Activating efficient phosphorescence from purely organ

Nature Chemistry 3, 205-210 DOI: 10.1038/nchem.984

Citation Report

#	Article	IF	CITATIONS
2	Stacking-induced white-light and blue-light phosphorescence from purely organic radical materials. Journal of Materials Chemistry, 2011, 21, 18520.	6.7	54
3	Excited State Kinetics in Crystalline Solids: Self-Quenching in Nanocrystals of 4,4′-Disubstituted Benzophenone Triplets Occurs by a Reductive Quenching Mechanism. Journal of the American Chemical Society, 2011, 133, 17296-17306.	6.6	31
4	Enhanced phosphorescence in dibenzophosphole chalcogenide mixed crystal. CrystEngComm, 2011, 13, 5423.	1.3	25
5	Self-Complementary Nonlinear Optical-Phores Targeted to Halogen Bond-Driven Self-Assembly of Electro-Optic Materials. Crystal Growth and Design, 2011, 11, 5642-5648.	1.4	67
6	Organic Triplet Excited States of Gold(I) Complexes with Oligo(<i>o</i> or) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 Studies on Exciton Delocalization and Emission Pathways. Journal of the American Chemical Society, 2011, 133, 14120-14135.	0 592 Td (6.6	<i>m</i> -phe 101
8	Aggregation-induced emission. Chemical Society Reviews, 2011, 40, 5361.	18.7	5,347
9	Advanced Organic Optoelectronic Materials: Harnessing Excited‧tate Intramolecular Proton Transfer (ESIPT) Process. Advanced Materials, 2011, 23, 3615-3642.	11.1	992
11	A Cocrystal Strategy to Tune the Luminescent Properties of Stilbeneâ€Type Organic Solidâ€State Materials. Angewandte Chemie - International Edition, 2011, 50, 12483-12486.	7.2	463
12	Single-walled carbon nanotube/(Pb, Zn)-phosphate glass heterostructure: an optical sensor and efficient photocurrent converter. Journal Physics D: Applied Physics, 2012, 45, 325106.	1.3	3
13	Efficient organic light-emitting diodes through up-conversion from triplet to singlet excited states of exciplexes. Applied Physics Letters, 2012, 101, .	1.5	239
14	Phosphorescent co-crystal assembled by 1,4-diiodotetrafluorobenzene with carbazole based on C–Iâ⊄Ï€ halogen bonding. Journal of Materials Chemistry, 2012, 22, 5336.	6.7	142
15	C–Brâ√O supramolecular synthon: in situ cryocrystallography of low melting halogen-bonded complexes. CrystEngComm, 2012, 14, 4259.	1.3	29
16	Halogenâ€Bonding Interactions with Ï€ Systems: CCSD(T), MP2, and DFT Calculations. ChemPhysChem, 2012, 13, 4224-4234.	1.0	51
17	Series of Dicyanamide-Interlaced Assembly of Zinc-Schiff-Base Complexes: Crystal Structure and Photophysical and Thermal Studies. Inorganic Chemistry, 2012, 51, 12176-12187.	1.9	66
18	Assembly of robust two-dimensional sheet structures from crystalline ring-fused malonamides via cooperative hydrogen bonding of amide groups. CrystEngComm, 2012, 14, 5717.	1.3	2
19	3-D Molecular Mixtures of Catalytically Functionalized [vinylSiO _{1.5}] ₁₀ /[vinylSiO _{1.5}] ₁₂ . Photophysical Characterization of Second Generation Derivatives. Chemistry of Materials, 2012, 24, 1883-1895.	3.2	43
20	Phosphorescent Cocrystals Assembled by 1,4-Diiodotetrafluorobenzene and Fluorene and Its Heterocyclic Analogues Based on C–I···π Halogen Bonding. Crystal Growth and Design, 2012, 12, 4377-4387.	1.4	94
21	Anion–π interactions in new electron-deficient π systems: the relevance to solid phosphorescent colors. CrystEngComm, 2012, 14, 3923.	1.3	27

ARTICLE IF CITATIONS # Organic light-emitting diodes employing efficient reverse intersystem crossing for triplet-to-singlet 22 15.6 1,355 state conversion. Nature Photonics, 2012, 6, 253-258. Ratiometric optical oxygen sensing: a review in respect of material design. Analyst, The, 2012, 137, 4885. 1.7 198 Molecular Fluorescence, Phosphorescence, and Chemiluminescence Spectrometry. Analytical 24 3.2 83 Chemistry, 2012, 84, 597-625. Halogen Bonding versus Hydrogen Bonding in Driving Selfâ€Assembly and Performance of 178 Lightã€Responsive Supramolecular Polymers. Advanced Functional Materials, 2012, 22, 2572-2579. Roomâ€Temperature Phosphorescence From Films of Isolated Waterâ€Soluble Conjugated Polymers in 26 7.8 149 Hydrogenâ€Bonded Matrices. Advanced Functional Materials, 2012, 22, 3824-3832. Co-crystals give light a tune-up. Nature Chemistry, 2012, 4, 74-75. 6.6 Blue fluorescence from the ligand and yellow phosphorescence from the iridium complex: High-efficiency wet-processed white organic light-emitting device. Inorganica Chimica Acta, 2012, 390, 28 1.2 8 119-122. Room-temperature phosphorescence in solution and in solid state from purely organic dyes. Dyes and 29 2.0 29 Pigments, 2012, 95, 161-167. An alternative way to use the triplet energy of fluorescent dyes in organic light-emitting devices via an external iodide. Organic Electronics, 2012, 13, 195-198. 30 1.4 1 Phosphorescence from a pure organic fluorene derivative in solution at room temperature. Chemical 2.2 140 Communications, 2013, 49, 8447. Efficient Persistent Room Temperature Phosphorescence in Organic Amorphous Materials under 32 7.8 643 Ambient Conditions. Advanced Functional Materials, 2013, 23, 3386-3397. Heavy Atom Effect Driven Organic Phosphors and Their Luminescent Lanthanide Metal–Organic 1.3 Frameworks. ChemPlusChem, 2013, 78, 737-745. Thermoplastic Fluorescent Conjugated Polymers: Benefits of Preventing π–Ï€ Stacking. Angewandte 34 7.2 92 Chemie - International Edition, 2013, 52, 10775-10779. Halogen bond induced phosphorescence of capped Î³-amino acid in the solid state. Chemical 2.2 Communications, 2013, 49, 9051. Room temperature phosphorescence from natural products: Crystallization matters. Science China 4.2 236 36 Chemistry, 2013, 56, 1178-1182. Crystallization-induced phosphorescence of benzils at room temperature. Science China Chemistry, 2013, 56, 1183-1186. Understanding the Unconventional Effects of Halogenation on the Luminescent Properties of 38 1.7 27 Oligo(Phenylene Vinylene) Molecules. Chemistry - an Asian Journal, 2013, 8, 3091-3100. Diaminobenzene-Cored Fluorophores Exhibiting Highly Efficient Solid-State Luminescence., 2013,, 39 83-104.

#	Article	IF	CITATIONS
40	Luminescence characteristics and room temperature phosphorescence of naphthoic acids in polymers. Journal of Luminescence, 2013, 138, 122-128.	1.5	27
41	Small molecules with pyridine backbone modified with carbazole, fluorine and bromine for white light-emitting diode applications. Displays, 2013, 34, 320-325.	2.0	5
42	Magneto-Dielectric Effects Induced by Optically-Generated Intermolecular Charge-Transfer States in Organic Semiconducting Materials. Scientific Reports, 2013, 3, 2812.	1.6	25
43	Structure-directed functional properties of symmetrical and unsymmetrical Br-substituted Schiff-bases. Journal of Molecular Structure, 2013, 1049, 377-385.	1.8	15
46	Exciton coupling in molecular salts of 2-(1,8-naphthalimido)ethanoic acid and cyclic amines: modulation of the solid-state luminescence. CrystEngComm, 2013, 15, 10470.	1.3	13
47	Halogen Bonding: An Interim Discussion. ChemPhysChem, 2013, 14, 278-294.	1.0	620
48	A persulfurated benzene molecule exhibits outstanding phosphorescence in rigid environments: from computational study to organic nanocrystals and OLED applications. Journal of Materials Chemistry C, 2013, 1, 2717.	2.7	118
49	Phosphorescence enhancement of organic dyes by forming β-cyclodextrin inclusion complexes: Color tunable emissive materials. Dyes and Pigments, 2013, 97, 65-70.	2.0	22
50	Alternative Motifs for Halogen Bonding. European Journal of Organic Chemistry, 2013, 2013, 1617-1637.	1.2	203
51	Otherwise inert reaction of sulfonamides/carboxamides with formamides via proton transfer-enhanced reactivity. Organic and Biomolecular Chemistry, 2013, 11, 2460.	1.5	25
52	A multistep single-crystal-to-single-crystal bromodiacetylene dimerization. Nature Chemistry, 2013, 5, 327-334.	6.6	53
53	Co-crystallization turned on the phosphorescence of phenanthrene by C–Brâ<ï€ halogen bonding, ï€â€"holeâ<ï€ bonding and other assisting interactions. CrystEngComm, 2013, 15, 2722.	1.3	80
54	Crystal Engineering: From Molecule to Crystal. Journal of the American Chemical Society, 2013, 135, 9952-9967.	6.6	1,239
55	Room Temperature Phosphorescence of Metal-Free Organic Materials in Amorphous Polymer Matrices. Journal of the American Chemical Society, 2013, 135, 6325-6329.	6.6	449
56	Near-infrared phosphorescence: materials and applications. Chemical Society Reviews, 2013, 42, 6128.	18.7	566
57	Long lifetime pure organic phosphorescence based on water soluble carbon dots. Chemical Communications, 2013, 49, 5751.	2.2	447
58	Reversible Thermal Recording Media Using Timeâ€Dependent Persistent Room Temperature Phosphorescence. Advanced Optical Materials, 2013, 1, 438-442.	3.6	101
59	The Halogen Bond in the Design of Functional Supramolecular Materials: Recent Advances. Accounts of Chemical Research, 2013, 46, 2686-2695.	7.6	728

#	Article	IF	CITATIONS
60	Stackingâ€Induced Diamagnetic/Paramagnetic Conversion of Imidazo[1,2â€ <i>a</i>]pyridinâ€2(3 <i>H</i>) Derivatives: Nearâ€Infrared Absorption and Magnetic Properties in the Solid State. Chemistry - an Asian Journal, 2013, 8, 2182-2188.	â€one 1.7	7
61	Triplet–charge annihilation versus triplet–triplet annihilation in organic semiconductors. Journal of Materials Chemistry C, 2013, 1, 1330-1336.	2.7	59
62	Studies on structural and magnetic properties of hydrochloride crystals based on 2-(imidazo[1,2–a]pyridin-2-yl)-2-oxoacetic acid radical. Materials Letters, 2013, 92, 358-360.	1.3	7
63	Tuning solid-state blue and red luminescence by the formation of solvate crystals. Physical Chemistry Chemical Physics, 2013, 15, 19845.	1.3	27
64	Metalâ€Free OLED Triplet Emitters by Sideâ€Stepping Kasha's Rule. Angewandte Chemie - International Edition, 2013, 52, 13449-13452.	7.2	141
65	Halogen bonding at work: recent applications in synthetic chemistry and materials science. CrystEngComm, 2013, 15, 3058-3071.	1.3	217
66	Crystallization-Induced Phosphorescence for Purely Organic Phosphors at Room Temperature and Liquid Crystals with Aggregation-Induced Emission Characteristics. , 2013, , 43-60.		2
68	Efficient Persistent Room Temperature Phosphorescence in Organic Materials. Kobunshi Ronbunshu, 2013, 70, 623-636.	0.2	2
70	Halogen Bonding in the Design of Organic Phosphors. Topics in Current Chemistry, 2014, 359, 115-146.	4.0	10
71	Phosphorescence, near-infrared absorption and nonlinear optical property of a new chiral organic crystal. Functional Materials Letters, 2014, 07, 1450011.	0.7	2
72	A Nonâ€Doped Phosphorescent Organic Lightâ€Emitting Device with Above 31% External Quantum Efficiency. Advanced Materials, 2014, 26, 8107-8113.	11.1	146
73	Exciplex emission and decay of co-deposited 4,4′,4″-tris[3-methylphenyl(phenyl)amino]triphenylamine:tris-[3-(3-pyridyl)mesityl]borane organic light-emitting devices with different electron transporting layer thicknesses. Applied Physics Letters, 2014–104–161112	1.5	26
74	Tuning the Photophysical Properties of Metal-Free Room Temperature Organic Phosphors via Compositional Variations in Bromobenzaldehyde/Dibromobenzene Mixed Crystals. Chemistry of Materials, 2014, 26, 6644-6649.	3.2	115
75	Molecular crystalline materials with tunable luminescent properties: from polymorphs to multi-component solids. Materials Horizons, 2014, 1, 46-57.	6.4	411
76	The phosphorescent and magnetic properties of a novel radical and its salt derived from 2,3′-biimidazo[1,2-a]pyridin-2′-one radical. Synthetic Metals, 2014, 189, 17-21.	2.1	2
77	Two omponent Molecular Materials of 2,5â€Diphenyloxazole Exhibiting Tunable Ultraviolet/Blue Polarized Emission, Pumpâ€enhanced Luminescence, and Mechanochromic Response. Advanced Functional Materials, 2014, 24, 587-594.	7.8	190
78	Synthesis of yellow emitting bis-pyrimidine based purely organic phosphors. Journal of Luminescence, 2014, 149, 61-68.	1.5	6
80	Halogen―and Hydrogenâ€Bonded Salts and Coâ€crystals Formed from 4â€Haloâ€2,3,5,6â€ŧetrafluorophenol a Cyclic Secondary and Tertiary Amines: Orthogonal and Nonâ€orthogonal Halogen and Hydrogen Bonding, and Synthetic Analogues of Halogenâ€Bonded Biological Systems. Chemistry - A European	nd 1.7	43

#	Article	IF	CITATIONS
82	Third-generation organic electroluminescence materials. Japanese Journal of Applied Physics, 2014, 53, 060101.	0.8	437
83	An Integrated Laboratory Approach toward the Preparation of Conductive Poly(phenylenevinylene) Polymers. Journal of Chemical Education, 2014, 91, 1976-1980.	1.1	7
84	The phosphorescent co-crystals of 1,4-diiodotetrafluorobenzene and bent 3-ring-N-heterocyclic hydrocarbons by C–lâ <n 16,="" 2014,="" 7942-7948.<="" and="" bonds.="" crystengcomm,="" c–lâ<ï€="" halogen="" td=""><td>1.3</td><td>65</td></n>	1.3	65
85	Fine-tuning solid-state luminescence in NPIs (1,8-naphthalimides): impact of the molecular environment and cumulative interactions. Physical Chemistry Chemical Physics, 2014, 16, 20866-20877.	1.3	29
86	Enhancement of Phosphorescence and Unimolecular Behavior in the Solid State by Perfect Insulation of Platinum–Acetylide Polymers. Journal of the American Chemical Society, 2014, 136, 14714-14717.	6.6	58
87	Photoâ€Organocatalysis of Atomâ€Transfer Radical Additions to Alkenes. Angewandte Chemie - International Edition, 2014, 53, 12064-12068.	7.2	234
88	Non-covalent routes to tune the optical properties of molecular materials. Journal of Materials Chemistry C, 2014, 2, 3499.	2.7	246
89	Stimuli-responsive switching of magnetic properties and solid-state colors for 2,3′-biimidazo[1,2-a]pyridin-2′-one radical derivatives. Journal of Materials Chemistry C, 2014, 2, 2228.	2.7	10
90	General Design Strategy for Aromatic Ketone-Based Single-Component Dual-Emissive Materials. ACS Applied Materials & Interfaces, 2014, 6, 2279-2284.	4.0	114
91	Enhanced Phosphorescence Emission by Incorporating Aromatic Halides into an Entangled Coordination Framework Based on Naphthalenediimide. ChemPhysChem, 2014, 15, 2517-2521.	1.0	20
92	Tailoring Intermolecular Interactions for Efficient Roomâ€Temperature Phosphorescence from Purely Organic Materials in Amorphous Polymer Matrices. Angewandte Chemie - International Edition, 2014, 53, 11177-11181.	7.2	382
93	Fluorescence Properties Reinforced by Proton Transfer in the Salt 2,6-Diaminopyridinium Dihydrogen Phosphate. Journal of Physical Chemistry A, 2014, 118, 6883-6892.	1.1	28
94	Optical Properties of 4-Bromobenzaldehyde Derivatives in Chloroform Solution. Journal of Physical Chemistry A, 2014, 118, 6914-6921.	1.1	4
95	Luminescence Properties of 1,8-Naphthalimide Derivatives in Solution, in Their Crystals, and in Co-crystals: Toward Room-Temperature Phosphorescence from Organic Materials. Journal of Physical Chemistry C, 2014, 118, 18646-18658.	1.5	123
96	Ordered and flexible lanthanide complex thin films showing up-conversion and color-tunable luminescence. Journal of Materials Chemistry C, 2014, 2, 9579-9586.	2.7	79
97	On-Surface Solvent-Free Crystal-to-Co-crystal Conversion by Non-Covalent Interactions. Journal of the American Chemical Society, 2014, 136, 11926-11929.	6.6	42
98	Aggregationâ€Induced Emission: The Whole Is More Brilliant than the Parts. Advanced Materials, 2014, 26, 5429-5479.	11.1	2,737
99	Thermally Activated Delayed Fluorescence of Fluorescein Derivative for Time-Resolved and Confocal Fluorescence Imaging. Journal of the American Chemical Society, 2014, 136, 9590-9597.	6.6	275

#	Article	IF	CITATIONS
100	Coaxing Solidâ€6tate Phosphorescence from Tellurophenes. Angewandte Chemie - International Edition, 2014, 53, 4587-4591.	7.2	150
101	Polymorphism and the influence of crystal structure on the luminescence of the opto-electronic material 4,4′-bis(9-carbazolyl)biphenyl. CrystEngComm, 2014, 16, 7621-7625.	1.3	15
102	Design Aspects of Luminescent Organic Crystals. Proceedings of the National Academy of Sciences India Section A - Physical Sciences, 2014, 84, 131-149.	0.8	18
103	The phosphorescent behaviors of 9-bromo- and 9-iodophenanthrene in crystals modulated by π–π interactions, C–HârÏ€ hydrogen bond and C–lârÏ€ halogen bond. Journal of Photochemistry and Photobiology A: Chemistry, 2014, 274, 98-107.	2.0	14
104	Molecular asterisks with a persulfurated benzene core are among the strongest organic phosphorescent emitters in the solid state. Dyes and Pigments, 2014, 110, 113-122.	2.0	76
105	Reversibly photoswitchable dual-color (blueÂ↔Âgreen) phosphorescence from β-cyclodextrin inclusion complex materials. Dyes and Pigments, 2014, 101, 172-178.	2.0	4
106	Efficient blue organic light-emitting diodes employing thermally activated delayed fluorescence. Nature Photonics, 2014, 8, 326-332.	15.6	2,064
107	Phosphate-containing metabolites switch on phosphorescence of ferric ion engineered carbon dots in aqueous solution. RSC Advances, 2014, 4, 22318-22323.	1.7	35
108	Organic white-light emitting materials. Dyes and Pigments, 2014, 110, 2-27.	2.0	247
109	Tellurophenes and Their Emergence as Building Blocks for Polymeric and Light-emitting Materials. Chemistry Letters, 2015, 44, 730-736.	0.7	54
110	On the ultrafast charge migration and subsequent charge directed reactivity in Clâc N halogen-bonded clusters following vertical ionization. Journal of Chemical Physics, 2015, 142, 244309.	1.2	13
111	Achieving Persistent Room Temperature Phosphorescence and Remarkable Mechanochromism from Pure Organic Luminogens. Advanced Materials, 2015, 27, 6195-6201.	11.1	513
112	Walking Down the Chalcogenic Group of the Periodic Table: From Singlet to Triplet Organic Emitters. Chemistry - A European Journal, 2015, 21, 15377-15387.	1.7	51
113	Photoreversible On–Off Recording of Persistent Roomâ€Temperature Phosphorescence. Advanced Optical Materials, 2015, 3, 1726-1737.	3.6	107
115	Halogen Bonding to Amplify Luminescence: A Case Study Using a Platinum Cyclometalated Complex. Angewandte Chemie - International Edition, 2015, 54, 14057-14060.	7.2	98
118	Crystal Structure and Magnetic Property of 2-(Imidazo[1,2-a]pyri-din-2-yl)-2-oxoacetic Acid and Its Perchlorate. Chinese Journal of Chemical Physics, 2015, 28, 240-244.	0.6	0
119	Recent advances in purely organic phosphorescent materials. Chemical Communications, 2015, 51, 10988-11003.	2.2	399
120	Halogen Bonding II. Topics in Current Chemistry, 2015, , .	4.0	29

ARTICLE IF CITATIONS # Tuning the singlet–triplet energy gap of AIE luminogens: crystallization-induced room temperature phosphorescence and delay fluorescence, tunable temperature response, highly efficient non-doped 121 1.3 73 organic light-emitting diodes. Physical Chemistry Chemical Physics, 2015, 17, 1134-1141. The effects of extended conjugation length of purely organic phosphors on their phosphorescence emission properties. Physical Chemistry Chemical Physics, 2015, 17, 19096-19103. 1.3 Suppressing molecular motions for enhanced room-temperature phosphorescence of metal-free 123 5.8 344 organic materials. Nature Communications, 2015, 6, 8947. Mechanochemical Production of Halogen-Bonded Solids Featuring Pâ•O·Â·Â·l–C Motifs and Characterization via X-ray Diffraction, Solid-State Multinuclear Magnetic Resonance, and Density Functional Theory. Journal of Physical Chemistry C, 2015, 119, 27104-27117. 124 Challenges of organic "cocrystalsâ€. Science China Materials, 2015, 58, 854-859. 125 3.5 39 A Novel Optical Ozone Sensor Based on Purely Organic Phosphor. ACS Applied Materials & amp; 4.0 Interfaces, 2015, 7, 2993-2997. Charge-Transfer Emission of Mixed Organic Cocrystal Microtubes over the Whole Composition Range. 127 3.2 77 Chemistry of Materials, 2015, 27, 1157-1163. Supramolecular hierarchy among halogen and hydrogen bond donors in light-induced surface patterning. Journal of Materials Chemistry C, 2015, 3, 759-768. 128 2.7 87 Spontaneous resolution in a new chiral purely organic crystal containing homochiral helical chains: 129 Synthesis, crystal structure, and phosphorescence. Journal of Molecular Structure, 2015, 1084, 0 1.8 340-344. Microâ€/Nanostructured Multicomponent Molecular Materials: Design, Assembly, and Functionality. 1.7 Chemistry - A European Journal, 2015, 21, 4880-4896. Efficient long lifetime room temperature phosphorescence of carbon dots in a potash alum matrix. 131 2.7 145 Journal of Materials Chemistry C, 2015, 3, 2798-2801. A Br-substituted phenanthroimidazole derivative with aggregation induced emission from intermolecular halogen–hydrogen interactions. Chemical Communications, 2015, 51, 6350-6353. 2.2 Multicomponent Molecular Puzzles for Photofunction Design: Emission Color Variation in Lewis Acid–Base Pair Crystals Coupled with Guest-to-Host Charge Transfer Excitation. Journal of the American Chemical Society, 2015, 137, 9519-9522. 133 6.6 111 Waterborne Polyurethanes with Tunable Fluorescence and Room-Temperature Phosphorescence. ACS Applied Materials & amp; Interfaces, 2015, 7, 17209-17216. 134 Rational Design of Charge-Transfer Interactions in Halogen-Bonded Co-crystals toward Versatile 135 6.6 246 Solid-State Optoelectronics. Journal of the American Chemical Society, 2015, 137, 11038-11046. Halogen Bonding in Supramolecular Chemistry. Chemical Reviews, 2015, 115, 7118-7195. 1,073 Charge-Assisted Halogen Bonding in Bromo- and Iodophenylpyridinium Chlorides. Crystal Growth and 137 1.4 19 Design, 2015, 15, 4571-4580. Extending the biocatalytic scope of regiocomplementary flavin-dependent halogenase enzymes. 89 Chemical Science, 2015, 6, 3454-3460.

