The transcriptional and signalling networks of pluripot

Nature Cell Biology 13, 490-496 DOI: 10.1038/ncb0511-490

Citation Report

CITATION	

#	Article	IF	CITATIONS
1	Allo-network drugs: harnessing allostery in cellular networks. Trends in Pharmacological Sciences, 2011, 32, 686-693.	4.0	132
2	Zfp281 Functions as a Transcriptional Repressor for Pluripotency of Mouse Embryonic Stem Cells. Stem Cells, 2011, 29, 1705-1716.	1.4	79
3	Mark the transition: chromatin modifications and cell fate decision. Cell Research, 2011, 21, 1388-1390.	5.7	4
4	Acute depletion of Tet1-dependent 5-hydroxymethylcytosine levels impairs LIF/Stat3 signaling and results in loss of embryonic stem cell identity. Nucleic Acids Research, 2012, 40, 3364-3377.	6.5	84
5	Defining stem cell types: understanding the therapeutic potential of ESCs, ASCs, and iPS cells. Journal of Molecular Endocrinology, 2012, 49, R89-R111.	1.1	69
6	Yin Yang 1 extends the Myc-related transcription factors network in embryonic stem cells. Nucleic Acids Research, 2012, 40, 3403-3418.	6.5	94
7	Global DNA Hypomethylation Prevents Consolidation of Differentiation Programs and Allows Reversion to the Embryonic Stem Cell State. PLoS ONE, 2012, 7, e52629.	1.1	34
8	microRNA-based cancer cell reprogramming technology. Experimental and Therapeutic Medicine, 2012, 4, 8-14.	0.8	11
9	Dicer 1, ribonuclease type III modulates a reprogramming effect in colorectal cancer cells. International Journal of Molecular Medicine, 2012, 29, 1060-4.	1.8	8
10	Defining the molecular profile of planarian pluripotent stem cells using a combinatorial RNA-seq, RNA interference and irradiation approach. Genome Biology, 2012, 13, R19.	13.9	135
11	Molecular Identification of t: Vps52 Promotes Pluripotential Cell Differentiation through Cell–Cell Interactions. Cell Reports, 2012, 2, 1363-1374.	2.9	31
13	Enhancers: emerging roles in cell fate specification. EMBO Reports, 2012, 13, 423-430.	2.0	124
14	Expanding the Boundaries of Embryonic Stem Cells. Cell Stem Cell, 2012, 10, 666-677.	5.2	58
15	Genetic and epigenetic stability of human pluripotent stem cells. Nature Reviews Genetics, 2012, 13, 732-744.	7.7	211
16	Single-Cell Expression Analyses during Cellular Reprogramming Reveal an Early Stochastic and a Late Hierarchic Phase. Cell, 2012, 150, 1209-1222.	13.5	769
17	Role of mass spectrometry-based proteomics in the study of cellular reprogramming and induced pluripotent stem cells. Expert Review of Proteomics, 2012, 9, 379-399.	1.3	11
18	Wnt Pathway Regulation of Embryonic Stem Cell Self-Renewal. Cold Spring Harbor Perspectives in Biology, 2012, 4, a007971-a007971.	2.3	77
19	A regulatory loop involving Dies1 and miRâ€125a controls BMP4 signaling in mouse embryonic stem cells. FASEB Journal, 2012, 26, 3957-3968.	0.2	32

#	Article	IF	CITATIONS
20	Modulating Glypican4 Suppresses Tumorigenicity of Embryonic Stem Cells While Preserving Self-Renewal and Pluripotency. Stem Cells, 2012, 30, 1863-1874.	1.4	47
21	Pluripotency and its layers of complexity. Cell Regeneration, 2012, 1, 1:7.	1.1	5
22	Combinatorial control of cell fate and reprogramming in the mammalian germline. Current Opinion in Genetics and Development, 2012, 22, 466-474.	1.5	36
23	A role for intracellular calcium downstream of G-protein signaling in undifferentiated human embryonic stem cell culture. Stem Cell Research, 2012, 9, 171-184.	0.3	22
24	Reciprocal Regulation of Akt and Oct4 Promotes the Self-Renewal and Survival of Embryonal Carcinoma Cells. Molecular Cell, 2012, 48, 627-640.	4.5	155
25	Transcriptome Analysis Reveals Strain-Specific and Conserved Stemness Genes in Schmidtea mediterranea. PLoS ONE, 2012, 7, e34447.	1.1	48
26	miR-125b Promotes Early Germ Layer Specification through Lin28/let-7d and Preferential Differentiation of Mesoderm in Human Embryonic Stem Cells. PLoS ONE, 2012, 7, e36121.	1.1	44
27	Dynamic Status of REST in the Mouse ESC Pluripotency Network. PLoS ONE, 2012, 7, e43659.	1.1	9
28	Nucleic Acid and Non-Nucleic Acid-Based Reprogramming of Adult Limbal Progenitors to Pluripotency. PLoS ONE, 2012, 7, e46734.	1.1	8
29	Troika of the Mouse Blastocyst: Lineage Segregation and Stem Cells. Current Stem Cell Research and Therapy, 2012, 7, 78-91.	0.6	26
30	The Genetic and Epigenetic Journey of Embryonic Stem Cells into Mature Neural Cells. Frontiers in Genetics, 2012, 3, 81.	1.1	49
31	REST Regulates Oncogenic Properties of Glioblastoma Stem Cells. Stem Cells, 2012, 30, 405-414.	1.4	67
32	Cnot1, Cnot2, and Cnot3 Maintain Mouse and Human ESC Identity and Inhibit Extraembryonic Differentiation. Stem Cells, 2012, 30, 910-922.	1.4	63
33	O-GlcNAc Regulates Pluripotency and Reprogramming by Directly Acting on Core Components of the Pluripotency Network. Cell Stem Cell, 2012, 11, 62-74.	5.2	268
34	Proteoglycans in stem cells. Biotechnology and Applied Biochemistry, 2012, 59, 65-76.	1.4	23
35	LATERAL ORGAN BOUNDARIES DOMAIN transcription factors direct callus formation in Arabidopsis regeneration. Cell Research, 2012, 22, 1169-1180.	5.7	298
36	The reciprocal relationship between primordial germ cells and pluripotent stem cells. Journal of Molecular Medicine, 2012, 90, 753-761.	1.7	14
37	The Transcription Factor FOXM1 (Forkhead box M1). Advances in Cancer Research, 2013, 118, 97-398.	1.9	135

