 2022, 4, .	3.3	38

#	Article	IF	CITATIONS
2354	Twist-Stabilized, Coiled Carbon Nanotube Yarns with Enhanced Capacitance. ACS Nano, 2022, 16, 2661-2671.	7.3	31
2355	Validation of theoretical analysis of surface bending strain in polymer films by surface-labeled grating method. AIP Advances, 2022, 12, 015324.	0.6	3
2356	Biocompatible Lignin-Containing Hydrogels with Self-Adhesion, Conductivity, UV Shielding, and Antioxidant Activity as Wearable Sensors. ACS Applied Polymer Materials, 2022, 4, 1448-1456.	2.0	26
2357	Environment tolerant, adaptable and stretchable organohydrogels: preparation, optimization, and applications. Materials Horizons, 2022, 9, 1356-1386.	6.4	75
2358	Optoelectronic-Based Pose Sensing for a Hand Rehabilitation Exoskeleton Continuous Structure. IEEE Sensors Journal, 2022, 22, 5606-5615.	2.4	5
2359	Capacitive Sensor Combining Proximity and Pressure Sensing for Accurate Grasping of a Prosthetic Hand. ACS Applied Electronic Materials, 2022, 4, 869-877.	2.0	18
2360	CNT/Graphite/SBS Conductive Fibers for Strain Sensing in Wearable Telerehabilitation Devices. Sensors, 2022, 22, 800.	2.1	7
2361	Graphene as a Piezoresistive Material in Strain Sensing Applications. Micromachines, 2022, 13, 119.	1.4	22
2362	Multifunctional Slippery Polydimethylsiloxane/Carbon Nanotube Composite Strain Sensor with Excellent Liquid Repellence and Anti-Icing/Deicing Performance. Polymers, 2022, 14, 409.	2.0	26
2363	Carbon materials: The burgeoning promise in electronics. International Journal of Minerals, Metallurgy and Materials, 2022, 29, 404-423.	2.4	12
2364	Enhanced electromechanical resilience and mechanism of the composites-coated fabric sensors with crack-induced conductive network for wearable applications. Smart Materials and Structures, 2022, 31, 035032.	1.8	2
2365	Piezoresistive 3D graphene–PDMS spongy pressure sensors for IoT enabled wearables and smart products. Flexible and Printed Electronics, 2022, 7, 015004.	1.5	11
2366	A detailed comparative performance analysis of the Transition Metal Di-chalcogenides (TMDs) based strain sensors through experimental realisations and first principle calculations. FlatChem, 2022, 32, 100344.	2.8	19
2367	Fabrication and implementation of carbon nanotubes for piezoresistive-sensing applications: A review. Journal of Science: Advanced Materials and Devices, 2022, 7, 100416.	1.5	10
2368	Intelligent and highly sensitive strain sensor based on indium tin oxide micromesh with a high crack density. Nanoscale, 2022, 14, 4234-4243.	2.8	6
2369	Biomimetic Metal–Organic Framework-Derived Porous Carbon Welded Carbon Nanotube Networks for Strain Sensors with High Sensitivity and Wide Sensing Range. SSRN Electronic Journal, 0, , .	0.4	0
2370	Respiratory Monitoring by Ultrafast Humidity Sensors with Nanomaterials: A Review. Sensors, 2022, 22, 1251.	2.1	29
2371	Colorâ€Customizable, Stretchable, Selfâ€Healable and Degradable Ionic Gel for Variable Humanâ€Motion Detection via Strain, Pressure, and Torsion. Advanced Materials Interfaces, 2022, 9, .	1.9	11

#	Article	IF	CITATIONS
2372	Highly sensitive flexible strain sensor based on GSB-enhanced three-dimensional graphene composite. Physica E: Low-Dimensional Systems and Nanostructures, 2022, 140, 115187.	1.3	6
2373	Wearable Multi-Functional Sensing Technology for Healthcare Smart Detection. Micromachines, 2022, 13, 254.	1.4	24
2374	A gold nanowire-integrated soft wearable system for dynamic continuous non-invasive cardiac monitoring. Biosensors and Bioelectronics, 2022, 205, 114072.	5.3	15
2375	On-skin ultrathin and stretchable multifunctional sensor for smart healthcare wearables. Npj Flexible Electronics, 2022, 6, .	5.1	68
2377	Flexible Wood-Based Triboelectric Self-Powered Smart Home System. ACS Nano, 2022, 16, 3341-3350.	7.3	72
2378	Highly sensitive, direction-aware, and transparent strain sensor based on oriented electrospun nanofibers for wearable electronic applications. Chemical Engineering Journal, 2022, 435, 135004.	6.6	42
2379	Cellulose based flexible and wearable sensors for health monitoring. Materials Advances, 2022, 3, 3766-3783.	2.6	15
2380	Signal enhancement strategies. , 2022, , 123-168.		0
2381	Flexible Intelligent Array Patch Based on Synergy of Polyurethane and Nanofiber for Sensitive Monitor and Smart Treatment. SSRN Electronic Journal, 0, , .	0.4	0
2382	MXene wearables: properties, fabrication strategies, sensing mechanism and applications. Materials Advances, 2022, 3, 3784-3808.	2.6	29
2383	Highly stretchable and sensitive strain sensors with ginkgo-like sandwich architectures. Nanoscale Advances, 2022, 4, 1681-1693.	2.2	6
2384	Nanomaterials for soft wearable electronics. , 2022, , .		2
2385	Multi-Functional Sensor Array on the Cryoablation Balloon for Atrial Fibrillation. SSRN Electronic Journal, 0, , .	0.4	0
2386	Soft stretchable conductive nanocomposites for biointegrated electronics. , 2023, , 306-321.		1
2387	Water-Based Highly Stretchable PEDOT:PSS/Nonionic WPU Transparent Electrode. Polymers, 2022, 14, 949.	2.0	13
2388	Flexible actuator by electric bending of saline solution-filled carbon nanotubes. Journal Physics D: Applied Physics, 2022, 55, 215301.	1.3	1
2389	Flexible Electronics and Devices as Human–Machine Interfaces for Medical Robotics. Advanced Materials, 2022, 34, e2107902.	11.1	211
2390	Shape-Memory Materials via Electrospinning: A Review. Polymers, 2022, 14, 995.	2.0	17

