CITATION REPORT List of articles citing

Impacts of invasive Australian acacias: implications for management and restoration

DOI: 10.1111/j.1472-4642.2011.00816.x Diversity and Distributions, 2011, 17, 1015-1029.

Source: https://exaly.com/paper-pdf/50981940/citation-report.pdf

Version: 2024-04-28

This report has been generated based on the citations recorded by exaly.com for the above article. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

#	Paper	IF	Citations
277	Predicting invasiveness of Australian acacias on the basis of their native climatic affinities, life history traits and human use. <i>Diversity and Distributions</i> , 2011 , 17, 934-945	5	81
276	Creating novel food webs on introduced Australian acacias: indirect effects of galling biological control agents. <i>Diversity and Distributions</i> , 2011 , 17, 958-967	5	29
275	Trees and shrubs as invasive alien species 🗈 global review. <i>Diversity and Distributions</i> , 2011 , 17, 788-809	5	653
274	Adoption, use and perception of Australian acacias around the world. <i>Diversity and Distributions</i> , 2011 , 17, 822-836	5	135
273	National-scale strategic approaches for managing introduced plants: insights from Australian acacias in South Africa. <i>Diversity and Distributions</i> , 2011 , 17, 1060-1075	5	129
272	Insect pests and pathogens of Australian acacias grown as non-natives (an experiment in biogeography with far-reaching consequences. <i>Diversity and Distributions</i> , 2011 , 17, 968-977	5	33
271	Jack-of-all-trades and master of many? How does associated rhizobial diversity influence the colonization success of Australian Acacia species?. <i>Diversity and Distributions</i> , 2011 , 17, 946-957	5	65
270	Ecophysiological traits associated with the competitive ability of invasive Australian acacias. <i>Diversity and Distributions</i> , 2011 , 17, 898-910	5	64
269	Contain or eradicate? Optimizing the management goal for Australian acacia invasions in the face of uncertainty. <i>Diversity and Distributions</i> , 2011 , 17, 1047-1059	5	52
268	Modelling horses for novel climate courses: insights from projecting potential distributions of native and alien Australian acacias with correlative and mechanistic models. <i>Diversity and Distributions</i> , 2011 , 17, 978-1000	5	149
267	Global uses of Australian acacias Irecent trends and future prospects. <i>Diversity and Distributions</i> , 2011 , 17, 837-847	5	87
266	Risk assessment, eradication, and biological control: global efforts to limit Australian acacia invasions. <i>Diversity and Distributions</i> , 2011 , 17, 1030-1046	5	135
265	Human-mediated introductions of Australian acacias 🗈 global experiment in biogeography. <i>Diversity and Distributions</i> , 2011 , 17, 771-787	5	192
264	Influence of soil microorganisms, allelopathy and soil origin on the establishment of the invasive Acacia dealbata. 2012 , 5, 67-73		17
263	References. 2012 , 315-359		1
262	When should exotic forest plantation tree species be considered as an invasive threat and how should we treat them?. <i>Biological Invasions</i> , 2012 , 14, 1765-1778	2.7	71
261	Australian acacias: weeds or useful trees?. <i>Biological Invasions</i> , 2012 , 14, 2217-2227	2.7	19

260	Forest plant diversity is threatened by Robinia pseudoacacia (black-locust) invasion. 2012 , 21, 3555-3568		76
259	No consistent association between changes in genetic diversity and adaptive responses of Australian acacias in novel ranges. 2012 , 26, 1345-1360		18
258	A functional trait perspective on plant invasion. 2012 , 110, 141-53		207
257	Collembola diversity in the critically endangered Cape Flats Sand Fynbos and adjacent pine plantations. 2012 , 55, 203-209		12
256	Mutualisms are not constraining cross-continental invasion success of Acacia species within Australia. <i>Diversity and Distributions</i> , 2012 , 18, 962-976		33
255	An assessment of the effectiveness of a large, national-scale invasive alien plant control strategy in South Africa. <i>Biological Conservation</i> , 2012 , 148, 28-38	.2	200
254	Invasion of alien Acacia dealbata on Spanish Quercus robur forests: Impact on soils and vegetation. Forest Ecology and Management, 2012 , 269, 214-221	.9	63
253	Plant invasions, restoration, and economics: Perspectives from South African fynbos. 2012 , 14, 341-353		27
252	Distribution and management of Acacia implexa (Benth.) in South Africa: A suitable target for eradication?. <i>South African Journal of Botany</i> , 2012 , 83, 23-35	.9	22
251	Similarities in recruitment but differences in persistence in two related native and invasive trees: relevance of regenerative and vegetative attributes. 2012 , 60, 368		6
250	Can floral traits predict an invasive plant's impact on native plantpollinator communities?. 2012 , 100, 1216-1223		47
249	Three centuries of managing introduced conifers in South Africa: Benefits, impacts, changing perceptions and conflict resolution. 2012 , 106, 56-68		87
248	Community scale 15N isoscapes: tracing the spatial impact of an exotic N2 -fixing invader. 2012 , 15, 484-9	1	55
247	Composition and vegetation structure in a system of coastal dunes of the de la Plataliver, Uruguay: a comparison with Legrand descriptions (1959). 2013 , 36, 9-23		4
246	The effect of soil legacy on competition and invasion by Acacia dealbata Link. 2013, 214, 1139-1146		44
245	The effectiveness of active and passive restoration on recovery of indigenous vegetation in riparian zones in the Western Cape, South Africa: A preliminary assessment. <i>South African Journal of Botany</i> , 2013, 88, 132-141	.9	37
244	Soil water repellency in riparian systems invaded by Eucalyptus camaldulensis: A restoration perspective from the Western Cape Province, South Africa. 2013 , 200-201, 9-17		14
243	Differential impact on soil microbes of allelopathic compounds released by the invasive Acacia dealbata Link. 2013 , 57, 156-163		86