#	Article	IF	CITATIONS
38	Regulation of germ layer formation by pluripotency factors during embryogenesis. Cell and Bioscience, 2013, 3, 15.	2.1	11
39	Toward directed reprogramming through exogenous factors. Current Opinion in Genetics and Development, 2013, 23, 519-525.	1.5	13
40	A diabetic milieu promotes OCT4 and NANOG production in human visceral-derived adipose stem cells. Diabetologia, 2013, 56, 173-184.	2.9	37
41	Generation and Characterization of Yeast Two-Hybrid cDNA Libraries Derived From Two Distinct Mouse Pluripotent Cell Types. Molecular Biotechnology, 2013, 54, 228-237.	1.3	13
42	Zfp819, a novel KRAB-zinc finger protein, interacts with KAP1 and functions in genomic integrity maintenance of mouse embryonic stem cells. Stem Cell Research, 2013, 11, 1045-1059.	0.3	41
43	FOXM1 (Forkhead box M1) in Tumorigenesis. Advances in Cancer Research, 2013, 119, 191-419.	1.9	146
44	Super-Enhancers in the Control of Cell Identity and Disease. Cell, 2013, 155, 934-947.	13.5	2,916
45	CHIR99021 promotes self-renewal of mouse embryonic stem cells by modulation of protein-encoding gene and long intergenic non-coding RNA expression. Experimental Cell Research, 2013, 319, 2684-2699.	1.2	38
46	Regulation of Stem Cell Populations by microRNAs. Advances in Experimental Medicine and Biology, 2013, 786, 329-351.	0.8	111
47	LIF-dependent primitive neural stem cells derived from mouse ES cells represent a reversible stage of neural commitment. Stem Cell Research, 2013, 11, 1091-1102.	0.3	7
48	CCL5/CCR1 axis regulates multipotency of human adipose tissue derived stromal cells. Stem Cell Research, 2013, 10, 166-178.	0.3	23
49	Stem cell systems and regeneration in planaria. Development Genes and Evolution, 2013, 223, 67-84.	0.4	278
50	Stem cell dynamics in Cnidaria: are there unifying principles?. Development Genes and Evolution, 2013, 223, 53-66.	0.4	84
51	Zfp296 is a novel Klf4-interacting protein and functions as a negative regulator. Biochemical and Biophysical Research Communications, 2013, 441, 411-417.	1.0	15
52	The THO Complex Regulates Pluripotency Gene mRNA Export and Controls Embryonic Stem Cell Self-Renewal and Somatic Cell Reprogramming. Cell Stem Cell, 2013, 13, 676-690.	5.2	85
53	Pluripotent genes in avian stem cells. Development Growth and Differentiation, 2013, 55, 41-51.	0.6	16
54	Transcriptional Regulation and Its Misregulation in Disease. Cell, 2013, 152, 1237-1251.	13.5	1,205
55	Master Transcription Factors and Mediator Establish Super-Enhancers at Key Cell Identity Genes. Cell, 2013, 153, 307-319.	13.5	3,202

#	Article	IF	CITATIONS
56	MicroRNAs in pluripotency, reprogramming and cell fate induction. Biochimica Et Biophysica Acta - Molecular Cell Research, 2013, 1833, 1894-1903.	1.9	51
57	Reduced Oct4 Expression Directs a Robust Pluripotent State with Distinct Signaling Activity and Increased Enhancer Occupancy by Oct4 and Nanog. Cell Stem Cell, 2013, 12, 531-545.	5.2	171
58	Genome-wide Kinase-Chromatin Interactions Reveal the Regulatory Network of ERK Signaling in Human Embryonic Stem Cells. Molecular Cell, 2013, 50, 844-855.	4.5	88
59	Regulation by alternative splicing. Nature, 2013, 498, 176-177.	13.7	14
60	Proteomic Analysis of Early Reprogramming Events in Murine Somatic Cells Incubated with <i>Xenopus laevis</i> Oocyte Extracts Demonstrates Network Associations with Induced Pluripotency Markers. Cellular Reprogramming, 2013, 15, 269-280.	0.5	11
61	Early development of the porcine embryo: the importance of cell signalling in development of pluripotent cell lines. Reproduction, Fertility and Development, 2013, 25, 94.	0.1	16
62	Molecular Mechanisms Underlying Pluripotency. , 0, , .		0
63	Dax1 Associates with Esrrb and Regulates Its Function in Embryonic Stem Cells. Molecular and Cellular Biology, 2013, 33, 2056-2066.	1.1	35
64	Expression dynamics of pluripotency genes in chicken primordial germ cells before and after colonization of the genital ridges. Molecular Reproduction and Development, 2013, 80, 849-861.	1.0	15
65	Transcription Elongation Factor <i>Tcea3</i> Regulates the Pluripotent Differentiation Potential of Mouse Embryonic Stem Cells Via the <i>Lefty1</i> Nodal-Smad2 Pathway. Stem Cells, 2013, 31, 282-292.	1.4	30
66	Acetylated histone H3K56 interacts with Oct4 to promote mouse embryonic stem cell pluripotency. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 11493-11498.	3.3	70
67	Prohibitin 2 Regulates the Proliferation and Lineage-Specific Differentiation of Mouse Embryonic Stem Cells in Mitochondria. PLoS ONE, 2014, 9, e81552.	1.1	31
68	Beta-Catenin Is Vital for the Integrity of Mouse Embryonic Stem Cells. PLoS ONE, 2014, 9, e86691.	1.1	26
69	Characterization of Constitutive Promoters for piggyBac Transposon-Mediated Stable Transgene Expression in Mesenchymal Stem Cells (MSCs). PLoS ONE, 2014, 9, e94397.	1.1	43
70	Synergistic Transcriptional and Post-Transcriptional Regulation of ESC Characteristics by Core Pluripotency Transcription Factors in Protein-Protein Interaction Networks. PLoS ONE, 2014, 9, e105180.	1.1	7
71	Myocardial Reprogramming Medicine: The Development, Application, and Challenge of Induced Pluripotent Stem Cells. New Journal of Science, 2014, 2014, 1-22.	1.0	2
72	Emerging Role of the Peroxisome Proliferator-Activated Receptors in Hepatocellular Carcinoma. Journal of Carcinogenesis & Mutagenesis, 2014, 05, .	0.3	0
73	Human embryonic stem cells and microenvironment. Journal of Clinical and Experimental Investigations, 2014, 5, .	0.1	1