#	Article	IF	CITATIONS
139	Visible room-temperature phosphorescence of pure organic crystals via a radical-ion-pair mechanism. Physical Chemistry Chemical Physics, 2015, 17, 15989-15995.	1.3	108
140	Oxygen Sensing Difluoroboron Dinaphthoylmethane Polylactide. Macromolecules, 2015, 48, 2967-2977.	2.2	117
141	Aggregation-induced phosphorescence enhancement (AIPE) based on transition metal complexes—An overview. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2015, 23, 25-44.	5.6	97
142	Revealing the Chargeâ€Transfer Interactions in Selfâ€Assembled Organic Cocrystals: Twoâ€Dimensional Photonic Applications. Angewandte Chemie - International Edition, 2015, 54, 6785-6789.	7.2	198
143	Halogen bonding in polymer science: from crystal engineering to functional supramolecular polymers and materials. Polymer Chemistry, 2015, 6, 3559-3580.	1.9	213
144	Reversible Luminescence Switching of an Organic Solid: Controllable On–Off Persistent Room Temperature Phosphorescence and Stimulated Multiple Fluorescence Conversion. Advanced Optical Materials, 2015, 3, 1184-1190.	3.6	173
145	Crystallization-induced dual emission from metal- and heavy atom-free aromatic acids and esters. Chemical Science, 2015, 6, 4438-4444.	3.7	335
146	Exploring Supramolecular Self-Assembly of Tetraarylporphyrins by Halogen Interactions. 3. Tin(L) ₂ (A ₂ B ₂ -Porphyrin) Arrays Supported by Concerted Halogen and Hydrogen Bonding. Crystal Growth and Design, 2015, 15, 3063-3075.	1.4	22
147	Formation of Halogen Bond-Based 2D Supramolecular Assemblies by Electric Manipulation. Journal of the American Chemical Society, 2015, 137, 6128-6131.	6.6	117
148	Tipping the Balance with the Aid of Stoichiometry: Room Temperature Phosphorescence versus Fluorescence in Organic Cocrystals. Crystal Growth and Design, 2015, 15, 2039-2045.	1.4	78
149	Linearly Tunable Emission Colors Obtained from a Fluorescent–Phosphorescent Dualâ€Emission Compound by Mechanical Stimuli. Angewandte Chemie - International Edition, 2015, 54, 6270-6273.	7.2	315
150	Stabilizing triplet excited states for ultralong organic phosphorescence. Nature Materials, 2015, 14, 685-690.	13.3	1,404
151	Phosphorescent π-Hole···π Bonding Cocrystals of Pyrene with Halo-perfluorobenzenes (F, Cl, Br, I). Crystal Growth and Design, 2015, 15, 4938-4945.	1.4	62
152	Purely organic optoelectronic materials with ultralong-lived excited states under ambient conditions. Science Bulletin, 2015, 60, 1631-1637.	4.3	20
153	Tailoring Oxygen Sensitivity with Halide Substitution in Difluoroboron Dibenzoylmethane Polylactide Materials. ACS Applied Materials & Interfaces, 2015, 7, 23633-23643.	4.0	72
154	Aggregation-Induced Emission: Together We Shine, United We Soar!. Chemical Reviews, 2015, 115, 11718-11940.	23.0	6,279
155	Fluorescent crystals and co-crystals of 1,8-naphthalimide derivatives: synthesis, structure determination and photophysical characterization. Journal of Materials Chemistry C, 2015, 3, 9425-9434.	2.7	29
156	Morphology-controllable fabrication of organic microcrystals by solid-phase reactions: revealing morphology-sensitive highly efficient phosphorescence and enhanced near-infrared absorption. Journal of Materials Chemistry C, 2015, 3, 9048-9052.	2.7	8

	CITATION RE	CITATION REPORT	
#	Article	IF	CITATIONS
157	Organic Light-Emitting Diodes (OLEDs): Materials, Photophysics, and Device Physics. , 2015, , 43-73.		5
158	Finding the Perfect Match: Halogen vs Hydrogen Bonding. Crystal Growth and Design, 2015, 15, 4756-4759.	1.4	25
159	Synthesis of quinoline based heterocyclic compounds for blue lighting application. Optical Materials, 2015, 50, 275-281.	1.7	27
160	Synthesis and solid-state fluorescence properties of pentacyclic 7-substituted-indeno[1′,2′:4,5]pyrido[2,1-a]isoindol-5-ones. RSC Advances, 2015, 5, 2715-2723.	1.7	5
161	Ion-Unquenchable and Thermally "On–Off―Reversible Room Temperature Phosphorescence of 3-Bromoquinoline Induced by Supramolecular Gels. Langmuir, 2015, 31, 486-491.	1.6	30
162	Polymerization-Enhanced Intersystem Crossing: New Strategy to Achieve Long-Lived Excitons. Macromolecular Rapid Communications, 2015, 36, 298-303.	2.0	59
163	Room temperature triplet state spectroscopy of organic semiconductors. Scientific Reports, 2014, 4, 3797.	1.6	180
164	Tuning the Luminescence of Phosphors: Beyond Conventional Chemical Method. Advanced Optical Materials, 2015, 3, 431-462.	3.6	129
165	Isomorphous Crystals from Diynes and Bromodiynes Involved in Hydrogen and Halogen Bonds. Crystals, 2016, 6, 37.	1.0	5
166	Deepening Insights of Charge Transfer and Photophysics in a Novel Donor–Acceptor Cocrystal for Waveguide Couplers and Photonic Logic Computation. Advanced Materials, 2016, 28, 5954-5962.	11.1	105
167	Tripleâ€Mode Emission of Carbon Dots: Applications for Advanced Antiâ€Counterfeiting. Angewandte Chemie - International Edition, 2016, 55, 7231-7235.	7.2	625
168	Room-temperature phosphorescence from purely organic materials. Chinese Chemical Letters, 2016, 27, 1231-1240.	4.8	84
169	Roomâ€Temperature Phosphorescence of Crystalline 1,4â€Bis(aroyl)â€2,5â€dibromobenzenes. European Journa of Organic Chemistry, 2016, 2016, 467-473.	1.2	36
170	Strongly Enhanced Longâ€Lived Persistent Room Temperature Phosphorescence Based on the Formation of Metal–Organic Hybrids. Advanced Optical Materials, 2016, 4, 897-905.	3.6	241
171	Extraordinary Strong Fluorescence Evolution in Phosphor on Graphene. Advanced Materials, 2016, 28, 1657-1662.	11.1	7
172	Tripleâ€Mode Emission of Carbon Dots: Applications for Advanced Antiâ€Counterfeiting. Angewandte Chemie, 2016, 128, 7347-7351.	1.6	467
173	Versatile Roomâ€Temperatureâ€Phosphorescent Materials Prepared from Nâ€Substituted Naphthalimides: Emission Enhancement and Chemical Conjugation. Angewandte Chemie, 2016, 128, 10026-10030.	1.6	75
174	Multiphase Chemistry of Highly Oxidized Molecules: The Case of Organic Hydroperoxides. CheM, 2016, 1, 526-528.	5.8	7

#	Article	IF	CITATIONS
175	Difluoroboron β-diketonate materials with long-lived phosphorescence enable lifetime based oxygen imaging with a portable cost effective camera. Analytical Methods, 2016, 8, 3109-3114.	1.3	61
176	Structure-Directed Functional Properties of Phenothiazine Brominated Dyes: Morphology and Photophysical and Electrochemical Properties. Crystal Growth and Design, 2016, 16, 3716-3730.	1.4	28
177	Siloxy Group-Induced Highly Efficient Room Temperature Phosphorescence with Long Lifetime. Journal of Physical Chemistry C, 2016, 120, 11631-11639.	1.5	95
178	Red Phosphorescence from Benzo[2,1,3]thiadiazoles at Room Temperature. Journal of Organic Chemistry, 2016, 81, 4789-4796.	1.7	43
179	Tuning the Energy Emission from Violet to Yellow with Bidentate Phosphine Gold(III) Complexes. Organometallics, 2016, 35, 1141-1150.	1.1	19
180	Single-benzene solid emitters with lasing properties based on aggregation-induced emissions. Chemical Communications, 2016, 52, 6577-6580.	2.2	51
181	Crystalline nanoparticles for self-protective room-temperature phosphorescence based on synergism of multi-weak interactions in suspension solution. Materials Chemistry and Physics, 2016, 176, 121-128.	2.0	3
182	Sequential Halogen Bonding with Ditopic Donors: σ-Hole Evolutions upon Halogen Bond Formation. Crystal Growth and Design, 2016, 16, 2963-2971.	1.4	23
183	Clusteringâ€Triggered Emission of Nonconjugated Polyacrylonitrile. Small, 2016, 12, 6586-6592.	5.2	293
184	Rational Molecular Design for Achieving Persistent and Efficient Pure Organic Room-Temperature Phosphorescence. CheM, 2016, 1, 592-602.	5.8	610
185	Room-temperature electrophosphorescence from an all-organic material. Journal of Luminescence, 2016, 180, 111-116.	1.5	10
186	Uncovering the Intramolecular Emission and Tuning the Nonlinear Optical Properties of Organic Materials by Cocrystallization. Angewandte Chemie, 2016, 128, 14229-14233.	1.6	29
187	Synthesis of amphiphilic carbon quantum dots with phosphorescence properties and their multifunctional applications. Journal of Materials Chemistry C, 2016, 4, 10146-10153.	2.7	107
188	Use of Halogen Bonding in a Molecular Solid Solution to Simultaneously Control Spin and Charge. Chemistry of Materials, 2016, 28, 7276-7286.	3.2	7
189	Uncovering the Intramolecular Emission and Tuning the Nonlinear Optical Properties of Organic Materials by Cocrystallization. Angewandte Chemie - International Edition, 2016, 55, 14023-14027.	7.2	103
190	Roomâ€Temperature Phosphorescence of Crystalline Metalâ€Free Organoboron Complex. ChemPhysChem, 2016, 17, 4033-4036.	1.0	25
191	Proton-shared hydrogen bond: Promoting generation of novel triradicals, and serving as phosphorescent and magnetic switch. Synthetic Metals, 2016, 220, 477-483.	2.1	2
192	Topological Evolution in Mercury(II) Schiff Base Complexes Tuned through Alkyl Substitution – Synthesis, Solid‣tate Structures, and Aggregationâ€Induced Emission Properties. European Journal of Inorganic Chemistry, 2016, 2016, 3598-3610.	1.0	15

#	Article	IF	CITATIONS
193	On the Attosecond charge migration in Cl…N, Cl…O, Br…N and Br…O Halogen-bonded clusters: Effect of donor, acceptor, vibration, rotation, and electron correlation. Journal of Chemical Sciences, 2016, 128, 1175-1189.	0.7	9
194	Aggregation-induced emission enhancement in halochalcones. New Journal of Chemistry, 2016, 40, 8198-8201.	1.4	24
195	A Structureâ€Guided Switch in the Regioselectivity of a Tryptophan Halogenase. ChemBioChem, 2016, 17, 821-824.	1.3	71
196	Aggregation-induced intersystem crossing: a novel strategy for efficient molecular phosphorescence. Nanoscale, 2016, 8, 17422-17426.	2.8	151
197	Organic Cocrystals: New Strategy for Molecular Collaborative Innovation. Topics in Current Chemistry, 2016, 374, 83.	3.0	52
198	Cation–cation and anion–anion complexes stabilized by halogen bonds. Physical Chemistry Chemical Physics, 2016, 18, 27939-27950.	1.3	45
199	Conformation controlled turn on–turn off phosphorescence in a metal-free biluminophore: thriving the paradox that exists for organic compounds. Physical Chemistry Chemical Physics, 2016, 18, 27910-27920.	1.3	20
200	Amorphous, Efficient, Roomâ€Temperature Phosphorescent Metalâ€Free Polymers and Their Applications as Encryption Ink. Advanced Optical Materials, 2016, 4, 1397-1401.	3.6	183
201	Versatile Roomâ€Temperatureâ€Phosphorescent Materials Prepared from Nâ€6ubstituted Naphthalimides: Emission Enhancement and Chemical Conjugation. Angewandte Chemie - International Edition, 2016, 55, 9872-9876.	7.2	343
202	Design of Phosphorescent Organic Molecules: Old Concepts under a New Light. CheM, 2016, 1, 524-526.	5.8	27
203	Induction of Strong Longâ€Lived Roomâ€Temperature Phosphorescence of <i>N</i> â€Phenylâ€2â€naphthylamin Molecules by Confinement in a Crystalline Dibromobiphenyl Matrix. Angewandte Chemie - International Edition, 2016, 55, 15589-15593.	e 7.2	265
204	Induction of Strong Long‣ived Roomâ€Temperature Phosphorescence of <i>N</i> â€Phenylâ€2â€naphthylamin Molecules by Confinement in a Crystalline Dibromobiphenyl Matrix. Angewandte Chemie, 2016, 128, 15818-15822.	e 1.6	71
205	Attochemistry of Ionized Halogen, Chalcogen, Pnicogen, and Tetrel Noncovalent Bonded Clusters. Journal of Physical Chemistry A, 2016, 120, 10057-10071.	1.1	16
206	Gelation of Luminescent Supramolecular Cages and Transformation to Crystals with Trace-Doped-Enhancement Luminescence. Langmuir, 2016, 32, 12184-12189.	1.6	15
207	125Te NMR provides evidence of autoassociation of organo-ditellurides in solution. Physical Chemistry Chemical Physics, 2016, 18, 30740-30747.	1.3	16
208	Effect of Conjugation Pathway in Metal-Free Room-Temperature Dual Singlet–Triplet Emitters for Organic Light-Emitting Diodes. Journal of Physical Chemistry Letters, 2016, 7, 4802-4808.	2.1	42
209	Efficient Room-Temperature Phosphorescence from Nitrogen-Doped Carbon Dots in Composite Matrices. Chemistry of Materials, 2016, 28, 8221-8227.	3.2	270
210	Polyimides with Heavy Halogens Exhibiting Room-Temperature Phosphorescence with Very Large Stokes Shifts. ACS Macro Letters, 2016, 5, 1301-1305.	2.3	87

#	Article	IF	CITATIONS
211	Supramolecular macrocycles reversibly assembled by Te…O chalcogen bonding. Nature Communications, 2016, 7, 11299.	5.8	166
212	Pure Organic Luminogens with Room Temperature Phosphorescence. ACS Symposium Series, 2016, , 1-26.	0.5	5
213	Monosubstituted Dibenzofulvene-Based Luminogens: Aggregation-Induced Emission Enhancement and Dual-State Emission. Journal of Physical Chemistry C, 2016, 120, 26556-26568.	1.5	61
214	Intermolecular Electronic Coupling of Organic Units for Efficient Persistent Roomâ€Temperature Phosphorescence. Angewandte Chemie, 2016, 128, 2221-2225.	1.6	156
215	Intermolecular Electronic Coupling of Organic Units for Efficient Persistent Roomâ€īemperature Phosphorescence. Angewandte Chemie - International Edition, 2016, 55, 2181-2185.	7.2	548
216	Afterglow Organic Lightâ€Emitting Diode. Advanced Materials, 2016, 28, 655-660.	11.1	417
217	Substituent Effects on the [N–I–N] ⁺ Halogen Bond. Journal of the American Chemical Society, 2016, 138, 9853-9863.	6.6	89
218	Crystallization-induced phosphorescence of pure organic luminogens. Chinese Chemical Letters, 2016, 27, 1184-1192.	4.8	86
219	External Heavy-Atom Effect via Orbital Interactions Revealed by Single-Crystal X-ray Diffraction. Journal of Physical Chemistry A, 2016, 120, 5791-5797.	1.1	58
220	Enhanced room-temperature phosphorescence of triphenylphosphine derivatives without metal and heavy atoms in their crystal phase. RSC Advances, 2016, 6, 51683-51686.	1.7	22
221	Enhanced solid state emission of quinoline derivatives for fluorescent sensors. Journal of Luminescence, 2016, 176, 335-341.	1.5	4
222	A gadolinium(iii) complex that shows room-temperature phosphorescence in the crystalline state. Dalton Transactions, 2016, 45, 11620-11623.	1.6	8
223	Synthesis and Physical Properties of Three-Dimensionally Insulated Molecular Wires. , 2016, , 141-164.		0
224	Protonation-induced change in the conformation, crystal structure and property of triarylmethyl carbocation radical. Chemical Physics Letters, 2016, 649, 97-102.	1.2	1
225	Exploiting Photo- and Electroluminescence Properties of FIrpic Organic Crystals. Inorganic Chemistry, 2016, 55, 6532-6538.	1.9	5
226	Unprecedented Size of the σ-Holes on 1,3,5-Triiodo-2,4,6-trinitrobenzene Begets Unprecedented Intermolecular Interactions. Crystal Growth and Design, 2016, 16, 1765-1771.	1.4	44
227	The Halogen Bond. Chemical Reviews, 2016, 116, 2478-2601.	23.0	2,906
228	Large-scale synthesis of N-doped carbon quantum dots and their phosphorescence properties in a polyurethane matrix. Nanoscale, 2016, 8, 4742-4747.	2.8	252

#	Article	IF	CITATIONS
229	Enhancing Organic Phosphorescence by Manipulating Heavy-Atom Interaction. Crystal Growth and Design, 2016, 16, 808-813.	1.4	122
230	On the ultrafast charge migration dynamics in isolated ionized halogen, chalcogen, pnicogen, and tetrel bonded clusters. Chemical Physics, 2016, 472, 61-71.	0.9	12
231	σ-Hole Bond vs π-Hole Bond: A Comparison Based on Halogen Bond. Chemical Reviews, 2016, 116, 5072-5104.	23.0	487
232	Organic nanophotonic materials: the relationship between excited-state processes and photonic performances. Chemical Communications, 2016, 52, 8906-8917.	2.2	25
233	Multi-luminescent switching of metal-free organic phosphors for luminometric detection of organic solvents. Chemical Science, 2016, 7, 2359-2363.	3.7	56
234	Halogen bonding in a multi-connected 1,2,2-triiodo-alkene involving geminal and/or vicinal iodines: a crystallographic and DFT study. CrystEngComm, 2016, 18, 683-690.	1.3	23
235	Molecular cocrystals of diphenyloxazole with tunable fluorescence, up-conversion emission and dielectric properties. CrystEngComm, 2016, 18, 240-249.	1.3	37
236	Remarkable Role of C–l···N Halogen Bonding in Thixotropic â€~Halo'gel Formation. Langmuir, 2016, 32, 4270-4277.	1.6	28
237	Advances in phosphors based on organic materials for light emitting devices. Physica B: Condensed Matter, 2016, 480, 105-110.	1.3	5
238	Bright persistent luminescence from pure organic molecules through a moderate intermolecular heavy atom effect. Chemical Science, 2017, 8, 6060-6065.	3.7	135
239	Rigidification or interaction-induced phosphorescence of organic molecules. Chemical Communications, 2017, 53, 2081-2093.	2.2	298
240	Unveiling a New Aspect of Simple Arylboronic Esters: Long-Lived Room-Temperature Phosphorescence from Heavy-Atom-Free Molecules. Journal of the American Chemical Society, 2017, 139, 2728-2733.	6.6	269
241	Phosphorescence in Bromobenzaldehyde Can Be Enhanced through Intramolecular Heavy Atom Effect. Journal of Physical Chemistry C, 2017, 121, 3771-3777.	1.5	49
242	How the Molecular Packing Affects the Room Temperature Phosphorescence in Pure Organic Compounds: Ingenious Molecular Design, Detailed Crystal Analysis, and Rational Theoretical Calculations. Advanced Materials, 2017, 29, 1606829.	11.1	351
243	Preparation of Singleâ€Crystalline Heterojunctions for Organic Electronics. Advanced Materials, 2017, 29, 1606101.	11.1	82
244	The Strong Lightâ€Emission Materials in the Aggregated State: What Happens from a Single Molecule to the Collective Group. Advanced Science, 2017, 4, 1600484.	5.6	472
245	Organic Phosphorescence Nanowire Lasers. Journal of the American Chemical Society, 2017, 139, 6376-6381.	6.6	166
246	Activating Room Temperature Long Afterglow of Carbon Dots via Covalent Fixation. Chemistry of Materials, 2017, 29, 4866-4873.	3.2	190

#	Article	IF	CITATIONS
247	Pendant chain engineering to fine-tune the nanomorphologies and solid state luminescence of naphthalimide AIEEgens: application to phenolic nitro-explosive detection in water. Nanoscale, 2017, 9, 7674-7685.	2.8	41
248	Carbazole-based aggregation-induced emission (AIE)-active gold(I) complex: Persistent room-temperature phosphorescence, reversible mechanochromism and vapochromism characteristics. Dyes and Pigments, 2017, 143, 409-415.	2.0	87
249	Salts and Cocrystals of Furosemide with Pyridines: Differences in π-Stacking and Color Polymorphism. Crystal Growth and Design, 2017, 17, 3071-3087.	1.4	16
250	Competition between Arene–Perfluoroarene and Chargeâ€Transfer Interactions in Organic Lightâ€Harvesting Systems. Angewandte Chemie, 2017, 129, 10488-10492.	1.6	104
251	Competition between Arene–Perfluoroarene and Chargeâ€Transfer Interactions in Organic Lightâ€Harvesting Systems. Angewandte Chemie - International Edition, 2017, 56, 10352-10356.	7.2	152
252	Switching between Phosphorescence and Fluorescence Controlled by Chiral Selfâ€Assembly. Advanced Science, 2017, 4, 1700021.	5.6	34
253	The contributions of molecular vibrations and higher triplet levels to the intersystem crossing mechanism in metal-free organic emitters. Journal of Materials Chemistry C, 2017, 5, 6269-6280.	2.7	83
254	Carbon dots in zeolites: A new class of thermally activated delayed fluorescence materials with ultralong lifetimes. Science Advances, 2017, 3, e1603171.	4.7	286
255	Recent Advances in Materials with Roomâ€Temperature Phosphorescence: Photophysics for Triplet Exciton Stabilization. Advanced Optical Materials, 2017, 5, 1700116.	3.6	565
256	Room temperature phosphorescence lifetime and spectrum tuning of substituted thianthrenes. Dyes and Pigments, 2017, 142, 315-322.	2.0	35
257	Reversibly Stretching Cocrystals by the Application of a Magnetic Field. Crystal Growth and Design, 2017, 17, 2576-2583.	1.4	19
258	Ordered assembly of hybrid room-temperature phosphorescence thin films showing polarized emission and the sensing of VOCs. Chemical Communications, 2017, 53, 5408-5411.	2.2	103
259	Halogen-bonded dimers and ribbons from the self-assembly of 3-halobenzophenones. CrystEngComm, 2017, 19, 2202-2206.	1.3	6
260	Plasmon-enhanced phosphorescence of hybrid thin films of metal-free purely organic phosphor and silver nanoparticles. Chemical Physics Letters, 2017, 676, 134-139.	1.2	5
261	Cocrystal assembled by 1,4-diiodotetrafluorobenzene and phenothiazine based on C—Iπ/N/S halogen bond and other assisting interactions. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 2017, 73, 210-216.	0.5	11
262	Supramolecular Two-Dimensional Network Mediated via Sulfur's σ-Holes in a Conducting Molecular Crystal: Effects of Its Rigidity on Physical Properties and Structural Transition. Crystal Growth and Design, 2017, 17, 2203-2210.	1.4	10
263	Amorphous 2-Bromocarbazole Copolymers with Efficient Room-Temperature Phosphorescent Emission and Applications as Encryption Ink. Industrial & amp; Engineering Chemistry Research, 2017, 56, 3123-3128.	1.8	55
264	Inclusion Crystal Growth and Optical Properties of Organic Charge-transfer Complexes Built from Small Aromatic Guest Molecules and Naphthalenediimide Derivatives. Chemistry Letters, 2017, 46, 801-804.	0.7	17

#	Article	IF	CITATIONS
265	AlEgen with Fluorescence–Phosphorescence Dual Mechanoluminescence at Room Temperature. Angewandte Chemie - International Edition, 2017, 56, 880-884.	7.2	250
266	AlEgen with Fluorescence–Phosphorescence Dual Mechanoluminescence at Room Temperature. Angewandte Chemie, 2017, 129, 898-902.	1.6	90
267	Enhanced intersystem crossing in core-twisted aromatics. Chemical Science, 2017, 8, 1776-1782.	3.7	153
268	Highly Efficient Room-Temperature Phosphorescence from Halogen-Bonding-Assisted Doped Organic Crystals. Journal of Physical Chemistry A, 2017, 121, 8652-8658.	1.1	67
269	An insight into the synthesis, crystal structure, geometrical modelling of crystal morphology, Hirshfeld surface analysis and characterization of <i>N</i> -(4-methylbenzyl)benzamide single crystals. Journal of Applied Crystallography, 2017, 50, 1498-1511.	1.9	24
270	Resonance Energy Transfer Emission Observed in Cocrystal of N,N′-Bis(3-imidazol-1-ylpropyl)naphthalenediimide with Cinnamic Acid. ChemistrySelect, 2017, 2, 10101-10106.	0.7	4
271	Abnormal room temperature phosphorescence of purely organic boron-containing compounds: the relationship between the emissive behaviorand the molecular packing, and the potential related applications. Chemical Science, 2017, 8, 8336-8344.	3.7	176
272	Confinement of Longâ€Lived Triplet Excitons in Organic Semiconducting Host–Guest Systems. Advanced Functional Materials, 2017, 27, 1703902.	7.8	107
273	Discovering proteinâ^'ligand chalcogen bonding in the protein data bank using endocyclic sulfur-containing heterocycles as ligand search subsets. Journal of Molecular Modeling, 2017, 23, 287.	0.8	15
274	Meta-Alkoxy-Substituted Difluoroboron Dibenzoylmethane Complexes as Environment-Sensitive Materials. ACS Applied Materials & Interfaces, 2017, 9, 32008-32017.	4.0	45
275	Visibleâ€Lightâ€Excited Ultralong Organic Phosphorescence by Manipulating Intermolecular Interactions. Advanced Materials, 2017, 29, 1701244.	11.1	320
276	Coâ€crystals with Delayed Fluorescence Assembled by 1,4â€Diiodotetrafluorobenzene and Polycyclic Aromatic Compounds via Halogen Bonds. ChemistrySelect, 2017, 2, 6323-6330.	0.7	10
277	Organic Nanocrystals with Bright Red Persistent Roomâ€Temperature Phosphorescence for Biological Applications. Angewandte Chemie, 2017, 129, 12328-12332.	1.6	117
278	Organic Nanocrystals with Bright Red Persistent Roomâ€Temperature Phosphorescence for Biological Applications. Angewandte Chemie - International Edition, 2017, 56, 12160-12164.	7.2	458
279	Tuning crystal structure and absorption properties of 4-hydroxyisophthalic acid co-crystals using pyrazine derivatives. Journal of Molecular Structure, 2017, 1150, 96-102.	1.8	4
280	Manipulating organic triplet harvesting in regioisomeric microcrystals. Journal of Materials Chemistry C, 2017, 5, 12547-12552.	2.7	24
281	Roomâ€Temperatureâ€Phosphorescenceâ€Based Dissolved Oxygen Detection by Coreâ€Shell Polymer Nanoparticles Containing Metalâ€Free Organic Phosphors. Angewandte Chemie, 2017, 129, 16425-16429.	1.6	40
282	Roomâ€Temperatureâ€Phosphorescenceâ€Based Dissolved Oxygen Detection by Coreâ€Shell Polymer Nanoparticles Containing Metalâ€Free Organic Phosphors. Angewandte Chemie - International Edition, 2017, 56, 16207-16211.	7.2	155

