ForestPlots.net: a web application and research tool to a forest plot data

Journal of Vegetation Science 22, 610-613 DOI: 10.1111/j.1654-1103.2011.01312.x

Citation Report

#	Article	IF	CITATIONS
1	The Global Index of Vegetationâ€Plot Databases (GIVD): a new resource for vegetation science. Journal of Vegetation Science, 2011, 22, 582-597.	2.2	251
2	Ecoinformatics and global change – an overdue liaison. Journal of Vegetation Science, 2011, 22, 577-581.	2.2	10
3	Deriving Plant Functional Types for Amazonian forests for use in vegetation dynamics models. Perspectives in Plant Ecology, Evolution and Systematics, 2012, 14, 97-110.	2.7	42
4	Basin-wide variations in Amazon forest structure and function are mediated by both soils and climate. Biogeosciences, 2012, 9, 2203-2246.	3.3	487
5	Tree height integrated into pantropical forest biomass estimates. Biogeosciences, 2012, 9, 3381-3403.	3.3	373
6	Droughtâ€induced shifts in the floristic and functional composition of tropical forests in Ghana. Ecology Letters, 2012, 15, 1120-1129.	6.4	205
7	What controls tropical forest architecture? Testing environmental, structural and floristic drivers. Global Ecology and Biogeography, 2012, 21, 1179-1190.	5.8	187
8	The <scp>FORMNET</scp> â€ <scp>B</scp> database: monitoring the biomass and dynamics of disturbed and degraded tropical forests. Journal of Vegetation Science, 2013, 24, 1204-1207.	2.2	4
9	Hyperdominance in the Amazonian Tree Flora. Science, 2013, 342, 1243092.	12.6	873
10	Spatial optimization of carbon-stocking projects across Africa integrating stocking potential with co-benefits and feasibility. Nature Communications, 2013, 4, 2975.	12.8	25
11	Amazon palm biomass and allometry. Forest Ecology and Management, 2013, 310, 994-1004.	3.2	114
12	Liana Impacts on Carbon Cycling, Storage and Sequestration in Tropical Forests. Biotropica, 2013, 45, 682-692.	1.6	98
13	The taxonomic name resolution service: an online tool for automated standardization of plant names. BMC Bioinformatics, 2013, 14, 16.	2.6	386
14	Above-ground biomass and structure of 260 African tropical forests. Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, 368, 20120295.	4.0	264
15	Dinámica, biomasa aérea y composición florÃstica en parcelas permanentes Reserva Nacional Tambopata, Madre de Dios, Perú. Revista Peruana De Biologia, 2014, 21, 235-242.	0.3	6
17	Markedly divergent estimates of <scp>A</scp> mazon forest carbon density from ground plots and satellites. Global Ecology and Biogeography, 2014, 23, 935-946.	5.8	248
18	Disequilibrium and hyperdynamic tree turnover at the forest–cerrado transition zone in southern Amazonia. Plant Ecology and Diversity, 2014, 7, 281-292.	2.4	97
19	The sensitivity of wood production to seasonal and interannual variations in climate in a lowland Amazonian rainforest. Oecologia, 2014, 174, 295-306.	2.0	38