#	Article	IF	CITATIONS
2391	Functionalized Fiber-Based Strain Sensors: Pathway to Next-Generation Wearable Electronics. Nano-Micro Letters, 2022, 14, 61.	14.4	113
2392	Challenges in Materials and Devices of Electronic Skin. , 2022, 4, 577-599.		20
2393	A Wearable Allâ€Gel Multimodal Cutaneous Sensor Enabling Simultaneous Singleâ€Site Monitoring of Cardiacâ€Related Biophysical Signals. Advanced Materials, 2022, 34, e2110082.	11.1	31
2394	A perspective on ultralong silicon nanowires for flexible sensors. Applied Physics Letters, 2022, 120, 130501.	1.5	2
2395	Electromechanically Durable Graphene Oxide-Embedded Elastomer via Simultaneous Corporation of Siloxane/Polyol Based on the Dual Secondary Bond Architecture. ACS Applied Polymer Materials, 2022, 4, 2614-2625.	2.0	2
2396	Ultrasensitive crack-based strain sensors: mechanism, performance, and biomedical applications. Journal of Mechanical Science and Technology, 2022, 36, 1059-1077.	0.7	8
2397	3D Printed Flexible Microscaled Porous Conductive Polymer Nanocomposites for Piezoresistive Sensing Applications. Advanced Materials Technologies, 2022, 7, .	3.0	12
2398	Walking motion real-time detection method based on walking stick, IoT, COPOD and improved LightGBM. Applied Intelligence, 2022, 52, 16398-16416.	3.3	5
2399	Flexible Sensory Systems: Structural Approaches. Polymers, 2022, 14, 1232.	2.0	5
2400	NiO-Based Electronic Flexible Devices. Applied Sciences (Switzerland), 2022, 12, 2839.	1.3	12
2401	Allâ€day wearable health monitoring system. EcoMat, 2022, 4, .	6.8	29
2402	Manipulating Strain in Transistors: From Mechanically Sensitive to Insensitive. Advanced Electronic Materials, 2022, 8, .	2.6	3
2403	A Wearable Strain Sensor Based on Electroconductive Hydrogel Composites for Human Motion Detection. Macromolecular Materials and Engineering, 2022, 307, .	1.7	12
2404	Reconfigurable, Stretchable Strain Sensor with the Localized Controlling of Substrate Modulus by Two-Phase Liquid Metal Cells. Nanomaterials, 2022, 12, 882.	1.9	11
2405	Highly efficient doping of carbon nanotube films with chloroauric acid by dip-coating. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2022, 278, 115648.	1.7	10
2406	Selective Patterning of Conductive Elastomers Embedded With Silver Powders and Carbon Nanotubes for Stretchable Electronics. IEEE Robotics and Automation Letters, 2022, 7, 4983-4990.	3.3	2
2407	A wide sensing range and high sensitivity flexible strain sensor based on carbon nanotubes and MXene. Ceramics International, 2022, 48, 10220-10226.	2.3	34
2408	Preparation of graphene-starch composite film and its application in sensor materials. International Journal of Biological Macromolecules, 2022, 207, 365-373.	3.6	9

#	Article	IF	CITATIONS
2409	Wearable triboelectric devices for haptic perception and VR/AR applications. Nano Energy, 2022, 96, 107112.	8.2	39
2410	A flexible and sensitive strain sensor with three-dimensional reticular structure using biomass Juncus effusus for monitoring human motions. Chemical Engineering Journal, 2022, 438, 135600.	6.6	41
2411	Magnetically induced robust anisotropic structure of multi-walled carbon nanotubes/Ni for high-performance flexible strain sensor. Carbon, 2022, 194, 185-196.	5.4	23
2412	Recent advances in inorganic functional nanomaterials based flexible electrochemical sensors. Talanta, 2022, 244, 123419.	2.9	28
2413	Data-Driven Modeling and Characterization of Carbon Nanotube Nanocomposite Strain Sensors for Human Health Monitoring Applications. , 2021, , .		0
2414	Dedicated Wearable Sensitive Strain Sensor, Based on Carbon Nanotubes, for Monitoring the Rat Respiration Rate. , 2021, 10, .		0
2415	Highly Stretchable and Sensitive Single-Walled Carbon Nanotube-Based Sensor Decorated on a Polyether Ester Urethane Substrate by a Low Hydrothermal Process. ACS Omega, 2021, 6, 34866-34875.	1.6	2
2416	Recent Advances of Prussian Blue-Based Wearable Biosensors for Healthcare. Analytical Chemistry, 2022, 94, 297-311.	3.2	22
2417	Contact-Resistance-Free Stretchable Strain Sensors with High Repeatability and Linearity. ACS Nano, 2022, 16, 541-553.	7.3	43
2418	Physical and Chemical Sensors on the Basis of Laser-Induced Graphene: Mechanisms, Applications, and Perspectives. ACS Nano, 2021, 15, 18708-18741.	7.3	70
2419	Cost-Effective Fabrication of Transparent Strain Sensors via Micro-Scale 3D Printing and Imprinting. Nanomaterials, 2022, 12, 120.	1.9	13
2420	Smallâ€Sized Deformable Shear Sensor Array for Direct Monitoring of Quantitative Shear Distribution. Advanced Materials Technologies, 2022, 7, .	3.0	5
2421	Development of multi-angle fiber array for accurate measurement of flexion and rotation in human joints. Npj Flexible Electronics, 2021, 5, .	5.1	9
2422	High Performance Microcrack-based MWCNT-rubber Strain Sensor. , 2021, , .		0
2423	A Stretchable Strain Sensor Based on CNTs/GR for Human Motion Monitoring. Nano, 2021, 16, .	0.5	1
2424	Development of piezoresistive PDMS/MWCNT foam nanocomposite sensor with ultrahigh flexibility and compressibility. Journal of Intelligent Material Systems and Structures, 2022, 33, 1751-1761.	1.4	4
2425	Outward- and inward-distinguishable bending sensor with silver nanowires sandwiched between polydimethylsiloxane layers. AIP Advances, 2021, 11, 125309.	0.6	0
2426	Carbon nanoparticles for medicine: current and future. Bulletin of Materials Science, 2022, 45, 1.	0.8	5

	CITATION	ILPORT	
# 2427	ARTICLE Quantitatively investigating the self-attraction of nanowires. Nano Research, 2022, 15, 3729-3736.	IF 5.8	Citations 3
2428	Stretchable Thermoelectric-Based Self-Powered Dual-Parameter Sensors with Decoupled Temperature and Strain Sensing. ACS Applied Materials & amp; Interfaces, 2021, 13, 60498-60507.	4.0	59
2429	Fabrication of flexible strain sensors using electrohydrodynamically printed silver nanowires. , 2021,		0
2431	Highly sensitive, stretchable, piezoresistive auxetic sensor based on graphite powders sandwiched between silicon rubber layers. Polymer Bulletin, 2023, 80, 3745-3760.	1.7	8
2432	Enhanced Electricity Generation from Graphene Microfluidic Channels for Self-Powered Flexible Sensors. Nano Letters, 2022, 22, 3266-3274.	4.5	17
2433	Multifunctional Elastic Nanocomposites with Extremely Low Concentrations of Single-Walled Carbon Nanotubes. ACS Applied Materials & Interfaces, 2022, 14, 18866-18876.	4.0	19
2434	Flexible microstructured pressure sensors: design, fabrication and applications. Nanotechnology, 2022, 33, 322002.	1.3	27
2435	Flexible intelligent array patch based on synergy of polyurethane and nanofiber for sensitive monitor and smart treatment. Chemical Engineering Journal, 2022, 443, 136378.	6.6	11
2438	Biocompatible Sensors Are Revolutionizing Healthcare Technologies. , 2022, , 227-249.		1
2439	Advances in flexible sensors with MXene materials. New Carbon Materials, 2022, 37, 303-320.	2.9	20
2440	Progress of flexible strain sensors for physiological signal monitoring. Biosensors and Bioelectronics, 2022, 211, 114298.	5.3	59
2441	Research on the High Sensitivity Detection Method of Carbon Nanotube/Polydimethylsiloxane Composites Structure. Micromachines, 2022, 13, 719.	1.4	1
2442	A flexible strain sensor based on conductive <scp>TPU</scp> / <scp>CNTsâ€Gr</scp> composites. Journal of Applied Polymer Science, 2022, 139, .	1.3	7
2443	High Performance Flexible Strain Sensors Based On Silver Nanowires/thermoplastic Polyurethane Composites for Wearable Devices. Applied Composite Materials, 2022, 29, 1621-1636.	1.3	11
2444	Ultrafast, highly sensitive, flexible textile-based humidity sensors made of nanocomposite filaments. Materials Today Nano, 2022, 18, 100214.	2.3	9
2445	Dipentaerythritolâ€Derived Hyperbranched Polyurethane Elastomers and Their Applications in Flexible Strain Sensors. Macromolecular Materials and Engineering, 2022, 307, .	1.7	1
2446	Multifunctional Textile Electronic with Sensing, Energy Storing, and Electrothermal Heating Capabilities. ACS Applied Materials & Interfaces, 2022, 14, 22497-22509.	4.0	11
2447	Reduced graphene oxide-based stretchable strain sensor for monitoring of physical activities and minute movement. Materials Today: Proceedings, 2022, 62, 5975-5981.	0.9	6