#	Article	IF	CITATIONS
283	Layer-by-layer assembly of long-afterglow self-supporting thin films with dual-stimuli-responsive phosphorescence and antiforgery applications. Nano Research, 2017, 10, 3606-3617.	5.8	136
284	White-light emission from a single heavy atom-free molecule with room temperature phosphorescence, mechanochromism and thermochromism. Chemical Science, 2017, 8, 1909-1914.	3.7	168
285	Nonconventional macromolecular luminogens with aggregationâ€induced emission characteristics. Journal of Polymer Science Part A, 2017, 55, 560-574.	2.5	211
286	Layered host–guest long-afterglow ultrathin nanosheets: high-efficiency phosphorescence energy transfer at 2D confined interface. Chemical Science, 2017, 8, 590-599.	3.7	188
287	Characterization of Halogen Bonded Adducts in Solution by Advanced NMR Techniques. Magnetochemistry, 2017, 3, 30.	1.0	13
288	Connectivity and Topology Invariance in Self-Assembled and Halogen-Bonded Anionic (6,3)-Networks. Molecules, 2017, 22, 2060.	1.7	1
289	Dual-Emissive Waterborne Polyurethanes Prepared from Naphthalimide Derivative. Polymers, 2017, 9, 411.	2.0	17
290	White light emission from a single organic molecule with dual phosphorescence at room temperature. Nature Communications, 2017, 8, 416.	5.8	621
291	Organic Light Emitting Diodes-Recent Advancements. , 2017, , .		5
292	Halogen-Bonded Cocrystals. , 2017, , 49-72.		1
293	Induction of long-lived room temperature phosphorescence of carbon dots by water in hydrogen-bonded matrices. Nature Communications, 2018, 9, 734.	5.8	314
294	Site specificity of halogen bonding involving aromatic acceptors. Physical Chemistry Chemical Physics, 2018, 20, 8685-8694.	1.3	19
295	Boosting Luminescence of Planarâ€Fluorophoreâ€Tagged Metal–Organic Cages Via Weak Supramolecular Interactions. Chemistry - A European Journal, 2018, 24, 7108-7113.	1.7	13
296	The influence of the molecular packing on the room temperature phosphorescence of purely organic luminogens. Nature Communications, 2018, 9, 840.	5.8	764
297	Construction and multifunctional applications of carbon dots/PVA nanofibers with phosphorescence and thermally activated delayed fluorescence. Chemical Engineering Journal, 2018, 347, 505-513.	6.6	84
298	Phosphorescence Through Hindered Motion of Pure Organic Emitters. Chemistry - A European Journal, 2018, 24, 12221-12230.	1.7	60
299	Metal free room temperature phosphorescence from molecular self-interactions in the solid state. Journal of Materials Chemistry C, 2018, 6, 4603-4626.	2.7	239
300	Facile, Quick, and Gramâ€Scale Synthesis of Ultralongâ€Lifetime Roomâ€Temperatureâ€Phosphorescent Carbon Dots by Microwave Irradiation. Angewandte Chemie - International Edition, 2018, 57, 6216-6220.	7.2	474

#	Article	IF	CITATIONS
301	Tuning the structural and spectroscopic properties of donor–acceptor–donor oligomers <i>via</i> mutual X-bonding, H-bonding, and ï€â€"i€ interactions. Journal of Materials Chemistry C, 2018, 6, 11992-12000.	2.7	17
302	Facile, Quick, and Gramâ€Scale Synthesis of Ultralongâ€Lifetime Roomâ€Temperatureâ€Phosphorescent Carbon Dots by Microwave Irradiation. Angewandte Chemie, 2018, 130, 6324-6328.	1.6	35
303	Cocrystals Strategy towards Materials for Nearâ€Infrared Photothermal Conversion and Imaging. Angewandte Chemie, 2018, 130, 4027-4031.	1.6	50
304	Ultralong Roomâ€Temperature Phosphorescence from Amorphous Polymer Poly(Styrene Sulfonic Acid) in Air in the Dry Solid State. Advanced Functional Materials, 2018, 28, 1707369.	7.8	167
305	Long-Lived Emissive Probes for Time-Resolved Photoluminescence Bioimaging and Biosensing. Chemical Reviews, 2018, 118, 1770-1839.	23.0	644
306	Enhancing Ultralong Organic Phosphorescence by Effective Ï€â€∓ype Halogen Bonding. Advanced Functional Materials, 2018, 28, 1705045.	7.8	244
307	Multicolor Photoluminescence of a Hybrid Film via the Dual-Emitting Strategy of an Inorganic Fluorescent Au Nanocluster and an Organic Room-Temperature Phosphorescent Copolymer. Industrial & Engineering Chemistry Research, 2018, 57, 2866-2872.	1.8	33
308	Hydrogenâ€Bonded Organic Aromatic Frameworks for Ultralong Phosphorescence by Intralayer π–π Interactions. Angewandte Chemie - International Edition, 2018, 57, 4005-4009.	7.2	207
309	Waterborne polyurethanes prepared from benzophenone derivatives with delayed fluorescence and room-temperature phosphorescence. Polymer Chemistry, 2018, 9, 1303-1308.	1.9	26
310	Cocrystals Strategy towards Materials for Nearâ€Infrared Photothermal Conversion and Imaging. Angewandte Chemie - International Edition, 2018, 57, 3963-3967.	7.2	255
311	Design of Metalâ€Free Polymer Carbon Dots: A New Class of Roomâ€Temperature Phosphorescent Materials. Angewandte Chemie, 2018, 130, 2417-2422.	1.6	55
312	Design of Metalâ€Free Polymer Carbon Dots: A New Class of Roomâ€Temperature Phosphorescent Materials. Angewandte Chemie - International Edition, 2018, 57, 2393-2398.	7.2	429
313	Ultralong Phosphorescence from Organic Ionic Crystals under Ambient Conditions. Angewandte Chemie, 2018, 130, 686-690.	1.6	33
314	Roomâ€Temperature Phosphorescence in Pure Organic Materials: Halogen Bonding Switching Effects. Chemistry - A European Journal, 2018, 24, 1801-1805.	1.7	86
315	Waterborne polyacrylates with thermally activated delayed fluorescence and two-state phosphorescence. Materials Chemistry Frontiers, 2018, 2, 559-565.	3.2	15
317	Effect of geometry factors on the priority of σ-holeâ<¯Ï€ and Ï€-holeâ<¯Ï€ bond in phosphorescent cocrystals formed by pyrene or phenanthrene and trihaloperfluorobenzenes. New Journal of Chemistry, 2018, 42, 10633-10641.	1.4	22
318	Twisted Molecular Structure on Tuning Ultralong Organic Phosphorescence. Journal of Physical Chemistry Letters, 2018, 9, 335-339.	2.1	72
319	Amorphous Metal-Free Room-Temperature Phosphorescent Small Molecules with Multicolor Photoluminescence via a Host–Guest and Dual-Emission Strategy. Journal of the American Chemical Society, 2018, 140, 1916-1923.	6.6	481

#	Article	IF	Citations
320	Synthesis, clustering-triggered emission, explosive detection and cell imaging of nonaromatic polyurethanes. Molecular Systems Design and Engineering, 2018, 3, 364-375.	1.7	100
321	Reversible control of triplet dynamics in metal-organic framework-entrapped organic emitters via external gases. Communications Chemistry, 2018, 1, .	2.0	20
322	Amorphous Pure Organic Polymers for Heavyâ€Atomâ€Free Efficient Roomâ€Temperature Phosphorescence Emission. Angewandte Chemie, 2018, 130, 11020-11024.	1.6	94
323	Amorphous Pure Organic Polymers for Heavyâ€Atomâ€Free Efficient Roomâ€Temperature Phosphorescence Emission. Angewandte Chemie - International Edition, 2018, 57, 10854-10858.	7.2	373
324	Ultralong room temperature phosphorescence from amorphous organic materials toward confidential information encryption and decryption. Science Advances, 2018, 4, eaas9732.	4.7	515
325	Solution processable carbazole derivatives for dopant free single molecule white electroluminescence by room temperature phosphorescence. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 360, 249-254.	2.0	6
326	Mechano-induced persistent room-temperature phosphorescence from purely organic molecules. Chemical Science, 2018, 9, 3782-3787.	3.7	97
327	Clustering-Triggered Emission and Persistent Room Temperature Phosphorescence of Sodium Alginate. Biomacromolecules, 2018, 19, 2014-2022.	2.6	248
328	Hydrogenâ€Bonded Organic Aromatic Frameworks for Ultralong Phosphorescence by Intralayer π–π Interactions. Angewandte Chemie, 2018, 130, 4069-4073.	1.6	61
329	Journey of Aggregation-Induced Emission Research. ACS Omega, 2018, 3, 3267-3277.	1.6	234
330	DNA assembly of carbon dots and 5-fluorouracil used for room-temperature phosphorescence turn-on sensing of AFP and AFP-triggered simultaneous release of dual-drug. Sensors and Actuators B: Chemical, 2018, 255, 1623-1630.	4.0	26
331	The role of the σ-holes in stability of non-bonded chalcogenideâ√benzene interactions: the ground and excited states. Physical Chemistry Chemical Physics, 2018, 20, 299-306.	1.3	10
332	Use of silylmethoxy groups as inducers of efficient room temperature phosphorescence from precious-metal-free organic luminophores. Materials Chemistry Frontiers, 2018, 2, 347-354.	3.2	21
333	Halogen-Bonded Cocrystals as Optical Materials: Next-Generation Control over Light–Matter Interactions. Crystal Growth and Design, 2018, 18, 1245-1259.	1.4	115
334	Ultralong Phosphorescence from Organic Ionic Crystals under Ambient Conditions. Angewandte Chemie - International Edition, 2018, 57, 678-682.	7.2	176
335	Phosphorescence Tuning through Heavy Atom Placement in Unsymmetrical Difluoroboron βâ€Điketonate Materials. Chemistry - A European Journal, 2018, 24, 1859-1869.	1.7	37
336	Prolonging the lifetime of ultralong organic phosphorescence through dihydrogen bonding. Journal of Materials Chemistry C, 2018, 6, 226-233.	2.7	92
337	Assisted Surface-state Recombination of Orange-peel Carbon Nanodots in Various Matrices. Makara Journal of Science, 2018, 22, .	1.1	5

#	Article	IF	CITATIONS
338	On the molecular optical nonlinearity of halogen-bond-forming azobenzenes. Physical Chemistry Chemical Physics, 2018, 20, 28810-28817.	1.3	9
340	Remarkable pressure-induced emission enhancement based on intermolecular charge transfer in halogen bond-driven dual-component co-crystals. Physical Chemistry Chemical Physics, 2018, 20, 30297-30303.	1.3	18
341	Cocrystals with tunable luminescence colour self-assembled by a predictable method. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 2018, 74, 610-617.	0.5	10
342	Layered Hybrid Zincophosphites for Room Temperature Phosphorescent Emission. Inorganic Chemistry, 2018, 57, 14497-14500.	1.9	10
343	Defectâ€Stabilized Triplet State Excitons: Toward Ultralong Organic Roomâ€Temperature Phosphorescence. Advanced Functional Materials, 2018, 28, 1804961.	7.8	70
344	Tailoring the Energy Levels and Cavity Structures toward Organic Cocrystal Microlasers. ACS Applied Materials & Interfaces, 2018, 10, 42740-42746.	4.0	34
345	Paintable Room Temperature Phosphorescent Liquid Formulations of Alkylated Bromonaphthalimide. Angewandte Chemie, 2018, 131, 2306.	1.6	14
346	Crystal packing and theoretical analysis of halogen- and hydrogen-bonded hydrazones from pharmaceuticals. Evidence of type I and II halogen bonds in extended chains of dichloromethane. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 2018, 74, 618-627.	0.5	7
347	Switching of Monomer Fluorescence, Chargeâ€Transfer Fluorescence, and Roomâ€Temperature Phosphorescence Induced by Aromatic Guest Inclusion in a Supramolecular Host. Chemistry - A European Journal, 2018, 24, 17487-17496.	1.7	46
348	Aerobic Solid State Red Phosphorescence from Benzobismole Monomers and Patternable Selfâ€Assembled Block Copolymers. Angewandte Chemie, 2018, 130, 15057-15062.	1.6	14
349	Aerobic Solid State Red Phosphorescence from Benzobismole Monomers and Patternable Selfâ€Assembled Block Copolymers. Angewandte Chemie - International Edition, 2018, 57, 14841-14846.	7.2	61
350	Thienoisoindigo-Based Semiconductor Nanowires Assembled with 2-Bromobenzaldehyde via Both Halogen and Chalcogen Bonding. Scientific Reports, 2018, 8, 14448.	1.6	16
351	Halogen-Bond-Assisted Photoluminescence Modulation in Carbazole-Based Emitter. Scientific Reports, 2018, 8, 14431.	1.6	23
352	Highly efficient room-temperature phosphorescence and afterglow luminescence from common organic fluorophores in 2D hybrid perovskites. Chemical Science, 2018, 9, 8975-8981.	3.7	119
353	Observation of Dual Room Temperature Fluorescence–Phosphorescence in Air, in the Crystal Form of a Thianthrene Derivative. Journal of Physical Chemistry C, 2018, 122, 24958-24966.	1.5	31
354	Matrix-Free and Highly Efficient Room-Temperature Phosphorescence of Nitrogen-Doped Carbon Dots. Langmuir, 2018, 34, 12845-12852.	1.6	69
355	Highly efficient organic photocatalysts discovered via a computer-aided-design strategy for visible-light-driven atom transfer radical polymerization. Nature Catalysis, 2018, 1, 794-804.	16.1	124
356	Aqueous Phase Phosphorescence: Ambient Triplet Harvesting of Purely Organic Phosphors via Supramolecular Scaffolding. Angewandte Chemie, 2018, 130, 17361-17365.	1.6	35

#	Article	IF	CITATIONS
357	Protonâ€Activated "Off–On―Roomâ€Temperature Phosphorescence from Purely Organic Thioethers. Angewandte Chemie, 2018, 130, 16278-16282.	1.6	34
358	Protonâ€Activated "Off–On―Roomâ€Temperature Phosphorescence from Purely Organic Thioethers. Angewandte Chemie - International Edition, 2018, 57, 16046-16050.	7.2	130
359	Photophysical Tuning of Organic Ionic Crystals from Ultralong Afterglow to Highly Efficient Phosphorescence by Variation of Halides. Journal of Physical Chemistry Letters, 2018, 9, 6305-6311.	2.1	42
360	Intramolecular Charge Transfer Controls Switching Between Room Temperature Phosphorescence and Thermally Activated Delayed Fluorescence. Angewandte Chemie, 2018, 130, 16645-16649.	1.6	98
361	Intramolecular Charge Transfer Controls Switching Between Room Temperature Phosphorescence and Thermally Activated Delayed Fluorescence. Angewandte Chemie - International Edition, 2018, 57, 16407-16411.	7.2	230
362	Aqueous Phase Phosphorescence: Ambient Triplet Harvesting of Purely Organic Phosphors via Supramolecular Scaffolding. Angewandte Chemie - International Edition, 2018, 57, 17115-17119.	7.2	101
363	Bromineâ€Substituted Fluorene: Molecular Structure, Br–Br Interactions, Roomâ€Temperature Phosphorescence, and Tricolor Triboluminescence. Angewandte Chemie - International Edition, 2018, 57, 16821-16826.	7.2	111
364	Bromineâ€6ubstituted Fluorene: Molecular Structure, Br–Br Interactions, Roomâ€Temperature Phosphorescence, and Tricolor Triboluminescence. Angewandte Chemie, 2018, 130, 17063-17068.	1.6	26
365	Aggregation-Induced Dual Emission and Unusual Luminescence beyond Excimer Emission of Poly(ethylene terephthalate). Macromolecules, 2018, 51, 9035-9042.	2.2	73
366	Aggregation-Induced Enhancement of Molecular Phosphorescence Lifetime: A First-Principle Study. Journal of Physical Chemistry C, 2018, 122, 25796-25803.	1.5	29
367	Unexpected room-temperature phosphorescence from a non-aromatic, low molecular weight, pure organic molecule through the intermolecular hydrogen bond. Materials Chemistry Frontiers, 2018, 2, 2124-2129.	3.2	138
368	Preparation of Solid-state Luminescent Materials by Complexation between π-Conjugated Molecules and Activators. Chemistry Letters, 2018, 47, 1391-1394.	0.7	5
369	Cluster-Based Metal–Organic Frameworks: Modulated Singlet–Triplet Excited States and Temperature-Responsive Phosphorescent Switch. ACS Applied Materials & Interfaces, 2018, 10, 34377-34384.	4.0	103
370	Resonanceâ€Activated Spinâ€Flipping for Efficient Organic Ultralong Roomâ€Temperature Phosphorescence. Advanced Materials, 2018, 30, e1803856.	11.1	161
371	Bisâ€Naphthalene Cleft with Aggregationâ€Induced Emission Properties through Loneâ€Pairâ‹â‹î€ Intera Chemistry - A European Journal, 2018, 24, 16757-16761.	ctions. 1.7	11
372	Tailoring Blue-Green Double Emissions in Carbon Quantum Dots via Co-Doping Engineering by Competition Mechanism between Chlorine-Related States and Conjugated π-Domains. Nanomaterials, 2018, 8, 635.	1.9	16
373	Tunable Color of Aggregationâ€Induced Emission Enhancement in a Family of Hydrogenâ€Bonded Azines and Schiff Bases. Chemistry - A European Journal, 2018, 24, 17262-17267.	1.7	29
374	The Self-Assembled Dual-Band Room Temperature Phosphorescence Crystals with Grating Morphology Directed by Deoxycholate. Crystal Growth and Design, 2018, 18, 6307-6315.	1.4	1

#	Article	IF	CITATIONS
375	Mechano-responsive room temperature luminescence variations of boron conjugated pyrene in air. Chemical Communications, 2018, 54, 6028-6031.	2.2	42
376	Does Halogen Bonding Promote Intersystem Crossing and Phosphorescence in Benzaldehyde?. Journal of Physical Chemistry C, 2018, 122, 12441-12447.	1.5	12
377	Dynamic Ultralong Organic Phosphorescence by Photoactivation. Angewandte Chemie - International Edition, 2018, 57, 8425-8431.	7.2	241
378	Novel amidine derivatives of benzanthrone: Effect of bromine atom on the spectral parameters. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2018, 202, 41-49.	2.0	14
379	Pure Organic Persistent Roomâ€Temperature Phosphorescence at both Crystalline and Amorphous States. ChemPhysChem, 2018, 19, 2389-2396.	1.0	41
380	Efficient persistent room temperature phosphorescence achieved through Zn 2+ doped sodium carboxymethyl cellulose composites. Composites Communications, 2018, 8, 106-110.	3.3	20
381	Organic 2D Optoelectronic Crystals: Charge Transport, Emerging Functions, and Their Design Perspective. Advanced Materials, 2018, 30, e1704759.	11.1	161
382	Biluminescence via Fluorescence and Persistent Phosphorescence in Amorphous Organic Donor(D ₄)–Acceptor(A) Conjugates and Application in Data Security Protection. Journal of Physical Chemistry Letters, 2018, 9, 3808-3813.	2.1	44
383	Organic emitter integrating aggregation-induced delayed fluorescence and room-temperature phosphorescence characteristics, and its application in time-resolved luminescence imaging. Chemical Science, 2018, 9, 6150-6155.	3.7	111
384	High pH-induced efficient room-temperature phosphorescence from carbon dots in hydrogen-bonded matrices. Journal of Materials Chemistry C, 2018, 6, 7890-7895.	2.7	72
385	Dynamic Ultralong Organic Phosphorescence by Photoactivation. Angewandte Chemie, 2018, 130, 8561-8567.	1.6	47
386	Simultaneously Enhancing Efficiency and Lifetime of Ultralong Organic Phosphorescence Materials by Molecular Self-Assembly. Journal of the American Chemical Society, 2018, 140, 10734-10739.	6.6	399
387	Reversible Mechanochromic Luminescence of a Heteroatom-Free Helically Chiral Hydrocarbon. Chemistry Letters, 2018, 47, 1228-1231.	0.7	2
388	Organic Semiconductor Single Crystals for Electronics and Photonics. Advanced Materials, 2018, 30, e1801048.	11.1	319
389	Boosting the Heavy Atom Effect by Cavitand Encapsulation: Room Temperature Phosphorescence of Pyrene in the Presence of Oxygen. Journal of Physical Chemistry A, 2018, 122, 6578-6584.	1.1	16
390	Selfâ€Protective Roomâ€Temperature Phosphorescence of Fluorine and Nitrogen Codoped Carbon Dots. Advanced Functional Materials, 2018, 28, 1800791.	7.8	290
391	A facile strategy for realizing room temperature phosphorescence and single molecule white light emission. Nature Communications, 2018, 9, 2963.	5.8	339
392	Efficient Roomâ€Temperature Phosphorescence from Organic–Inorganic Hybrid Perovskites by Molecular Engineering. Advanced Materials, 2018, 30, e1707621.	11.1	126

#	Article	IF	Citations
393	Chalcogen atom modulated persistent room-temperature phosphorescence through intramolecular electronic coupling. Chemical Communications, 2018, 54, 9226-9229.	2.2	76
394	Smallâ€Molecule Emitters with High Quantum Efficiency: Mechanisms, Structures, and Applications in OLED Devices. Advanced Optical Materials, 2018, 6, 1800512.	3.6	201
395	The Effect of Bromo Substituents on the Multifaceted Emissive and Crystalâ€Packing Features of Cyclic Triimidazole Derivatives. ChemPhotoChem, 2018, 2, 801-805.	1.5	22
396	Nano-photosensitizer based on layered double hydroxide and isophthalic acid for singlet oxygenation and photodynamic therapy. Nature Communications, 2018, 9, 2798.	5.8	231
397	Designing Efficient and Ultralong Pure Organic Roomâ€īemperature Phosphorescent Materials by Structural Isomerism. Angewandte Chemie - International Edition, 2018, 57, 7997-8001.	7.2	224
398	Covalent organic frameworks: a platform for the experimental establishment of the influence of intermolecular distance on phosphorescence. Journal of Materials Chemistry C, 2018, 6, 5369-5374.	2.7	43
399	Conversion of Carbon Dots from Fluorescence to Ultralong Roomâ€Temperature Phosphorescence by Heating for Security Applications. Advanced Materials, 2018, 30, e1800783.	11.1	435
400	Dual Emission through Thermally Activated Delayed Fluorescence and Room-Temperature Phosphorescence, and Their Thermal Enhancement via Solid-State Structural Change in a Carbazole-Quinoline Conjugate. Journal of Physical Chemistry Letters, 2018, 9, 2733-2738.	2.1	81
401	Designing Efficient and Ultralong Pure Organic Roomâ€Temperature Phosphorescent Materials by Structural Isomerism. Angewandte Chemie, 2018, 130, 8129-8133.	1.6	72
402	Molecular cocrystals: design, charge-transfer and optoelectronic functionality. Physical Chemistry Chemical Physics, 2018, 20, 6009-6023.	1.3	143
403	Efficient room-temperature phosphorescence based on a pure organic sulfur-containing heterocycle: folding-induced spin–orbit coupling enhancement. Materials Chemistry Frontiers, 2018, 2, 1853-1858.	3.2	63
404	Fluorescence of Nonaromatic Organic Systems and Room Temperature Phosphorescence of Organic Luminogens: The Intrinsic Principle and Recent Progress. Small, 2018, 14, e1801560.	5.2	204
405	Ternary Emission of Fluorescence and Dual Phosphorescence at Room Temperature: A Singleâ€Molecule White Light Emitter Based on Pure Organic Azaâ€Aromatic Material. Advanced Functional Materials, 2018, 28, 1802407.	7.8	141
406	One-step synthesis of cyclic compounds towards easy room-temperature phosphorescence and deep blue thermally activated delayed fluorescence. Chemical Communications, 2018, 54, 7850-7853.	2.2	32
407	Enhanced Roomâ€Temperature Phosphorescence through Intermolecular Halogen/Hydrogen Bonding. Chemistry - A European Journal, 2019, 25, 714-723.	1.7	113
408	New Blue Light Emissive Polyazomethine(S) Containing Bromo-Triphenyl Units: Synthesis and Photophysics. Polymer-Plastics Technology and Materials, 2019, 58, 419-426.	0.6	5
409	Influence of Br substituent position at the carbazole on spin-orbit coupling element matrix. Chemical Physics, 2019, 527, 110500.	0.9	3
410	The design of room-temperature-phosphorescent carbon dots and their application as a security ink. Journal of Materials Chemistry C, 2019, 7, 10605-10612.	2.7	88

#	Article	IF	CITATIONS
411	Ultra-long room-temperature phosphorescent carbon dots: pH sensing and dual-channel detection of tetracyclines. Nanoscale, 2019, 11, 16036-16042.	2.8	60
412	Lead-Free Halide Perovskites and Perovskite Variants as Phosphors toward Light-Emitting Applications. ACS Applied Materials & Interfaces, 2019, 11, 31575-31584.	4.0	114
413	Amplified Heavy-Atom Free Phosphorescence from <i>meta</i> -Dimethoxy Difluoroboron β-Diketonate Charge-Transfer Materials. Journal of Physical Chemistry C, 2019, 123, 20488-20496.	1.5	18
414	Selfâ€Stabilized Amorphous Organic Materials with Roomâ€Temperature Phosphorescence. Angewandte Chemie - International Edition, 2019, 58, 16018-16022.	7.2	28
415	Selfâ€5tabilized Amorphous Organic Materials with Roomâ€Temperature Phosphorescence. Angewandte Chemie, 2019, 131, 16164-16168.	1.6	4
416	Development of a Laser Generator Based on the Analog of the Shpol'sky Matrix. Moscow University Physics Bulletin (English Translation of Vestnik Moskovskogo Universiteta, Fizika), 2019, 74, 52-56.	0.1	5
417	Ultrafast Charge Transfer and Structural Dynamics Following Outer-Valence Ionization of a Halogen-Bonded Dimer. Journal of Physical Chemistry A, 2019, 123, 7351-7360.	1.1	0
418	Excitedâ€State Modulation for Controlling Fluorescence and Phosphorescence Pathways toward Whiteâ€Light Emission. Advanced Optical Materials, 2019, 7, 1900767.	3.6	34
419	Facile synthesis of a micro-scale MOF host–guest with long-lasting phosphorescence and enhanced optoelectronic performance. Chemical Communications, 2019, 55, 11099-11102.	2.2	140
420	An AIE molecule featuring changeable triplet emission between phosphorescence and delayed fluorescence by an external force. Materials Chemistry Frontiers, 2019, 3, 2151-2156.	3.2	35
421	Metal-free and purely organic phosphorescent light-emitting diodes using phosphorescence harvesting hosts and organic phosphorescent emitters. Journal of Materials Chemistry C, 2019, 7, 11500-11506.	2.7	23
422	Multicolor Ultralong Organic Phosphorescence through Alkyl Engineering for 4D Coding Applications. Chemistry of Materials, 2019, 31, 5584-5591.	3.2	122
423	Cyanophenylcarbazole isomers exhibiting different UV and visible light excitable room temperature phosphorescence. Journal of Materials Chemistry C, 2019, 7, 9671-9677.	2.7	21
424	Cocrystal Engineering: A Collaborative Strategy toward Functional Materials. Advanced Materials, 2019, 31, e1902328.	11.1	245
425	Bromine Substituent Position Triggered Halogen versus Hydrogen Bond in 2D Self-Assembly of Fluorenone Derivatives. Journal of Physical Chemistry C, 2019, 123, 26191-26200.	1.5	17
426	Roomâ€Temperature Phosphorescence and Reversible White Light Switch Based on a Cyclodextrin Polypseudorotaxane Xerogel. Advanced Optical Materials, 2019, 7, 1900589.	3.6	62
427	Recent progress on pure organic room temperature phosphorescence materials based on host-guest interactions. Chinese Chemical Letters, 2019, 30, 1809-1814.	4.8	105
428	Diversity of tryptophan halogenases in sponges of the genus Aplysina. FEMS Microbiology Ecology, 2019, 95, .	1.3	11