242	Mapping and Management of the Non-native Japanese Spiraea at Buffalo Mountain Natural Area Preserve, Virginia, USA. 2013 , 33, 435-439		4
241	Will climate change drive alien invasive plants into areas of high protection value? An improved model-based regional assessment to prioritise the management of invasions. 2013 , 131, 185-95		54
240	The impact of Acacia saligna invasion on Italian coastal dune EC habitats. 2013 , 336, 364-9		39
239	Plant Invasions as Builders and Shapers of Novel Ecosystems. 2013 , 102-113		14
238	Co-invasion of South African ecosystems by an Australian legume and its rhizobial symbionts. 2013 , 40, 1240-1251		53
237	Fire as a disturbance in mediterranean climate streams. 2013 , 719, 353-382		86
236	The effects of land use changes on streams and rivers in mediterranean climates. 2013, 719, 383-425		108
235	Invasive Alien Plants in Protected Areas in Mediterranean Islands: Knowledge Gaps and Main Threats. 2013 , 395-422		10
234	Modern tree colonisers from Australia into the rest of the world. 304-323		4
233	Assessing spatio-temporal rates, patterns and determinants of biological invasions in forest ecosystems. The case of Acacia species in NW Spain. <i>Forest Ecology and Management</i> , 2014 , 329, 206-21	3 ^{3.9}	33
232	Resource competition in plant invasions: emerging patterns and research needs. 2014 , 5, 501		171
231	Invasive plants as drivers of regime shifts: identifying high-priority invaders that alter feedback relationships. <i>Diversity and Distributions</i> , 2014 , 20, 733-744	5	165
230	Recovery of Foredune and Blowout Habitats in a Freshwater Dune Following Removal of Invasive Austrian Pine (Pinus nigra). <i>Restoration Ecology</i> , 2014 , 22, 641-648	3.1	4
229	Novel ecosystems support substantial avian assemblages: the case of invasive alien Acacia thickets. <i>Diversity and Distributions</i> , 2014 , 20, 34-45	5	21
228	Invasion of Acacia mangium in Amazonian savannas following planting for forestry. 2014 , 7, 359-369		30
227	Macroecology meets invasion ecology: performance of Australian acacias and eucalypts around the world revealed by features of their native ranges. <i>Biological Invasions</i> , 2014 , 16, 565-576	2.7	24
226	Impact of invasions by alien plants on soil seed bank communities: Emerging patterns. 2014 , 16, 132-147	2	58
225	Incorporating risk mapping at multiple spatial scales into eradication management plans. <i>Biological Invasions</i> , 2014 , 16, 691-703	2.7	34

(2015-2014)