#	Article	IF	CITATIONS
20	Methods to estimate aboveground wood productivity from long-term forest inventory plots. Forest Ecology and Management, 2014, 320, 30-38.	3.2	75
21	Fast demographic traits promote high diversification rates of Amazonian trees. Ecology Letters, 2014, 17, 527-536.	6.4	63
22	Tropical forest wood production: a cross ontinental comparison. Journal of Ecology, 2014, 102, 1025-1037.	4.0	77
23	Basin-wide variations in Amazon forest nitrogen-cycling characteristics as inferred from plant and soil ¹⁵ N: ¹⁴ N measurements. Plant Ecology and Diversity, 2014, 7, 173-187.	2.4	43
24	Data and database standards for permanent forest plots in a global network. Forest Ecology and Management, 2014, 316, 21-31.	3.2	26
25	Soil physical conditions limit palm and tree basal area in Amazonian forests. Plant Ecology and Diversity, 2014, 7, 215-229.	2.4	45
26	Recent changes in tropical forest biomass and dynamics. , 2014, , 77-108.		10
27	Floristics and biogeography of vegetation in seasonally dry tropical regions. International Forestry Review, 2015, 17, 10-32.	0.6	50
28	Edaphic, structural and physiological contrasts across Amazon Basin forest–savanna ecotones suggest a role for potassium as a key modulator of tropical woody vegetation structure and function. Biogeosciences, 2015, 12, 6529-6571.	3.3	55
29	A Strong Test of the Maximum Entropy Theory of Ecology. American Naturalist, 2015, 185, E70-E80.	2.1	52
30	Drought impact on forest carbon dynamics and fluxes in Amazonia. Nature, 2015, 519, 78-82.	27.8	464
31	Hyperdominance in Amazonian forest carbon cycling. Nature Communications, 2015, 6, 6857.	12.8	214
32	Long-term decline of the Amazon carbon sink. Nature, 2015, 519, 344-348.	27.8	796
33	Overcoming obstacles to sharing data on tree allometric equations. Annals of Forest Science, 2015, 72, 789-794.	2.0	4
34	Using repeated small-footprint LiDAR acquisitions to infer spatial and temporal variations of a high-biomass Neotropical forest. Remote Sensing of Environment, 2015, 169, 93-101.	11.0	92
35	Patterns of tree species composition at watershed-scale in the Amazon â€~arc of deforestation': implications for conservation. Environmental Conservation, 2016, 43, 317-326.	1.3	14
36	Evolutionary heritage influences Amazon tree ecology. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20161587.	2.6	43
37	Recent Changes in Amazon Forest Biomass and Dynamics. Ecological Studies, 2016, , 191-224.	1.2	11

#	Article	IF	CITATIONS
38	Variation in stem mortality rates determines patterns of aboveâ€ground biomass in <scp>A</scp> mazonian forests: implications for dynamic global vegetation models. Global Change Biology, 2016, 22, 3996-4013.	9.5	116
39	Amazon forest response to repeated droughts. Global Biogeochemical Cycles, 2016, 30, 964-982.	4.9	201
40	Comparing processâ€based and constraintâ€based approaches for modeling macroecological patterns. Ecology, 2016, 97, 1228-1238.	3.2	17
41	Evidence for arrested succession in a lianaâ€infested Amazonian forest. Journal of Ecology, 2016, 104, 149-159.	4.0	71
42	Differentiation of neotropical ecosystems by modern soil phytolith assemblages and its implications for palaeoenvironmental and archaeological reconstructions II: Southwestern Amazonian forests. Review of Palaeobotany and Palynology, 2016, 226, 30-43.	1.5	55
43	Seasonal drought limits tree species across the Neotropics. Ecography, 2017, 40, 618-629.	4.5	143
44	Diversity and carbon storage across the tropical forest biome. Scientific Reports, 2017, 7, 39102.	3.3	251
45	Maximising Synergy among Tropical Plant Systematists, Ecologists, and Evolutionary Biologists. Trends in Ecology and Evolution, 2017, 32, 258-267.	8.7	52
46	Reinterpreting maximum entropy in ecology: a null hypothesis constrained by ecological mechanism. Ecology Letters, 2017, 20, 832-841.	6.4	11
47	Unravelling ecosystem functions at the Amazonia-Cerrado transition: II. Carbon stocks and CO 2 soil efflux in cerradão forest undergoing ecological succession. Acta Oecologica, 2017, 82, 23-31.	1.1	7
48	Area-based vs tree-centric approaches to mapping forest carbon in Southeast Asian forests from airborne laser scanning data. Remote Sensing of Environment, 2017, 194, 77-88.	11.0	142
49	Biogeographic distributions of neotropical trees reflect their directly measured drought tolerances. Scientific Reports, 2017, 7, 8334.	3.3	51
50	Spatial heterogeneity of biomass and forest structure of the Amazon rain forest: Linking remote sensing, forest modelling and field inventory. Global Ecology and Biogeography, 2017, 26, 1292-1302.	5.8	52
51	Does soil pyrogenic carbon determine plant functional traits in Amazon Basin forests?. Plant Ecology, 2017, 218, 1047-1062.	1.6	5
52	Monitoring ecological change during rapid socio-economic and political transitions: Colombian ecosystems in the post-conflict era. Environmental Science and Policy, 2017, 76, 40-49.	4.9	45
53	Long-term carbon sink in Borneo's forests halted by drought and vulnerable to edge effects. Nature Communications, 2017, 8, 1966.	12.8	116
54	Carbon Emissions from Deforestation and Degradation in a Forest Reserve in Venezuela between 1990 and 2015. Forests, 2017, 8, 291.	2.1	9
55	Vulnerability of Amazon forests to storm-driven tree mortality. Environmental Research Letters, 2018, 13, 054021	5.2	49