#	Article	IF	CITATIONS
429	Aggregation-induced emission: a coming-of-age ceremony at the age of eighteen. Science China Chemistry, 2019, 62, 1090-1098.	4.2	269
430	Reevaluating Protein Photoluminescence: Remarkable Visible Luminescence upon Concentration and Insight into the Emission Mechanism. Angewandte Chemie, 2019, 131, 12797-12803.	1.6	30
431	Ultralong room-temperature phosphorescence of a solid-state supramolecule between phenylmethylpyridinium and cucurbit[6]uril. Chemical Science, 2019, 10, 7773-7778.	3.7	133
432	Hydrogen bonding boosted the persistent room temperature phosphorescence of pure organic compounds for multiple applications. Journal of Materials Chemistry C, 2019, 7, 9095-9101.	2.7	46
433	Room-Temperature Phosphorescence with Excitation-Energy Dependence and External Heavy-Atom Effect in Hybrid Zincophosphites. Inorganic Chemistry, 2019, 58, 9476-9481.	1.9	25
434	Hydrogen Bonding-Induced Morphology Dependence of Long-Lived Organic Room-Temperature Phosphorescence: A Computational Study. Journal of Physical Chemistry Letters, 2019, 10, 6948-6954.	2.1	76
435	Amorphous Ionic Polymers with Colorâ€Tunable Ultralong Organic Phosphorescence. Angewandte Chemie - International Edition, 2019, 58, 18776-18782.	7.2	129
436	Roomâ€Temperature Phosphorescence from a Series of 3â€Pyridylcarbazole Derivatives. Chemistry - A European Journal, 2019, 25, 16294-16300.	1.7	12
437	Strong Nâ^'Xâ‹â‹ôa^''N Halogen Bonds: A Comprehensive Study on Nâ€Halosaccharin Pyridine <i>N</i> Complexes. Angewandte Chemie - International Edition, 2019, 58, 18610-18618.	Dxide	54
438	Controllably realizing elastic/plastic bending based on a room-temperature phosphorescent waveguiding organic crystal. Chemical Science, 2019, 10, 227-232.	3.7	112
439	Carbon Dots in a Matrix: Energyâ€Transferâ€Enhanced Roomâ€Temperature Red Phosphorescence. Angewandte Chemie, 2019, 131, 18614-18619.	1.6	23
441	Aggregationâ€Induced Dualâ€Phosphorescence from Organic Molecules for Nondoped Lightâ€Emitting Diodes. Advanced Materials, 2019, 31, e1904273.	11.1	177
442	Crystalâ€State Photochromism and Dualâ€Mode Mechanochromism of an Organic Molecule with Fluorescence, Roomâ€Temperature Phosphorescence, and Delayed Fluorescence. Angewandte Chemie, 2019, 131, 16597-16602.	1.6	25
443	Strong Nâ^'Xâ‹â‹ô‹Oâ^'N Halogen Bonds: A Comprehensive Study on Nâ€Halosaccharin Pyridine N â€Oxide Complexes. Angewandte Chemie, 2019, 131, 18783-18791.	1.6	6
444	Amorphous Ionic Polymers with Colorâ€Tunable Ultralong Organic Phosphorescence. Angewandte Chemie, 2019, 131, 18952-18958.	1.6	36
445	Crystalâ€State Photochromism and Dualâ€Mode Mechanochromism of an Organic Molecule with Fluorescence, Roomâ€Temperature Phosphorescence, and Delayed Fluorescence. Angewandte Chemie - International Edition, 2019, 58, 16445-16450.	7.2	96
446	Regioisomerism effect (RIE) on optimizing ultralong organic phosphorescence lifetimes. Chinese Chemical Letters, 2019, 30, 1974-1978.	4.8	11
447	UV Rewritable Hybrid Graphene/Phosphor p–n Junction Photodiode. ACS Applied Materials & Interfaces, 2019, 11, 43351-43358.	4.0	5

#	Article	IF	CITATIONS
448	Aqueous phase and amorphous state room temperature phosphorescence from a small aromatic carbonyl derivative. Materials Research Express, 2019, 6, 124003.	0.8	8
449	Highly Efficient Organic Room-Temperature Phosphorescent Luminophores through Tuning Triplet States and Spin–Orbit Coupling with Incorporation of a Secondary Group. Journal of Physical Chemistry Letters, 2019, 10, 7141-7147.	2.1	23
450	Carbon Dots in a Matrix: Energyâ€Transferâ€Enhanced Roomâ€Temperature Red Phosphorescence. Angewandte Chemie - International Edition, 2019, 58, 18443-18448.	7.2	125
451	Synergistic Intra―and Intermolecular Noncovalent Interactions for Ultralong Organic Phosphorescence. Small, 2019, 15, e1903270.	5.2	30
452	Fluorescence–phosphorescence dual emissive carbon nitride quantum dots show 25% white emission efficiency enabling single-component WLEDs. Chemical Science, 2019, 10, 9801-9806.	3.7	115
453	Room-temperature phosphorescence-to-phosphorescence mechanochromism of a metal-free organic 1,2-diketone. Journal of Materials Chemistry C, 2019, 7, 11926-11931.	2.7	35
454	Strategy for Activating Room-Temperature Phosphorescence of Carbon Dots in Aqueous Environments. Chemistry of Materials, 2019, 31, 7979-7986.	3.2	112
455	Purely Organic Phosphorescence Emitter-Based Efficient Electroluminescence Devices. Journal of Physical Chemistry Letters, 2019, 10, 5983-5988.	2.1	76
456	Enabling long-lived organic room temperature phosphorescence in polymers by subunit interlocking. Nature Communications, 2019, 10, 4247.	5.8	199
457	Highly efficient room-temperature phosphorescence achieved by gadolinium complexes. Dalton Transactions, 2019, 48, 14958-14961.	1.6	11
458	Halogen Bonding beyond Crystals in Materials Science. Journal of Physical Chemistry B, 2019, 123, 9281-9290.	1.2	95
459	Synthesis of Tellurium-Containing π-Extended Aromatics with Room-Temperature Phosphorescence. Organic Letters, 2019, 21, 8328-8333.	2.4	47
460	Spin-orbit coupling and vibronic transitions of two Ce(C4H6) isomers probed by mass-analyzed threshold ionization and relativistic quantum computation. Journal of Chemical Physics, 2019, 151, 124307.	1.2	6
461	In Situ Green Synthesis of Nitrogen-Doped Carbon-Dot-Based Room-Temperature Phosphorescent Materials for Visual Iron Ion Detection. ACS Sustainable Chemistry and Engineering, 2019, 7, 18801-18809.	3.2	52
462	Emission mechanism understanding and tunable persistent room temperature phosphorescence of amorphous nonaromatic polymers. Materials Chemistry Frontiers, 2019, 3, 257-264.	3.2	150
463	Aggregation-induced emission: fundamental understanding and future developments. Materials Horizons, 2019, 6, 428-433.	6.4	564
464	Highly ordered AIEgen directed silica hybrid mesostructures and their light-emitting behaviours. Journal of Materials Chemistry C, 2019, 7, 346-353.	2.7	6
465	Influence of thermal treatment on the structural and optical properties of methoxy-substituted 2, 4-diphenyl quinoline. Applied Physics A: Materials Science and Processing, 2019, 125, 1.	1.1	2

#	Article	IF	CITATIONS
466	Achieving Dualâ€Emissive and Timeâ€Dependent Evolutive Organic Afterglow by Bridging Molecules with Weak Intermolecular Hydrogen Bonding. Advanced Optical Materials, 2019, 7, 1801593.	3.6	101
467	Highly Efficient Ultralong Organic Phosphorescence through Intramolecular-Space Heavy-Atom Effect. Journal of Physical Chemistry Letters, 2019, 10, 595-600.	2.1	130
468	Hydrogen Bond versus Halogen Bond in HXOn (X = F, Cl, Br, and I) Complexes with Lewis Bases. Inorganics, 2019, 7, 9.	1.2	12
469	A novel metal-free amorphous room-temperature phosphorescent polymer without conjugation. Science China Chemistry, 2019, 62, 430-433.	4.2	49
470	Recent Advances in Purely Organic Room Temperature Phosphorescence Polymer. Chinese Journal of Polymer Science (English Edition), 2019, 37, 383-393.	2.0	105
471	Thermally activated delayed fluorescence and room-temperature phosphorescence in naphthyl appended carbazole–quinoline conjugates, and their mechanical regulation. Chemical Communications, 2019, 55, 1899-1902.	2.2	34
472	Blue, green, and red full-color ultralong afterglow in nitrogen-doped carbon dots. Nanoscale, 2019, 11, 6584-6590.	2.8	176
473	A colorless semi-aromatic polyimide derived from a sterically hindered bromine-substituted dianhydride exhibiting dual fluorescence and phosphorescence emission. Materials Chemistry Frontiers, 2019, 3, 39-49.	3.2	38
474	A novel strategy for realizing dual state fluorescence and low-temperature phosphorescence. Materials Chemistry Frontiers, 2019, 3, 284-291.	3.2	39
475	Flexible-color tuning and white-light emission in three-, four-, and five-component host/guest co-crystals by charge-transfer emissions as well as effective energy transfers. Journal of Materials Chemistry C, 2019, 7, 2829-2842.	2.7	38
476	Boosting the triplet activity of heavy-atom-free difluoroboron dibenzoylmethane <i>via</i> sp ³ oxygen-bridged electron donors. Chemical Communications, 2019, 55, 67-70.	2.2	27
477	Inspired by chaos. Nature Photonics, 2019, 13, 375-375.	15.6	0
478	Color tunable room temperature phosphorescent carbon dot based nanocomposites obtainable from multiple carbon sources <i>via</i> a molten salt method. Nanoscale, 2019, 11, 11967-11974.	2.8	78
479	Halogen ontaining TPAâ€Based Luminogens: Different Molecular Packing and Different Mechanoluminescence. Advanced Optical Materials, 2019, 7, 1900505.	3.6	43
480	One-step preparation of silica microspheres with super-stable ultralong room temperature phosphorescence. Journal of Materials Chemistry C, 2019, 7, 8680-8687.	2.7	40
481	Modulation of Amplified Spontaneous Emissions between Singlet Fluorescence and Triplet Phosphorescence Channels in Organic Dye Lasers. Laser and Photonics Reviews, 2019, 13, 1900036.	4.4	14
482	Colour-tunable ultralong organic phosphorescence upon temperature stimulus. RSC Advances, 2019, 9, 19075-19078.	1.7	9
483	Reevaluating Protein Photoluminescence: Remarkable Visible Luminescence upon Concentration and Insight into the Emission Mechanism. Angewandte Chemie - International Edition, 2019, 58, 12667-12673.	7.2	154

#	ARTICLE	IF	CITATIONS
484	temperature-response by adjusting the proportion of excited-state configurations in coupled molecules. Journal of Materials Chemistry C, 2019, 7, 8250-8254.	2.7	20
485	Stimuliâ€Responsive Reversible Switching of Intersystem Crossing in Pure Organic Material for Smart Photodynamic Therapy. Angewandte Chemie, 2019, 131, 11222-11228.	1.6	11
486	Stimuliâ€Responsive Reversible Switching of Intersystem Crossing in Pure Organic Material for Smart Photodynamic Therapy. Angewandte Chemie - International Edition, 2019, 58, 11105-11111.	7.2	72
487	Stimuli responsive and reversible crystalline–amorphous transformation in a molecular solid: fluorescence switching and enhanced phosphorescence in the amorphous state. Journal of Materials Chemistry C, 2019, 7, 7083-7089.	2.7	32
488	Colour-tunable ultra-long emission. Nature Photonics, 2019, 13, 373-375.	15.6	10
489	Enhancing the performance of pure organic room-temperature phosphorescent luminophores. Nature Communications, 2019, 10, 2111.	5.8	525
490	Exploration of the Luminescence Properties of Organic Phosphate Salts of 3â€Quinoline―and 5â€Isoquinolineboronic Acid. European Journal of Inorganic Chemistry, 2019, 2019, 2707-2724.	1.0	10
491	Advancement in science and technology of carbon dot-polymer hybrid composites: a review. Functional Composites and Structures, 2019, 1, 022001.	1.6	99
492	Template-Modulated Afterglow of Carbon Dots in Zeolites: Room-Temperature Phosphorescence and Thermally Activated Delayed Fluorescence. , 2019, 1, 58-63.		92
493	Modulation of Thermally Activated Delayed Fluorescence in Waterborne Polyurethanes via Chargeâ€Transfer Effect. Chemistry - an Asian Journal, 2019, 14, 2302-2308.	1.7	0
494	Boronâ€Clusterâ€Enhanced Ultralong Organic Phosphorescence. Angewandte Chemie, 2019, 131, 9227-9231.	1.6	21
495	Boronâ€Clusterâ€Enhanced Ultralong Organic Phosphorescence. Angewandte Chemie - International Edition, 2019, 58, 9129-9133.	7.2	86
496	Thianthrene and acridan-substituted benzophenone or diphenylsulfone: Effect of triplet harvesting via TADF and phosphorescence on efficiency of all-organic OLEDS. Organic Electronics, 2019, 70, 227-239.	1.4	26
497	{Zn ₆ } Cluster Based Metal–Organic Framework with Enhanced Room-Temperature Phosphorescence and Optoelectronic Performances. Inorganic Chemistry, 2019, 58, 6215-6221.	1.9	231
498	Metal-Free Room-Temperature Phosphorescent Systems for Pure White-Light Emission and Latent Fingerprint Visualization. Industrial & Engineering Chemistry Research, 2019, 58, 7778-7785.	1.8	34
499	Thermoluminescent Antimony-Supported Copper-lodo Cuboids: Approaching NIR Emission via High Crystallographic Symmetry. Inorganic Chemistry, 2019, 58, 16330-16345.	1.9	18
500	A Highly Efficient Red Metal-free Organic Phosphor for Time-Resolved Luminescence Imaging and Photodynamic Therapy. ACS Applied Materials & Interfaces, 2019, 11, 18103-18110.	4.0	74
501	Long Afterglow Roomâ€Temperature Phosphorescence from Nanopebbles: A Urea Pyrolysis Product. Chemistry - an Asian Journal, 2019, 14, 2573-2578.	1.7	11

#	Article	IF	CITATIONS
502	Solving the enigma of weak fluorine contacts in the solid state: a periodic DFT study of fluorinated organic crystals. RSC Advances, 2019, 9, 12520-12537.	1.7	34
503	Persistent Solid‣tate Phosphorescence and Delayed Fluorescence at Room Temperature by a Twisted Hydrocarbon. Angewandte Chemie, 2019, 131, 7056-7060.	1.6	22
504	Harvesting Triplet Excitons in Lead-Halide Perovskites for Room-Temperature Phosphorescence. Chemistry of Materials, 2019, 31, 2597-2602.	3.2	57
505	Polymorphism dependent triplet-involved emissions of a pure organic luminogen. Chinese Chemical Letters, 2019, 30, 933-936.	4.8	18
506	Reactivity of 4-Aminopyridine with Halogens and Interhalogens: Weak Interactions Supported Networks of 4-Aminopyridine and 4-Aminopyridinium. Crystal Growth and Design, 2019, 19, 2434-2445.	1.4	15
507	Promoting Intersystem Crossing of a Fluorescent Molecule via Single Functional Group Modification. Journal of Physical Chemistry Letters, 2019, 10, 1388-1393.	2.1	15
508	Efficient Roomâ€Temperature Phosphorescence of a Solid‣tate Supramolecule Enhanced by Cucurbit[6]uril. Angewandte Chemie, 2019, 131, 6089-6093.	1.6	62
509	Efficient Roomâ€Temperature Phosphorescence of a Solidâ€State Supramolecule Enhanced by Cucurbit[6]uril. Angewandte Chemie - International Edition, 2019, 58, 6028-6032.	7.2	250
510	Pure Organic Room Temperature Phosphorescence from Excited Dimers in Self-Assembled Nanoparticles under Visible and Near-Infrared Irradiation in Water. Journal of the American Chemical Society, 2019, 141, 5045-5050.	6.6	285
511	Achieving Persistent, Efficient, and Robust Roomâ€Temperature Phosphorescence from Pure Organics for Versatile Applications. Advanced Materials, 2019, 31, e1807222.	11.1	270
512	Persistent Solidâ€6tate Phosphorescence and Delayed Fluorescence at Room Temperature by a Twisted Hydrocarbon. Angewandte Chemie - International Edition, 2019, 58, 6982-6986.	7.2	77
513	Invoking ultralong room temperature phosphorescence of purely organic compounds through H-aggregation engineering. Materials Horizons, 2019, 6, 1259-1264.	6.4	131
514	A Universal Strategy for Activating the Multicolor Roomâ€Temperature Afterglow of Carbon Dots in a Boric Acid Matrix. Angewandte Chemie, 2019, 131, 7356-7361.	1.6	62
515	A Universal Strategy for Activating the Multicolor Roomâ€Temperature Afterglow of Carbon Dots in a Boric Acid Matrix. Angewandte Chemie - International Edition, 2019, 58, 7278-7283.	7.2	266
516	Phosphorescence at Low Temperature by External Heavyâ€Atom Effect in Zinc(II) Clusters. Chemistry - A European Journal, 2019, 25, 5875-5879.	1.7	10
517	Isophthalate-Based Room Temperature Phosphorescence: From Small Molecule to Side-Chain Jacketed Liquid Crystalline Polymer. Macromolecules, 2019, 52, 2495-2503.	2.2	33
518	Boosting the efficiency of organic persistent room-temperature phosphorescence by intramolecular triplet-triplet energy transfer. Nature Communications, 2019, 10, 1595.	5.8	194
519	Colour-tunable ultra-long organic phosphorescence of a single-component molecular crystal. Nature Photonics, 2019, 13, 406-411.	15.6	579

#	Article	IF	CITATIONS
520	Heavy-atom-free amorphous materials with facile preparation and efficient room-temperature phosphorescence emission. Chemical Communications, 2019, 55, 5355-5358.	2.2	24
521	Roomâ€Temperature Phosphorescence in Metalâ€Free Organic Materials. Annalen Der Physik, 2019, 531, 1800482.	0.9	79
522	Modeling halogen bonding with planewave density functional theory: Accuracy and challenges. Journal of Computational Chemistry, 2019, 40, 1829-1835.	1.5	6
523	Utilizing d–pï€ Bonds for Ultralong Organic Phosphorescence. Angewandte Chemie - International Edition, 2019, 58, 6645-6649.	7.2	154
524	Utilizing d–pπ Bonds for Ultralong Organic Phosphorescence. Angewandte Chemie, 2019, 131, 6717-6721.	1.6	107
525	Predicting Phosphorescence Rates of Light Organic Molecules Using Time-Dependent Density Functional Theory and the Path Integral Approach to Dynamics. Journal of Chemical Theory and Computation, 2019, 15, 1896-1904.	2.3	158
526	Interplay of Halogen Bonding and Hydrogen Bonding in the Cocrystals and Salts of Dihalogens and Trihalides with <i>N</i> , <i>N</i> ′-Bis(3-pyridylacrylamido) Derivatives: Phosphorescent Organic Salts. Crystal Growth and Design, 2019, 19, 2175-2188.	1.4	12
527	Room-Temperature Phosphorescence from Metal-Free Organic Materials in Solution: Origin and Molecular Design. Journal of Physical Chemistry Letters, 2019, 10, 1037-1042.	2.1	34
528	Identification of an Overlooked Halogenâ€Bond Synthon and Its Application in Designing Fluorescent Materials. Chemistry - A European Journal, 2019, 25, 6584-6590.	1.7	11
529	Polyimides containing aliphatic/alicyclic segments in the main chains. Progress in Polymer Science, 2019, 92, 35-88.	11.8	230
530	Carbon Dotsâ€inâ€Matrix Boosting Intriguing Luminescence Properties and Applications. Small, 2019, 15, e1805504.	5.2	124
531	Aggregationâ€Induced Emission of Highly Planar Enaminone Derivatives: Unexpected Fluorescence Enhancement by Bromine Substitution. Advanced Optical Materials, 2019, 7, 1801719.	3.6	19
532	Ultralong UV/mechano-excited room temperature phosphorescence from purely organic cluster excitons. Nature Communications, 2019, 10, 5161.	5.8	216
533	Carbon Dot-Silica Nanoparticle Composites for Ultralong Lifetime Phosphorescence Imaging in Tissue and Cells at Room Temperature. Chemistry of Materials, 2019, 31, 9887-9894.	3.2	137
534	Frontiers in carbon dots: design, properties and applications. Materials Chemistry Frontiers, 2019, 3, 2571-2601.	3.2	118
535	Tunable afterglow luminescence and triple-mode emissions of thermally activated carbon dots confined within nanoclays. Journal of Materials Chemistry C, 2019, 7, 13640-13646.	2.7	44
536	Aggregation-enhanced emissive mechanofluorochromic carbazole-halogen positional isomers: tunable fluorescence <i>via</i> conformational polymorphism and crystallization-induced fluorescence switching. CrystEngComm, 2019, 21, 6604-6612.	1.3	26
537	One-dimensional π–π stacking induces highly efficient pure organic room-temperature phosphorescence and ternary-emission single-molecule white light. Journal of Materials Chemistry C, 2019, 7, 12502-12508.	2.7	81

#	Article	IF	CITATIONS
538	Anion-regulated transient and persistent phosphorescence and size-dependent ultralong afterglow of organic ionic crystals. Journal of Materials Chemistry C, 2019, 7, 14535-14542.	2.7	33
539	Subtle structure tailoring of metal-free triazine luminogens for highly efficient ultralong organic phosphorescence. Chinese Chemical Letters, 2019, 30, 1935-1938.	4.8	9
540	Polymorphic Pure Organic Luminogens with Throughâ€Space Conjugation and Persistent Roomâ€Temperature Phosphorescence. Chemistry - an Asian Journal, 2019, 14, 884-889.	1.7	28
541	Intrinsic and Extrinsic Heavyâ€Atom Effects on the Multifaceted Emissive Behavior of Cyclic Triimidazole. Chemistry - A European Journal, 2019, 25, 2452-2456.	1.7	37
542	Efficient and Long-Lived Room-Temperature Organic Phosphorescence: Theoretical Descriptors for Molecular Designs. Journal of the American Chemical Society, 2019, 141, 1010-1015.	6.6	389
543	Ultralong Organic Phosphorescence in the Solid State: The Case of Triphenylene Cocrystals with Halo- and Dihalo-penta/tetrafluorobenzene. Crystal Growth and Design, 2019, 19, 336-346.	1.4	33
544	Renaissance of Organic Triboluminescent Materials. Angewandte Chemie - International Edition, 2019, 58, 7922-7932.	7.2	65
545	Molecular Design Approach Managing Molecular Orbital Superposition for High Efficiency without Color Shift in Thermally Activated Delayed Fluorescent Organic Lightâ€Emitting Diodes. Chemistry - A European Journal, 2019, 25, 1829-1834.	1.7	11
546	Renaissance of Organic Triboluminescent Materials. Angewandte Chemie, 2019, 131, 8004-8014.	1.6	10
547	2,5â€Dimethoxybenzeneâ€1,4â€dicarboxaldehyde: An Emissive Organic Crystal and Highly Efficient Fluorescent Waveguide. ChemPlusChem, 2019, 84, 247-251.	1.3	26
548	Throwing in a Monkey Wrench to Test and Determine Geared Motion in the Dynamics of a Crystalline One-Dimensional (1D) Columnar Rotor Array. Journal of the American Chemical Society, 2019, 141, 2413-2420.	6.6	33
549	Activating room temperature phosphorescence by organic materials using synergistic effects. Journal of Materials Chemistry C, 2019, 7, 230-236.	2.7	43
550	Suppressed Triplet Exciton Diffusion Due to Small Orbital Overlap as a Key Design Factor for Ultralongâ€Lived Roomâ€Temperature Phosphorescence in Molecular Crystals. Advanced Materials, 2019, 31, e1807268.	11.1	99
551	Hydrophilic, Redâ€Emitting, and Thermally Activated Delayed Fluorescence Emitter for Timeâ€Resolved Luminescence Imaging by Mitochondrionâ€Induced Aggregation in Living Cells. Advanced Science, 2019, 6, 1801729.	5.6	80
552	Controlling the fluorescence and room-temperature phosphorescence behaviour of carbon nanodots with inorganic crystalline nanocomposites. Nature Communications, 2019, 10, 206.	5.8	128
553	A high efficiency pure organic room temperature phosphorescence polymer PPV derivative for OLED. Organic Electronics, 2019, 64, 247-251.	1.4	19
554	Intersystem crossing in the exit channel. Nature Chemistry, 2019, 11, 123-128.	6.6	36
555	Paintable Roomâ€Temperature Phosphorescent Liquid Formulations of Alkylated Bromonaphthalimide. Angewandte Chemie - International Edition, 2019, 58, 2284-2288.	7.2	82

ARTICLE IF CITATIONS # Enhanced intersystem crossing to achieve long-lived excitons based on inhibited molecular motion 556 2.0 5 and rigid structure. Dyes and Pigments, 2020, 173, 107886. A D-A-D' type organic molecule with persistent phosphorescence exhibiting dual-mode mechanochromism. Dyes and Pigments, 2020, 173, 107963. 558 Miracles of molecular uniting. Science China Materials, 2020, 63, 177-184. 3.5 77 Tuning phosphorescence features of triphenylamines by varying functional groups and 2.0 intermolecular interactions. Dyes and Pigments, 2020, 173, 107931. 1,3,5-Trifluoro-2,4,6-triiodobenzene: A neglected NIR phosphor with prolonged lifetime by Ïf-hole and i€-hole capture. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2020, 224, 560 2.0 8 117428. Dyes encapsulated in a novel flexible metalâ^'organic framework show tunable and stimuli-responsive phosphorescence. Dyes and Pigments, 2020, 174, 108017. Halogen bonding in room-temperature phosphorescent materials. Coordination Chemistry Reviews, 562 106 9.5 2020, 404, 213107. New Wine in Old Bottles: Prolonging Roomâ€Temperature Phosphorescence of Crown Ethers by 1.6 14 Supramolecular Interactions. Angewandte Chemie, 2020, 132, 9379-9384. Excitationâ€Dependent Longâ€Life Luminescent Polymeric Systems under Ambient Conditions. Angewandte 564 7.2 242 Chemie - International Edition, 2020, 59, 9967-9971. New Wine in Old Bottles: Prolonging Roomâ€Temperature Phosphorescence of Crown Ethers by Supramolecular Interactions. Angewandte Chemie - International Edition, 2020, 59, 9293-9298. Excitationâ€Dependent Longâ€Life Luminescent Polymeric Systems under Ambient Conditions. Angewandte 566 49 1.6 Chemie, 2020, 132, 10053-10057. Colorâ€īunable Polymeric Longâ€Persistent Luminescence Based on Polyphosphazenes. Advanced 11.1 176 Materials, 2020, 32, e1907355 Enhanced Room-Temperature Phosphorescence of an Organic Ligand in 3D Hybrid Materials Assisted by 568 1.9 20 Adjacent Halogen Atom. Inorganic Chemistry, 2020, 59, 972-975. Afterglow of carbon dots: mechanism, strategy and applications. Materials Chemistry Frontiers, 2020, 4, 386-399. 3.2 Room Temperature Phosphorescent (RTP) Nâ€Acetylphenothiazines. ChemPhotoChem, 2020, 4, 282-286. 570 10 1.5 Phenothiazine based co-crystals with enhanced luminescence. Dyes and Pigments, 2020, 175, 108164. 571 2.0 Reversible and Continuous Color-Tunable Persistent Luminescence of Metal-Free Organic Materials by 572 4.0 45 "Selfâ€Interface Energy Transfer. ACS Applied Materials & Interfaces, 2020, 12, 5073-5080. Crystal Engineering of Room Temperature Phosphorescence in Organic Solids. Angewandte Chemie -573 International Edition, 2020, 59, 9977-9981.