224	Tree invasions into treeless areas: mechanisms and ecosystem processes. <i>Biological Invasions</i> , 2014 , 16, 663-675	7	106	
223	A novel downscaling approach to predict plant invasions and improve local conservation actions. Biological Invasions, 2014 , 16, 2577-2590	7	18	
222	Climate Change Effects on Community Forests: Finding Through Userl Lens and Local Knowledge. 2014 , 13, 445-460		11	
221	Patterns of woody plant invasion in an Argentinean coastal grassland. 2014 , 54, 65-71		17	
220	Invasive plant species may serve as a biological corridor for the invertebrate fauna of naturally isolated hosts. 2015 , 19, 863-875		14	
219	Risk to plant health in the EU territory of the intentional release of the bud-galling wasp Trichilogaster acaciaelongifoliae for the control of the invasive alien plant Acacia longifolia. 2015 , 13, 4079		6	
218	Plant species loss and community nestedness after leguminous tree Acacia pycnantha invasion in a Mediterranean ecosystem. 2015 , 50, 229-238		10	
217	Eucalyptus Camaldulensis Invasion in Riparian Zones Reveals Few Significant Effects on Soil Physico-Chemical Properties. 2015 , 31, 590-601		20	
216	Acacia auriculiformis. 2015 , 1-12		1	
215	Conserving a geographically isolated Charaxes butterfly in response to habitat fragmentation and invasive alien plants. 2015 , 57,			
214	Extensive literature search for preparatory work to support pan European pest risk assessment: Trichilogaster acaciaelongifoliae. 2015 , 12, 764E		1	
213	Persistence of a soil legacy following removal of a nitrogen-fixing invader. <i>Biological Invasions</i> , 2015 , 17, 2621-2631	7	37	
212	Field Spectroscopy in the VNIR-SWIR Region to Discriminate between Mediterranean Native Plants and Exotic-Invasive Shrubs Based on Leaf Tannin Content. <i>Remote Sensing</i> , 2015 , 7, 1225-1241		63	
211	System-level changes following invasion caused by disruption of functional relationships among plant and soil properties. 2015 , 6, art294		7	
210	Struggling to maintain native plant diversity in a peri-urban reserve surrounded by a highly anthropogenic matrix. 2015 , 24, 2769-2788		15	
209	Non-native plants add to the British flora without negative consequences for native diversity. 2015 , 112, 4387-92		78	
208	Competitive resistance of a native shrubland to invasion by the alien invasive tree species, Acacia cyclops. <i>Biological Invasions</i> , 2015 , 17, 3563-3577	7	6	
207	Fire effects on aquatic ecosystems: an assessment of the current state of the science. 2015 , 34, 1340-1350)	86	

206	Assessing current and future risks of invasion by the green cancer[Miconia calvescens. <i>Biological Invasions</i> , 2015 , 17, 3337-3350	2.7	3
205	Temporal changes in the impacts on plant communities of an invasive alien tree, Acacia longifolia. 2015 , 216, 1481-1498		40
204	Resilience of invaded riparian landscapes: the potential role of soil-stored seed banks. 2015 , 55, 86-99		21
203	Evaluation of Continuous VNIR-SWIR Spectra versus Narrowband Hyperspectral Indices to Discriminate the Invasive Acacia longifolia within a Mediterranean Dune Ecosystem. <i>Remote Sensing</i> , 2016 , 8, 334	5	33
202	Viewshed and sense of place as conservation features: A case study and research agenda for South Africa's national parks. 2016 , 58,		13
201	Does Eucalyptus grandis invasion and removal affect soils and vegetation in the Eastern Cape Province, South Africa?. 2016 , 41, 328-338		18
200	Exploring the invasion of rangelands by Acacia mearnsii (black wattle): biophysical characteristics and management implications. 2016 , 33, 265-273		16
199	Tree invasions and biosecurity: eco-evolutionary dynamics of hitchhiking fungi. 2016 , 8,		29
198	Assessment of post-burn removal methods for Acacia saligna in Cape Flats Sand Fynbos, with consideration of indigenous plant recovery. <i>South African Journal of Botany</i> , 2016 , 105, 211-217	2.9	11
197	Nitrogen-fixing bacterial communities in invasive legume nodules and associated soils are similar across introduced and native range populations in Australia. 2016 , 43, 1631-1644		21
196	Changes in microhabitat, but not allelopathy, affect plant establishment afterAcacia dealbatainvasion. 2016 , rtw061		9
195	Soil and vegetation recovery following alien tree clearing in the Eastern Cape Province of South Africa. 2016 , 54, 460-470		7
194	The impact of black wattle encroachment of indigenous grasslands on soil carbon, Eastern Cape, South Africa. <i>Biological Invasions</i> , 2016 , 18, 445-456	2.7	17
193	Progress made in managing and valuing ecosystem services: a horizon scan of gaps in research, management and governance. 2017 , 27, 232-241		15
192	Alterations of Disturbance Regimes by Plant and Animal Invaders. 2017 , 249-259		3
191	Use of Non-native Species for Poverty Alleviation in Developing Economies. 2017 , 295-310		8
190	Do impacts of an invasive nitrogen-fixing shrub on Douglas-fir and its ectomycorrhizal mutualism change over time following invasion?. 2017 , 105, 1687-1697		27
189	Intensifying postfire weather and biological invasion drive species loss in a Mediterranean-type biodiversity hotspot. 2017 , 114, 4697-4702		38

(2017-2017)