#	Article	IF	CITATIONS
2448	Stretchable broadband photo-sensor sheets for nonsampling, source-free, and label-free chemical monitoring by simple deformable wrapping. Science Advances, 2022, 8, eabm4349.	4.7	19
2449	Mechanical characterization of the stress-strain behavior of the polydimethylsiloxane (PDMS) substate of wearable strain sensors under uniaxial loading conditions. Sensors and Actuators A: Physical, 2022, 341, 113580.	2.0	12
2450	Multi-functional sensor array on the cryoablation balloon for atrial fibrillation. Sensors and Actuators A: Physical, 2022, 341, 113605.	2.0	2
2451	Biomimetic metal–organic framework-derived porous carbon welded carbon nanotube networks for strain sensors with high sensitivity and wide sensing range. Applied Surface Science, 2022, 593, 153417.	3.1	8
2452	Enhancement of catalytic activity by addition of chlorine in chemical vapor deposition growth of carbon nanotube forests. Carbon, 2022, 196, 391-400.	5.4	7
2453	Dynamic metal–ligand crossâ€link promoted mechanically robust and <scp>pH</scp> responsive hydrogels for shape memory, programmable actuation and resistive sensing application. Journal of Applied Polymer Science, 0, , .	1.3	2
2454	MWCNTs/PDMS composite enabled printed flexible omnidirectional strain sensors for wearable electronics. Composites Science and Technology, 2022, 226, 109518.	3.8	42
2455	Multi-factor-controlled ReRAM devices and their applications. Journal of Materials Chemistry C, 2022, 10, 8895-8921.	2.7	22
2456	Flexible Pressure Sensor With Wide Linear Sensing Range for Human–Machine Interaction. IEEE Transactions on Electron Devices, 2022, 69, 3901-3907.	1.6	7
2457	Construction of a Two-Dimensional Response Network in Three-Dimensional Composites to Dramatically Enhance Sensor Sensitivity: A Simple, Feasible, and Green Regulating Strategy. Industrial & Engineering Chemistry Research, 2022, 61, 8069-8080.	1.8	6
2458	Silicone-Textile Composite Resistive Strain Sensors for Human Motion-Related Parameters. Sensors, 2022, 22, 3954.	2.1	9
2459	Marangoni-flow-assisted assembly of single-walled carbon nanotube films for human motion sensing. Fundamental Research, 2022, , .	1.6	1
2460	Octopus-Like Carbon Nanomaterial for Double High Stretchable Conductor. SSRN Electronic Journal, 0, , .	0.4	0
2461	Insight into the Effect of Structural Geometric Design on the Sensitivity of Magnetic Strain Sensors. SSRN Electronic Journal, 0, , .	0.4	0
2462	Intelligent Nanomaterials for Wearable and Stretchable Strain Sensor Applications: The Science behind Diverse Mechanisms, Fabrication Methods, and Real-Time Healthcare. Polymers, 2022, 14, 2219.	2.0	5
2463	Breathable and Wearable Strain Sensors Based on Synergistic Conductive Carbon Nanotubes/Cotton Fabrics for Multi-directional Motion Detection. ACS Applied Materials & Interfaces, 2022, 14, 25753-25762.	4.0	44
2464	Development and Prospects of Triboelectric Nanogenerators in Sports and Physical State Monitoring. Frontiers in Materials, 2022, 9, .	1.2	1
2465	High-Performance Flexible Piezoresistive Sensor Based on Ti3C2Tx MXene with a Honeycomb-like Structure for Human Activity Monitoring. Micromachines, 2022, 13, 821.	1.4	7

#	Article	IF	CITATIONS
2466	The Development and Characterization of Carbon Nanofiber/Polylactic Acid Filament for Additively Manufactured Piezoresistive Sensors. Additive Manufacturing, 2022, , 102948.	1.7	1
2467	Detection Range Enhancement of Stretchable Ultrasensitive Crackâ€Based Strain Sensor with Ordered Ag Nanowire Micromeshes for Human Epidermis Monitoring. Advanced Engineering Materials, 2022, 24,	1.6	4
2468	Fibre-based wearable electronic technology for personal protective clothing. , 2022, , 511-547.		2
2469	Strain-ultrasensitive surface wrinkles for visual optical sensors. Materials Horizons, 2022, 9, 2233-2242.	6.4	10
2470	Intelligent (or hi-tech) textiles for monitoring health conditions. , 2022, , 373-393.		0
2472	Transparent Conducting Films Based on Carbon Nanotubes: Rational Design toward the Theoretical Limit. Advanced Science, 2022, 9, .	5.6	32
2473	Laser-Induced Graphene-Based Wearable Epidermal Ion-Selective Sensors for Noninvasive Multiplexed Sweat Analysis. Biosensors, 2022, 12, 397.	2.3	18
2474	4D printing of soft orthoses for tremor suppression. Bio-Design and Manufacturing, 2022, 5, 786-807.	3.9	11
2475	Stretchy Electrochemical Harvesters for Binarized Self-Powered Strain Gauge-Based Static Motion Sensors. Sensors, 2022, 22, 4542.	2.1	3
2476	Recent Development of Morphologyâ€Controlled Hybrid Nanomaterials for Triboelectric Nanogenerator: A Review. Chemical Record, 2022, 22, .	2.9	12
2477	Binary Co-Gelator Strategy: Toward Highly Deformable Ionic Conductors for Wearable Ionoskins. ACS Applied Materials & Interfaces, 2022, 14, 32533-32540.	4.0	3
2478	A sensitive and flexible interdigitated capacitive strain gauge based on carbon nanofiber/PANI/silicone rubber nanocomposite for body motion monitoring. Materials Research Express, 2022, 9, 065605.	0.8	7
2479	Investigating Mechanical Behaviours of PDMS Films under Cyclic Loading. Polymers, 2022, 14, 2373.	2.0	12
2480	Superior Performances Via Designed Multiple Sub-Hierarchical Embossments within Interfaces for Flexible Sensors. SSRN Electronic Journal, 0, , .	0.4	0
2481	Lignin-derived porous graphene for wearable and ultrasensitive strain sensors. Journal of Materials Chemistry C, 2022, 10, 11730-11738.	2.7	9
2482	Analytical Modeling and Experimental Validation of a Gelatin-based Shape Sensor for Soft Robots. , 2022, , .		5
2483	Measurement of Parachute Canopy Textile Deformation Using Mechanically Invisible Stretchable Lightguides. Advanced Materials Technologies, 2022, 7, .	3.0	4
2484	Precise Deposition of Carbon Nanotube Bundles by Inkjet-Printing on a CMOS-Compatible Platform. Materials, 2022, 15, 4935.	1.3	6