#	Article	IF	CITATIONS
574	Biocompatible metal-free organic phosphorescent nanoparticles for efficiently multidrug-resistant bacteria eradication. Science China Materials, 2020, 63, 316-324.	3.5	20
575	Clusteringâ€Triggered Efficient Roomâ€Temperature Phosphorescence from Nonconventional Luminophores. ChemPhysChem, 2020, 21, 36-42.	1.0	39
576	Metallacycle Transfer and its Link to Lightâ€Emitting Materials and Conjugated Polymers. Chemical Record, 2020, 20, 640-648.	2.9	13
577	Crystal Engineering of Room Temperature Phosphorescence in Organic Solids. Angewandte Chemie, 2020, 132, 10063-10067.	1.6	82
578	Manipulating the Ultralong Organic Phosphorescence of Small Molecular Crystals. Chemistry - A European Journal, 2020, 26, 4437-4448.	1.7	92
579	Host–guest materials with room temperature phosphorescence: Tunable emission color and thermal printing patterns. SmartMat, 2020, 1, e1006.	6.4	112
580	Near Attack Conformation as Strategy for ESIPT Modulation for White-Light Generation. Journal of Physical Chemistry C, 2020, 124, 22406-22415.	1.5	24
581	Colorâ€Tunable, Excitationâ€Dependent, and Timeâ€Dependent Afterglows from Pure Organic Amorphous Polymers. Advanced Materials, 2020, 32, e2004768.	11.1	181
582	Room-Temperature Phosphorescence and Low-Energy Induced Direct Triplet Excitation of Alq ₃ Engineered Crystals. Journal of Physical Chemistry Letters, 2020, 11, 9364-9370.	2.1	4
583	Tunable Phosphorescence/Fluorescence Dual Emissions of Organic Isoquinolineâ€Benzophenone Doped Systems by Alkoxy Engineering. Chemistry - A European Journal, 2020, 26, 17376-17380.	1.7	44
584	Room-temperature phosphorescence from a purely organic tetraphenylmethane derivative with formyl groups in both solution and crystalline states. Journal of Materials Chemistry C, 2020, 8, 14360-14364.	2.7	15
585	Photoresponsive Luminescence Switching of Metalâ€Free Organic Phosphors Doped Polymer Matrices. Advanced Optical Materials, 2020, 8, 2000654.	3.6	30
586	Ultralong and Highâ€Efficiency Room Temperature Phosphorescence of Organicâ€Phosphorsâ€Doped Polymer Films Enhanced by 3D Network. Advanced Optical Materials, 2020, 8, 2001192.	3.6	47
587	Organic-based inverters: basic concepts, materials, novel architectures and applications. Chemical Society Reviews, 2020, 49, 7627-7670.	18.7	48
588	Ultralong organic luminogens with color-tunability <i>via</i> intermolecular through-space charge-transfer characters. Journal of Materials Chemistry C, 2020, 8, 11603-11609.	2.7	7
589	Boosting the Quantum Efficiency of Ultralong Organic Phosphorescence up to 52 % via Intramolecular Halogen Bonding. Angewandte Chemie, 2020, 132, 17604-17608.	1.6	55
590	Clickable azide-functionalized bromoarylaldehydes – synthesis and photophysical characterization. Beilstein Journal of Organic Chemistry, 2020, 16, 1683-1692.	1.3	6
591	Binary Organic Nanoparticles with Bright Aggregation-Induced Emission for Three-Photon Brain Vascular Imaging. Chemistry of Materials, 2020, 32, 6437-6443.	3.2	41

#	Article	IF	CITATIONS
592	A Synergistic Enhancement Strategy for Realizing Ultralong and Efficient Roomâ€Temperature Phosphorescence. Angewandte Chemie, 2020, 132, 18907-18913.	1.6	22
593	A Synergistic Enhancement Strategy for Realizing Ultralong and Efficient Roomâ€Temperature Phosphorescence. Angewandte Chemie - International Edition, 2020, 59, 18748-18754.	7.2	148
594	Lanthanide-doped inorganic nanoparticles turn molecular triplet excitons bright. Nature, 2020, 587, 594-599.	13.7	135
595	Room-Temperature Phosphorescence with Variable Lifetime of Halogen-Comprising Coordination Polymers. Inorganic Chemistry, 2020, 59, 17870-17874.	1.9	19
596	Solid Solutions in the Xanthone–Thioxanthone Binary System: How Well Are Similar Molecules Discriminated in the Solid State?. Crystal Growth and Design, 2020, 20, 7997-8004.	1.4	6
597	Monochromophoreâ€Based Phosphorescence and Fluorescence from Pure Organic Assemblies for Ratiometric Hypoxia Detection. Angewandte Chemie - International Edition, 2020, 59, 23456-23460.	7.2	62
598	Monochromophoreâ€Based Phosphorescence and Fluorescence from Pure Organic Assemblies for Ratiometric Hypoxia Detection. Angewandte Chemie, 2020, 132, 23662-23666.	1.6	7
599	New Shoot from Old Tree—Harnessing Mighty FRET to Create Stimuli-Responsive RTP. Matter, 2020, 3, 329-332.	5.0	3
600	Carbonized Polymer Dots with Tunable Room-Temperature Phosphorescence Lifetime and Wavelength. ACS Applied Materials & Interfaces, 2020, 12, 38593-38601.	4.0	90
601	Breaking the Selection Rules of Spin-Forbidden Molecular Absorption in Plasmonic Nanocavities. ACS Photonics, 2020, 7, 2337-2342.	3.2	15
602	Roomâ€Temperature Phosphorescence Invoked Through Norbornylâ€Driven Intermolecular Interaction Intensification with Anomalous Reversible Solidâ€State Photochromism. Angewandte Chemie, 2020, 132, 20336-20341.	1.6	12
603	Roomâ€Temperature Phosphorescence Invoked Through Norbornylâ€Driven Intermolecular Interaction Intensification with Anomalous Reversible Solidâ€5tate Photochromism. Angewandte Chemie - International Edition, 2020, 59, 20161-20166.	7.2	47
604	Binary solid solutions of anthracene and carbazole: Thermal properties, structure and crystallization kinetics. Journal of Molecular Liquids, 2020, 309, 112646.	2.3	6
605	Allâ€Organic, Temporally Pure White Afterglow in Amorphous Films Using Complementary Blue and Greenishâ€Yellow Ultralong Room Temperature Phosphors. Advanced Functional Materials, 2020, 30, 2003693.	7.8	108
606	Molecular Engineering to Boost AIEâ€Active Free Radical Photogenerators and Enable Highâ€Performance Photodynamic Therapy under Hypoxia. Advanced Functional Materials, 2020, 30, 2002057.	7.8	208
607	Activating Versatile Mechanoluminescence in Organic Host–Guest Crystals by Controlling Exciton Transfer. Angewandte Chemie - International Edition, 2020, 59, 22645-22651.	7.2	31
608	Access to the triplet excited states of organic chromophores. Chemical Society Reviews, 2020, 49, 6122-6140.	18.7	100
609	Tunable ultralong organic phosphorescence modulated by main-group elements with different Lewis acidity and basicity. Journal of Materials Chemistry C, 2020, 8, 14740-14747.	2.7	13

#	Article	IF	CITATIONS
610	Structure-lock induced phosphorescence lifetime enhancing of (9H-carbazol-9-yl)(phenyl)methanone: An organic phosphorescent materials. Journal of Luminescence, 2020, 227, 117587.	1.5	13
611	Analysis of Solid‧tate Luminescence Emission Amplification at Substituted Anthracenes by Host–Guest Complex Formation. Chemistry - A European Journal, 2020, 26, 17390-17398.	1.7	8
612	Crystallization-induced room-temperature phosphorescence in fumaramides. CrystEngComm, 2020, 22, 7782-7785.	1.3	27
613	Design of superior phototheranostic agents guided by Jablonski diagrams. Chemical Society Reviews, 2020, 49, 8179-8234.	18.7	397
614	Achieving Purelyâ€Organic Roomâ€Temperature Aqueous Phosphorescence via a Twoâ€Component Macromolecular Selfâ€Assembly Strategy. Chemistry - an Asian Journal, 2020, 15, 3469-3474.	1.7	3
615	Two-photon excited deep-red and near-infrared emissive organic co-crystals. Nature Communications, 2020, 11, 4633.	5.8	82
616	Clustering-Triggered Emission and Luminescence Regulation by Molecular Arrangement of Nonaromatic Polyamide-6. Journal of Physical Chemistry B, 2020, 124, 8928-8936.	1.2	32
617	Ultralong purely organic aqueous phosphorescence supramolecular polymer for targeted tumor cell imaging. Nature Communications, 2020, 11, 4655.	5.8	186
618	Breaking Kasha's Rule as a Mechanism for Solution-Phase Room-Temperature Phosphorescence from High-Lying Triplet Excited State. Journal of Physical Chemistry Letters, 2020, 11, 8246-8251.	2.1	23
619	Room-temperature phosphorescence from organic aggregates. Nature Reviews Materials, 2020, 5, 869-885.	23.3	786
620	Activating Versatile Mechanoluminescence in Organic Host–Guest Crystals by Controlling Exciton Transfer. Angewandte Chemie, 2020, 132, 22834-22840.	1.6	4
621	Room temperature phosphorescence from heavy atom free benzophenone boronic ester derivatives. Bulletin of Materials Science, 2020, 43, 1.	0.8	5
622	Near-Infrared Phosphorescence Emission of Binuclear Mn(II) Based Metal-Organic Framework for Efficient Photoelectric Conversion. Frontiers in Chemistry, 2020, 8, 593948.	1.8	4
623	Effective Internal and External Modulation of Nontraditional Intrinsic Luminescence. Small, 2020, 16, e2005035.	5.2	47
624	Dual-Emissive Coating Films Prepared from Water-Borne Latexes of Acrylate–Vinylidene Chloride Copolymers: Their Room-Temperature Phosphorescence Properties and Sensing Abilities toward Solvents. Industrial & Engineering Chemistry Research, 2020, 59, 9981-9988.	1.8	4
625	Ultralong lifetime room temperature phosphorescence and dual-band waveguide behavior of phosphoramidic acid oligomers. Journal of Materials Chemistry C, 2020, 8, 7330-7335.	2.7	21
626	Selfâ€Assembled Helical Arrays for the Stabilization of the Triplet State. Angewandte Chemie - International Edition, 2020, 59, 13079-13085.	7.2	56
627	Nonconventional luminophores with unprecedented efficiencies and color-tunable afterglows. Materials Horizons, 2020, 7, 2105-2112.	6.4	80

#	Article	IF	CITATIONS
628	Selfâ€Assembled Helical Arrays for the Stabilization of the Triplet State. Angewandte Chemie, 2020, 132, 13179-13185.	1.6	38
629	Intrinsic Luminescence from Nonaromatic Biomolecules. ChemPlusChem, 2020, 85, 1065-1080.	1.3	60
630	Ammonium pentaborate crystals with adjustable and bright phosphorescence and long lifetime. Journal of Luminescence, 2020, 225, 117325.	1.5	10
631	Room Temperature Phosphorescent Crystals Consisting of Cyclized Guests and Their Uncyclized Mother Host Molecules. Chemistry Letters, 2020, 49, 921-924.	0.7	7
632	Tuning molecular emission of organic emitters from fluorescence to phosphorescence through push-pull electronic effects. Nature Communications, 2020, 11, 2617.	5.8	117
633	Cobaloximes as Building Blocks in Halogen-Bonded Cocrystals. Materials, 2020, 13, 2370.	1.3	4
634	Development of fluorinated benzils and bisbenzils as room-temperature phosphorescent molecules. Beilstein Journal of Organic Chemistry, 2020, 16, 1154-1162.	1.3	5
635	Color-tunable ultralong organic phosphorescence materials for visual UV-light detection. Science China Chemistry, 2020, 63, 1443-1448.	4.2	52
636	Carbon dot-based nanocomposite: Long-lived thermally activated delayed fluorescence for lifetime thermal sensing. Dyes and Pigments, 2020, 181, 108576.	2.0	18
637	Synthesis, structural investigation and NLO properties of three 1,2,4-triazole Schiff bases. Journal of Molecular Structure, 2020, 1219, 128492.	1.8	18
638	Tunable room temperature phosphorescence and energy transfer in ratiometric co-crystals. Chemical Communications, 2020, 56, 7698-7701.	2.2	98
639	A long persistent phosphorescent metal–organic framework for multi-level sensing of oxygen. Journal of Materials Chemistry C, 2020, 8, 9916-9922.	2.7	27
640	Wideâ€Range Colorâ€Tunable Organic Phosphorescence Materials for Printable and Writable Security Inks. Angewandte Chemie - International Edition, 2020, 59, 16054-16060.	7.2	340
641	Wideâ€Range Colorâ€Tunable Organic Phosphorescence Materials for Printable and Writable Security Inks. Angewandte Chemie, 2020, 132, 16188-16194.	1.6	40
642	Clustering-Triggered Ultralong Room-Temperature Phosphorescence of Organic Crystals through Halogen-Mediated Molecular Assembly. Journal of Physical Chemistry Letters, 2020, 11, 4962-4969.	2.1	19
643	Simultaneous promotion of efficiency and lifetime of organic phosphorescence for self-referenced temperature sensing. Chemical Engineering Journal, 2020, 400, 125934.	6.6	32
644	Unravelling the intricate photophysical behavior of 3-(pyridin-2-yl)triimidazotriazine AIE and RTP polymorphs. Chemical Science, 2020, 11, 7599-7608.	3.7	22
645	π-Hole··· <i>d</i> _{<i>z</i>} ² [Pt ^{II}] Interactions with Electron-Deficient Arenes Enhance the Phosphorescence of Pt ^{II} -Based Luminophores. Inorganic Chemistry, 2020, 59, 9308-9314.	1.9	39

		CITATION REPORT		
#	Article		IF	Citations
646	Visible-Light-Excited Room Temperature Phosphorescent Carbon Dots. Nanomaterials,	2020, 10, 464.	1.9	28
647	An ultralong room-temperature phosphorescent material based on the combination of singlet–triplet splitting energy and H-aggregation. Chemical Communications, 2020	small , 56, 4296-4299.	2.2	22
648	Stimuliâ€Responsive Purely Organic Roomâ€Temperature Phosphorescence Materials. European Journal, 2020, 26, 11914-11930.	Chemistry - A	1.7	76
649	Enhanced Long Persistent Luminescence by Multifold Interpenetration in Metal–Org Chemistry - A European Journal, 2020, 26, 7458-7462.	anic Frameworks.	1.7	14
650	Halogen-bonded building block for 2D self-assembly: Triggered by hydrogen-bonding n the terminal functions of the side chains. Applied Surface Science, 2020, 515, 145983	notifs relative to	3.1	17
651	Phosphorescence Energy Transfer: Ambient Afterglow Fluorescence from Waterâ€Proc Purely Organic Dyes via Delayed Sensitization. Angewandte Chemie, 2020, 132, 9479	cessable and 9483.	1.6	42
652	Stimulusâ€responsive room temperature phosphorescence in purely organic luminoge Materiály, 2020, 2, 791-806.	ns. InformaÄnÃ-	8.5	100
653	Ketones as Molecular Coâ€catalysts for Boosting Excitonâ€Based Photocatalytic Mole Activation. Angewandte Chemie - International Edition, 2020, 59, 11093-11100.	cular Oxygen	7.2	43
654	Metal-Free Room-Temperature Phosphorescence from Amorphous Triarylborane-Based Organometallics, 2020, 39, 4153-4158.	Biphenyl.	1.1	17
655	Heavy Atom Effect of Selenium for Metal-Free Phosphorescent Light-Emitting Diodes. Materials, 2020, 32, 2583-2592.	Chemistry of	3.2	86
656	Phosphorescence Energy Transfer: Ambient Afterglow Fluorescence from Waterâ€Proc Purely Organic Dyes via Delayed Sensitization. Angewandte Chemie - International Edi 9393-9397.	cessable and tion, 2020, 59,	7.2	233
657	Recent Developments on Multi-Functional Metal-Free Mechanochromic Luminescence Activated Delayed Fluorescence Organic Materials. Frontiers in Chemistry, 2020, 8, 48	and Thermally 3.	1.8	45
658	Organic halogen-bonded co-crystals for optoelectronic applications. Science China Ma 63, 1613-1630.	terials, 2020,	3.5	22
659	Organic Room-Temperature Phosphorescent Materials: From Static to Dynamic. Journa Chemistry Letters, 2020, 11, 6191-6200.	al of Physical	2.1	71
660	Dense Ï€-stacking of flexible ligands fixed in interpenetrating Zn(<scp>ii</scp>) MOF € long-lasting phosphorescence and efficient carrier transport. Dalton Transactions, 202 9961-9964.	exhibiting .0, 49,	1.6	9
661	Boosting the Quantum Efficiency of Ultralong Organic Phosphorescence up to 52â€% Intramolecular Halogen Bonding. Angewandte Chemie - International Edition, 2020, 59	₀% via 9, 17451-17455.	7.2	253
662	Accessing Tunable Afterglows from Highly Twisted Nonaromatic Organic AlEgens via E Through‧pace Conjugation. Angewandte Chemie - International Edition, 2020, 59, 3	ffective 10018-10022.	7.2	120
663	Color-tunable ultralong organic room temperature phosphorescence from a multicom copolymer. Nature Communications, 2020, 11, 944.	ponent	5.8	278

#	Article	IF	CITATIONS
664	Room temperature phosphorescence from organic luminogens in"non-crystalline―state. Supramolecular Chemistry, 2020, 32, 287-311.	1.5	4
665	Polyoxometalate-based room-temperature phosphorescent materials induced by anion–Ĩ€ interactions. Dalton Transactions, 2020, 49, 3408-3412.	1.6	23
666	Aggregationsinduzierte Emission: Einblicke auf Aggregatebene. Angewandte Chemie, 2020, 132, 9972-9993.	1.6	96
667	Controlled Synthesis of PdII and PtII Supramolecular Copolymer with Sequential Multiblock and Amplified Phosphorescence. CheM, 2020, 6, 945-967.	5.8	67
668	Accessing Tunable Afterglows from Highly Twisted Nonaromatic Organic AlEgens via Effective Through‧pace Conjugation. Angewandte Chemie, 2020, 132, 10104-10108.	1.6	12
669	New route to strong, long-lived room-temperature phosphorescence using organic phosphor guest-friendly matrices [Al(DMSO)6]X3 (X=Clâ^', Brâ^'). Dyes and Pigments, 2020, 177, 108323.	2.0	5
670	Origin of Fluorescence from Boranils in the Crystalline Phase. Journal of Physical Chemistry A, 2020, 124, 2160-2172.	1.1	9
671	Halogen-Bond-Controlled Self-Assembly of Regioisomeric Phenanthridine Derivatives into Nanowires and Nanosheets. Journal of Physical Chemistry C, 2020, 124, 5665-5671.	1.5	15
672	Aggregation-Induced Room-Temperature Phosphorescence Obtained from Water-Dispersible Carbon Dot-Based Composite Materials. ACS Applied Materials & Interfaces, 2020, 12, 10791-10800.	4.0	96
673	A clustering-triggered emission strategy for tunable multicolor persistent phosphorescence. Chemical Science, 2020, 11, 2926-2933.	3.7	127
674	Visibleâ€Lightâ€Excited Ultralongâ€Lifetime Room Temperature Phosphorescence Based on Nitrogenâ€Doped Carbon Dots for Double Anticounterfeiting. Advanced Optical Materials, 2020, 8, 1901557.	3.6	71
675	Aggregationâ€Induced Emission: New Vistas at the Aggregate Level. Angewandte Chemie - International Edition, 2020, 59, 9888-9907.	7.2	821
676	Pure Organic Room Temperature Phosphorescence from Unique Micelleâ€Assisted Assembly of Nanocrystals in Water. Advanced Functional Materials, 2020, 30, 1907282.	7.8	75
677	9,9â€Dimethylxanthene Derivatives with Roomâ€Temperature Phosphorescence: Substituent Effects and Emissive Properties. Angewandte Chemie, 2020, 132, 10032-10037.	1.6	66
678	Organic Light-Emitting Diode Employing Metal-Free Organic Phosphor. ACS Applied Materials & Interfaces, 2020, 12, 6137-6143.	4.0	35
679	Halogen Bonding Facilitates Intersystem Crossing in Iodo-BODIPY Chromophores. Journal of Physical Chemistry Letters, 2020, 11, 877-884.	2.1	33
680	Exploring mechanisms for generating spin-orbital coupling through donor–acceptor design to realize spin flipping in thermally activated delayed fluorescence. Journal of Materials Chemistry C, 2020, 8, 3395-3401.	2.7	21
681	Self-Assembly-Driven Aggregation-Induced Emission of Silver Nanoclusters for Light Conversion and Temperature Sensing. ACS Applied Nano Materials, 2020, 3, 2038-2046.	2.4	54

ARTICLE IF CITATIONS # Theoretical Description of R–Xâ< NH3 Halogen Bond Complexes: Effect of the R Group on the Complex 682 1.7 5 Stability and Sigma-Hole Electron Depletion. Molecules, 2020, 25, 530. Hydrophilic Ultralong Organic Nanophosphors. Small, 2020, 16, e1906733. 5.2 Stimuli-responsive behaviors of organic charge transfer cocrystals: recent advances and 684 3.2 72 perspectives. Materials Chemistry Frontiers, 2020, 4, 715-728. The Brâ<ī€ halogen bond assisted self-assembly of an asymmetric molecule regulated by concentration. 685 Chemical Communications, 2020, 56, 2727-2730. 9,9â€Dimethylxanthene Derivatives with Roomâ€Temperature Phosphorescence: Substituent Effects and 686 7.2 109 Emissive Properties. Angewandte Chemie - International Edition, 2020, 59, 9946-9951. Exploiting Nâ[~]'Hâ€''Ï€ Interactions in 2â€(Dimesitylboraneyl)â€1Hâ€pyrrole for Luminescence Enhancement. Asian Journal of Organic Chemistry, 2020, 9, 644-651. Protonâ€Activated Amorphous Roomâ€Temperature Phosphorescence for Humidity Sensing and Highâ€Level 688 1.7 10 Data Encryption. Chemistry - an Asian Journal, 2020, 15, 1088-1093. Organic Room Temperature Phosphorescence Materials for Biomedical Applications. Chemistry - an 1.7 101 Asian Journal, 2020, 15, 947-957. Cocrystal Strategy toward Multifunctional 3Dâ€Printing Scaffolds Enables NIRâ€Activated Photonic 690 Osteosarcoma Hyperthermia and Enhanced Bone Defect Regeneration. Advanced Functional Materials, 7.8 74 2020, 30, 1909938. Ketones as Molecular Coâ€catalysts for Boosting Excitonâ€Based Photocatalytic Molecular Oxygen 691 1.6 Activation. Angewandte Chemie, 2020, 132, 11186-11193. Achieving red room temperature afterglow carbon dots in composite matrices through chromophore 692 15 1.5 conjugation degree controlling. Journal of Luminescence, 2020, 223, 117267. $\tilde{I}\in Type$ halogen bonding enhanced the long-lasting room temperature phosphorescence of $Zn(\langle scp \rangle ii \langle scp \rangle)$ coordination polymers for photoelectron response applications. Inorganic 3.0 59 Chemistry Frontiers, 2020, 7, 2224-2230. Two Are Better Than One: A Design Principle for Ultralongâ€Persistent Luminescence of Pure Organics. 694 11.1 164 Advanced Materials, 2020, 32, e2001026. Enabling dynamic ultralong organic phosphorescence in molecular crystals through the synergy between intramolecular and intermolecular interactions. Journal of Materials Chemistry C, 2020, 8, 2.7 7384-7392. Spin–orbit coupling and vibronic transitions of Ce(C3H4) and Ce(C3H6) formed by the Ce reaction 696 with propene: Mass-analyzed threshold ionization and relativistic quantum computation. Journal of 7 1.2 Chemical Physics, 2020, 152, 144304. Colour-tunable ultralong-lifetime room temperature phosphorescence with external heavy-atom 101 effect in boron-doped carbon dots. Chemical Engineering Journal, 2021, 420, 127647. High contrast temperature-responsive luminescence materials from purely organic molecule with 698 1.55 persistent room-temperature phosphorescence. Journal of Luminescence, 2021, 230, 117731. Polymorph and anisotropic Raman spectroscopy of Phz-H2ca cocrystals. Science China Materials, 2021, 699 64, 169-178.