188	Different growth strategies to invade undisturbed plant communities by Acacia dealbata Link. <i>Forest Ecology and Management</i> , 2017 , 399, 47-53	3.9	20
187	Perspectives for Future Research on Mixed-Species Systems. 2017 , 579-606		3
186	Legume-rhizobium symbiotic promiscuity and effectiveness do not affect plant invasiveness. 2017 , 119, 1319-1331		19
185	. 2017 , 10, 3243-3253		11
184	Integrating ecosystem services and disservices: insights from plant invasions. 2017 , 23, 94-107		136
183	What we donEseed: the role of long-lived seed banks as hidden legacies of invasive plants. 2017 , 218, 1313-1324		23
182	Understanding biological characteristics of Acacia melanoxylon in relation to fire to implement control measurements. 2017 , 74, 1		9
181	Restoration of riparian systems through clearing of invasive plant species improves functional diversity of Odonate assemblages. <i>Biological Conservation</i> , 2017 , 214, 46-54	6.2	19
180	The Nebulous Ecology of Native Invasions. 2017 , 32, 814-824		62
179	Comparison of nutrient cycling abilities between the invasive Acacia mearnsii and the native Virgilia divaricata trees growing sympatrically in forest margins in South Africa. <i>South African Journal of Botany</i> , 2017 , 111, 358-364	2.9	6
178	Soil nutritional status and biogeography influence rhizosphere microbial communities associated with the invasive tree Acacia dealbata. <i>Scientific Reports</i> , 2017 , 7, 6472	4.9	33
177	Woody leguminous trees: New uses for sustainable development of drylands. 2017 , 36, 764-786		5
176	Here to stay. Recent advances and perspectives about Acacia invasion in Mediterranean areas. 2017 , 74, 1		49
175	Acacia saligna's soil legacy effects persist up to 10 years after clearing: Implications for ecological restoration. 2017 , 42, 880-889		22
174	Invasive alien trees reduce bird species richness and abundance of mutualistic frugivores and nectarivores; a bird's eye view on a conflict of interest species in riparian habitats. 2017 , 32, 667-676		18
173	Heat and smoke pre-treatment of seeds to improve restoration of an endangered Mediterranean climate vegetation type. 2017 , 42, 354-366		13
172	Impacts of invasive alien trees on threatened lowland vegetation types in the Cape Floristic Region, South Africa. <i>South African Journal of Botany</i> , 2017 , 108, 209-222	2.9	29
171	Acacia shrubs respond positively to high severity wildfire: Implications for conservation and fuel hazard management. 2017 , 575, 858-868		17

170	Open-Source Processing and Analysis of Aerial Imagery Acquired with a Low-Cost Unmanned Aerial System to Support Invasive Plant Management. <i>Frontiers in Environmental Science</i> , 2017 , 5,	30
169	Alien tree invasion into a South African montane grassland ecosystem: impact of Acacia species on rangeland condition and livestock carrying capacity. 2018 , 14, 105-116	19
168	Barriers to ecosystem restoration presented by soil legacy effects of invasive alien N2-fixing woody species: implications for ecological restoration. <i>Restoration Ecology</i> , 2018 , 26, 235-244	30
167	Invasive acacias differ from native dune species in the hyperspectral/biochemical trait space. 2018 , 29, 325-335	11
166	Controlling the seed bank of the invasive plant Acacia saligna: comparison of the efficacy of prescribed burning, soil solarization, and their combination. <i>Biological Invasions</i> , 2018 , 20, 2875-2887	10
165	Importance of soil legacy effects and successful mutualistic interactions during Australian acacia invasions in nutrient-poor environments. 2018 , 106, 2071-2081	26
164	Biological in situ nitrogen fixation by an Acacia species reaches optimal rates on extremely contrasted soils. 2018 , 86, 52-62	6
163	Early detection of GPP-related regime shifts after plant invasion by integrating imaging spectroscopy with airborne LiDAR. 2018 , 209, 780-792	14
162	Re-establishment of Protea repens after clearing invasive Acacia saligna: Consequences of soil legacy effects and a native nitrophilic weedy species. <i>South African Journal of Botany</i> , 2018 , 116, 103-109 ²⁻⁹	9
161	The impact of invasive aquatic plants on ecosystem services and human well-being in Wular Lake, India. 2018 , 18, 847-857	22
160	A framework for engaging stakeholders on the management of alien species. 2018, 205, 286-297	94
159	Early Acacia invasion in a sandy ecosystem enables shading mediated by soil, leaf nitrogen and facilitation. <i>Biological Invasions</i> , 2018 , 20, 1567-1575	11
158	Identifying potential distributions of 10 invasive alien trees: implications for conservation management of protected areas. 2018 , 190, 739	5
157	A multi-criterion approach for prioritizing areas in urban ecosystems for active restoration following invasive plant control. 2018 , 62, 1150-1167	11
156	Using stakeholder preferences to select native tree species for reforestation in Lebanon. 2018 , 49, 637-647	4
155	Social-ecological drivers and impacts of invasion-related regime shifts: consequences for ecosystem services and human wellbeing. 2018 , 89, 300-314	31
154	Medium-term vegetation recovery after removal of invasive Eucalyptus camaldulensis stands along a South African river. <i>South African Journal of Botany</i> , 2018 , 119, 63-68	9
153	Occurrence of polyploidy in populations of Acacia dealbata in south-eastern Tasmania and cytotypic variation in reproductive traits. 2018 , 66, 152	1

