Brain Aging, Cognition in Youth and Old Age and Vascu Cohort 1936: Rationale, Design and Methodology of the

International Journal of Stroke 6, 547-559 DOI: 10.1111/j.1747-4949.2011.00683.x

Citation Report

#	Article	IF	CITATIONS
1	Cohort Profile: The Lothian Birth Cohorts of 1921 and 1936. International Journal of Epidemiology, 2012, 41, 1576-1584.	0.9	359
2	Key Neuroanatomical Structures for Post-Stroke Cognitive Impairment. Current Neurology and Neuroscience Reports, 2012, 12, 703-708.	2.0	30
3	A genome-wide search for genetic influences and biological pathways related to the brain's white matter integrity. Neurobiology of Aging, 2012, 33, 1847.e1-1847.e14.	1.5	37
4	Neuroprotective lifestyles and the aging brain. Neurology, 2012, 79, 1802-1808.	1.5	168
5	Brain white matter tract integrity as a neural foundation for general intelligence. Molecular Psychiatry, 2012, 17, 1026-1030.	4.1	282
6	Do brain image databanks support understanding of normal ageing brain structure? A systematic review. European Radiology, 2012, 22, 1385-1394.	2.3	11
7	Automatic segmentation of brain white matter and white matter lesions in normal aging: comparison of five multispectral techniques. Magnetic Resonance Imaging, 2012, 30, 222-229.	1.0	24
8	Brain atrophy associations with white matter lesions in the ageing brain: the Lothian Birth Cohort 1936. European Radiology, 2013, 23, 1084-1092.	2.3	71
9	ADRB2, brain white matter integrity and cognitive ageing in the Lothian Birth Cohort 1936. Behavior Genetics, 2013, 43, 13-23.	1.4	9
10	Brain white matter damage in aging and cognitive ability in youth and older age. Neurobiology of Aging, 2013, 34, 2740-2747.	1.5	83
11	Multi-site genetic analysis of diffusion images and voxelwise heritability analysis: A pilot project of the ENIGMA–DTI working group. NeuroImage, 2013, 81, 455-469.	2.1	354
12	Estimated maximal and current brain volume predict cognitive ability in old age. Neurobiology of Aging, 2013, 34, 2726-2733.	1.5	73
13	Influence of thickening of the inner skull table on intracranial volume measurement in older people. Magnetic Resonance Imaging, 2013, 31, 918-922.	1.0	20
14	Characterization of multifocal T2*-weighted MRI hypointensities in the basal ganglia of elderly, community-dwelling subjects. NeuroImage, 2013, 82, 470-480.	2.1	13
15	Close Correlation between Quantitative and Qualitative Assessments of White Matter Lesions. Neuroepidemiology, 2013, 40, 13-22.	1.1	88
16	Neuroticism, depressive symptoms and white-matter integrity in the Lothian Birth Cohort 1936. Psychological Medicine, 2013, 43, 1197-1206.	2.7	27
17	Towards the automatic computational assessment of enlarged perivascular spaces on brain magnetic resonance images: A systematic review. Journal of Magnetic Resonance Imaging, 2013, 38, 774-785.	1.9	69
18	Brain white matter tract integrity and cognitive abilities in community-dwelling older people: The Lothian Birth Cohort, 1936 Neuropsychology, 2013, 27, 595-607.	1.0	34

#	Article	IF	CITATIONS
19	Assessing the Performance of Atlas-Based Prefrontal Brain Parcellation in an Aging Cohort. Journal of Computer Assisted Tomography, 2013, 37, 257-264.	0.5	8
20	Incidental Findings on Brain MR Imaging in Older Community-Dwelling Subjects Are Common but Serious Medical Consequences Are Rare: A Cohort Study. PLoS ONE, 2013, 8, e71467.	1.1	49
21	Associations between Level and Change in Physical Function and Brain Volumes. PLoS ONE, 2013, 8, e80386.	1.1	19