#	Article	IF	CITATIONS
74	The Early Expansion and Evolutionary Dynamics of POU Class Genes. Molecular Biology and Evolution, 2014, 31, 3136-3147.	3.5	58
75	Genomic Characterization of the Mouse Ribosomal DNA Locus. G3: Genes, Genomes, Genetics, 2014, 4, 243-254.	0.8	39
76	Germ line development: lessons learned from pluripotent stem cells. Current Opinion in Genetics and Development, 2014, 28, 64-70.	1.5	7
77	Regulation of Mouse Retroelement MuERV-L/MERVL Expression by REX1 and Epigenetic Control of Stem Cell Potency. Frontiers in Oncology, 2014, 4, 14.	1.3	53
78	PTHGRN: unraveling post-translational hierarchical gene regulatory networks using PPI, ChIP-seq and gene expression data. Nucleic Acids Research, 2014, 42, W130-W136.	6.5	34
79	INO80 Facilitates Pluripotency Gene Activation in Embryonic Stem Cell Self-Renewal, Reprogramming, and Blastocyst Development. Cell Stem Cell, 2014, 14, 575-591.	5.2	148
80	The genome-wide molecular signature of transcription factors in leukemia. Experimental Hematology, 2014, 42, 637-650.	0.2	13
81	Erk1/2 Activity Promotes Chromatin Features and RNAPII Phosphorylation at Developmental Promoters in Mouse ESCs. Cell, 2014, 156, 678-690.	13.5	144
82	Integrative framework for identification of key cell identity genes uncovers determinants of ES cell identity and homeostasis. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E1581-90.	3.3	26
83	The retrovirus HERVH is a long noncoding RNA required for human embryonic stem cell identity. Nature Structural and Molecular Biology, 2014, 21, 423-425.	3.6	347
84	Micro-management of pluripotent stem cells. Protein and Cell, 2014, 5, 36-47.	4.8	16
85	Fip1 regulates mRNA alternative polyadenylation to promote stem cell self-renewal. EMBO Journal, 2014, 33, 878-889.	3.5	136
86	The paradigm of mutant p53-expressing cancer stem cells and drug resistance. Carcinogenesis, 2014, 35, 1196-1208.	1.3	87
88	Genome-wide localization of small molecules. Nature Biotechnology, 2014, 32, 92-96.	9.4	165
89	Transcription regulation and chromatin structure in the pluripotent ground state. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2014, 1839, 129-137.	0.9	33
90	Nanog Is Dispensable for the Generation of Induced Pluripotent Stem Cells. Current Biology, 2014, 24, 347-350.	1.8	69
91	Breaking Down Pluripotency in the Porcine Embryo Reveals Both a Premature and Reticent Stem Cell State in the Inner Cell Mass and Unique Expression Profiles of the Naive and Primed Stem Cell States. Stem Cells and Development, 2014, 23, 2030-2045.	1.1	37
92	From blastocyst to gastrula: gene regulatory networks of embryonic stem cells and early mouse embryogenesis. Philosophical Transactions of the Royal Society B: Biological Sciences, 2014, 369, 20130542	1.8	28

#	Article	IF	CITATIONS
93	Biosynthesis of Ribosomal RNA in Nucleoli Regulates Pluripotency and Differentiation Ability of Pluripotent Stem Cells. Stem Cells, 2014, 32, 3099-3111.	1.4	73
94	Pcid2 Inactivates Developmental Genes in Human and Mouse Embryonic Stem Cells to Sustain Their Pluripotency by Modulation of EID1 Stability. Stem Cells, 2014, 32, 623-635.	1.4	17
95	Dax1 and Nanog act in parallel to stabilize mouse embryonic stem cells and induced pluripotency. Nature Communications, 2014, 5, 5042.	5.8	55
96	Functional O-GlcNAc modifications: Implications in molecular regulation and pathophysiology. Critical Reviews in Biochemistry and Molecular Biology, 2014, 49, 140-163.	2.3	71
97	Control of Cell Identity Genes Occurs in Insulated Neighborhoods in Mammalian Chromosomes. Cell, 2014, 159, 374-387.	13.5	793
98	Regulation of Pluripotency by RNA Binding Proteins. Cell Stem Cell, 2014, 15, 271-280.	5.2	89
99	Regulatory Principles of Pluripotency: From the Ground State Up. Cell Stem Cell, 2014, 15, 416-430.	5.2	334
100	Improvement of Cloned Embryos Development by Co-Culturing with Parthenotes: A Possible Role of Exosomes/Microvesicles for Embryos Paracrine Communication. Cellular Reprogramming, 2014, 16, 223-234.	0.5	125
101	Akt–Oct4 regulatory circuit in pluripotent stem cells. Science Bulletin, 2014, 59, 936-943.	1.7	10
102	InÂVivo and InÂVitro Dynamics of Undifferentiated Embryonic Cell Transcription Factor 1. Stem Cell Reports, 2014, 2, 245-252.	2.3	13
103	Chromatin features and the epigenetic regulation of pluripotency states in ESCs. Development (Cambridge), 2014, 141, 2376-2390.	1.2	79
104	Microenvironmental Regulation of Telomerase Isoforms in Human Embryonic Stem Cells. Stem Cells and Development, 2014, 23, 2046-2066.	1.1	31
105	Transcription factor heterogeneity in pluripotent stem cells: a stochastic advantage. Development (Cambridge), 2014, 141, 2173-2181.	1.2	171
106	SILAC labeling coupled to shotgun proteomics analysis of membrane proteins of liver stem/hepatocyte allows to candidate the inhibition of TGF-beta pathway as causal to differentiation. Proteome Science, 2014, 12, 15.	0.7	4
107	The bimodally expressed micro <scp>RNA</scp> miRâ€142 gatesÂexit from pluripotency. Molecular Systems Biology, 2015, 11, 850.	3.2	26
108	Induced Developmental Arrest of Early Hematopoietic Progenitors Leads to the Generation of Leukocyte Stem Cells. Stem Cell Reports, 2015, 5, 716-727.	2.3	17
109	Developmental control of transcriptional and proliferative potency during the evolutionary emergence of animals. Developmental Dynamics, 2015, 244, 1193-1201.	0.8	5
110	Core Pluripotency Factors Directly Regulate Metabolism in Embryonic Stem Cell to Maintain Pluripotency. Stem Cells, 2015, 33, 2699-2711.	1.4	89