152	Pine Stand Density Influences the Regeneration of Acacia saligna Labill. H.L.Wendl. and Native Woody Species in a Mediterranean Coastal Pine Plantation. <i>Forests</i> , 2018 , 9, 359	2.8	6
151	Local ecological knowledge concerning the invasion of Amerindian lands in the northern Brazilian Amazon by Acacia mangium (Willd.). 2018 , 14, 33		15
150	Managing Urban Plant Invasions: a Multi-Criteria Prioritization Approach. 2018, 62, 1168-1185		12
149	An assessment of the effectiveness of cut and ring barking as a method for control of invasive Acacia mearnsii in Nyanga National Park, Zimbabwe. <i>Forest Ecology and Management</i> , 2018 , 427, 1-6	3.9	4
148	Perceptions of impact: Invasive alien plants in the urban environment. 2019 , 229, 76-87		57
147	Managing environmental contamination through phytoremediation by invasive plants: A review. 2019 , 138, 28-37		58
146	Secondary invasion after clearing invasive Acacia saligna in the South African fynbos. <i>South African Journal of Botany</i> , 2019 , 125, 280-289	2.9	8
145	Gene drives in plants: opportunities and challenges for weed control and engineered resilience. 2019 , 286, 20191515		19
144	Is richer always better? Consequences of invaded N-rich soils for the early growth of a native and an invasive species. 2019 , 260, 151469		2
143	Inhibitory effect of rosemary essential oil, loaded in liposomes, on seed germination of Acacia saligna, an invasive species in Mediterranean ecosystems. 2019 , 97, 283-291		3
142	Can Acacia mangium and Acacia auriculiformis hinder restoration efforts in the Brazilian Atlantic Forest under current and future climate conditions?. <i>Biological Invasions</i> , 2019 , 21, 2949-2962	2.7	8
141	Multispectral Approach for Identifying Invasive Plant Species Based on Flowering Phenology Characteristics. <i>Remote Sensing</i> , 2019 , 11, 953	5	28
140	Assessing the Effect of Seasonality on Leaf and Canopy Spectra for the Discrimination of an Alien Tree Species, Acacia Mearnsii, From Co-Occurring Native Species Using Parametric and Nonparametric Classifiers. 2019 , 57, 5853-5867		6
139	Spatial Distribution and Abundance of Acacia mangium on Indigenous Lands in the Serra da Lua Region, Roraima State, Brazil. 2019 , 47, 303-310		
138	Acacia mangium Willd: benefits and threats associated with its increasing use around the world. 2019 , 6,		26
137	Biological invasion threatens the sandy-savanna Mussununga ecosystem in the Brazilian Atlantic Forest. <i>Biological Invasions</i> , 2019 , 21, 2045-2057	2.7	11
136	Overcoming lag phase: do regenerative attributes onset Acacia dealbata spread in a newly invaded system?. 2019 , 67, 46		2
135	Scenarios for the management of invasive Acacia species in a protected area: Implications of clearing efficacy. 2019 , 238, 274-282		6