22	Alzheimer's Disease Susceptibility Genes APOE and TOMM40, and Hippocampal Volumes in the Lothian Birth Cohort 1936. PLoS ONE, 2013, 8, e80513.	1.1	29
23	Childhood cognitive ability accounts for associations between cognitive ability and brain cortical thickness in old age. Molecular Psychiatry, 2014, 19, 555-559.	4.1	104
24	Are APOE É [,] genotype and TOMM40 poly-T repeat length associations with cognitive ageing mediated by brain white matter tract integrity?. Translational Psychiatry, 2014, 4, e449-e449.	2.4	20
25	Vascular risk factors, large-artery atheroma, and brain white matter hyperintensities. Neurology, 2014, 82, 1331-1338.	1.5	181
26	Potential effect of skull thickening on the associations between cognition and brain atrophy in ageing. Age and Ageing, 2014, 43, 712-716.	0.7	6
27	Circulating Inflammatory Markers Are Associated With Magnetic Resonance Imaging-Visible Perivascular Spaces But Not Directly With White Matter Hyperintensities. Stroke, 2014, 45, 605-607.	1.0	113
28	Differentiation of calcified regions and iron deposits in the ageing brain on conventional structural MR images. Journal of Magnetic Resonance Imaging, 2014, 40, 324-333.	1.9	17
29	Quantitative multi-modal MRI of the Hippocampus and cognitive ability in community-dwelling older subjects. Cortex, 2014, 53, 34-44.	1.1	22
30	Study protocol: the Whitehall II imaging sub-study. BMC Psychiatry, 2014, 14, 159.	1.1	82
31	Morphologic, Distributional, Volumetric, and Intensity Characterization of Periventricular Hyperintensities. American Journal of Neuroradiology, 2014, 35, 55-62.	1.2	27
32	Blood Pressure, Internal Carotid Artery Flow Parameters, and Age-Related White Matter Hyperintensities. Hypertension, 2014, 63, 1011-1018.	1.3	114
33	Correlational structure of â€~frontal' tests and intelligence tests indicates two components with asymmetrical neurostructural correlates in old age. Intelligence, 2014, 46, 94-106.	1.6	13
34	Alzheimer's disease susceptibility genes APOE and TOMM40, and brain white matter integrity in the Lothian Birth Cohort 1936. Neurobiology of Aging, 2014, 35, 1513.e25-1513.e33.	1.5	58
35	Personality, health, and brain integrity: The Lothian Birth Cohort Study 1936 Health Psychology, 2014, 33, 1477-1486.	1.3	38
36	Thyroid Antibodies, Autoimmunity and Cognitive Decline: Is There a Population-Based Link. Dementia and Geriatric Cognitive Disorders Extra, 2014, 4, 140-146.	0.6	8

#	Article	IF	CITATIONS
37	Structural Brain MRI Trait Polygenic Score Prediction of Cognitive Abilities. Twin Research and Human Genetics, 2015, 18, 738-745.	0.3	4
38	Rationale, design and methodology of the image analysis protocol for studies of patients with cerebral small vessel disease and mild stroke. Brain and Behavior, 2015, 5, e00415.	1.0	65
39	A Comparison of Location of Acute Symptomatic vs. â€~Silent' Small Vessel Lesions. International Journal of Stroke, 2015, 10, 1044-1050.	2.9	59
40	<i>APOE/TOMM40</i> Genetic Loci, White Matter Hyperintensities, and Cerebral Microbleeds. International Journal of Stroke, 2015, 10, 1297-1300.	2.9	15
41	Use of Brain MRI Atlases to Determine Boundaries of Age-Related Pathology: The Importance of Statistical Method. PLoS ONE, 2015, 10, e0127939.	1.1	20
42	Coupled Changes in Brain White Matter Microstructure and Fluid Intelligence in Later Life. Journal of Neuroscience, 2015, 35, 8672-8682.	1.7	97
43	Beyond a bigger brain: Multivariable structural brain imaging and intelligence. Intelligence, 2015, 51, 47-56.	1.6	101
44	Cigarette smoking and thinning of the brain's cortex. Molecular Psychiatry, 2015, 20, 778-785.	4.1	136