#	Article	IF	CITATIONS
2485	Easy-Scalable Flexible Sensors Made of Carbon Nanotube-Doped Polydimethylsiloxane: Analysis of Manufacturing Conditions and Proof of Concept. Sensors, 2022, 22, 5147.	2.1	8
2486	Carbon Nanotube Coated Fibrous Tubes for Highly Stretchable Strain Sensors Having High Linearity. Nanomaterials, 2022, 12, 2458.	1.9	6
2487	Superhydrophobic conductive rubber band with synergistic dual conductive layer for wide-range sensitive strain sensor. Science Bulletin, 2022, 67, 1669-1678.	4.3	89
2488	Step-By-Step Development of Vertically Aligned Carbon Nanotubes by Plasma-Enhanced Chemical Vapor Deposition. Coatings, 2022, 12, 943.	1.2	0
2489	Brush drawing multifunctional electronic textiles for human-machine interfaces. Current Applied Physics, 2022, 41, 131-138.	1.1	3
2490	Designing of semiconductive cotton fabrics based on poly (propynyl benzo thiazolone) with UV protection and antibacterial properties. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2022, 283, 115857.	1.7	3
2491	To investigate the effect of bidirectional dimension changes on the sensitivity of magnetic strain sensors. Chemical Engineering Journal, 2022, 450, 138088.	6.6	0
2492	Fabrication method of flexible strain sensors with CNTs and solvents. Sensors and Actuators A: Physical, 2022, 345, 113775.	2.0	14
2493	AgNWs/MXene derived multifunctional knitted fabric capable of high electrothermal conversion efficiency, large strain and temperature sensing, and EMI shielding. Journal of Alloys and Compounds, 2022, 923, 166471.	2.8	19
2494	lonic shape memory polymer gels as multifunctional sensors. Soft Matter, 2022, 18, 6791-6799.	1.2	2
2495	Flexible and Stretchable Optical Fiber Strain Sensor based on Nanoparticles and Polymer for Human Motion Detection. , 2022, , .		2
2496	Selfâ€Powered Wearable Piezoelectric Monitoring of Human Motion and Physiological Signals for the Postpandemic Era: A Review. Advanced Materials Technologies, 2022, 7, .	3.0	38
2497	Laser-Induced Graphene Stretchable Strain Sensor with Vertical and Parallel Patterns. Micromachines, 2022, 13, 1220.	1.4	6
2498	A Wireless Strain Sensor based on Piezoresistive Fabrics. , 2022, , .		Ο
2499	Functional Fiber Materials to Smart Fiber Devices. Chemical Reviews, 2023, 123, 613-662.	23.0	69
2500	High-Performance Strain Sensors Based on Au/Graphene Composite Films with Hierarchical Cracks for Wide Linear-Range Motion Monitoring. ACS Applied Materials & Interfaces, 2022, 14, 39230-39239.	4.0	25
2501	Magnetic Self-Assembled Pearl Necklace-like Microstructure for Improving the Performance of a Flexible Strain Sensor. ACS Applied Electronic Materials, 2022, 4, 4160-4172.	2.0	4
2502	A Multifunctional Organogel Polyelectrolyte for Flexible Supercapacitors. ACS Applied Energy Materials, 2022, 5, 9303-9308.	2.5	5

#	Article	IF	CITATIONS
2503	Recent Advances in Stretchable and Wearable Capacitive Electrophysiological Sensors for Long-Term Health Monitoring. Biosensors, 2022, 12, 630.	2.3	26
2504	Double-Layered Conductive Network Design of Flexible Strain Sensors for High Sensitivity and Wide Working Range. ACS Applied Materials & Interfaces, 2022, 14, 36611-36621.	4.0	26
2505	A Wearable Flexible Acceleration Sensor for Monitoring Human Motion. Biosensors, 2022, 12, 620.	2.3	10
2506	Research on Training Model of Volleyball Based on Flexible Strain Sensing Network for Training. Journal of Sensors, 2022, 2022, 1-12.	0.6	1
2507	Topological Gradients for Metal Film-Based Strain Sensors. Nano Letters, 2022, 22, 6637-6646.	4.5	16
2508	Highly Stretchable, Breathable, and Selfâ€Powered Strainâ€Temperature Dualâ€Functional Sensors with Laminated Structure for Health Monitoring, Hyperthermia, and Physiotherapy Applications. Advanced Electronic Materials, 2022, 8, .	2.6	6
2509	Flexible assembled tactile sensor with freely integration design. Smart Materials and Structures, 2022, 31, 105013.	1.8	4
2510	Octopus-like carbon nanomaterial for double high stretchable conductor. Carbon, 2022, 199, 200-207.	5.4	1
2511	Super stretchability, strong adhesion, flexible sensor based on Fe3+ dynamic coordination sodium alginate/polyacrylamide dual-network hydrogel. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 652, 129733.	2.3	18
2512	Facile fabrication of stretchable and multifunctional thermoelectric composite fabrics with strain-enhanced self-powered sensing performance. Composites Communications, 2022, 35, 101275.	3.3	25
2513	Nanofloating gate modulated synaptic organic light-emitting transistors for reconfigurable displays. Science Advances, 2022, 8, .	4.7	10
2514	An overview of composite structural engineering for stretchable strain sensors. Composites Science and Technology, 2022, 229, 109714.	3.8	6
2515	Geometrical and electrical modulation of cracked metal films based on metal nanowire/elastomer composites for high-performance wearable strain sensing. Composites Science and Technology, 2022, 230, 109738.	3.8	5
2516	Facile fabrication of flexible alginate/polyaniline/graphene hydrogel fibers for strain sensor. Journal of Engineered Fibers and Fabrics, 2022, 17, 155892502211146.	0.5	3
2517	Trends on Carbon Nanotube-Based Flexible and Wearable Sensors via Electrochemical and Mechanical Stimuli: A Review. IEEE Sensors Journal, 2022, 22, 20102-20125.	2.4	8
2518	3D printable conductive ionic hydrogels with self-adhesion performance for strain sensing. Journal of Materials Chemistry C, 2022, 10, 14288-14295.	2.7	7
2519	Highly sensitive and fast response strain sensor based on evanescently coupled micro/nanofibers. Opto-Electronic Advances, 2022, 5, 210101-210101.	6.4	24
2520	Applications of nanotubes in preparation of polymer composite materials. , 2022, , 557-578.		0