134	Species distribution models support the need of international cooperation towards successful management of plant invasions. 2019 , 49, 85-94		15
133	Influence of Acacia dealbata Link bark extracts on the growth of Allium cepa L. plants under high salinity conditions. 2019 , 99, 4072-4081		5
132	A fine-scale assessment of the ecosystem service-disservice dichotomy in the context of urban ecosystems affected by alien plant invasions. 2019 , 6,		8
131	The germination success of Acacia longifolia subsp. longifolia (Fabaceae): a comparison between its native and exotic ranges. 2019 , 67, 414		2
130	Invasion compounds an ecosystem-wide loss to afforestation in the tropical grasslands of the Shola Sky Islands. <i>Biological Conservation</i> , 2019 , 230, 141-150	6.2	13
129	Different environmental drivers of alien tree invasion affect different life-stages and operate at different spatial scales. <i>Forest Ecology and Management</i> , 2019 , 433, 263-275	3.9	8
128	Market Opportunities: in Sustainable Phytoremediation. 2019 , 51-82		13
127	Abundance and correlates of the Acacia dealbata invasion in the northern Eastern Cape, South Africa. <i>Forest Ecology and Management</i> , 2019 , 432, 455-466	3.9	8
126	Exploring the use of residues from the invasive Acacia sp. for weed control. 2020 , 35, 26-37		9
125	Ecophysiological traits of invasive alien Acacia cyclops compared to co-occuring native species in Strandveld vegetation of the Cape Floristic Region. 2020 , 45, 48-59		5
124	No evidence for novel weapons: biochemical recognition modulates early ontogenetic processes in native species and invasive acacias. <i>Biological Invasions</i> , 2020 , 22, 549-562	2.7	7
123	Effects of exotic guava (Psidium guajava L.) invasion on soil properties in Limpopo, South Africa. 2020 , 58, 272-280		2
122	Stakeholders perceptions towards non-native acacias and implications for their management in Portugal. 2020 , 93, 557-566		3
121	Acacia invasion is facilitated by landscape permeability: The role of habitat degradation and road networks. 2020 , 23, 598-609		7
120	Can Niche Dynamics and Distribution Modeling Predict the Success of Invasive Species Management Using Biocontrol? Insights From Acacia longifolia in Portugal. 2020 , 8,		4
119	Potential Impact of Alien Invasive Plant Species on Ecosystem Services in Botswana: A Review on Prosopisjuliflora and Salvinia molesta. 2020 , 11-31		1
118	Monitoring of forest components reveals that exotic tree species are not always invasive in areas under ecological restoration. 2020 , 192, 618		3
117	Ecological restoration of ecosystems degraded by invasive alien plants in South African Fynbos: Is spontaneous succession a viable strategy?. <i>Transactions of the Royal Society of South Africa</i> , 2020 , 75, 111-139	1	11

116	Insights for the Valorization of Biomass from Portuguese Invasive Acacia spp. in a Biorefinery Perspective. <i>Forests</i> , 2020 , 11, 1342	2.8	4
115	Sentinel-2 time series based optimal features and time window for mapping invasive Australian native Acacia species in KwaZulu Natal, South Africa. 2020 , 93, 102207		10
114	Phytotoxic effects of Salvia rosmarinus essential oil on Acacia saligna seedling growth. 2020 , 269, 1516.	39	2
113	Secondary invasion and weedy native species dominance after clearing invasive alien plants in South Africa: Status quo and prognosis. <i>South African Journal of Botany</i> , 2020 , 132, 338-345	2.9	10
112	Control of Invasive Forest Species through the Creation of a Value Chain: Acacia dealbata Biomass Recovery. 2020 , 7, 39		13
111	Towards a semi-automated mapping of Australia native invasive alien Acacia trees using Sentinel-2 and radiative transfer models in South Africa. 2020 , 166, 153-168		11
110	Research Progress on Soil Seed Bank: A Bibliometrics Analysis. Sustainability, 2020, 12, 4888	3.6	1
109	Microbial Communities in the Fynbos Region of South Africa: What Happens during Woody Alien Plant Invasions. 2020 , 12, 254		2
108	Small ratios of anabolic to catabolic soil nutrients constrain invasive alien trees in the Western Cape, South Africa. <i>South African Journal of Botany</i> , 2020 , 132, 196-203	2.9	
107	Characterizing arthropod communities and trophic diversity in areas invaded by Australian acacias. 2020 , 14, 531-545		6
106	Resistance to pull-out of Chilean riverine species: Evidence from laboratory experiments. 2020 , 361, 107205		
105	Invasion of Native Riparian Forests by Acacia Species Affects In-Stream Litter Decomposition and Associated Microbial Decomposers. 2021 , 81, 14-25		11
104	Photosynthetic Responses of Invasive Acacia mangium and Co-Existing Native Heath Forest Species to Elevated Temperature and CO2 Concentrations. 2021 , 40, 573-593		3
103	A dynamic modeling tool to anticipate the effectiveness of invasive plant control and restoration recovery trajectories in South African fynbos. <i>Restoration Ecology</i> , 2021 , 29, e13324	3.1	O
102	Opportunities and challenges in using remote sensing for invasive tree species management, and in the identification of restoration sites in tropical montane grasslands. 2021 , 280, 111759		8
101	Quantifying range structure to inform management in invaded landscapes. 2021 , 58, 338-349		1
100	Invasion of temperate deciduous broadleaf forests by N-fixing tree species - consequences for stream ecosystems. 2021 , 96, 877-902		9
99	Testing the efficacy of hyperspectral (AVIRIS-NG), multispectral (Sentinel-2) and radar (Sentinel-1) remote sensing images to detect native and invasive non-native trees.		1