#	Article	IF	CITATIONS
111	Genome-wide Massive Sequencing in Embryonic Stem Cell Biology:Recent Insights and Challenges. Journal of Stem Cell Research & Therapy, 2015, 05, .	0.3	0
112	Aging as an Optimization Between Cellular Maintenance Requirements and Evolutionary Constraints. Current Aging Science, 2015, 8, 110-119.	0.4	7
113	A panel of induced pluripotent stem cells from chimpanzees: a resource for comparative functional genomics. ELife, 2015, 4, e07103.	2.8	114
114	Layered double hydroxide nanoparticles promote self-renewal of mouse embryonic stem cells through the PI3K signaling pathway. Nanoscale, 2015, 7, 11102-11114.	2.8	39
115	Transcriptional selectors, masters, and combinatorial codes: regulatory principles of neural subtype specification. Wiley Interdisciplinary Reviews: Developmental Biology, 2015, 4, 505-528.	5.9	98
116	The function of chromatin modifiers in lineage commitment and cell fate specification. FEBS Journal, 2015, 282, 1692-1702.	2.2	36
117	The emerging roles of Oct4 in tumor-initiating cells. American Journal of Physiology - Cell Physiology, 2015, 309, C709-C718.	2.1	93
118	Metabolic Reprogramming of Stem Cell Epigenetics. Cell Stem Cell, 2015, 17, 651-662.	5.2	252
119	Transcriptome analysis of chicken ES, blastodermal and germ cells reveals that chick ES cells are equivalent to mouse ES cells rather than EpiSC. Stem Cell Research, 2015, 14, 54-67.	0.3	61
120	miRâ€290/371â€Mbd2â€Myc circuit regulates glycolytic metabolism to promote pluripotency. EMBO Journal, 2015, 34, 609-623.	3.5	82
121	Concise Review: Induced Pluripotency by Defined Factors: Prey of Oxidative Stress. Stem Cells, 2015, 33, 1371-1376.	1.4	16
122	Sustained high level transgene expression in mammalian cells mediated by the optimized piggyBac transposon system. Genes and Diseases, 2015, 2, 96-105.	1.5	34
123	Deterministic Restriction on Pluripotent State Dissolution by Cell-Cycle Pathways. Cell, 2015, 162, 564-579.	13.5	185
124	WNT/β-Catenin Signaling Affects Cell Lineage and Pluripotency-Specific Gene Expression in Bovine Blastocysts: Prospects for Bovine Embryonic Stem Cell Derivation. Stem Cells and Development, 2015, 24, 2437-2454.	1.1	29
125	Destabilization of pluripotency in the absence of Mad2l2. Cell Cycle, 2015, 14, 1596-1610.	1.3	13
126	Large Noncoding RNAs Are Promising Regulators in Embryonic Stem Cells. Journal of Genetics and Genomics, 2015, 42, 99-105.	1.7	19
127	Convergence of Developmental and Oncogenic Signaling Pathways at Transcriptional Super-Enhancers. Molecular Cell, 2015, 58, 362-370.	4.5	382
128	Ctbp2 Modulates NuRD-Mediated Deacetylation of H3K27 and Facilitates PRC2-Mediated H3K27me3 in Active Embryonic Stem Cell Genes During Exit from Pluripotency. Stem Cells, 2015, 33, 2442-2455.	1.4	61