#	Article	IF	CITATIONS
2521	Styrene-ethylene-butadiene-styrene copolymer/carbon nanotubes composite fiber based strain sensor with wide sensing range and high linearity for human motion detection. Journal of Industrial Textiles, 2022, 52, 152808372211219.	1.1	0
2522	Polyglycerol sebacate (PGS)-based composite and nanocomposites: properties and applications. International Journal of Polymeric Materials and Polymeric Biomaterials, 2023, 72, 1360-1374.	1.8	4
2523	Liquid-metal micro-networks with strain-induced conductivity for soft electronics and robotic skin. Npj Flexible Electronics, 2022, 6, .	5.1	9
2524	Carbon Nanotubeâ€Based Strain Sensors: Structures, Fabrication, and Applications. Advanced Materials Technologies, 2023, 8, .	3.0	29
2525	An ultrasensitive and stretchable strain sensor based on a microcrack structure for motion monitoring. Microsystems and Nanoengineering, 2022, 8, .	3.4	20
2526	Surface Wrinkling for Flexible and Stretchable Sensors. Small, 2022, 18, .	5.2	46
2527	Review of Flexible Piezoresistive Strain Sensors in Civil Structural Health Monitoring. Applied Sciences (Switzerland), 2022, 12, 9750.	1.3	11
2528	Nanoarchitectonics with MWCNT and Ecoflex film for flexible strain sensors: wide linear range for wearable applications and monitoring of pressure distribution. Applied Physics A: Materials Science and Processing, 2022, 128, .	1.1	2
2529	Soft Human–Machine Interface Sensing Displays: Materials and Devices. Advanced Materials, 2023, 35, .	11.1	12
2530	High-Strength and Extensible Electrospun Yarn for Wearable Electronics. ACS Applied Materials & Interfaces, 2022, 14, 46068-46076.	4.0	14
2531	Topographic design in wearable MXene sensors with in-sensor machine learning for full-body avatar reconstruction. Nature Communications, 2022, 13, .	5.8	49
2532	Large-Scale Integrated Flexible Tactile Sensor Array for Sensitive Smart Robotic Touch. ACS Nano, 2022, 16, 16784-16795.	7.3	35
2533	ZrB2/SiCN Thin-Film Strain Gauges for In-Situ Strain Detection of Hot Components. Micromachines, 2022, 13, 1467.	1.4	6
2534	A supersensitive wearable sensor constructed with PDMS porous foam and multi-integrated conductive pathways structure. Ceramics International, 2023, 49, 4641-4649.	2.3	10
2536	Stretchable Strain Sensors Based on Deterministicâ€Contactâ€Resistance Braided Structures with High Performance and Capability of Continuous Production. Advanced Functional Materials, 2022, 32, .	7.8	17
2537	Ultrafast growth of carbon nanotubes using microwave irradiation: characterization and its potential applications. Heliyon, 2022, 8, e10943.	1.4	11
2538	Graphene and Liquid Metal Integrated Multifunctional Wearable Platform for Monitoring Motion and Human–Machine Interfacing. ACS Nano, 2022, 16, 20305-20317.	7.3	25
2539	Ply-hierarchical coiled yarns for two extreme applications: Strain sensors and elastic supercapacitor electrodes. Sensors and Actuators B: Chemical, 2022, 373, 132775.	4.0	4

#	Article	IF	CITATIONS
2540	An extremely transparent and multi-responsive healable hydrogel strain sensor. Journal of Materials Chemistry A, 2022, 10, 24096-24105.	5.2	6
2541	Laser-Patterned Hierarchical Aligned Micro-/Nanowire Network for Highly Sensitive Multidimensional Strain Sensor. ACS Applied Materials & Interfaces, 2022, 14, 48276-48284.	4.0	12
2542	Combined Triboelectric and Piezoelectric Effect in ZnO/PVDF Hybrid-Based Fiber-Structured Nanogenerator with PDMS:Carbon Black Electrodes. Polymers, 2022, 14, 4414.	2.0	9
2543	Tunneling resistance model for piezoresistive carbon nanotube polymer composites. Nanotechnology, 2023, 34, 045502.	1.3	4
2544	Chemically derived graphene quantum dots for high-strain sensing. Journal of Materials Science and Technology, 2023, 141, 110-115.	5.6	11
2545	Elastic Fibers/Fabrics for Wearables and Bioelectronics. Advanced Science, 2022, 9, .	5.6	19
2546	Advanced Functional Composite Materials toward E‧kin for Health Monitoring and Artificial Intelligence. Advanced Materials Technologies, 2023, 8, .	3.0	24
2547	Epidermal Inspired Flexible Sensor with Buckypaper/PDMS Interfaces for Multimodal and Human Motion Monitoring Applications. ACS Omega, 2022, 7, 37674-37682.	1.6	4
2548	Recent Progress on Flexible Room-Temperature Gas Sensors Based on Metal Oxide Semiconductor. Nano-Micro Letters, 2022, 14, .	14.4	67
2549	New optical flux for optical antiferromagnetic modified drift density. Optical and Quantum Electronics, 2022, 54, .	1.5	3
2550	High-Resolution, Transparent, and Flexible Printing of Polydimethylsiloxane via Electrohydrodynamic Jet Printing for Conductive Electronic Device Applications. Polymers, 2022, 14, 4373.	2.0	7
2551	An Elastic and Damage-Tolerant Dry Epidermal Patch with Robust Skin Adhesion for Bioelectronic Interfacing. ACS Nano, 2022, 16, 18608-18620.	7.3	14
2552	Flexible multisensory sensor based on hierarchically porous ionic liquids/thermoplastic polyurethane composites. Applied Surface Science, 2023, 610, 155516.	3.1	11
2553	3D-Printed Soft Wearable Electronics: Techniques, Materials, and Applications. , 2023, , 1-49.		0
2554	Design and Testing of a Capacitive Interface for Underwater Stretch Sensors. Smart Materials and Structures, 0, , .	1.8	0
2555	A Review of Ergonomic Risk Assessment Techniques Employed in Construction Industry. , 2023, , 117-131.		1
2556	Conductive fibers for biomedical applications. Bioactive Materials, 2023, 22, 343-364.	8.6	14
2557	Innovative approach using ultrasonic-assisted laser beam machining for the fabrication of ultrasensitive carbon nanotubes-based strain gauges. Optics and Lasers in Engineering, 2023, 161, 107325	2.0	7