45	Brain volumetric changes and cognitive ageing during the eighth decade of life. Human Brain Mapping, 2015, 36, 4910-4925.	1.9	79
46	Does white matter structure or hippocampal volume mediate associations between cortisol and cognitive ageing?. Psychoneuroendocrinology, 2015, 62, 129-137.	1.3	26
47	Brain white matter integrity and cortisol in older men: the Lothian Birth Cohort 1936. Neurobiology of Aging, 2015, 36, 257-264.	1.5	28
48	Hippocampal Shape Modeling Based on a Progressive Template Surface Deformation and its Verification. IEEE Transactions on Medical Imaging, 2015, 34, 1242-1261.	5.4	21
49	Proton spectroscopic imaging of brain metabolites in basal ganglia of healthy older adults. Magnetic Resonance Materials in Physics, Biology, and Medicine, 2015, 28, 251-257.	1.1	4
50	Exploratory analysis of dietary intake and brain iron accumulation detected using magnetic resonance imaging in older individuals: The Lothian Birth Cohort 1936. Journal of Nutrition, Health and Aging, 2015, 19, 64-69.	1.5	9
51	Multiethnic Genome-Wide Association Study of Cerebral White Matter Hyperintensities on MRI. Circulation: Cardiovascular Genetics, 2015, 8, 398-409.	5.1	162
52	Brain iron deposits and lifespan cognitive ability. Age, 2015, 37, 100.	3.0	24
53	Association of allostatic load with brain structure and cognitive ability in later life. Neurobiology of Aging, 2015, 36, 1390-1399.	1.5	67
54	Total MRI load of cerebral small vessel disease and cognitive ability in older people. Neurobiology of Aging, 2015, 36, 2806-2811.	1.5	199

#	Article	IF	CITATIONS
55	Genes From a Translational Analysis Support a Multifactorial Nature of White Matter Hyperintensities. Stroke, 2015, 46, 341-347.	1.0	33
56	Post-mortem brain analyses of the Lothian Birth Cohort 1936: extending lifetime cognitive and brain phenotyping to the level of the synapse. Acta Neuropathologica Communications, 2015, 3, 53.	2.4	25
57	Compensation or inhibitory failure? Testing hypotheses of age-related right frontal lobe involvement in verbal memory ability using structural and diffusion MRI. Cortex, 2015, 63, 4-15.	1.1	19
58	White matter hyperintensities and normal-appearing white matter integrity in the aging brain. Neurobiology of Aging, 2015, 36, 909-918.	1.5	224
59	Automated segmentation of multifocal basal ganglia T2*-weighted MRI hypointensities. NeuroImage, 2015, 105, 332-346.	2.1	9
60	Volumetric and Correlational Implications of Brain Parcellation Method Selection. Journal of Computer Assisted Tomography, 2016, 40, 53-60.	0.5	1
61	Trait conscientiousness and the personality meta-trait stability are associated with regional white matter microstructure. Social Cognitive and Affective Neuroscience, 2016, 11, 1255-1261.	1.5	18
62	On the computational assessment of white matter hyperintensity progression: difficulties in method selection and bias field correction performance on images with significant white matter pathology. Neuroradiology, 2016, 58, 475-485.	1.1	9
63	Associations between education and brain structure at age 73 years, adjusted for age 11 IQ. Neurology, 2016, 87, 1820-1826.	1.5	46
64	Getting Spearman off the Skyhook: One More in a Century (Since Thomson, 1916) of Attempts to Vanquish <i>g</i> . Psychological Inquiry, 2016, 27, 192-199.	0.4	45
65	3D shape analysis of the brain's third ventricle using a midplane encoded symmetric template model. Computer Methods and Programs in Biomedicine, 2016, 129, 51-62.	2.6	2