#	ARTICLE Chromatin proteomic profiling reveals novel proteins associated with histone-marked genomic	IF	Citations
129	regions. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 3841-3846.	3.3	123
130	Verification of chicken Nanog as an epiblast marker and identification of chicken PouV as Pou5f3 by newly raised antibodies. Development Growth and Differentiation, 2015, 57, 251-263.	0.6	14
131	Functional screen reveals essential roles of miRâ€27a/24 in differentiation of embryonic stemÂcells. EMBO Journal, 2015, 34, 361-378.	3.5	54
132	Comparative FAIRE-seq Analysis Reveals Distinguishing Features of the Chromatin Structure of Ground State- and Primed-Pluripotent Cells. Stem Cells, 2015, 33, 378-391.	1.4	17
133	SOX2-Dependent Regulation of Pluripotent Stem Cells. , 2016, , 163-185.		4
134	Molecular Basis of "Hypoxic―Signaling, Quiescence, Self-Renewal, and Differentiation in Stem Cells. , 2016, , 115-141.		0
135	Genome-wide identification and characterisation of HOT regions in the human genome. BMC Genomics, 2016, 17, 733.	1.2	11
136	Integration of Signaling Pathways with the Epigenetic Machinery in the Maintenance of Stem Cells. Stem Cells International, 2016, 2016, 1-13.	1.2	32
137	Visualization of the Epiblast and Visceral Endodermal Cells Using Fgf5-P2A-Venus BAC Transgenic Mice and Epiblast Stem Cells. PLoS ONE, 2016, 11, e0159246.	1.1	14
138	DPPA5 Supports Pluripotency and Reprogramming by Regulating NANOG Turnover. Stem Cells, 2016, 34, 588-600.	1.4	23
139	CIBZ Regulates Mesodermal and Cardiac Differentiation of by Suppressing T and Mesp1 Expression in Mouse Embryonic Stem Cells. Scientific Reports, 2016, 6, 34188.	1.6	16
140	Epiblastin A Induces Reprogramming of Epiblast Stem Cells Into Embryonic Stem Cells by Inhibition of Casein Kinase 1. Cell Chemical Biology, 2016, 23, 494-507.	2.5	25
141	Nac1 Coordinates a Sub-network of Pluripotency Factors to Regulate Embryonic Stem Cell Differentiation. Cell Reports, 2016, 14, 1181-1194.	2.9	29
142	Embryonic Stem Cells and Fetal Development Models. Pancreatic Islet Biology, 2016, , 81-99.	0.1	Ο
143	MicroRNAs for Fine-Tuning of Mouse Embryonic Stem Cell Fate Decision through Regulation of TGF-β Signaling. Stem Cell Reports, 2016, 6, 292-301.	2.3	23
144	Fetal Stem Cells in Regenerative Medicine. Pancreatic Islet Biology, 2016, , .	0.1	6
145	The HPV16 E7 oncoprotein increases the expression of Oct3/4 and stemness-related genes and augments cell self-renewal. Virology, 2016, 499, 230-242.	1.1	20
146	Aneuploid embryonic stem cells exhibit impaired differentiation and increased neoplastic potential. EMBO Journal, 2016, 35, 2285-2300.	3.5	40

#	Article	IF	CITATIONS
147	Resetting Epigenetic Memory by Reprogramming of Histone Modifications in Mammals. Molecular Cell, 2016, 63, 1066-1079.	4.5	327
148	EPOP Interacts with Elongin BC and USP7 to Modulate the Chromatin Landscape. Molecular Cell, 2016, 64, 659-672.	4.5	91
149	A Myc-driven self-reinforcing regulatory network maintains mouse embryonic stem cell identity. Nature Communications, 2016, 7, 11903.	5.8	53
150	CNOT3-Dependent mRNA Deadenylation Safeguards the Pluripotent State. Stem Cell Reports, 2016, 7, 897-910.	2.3	29
151	Full biological characterization of human pluripotent stem cells will open the door to translational research. Archives of Toxicology, 2016, 90, 2173-2186.	1.9	7
152	Microfluidic technology enhances the potential of human pluripotent stem cells. Biochemical and Biophysical Research Communications, 2016, 473, 683-687.	1.0	28
153	Genetic code expansion in stable cell lines enables encoded chromatin modification. Nature Methods, 2016, 13, 158-164.	9.0	133
154	The long noncoding RNAGm15055repressesHoxagene expression by recruiting PRC2 to the gene cluster. Nucleic Acids Research, 2016, 44, 2613-2627.	6.5	41
155	Zfp553 Is Essential for Maintenance and Acquisition of Pluripotency. Stem Cells and Development, 2016, 25, 55-67.	1.1	5
156	Epigenetic regulation of bone cells. Connective Tissue Research, 2017, 58, 76-89.	1.1	27
157	Jmjd2c/Kdm4c facilitates the assembly of essential enhancer-protein complexes at the onset of embryonic stem cell differentiation. Development (Cambridge), 2017, 144, 567-579.	1.2	24
158	Stem Cell Signaling Molecules and Pathways. , 2017, , 33-43.		0
159	NF45 and NF90/NF110 coordinately regulate ESC pluripotency and differentiation. Rna, 2017, 23, 1270-1284.	1.6	19
160	2i Maintains a Naive Ground State in ESCs through Two Distinct Epigenetic Mechanisms. Stem Cell Reports, 2017, 8, 1312-1328.	2.3	55
161	Oct4 transcriptionally regulates the expression of long non-coding RNAs NEAT1 and MALAT1 to promote lung cancer progression. Molecular Cancer, 2017, 16, 104.	7.9	205
162	The essentiality of non-coding RNAs in cell reprogramming. Non-coding RNA Research, 2017, 2, 74-82.	2.4	18
163	Chd2 regulates chromatin for proper gene expression toward differentiation in mouse embryonic stem cells. Nucleic Acids Research, 2017, 45, 8758-8772.	6.5	31
164	PIM2 regulates stemness through phosphorylation of 4E-BP1. Science Bulletin, 2017, 62, 679-685.	4.3	3