#	Article	IF	CITATIONS
700	An Electroactive Pure Organic Roomâ€Temperature Phosphorescence Polymer Based on a Donorâ€Oxygenâ€Acceptor Geometry. Angewandte Chemie - International Edition, 2021, 60, 2455-2463.	7.2	60
701	Fluorescent 1-hydroxy-10-alkylacridin-9(10H)-one BF2-chelates: Large Stokes shift and long emission decay times. Dyes and Pigments, 2021, 184, 108816.	2.0	2
702	Construction and Humidity Response of a Roomâ€Temperatureâ€Phosphorescent Hybrid Xerogel Based on a Multicharge Supramolecular Assembly. Advanced Photonics Research, 2021, 2, 2000080.	1.7	3
703	An Electroactive Pure Organic Roomâ€Temperature Phosphorescence Polymer Based on a Donorâ€Oxygenâ€Acceptor Geometry. Angewandte Chemie, 2021, 133, 2485-2493.	1.6	9
704	Multicolor ultralong room-temperature phosphorescence from pure organic emitters by structural isomerism. Chemical Engineering Journal, 2021, 408, 127309.	6.6	16
705	Organic room-temperature phosphorescence from halogen-bonded organic frameworks: hidden electronic effects in rigidified chromophores. Chemical Science, 2021, 12, 767-773.	3.7	34
706	Highly tunable aggregate-induced phosphorescence properties in persulfurated arenes. Dyes and Pigments, 2021, 186, 109032.	2.0	15
707	Throughâ€Space CBr···π Halogen Interaction: Efficient Modulation of Reactionâ€Based Photochromism and Photoluminescence at Crystalline States for Irradiation Timeâ€Dependent Antiâ€Counterfeiting. Advanced Functional Materials, 2021, 31, 2009024.	7.8	27
708	Organic luminogens bearing alkyl substituents: design flexibility, adjustable molecular packing, and optimized performance. Materials Chemistry Frontiers, 2021, 5, 1525-1540.	3.2	33
709	Persistent room temperature blue phosphorescence from racemic crystals of 1,1-diphenylmethanol derivatives. Journal of Photochemistry and Photobiology A: Chemistry, 2021, 407, 113043.	2.0	2
710	Robust Whiteâ€Light Emitting and Multiâ€Responsive Luminescence of a Dualâ€Mode Phosphorescence Molecule. Advanced Optical Materials, 2021, 9, 2001685.	3.6	44
711	Excited-state conformation capture by supramolecular chains towards triplet-involved organic emitters. Chinese Chemical Letters, 2021, 32, 1669-1674.	4.8	8
712	Conformational analysis and DFT investigations of two triazole derivatives and its halogenated substitution by using spectroscopy, AIM and Molecular docking. Chemical Data Collections, 2021, 31, 100625.	1.1	16
713	Theory of Long-Lived Room-Temperature Phosphorescence in Organic Aggregates. Accounts of Chemical Research, 2021, 54, 940-949.	7.6	150
714	A color-tunable single molecule white light emitter with high luminescence efficiency and ultra-long room temperature phosphorescence. Journal of Materials Chemistry C, 2021, 9, 727-735.	2.7	33
715	Cocrystal Engineering: Toward Solutionâ€Processed Nearâ€Infrared 2D Organic Cocrystals for Broadband Photodetection. Angewandte Chemie - International Edition, 2021, 60, 6344-6350.	7.2	43
716	Carbazole isomers induce ultralong organic phosphorescence. Nature Materials, 2021, 20, 175-180.	13.3	407
717	Novel N,Cl-doped deep eutectic solvents-based carbon dots as a selective fluorescent probe for determination of morphine in food. RSC Advances, 2021, 11, 16805-16813.	1.7	15

#	Article	IF	CITATIONS
718	Room-temperature white and color-tunable afterglow by manipulating multi-mode triplet emissions. Journal of Materials Chemistry C, 2021, 9, 3257-3263.	2.7	17
719	Highly efficient room-temperature phosphorescent materials with a heavy-atom effect of bromine. New Journal of Chemistry, 2021, 45, 4930-4933.	1.4	3
720	Manipulating matrix stacking modes for ultralong-duration organic room-temperature phosphorescence in trace isomer doping systems. Journal of Materials Chemistry C, 2021, 9, 8302-8307.	2.7	10
721	Organic phosphors with bright triplet excitons for efficient X-ray-excited luminescence. Nature Photonics, 2021, 15, 187-192.	15.6	237
722	Organic phosphorescent polymorphs induced by various halogen bonds with stimuli-responsive single/dual phosphorescence switching. Journal of Materials Chemistry C, 2021, 9, 2738-2743.	2.7	16
723	Controllable room temperature phosphorescence, mechanoluminescence and polymorphism of a carbazole derivative. Materials Horizons, 2021, 8, 2816-2822.	6.4	13
724	Highly efficient room-temperature organic afterglow achieved by collaboration of luminescent dimeric TADF dopants and rigid matrices. Journal of Materials Chemistry C, 2021, 9, 3939-3947.	2.7	31
725	Recent advances in persistent luminescence based on molecular hybrid materials. Chemical Society Reviews, 2021, 50, 5564-5589.	18.7	331
726	Recent advances in room temperature phosphorescent carbon dots: preparation, mechanism, and applications. Journal of Materials Chemistry C, 2021, 9, 4425-4443.	2.7	61
727	Purely organic phosphorescent organic light emitting diodes using alkyl modified phenoselenazine. Journal of Materials Chemistry C, 2021, 9, 8233-8238.	2.7	19
728	Room-temperature phosphorescence of a supercooled liquid: kinetic stabilisation by desymmetrisation. Chemical Science, 2021, 12, 14363-14368.	3.7	14
729	Unexpected long room-temperature phosphorescence lifetimes of up to 1.0 s observed in iodinated molecular systems. Chemical Communications, 2021, 57, 8794-8797.	2.2	36
730	Microwave-assisted establishment of efficient amorphous polymeric phosphorescent materials with ultralong blue afterglow. Journal of Materials Chemistry C, 2021, 9, 5277-5288.	2.7	7
731	Vibrational Radiationless Transition from Triplet States of Chromophores at Room Temperature. Journal of Physical Chemistry A, 2021, 125, 885-894.	1.1	11
732	Purely organic light-harvesting phosphorescence energy transfer by β-cyclodextrin pseudorotaxane for mitochondria targeted imaging. Chemical Science, 2021, 12, 1851-1857.	3.7	69
733	Innovative strategies for enhanced tumor photodynamic therapy. Journal of Materials Chemistry B, 2021, 9, 7347-7370.	2.9	27
734	Halogen bonding regulated functional nanomaterials. Nanoscale Advances, 2021, 3, 6342-6357.	2.2	23
735	Stimuli-responsive luminescent supramolecular assemblies and co-assemblies through orthogonal dipole–dipole interactions and halogen bonding. Journal of Materials Chemistry C, 2021, 9, 11893-11904.	2.7	17

	C	ITATION REPORT	
#	Article	IF	Citations
736	Efficient metal-free organic room temperature phosphors. Chemical Science, 2021, 12, 4216-4236.	3.7	117
737	Attractive Organic Cocrystal Materials in Optics. Heterocycles, 2021, 102, 825.	0.4	2
738	Boosting the humidity resistance of nonconventional luminogens with room temperature phosphorescence <i>via</i> enhancing the strength of hydrogen bonds. Journal of Materials Chemistry C, 2021, 9, 8515-8523.	2.7	35
739	A highly efficient purely organic room-temperature phosphorescence film based on a selenium-containing emitter for sensitive oxygen detection. Journal of Materials Chemistry C, 2021, 9 9907-9913.	9, 2.7	25
740	Small molecule-doped organic crystals towards long-persistent luminescence in water and air. Journal of Materials Chemistry C, 2021, 9, 5093-5097.	2.7	16
741	Direct photo-induced reductive Heck cyclization of indoles for the efficient preparation of polycyclic indolinyl compounds. Chemical Science, 2021, 12, 14050-14058.	3.7	14
743	Tailoring the strength and number of halogen bonds toward room temperature phosphorescent microâ€cocrystals. Nano Select, 2021, 2, 1509-1516.	1.9	2
744	Boosting Room Temperature Phosphorescence Performance by Alkyl Modification for Intravital Orthotopic Lung Tumor Imaging. Small, 2021, 17, e2005449.	5.2	41
745	Cocrystal Engineering: Toward Solutionâ€Processed Nearâ€Infrared 2D Organic Cocrystals for Broadband Photodetection. Angewandte Chemie, 2021, 133, 6414-6420.	1.6	5
746	Ultralong and Color-Tunable Room-Temperature Phosphorescence Based on Commercial Melamine for Anticounterfeiting and Information Recognition. Analytical Chemistry, 2021, 93, 4075-4083.	or 3.2	31
747	Recent Advances of Cocrystals with Room Temperature Phosphorescence. Advanced Optical Materia 2021, 9, 2002197.	ıls, 3.6	115
748	Supramolecular Pins with Ultralong Efficient Phosphorescence. Advanced Materials, 2021, 33, e2007476.	11.1	158
749	Tunable Triplet-Mediated Multicolor Lasing from Nondoped Organic TADF Microcrystals. Nano Letters, 2021, 21, 3287-3294.	4.5	28
750	Aromatic Electrophilic Directing for Fluorescence and Room-Temperature Phosphorescence Modulation. Journal of Physical Chemistry Letters, 2021, 12, 3099-3105.	2.1	17
751	Binary organic nanoparticles with enhanced reactive oxygen species generation capability for photodynamic therapy. Journal of Innovative Optical Health Sciences, 2021, 14, 2150009.	0.5	0
752	Thermochromic aggregation-induced dual phosphorescence via temperature-dependent sp3-linked donor-acceptor electronic coupling. Nature Communications, 2021, 12, 1364.	5.8	89
753	Recent Advances of Polymerâ€Based Pure Organic Room Temperature Phosphorescent Materials. Macromolecular Rapid Communications, 2021, 42, e2100021.	2.0	38
754	High Performance of Simple Organic Phosphorescence Host–Guest Materials and their Application Timeâ€Resolved Bioimaging. Advanced Materials, 2021, 33, e2007811.	in 11.1	242

#	Article	IF	CITATIONS
755	Ultralong Roomâ€Temperature Phosphorescence from Boric Acid. Angewandte Chemie - International Edition, 2021, 60, 9500-9506.	7.2	82
756	Conformational torsion, intramolecular hydrogen bonding and solvent effects in intersystem crossing of singlet-triplet excited states for heavy-atom-free organic long persistent luminescence. Journal of Molecular Liquids, 2021, 326, 115291.	2.3	5
757	Recent Progress in Pure Organic Room Temperature Phosphorescence of Small Molecular Host–Guest Systems. , 2021, 3, 379-397.		155
758	Ultralong Roomâ€Temperature Phosphorescence from Boric Acid. Angewandte Chemie, 2021, 133, 9586-9592.	1.6	29
759	Room Temperature Phosphorescence from Organic Materials: Unravelling the Emissive Behaviour of Chloroâ€Substituted Derivatives of Cyclic Triimidazole. European Journal of Organic Chemistry, 2021, 2021, 2041-2049.	1.2	13
760	5,5-Dioxoyphenothiazine-based D-A-D type AIE molecules enabling persistent room temperature phosphorescence, white light emission and dual-mode mechanochromism. Dyes and Pigments, 2021, 188, 109193.	2.0	20
761	Optical Waveguides in Organic Crystals of Polycyclic Arenes. Advanced Optical Materials, 2021, 9, 2002264.	3.6	45
762	Halogen Bonding of Organoiodines and Triiodide Anions in (NMe 3 Ph) + Salts. ChemPlusChem, 2021, 86, 612-621.	1.3	1
763	Microscopic Afterglow Bioimaging by Ultralong Organic Phosphorescent Nanoparticles in Living Cells and Zebrafish. Analytical Chemistry, 2021, 93, 6516-6522.	3.2	24
765	Ambient Room Temperature Phosphorescence and Thermally Activated Delayed Fluorescence from a Core-Substituted Pyromellitic Diimide Derivative. Journal of Physical Chemistry B, 2021, 125, 4520-4526.	1.2	21
766	Arylene Diimide Phosphors: Aggregation Modulated Twin Room Temperature Phosphorescence from Pyromellitic Diimides. Angewandte Chemie, 2021, 133, 12431-12435.	1.6	23
767	Arylene Diimide Phosphors: Aggregation Modulated Twin Room Temperature Phosphorescence from Pyromellitic Diimides. Angewandte Chemie - International Edition, 2021, 60, 12323-12327.	7.2	93
768	Stereoisomerization during Molecular Packing. Advanced Materials, 2021, 33, e2100986.	11.1	13
769	Roomâ€Temperature Phosphorescence Emitters Exhibiting Red to Nearâ€Infrared Emission Derived from Intermolecular Chargeâ€Transfer Triplet States of Naphthalenediimideâ~'Halobenzoate Triad Molecules. Chemistry - A European Journal, 2021, 27, 9535-9541.	1.7	21
770	Ultraviolet irradiation-responsive dynamic ultralong organic phosphorescence in polymeric systems. Nature Communications, 2021, 12, 2297.	5.8	196
771	Achieving High Afterglow Brightness in Organic Dopantâ€Matrix Systems. Advanced Optical Materials, 2021, 9, 2100353.	3.6	54
772	Engendering persistent organic room temperature phosphorescence by trace ingredient incorporation. Science Advances, 2021, 7, .	4.7	135
773	Recent Developments in Polymeric Assemblies and Functional Materials by Halogen Bonding. ChemNanoMat, 2021, 7, 748-772.	1.5	17

	CITATION	Report	
#	Article	IF	CITATIONS
775	Significantly Enhanced Afterglow Brightness via Intramolecular Energy Transfer. , 2021, 3, 713-720.		20
776	Amorphization of Purely Organic Phosphors into Carbon Dots to Activate Matrix-Free Room-Temperature Phosphorescence for Multiple Applications. ACS Applied Electronic Materials, 2021, 3, 2661-2670.	2.0	10
777	Remote Substituents as Potential Control Elements for the Solid-State Structures of Hypervalent Iodine(III) Compounds. Inorganic Chemistry, 2021, 60, 7865-7875.	1.9	5
778	Revisiting Carbazole: Origin, Impurity, and Properties. , 2021, 3, 1081-1087.		47
779	TADFâ€ T ype Organic Afterglow. Angewandte Chemie - International Edition, 2021, 60, 17138-17147.	7.2	115
780	Emerging newâ€generation white lightâ€emitting diodes based on luminescent leadâ€free halide perovskites and perovskite derivatives. Nano Select, 2022, 3, 280-297.	1.9	10
781	Spin-orbital coupling and slow phonon effects enabled persistent photoluminescence in organic crystal under isomer doping. Nature Communications, 2021, 12, 3485.	5.8	8
782	Bromine heavy-atom induced persistent room temperature phosphorescence of [ZnBr2] based coordination polymer. Journal of Solid State Chemistry, 2021, 298, 122135.	1.4	1
783	Wide-range lifetime-tunable and responsive ultralong organic phosphorescent multi-host/guest system. Nature Communications, 2021, 12, 3522.	5.8	161
784	TADFâ€ T ype Organic Afterglow. Angewandte Chemie, 2021, 133, 17275-17284.	1.6	17
785	Tailoring Noncovalent Interactions to Activate Persistent Roomâ€Temperature Phosphorescence from Doped Polyacrylonitrile Films. Advanced Functional Materials, 2021, 31, 2101656.	7.8	83
786	Stimulus-Responsive Room Temperature Phosphorescence Materials: Internal Mechanism, Design Strategy, and Potential Application. Accounts of Materials Research, 2021, 2, 644-654.	5.9	131
787	Influence of Guest/Host Morphology on Room Temperature Phosphorescence Properties of Pure Organic Doped Systems. Journal of Physical Chemistry Letters, 2021, 12, 7357-7364.	2.1	26
788	Organic composite materials: Understanding and manipulating excited states toward higher lightâ€emitting performance. Aggregate, 2021, 2, e103.	5.2	7
789	Lightâ€Harvesting Supramolecular Phosphors: Highly Efficient Room Temperature Phosphorescence in Solution and Hydrogels. Angewandte Chemie, 2021, 133, 19872-19876.	1.6	13
790	Persistent Roomâ€Temperature Phosphorescence from Purely Organic Molecules and Multiâ€Component Systems. Advanced Optical Materials, 2021, 9, 2100411.	3.6	81
791	Benzimidazole-Based N,O Boron Complexes as Deep Blue Solid-State Fluorophores. Materials, 2021, 14, 4298.	1.3	9
792	Lightâ€Harvesting Supramolecular Phosphors: Highly Efficient Room Temperature Phosphorescence in Solution and Hydrogels. Angewandte Chemie - International Edition, 2021, 60, 19720-19724.	7.2	135

#	Article	IF	CITATIONS
793	Investigating phosphorescence capability of halogen-substituted metal-free organic molecules: A theoretical study. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2021, 255, 119642.	2.0	4
794	Room Temperature Phosphorescence vs Triplet–Triplet Annihilation in N-Substituted Acridone Solids. Journal of Physical Chemistry Letters, 2021, 12, 6431-6438.	2.1	14
795	Synaptic Plasticity Powering Longâ€Afterglow Organic Lightâ€Emitting Transistors. Advanced Materials, 2021, 33, e2103369.	11.1	23
796	Theoretical Understanding of Structure–Property Relationships in Luminescence of Carbon Dots. Journal of Physical Chemistry Letters, 2021, 12, 7671-7687.	2.1	111
797	Promoting Room Temperature Phosphorescence through Electron Transfer from Carbon Dots to Promethazine. ACS Applied Materials & amp; Interfaces, 2021, 13, 41238-41248.	4.0	31
798	Tetraphenylethene-decorated difluoroboron β-diketonates with terminal chiral α-phenylethylamine: Aggregation-induced emission, circularly polarized luminescence and mechanofluochromism. Dyes and Pigments, 2021, 192, 109396.	2.0	16
799	Time-Dependent Afterglow from a Single Component Organic Luminogen. Research, 2021, 2021, 9757460.	2.8	9
800	Supramolecular Purely Organic Room-Temperature Phosphorescence. Accounts of Chemical Research, 2021, 54, 3403-3414.	7.6	179
801	Room-temperature phosphorescent fluorine-nitrogen co-doped carbon dots: Information encryption and anti-counterfeiting. Carbon, 2021, 181, 9-15.	5.4	91
802	Elastic organic crystals with ultralong phosphorescence for flexible anti-counterfeiting. Npj Flexible Electronics, 2021, 5, .	5.1	29
803	Selfâ€Assembled Metal–Organic Framework Stabilized Organic Cocrystals for Biological Phototherapy. Angewandte Chemie - International Edition, 2021, 60, 23569-23573.	7.2	32
804	Carbon dots: An innovative luminescent nanomaterial. Aggregate, 2022, 3, e108.	5.2	31
805	Reduced Intrinsic Nonâ€Radiative Losses Allow Roomâ€Temperature Triplet Emission from Purely Organic Emitters. Advanced Materials, 2021, 33, e2101844.	11.1	28
806	Bridging the Void: Halogen Bonding and Aromatic Interactions to Program Luminescence and Electronic Properties of l€-Conjugated Materials in the Solid State. Chemistry of Materials, 2021, 33, 6640-6661.	3.2	37
807	Syntheses and Room Temperature Phosphorescence Properties of Dibenzobenzodithiophenes and Dibenzothiophenes. Bulletin of the Chemical Society of Japan, 2021, 94, 2498-2504.	2.0	5
808	Confining isolated chromophores for highly efficient blue phosphorescence. Nature Materials, 2021, 20, 1539-1544.	13.3	257
809	Supramolecular self-assembling strategy for constructing cucurbit[6]uril derivative-based amorphous pure organic room-temperature phosphorescence complex featuring extra-high efficiency. Chinese Chemical Letters, 2022, 33, 877-880.	4.8	7
810	Selfâ€Assembled Metal–Organic Framework Stabilized Organic Cocrystals for Biological Phototherapy. Angewandte Chemie, 2021, 133, 23761.	1.6	2

#	Article	IF	CITATIONS
811	Influence of Isomerism on Radioluminescence of Purely Organic Phosphorescence Scintillators. Angewandte Chemie, 2021, 133, 27401-27406.	1.6	9
812	Selective Heavy Atom Effect Forming Photosensitizing Hot Spots in Double-Stranded DNA Matrix. Journal of Physical Chemistry Letters, 2021, 12, 9205-9212.	2.1	8
813	Modulating Triâ€Mode Emission for Singleâ€Component White Organic Afterglow. Angewandte Chemie - International Edition, 2021, 60, 24984-24990.	7.2	41
814	Recent Strategies to Develop Innovative Photosensitizers for Enhanced Photodynamic Therapy. Chemical Reviews, 2021, 121, 13454-13619.	23.0	657

815 ç´«å¤å...‰æ¿€æ´»æœ‰æœ²å°åˆ†å掲æ;èšå•̂物ä¼2"系的长寿å¼2宿,©ç£·å...‰. Science China Materials,326022, 6522160-216

816	Breaking Classic Heavyâ€Atom Effect to Achieve Heavyâ€Atomâ€Induced Dramatic Emission Enhancement of Siloleâ€Based AlEgens with Throughâ€Bond and Throughâ€Space Conjugation. Advanced Optical Materials, 2021, 9, 2101228.	3.6	18
817	Purely Organic Room-Temperature Phosphorescence Endowing Fast Intersystem Crossing from Through-Space Spin–Orbit Coupling. Jacs Au, 2021, 1, 1694-1699.	3.6	27
818	Modulation of red organic room-temperature phosphorescence in heavy atom-free phosphors. Dyes and Pigments, 2021, 193, 109505.	2.0	24
819	Ultralong Organic Phosphorescent Foams with High Mechanical Strength. Journal of the American Chemical Society, 2021, 143, 16256-16263.	6.6	84
820	Luminescent halogen clusters. Cell Reports Physical Science, 2022, 3, 100593.	2.8	11
821	A facile strategy to realize metal-free room-temperature phosphorescence by construct nitrogen doped carbon dots-based nanocomposite. Microchemical Journal, 2022, 172, 106878.	2.3	12
822	Achieving Efficient Phosphorescence and Mechanoluminescence in Organic Host–Guest System by Energy Transfer. Advanced Functional Materials, 2021, 31, 2108072.	7.8	74
823	Photophysical tuning of small-molecule-doped organic crystals with long-persistent luminescence by variation of dopants. Dyes and Pigments, 2021, 193, 109501.	2.0	6
824	Modulating Triâ€Mode Emission for Singleâ€Component White Organic Afterglow. Angewandte Chemie, 2021, 133, 25188-25194.	1.6	10
825	2D Optical Waveguides Based on Hierarchical Organic Semiconductor Single Crystals. Advanced Optical Materials, 2021, 9, 2101481.	3.6	15
826	Chaotic Organic Crystal Phosphorescent Patterns for Physical Unclonable Functions. Advanced Materials, 2021, 33, e2102542.	11.1	37
827	Influence of Isomerism on Radioluminescence of Purely Organic Phosphorescence Scintillators. Angewandte Chemie - International Edition, 2021, 60, 27195-27200.	7.2	35
828	A novel organic-inorganic ionic cocrystal - piperazine-1,4-diium tetrachloridocuprate(II) dihydrate delivering efficient optical limiting. Chemical Physics Letters, 2021, 781, 138971.	1.2	7

#	Article	IF	CITATIONS
829	Ambient, tunable room temperature phosphorescence from a simple phthalimide phosphor in amorphous polymeric matrix and in crystalline state. Materials Research Bulletin, 2021, 142, 111420.	2.7	6
830	Switchable circularly polarized Room-Temperature phosphorescence based on pure organic amorphous binaphthyl polymer. Chemical Engineering Journal, 2021, 421, 129732.	6.6	56
831	Emitting layer analysis of blue thermally activated delayed fluorescence devices using capacitance–voltage method. Current Applied Physics, 2021, 31, 46-51.	1.1	1
832	Multiemission tunability with ultralong and time–dependent room-temperature phosphorescence from isophthalic acid-decorated carbazole by coordination–induced crystallization. Dyes and Pigments, 2021, 195, 109715.	2.0	8
833	Recent progress in organic color-tunable phosphorescent materials. Journal of Materials Science and Technology, 2022, 101, 264-284.	5.6	38
834	Persistent room-temperature phosphorescence or high-contrast phosphorescent mechanochromism: polymorphism-dependent different emission characteristics from a single gold(<scp>i</scp>) complex. Dalton Transactions, 2021, 50, 7744-7749.	1.6	13
835	Employing Cholesterol Copolymerization Strategy for a Thermally Processable Organic Room‶emperature Phosphorescence Material. Advanced Optical Materials, 2021, 9, 2001893.	3.6	14
836	Circularly polarized luminescent systems fabricated by Tröger's base derivatives through two different strategies. Beilstein Journal of Organic Chemistry, 2021, 17, 52-57.	1.3	2
837	Modulation of supramolecular self-assembly of BODIPY tectons <i>via</i> halogen bonding. CrystEngComm, 2021, 23, 6365-6375.	1.3	6
838	Room-temperature phosphorescent organic materials for optical waveguides. Journal of Materials Chemistry C, 2021, 9, 14115-14132.	2.7	18
839	A twin-axial pseudorotaxane for phosphorescence cell imaging. Chemical Communications, 2021, 57, 1214-1217.	2.2	25
840	Structural influence on stimuli-responsive halogen-bonded luminescent supramolecular polymers from heteroditopic isomers. CrystEngComm, 2021, 23, 1695-1699.	1.3	6
841	Efficient and organic host–guest room-temperature phosphorescence: tunable triplet–singlet crossing and theoretical calculations for molecular packing. Chemical Science, 2021, 12, 6518-6525.	3.7	83
842	Pure room temperature phosphorescence emission of an organic host–guest doped system with a quantum efficiency of 64%. Journal of Materials Chemistry C, 2021, 9, 3391-3395.	2.7	52
843	Excitation dependence and independence of photoluminescence in carbon dots and graphene quantum dots: insights into the mechanism of emission. Nanoscale, 2021, 13, 16662-16671.	2.8	36
844	Singleâ€Molecular White‣ight Emitters and Their Potential WOLED Applications. Advanced Materials, 2020, 32, e1903269.	11.1	185
845	Halogenâ€Bonded BODIPY Frameworks with Tunable Optical Features**. Chemistry - A European Journal, 2021, 27, 1603-1608.	1.7	17
846	Precious Metal-Free Organic Small Molecule Luminophores That Exhibit Room Temperature Phosphorescence. , 2019, , 43-76.		4