#	Article	IF	CITATIONS
2558	Classifying gait alterations using an instrumented smart sock and deep learning. IEEE Sensors Journal, 2022, , 1-1.	2.4	1
2559	Latex-Based Carbon Nanotube Composites. , 2022, , 877-900.		0
2560	Device, Circuit, and System Design for Enabling Giga-Hertz Large-Area Electronics. IEEE Open Journal of the Solid-State Circuits Society, 2022, , 1-1.	2.0	0
2561	A Flexible Pressure Sensor Based on Multiwalled Carbon Nanotubes/ Polydimethylosiloxane Composite for Wearable Electronic-Skin Application. IEEE Transactions on Electron Devices, 2022, 69, 7011-7018.	1.6	5
2562	Superior performances via designed multiple embossments within interfaces for flexible pressure sensors. Chemical Engineering Journal, 2023, 454, 139990.	6.6	6
2563	Highly stretchable strain sensors with improved sensitivity enabled by a hybrid of carbon nanotube and graphene. Micro and Nano Systems Letters, 2022, 10, .	1.7	5
2564	Enabling Durable Ultralow― <i>k</i> capacitors with Enhanced Breakdown Strength in Densityâ€Variant Nanolattices. Advanced Materials, 0, , 2208409.	11.1	1
2566	Highly Sensitive Silverâ€Microlayer Thin Film on a ppâ€PFMâ€Modified PDMS Strain Sensor as a Versatile Tool for Stretchable Electronics Applications. Advanced Electronic Materials, 2023, 9, .	2.6	3
2567	A review: Machine learning for strain sensor-integrated soft robots. Frontiers in Electronic Materials, 0, 2, .	1.6	3
2568	Ultra-fast self-healable stretchable bio-based elastomer/graphene ink using fluid dynamics process for printed wearable sweat-monitoring sensor. Chemical Engineering Journal, 2023, 454, 140443.	6.6	13
2569	Hierarchical Asymmetric Complementary Bionic Structure for Highly Sensitive Pressure Sensor. Advanced Materials Technologies, 2023, 8, .	3.0	6
2570	Combination effect of growth enhancers and carbon sources on synthesis of single-walled carbon nanotubes from solid carbon growth seeds. Diamond and Related Materials, 2022, 130, 109516.	1.8	2
2571	Polymer Electrolyte Membranes Containing Functionalized Organic/Inorganic Composite for Polymer Electrolyte Membrane Fuel Cell Applications. International Journal of Molecular Sciences, 2022, 23, 14252.	1.8	8
2572	Elastomeric Core/Conductive Sheath Fibers for Tensile and Torsional Strain Sensors. Sensors, 2022, 22, 8934.	2.1	0
2573	The synergistic effect of topography and stiffness as a crack engineering strategy for stretchable electronics. Journal of Materials Chemistry C, 2023, 11, 497-512.	2.7	1
2574	Flexible, recyclable and sensitive piezoresistive sensors enabled by lignin polyurethane-based conductive foam. Materials Advances, 0, , .	2.6	1
2575	Stretchable conductors for stretchable field-effect transistors and functional circuits. Chemical Society Reviews, 2023, 52, 795-835.	18.7	18
2576	Legendre Polynomials-based Displacement Field Reconstruction of Plate-Type Structures with Quasi-Distributed FBG Sensors. IEEE Sensors Journal, 2022, , 1-1.	2.4	0

#	Article	IF	CITATIONS
2577	Ag mesh/PEDOT: PSS bilayer electrode with high stretchability and conductivity. , 2022, , .		0
2578	A new 3D, microfluidic-oriented, multi-functional, and highly stretchable soft wearable sensor. Scientific Reports, 2022, 12, .	1.6	7
2579	A Skin-like Self-healing and stretchable substrate for wearable electronics. Chemical Engineering Journal, 2023, 455, 140543.	6.6	13
2580	Multiplex Sensing Electronic Skin Based on Seamless Fully Printed Stretchable Piezoelectric Devices. , 2023, 2, .		1
2581	Thermal defect healing of single-walled carbon nanotubes assisted by supplying carbon-containing reactants. Applied Physics Express, 0, , .	1.1	0
2582	Wearable Carbon Nanotubeâ€6pandex Textile Yarns for Knee Flexion Monitoring. , 2023, 2, .		5
2583	Stretchable One-Dimensional Conductors for Wearable Applications. ACS Nano, 2022, 16, 19810-19839.	7.3	21
2584	Retina-inspired in-sensor broadband image preprocessing for accurate recognition via the flexophototronic effect. Matter, 2023, 6, 537-553.	5.0	12
2585	3D Printable Oneâ€Part Carbon Nanotubeâ€Elastomer Ink for Health Monitoring Applications. Advanced Functional Materials, 2023, 33, .	7.8	11
2586	Ultrasensitive Strain Sensor Utilizing a AgF–AgNW Hybrid Nanocomposite for Breath Monitoring and Pulmonary Function Analysis. ACS Applied Materials & Interfaces, 2022, 14, 55402-55413.	4.0	15
2587	Highly Sensitive, Stretchable, and Robust Strain Sensor Based on Crack Propagation and Opening. ACS Applied Materials & Interfaces, 2023, 15, 1798-1807.	4.0	14
2588	Versatile Mechanochromic Sensor based on Highly Stretchable Chiral Liquid Crystalline Elastomer. Small, 2023, 19, .	5.2	11
2589	Development of conductive materials and conductive networks for flexible force sensors. Chemical Engineering Journal, 2023, 455, 140763.	6.6	8
2590	Highly Sensitive and Reliable Piezoresistive Strain Sensor Based on Cobalt Nanoporous Carbon-Incorporated Laser-Induced Graphene for Smart Healthcare Wearables. ACS Applied Materials & Interfaces, 2023, 15, 1475-1485.	4.0	5
2591	Self-Assembly of Self-Similar Fibers for Stretchable Electronics. , 2022, , 257-287.		0
2592	Flexible and Stretchable Carbon-Based Sensors and Actuators for Soft Robots. Nanomaterials, 2023, 13, 316.	1.9	7
2593	Carbonâ€Based Flexible Devices for Comprehensive Health Monitoring. Small Methods, 2023, 7, .	4.6	25
2594	Heterogeneous Structure Omnidirectional Strain Sensor Arrays With CognitivelyÂLearned Neural Networks. Advanced Materials, 2023, 35, .	11.1	14