#	Article	IF	CITATIONS
165	The chromatin remodeler Chd4 maintains embryonic stem cell identity by controlling pluripotency- and differentiation-associated genes. Journal of Biological Chemistry, 2017, 292, 8507-8519.	1.6	46
166	Autophagic homeostasis is required for the pluripotency of cancer stem cells. Autophagy, 2017, 13, 264-284.	4.3	108
167	Ground rules of the pluripotency gene regulatory network. Nature Reviews Genetics, 2017, 18, 180-191.	7.7	131
168	LIN28 phosphorylation by MAPK/ERK couples signalling to the post-transcriptional control ofÂpluripotency. Nature Cell Biology, 2017, 19, 60-67.	4.6	59
169	Mammalian Transcription Factor Networks: Recent Advances in Interrogating Biological Complexity. Cell Systems, 2017, 5, 319-331.	2.9	54
170	The circular RNA circBIRC6 participates in the molecular circuitry controlling human pluripotency. Nature Communications, 2017, 8, 1149.	5.8	247
171	The Elongation Factor Spt6 Maintains ESC Pluripotency by Controlling Super-Enhancers and Counteracting Polycomb Proteins. Molecular Cell, 2017, 68, 398-413.e6.	4.5	29
172	JMJD1C Ensures Mouse Embryonic Stem Cell Self-Renewal and Somatic Cell Reprogramming through Controlling MicroRNA Expression. Stem Cell Reports, 2017, 9, 927-942.	2.3	23
173	A comparative review of computational methods for pathway perturbation analysis: dynamical and topological perspectives. Molecular BioSystems, 2017, 13, 1692-1704.	2.9	10
174	Ronin influences the DNA damage response in pluripotent stem cells. Stem Cell Research, 2017, 23, 98-104.	0.3	15
175	CDK1-PDK1-PI3K/Akt signaling pathway regulates embryonic and induced pluripotency. Cell Death and Differentiation, 2017, 24, 38-48.	5.0	88
176	Multiple Roles of MYC in Integrating Regulatory Networks of Pluripotent Stem Cells. Frontiers in Cell and Developmental Biology, 2017, 5, 7.	1.8	39
177	NANOG Plays a Hierarchical Role in the Transcription Network Regulating the Pluripotency and Plasticity of Adipose Tissue-Derived Stem Cells. International Journal of Molecular Sciences, 2017, 18, 1107.	1.8	22
178	Mechanisms Regulating Stemness and Differentiation in Embryonal Carcinoma Cells. Stem Cells International, 2017, 2017, 1-20.	1.2	24
179	KRIBB53 binds to OCT4 and enhances its degradation through the proteasome, causing apoptotic cell death of OCT4-positive testicular germ cell tumors. Carcinogenesis, 2018, 39, 838-849.	1.3	5
180	Modeling signalingâ€dependent pluripotency with Boolean logic to predict cell fate transitions. Molecular Systems Biology, 2018, 14, e7952.	3.2	49
181	Contribution of transposable elements and distal enhancers to evolution of human-specific features of interphase chromatin architecture in embryonic stem cells. Chromosome Research, 2018, 26, 61-84.	1.0	28
182	Variation in primary and culture-expanded cells derived from connective tissue progenitors in human bone marrow space, bone trabecular surface and adipose tissue. Cytotherapy, 2018, 20, 343-360.	0.3	26

#	Article	IF	CITATIONS
183	Genome-wide analyses reveal a role of Polycomb in promoting hypomethylation of DNA methylation valleys. Genome Biology, 2018, 19, 18.	3.8	103
184	Deconstructing the pluripotency gene regulatory network. Nature Cell Biology, 2018, 20, 382-392.	4.6	79
185	Molecular cloning and expression of Octamer-binding transcription factor (Oct4) in the large yellow croaker, Larimichthys crocea. Gene Expression Patterns, 2018, 27, 16-30.	0.3	7
186	Transcriptionally dynamic progenitor populations organised around a stable niche drive axial patterning. Development (Cambridge), 2019, 146, .	1.2	48
187	Trends in gene expression changes during adipogenesis in human adipose derived mesenchymal stem cells under dichlorodiphenyldichloroethylene exposure. Molecular and Cellular Toxicology, 2018, 14, 369-379.	0.8	6
188	Esrrb extinction triggers dismantling of naÃ ⁻ ve pluripotency and marks commitment to differentiation. EMBO Journal, 2018, 37, .	3.5	25
189	Single-Cell Profiling Identifies Key Pathways Expressed by iPSCs Cultured in Different Commercial Media. IScience, 2018, 7, 30-39.	1.9	28
190	Mammalian embryo comparison identifies novel pluripotency genes associated with the naÃ ⁻ ve or primed state. Biology Open, 2018, 7, .	0.6	32
191	RBM14 is indispensable for pluripotency maintenance and mesoderm development of mouse embryonic stem cells. Biochemical and Biophysical Research Communications, 2018, 501, 259-265.	1.0	9
192	Sin3a–Tet1 interaction activates gene transcription and is required for embryonic stem cell pluripotency. Nucleic Acids Research, 2018, 46, 6026-6040.	6.5	49
193	Esrrb Unlocks Silenced Enhancers for Reprogramming to Naive Pluripotency. Cell Stem Cell, 2018, 23, 266-275.e6.	5.2	79
194	Stem Cells, Patterning and Regeneration in Planarians: Self-Organization at the Organismal Scale. Methods in Molecular Biology, 2018, 1774, 57-172.	0.4	40
195	Different Effects of Knockouts in <scp>ALDH</scp> 2 and <scp>ACSS</scp> 2 on Embryonic Stem Cell Differentiation. Alcoholism: Clinical and Experimental Research, 2019, 43, 1859-1871.	1.4	5
196	The Role of CDR1as in Proliferation and Differentiation of Human Umbilical Cord-Derived Mesenchymal Stem Cells. Stem Cells International, 2019, 2019, 1-11.	1.2	21
197	Active and Repressed Chromatin Domains Exhibit Distinct Nucleosome Segregation during DNA Replication. Cell, 2019, 179, 953-963.e11.	13.5	116
198	Next-generation unnatural monosaccharides reveal that ESRRB O-GlcNAcylation regulates pluripotency of mouse embryonic stem cells. Nature Communications, 2019, 10, 4065.	5.8	95
199	Landscape of Enhancer-Enhancer Cooperative Regulation during Human Cardiac Commitment. Molecular Therapy - Nucleic Acids, 2019, 17, 840-851.	2.3	11
200	Artificial intelligence for aging and longevity research: Recent advances and perspectives. Ageing Research Reviews, 2019, 49, 49-66.	5.0	129