#	Article	IF	CITATIONS
847	Achieving white-light emission in a single-component polymer with halogen-assisted interaction. Science China Chemistry, 2021, 64, 467-477.	4.2	10
848	Effect of Noncovalent Interactions on the Intersystem Crossing Behavior in Charge-Transfer Cocrystals of 3,5-Dinitrobromobenzene. Journal of Physical Chemistry C, 2021, 125, 120-129.	1.5	9
849	Mixed crystal formation of two gold isocyanide complexes with various ratios for continuous tuning of photophysical properties. Dalton Transactions, 2020, 49, 2073-2076.	1.6	10
850	Aggregation-state engineering and emission switching in D–A–D′ AlEgens featuring dual emission, MCL and white electroluminescence. Journal of Materials Chemistry C, 2020, 8, 8061-8068.	2.7	25
851	Structural and luminescent properties of co-crystals of tetraiodoethylene with two azaphenanthrenes. Acta Crystallographica Section E: Crystallographic Communications, 2020, 76, 438-442.	0.2	1
852	2D organic-inorganic hybrid perovskite materials for nonlinear optics. Nanophotonics, 2020, 9, 1787-1810.	2.9	60
853	Polymorphism-Dependent Dynamic Ultralong Organic Phosphorescence. Research, 2020, 2020, 8183450.	2.8	33
854	Nonconventional luminophores: characteristics, advancements and perspectives. Chemical Society Reviews, 2021, 50, 12616-12655.	18.7	203
855	The role of halogen bonding in metal free phosphors. Physical Chemistry Chemical Physics, 2021, 23, 23351-23359.	1.3	2
856	The same molecule but a different molecular conformation results in a different room temperature phosphorescence in phenothiazine derivatives. Journal of Materials Chemistry C, 2021, 9, 15375-15380.	2.7	25
857	Organic clusters with time-dependent color-tunable dual persistent room-temperature phosphorescence. Journal of Materials Chemistry C, 2021, 9, 15998-16005.	2.7	9
858	The attochemistry of chemical bonding. International Reviews in Physical Chemistry, 2021, 40, 405-455.	0.9	6
859	Circularly Polarized Organic Room Temperature Phosphorescence from Amorphous Copolymers. Journal of the American Chemical Society, 2021, 143, 18527-18535.	6.6	132
860	Tunable Linear and Nonlinear Optical Properties from Room Temperature Phosphorescent Cyclic Triimidazoleâ€Pyrene Bioâ€Probe. Chemistry - A European Journal, 2021, 27, 16690-16700.	1.7	13
861	Colorâ€Tunable Supramolecular Luminescent Materials. Advanced Materials, 2022, 34, e2105405.	11.1	74
862	Aggregation-Induced Emission (AIE): A Versatile Tool for Chemo/Biosensing. , 2019, , 351-389.		0
864	Z-scan screening of proton-shifted monohydrated organic salt: the linear, nonlinear, and optical limiting characteristics for photonic applications. Journal of Materials Science: Materials in Electronics, 2021, 32, 28750-28764.	1.1	16
865	Recent Advances on Host–Guest Material Systems toward Organic Room Temperature Phosphorescence. Small, 2022, 18, e2104073.	5.2	170

#	Article	IF	CITATIONS
866	Room-temperature phosphorescence based on chitosan carbon dots for trace water detection in organic solvents and anti-counterfeiting application. Dyes and Pigments, 2022, 197, 109923.	2.0	20
867	Toward phosphorescent and delayed fluorescent carbon quantum dots for next-generation electroluminescent displays. Journal of Materials Chemistry C, 2022, 10, 2333-2348.	2.7	23
869	Colorâ€Tunable Dual Persistent Emission Via a Triplet Exciton Reservoir for Temperature Sensing and Antiâ€Counterfeiting. Advanced Optical Materials, 2022, 10, 2101773.	3.6	34
870	Colorful, time-dependent carbon dot-based afterglow with ultralong lifetime. Chemical Engineering Journal, 2022, 431, 133373.	6.6	42
871	Creating Organic Functional Materials beyond Chemical Bond Synthesis by Organic Cocrystal Engineering. Journal of the American Chemical Society, 2021, 143, 19243-19256.	6.6	84
872	Dynamic Manipulating Spaceâ€Resolved Persistent Luminescence in Core–Shell MOFs Heterostructures via Reversible Photochromism. Angewandte Chemie - International Edition, 2022, 61, .	7.2	79
873	Hydrogen-Bonding-Mediated Molecular Vibrational Suppression for Enhancing the Fluorescence Quantum Yield Applicable for Visual Phenol Detection. ACS Applied Materials & Interfaces, 2021, 13, 54339-54347.	4.0	6
874	Dynamic Manipulating Spaceâ€Resolved Persistent Luminescence in Core–Shell MOFs Heterostructures via Reversible Photochromism. Angewandte Chemie, 2022, 134, .	1.6	18
875	Room-Temperature Phosphorescent Co-Crystal Showing Direct White Light and Photo-Electric Conversion. Frontiers in Chemistry, 2021, 9, 765374.	1.8	4
876	Symmetry-Breaking Charge Separation in Phenylene-Bridged Perylenediimide Dimers. Journal of Physical Chemistry A, 2021, 125, 7633-7643.	1.1	23
877	Highly Efficient Heavy Atom Free Room Temperature Phosphorescence by Host-Guest Doping. Frontiers in Chemistry, 2021, 9, 781294.	1.8	3
878	Ultraâ€strong phosphorescence with 48% quantum yield from grinding treated thermal annealed carbon dots and boric acid composite. SmartMat, 2022, 3, 260-268.	6.4	42
879	Room-temperature phosphorescence from metal-free polymer-based materials. Cell Reports Physical Science, 2022, 3, 100663.	2.8	41
880	Highly Efficient Blue Phosphorescence from Pillar‣ayer MOFs by Ligand Functionalization. Advanced Materials, 2022, 34, e2107612.	11.1	71
881	Image Processing and Luminescent Probes for Bioimaging Techniques with High Spatial Resolution and High Sensitivity. Journal of Physics: Conference Series, 2021, 2083, 022016.	0.3	0
882	Emergence of Aggregation Induced Emission (AIE), Room-Temperature Phosphorescence (RTP), and Multistimuli Response from a Single Organic Luminogen by Directed Structural Modification. Journal of Physical Chemistry B, 2021, 125, 12832-12846.	1.2	6
883	Reversible Photoswitching between Fluorescence and Room Temperature Phosphorescence by Manipulating Excited State Dynamics in Molecular Aggregates. Angewandte Chemie - International Edition, 2022, 61, .	7.2	24
884	Mono-, Di-, Tri-Pyrene Substituted Cyclic Triimidazole: A Family of Highly Emissive and RTP Chromophores. Photochem, 2021, 1, 477-487.	1.3	6

#	Article	IF	CITATIONS
885	Gaining New Insights into Trace Guest Doping Role in Manipulating Organic Crystal Phosphorescence. Journal of Physical Chemistry Letters, 2021, 12, 11616-11621.	2.1	11
886	Two-Component Design Strategy: Achieving Intense Organic Afterglow and Diverse Functions in Coronene-Matrix Systems. Journal of Physical Chemistry C, 2021, 125, 26986-26998.	1.5	30
887	Reversible Photoswitching between Fluorescence and Room Temperature Phosphorescence by Manipulating Excited State Dynamics in Molecular Aggregates. Angewandte Chemie, 2022, 134, .	1.6	5
888	Environment-sensitive emission of anionic hydrogen-bonded urea-derivative–acetate-ion complexes and their aggregation-induced emission enhancement. Communications Chemistry, 2021, 4, .	2.0	4
889	Red-light emissive phosphorescent polymers based on X-shaped single benzene. Dyes and Pigments, 2022, 198, 110005.	2.0	9
890	Phase- and Halogen-Dependent Room-Temperature Phosphorescence Properties of Biphenylnitrile Derivatives. Journal of Physical Chemistry C, 2021, 125, 27489-27496.	1.5	4
891	Aggregation induced bright organic luminogens: Design strategies, advanced bio-imaging and theranostic applications. Progress in Molecular Biology and Translational Science, 2021, 185, 75-112.	0.9	1
892	Highly sensitive and quantitative biodetection with lipid-polymer hybrid nanoparticles having organic room-temperature phosphorescence. Biosensors and Bioelectronics, 2022, 199, 113889.	5.3	8
893	Two-component design strategy: TADF-Type organic afterglow for time-gated chemodosimeters. Chemical Engineering Journal, 2022, 431, 134197.	6.6	25
894	Reversible, photoresponsive, dynamic wide-range emission color from polymer-matrixed naphthalene diimide single-luminogen. Chemical Engineering Journal, 2022, 432, 134411.	6.6	24
895	Matrix-free nitrogen-doped carbon dots with room temperature phosphorescence for information encryption and temperature detection. Microchemical Journal, 2022, 175, 107126.	2.3	14
896	Cocrystal engineering: Tuning the charge transfer excitons for highly sensitive luminescent switching materials under multiple stimuli. Science China Materials, 2022, 65, 1320-1328.	3.5	10
897	Molecular-Level Understanding of Dual-RTP via Host-Sensitized Multiple Triplet-to-Triplet Energy Transfers and Data Security Application. ACS Omega, 2022, 7, 3722-3730.	1.6	9
898	Unveiling the crucial contributions of electrostatic and dispersion interactions to the ultralong room-temperature phosphorescence of H-bond crosslinked poly(vinyl alcohol) films. Materials Horizons, 2022, 9, 1081-1088.	6.4	42
899	Solvent Influenced Fragmentations in Freeâ€Standing Threeâ€Dimensional Covalent Organic Framework Membranes for Hydrophobicity Switching. Angewandte Chemie, 0, , .	1.6	0
900	Heavy atom oriented orbital angular momentum manipulation in metal-free organic phosphors. Chemical Science, 2022, 13, 789-797.	3.7	18
901	Halogen Bonding: A New Platform for Achieving Multiâ€Stimuliâ€Responsive Persistent Phosphorescence. Angewandte Chemie, 2022, 134, .	1.6	20
902	Supramolecular Self-Assembly of Atomically Precise Silver Nanoclusters with Chiral Peptide for Temperature Sensing and Detection of Arginine. Nanomaterials, 2022, 12, 424.	1.9	21

#	Article	IF	CITATIONS
903	Unprecedented and Readily Tunable Photoluminescence from Aliphatic Quaternary Ammonium Salts**. Angewandte Chemie, 2022, 134, .	1.6	5
904	Boosting organic afterglow efficiency <i>via</i> triplet–triplet annihilation and thermally-activated delayed fluorescence. Journal of Materials Chemistry C, 2022, 10, 4795-4804.	2.7	7
905	Photophysics and Spinâ€Physics Studies on Persistent Upconversion Luminescence from Nonlinearly Polarizable Ferroelectricâ€Like Lattice Prepared by Orderly Packing Donor–Acceptor Structures under Multiphoton Excitation. Advanced Optical Materials, 0, , 2102002.	3.6	2
906	Time-resolved color-changing long-afterglow for security systems based on metal–organic hybrids. Inorganic Chemistry Frontiers, 2022, 9, 584-591.	3.0	10
907	An anthracene based metal–organic framework showing efficient angle-dependent polarized emission, luminescence thermometry, and photoelectronic response. Dalton Transactions, 2022, 51, 1769-1774.	1.6	16
908	Chiral Arylene Diimide Phosphors: Circularly Polarized Ambient Phosphorescence from Bischromophoric Pyromellitic Diimides. Angewandte Chemie - International Edition, 2022, 61, .	7.2	33
909	Organic Supramolecular Zippers with Ultralong Organic Phosphorescence by a Dexter Energy Transfer Mechanism. Angewandte Chemie, 2022, 134, .	1.6	2
910	Luminescent polymorphic crystals: mechanoresponsive and multicolor-emissive properties. CrystEngComm, 2022, 24, 1112-1126.	1.3	36
911	Guest-host doped strategy for constructing ultralong-lifetime near-infrared organic phosphorescence materials for bioimaging. Nature Communications, 2022, 13, 186.	5.8	175
912	Persistent room temperature phosphorescence films based on star-shaped organic emitters. Journal of Materials Chemistry C, 2022, 10, 1833-1838.	2.7	9
913	Halogen Bonding: A New Platform for Achieving Multiâ€Stimuliâ€Responsive Persistent Phosphorescence. Angewandte Chemie - International Edition, 2022, 61, .	7.2	111
914	Chiral Arylene Diimide Phosphors: Circularly Polarized Ambient Phosphorescence from Bischromophoric Pyromellitic Diimides. Angewandte Chemie, 0, , .	1.6	7
915	Unprecedented and Readily Tunable Photoluminescence from Aliphatic Quaternary Ammonium Salts**. Angewandte Chemie - International Edition, 2022, 61, .	7.2	19
916	Halogen Bonding in Perovskite Solar Cells: A New Tool for Improving Solar Energy Conversion. Angewandte Chemie, 0, , .	1.6	3
917	Solventâ€Influenced Fragmentations in Freeâ€Standing Threeâ€Dimensional Covalent Organic Framework Membranes for Hydrophobicity Switching. Angewandte Chemie - International Edition, 2022, 61, .	7.2	24
918	Reducing undesirable products: Computational chemistry guiding the experiments. , 2022, , 245-262.		0
919	Halide-containing organic persistent luminescent materials for environmental sensing applications. Chemical Science, 2022, 13, 2184-2201.	3.7	20
920	Organic Supramolecular Zippers with Ultralong Organic Phosphorescence by a Dexter Energy Transfer Mechanism. Angewandte Chemie - International Edition, 2022, 61, .	7.2	20

#	Article	IF	CITATIONS
921	Halogen Bonding in Perovskite Solar Cells: A New Tool for Improving Solar Energy Conversion. Angewandte Chemie - International Edition, 2022, 61, .	7.2	45
922	Molecular physics of persistent room temperature phosphorescence and long-lived triplet excitons. Applied Physics Reviews, 2022, 9, .	5.5	66
923	Review on recent trends and prospects in Ï€â€conjugated luminescent aggregates for biomedical applications. Aggregate, 2022, 3, .	5.2	42
924	Sensitive non-destructive real-time monitoring of blue OLED materials on extreme surface using terahertz near-field enhancement. Applied Surface Science, 2022, 584, 152611.	3.1	6
925	Long-Lived Color-Tunable Room-Temperature Phosphorescence of Boron-Doped Carbon Dots. Langmuir, 2022, 38, 2287-2293.	1.6	29
926	Single organic molecular systems for white light emission and their classification with associated emission mechanism. Applied Materials Today, 2022, 27, 101407.	2.3	9
927	Manipulation of Triplet Excited States for Longâ€Lived and Efficient Organic Afterglow. Advanced Optical Materials, 2022, 10, .	3.6	34
928	Endowing matrix-free carbon dots with color-tunable ultralong phosphorescence by self-doping. Chemical Science, 2022, 13, 4406-4412.	3.7	51
929	Room temperature tunable multicolor phosphorescent polymers for humidity detection and information encryption. RSC Advances, 2022, 12, 8145-8153.	1.7	5
930	Efficient and tunable purely organic room temperature phosphorescence films from selenium-containing emitters achieved by structural isomerism. Journal of Materials Chemistry C, 2022, 10, 5141-5146.	2.7	10
931	Achieving long lifetime of room-temperature phosphorescence <i>via</i> constructing vitrimer networks. Materials Chemistry Frontiers, 2022, 6, 1068-1078.	3.2	8
932	Boosting ultralong organic phosphorescence performance by synergistic heavy-atom effect and multiple intermolecular interactions in molecular crystal. Journal of Materials Chemistry C, 2022, 10, 6334-6340.	2.7	8
933	Theoretical search of a simple characteristic for long-lived organic room-temperature phosphorescence materials with H aggregation. Journal of Materials Chemistry C, 2022, 10, 5425-5432.	2.7	11
934	Synergistic Generation and Accumulation of Triplet Excitons for Efficient Ultralong Organic Phosphorescence. Angewandte Chemie - International Edition, 2022, 61, .	7.2	33
935	Mobile Phone Flashlightâ€Excited Red Afterglow Bioimaging. Advanced Materials, 2022, 34, e2201280.	11.1	79
936	Cross-Linked Polyphosphazene Nanospheres Boosting Long-Lived Organic Room-Temperature Phosphorescence. Journal of the American Chemical Society, 2022, 144, 6107-6117.	6.6	105
937	Synergistic Generation and Accumulation of Triplet Excitons for Efficient Ultralong Organic Phosphorescence. Angewandte Chemie, 2022, 134, .	1.6	5
938	Assembly and Applications of Macrocyclic-Confinement-Derived Supramolecular Organic Luminescent Emissions from Cucurbiturils. Chemical Reviews, 2022, 122, 9032-9077.	23.0	157

#	Article	IF	CITATIONS
939	Greatness in Simplicity: Efficient Red Room-Temperature Phosphorescence from Simple Halogenated Maleimides with a 2D Layered Structure. ACS Applied Materials & Interfaces, 2022, 14, 14703-14711.	4.0	15
940	Surface ionization-induced tunable dynamic phosphorescence colors from carbon dots on paper for dynamic multimode encryption. Carbon, 2022, 195, 191-198.	5.4	46
941	Aggregationâ€Induced Dual Phosphorescence from (<i>o</i> â€Bromophenyl)â€Bis(2,6â€Dimethylphenyl)Borane at Room Temperature. Chemistry - A European Journal, 2022, 28, .	1.7	7
942	Tunable Second‣evel Roomâ€Temperature Phosphorescence of Solid Supramolecules between Acrylamide–Phenylpyridium Copolymers and Cucurbit[7]uril. Angewandte Chemie - International Edition, 2022, 61, .	7.2	57
943	White Emissions Containing Room Temperature Phosphorescence from Different Excited States of a D– <i>π</i> –A Molecule Depending on the Aggregate States. Advanced Science, 2022, 9, e2104539.	5.6	21
944	Tunable Second‣evel Roomâ€Temperature Phosphorescence of Solid Supramolecules between Acrylamide–Phenylpyridium Copolymers and Cucurbit[7]uril. Angewandte Chemie, 2022, 134, .	1.6	9
945	Supramolecule-Originated Emission: A Room-Temperature Phosphorescence 2D Ionic H-Bond Network from Nonemissive Aliphatic Derivatives. ACS Applied Materials & Interfaces, 2021, 13, 61528-61535.	4.0	2
946	Intense Organic Afterglow Enabled by Molecular Engineering in Dopant-Matrix Systems. ACS Applied Materials & Interfaces, 2022, 14, 1587-1600.	4.0	26
947	Modulation of the intramolecular hydrogen bonding and push–pull electron effects toward realizing highly efficient organic room temperature phosphorescence. Journal of Materials Chemistry C, 2022, 10, 13797-13804.	2.7	19
950	Multiâ€Mode and Dynamic Persistent Luminescence from Metal Cytosine Halides through Balancing Excitedâ€State Proton Transfer. Advanced Science, 2022, 9, e2200992.	5.6	55
951	Chorioretinal Hypoxia Detection Using Lipid-Polymer Hybrid Organic Room-Temperature Phosphorescent Nanoparticles. ACS Applied Materials & Interfaces, 2022, 14, 18182-18193.	4.0	6
952	Regulation of Irradiationâ€Dependent Longâ€Lived Room Temperature Phosphorescence by Controlling Molecular Structures of Chromophores and Matrix. Advanced Optical Materials, 2022, 10, .	3.6	11
953	Chromophore and Spin–Orbit Coupling Engineering for Highly Efficient Purely Organic Phosphorescent Emitters. ACS Applied Energy Materials, 2022, 5, 4985-4990.	2.5	4
954	Manipulation of Triplet Excited States in Twoâ€Component Systems for Highâ€Performance Organic Afterglow Materials. Chemistry - A European Journal, 2022, 28, .	1.7	26
955	On-demand modulating afterglow color of water-soluble polymers through phosphorescence FRET for multicolor security printing. Science Advances, 2022, 8, eabk2925.	4.7	101
956	Twoâ€Photon Excited Nearâ€Infrared Phosphorescence Based on Secondary Supramolecular Confinement. Advanced Science, 2022, 9, e2201182.	5.6	30
957	AIE-active rare-metal-free phosphorescent materials. , 2022, , 253-274.		1
958	Crystallization induced room-temperature phosphorescence and chiral photoluminescence properties of phosphoramides. Chemical Science, 2022, 13, 5893-5901.	3.7	21

#	Article	IF	CITATIONS
959	Modulation of triplet-mediated emission from selenoxanthen-9-one-based D–A–D type emitters through tuning the twist angle to realize electroluminescence efficiency over 25%. Journal of Materials Chemistry C, 2022, 10, 7437-7442.	2.7	9
960	Manipulating room-temperature phosphorescence <i>via</i> lone-pair electrons and empty-orbital arrangements and hydrogen bond adjustment. Journal of Materials Chemistry C, 2022, 10, 8854-8859.	2.7	5
961	High-performance three-coordinated organoboron emitters for organic light-emitting diodes. Journal of Materials Chemistry C, 2022, 10, 9165-9191.	2.7	10
962	Cucurbit[<i>n</i>]uril-based host-guest interaction enhancing organic room-temperature phosphorescence of phthalic anhydride derivatives in aqueous solution. New Journal of Chemistry, 2022, 46, 11025-11029.	1.4	5
963	Metalâ€Free Organic Triplet Emitters with On–Off Switchable Excited State Intramolecular Proton Transfer. Advanced Functional Materials, 2022, 32, .	7.8	25
964	Impact of Fabrication Processes of Small-Molecule-Doped Polymer Thin-Films on Room-Temperature Phosphorescence. Frontiers in Physics, 2022, 10, .	1.0	2
965	A facile and green strategy to obtain organic room-temperature phosphorescence from natural lignin. Science China Chemistry, 2022, 65, 1100-1104.	4.2	26
966	Modulating the Carbonization Degree of Carbon Dots for Multicolor Afterglow Emission. ACS Applied Materials & Interfaces, 2022, 14, 22363-22371.	4.0	33
967	Recent advances of room temperature phosphorescence and long persistent luminescence by doping system of purely organic molecules. Dyes and Pigments, 2022, 204, 110400.	2.0	12
968	Long-Lived Photoluminescence of Molecular Group 14 Compounds through Thermally Activated Delayed Fluorescence. Inorganic Chemistry, 2022, 61, 7338-7348.	1.9	14
969	Clustering and halogen effects enabled red/near-infrared room temperature phosphorescence from aliphatic cyclic imides. Nature Communications, 2022, 13, 2658.	5.8	92
970	Metal and halogen-free purely organic room temperature phosphorescence material using heavy atom effect of phenoselenazine. Organic Electronics, 2022, 106, 106534.	1.4	7
971	Structurally Resemblant Dopants Enhance Organic Roomâ€Temperature Phosphorescence. Advanced Materials, 2022, 34, e2201569.	11.1	38
972	Direct demonstration of triplet excimer in purely organic room temperature phosphorescence through rational molecular design. Light: Science and Applications, 2022, 11, 142.	7.7	37
973	Tunable Fluorescence in Two-Component Hydrogen-Bonded Organic Frameworks Based on Energy Transfer. ACS Applied Materials & Interfaces, 2022, 14, 24509-24517.	4.0	15
974	Color-tunable persistent luminescence in 1D zinc–organic halide microcrystals for single-component white light and temperature-gating optical waveguides. Chemical Science, 2022, 13, 7429-7436.	3.7	51
975	Metal-Free Organic Phosphors toward Fast and Efficient Room-Temperature Phosphorescence. Accounts of Chemical Research, 2022, 55, 1573-1585.	7.6	44
976	Control of photoluminescence quantum yield and long-lived triplet emission lifetime in organic alloys. Chemical Science, 2022, 13, 6882-6887.	3.7	2

#	ARTICLE	IF	CITATIONS
977	The influence of l€â€"l€ stacking on the room temperature phosphorescence of phenothiazine 5,5-dioxide derivatives. Journal of Materials Chemistry C, 2022, 10, 13741-13746.	2.7	13
978	Recent progress of triplet state emission in organic-inorganic hybrid metal halides. Journal of Luminescence, 2022, 249, 119013.	1.5	11
979	Molecular Uniting Set Identified Characteristic (<scp>MUSIC</scp>) of Organic Optoelectronic Material. Chinese Journal of Chemistry, 2022, 40, 2356-2370.	2.6	42
980	Boosting Organic Afterglow Performance via a Two-Component Design Strategy Extracted from Macromolecular Self-Assembly. Journal of Physical Chemistry Letters, 2022, 13, 5030-5039.	2.1	8
981	Effect of Halogens in Bis(haloaryloxyl)pyrazine Host Crystals on the Room Temperature Phosphorescence Properties of Bisbenzofuropyrazine Guest Luminophores. Chemistry Letters, 2022, 51, 819-822.	0.7	2
982	Heavy main group element containing organometallic phosphorescent materials. Results in Chemistry, 2022, 4, 100399.	0.9	3
983	Efficient monomolecular white emission of phenothiazine boronic ester derivatives with room temperature phosphorescence. Journal of Materials Chemistry C, 2022, 10, 10347-10355.	2.7	8
984	Supramolecular assembly confined purely organic room temperature phosphorescence and its biological imaging. Chemical Science, 2022, 13, 7976-7989.	3.7	57
985	Enhancing room-temperature phosphorescence <i>via</i> intermolecular charge transfer in dopant-matrix systems. Chemical Communications, 2022, 58, 8137-8140.	2.2	9
986	A "Flexible―Purely Organic Molecule Exhibiting Strong Spin–Orbital Coupling: Toward Nondoped Room-Temperature Phosphorescence OLEDs. Journal of Physical Chemistry Letters, 2022, 13, 4971-4980.	2.1	14
987	A ratiometric afterglow response of aluminium ions in methanolâ€waterv. Chemistry - an Asian Journal, 0, , .	1.7	1
988	Anionâ^'í€-Induced Room Temperature Phosphorescence from Emissive Charge-Transfer States . Journal of the American Chemical Society, 2022, 144, 10854-10861.	6.6	46
989	Thermally Activated and Aggregationâ€Regulated Excitonic Coupling Enable Emissive High‣ying Triplet Excitons**. Angewandte Chemie - International Edition, 2022, 61, .	7.2	25
990	Origin of Redâ€Shifted Phosphorescence from Triphenylamines: Triplet Excimer or Impurity?. Angewandte Chemie, 0, , .	1.6	2
991	Multicomponent Molecular Assembly of Fluorescent Organic Semiconductors Beyond Three Compounds. Advanced Functional Materials, 2022, 32, .	7.8	3
992	Origin of Redâ€5hifted Phosphorescence from Triphenylamines: Triplet Excimer or Impurity?. Angewandte Chemie - International Edition, 2022, 61, .	7.2	21
993	Thermally Activated and Aggregationâ€Regulated Excitonic Coupling Enable Emissive High‣ying Triplet Excitons**. Angewandte Chemie, 2022, 134, .	1.6	5
994	Advances in Pure Organic Mechanoluminescence Materials. Journal of Physical Chemistry Letters, 2022, 13, 5605-5617.	2.1	23