98	Effects of Prosopis velutina Invasion on Soil Characteristics along the Riverine System of the Molopo River in North-West Province, South Africa. 2021 , 2021, 1-11		3
97	Problems and Management of Acacia-Dominated Urban Forests on Man-Made Slopes in a Subtropical, High-Density City. <i>Forests</i> , 2021 , 12, 323	2.8	1
96	The effects of Acacia mearnsii (black wattle) on soil chemistry and grass biomass production in a South African semi-arid rangeland: implications for rangeland rehabilitation. 1-11		1
95	The impact of Acacia saligna on the composition and structure of the Mediterranean maquis. 2021 , 22, 53-66		2
94	Ornamentals lead the way: global influences on plant invasions in the Caribbean. <i>NeoBiota</i> , 64, 177-197	4.2	1
93	Testing the efficacy of hyperspectral (AVIRIS-NG), multispectral (Sentinel-2) and radar (Sentinel-1) remote sensing images to detect native and invasive non-native trees. <i>Biological Invasions</i> , 2021 , 23, 2863-2879	2.7	2
92	The Impact of Rural Fires on the Development of Invasive Species: Analysis of a Case Study with Acacia dealbata Link. in Casal do Rei (Seia, Portugal). 2021 , 8, 44		4
91	Active seed sowing can overcome constraints to passive restoration of a critically endangered vegetation type. <i>South African Journal of Botany</i> , 2021 , 138, 249-261	2.9	2
90	Should tree invasions be used in treeless ecosystems to mitigate climate change?. 2021 , 19, 334-341		5
89	Reduction of Grazing Capacity in High-Elevation Rangelands After Black Locust Invasion in South Africa. 2021 , 76, 109-117		4
88	Community narratives and local impacts of invasion in the Eastern Cape: A critical invasion ethnography of black wattle. 251484862110208		
87	Effect of plant origin and phenological stage on the allelopathic activity of the invasive species Oxalis pes-caprae. 2021 , 108, 971-979		O
86	Establishment, spread and early impacts of the first biocontrol agent against an invasive plant in continental Europe. 2021 , 290, 112545		2
85	Extraction of Added-Value Triterpenoids from Acacia dealbata Leaves Using Supercritical Fluid Extraction. 2021 , 9, 1159		1
84	Effects of widespread non-native trees on regulating ecosystem services. 2021 , 778, 146141		4
83	Restoring tropical forestgrassland mosaics invaded by woody exotics. <i>Restoration Ecology</i> , e13491	3.1	
82	Changes in ecosystem service values strongly influenced by human activities in contrasting agro-ecological environments. 2021 , 10,		3
81	The Best of Two WorldsCombining Classifier Fusion and Ecological Models to Map and Explain Landscape Invasion by an Alien Shrub. <i>Remote Sensing</i> , 2021 , 13, 3287	5	1

80	Impacts of invasive Acacias on ion deposition in a coastal Bornean tropical heath forest. 1-8		O
79	Predicting the potential global distribution of under current and future climate change scenarios. <i>Ecology and Evolution</i> , 2021 , 11, 12092-12113	2.8	2
78	Invasive nitrogen-fixing plants increase nitrogen availability and cycling rates in a montane tropical grassland. 1		О
77	A global impact assessment of Acacia species introduced to South Africa. <i>Biological Invasions</i> , 1	2.7	1
76	Effect of Acacia mangium Canopy on Physicochemical Characteristics and Nutrient Concentrations of the Soil at Ayer Hitam Forest Reserve, Malaysia. <i>Forests</i> , 2021 , 12, 1259	2.8	О
75	A review of the impacts of biological invasions in South Africa. <i>Biological Invasions</i> , 1	2.7	2
74	Lupane-type triterpenoids from Acacia dealbata bark extracted by different methods. <i>Industrial Crops and Products</i> , 2021 , 170, 113734	5.9	О
73	Leaf litter production and litter nutrient dynamics of invasive Acacia mearnsii and native tree species in riparian forests of the Fynbos biome, South Africa. <i>Forest Ecology and Management</i> , 2021 , 498, 119515	3.9	3
72	Urban threats and conservation measures relating to aquatic arthropods on the iconic Table Mountain, South Africa: A review. <i>Basic and Applied Ecology</i> , 2021 , 56, 192-212	3.2	O
71	Soil nitrogen availability favours the growth but not germination of secondary invaders after clearing invasive Acacia saligna. <i>South African Journal of Botany</i> , 2021 , 143, 198-204	2.9	1
70	Biological Nitrogen Fixation (BNF) in Mixed-Forest Plantations. 2020, 103-135		3
69	Biological Invasions and Ecological Restoration in South Africa. 2020 , 665-700		15
68	The Social Dimensions of Biological Invasions in South Africa. 2020 , 701-729		12
67	Invasive Australian Acacia seed banks: Size and relationship with stem diameter in the presence of gall-forming biological control agents. <i>PLoS ONE</i> , 2017 , 12, e0181763	3.7	26
66	Acacia saligna: an invasive species on the coast of Molise (southern Italy). Forest@, 2017, 14, 28-33	0.6	3
65	Modelling Acacia saligna invasion on the Adriatic coastal landscape: An integrative approach using LTER data. <i>Nature Conservation</i> , 34, 127-144		8
64	Even well-studied groups of alien species might be poorly inventoried: Australian Acacia species in South Africa as a case study. <i>NeoBiota</i> , 39, 1-29	4.2	16
63	Recommendations for municipalities to become compliant with national legislation on biological invasions. <i>Bothalia</i> , 2017 , 47,	1.2	19