#	Article	IF	CITATIONS
201	Cytoglobin ameliorates the stemness of hepatocellular carcinoma via coupling oxidativeâ€nitrosative stress signals. Molecular Carcinogenesis, 2019, 58, 334-343.	1.3	9
202	microRNAs in cancer stem cells: Biology, pathways, and therapeutic opportunities. Journal of Cellular Physiology, 2019, 234, 10002-10017.	2.0	78
203	Metabolic regulation of pluripotency and germ cell fate through αâ€ketoglutarate. EMBO Journal, 2019, 38, .	3.5	77
204	The roles and regulation of TBX3 in development and disease. Gene, 2020, 726, 144223.	1.0	51
205	Modification of stem cell states by alcohol and acetaldehyde. Chemico-Biological Interactions, 2020, 316, 108919.	1.7	10
206	Transcriptional network dynamics during the progression of pluripotency revealed by integrative statistical learning. Nucleic Acids Research, 2020, 48, 1828-1842.	6.5	14
207	KLF3 promotes the 8â€cellâ€ike transcriptional state in pluripotent stem cells. Cell Proliferation, 2020, 53, e12914.	2.4	4
208	Ddx56 maintains proliferation of mouse embryonic stem cells via ribosome assembly and interaction with the Oct4/Sox2 complex. Stem Cell Research and Therapy, 2020, 11, 314.	2.4	5
209	ABHD11 Is Critical for Embryonic Stem Cell Expansion, Differentiation and Lipid Metabolic Homeostasis. Frontiers in Cell and Developmental Biology, 2020, 8, 570.	1.8	6
210	Singleâ€cell RNA sequencing reveals the landscape of early female germ cell development. FASEB Journal, 2020, 34, 12634-12645.	0.2	38
211	High-throughput sequencing reveals landscapes of female germ cell development. Molecular Human Reproduction, 2020, 26, 738-747.	1.3	3
212	SIPA1 enhances SMAD2/3 expression to maintain stem cell features in breast cancer cells. Stem Cell Research, 2020, 49, 102099.	0.3	12
213	ERK signalling: a master regulator of cell behaviour, life and fate. Nature Reviews Molecular Cell Biology, 2020, 21, 607-632.	16.1	535
214	X-Chromosome Inactivation during Preimplantation Development and in Pluripotent Stem Cells. Cytogenetic and Genome Research, 2020, 160, 283-294.	0.6	11
215	Super-enhancer function and its application in cancer targeted therapy. Npj Precision Oncology, 2020, 4, 2.	2.3	77
216	Nono deficiency compromises TET1 chromatin association and impedes neuronal differentiation of mouse embryonic stem cells. Nucleic Acids Research, 2020, 48, 4827-4838.	6.5	24
217	Induced Pluripotent Stem Cells from Cancer-Resistant Naked Mole-Rats. Advances in Experimental Medicine and Biology, 2021, 1319, 329-339.	0.8	6
218	Identification and Characterisation of Putative Enhancer Elements in Mouse Embryonic Stem Cells. Bioinformatics and Biology Insights, 2021, 15, 117793222097462.	1.0	3

#	Article	IF	CITATIONS
219	Identification of the canonical and noncanonical role of miR-143/145 in estrogen-deficient bone loss. Theranostics, 2021, 11, 5491-5510.	4.6	14
220	Acidic pH transiently prevents the silencing of self-renewal and dampens microRNA function in embryonic stem cells. Science Bulletin, 2021, 66, 1319-1329.	4.3	4
221	YY2 in Mouse Preimplantation Embryos and in Embryonic Stem Cells. Cells, 2021, 10, 1123.	1.8	3
222	PHC1 maintains pluripotency by organizing genome-wide chromatin interactions of the Nanog locus. Nature Communications, 2021, 12, 2829.	5.8	14
224	A review of the biological and clinical implications of RAS-MAPK pathway alterations in neuroblastoma. Journal of Experimental and Clinical Cancer Research, 2021, 40, 189.	3.5	23
225	Uncovering the RNA-binding protein landscape in the pluripotency network of human embryonic stem cells. Cell Reports, 2021, 35, 109198.	2.9	19
226	Effects of Fruquintinib on the Pluripotency Maintenance and Differentiation Potential of Mouse Embryonic Stem Cells. Cellular Reprogramming, 2021, 23, 180-190.	0.5	1
227	Generating CRISPRâ€Cas9â€Mediated Null Mutations and Screening Targeting Efficiency in Human Pluripotent Stem Cells. Current Protocols, 2021, 1, e232.	1.3	2
228	Building Pluripotency Identity in the Early Embryo and Derived Stem Cells. Cells, 2021, 10, 2049.	1.8	6
229	YY1 involvement in embryonic development and cancer. , 2021, , 59-78.		Ο
229 230	YY1 involvement in embryonic development and cancer. , 2021, , 59-78. OCT4 (Octamer-Binding Transcription Factor 4). , 2017, , 1-7.		0
		0.8	
230	OCT4 (Octamer-Binding Transcription Factor 4). , 2017, , 1-7.	0.8	1
230 231	OCT4 (Octamer-Binding Transcription Factor 4). , 2017, , 1-7. Autophagy and Tumour Stem Cells. Advances in Experimental Medicine and Biology, 2020, 1207, 301-313.		1 3
230 231 236	OCT4 (Octamer-Binding Transcription Factor 4)., 2017, , 1-7. Autophagy and Tumour Stem Cells. Advances in Experimental Medicine and Biology, 2020, 1207, 301-313. An Integrative Approach to Inferring Gene Regulatory Module Networks. PLoS ONE, 2012, 7, e52836. Defining the Genomic Signature of Totipotency and Pluripotency during Early Human Development.	1.1	1 3 5
230 231 236 237	OCT4 (Octamer-Binding Transcription Factor 4). , 2017, , 1-7. Autophagy and Tumour Stem Cells. Advances in Experimental Medicine and Biology, 2020, 1207, 301-313. An Integrative Approach to Inferring Gene Regulatory Module Networks. PLoS ONE, 2012, 7, e52836. Defining the Genomic Signature of Totipotency and Pluripotency during Early Human Development. PLoS ONE, 2013, 8, e62135. The Epigenetic Bivalency of Core Pancreatic Î ² -Cell Transcription Factor Genes within Mouse Pluripotent Embryonic Stem Cells Is Not Affected by Knockdown of the Polycomb Repressive Complex	1.1	1 3 5 27
230 231 236 237 238	 OCT4 (Octamer-Binding Transcription Factor 4)., 2017, , 1-7. Autophagy and Tumour Stem Cells. Advances in Experimental Medicine and Biology, 2020, 1207, 301-313. An Integrative Approach to Inferring Gene Regulatory Module Networks. PLoS ONE, 2012, 7, e52836. Defining the Genomic Signature of Totipotency and Pluripotency during Early Human Development. PLoS ONE, 2013, 8, e62135. The Epigenetic Bivalency of Core Pancreatic Î²-Cell Transcription Factor Genes within Mouse Pluripotent Embryonic Stem Cells Is Not Affected by Knockdown of the Polycomb Repressive Complex 2, SUZ12. PLoS ONE, 2014, 9, e97820. Retinoic Acid Induces Embryonic Stem Cell Differentiation by Altering Both Encoding RNA and 	1.1 1.1 1.1	1 3 5 27 7