66	Vascular risk factors and progression of white matter hyperintensities in the Lothian Birth Cohort 1936. Neurobiology of Aging, 2016, 42, 116-123.	1.5	72
67	Development and initial evaluation of a semi-automatic approach to assess perivascular spaces on conventional magnetic resonance images. Journal of Neuroscience Methods, 2016, 257, 34-44.	1.3	43
68	Progression of White Matter Disease and Cortical Thinning Are Not Related in Older Community-Dwelling Subjects. Stroke, 2016, 47, 410-416.	1.0	35
69	Brain white matter structure and information processing speed in healthy older age. Brain Structure and Function, 2016, 221, 3223-3235.	1.2	75
70	Improving data availability for brain image biobanking in healthy subjects: Practice-based suggestions from an international multidisciplinary working group. NeuroImage, 2017, 153, 399-409.	2.1	13
71	Impact of small vessel disease in the brain on gait and balance. Scientific Reports, 2017, 7, 41637.	1.6	86
72	Retinal microvascular network geometry and cognitive abilities in community-dwelling older people: The Lothian Birth Cohort 1936 study. British Journal of Ophthalmology, 2017, 101, 993-998.	2.1	25

#	Article	IF	Citations
73	Lateral thinking – Interocular symmetry and asymmetry in neurovascular patterning, in health and disease. Progress in Retinal and Eye Research, 2017, 59, 131-157.	7.3	44
74	Risk and protective factors for structural brain ageing in the eighth decade of life. Brain Structure and Function, 2017, 222, 3477-3490.	1.2	40
75	Brain grey and white matter predictors of verbal ability traits in older age: The Lothian Birth Cohort 1936. NeuroImage, 2017, 156, 394-402.	2.1	21
76	Associations between hippocampal morphology, diffusion characteristics, and salivary cortisol in older men. Psychoneuroendocrinology, 2017, 78, 151-158.	1.3	9
77	Carotid disease at age 73 and cognitive change from age 70 to 76 years: A longitudinal cohort study. Journal of Cerebral Blood Flow and Metabolism, 2017, 37, 3042-3052.	2.4	13
78	Interaction of APOE e4 and poor glycemic control predicts white matter hyperintensity growth from 73 to 76. Neurobiology of Aging, 2017, 54, 54-58.	1.5	20
79	Hippocampal morphology and cognitive functions in community-dwelling older people: the Lothian Birth Cohort 1936. Neurobiology of Aging, 2017, 52, 1-11.	1.5	14
80	Mediterranean-type diet and brain structural change from 73 to 76 years in a Scottish cohort. Neurology, 2017, 88, 449-455.	1.5	109
81	Metric to quantify white matter damage on brain magnetic resonance images. Neuroradiology, 2017, 59, 951-962.	1.1	19
82	Processing speed and the relationship between Trail Making Test-B performance, cortical thinning and white matter microstructure in older adults. Cortex, 2017, 95, 92-103.	1.1	87
83	Dietary iodine exposure and brain structures and cognition in older people. Exploratory analysis in the Lothian Birth Cohort 1936. Journal of Nutrition, Health and Aging, 2017, 21, 971-979.	1.5	11
84	Bloodâ€brain barrier failure as a core mechanism in cerebral small vessel disease and dementia: evidence from a cohort study. Alzheimer's and Dementia, 2017, 13, 634-643.	0.4	190
85	Whole Brain Magnetic Resonance Image Atlases: A Systematic Review of Existing Atlases and Caveats for Use in Population Imaging. Frontiers in Neuroinformatics, 2017, 11, 1.	1.3	120
86	SEGMA: An Automatic SEGMentation Approach for Human Brain MRI Using Sliding Window and Random Forests. Frontiers in Neuroinformatics, 2017, 11, 2.	1.3	13