#	Article	IF	CITATIONS
2595	Polymer-based wearable nano-composite sensors: a review. International Journal of Polymer Analysis and Characterization, 2023, 28, 156-191.	0.9	2
2596	Conducting gels for wearable bioelectronic devices. Journal of Materials Chemistry B, 2023, 11, 699-701.	2.9	1
2597	A review of wearable carbon-based sensors for strain detection: fabrication methods, properties, and mechanisms. Textile Reseach Journal, 2023, 93, 2918-2940.	1.1	5
2598	A multi-responsive self-healing and air-stable ionogel for a vertically integrated device comprised of flexible supercapacitor and strain sensor. Chemical Engineering Journal, 2023, 457, 141278.	6.6	14
2599	Multi-responsive soft actuator with integrated ultrasensitive sensing performances for human motion detection and soft robots. Sensors and Actuators A: Physical, 2023, 351, 114149.	2.0	7
2600	Hollow-porous fiber-shaped strain sensor with multiple wrinkle-crack microstructure for strain visualization and wind monitoring. Nano Energy, 2023, 108, 108197.	8.2	25
2601	Multifunctional fiber derived from wet spinning combined with UV photopolymerization for human motion and temperature detection. Advanced Composites and Hybrid Materials, 2023, 6, .	9.9	23
2602	Flexible temperature sensors based on two-dimensional materials for wearable devices. Journal Physics D: Applied Physics, 2023, 56, 063001.	1.3	6
2603	Development of a Low-Profile Planar Sensor for the Detection of Normal and Shear Forces. , 2023, 2, 160-167.		2
2604	Extremely Sensitive Wearable Strain Sensor with Wide Range Based on a Simple Parallel Connection Architecture. Advanced Electronic Materials, 2023, 9, .	2.6	2
2605	Wearable strain sensors: state-of-the-art and future applications. Materials Advances, 2023, 4, 1444-1459.	2.6	7
2607	å∙有è¶é«~çµæ•度ã€å®½å•¥ä½œèŒfå›∕ã€ä½Žæ£€æµ‹é™çš"3D气凕胶å∓ç©¿æ~′åŽ‹åŠ›ä¼æ"Ÿå™°ç'	'∵ä ?₫e¯éŸ³	èंत्वå^«å'Œç"
2608	Polymer composites for strain sensors. , 2023, , 381-404.		0
2609	Spatially Sensitive Electrostatic Sensor for Human Detection. Lecture Notes in Electrical Engineering, 2023, , 1525-1534.	0.3	0
2610	Stretchable Strain Sensor with Small but Sufficient Adhesion to Skin. Sensors, 2023, 23, 1774.	2.1	2
2611	A High-Temperature Accelerometer with Excellent Performance Based on the Improved Graphene Aerogel. ACS Applied Materials & Interfaces, 2023, 15, 19337-19348.	4.0	5
2612	Biocompatible and Long-Term Monitoring Strategies of Wearable, Ingestible and Implantable Biosensors: Reform the Next Generation Healthcare. Sensors, 2023, 23, 2991.	2.1	18
2613	Numerical modelling of 1-dimensional silicon photonic crystal sensor for hydrostatic pressure measurement. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 2023, 78, 355-367.	0.7	6

#	Article	IF	CITATIONS
2614	Ionic Flexible Mechanical Sensors: Mechanisms, Structural Engineering, Applications, and Challenges. , 2023, 2, .		0
2615	Strain visualization enabled in dual-wavelength InGaN/GaN multiple quantum wells Micro-LEDs by piezo-phototronic effect. Nano Energy, 2023, 109, 108283.	8.2	4
2616	Design of healable, porous polyurethane with large ionic liquids loading amounts towards ultra-durable pressure sensor. European Polymer Journal, 2023, 191, 112018.	2.6	6
2617	Mussel-inspired lignin decorated cellulose nanocomposite tough organohydrogel sensor with conductive, transparent, strain-sensitive and durable properties. International Journal of Biological Macromolecules, 2023, 239, 124260.	3.6	3
2618	A wearable dual-mode strain sensing yarn: Based on the conductive carbon composites and mechanoluminescent layer with core-sheath structures. Materials Research Bulletin, 2023, 164, 112259.	2.7	1
2619	One-Step Patterned Contact-Resistance-Free Stretchable Strain Sensors With High Linearity and Repeatability for Body-Motion Detection. Journal of Applied Mechanics, Transactions ASME, 2023, 90, .	1.1	1
2620	Electronic textiles: New age of wearable technology for healthcare and fitness solutions. Materials Today Bio, 2023, 19, 100565.	2.6	22
2621	Piezo/Triboelectric Nanogenerator from Lithium-Modified Zinc Titanium Oxide Nanofibers to Monitor Contact in Sports. ACS Applied Nano Materials, 2023, 6, 1770-1782.	2.4	11
2622	Ultra-sensitive, Multi-directional Flexible Strain Sensors Based on an MXene Film with Periodic Wrinkles. ACS Applied Materials & Interfaces, 2023, 15, 8345-8354.	4.0	23
2623	A Nonswelling Hydrogel with Regenerable High Wet Tissue Adhesion for Bioelectronics. Advanced Materials, 2023, 35, .	11.1	35
2624	Engineering of Hydrogenated (6,0) Single-Walled Carbon Nanotube under Applied Uniaxial Stress: A DFT-1/2 and Molecular Dynamics Study. ACS Omega, 2023, 8, 6895-6907.	1.6	1
2625	Electromechanical phase-field fracture modelling of piezoresistive CNT-based composites. Computer Methods in Applied Mechanics and Engineering, 2023, 407, 115941.	3.4	2
2626	Wearable Strain Sensors and Their Applications. SHS Web of Conferences, 2023, 157, 03029.	0.1	0
2627	Flexible Electronics. , 2023, , 139-153.		0
2628	Machine Learning-Enhanced Flexible Mechanical Sensing. Nano-Micro Letters, 2023, 15, .	14.4	21
2629	A study of the interactions of carbon based fillers in acrylonitrile butadiene rubber matrix for high deformation sensor applications. Journal of Reinforced Plastics and Composites, 0, , 073168442211456.	1.6	1
2631	MXene Fiber-based Wearable Textiles in Sensing and Energy Storage Applications. Fibers and Polymers, 2023, 24, 1167-1182.	1.1	4
2632	Highly Flexible Triboelectric Nanogenerator Using Porous Carbon Nanotube Composites. Polymers, 2023, 15, 1135.	2.0	4

#	ARTICLE 3D Stitching Double Weave Fabric-Based Elastic Triboelectric Nanogenerator for Energy Harvesting	IF	Citations
2633 2634	and Self-Powered Sensing. Energies, 2023, 16, 2284. Pressure Sensor Based on a Lumpily Pyramidal Vertical Graphene Film with a Broad Sensing Range and High Sensitivity. ACS Applied Materials & amp; Interfaces, 2023, 15, 13813-13821.	1.6 4.0	2
2635	Green preparation of graphene-based plantar pressure sensor. Journal of Materials Science: Materials in Electronics, 2023, 34, .	1.1	1
2636	Thermally Drawn Elastomer Nanocomposites for Soft Mechanical Sensors. Advanced Science, 2023, 10,	5.6	8
2637	2D material-based sensing devices: an update. Journal of Materials Chemistry A, 2023, 11, 6016-6063.	5.2	16
2638	Flexible and Wearable Strain/Pressure Sensors. , 2023, , 180-198.		0
2639	High-Sensitivity Composite Dual-Network Hydrogel Strain Sensor and Its Application in Intelligent Recognition and Motion Monitoring. ACS Applied Polymer Materials, 2023, 5, 2628-2638.	2.0	6
2640	Spider-inspired tunable mechanosensor for biomedical applications. Npj Flexible Electronics, 2023, 7, .	5.1	10
2641	3D-assembled microneedle ion sensor-based wearable system for the transdermal monitoring of physiological ion fluctuations. Microsystems and Nanoengineering, 2023, 9, .	3.4	11
2642	Three-Dimensional Printed Highly Porous and Flexible Conductive Polymer Nanocomposites with Dual-Scale Porosity and Piezoresistive Sensing Functions. ACS Applied Materials & Interfaces, 0, , .	4.0	1
2643	Tethering of twisted-fiber artificial muscles. Chemical Society Reviews, 2023, 52, 2377-2390.	18.7	11
2644	Advanced Electronic Packaging Technology: From Hard to Soft. Materials, 2023, 16, 2346.	1.3	2
2645	Soft Electronics for Health Monitoring Assisted by Machine Learning. Nano-Micro Letters, 2023, 15, .	14.4	23
2646	Ionogel Fiberâ€Based Flexible Sensor for Friction Sensing. Advanced Materials Technologies, 2023, 8, .	3.0	3
2647	Development of a Graphene-Based Wireless Displacement Transducer. IEEE Sensors Journal, 2023, 23, 8284-8291.	2.4	1
2648	Electrical properties of flexible ceramics. , 2023, , 75-127.		0
2649	Calotropis gigantea Fiber-Based Sensitivity-Tunable Strain Sensors with Insensitive Response to Wearable Microclimate Changes. Advanced Fiber Materials, 2023, 5, 1378-1391.	7.9	8
2650	Advances in graphene-based flexible and wearable strain sensors. Chemical Engineering Journal, 2023, 464, 142576.	6.6	52