#	Article	IF	CITATIONS
56	Field methods for sampling tree height for tropical forest biomass estimation. Methods in Ecology and Evolution, 2018, 9, 1179-1189.	5.2	78
57	Pollen-vegetation richness and diversity relationships in the tropics. Vegetation History and Archaeobotany, 2018, 27, 411-418.	2.1	31
58	Comparison of Small- and Large-Footprint Lidar Characterization of Tropical Forest Aboveground Structure and Biomass: A Case Study From Central Gabon. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11, 3512-3526.	4.9	60
59	Climate and fragmentation affect forest structure at the southern border of Amazonia. Plant Ecology and Diversity, 2018, 11, 13-25.	2.4	12
60	Peatland forests are the least diverse tree communities documented in Amazonia, but contribute to high regional betaâ€diversity. Ecography, 2018, 41, 1256-1269.	4.5	35
61	The modern pollen–vegetation relationships of a tropical forest–savannah mosaic landscape, Ghana, West Africa. Palynology, 2018, 42, 324-338.	1.5	20
62	A generic pixel-to-point comparison for simulated large-scale ecosystem properties and ground-based observations: an example from the Amazon region. Geoscientific Model Development, 2018, 11, 5203-5215.	3.6	6
63	Leaf-level photosynthetic capacity dynamics in relation to soil and foliar nutrients along forest–savanna boundaries in Ghana and Brazil. Tree Physiology, 2018, 38, 1912-1925.	3.1	23
64	Environmental drivers of forest structure and stem turnover across Venezuelan tropical forests. PLoS ONE, 2018, 13, e0198489.	2.5	22
65	Distinguishing vegetation types with airborne waveform lidar data in a tropical forest-savanna mosaic: A case study in LopA© National Park, Gabon. Remote Sensing of Environment, 2018, 216, 626-634.	11.0	34
66	Temporal changes in species composition, diversity, and woody vegetation structure of savannas in the Cerrado-Amazon transition zone. Acta Botanica Brasilica, 2018, 32, 254-263.	0.8	9
67	Idiosyncratic soil-tree species associations and their relationships with drought in a monodominant Amazon forest. Acta Oecologica, 2018, 91, 127-136.	1.1	5
68	Deciphering African tropical forest dynamics in the Anthropocene: How social and historical sciences can elucidate forest cover change and inform forest management. Anthropocene, 2019, 27, 100214.	3.3	19
69	Reconciling the contribution of environmental and stochastic structuring of tropical forest diversity through the lens of imaging spectroscopy. Ecology Letters, 2019, 22, 1608-1619.	6.4	9
70	Exploring the relation between remotely sensed vertical canopy structure and tree species diversity in Gabon. Environmental Research Letters, 2019, 14, 094013.	5.2	20
71	The Forest Observation System, building a global reference dataset for remote sensing of forest biomass. Scientific Data, 2019, 6, 198.	5.3	44
72	Evolutionary diversity is associated with wood productivity in Amazonian forests. Nature Ecology and Evolution, 2019, 3, 1754-1761.	7.8	32
73	From small-scale forest structure to Amazon-wide carbon estimates. Nature Communications, 2019, 10, 5088.	12.8	25