#	Article	IF	CITATIONS
242	In vitro versus In vivo: Development-, Apoptosis-, and Implantation-Related Gene Expression in Mouse Blastocyst. Iranian Journal of Biotechnology, 2019, 17, 90-97.	0.3	12
243	Stem-cell therapy and platelet-rich plasma in regenerative medicines: A review on pros and cons of the technologies. Journal of Oral and Maxillofacial Pathology, 2018, 22, 367.	0.3	65
244	EGFR deficiency leads to impaired self-renewal and pluripotency of mouse embryonic stem cells. PeerJ, 2019, 7, e6314.	0.9	11
245	Taking the road less traveled – the therapeutic potential of CBP/β-catenin antagonists. Expert Opinion on Therapeutic Targets, 2021, 25, 701-719.	1.5	6
246	Metabolic remodelling during early mouse embryo development. Nature Metabolism, 2021, 3, 1372-1384.	5.1	45
247	Progress and Future Challenges of Human Induced Pluripotents Stem Cell in Regenerative Medicine. Indonesian Biomedical Journal, 2011, 3, 76.	0.2	0
248	Diabetes-Associated Kidney and Vascular Complications: Mechanisms of Disease Progression and Alternative Therapeutic Options. Journal of Molecular and Genetic Medicine: an International Journal of Biomedical Research, 2014, 02, .	0.1	0
250	OCT4 (Octamer-Binding Transcription Factor 4). , 2018, , 3643-3650.		0
251	Single Cell Profiling Identifies Key Pathways Expressed by iPSCs Cultured in Different Commercial Media. SSRN Electronic Journal, 0, , .	0.4	0
253	Characterization of the porcine Nanog 5'-flanking region. Asian-Australasian Journal of Animal Sciences, 2018, 31, 449-456.	2.4	1
255	Active and Repressed Chromatin Domains Exhibit Distinct Nucleosome Segregation During DNA Replication. SSRN Electronic Journal, 0, , .	0.4	1
259	LIF maintains mouse embryonic stem cells pluripotency by modulating TET1 and JMJD2 activity in a JAK2â€dependent manner. Stem Cells, 2021, 39, 750-760.	1.4	6
260	Transcriptional control of human gametogenesis. Human Reproduction Update, 2022, 28, 313-345.	5.2	7
261	Defining the Pluripotent Marker Genes for Identification of Teleost Fish Cell Pluripotency During Reprogramming. Frontiers in Genetics, 2022, 13, 819682.	1.1	2
262	Residual Neural Network for Predicting Super-Enhancers on Genome Scale. Lecture Notes in Networks and Systems, 2022, , 32-42.	0.5	2
265	Research Progress of Totipotent Stem Cells. Stem Cells and Development, 2022, 31, 335-345.	1.1	6
266	OCT4 induces EMT and promotes ovarian cancer progression by regulating the PI3K/AKT/mTOR pathway. Frontiers in Oncology, 0, 12, .	1.3	11
267	A natural transdifferentiation event involving mitosis is empowered by integrating signaling inputs with conserved plasticity factors. Cell Reports, 2022, 40, 111365.	2.9	6

#	Article	IF	CITATIONS
268	Reciprocal interplays between MicroRNAs and pluripotency transcription factors in dictating stemness features in human cancers. Seminars in Cancer Biology, 2022, 87, 1-16.	4.3	6
269	Single-cell mass cytometry analysis reveals stem cell heterogeneity. Methods, 2022, 208, 9-18.	1.9	2
270	Oxidative stress-triggered Wnt signaling perturbation characterizes the tipping point of lung adeno-to-squamous transdifferentiation. Signal Transduction and Targeted Therapy, 2023, 8, .	7.1	7
271	Downregulation of circBIRC6 and circCORO1C during differentiation of human cord blood-derived CD34+ cells. , 2023, 35, 201147.		0
272	Chemoproteomic and Transcriptomic Analysis Reveals that Oâ€GlcNAc Regulates Mouse Embryonic Stem Cell Fate through the Pluripotency Network. Angewandte Chemie - International Edition, 2023, 62, .	7.2	5
273	Chemoproteomic and Transcriptomic Analysis Reveals that Oâ€GlcNAc Regulates Mouse Embryonic Stem Cell Fate through the Pluripotency Network. Angewandte Chemie, 2023, 135, .	1.6	0
274	Control of RNA degradation in cell fate decision. Frontiers in Cell and Developmental Biology, 0, 11, .	1.8	3
275	Experimental Validation and Prediction of Super-Enhancers: Advances and Challenges. Cells, 2023, 12, 1191.	1.8	1