#	Article	IF	CITATIONS
2651	Nanoarchitectonics and Applications of Galliumâ€Based Liquid Metal Micro―and Nanoparticles. ChemNanoMat, 2023, 9, .	1.5	6
2652	A 17.6-bit 800-SPS Energy-Efficient Read-Out IC with Input Impedance Boosting. IEEE Sensors Journal, 2023, , 1-1.	2.4	2
2653	Naturally sourced hydrogels: emerging fundamental materials for next-generation healthcare sensing. Chemical Society Reviews, 2023, 52, 2992-3034.	18.7	41
2654	A Stretchable Strain Sensor System for Wireless Measurement of Musculoskeletal Soft Tissue Strains. Advanced Materials Technologies, 2023, 8, .	3.0	0
2655	Organoâ€Hydrogel Electrolytes with Versatile Environmental Adaptation for Advanced Flexible Aqueous Energy Storage Devices. Small Science, 2023, 3, .	5.8	9
2656	Fiber Crossbars: An Emerging Architecture of Smart Electronic Textiles. Advanced Materials, 2023, 35, .	11.1	5
2657	Manufacturing of Highly Sensitive Piezoresistive Two-Substances Auxetic Strain Sensor Using Composite Approach. Fibers and Polymers, 2023, 24, 1789-1797.	1.1	4
2658	Supercooled Liquid Ga Stretchable Electronics. Advanced Functional Materials, 2023, 33, .	7.8	3
2659	Stretchable, Nanoâ€Crumpled MXene Multilayers Impart Longâ€Term Antibacterial Surface Properties. Advanced Materials Interfaces, 2023, 10, .	1.9	3
2660	Polymer nanocomposite thin films prepared using single- and multi-walled carbon nanotubes for flexible electronics. Journal of Materials Science: Materials in Electronics, 2023, 34, .	1.1	2
2673	Polymer nanocomposites for sensing applications. , 2023, , 401-442.		0
2690	Conductive polymer based hydrogels and their application in wearable sensors: a review. Materials Horizons, 2023, 10, 2800-2823.	6.4	23
2691	Triboelectric nanogenerators as self-powered sensors for biometric authentication. Nanoscale, 2023, 15, 9635-9651.	2.8	2
2695	Variable Response Characteristics of a Soft Sensorized Hydrogel Using Mesoscale Cellular Structures. , 2023, , .		0
2709	Mechanical Design of a Haptic Hand Exoskeleton for Tele-Exploration of Explosive Devices. , 2023, , .		0
2720	Review: Textile-based soft robotics for physically challenged individuals. Journal of Materials Science, 2023, 58, 12491-12536.	1.7	1
2744	Performance Evaluation of Strain Sensor. SpringerBriefs in Materials, 2023, , 57-63.	0.1	0
2752	Beyond Cognitive and Affective Issues: Designing Smart Learning Environments for Psychomotor Personalized Learning. , 2023, , 3309-3332.		0

CHAHON R	CITATION REPORT		
Article	IF	CITATIONS	
Flexible Electrically Conductive Elastomers. Advanced Structured Materials, 2023, , 1-25.	0.3	0	
Gas-permeable, Durable, and Sensitive Wearable Strain Sensor through Thermal-Radiation-Promoted In-situ Welding. Chemical Communications, 0, , .	2.2	0	
Fabrication Techniques and Sensing Mechanisms of Textile-Based Strain Sensors: From Spatial 1D and 2D Perspectives. Advanced Fiber Materials, 0, , .	7.9	0	
Structure driven piezoresistive performance design for rubbery composites-based sensors and application prospect: a review. Acta Mechanica Sinica/Lixue Xuebao, 2024, 40, .	1.5	1	
Fabrication and Application of Graphene-Composite Materials. Advances in Material Research and Technology, 2024, , 391-421.	0.3	0	
A review of the mechanical integrity and electrochemical performance of flexible lithium-ion batteries. Nano Research, 0, , .	5.8	0	
Artificial intelligence-powered electronic skin. Nature Machine Intelligence, 2023, 5, 1344-1355.	8.3	4	
Green nanomaterials: an eco-friendly route for sustainable nanotechnology. , 2024, , 21-52.		0	
Material and structural approaches for human-machine interfaces. , 2024, , 227-290.		0	
Ultra-Flexible Organic Electronics. , 2024, , 185-219.		0	
Nanomaterials in environmental sensors. , 2024, , 607-634.		0	
Overview of additive manufacturing and applications of 3D printed composites. , 2023, , .		0	
	ARTICLE Flexible Electrically Conductive Elastomers. Advanced Structured Materials, 2023, , 1-25. Gas-permeable, Durable, and Sensitive Wearable Strain Sensor through Thermal-Radiation-Promoted Institut Welding. Chemical Communications, 0, Fabrication Techniques and Sensing Mechanisms of Textile-Based Strain Sensors: From Spatial 1D and 2D Perspectives. Advanced Fiber Materials, 0, Structure driven piezoresistive performance design for rubbery composites-based sensors and application prospect: a review. Acta Mechanica Sinica/Lixue Xuebao, 2024, 40, Fabrication and Application of Graphene-Composite Materials. Advances in Material Research and fechnology, 2024, s91-421. Areview of the mechanical integrity and electrochemical performance of flexible lithium-ion Satteries. Nano Research, 0, Green nanomaterials: an ecofriendly route for sustainable nanotechnology., 2024, , 21-52. Utra-Flexible Organic Electronics ., 2024, , 185-219. Nanomaterials in environmental sensors., 2024, 607-634.	ArriceIFFlexible Electrically Conductive Elastomers. Advanced Structured Materials, 2023,, 1-25.0.3Gas-permeable, Durable, and Sensitive Wearable Strain Sensor through Thermal-Radiation-Promoted2.2Eabrication Techniques and Sensing Mechanisms of Textile-Based Strain Sensors: From Spatial 1D and7.9Structure driven piezoresistive performance design for rubbery composites-based sensors and1.3Spincation and Application of Graphene-Composite Materials. Advances in Material Research and0.3Areview of the mechanical Integrity and electrochemical performance of flexible lithium-ion5.8Artificial Intelligence-powered electronic skin. Nature Machine Intelligence, 2023, 5, 1344-1355.8.3Green nanomaterials: an eco-friendly route for sustainable nanotechnology., 2024, 21-52Ultra-Flexible Organic Electronics., 2024, 185-219Nanomaterials in environmental sensors., 2024, 607-634	