#	Article	IF	CITATIONS
74	The persistence of carbon in the African forest understory. Nature Plants, 2019, 5, 133-140.	9.3	41
75	Dominant tree species drive beta diversity patterns in western Amazonia. Ecology, 2019, 100, e02636.	3.2	23
76	sPlot – A new tool for global vegetation analyses. Journal of Vegetation Science, 2019, 30, 161-186.	2.2	185
77	Species Matter: Wood Density Influences Tropical Forest Biomass at Multiple Scales. Surveys in Geophysics, 2019, 40, 913-935.	4.6	54
78	Upscaling Forest Biomass from Field to Satellite Measurements: Sources of Errors and Ways to Reduce Them. Surveys in Geophysics, 2019, 40, 881-911.	4.6	61
79	Can timber provision from Amazonian production forests be sustainable?. Environmental Research Letters, 2019, 14, 064014.	5.2	47
80	Opportunities and challenges for an Indonesian forest monitoring network. Annals of Forest Science, 2019, 76, 1.	2.0	11
81	Drier tropical forests are susceptible to functional changes in response to a longâ€ŧerm drought. Ecology Letters, 2019, 22, 855-865.	6.4	75
82	Rate of forest recovery after fire exclusion on anthropogenic savannas in the Democratic Republic of Congo. Biological Conservation, 2019, 233, 118-130.	4.1	12
83	Individual-Based Modeling of Amazon Forests Suggests That Climate Controls Productivity While Traits Control Demography. Frontiers in Earth Science, 2019, 7, .	1.8	19
84	lmaging spectroscopy predicts variable distance decay across contrasting Amazonian tree communities. Journal of Ecology, 2019, 107, 696-710.	4.0	25
85	Compositional response of Amazon forests to climate change. Global Change Biology, 2019, 25, 39-56.	9.5	265
86	Holocene increases in palm abundances in northâ€western Amazonia. Journal of Biogeography, 2020, 47, 698-711.	3.0	15
87	Above-ground biomass estimation for a shrubby mistletoe in an Amazonian savanna. Journal of Tropical Ecology, 2020, 36, 6-12.	1.1	3
88	Assessing the growth and climate sensitivity of secondary forests in highly deforested Amazonian landscapes. Ecology, 2020, 101, e02954.	3.2	51
89	Quantifying Tropical Plant Diversity Requires an Integrated Technological Approach. Trends in Ecology and Evolution, 2020, 35, 1100-1109.	8.7	16
90	Tree mode of death and mortality risk factors across Amazon forests. Nature Communications, 2020, 11, 5515.	12.8	62
91	Evaluating the potential of fullâ€waveform lidar for mapping panâ€tropical tree species richness. Global Ecology and Biogeography, 2020, 29, 1799-1816.	5.8	31

#	Article	IF	CITATIONS
92	Fusion of Multiple Gridded Biomass Datasets for Generating a Global Forest Aboveground Biomass Map. Remote Sensing, 2020, 12, 2559.	4.0	21
93	Seed Geometry in the Arecaceae. Horticulturae, 2020, 6, 64.	2.8	9
94	Long-term thermal sensitivity of Earth's tropical forests. Science, 2020, 368, 869-874.	12.6	198
95	Validation of demographic equilibrium theory against tree-size distributions and biomass density in Amazonia. Biogeosciences, 2020, 17, 1013-1032.	3.3	8
96	Climatic and edaphic controls over tropical forest diversity and vegetation carbon storage. Scientific Reports, 2020, 10, 5066.	3.3	55
97	Competition influences tree growth, but not mortality, across environmental gradients in Amazonia and tropical Africa. Ecology, 2020, 101, e03052.	3.2	57
98	Asynchronous carbon sink saturation in African and Amazonian tropical forests. Nature, 2020, 579, 80-87.	27.8	439
99	Long-term droughts may drive drier tropical forests towards increased functional, taxonomic and phylogenetic homogeneity. Nature Communications, 2020, 11, 3346.	12.8	61
100	The global abundance of tree palms. Global Ecology and Biogeography, 2020, 29, 1495-1514.	5.8	62
101	Causes and consequences of liana infestation in southern Amazonia. Journal of Ecology, 2020, 108, 2184-2197.	4.0	13
102	Palms and trees resist extreme drought in Amazon forests with shallow water tables. Journal of Ecology, 2020, 108, 2070-2082.	4.0	27
103	Identifying and Quantifying the Abundance of Economically Important Palms in Tropical Moist Forest Using UAV Imagery. Remote Sensing, 2020, 12, 9.	4.0	24
104	Expanding tropical forest monitoring into Dry Forests: The DRYFLOR protocol for permanent plots. Plants People Planet, 2021, 3, 295-300.	3.3	12
105	From plots to policy: How to ensure longâ€ŧerm forest plot data supports environmental management in intact tropical forest landscapes. Plants People Planet, 2021, 3, 229-237.	3.3	6
106	Changes in Biomass Turnover Times in Tropical Forests and Their Environmental Drivers From 2001 to 2012. Earth's Future, 2021, 9, .	6.3	6
107	Pantropical variability in tree crown allometry. Global Ecology and Biogeography, 2021, 30, 459-475.	5.8	27
108	Non-structural carbohydrates mediate seasonal water stress across Amazon forests. Nature Communications, 2021, 12, 2310.	12.8	59
109	Resistance of African tropical forests to an extreme climate anomaly. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	37