87	Coupled changes in hippocampal structure and cognitive ability in later life. Brain and Behavior, 2018, 8, e00838.	1.0	21
88	The brain health index: Towards a combined measure of neurovascular and neurodegenerative structural brain injury. International Journal of Stroke, 2018, 13, 849-856.	2.9	18
89	Cohort Profile Update: The Lothian Birth Cohorts of 1921 and 1936. International Journal of Epidemiology, 2018, 47, 1042-1042r.	0.9	195
90	Widespread associations between trait conscientiousness and thickness of brain cortical regions. NeuroImage, 2018, 176, 22-28.	2.1	22

#	Article	IF	Citations
91	Intelligence in Edinburgh, Scotland: Bringing Intelligence to Life. , 0, , 64-84.		0
92	Meta-analysis of epigenome-wide association studies of cognitive abilities. Molecular Psychiatry, 2018, 23, 2133-2144.	4.1	68
93	Cognitive function, disease burden and the structural connectome in systemic lupus erythematosus. Lupus, 2018, 27, 1329-1337.	0.8	14
94	Healthy cognitive ageing in the Lothian Birth Cohort studies: marginal gains not magic bullet. Psychological Medicine, 2018, 48, 187-207.	2.7	51
95	Brain cortical characteristics of lifetime cognitive ageing. Brain Structure and Function, 2018, 223, 509-518.	1.2	44
96	Cognitive abilities, brain white matter hyperintensity volume, and structural network connectivity in older age. Human Brain Mapping, 2018, 39, 622-632.	1.9	41
97	Brain structural differences between 73- and 92-year olds matched for childhood intelligence, social background, and intracranial volume. Neurobiology of Aging, 2018, 62, 146-158.	1.5	11
98	Polygenic risk score for schizophrenia and structural brain connectivity in older age: A longitudinal connectome and tractography study. NeuroImage, 2018, 183, 884-896.	2.1	34
99	Association between carotid atheroma and cerebral cortex structure at age 73 years. Annals of Neurology, 2018, 84, 576-587.	2.8	20
100	Longitudinal serum S100β and brain aging in the Lothian Birth Cohort 1936. Neurobiology of Aging, 2018, 69, 274-282.	1.5	13
101	Brain Peak Width of Skeletonized Mean Diffusivity (PSMD) and Cognitive Function in Later Life. Frontiers in Psychiatry, 2019, 10, 524.	1.3	33
102	Imaging the aged brain: pertinence and methods. Quantitative Imaging in Medicine and Surgery, 2019, 9, 842-857.	1.1	8
103	Epigenetic signatures of smoking associate with cognitive function, brain structure, and mental and physical health outcomes in the Lothian Birth Cohort 1936. Translational Psychiatry, 2019, 9, 248.	2.4	34
104	Three-Dimensional Shape Modeling and Analysis of Brain Structures. Journal of Visualized Experiments, 2019, , .	0.2	0
105	Spatial Gradient of Microstructural Changes in Normal-Appearing White Matter in Tracts Affected by White Matter Hyperintensities in Older Age. Frontiers in Neurology, 2019, 10, 784.	1.1	30
106	Retinal microvasculature and cerebral small vessel disease in the Lothian Birth Cohort 1936 and Mild Stroke Study. Scientific Reports, 2019, 9, 6320.	1.6	49
107	Longitudinal multi-centre brain imaging studies: guidelines and practical tips for accurate and reproducible imaging endpoints and data sharing. Trials, 2019, 20, 21.	0.7	9
108	An epigenetic predictor of death captures multi-modal measures of brain health. Molecular Psychiatry, 2021, 26, 3806-3816.	4.1	77

	CITATION R	CITATION REPORT	
#	Article	IF	CITATIONS
109	A protocol for precise comparisons of small vessel disease lesions between ex vivo magnetic resonance imaging and histopathology. International Journal of Stroke, 2019, 14, 310-320.	2.9	14