CITATION REP	PORT

#	Article	IF	CITATIONS
995	Thermally Activated Delayed Fluorescence of a Pyromellitic Diimide Derivative in the Film Environment Investigated by Combined QM/MM and MS-CASPT2 Methods. Journal of Physical Chemistry A, 2022, 126, 4176-4184.	1.1	5
996	Dynamic room-temperature phosphorescence by reversible transformation of photo-induced free radicals. Science China Chemistry, 2022, 65, 1538-1543.	4.2	17
997	A Benzene Ringâ€Linked Dimethylamino and Borate Esterâ€Based Molecule and Organic Crystal: Efficient Dual Roomâ€Temperature Phosphorescence with Responsive Property. Advanced Optical Materials, 2022, 10, .	3.6	3
998	Hot-exciton harvesting <i>via</i> through-space single-molecule based white-light emission and optical waveguides. Chemical Science, 2022, 13, 9004-9015.	3.7	12
999	Binding model-tuned room-temperature phosphorescence of the bromo-naphthol derivatives based on cyclodextrins. RSC Advances, 2022, 12, 19313-19316.	1.7	1
1000	In-Situ Grafting N-Arylcarbazoles Enables More Ultra-Long Room Temperature Phosphorescence Polymers. SSRN Electronic Journal, 0, , .	0.4	0
1001	Achieving redox-responsive organic afterglow materials <i>via</i> a dopant–matrix design strategy. Journal of Materials Chemistry C, 2022, 10, 11634-11641.	2.7	8
1002	NearlyÂUnity Quantum Yield Persistent Room Temperature Phosphorescence from Heavy Atomâ€Free Rigid Inorganic/Organic Hybrid Frameworks. Angewandte Chemie, 0, , .	1.6	0
1003	Nearly Unity Quantum Yield Persistent Roomâ€Temperature Phosphorescence from Heavy Atomâ€Free Rigid Inorganic/Organic Hybrid Frameworks. Angewandte Chemie - International Edition, 2022, 61, .	7.2	41
1004	Organic phosphorescent scintillation from copolymers by X-ray irradiation. Nature Communications, 2022, 13, .	5.8	55
1005	Roomâ€ŧemperature phosphorescence materials from crystalline to amorphous state. SmartMat, 2023, 4,	6.4	18
1006	Achieving purely organic room temperature phosphorescence in aqueous solution. Aggregate, 2023, 4,	5.2	36
1007	Dual-Mode White Light Emissions from a Single Copolymer with an Ultralong Phosphorescence Lifetime. ACS Applied Polymer Materials, 2022, 4, 5638-5647.	2.0	6
1008	Cascade Synthesis of Luminescent Difluoroboron Diketonate Compounds for <scp>Roomâ€Temperature</scp> Organic Afterglow Materials. Chinese Journal of Chemistry, 2022, 40, 2507-2515.	2.6	18
1009	Enabling Dual Phosphorescence by Locating a Flexible Ligand in Zn-Based Hybrid Frameworks. Journal of Physical Chemistry Letters, 2022, 13, 6975-6980.	2.1	11
1010	Polymerizationâ€Induced Emission of Colorâ€Tunable Room Temperature Phosphorescence. Advanced Materials Interfaces, 2022, 9, .	1.9	13
1011	Molecular Thermal Motion Modulated Room-Temperature Phosphorescence for Multilevel Encryption. Research, 2022, 2022, .	2.8	8
1012	Photo-stimuli-responsive Organic Room-Temperature Phosphorescent Materials. , 2022, 4, 1599-1615.		37

#	Article	IF	CITATIONS
1013	Photo-thermo-induced room-temperature phosphorescence through solid-state molecular motion. Nature Communications, 2022, 13, .	5.8	25
1014	Playing with Isostructurality from Binary Cocrystals to Ternary Cocrystal Solvates of Quercetin: Tuning Colors of Pigment. Crystal Growth and Design, 2022, 22, 5322-5334.	1.4	6
1015	Purely Organic Blue Roomâ€Temperature Phosphorescence Activated by Acrylamide In Situ Photopolymerization. Advanced Optical Materials, 0, , 2201330.	3.6	6
1016	Laser activated room-temperature excimer delayed fluorescence of difluoroboron β-diketonate complexes in polymer matrix. Polymer, 2022, 256, 125255.	1.8	2
1017	Ultralong organic phosphorescence from isolated molecules with repulsive interactions for multifunctional applications. Nature Communications, 2022, 13, .	5.8	61
1018	High Exciton Utilization of 1D Molecular Column with High Packing Energy Formed by Folded ï€-Molecules. Journal of the American Chemical Society, 2022, 144, 17897-17904.	6.6	6
1019	Boosting organic phosphorescence in pure organics by mixed heavy atoms management. Dyes and Pigments, 2022, 207, 110741.	2.0	3
1020	Enhancing luminescence in the solid state and varying the luminescence colour by manipulating halogen interactions in furan-cyanovinyl derivatives. Dyes and Pigments, 2022, 207, 110698.	2.0	5
1021	In-situ grafting N-arylcarbazoles enables more ultra-long room temperature phosphorescence polymers. Chemical Engineering Journal, 2023, 452, 139385.	6.6	14
1022	Development of gold(<scp>i</scp>) phosphorescent tweezers for sensing applications. Dalton Transactions, 2022, 51, 16282-16291.	1.6	2
1023	Polarity-induced dual room-temperature phosphorescence involving the T ₂ states of pure organic phosphors. Journal of Materials Chemistry C, 0, , .	2.7	1
1024	Room temperature charge-transfer phosphorescence from organic donor–acceptor Co-crystals. Chemical Science, 2022, 13, 10011-10019.	3.7	37
1025	Merging photoinitiated bulk polymerization and the dopant-matrix design strategy for polymer-based organic afterglow materials. Polymer Chemistry, 2022, 13, 4641-4649.	1.9	5
1026	Dramatic emission enhancement of aggregation-induced emission luminogens by dynamic metal coordination bonds and the anti-heavy-atom effect. Chemical Communications, 2022, 58, 10837-10840.	2.2	5
1027	Organic phosphorescent nanoscintillator for low-dose X-ray-induced photodynamic therapy. Nature Communications, 2022, 13, .	5.8	53
1028	Efficient Roomâ€Temperature Phosphorescence of 1D Organic–Inorganic Hybrid Metal Halides. Small Structures, 2022, 3, .	6.9	20
1029	Influence of reaction conditions on kumada catalytic transfer polymerization for synthesis of poly(p-phenylene) for organic semiconductors. Journal of Polymer Research, 2022, 29, .	1.2	0
1030	Organic Afterglow Emulsions Exhibiting 2.4 s Phosphorescence Lifetimes and Specific Protein Binding Property. Advanced Optical Materials, 2022, 10, .	3.6	18

#	Article	IF	CITATIONS
1031	Achieving low driving voltage and high-efficiency afterglow organic light-emitting diodes through host–guest doping. Applied Physics Reviews, 2022, 9, .	5.5	11
1032	Metal-Halide Coordination Polymers with Excitation Wavelength- and Time-Dependent Ultralong Room-Temperature Phosphorescence. Inorganic Chemistry, 2022, 61, 16477-16483.	1.9	14
1033	Colourful organic afterglow materials with super-wide color gamut and scaled processability from cellulose. Materials Today Chemistry, 2022, 26, 101179.	1.7	4
1034	A processable, scalable, and stable full-color ultralong afterglow system based on heteroatom-free hydrocarbon doped polymers. Materials Horizons, 2023, 10, 197-208.	6.4	21
1035	Distinguishing the Quantum Yield and Lifetime of Carbazoleâ€Based Roomâ€Temperature Phosphorescence Materials: QM/MM Study. Annalen Der Physik, 2022, 534, .	0.9	1
1036	Room-Temperature Phosphorescence in the Amorphous State Enhanced by Copolymerization and Host–Guest Complexation. Macromolecules, 2022, 55, 9802-9809.	2.2	7
1037	Efficient room-temperature phosphorescence of covalent organic frameworks through covalent halogen doping. Nature Chemistry, 2023, 15, 83-90.	6.6	52
1038	Unveiling Halogen-Bonding Interactions between a Pyridine-Functionalized Fluoroborate Dye and Perfluorohaloarenes with Fluorescence Spectroscopy. Journal of Organic Chemistry, 2022, 87, 15159-15165.	1.7	5
1039	Synthesis of 1â€Aminoisoquinolines and Their Application in a Hostâ€Guest Doped Strategy To Construct Ultralong Roomâ€Temperature Phosphorescence Materials for Bioimaging. Chemistry - A European Journal, 2023, 29, .	1.7	3
1040	Organic persistent luminescence imaging for biomedical applications. Materials Today Bio, 2022, 17, 100481.	2.6	6
1041	Anchoring polydentate N/O-ligands in metal phosphite/phosphate/phosphonate (MPO) for functional hybrid materials. Coordination Chemistry Reviews, 2023, 475, 214892.	9.5	37
1042	Efficient ultralong and color-tunable room-temperature phosphorescence from polyacrylamide platform by introducing sulfanilic acid. Chemical Engineering Journal, 2023, 453, 139753.	6.6	11
1043	Supramolecular Room Temperature Phosphorescent Materials Based on Cucurbit[8]uril for Dual Detection of Dodine. ACS Applied Materials & Interfaces, 2022, 14, 51429-51437.	4.0	11
1044	Color-Tunable Binary Copolymers Manipulated by Intramolecular Aggregation and Hydrogen Bonding. ACS Applied Materials & Interfaces, 2022, 14, 53359-53369.	4.0	10
1045	Controllable Modulation of Efficient Phosphorescence Through Dynamic Metalâ€Ligand Coordination for Reversible Anti ounterfeiting Printing of Thermal Development. Advanced Functional Materials, 2023, 33, .	7.8	21
1046	Single Crystalline, Nonâ€stoichiometric Cocrystals of Hydrogenâ€Bonded Organic Frameworks. Angewandte Chemie - International Edition, 2023, 62, .	7.2	9
1047	Ultralong Organic Phosphorescence: From Material Design to Applications. Accounts of Chemical Research, 2022, 55, 3445-3459.	7.6	52
1048	Single Crystalline, Nonâ€stoichiometric Cocrystals of Hydrogenâ€Bonded Organic Frameworks. Angewandte Chemie, 2023, 135, .	1.6	1

#	Article	IF	CITATIONS
1049	Clustering-triggered phosphorescence of nonconventional luminophores. Science China Chemistry, 2023, 66, 367-387.	4.2	31
1050	Making multi-twisted luminophores produce persistent room-temperature phosphorescence. Chemical Science, 2023, 14, 970-978.	3.7	12
1051	Conformational isomeric thermally activated delayed fluorescence (TADF) emitters: mechanism, applications, and perspectives. Physical Chemistry Chemical Physics, 2023, 25, 2729-2741.	1.3	8
1052	Achieving long-lived room-temperature phosphorescence via charge transfer technology and dopant-matrix design strategy. Dyes and Pigments, 2023, 210, 110984.	2.0	4
1053	Polymer-Based TADF-Type Organic Afterglow. Journal of Physical Chemistry C, 2022, 126, 20728-20738.	1.5	5
1054	New Phthalic Anhydrideâ€Based Roomâ€Temperature Phosphorescence Emitter with Lifetime Longer Than One Second. Advanced Optical Materials, 2023, 11, .	3.6	3
1055	Advancing X-ray Luminescence for Imaging, Biosensing, and Theragnostics. Accounts of Chemical Research, 2023, 56, 37-51.	7.6	25
1056	In Situ Confining Citric Acidâ€Derived Carbon Dots for Fullâ€Color Roomâ€Temperature Phosphorescence. Small, 2023, 19, .	5.2	23
1057	Excitationâ€Dependent and Efficient Phosphorescence Based on Benzophenone Derivatives. Advanced Optical Materials, 0, , 2202095.	3.6	1
1058	The Effect of Molecular Conformations and Simulated "Selfâ€Doping―in Phenothiazine Derivatives on Roomâ€Temperature Phosphorescence. Angewandte Chemie - International Edition, 2023, 62, .	7.2	25
1059	Regulating Phosphorescence Lifetime of Organic Cocrystals by Alkyl Engineering. Crystal Growth and Design, 2023, 23, 31-36.	1.4	4
1060	Crystallization-Enhanced Emission and Room-Temperature Phosphorescence of Cyclic Triimidazole-Monohexyl Thiophene Derivatives. Molecules, 2023, 28, 140.	1.7	1
1061	Efficient Persistent Luminescence from Cellulose–Halide Mixtures for Optical Encryption. ACS Sustainable Chemistry and Engineering, 2022, 10, 16752-16759.	3.2	8
1062	A dish-like molecular architecture for dynamic ultralong room-temperature phosphorescence through reversible guest accommodation. Nature Communications, 2022, 13, .	5.8	21
1063	A Twisted Phosphor: Breaking T ₁ Energy Conservation in Dopantâ€Matrix Organic Phosphorescence Systems. Advanced Optical Materials, 2023, 11, .	3.6	4
1064	The Effect of Molecular Conformations and Simulated "Selfâ€Doping―in Phenothiazine Derivatives on Roomâ€Temperature Phosphorescence. Angewandte Chemie, 2023, 135, .	1.6	5
1065	Tunable Fullâ€Color Room Temperature Phosphorescence of Two Singleâ€Component Zinc(II)â€Based Coordination Polymers. Advanced Optical Materials, 2023, 11, .	3.6	8
1066	Recent advances in room-temperature phosphorescent materials by manipulating intermolecular interactions. Science China Chemistry, 2023, 66, 304-314.	4.2	42

#	Article	IF	Citations
1067	Aqueous <scp>Roomâ€Temperature</scp> Phosphorescence from Assembled Phosphors for Analytical Detection ^{â€} . Chinese Journal of Chemistry, 2023, 41, 979-990.	2.6	6
1068	Advanced charge transfer technology for highly efficient and long-lived TADF-type organic afterglow with near-infrared light-excitable property. Science China Chemistry, 2023, 66, 1120-1131.	4.2	18
1069	Wideâ€range colorâ€tunable afterglow emission by the modulation of triplet exciton transition processes based on buckybowl structure. Aggregate, 2023, 4, .	5.2	7
1070	The El-Sayed's rule analogy enables long-lived room temperature phosphorescence in twisted biphenyls. Cell Reports Physical Science, 2023, 4, 101245.	2.8	10
1071	Benzophenone-containing phosphors with an unprecedented long lifetime of 1.8 s under ambient conditions. Chemical Communications, 2023, 59, 1525-1528.	2.2	10
1072	Longâ€Lived Emissive Hydrogenâ€Bonded Macrocycles: Donors Regulating Roomâ€Temperature Phosphorescence and Thermally Activated Delayed Fluorescence. Advanced Optical Materials, 2023, 11, .	3.6	3
1073	Temperature-Regulated Dual Phosphorescence and Mechanical Strain-Induced Luminescence Modulation in a Plastically Bendable and Twistable Organic Crystal. Chemistry of Materials, 2023, 35, 709-718.	3.2	9
1074	The Halogen Bond in Weakly Bonded Complexes and the Consequences for Aromaticity and Spin-Orbit Coupling. Molecules, 2023, 28, 772.	1.7	13
1075	Conjugation-Modulated Excitonic Coupling Brightens Multiple Triplet Excited States. Journal of the American Chemical Society, 2023, 145, 1945-1954.	6.6	27
1076	Color-tunable, time-dependent, temperature and humidity-responsive afterglow from hyaluronic acid-based films. Dyes and Pigments, 2023, 212, 111113.	2.0	1
1077	Insight into the Heavy Atom Effect Induced by Environmental Heavy Atoms for Gadolinium-Labeled Hematoporphyrin Monomethyl Ether. Journal of Physical Chemistry B, 2023, 127, 777-782.	1.2	2
1078	One-Pot Three Carbon Dots with Various Lifetimes Rooted in Different Decarboxylation Degrees for Matrix-Free, Anti-Oxygen, and Time-Resolved Information Encryption and Cellular Imaging. Analytical Chemistry, 2023, 95, 1985-1994.	3.2	7
1079	Manipulation of Organic Afterglow in Fluorantheneâ€Containing Dopantâ€Matrix Systems: From Conventional Roomâ€Temperature Phosphorescence to Efficient Red TADFâ€Type Organic Afterglow. Chemistry - A European Journal, 2023, 29, .	1.7	7
1080	The unexpected mechanism of transformation from conventional room-temperature phosphorescence to TADF-type organic afterglow triggered by simple chemical modification. Journal of Materials Chemistry C, 2023, 11, 2291-2301.	2.7	5
1081	Luminescence lifetime tuning of non-conjugated organic clusters through external heavy-atom effect for smartphone-based time-resolved imaging. Chemical Engineering Journal, 2023, 460, 141452.	6.6	10
1082	Molecular Persistent Room-Temperature Phosphorescence from Tetraarylaminoboranes. Inorganic Chemistry, 2023, 62, 1122-1134.	1.9	4
1083	Color-Tunable Upconversion-Emission Switch Based on Cocrystal-to-Cocrystal Transformation. Journal of the American Chemical Society, 2023, 145, 1855-1865.	6.6	23
1084	Organic AIE material based on D-ï€-A for detecting lipid droplets in living cells and its application in photodynamic therapy. Dyes and Pigments, 2023, 211, 111096.	2.0	1

#	Article	IF	CITATIONS
1085	Multicolor hyperafterglow from isolated fluorescence chromophores. Nature Communications, 2023, 14, .	5.8	31
1086	Recent advances in metal-free phosphorescent materials for organic light-emitting diodes. Journal of Materials Chemistry C, 2023, 11, 3143-3161.	2.7	17
1087	Modulating room temperature phosphorescence through intermolecular halogen bonding. Journal of Materials Chemistry C, 2023, 11, 4203-4209.	2.7	3
1088	Light-Emitting Organic Semiconductor-Incorporated Perovskites: Fundamental Properties and Device Applications. Journal of Physical Chemistry Letters, 2023, 14, 2034-2046.	2.1	4
1089	Selective Heavy Atom Effect-Promoted Photosensitization Colorimetric Detection of Ag ⁺ in Silver Ore Samples. Analytical Chemistry, 2023, 95, 6501-6506.	3.2	2
1090	Deep insight into the charge-transfer cocrystals: Decreasing structural overlap induced bathochromically shift emission. Dyes and Pigments, 2023, 215, 111277.	2.0	0
1091	D-O-A based organic phosphors for both aggregation-induced electrophosphorescence and host-free sensitization. Nature Communications, 2023, 14, .	5.8	6
1092	Organic Persistent RTP Crystals: From Brittle to Flexible by Tunable Selfâ€Partitioned Molecular Packing. Advanced Materials, 2023, 35, .	11.1	21
1093	Synthesis of matrix-free carbon dots for information encryption, fingerprinting, and antibacterial activity. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 668, 131460.	2.3	4
1094	Dual fluorescence and RTP features of carbazole-cyclic triimidazole derivatives: The fluorophores' connectivity does matter. Dyes and Pigments, 2023, 215, 111274.	2.0	2
1095	Organic Photothermal Cocrystals: Rational Design, Controlled Synthesis, and Advanced Application. Advanced Science, 2023, 10, .	5.6	26
1096	Sonicationâ€Responsive Organic Afterglow Emulsions. Advanced Functional Materials, 2023, 33, .	7.8	6
1097	Manipulating intermolecular interactions for ultralong organic phosphorescence. Aggregate, 2023, 4,	5.2	22
1098	Computational evaluation of halogen-bonded cocrystals enables prediction of their mechanochemical interconversion reactions. Chemical Science, 2023, 14, 3140-3146.	3.7	3
1099	An emission enhancement strategy realized by introducing phosphorescent antennas and complexing with Cucurbit[7]uril. Materials Today Chemistry, 2023, 29, 101393.	1.7	1
1100	Merging thermally activated delayed fluorescence and two-photon ionization mechanisms for highly efficient and ultralong-lived organic afterglow. Chemical Engineering Journal, 2023, 460, 141916.	6.6	7
1101	Supramolecular Weaving by Halogen-Bonding in Functionality-Rich Hexasubstituted Aromatic Synthons. Materials, 2023, 16, 1678.	1.3	0
1102	Aggregation-induced emission of matrix-free graphene quantum dots via selective edge functionalization of rotor molecules. Science Advances, 2023, 9, .	4.7	16

#	Article	IF	CITATIONS
1103	Circularly polarized organic room temperature phosphorescence activated by liquid crystalline polymer networks. Journal of Materials Chemistry C, 2023, 11, 4104-4111.	2.7	9
1104	Ultra‣ong Room Temperature Phosphorescence with the Efficiency Over 64% Induced by 1‰ Impurity Doping. Advanced Functional Materials, 2023, 33, .	7.8	15
1105	Enabling Peculiar Photophysics and Mechanochromic Luminescence by Introducing Bromine in Push–Pull Pyridine Derivatives. Journal of Physical Chemistry C, 2023, 127, 4176-4187.	1.5	1
1106	Enhanced Ultra‣ong Room Temperature Phosphorescence by Intermolecular Donor–Acceptor Interaction in Polymer Network. Advanced Optical Materials, 2023, 11, .	3.6	3
1107	Propeller Ultralong Room Temperature Phosphorescence: New Aspect of Triphenylphosphine Derivatives. Advanced Optical Materials, 2023, 11, .	3.6	5
1108	Afterglow OLEDs incorporating bright closely stacked molecular dimers with ultra-long thermally activated delayed fluorescence. Matter, 2023, 6, 1231-1248.	5.0	10
1109	Halogenâ< Halogen Interactions: Nature, Directionality and Applications. Chemistry - an Asian Journal, 2023, 18, .	1.7	13
1110	Utilizing morpholine for purely organic room temperature phosphors. Science China Chemistry, 2023, 66, 1132-1138.	4.2	2
1111	Structural and mechanistic studies of excitation- and temperature-tunable multicolor luminescence of triarylborane. CrystEngComm, 2023, 25, 2204-2212.	1.3	1
1112	An investigation of Solidâ€State Emission of Halogenated Diphenyl Phosphanyl Anthracenes. Advanced Optical Materials, 0, , 2202753.	3.6	1
1113	Organic Binary and Ternary Cocrystal Engineering Based on Halogen Bonding Aimed at Roomâ€Temperature Phosphorescence. Advanced Materials, 0, , .	11.1	17
1114	Two Calix[3]Phenothiazineâ€Based Amorphous Pure Organic Roomâ€Temperature Phosphorescent Supramolecules Mediated by Guest. Advanced Optical Materials, 2023, 11, .	3.6	4
1115	Benzothienoiodolium Cations Doubly Bonded to Anions via Halogen–Chalcogen and Halogen–Hydrogen Supramolecular Synthons. Crystal Growth and Design, 2023, 23, 2661-2674.	1.4	4
1117	A gated strategy stabilizes roomâ€ŧemperature phosphorescence. Aggregate, 2023, 4, .	5.2	5
1118	Cage‣ike Sodaliteâ€Type Porous Organic Salts Enabling Luminescent Molecule's Incorporation and Roomâ€ŧemperature Phosphorescence Induction in Air. Small, 2023, 19, .	5.2	4
1119	Necessary and Sufficient Condition for Organic Roomâ€Temperature Phosphorescence from Host–Guest Doped Crystalline Systems. Advanced Optical Materials, 2023, 11, .	3.6	5
1120	Recent advances in long-persistent luminescence materials based on host–guest architecture. Chinese Chemical Letters, 2024, 35, 108385.	4.8	2
1121	Organic room-temperature phosphorescence materials for bioimaging. Chemical Communications, 2023, 59, 5329-5342.	2.2	17

#	Article	IF	CITATIONS
1122	Achieving Tunable Organic Afterglow and UVâ€Irradiationâ€Responsive Ultralong Roomâ€Temperature Phosphorescence from Pyridineâ€Substituted Triphenylamine Derivatives. Advanced Materials, 2023, 35, .	11.1	37
1123	Mechanical Force-Induced Color-Variable Luminescence of Carbon Dots in Boric Acid Matrix. Molecules, 2023, 28, 3388.	1.7	0
1124	Stimuli Responsive Features of Organic RTP Materials: An Intriguing Carbazole yclic Triimidazole Derivative. Chemistry - A European Journal, 2023, 29, .	1.7	2
1161	CO2-responsive tunable persistent luminescence in a hydrogen-bond organized two-component ionic crystal. Chemical Communications, 0, , .	2.2	0
1162	Organic Material-Based Phosphors. Progress in Optical Science and Photonics, 2023, , 279-307.	0.3	0
1165	Visible-light-excitable aqueous afterglow exhibiting long emission wavelength and ultralong afterglow lifetime of 7.64 s. Chemical Communications, 2023, 59, 10500-10503.	2.2	6
1167	Single-component compounds with wide-range color-tunable ultralong organic phosphorescence. Journal of Materials Chemistry C, 2023, 11, 11123-11127.	2.7	0
1170	Phosphorescence Enhancement of Pyridinium Macrocycles by Poly(vinylalcohol). Chemical Communications, 0, , .	2.2	0
1175	Room-temperature phosphorescent materials derived from natural resources. Nature Reviews Chemistry, 2023, 7, 800-812.	13.8	10
1180	The afterglow of carbon dots shining in inorganic matrices. Materials Horizons, 2024, 11, 113-133.	6.4	2
1187	Elucidating mechanochemical reactivity of a ternary halogen-bonded cocrystal system by computational and calorimetric studies. Physical Chemistry Chemical Physics, 2023, 25, 28576-28580.	1.3	1
1214	Phosphorescence resonance energy transfer from purely organic supramolecular assembly. Nature Reviews Chemistry, 2023, 7, 854-874.	13.8	9
1228	Recent Advances in Pure-Organic Host–Guest Room-Temperature Phosphorescence Systems Toward Bioimaging. Transactions of Tianjin University, 0, , .	3.3	0
1241	Organic Light-Emitting Diodes (OLEDs): Materials, Photophysics, and Device Physics. , 2024, , 73-118.		0