#	Article	IF	CITATIONS
110	sPlotOpen – An environmentally balanced, openâ€access, global dataset of vegetation plots. Global Ecology and Biogeography, 2021, 30, 1740-1764.	5.8	49
111	Natural Regeneration After Gold Mining in the Peruvian Amazon: Implications for Restoration of Tropical Forests. Frontiers in Forests and Global Change, 2021, 4, .	2.3	6
112	Intensive field sampling increases the known extent of carbon-rich Amazonian peatland pole forests. Environmental Research Letters, 2021, 16, 074048.	5.2	15
113	Tropical forests structure and diversity: A comparison of methodological choices. Methods in Ecology and Evolution, 2021, 12, 2017-2027.	5.2	11
114	A New Field Protocol for Monitoring Forest Degradation. Frontiers in Forests and Global Change, 2021, 4, .	2.3	3
115	High aboveground carbon stock of African tropical montane forests. Nature, 2021, 596, 536-542.	27.8	65
116	Taking the pulse of Earth's tropical forests using networks of highly distributed plots. Biological Conservation, 2021, 260, 108849.	4.1	71
117	Aboveground biomass in secondary montane forests in Peru: Slow carbon recovery in agroforestry legacies. Clobal Ecology and Conservation, 2021, 28, e01696.	2.1	11
118	The Digital Forest: Mapping a Decade of Knowledge on Technological Applications for Forest Ecosystems. Earth's Future, 2021, 9, e2021EF002123.	6.3	31
119	The interaction of land-use history and tree species diversity in driving variation in the aboveground biomass of urban versus non-urban tropical forests. Ecological Indicators, 2021, 129, 107915.	6.3	11
121	A network to understand the changing socioâ€ecology of the southern African woodlands (SEOSAW): Challenges, benefits, and methods. Plants People Planet, 2021, 3, 249-267.	3.3	13
122	Estimating the multi-decadal carbon deficit of burned Amazonian forests. Environmental Research Letters, 2020, 15, 114023.	5.2	32
123	How Stand Productivity Results from Size- and Competition-Dependent Growth and Mortality. PLoS ONE, 2011, 6, e28660.	2.5	51
124	Tree Biomass Estimation in Central African Forests Using Allometric Models. Open Journal of Ecology, 2018, 08, 209-237.	1.0	10
128	ForestPlots.net – managing permanent plot information across the tropics. Biodiversity and Ecology = Biodiversitat Und Okologie, 2012, 4, 95-103.	0.3	5
129	Functional diversity and regeneration traits of tree communities in the Amazon-Cerrado transition. Flora: Morphology, Distribution, Functional Ecology of Plants, 2021, 285, 151952.	1.2	4
130	Variation of nonâ€structural carbohydrates across the fast–slow continuum in Amazon Forest canopy trees. Functional Ecology, 2022, 36, 341-355.	3.6	9
131	Primary modes of tree mortality in southwestern Amazon forests. Trees, Forests and People, 2022, 7, 100180.	1.9	0