110	Sleep and brain morphological changes in the eighth decade of life. Sleep Medicine, 2020, 65, 152-158.	0.8	27
111	The striatum, the hippocampus, and short-term memory binding: Volumetric analysis of the subcortical grey matter's role in mild cognitive impairment. NeuroImage: Clinical, 2020, 25, 102158.	1.4	29
112	Fluctuating asymmetry in brain structure and general intelligence in 73-year-olds. Intelligence, 2020, 78, 101407.	1.6	9
113	Computational quantification of brain perivascular space morphologies: Associations with vascular risk factors and white matter hyperintensities. A study in the Lothian Birth Cohort 1936. NeuroImage: Clinical, 2020, 25, 102120.	1.4	51
114	Dietary patterns, cognitive function, and structural neuroimaging measures of brain aging. Experimental Gerontology, 2020, 142, 111117.	1.2	23
115	Age- and memory- related differences in hippocampal gray matter integrity are better captured by NODDI compared to single-tensor diffusion imaging. Neurobiology of Aging, 2020, 96, 12-21.	1.5	22
116	Attitudes to ageing, biomarkers of ageing and mortality: the Lothian Birth Cohort 1936. Journal of Epidemiology and Community Health, 2020, 74, 377-383.	2.0	5
117	Association of common genetic variants with brain microbleeds. Neurology, 2020, 95, e3331-e3343.	1.5	40
118	Quantitative measurements of enlarged perivascular spaces in the brain are associated with retinal microvascular parameters in older community-dwelling subjects. Cerebral Circulation - Cognition and Behavior, 2020, 1, 100002.	0.4	6
119	Generation of twenty four induced pluripotent stem cell lines from twenty four members of the Lothian Birth Cohort 1936. Stem Cell Research, 2020, 46, 101851.	0.3	16
120	Aging-Sensitive Networks Within the Human Structural Connectome Are Implicated in Late-Life Cognitive Declines. Biological Psychiatry, 2021, 89, 795-806.	0.7	23
121	Three major dimensions of human brain cortical ageing in relation to cognitive decline across the eighth decade of life. Molecular Psychiatry, 2021, 26, 2651-2662.	4.1	29
123	Subcortical volumes across the lifespan: Data from 18,605 healthy individuals aged 3–90 years. Human Brain Mapping, 2022, 43, 452-469.	1.9	72
127	Comparison of structural MRI brain measures between 1.5 and 3ÂT: Data from the Lothian Birth Cohort 1936. Human Brain Mapping, 2021, 42, 3905-3921.	1.9	11
129	Cerebral small vessel disease burden and longitudinal cognitive decline from age 73 to 82: the Lothian Birth Cohort 1936. Translational Psychiatry, 2021, 11, 376.	2.4	19
130	Cohort profile for the STratifying Resilience and Depression Longitudinally (STRADL) study: A depression-focused investigation of Generation Scotland, using detailed clinical, cognitive, and neuroimaging assessments. Wellcome Open Research, 0, 4, 185.	0.9	12
131	Associations between total MRI-visible small vessel disease burden and domain-specific cognitive abilities in a community-dwelling older-age cohort. Neurobiology of Aging, 2021, 105, 25-34.	1.5	5

#	Article	IF	CITATIONS
133	Relationship between inferior frontal sulcal hyperintensities on brain MRI, ageing and cerebral small vessel disease. Neurobiology of Aging, 2021, 106, 130-138.	1.5	5
134	Birth weight is associated with brain tissue volumes seven decades later but not with MRI markers of brain ageing. NeuroImage: Clinical, 2021, 31, 102776.	1.4	14
135	Reaction time variability and brain white matter integrity Neuropsychology, 2019, 33, 642-657.	1.0	6
136	Neurology-related protein biomarkers are associated with cognitive ability and brain volume in older age. Nature Communications, 2020, 11, 800.	5.8	42
143	Cohort profile for the STratifying Resilience and Depression Longitudinally (STRADL) study: A depression-focused investigation of Generation Scotland, using detailed clinical, cognitive, and neuroimaging assessments. Wellcome Open Research, 2019, 4, 185.	0.9	27
144	Design and Validation of a Novel Method to Measure Cross-Sectional Area of Neck Muscles Included during Routine MR Brain Volume Imaging. PLoS ONE, 2012, 7, e34444.	1.1	18
145	Early life characteristics and late life burden of cerebral small vessel disease in the Lothian Birth Cohort 1936. Aging, 2016, 8, 2039-2061.	1.4	20
146	Predictors of gait speed and its change over three years in community-dwelling older people. Aging, 2018, 10, 144-153.	1.4	19
147	Assessing amyloid-β, tau, and glial features in Lothian Birth Cohort 1936 participants post-mortem. Matters, 0, , .	1.0	2
156	Retinal Biomarkers Discovery for Cerebral Small Vessel Disease in an Older Population. Communications in Computer and Information Science, 2020, , 400-409.	0.4	2
160	Intelligence, Ability and Performance. Springer Texts in Education, 2020, , 331-359.	0.0	0
		0.0	
162	DNA Methylation and Protein Markers of Chronic Inflammation and Their Associations With Brain and Cognitive Aging. Neurology, 2021, 97, e2340-e2352.	1.5	44
162 164			
	Cognitive Áging. Neurology, 2021, 97, e2340-e2352.	1.5	44
164	Cognitive Áging. Neurology, 2021, 97, e2340-e2352. Blood-based epigenome-wide analyses of cognitive abilities. Genome Biology, 2022, 23, 26. Circulating Metabolome and White Matter Hyperintensities in Women and Men. Circulation, 2022, 145,	1.5 3.8	44 20
164 165	Cognitive Áging. Neurology, 2021, 97, e2340-e2352. Blood-based epigenome-wide analyses of cognitive abilities. Genome Biology, 2022, 23, 26. Circulating Metabolome and White Matter Hyperintensities in Women and Men. Circulation, 2022, 145, 1040-1052. Mediterranean-Type Diet and Brain Structural Change from 73 to 79 Years in the Lothian Birth Cohort	1.5 3.8 1.6	44 20 17
164 165 166	Cognitive Áging. Neurology, 2021, 97, e2340-e2352. Blood-based epigenome-wide analyses of cognitive abilities. Genome Biology, 2022, 23, 26. Circulating Metabolome and White Matter Hyperintensities in Women and Men. Circulation, 2022, 145, 1040-1052. Mediterranean-Type Diet and Brain Structural Change from 73 to 79 Years in the Lothian Birth Cohort 1936. Journal of Nutrition, Health and Aging, 2022, 26, 368-372. Contribution of white matter hyperintensities to ventricular enlargement in older adults.	1.5 3.8 1.6 1.5	44 20 17 1

#	Article	IF	CITATIONS
176	Epigenetic and integrative cross-omics analyses of cerebral white matter hyperintensities on MRI. Brain, 2023, 146, 492-506.	3.7	12
177	Assessment of perivascular space filtering methods using a three-dimensional computational model. Magnetic Resonance Imaging, 2022, 93, 33-51.	1.0	11
178	Are neuropsychiatric symptoms a marker of small vessel disease progression in older adults? Evidence from the Lothian Birth Cohort 1936. International Journal of Geriatric Psychiatry, 2023, 38, .	1.3	2
179	Sleep quality, perivascular spaces and brain health markers in ageing - A longitudinal study in the Lothian Birth Cohort 1936. Sleep Medicine, 2023, 106, 123-131.	0.8	6
182	Segmentation ofÂWhite Matter Hyperintensities andÂlschaemic Stroke Lesions inÂStructural MRI. Lecture Notes in Computer Science, 2024, , 3-17.	1.0	0