ARTICLE IF CITATIONS # Comparing contemporary and lifetime rates of carbon accumulation from secondary forests in the 132 3.2 4 eastern Amazon. Forest Écology and Management, 2022, 508, 120053. Modeling Fire Hazards for the Maintenance of Long-Term Forest Inventory Plots in Alberta, Canada. 0.4 SSRN Electronic Journal, 0, , . MODIS Vegetation Continuous Fields tree cover needs calibrating in tropical savannas. 134 3.3 7 Biogeosciences, 2022, 19, 1377-1394. Modeling fire hazards for the maintenance of long-term forest inventory plots in Alberta, Canada. 3.2 Forest Ecology and Management, 2022, 513, 120206. Forest Fire History in Amazonia Inferred From Intensive Soil Charcoal Sampling and Radiocarbon 137 2.3 6 Dating. Frontiers in Forests and Global Change, 2022, 5, . Water table depth modulates productivity and biomass across Amazonian forests. Global Ecology and 5.8 Biogeography, 2022, 31, 1571-1588. Mapping peat thickness and carbon stocks of the central Congo Basin using field data. Nature 139 12.9 20 Geoscience, 2022, 15, 639-644. forestexplorR: an R package for the exploration and analysis of stemâ \in mapped forest stand data. 4.5 Ecography, 2022, 2022, . Contrasting strategies of nutrient demand and use between savanna and forest ecosystems in a 141 3.3 4 neotropical transition zone. Biogeosciences, 2022, 19, 3649-3661. 142 Clobal patterns of vascular plant alpha diversity. Nature Communications, 2022, 13, . 12.8 The presence of peat and variation in tree species composition are under different hydrological 143 4 2.6 controls in Amazonian wetland forests. Hydrological Processes, 2022, 36, . Soil pyrogenic carbon in southern Amazonia: Interaction between soil, climate, and above-ground 2.3 biomass. Frontiers in Forests and Global Change, 0, 5, . Spatial distribution of aboveground biomass stock in tropical dry forest in Brazil. IForest, 2023, 16, 145 1.4 0 116-126. Ancient fires enhance Amazon forest drought resistance. Frontiers in Forests and Global Change, 0, 6, 146 2.3 Differing localâ€scale responses of Bolivian Amazon forest ecotones to middle Holocene drought 147 2.1 1 based upon multiproxy soil data. Journal of Quaternary Science, 2023, 38, 970-990. Basin-wide variation in tree hydraulic safety margins predicts the carbon balance of Amazon forests. 148 Nature, 2023, 617, 111-117. Spatial Distribution of Secondary Forests by Age Group and Biomass Accumulation in the Brazilian 149 2.1 0 Amazon. Forests, 2023, 14, 924. Tree Species Classification in a Complex Brazilian Tropical Forest Using Hyperspectral and LiDAR Data. 2.1 Forests, 2023, 14, 945.

IF CITATIONS # ARTICLE Tropical forest lianas have greater non-structural carbohydrate concentrations in the stem xylem 3.12 151 than trees. Tree Physiology, 0, , . Sensitivity of South American tropical forests to an extreme climate anomaly. Nature Climate Change, 2023, 13, 967-974. 18.8 Forest recovery by direct seeding on the southern edge of the Brazilian Amazon. Restoration Ecology, 153 2.9 0 0,,. Consistent patterns of common species across tropical tree communities. Nature, 2024, 625, 728-734. 154 Sensors for Digital Transformation in Smart Forestry. Sensors, 2024, 24, 798. 155 3.8 1 Occurrence and characterization of insect galls in two reserves of the Peruvian Amazon. Biota Neotropica, 2023, 23, . Plant species richness, not hygrothermal stress, is the main predictor of gallâ€inducing insect richness 157 1.6 0 in Peruvian Amazon forests. Biotropica, 0, , .

CITATION REPORT