62	Mapping invasive alien Acacia dealbata Link using ASTER multispectral imagery: a case study in central-eastern of Portugal. <i>Forest Systems</i> , 2016 , 25, e078	0.9	11
61	Seed survival of Australian in the Western Cape of South Africa in the presence of biological control agents and given environmental variation. <i>PeerJ</i> , 2019 , 7, e6816	3.1	2
60	Evaluation of Species Invasiveness: A Case Study with Acacia dealbata Link. on the Slopes of Cabell (Seia-Portugal). <i>Sustainability</i> , 2021 , 13, 11233	3.6	3
59	The invasive cactus Opuntia stricta creates fertility islands in African savannas and benefits from those created by native trees. <i>Scientific Reports</i> , 2021 , 11, 20748	4.9	2
58	Life on Land. Encyclopedia of the UN Sustainable Development Goals, 2019, 1-12	0.1	
57	Soil solarization based on natural soil moisture: a practical approach for reducing the seed bank of invasive plants in wetlands. <i>NeoBiota</i> , 51, 1-18	4.2	
56	Prliticas de biorremediacili en suelos y aguas.		
55	Supporting the spatial management of invasive alien plants through assessment of landscape dynamics and connectivity. <i>Restoration Ecology</i> , e13592	3.1	
54	Impact of Invasive Plants in Aquatic Ecosystems. 2020 , 55-73		2
53	Opportunities and challenges in using remote sensing for identifying grassland restoration sites and invasive tree species management in a global biodiversity hotspot.		
52	Invasive Species Impacts and Management. <i>Encyclopedia of the UN Sustainable Development Goals</i> , 2021 , 560-571	0.1	
51	Increasing inputs of invasive N-fixing Acacia litter decrease litter decomposition and associated microbial activity in streams. <i>Freshwater Biology</i> ,	3.1	1
50	The value of dump sites for monitoring biological invasions in South Africa. <i>Biological Invasions</i> , 1	2.7	1
49	Secondary invaders in riparian habitats can remain up to 10 years after invasive alien Eucalyptus tree clearing. <i>South African Journal of Botany</i> , 2022 , 146, 491-496	2.9	O
48	Effect of Acacia saligna (Labill.) Wendl. extracts on seed germination and seedling performance of three native Mediterranean shrubs. <i>Botany Letters</i> , 1-10	1.1	1
47	Generalist indigenous herbivores resist alien tree invasion: Rhabdomys pumilio limits establishment of Acacia cyclops. <i>Biological Invasions</i> , 1	2.7	
46	People perceptions and uses of invasive plant Psidium guajava in Vhembe Biosphere Reserve, Limpopo Province of South Africa. <i>Ecosystems and People</i> , 2022 , 18, 64-75	4.3	1
45	Acacia dealbata Link. Aboveground Biomass Assessment: Sustainability of Control and Eradication Actions to Reduce Rural Fires Risk. <i>Fire</i> , 2022 , 5, 7	2.4	O

44	Effects of Corn Intercropping with Soybean/Peanut/Millet on the Biomass and Yield of Corn under Fertilizer Reduction. <i>Agriculture (Switzerland)</i> , 2022 , 12, 151	3	1
43	A review of the distribution and ecology of the elusive Brown Hairstreak butterfly Thecla betulae (Lepidoptera, Lycaenidae) in the Iberian Peninsula. <i>Nota Lepidopterologica</i> , 45, 101-118	1	O
42	The legacy of pine introduction threatens the fuel traits of Patagonian native forests. <i>Biological Conservation</i> , 2022 , 267, 109472	6.2	1
41	Assessing the Dynamics of Plant Species Invasion in Eastern-Mediterranean Coastal Dunes Using Cellular Automata Modeling and Satellite Time-Series Analyses. <i>Remote Sensing</i> , 2022 , 14, 1014	5	1
40	Acacia invasion differentially impacts soil properties of two contrasting tropical lowland forests in Brunei Darussalam. <i>Journal of Tropical Ecology</i> , 1-8	1.3	1
39	How does familiarity in rhizobial interactions impact the performance of invasive and native legumes?. <i>NeoBiota</i> , 72, 129-156	4.2	O
38	Drought affects the performance of native oak seedlings more strongly than competition with invasive crested wattle seedlings <i>Plant Biology</i> , 2022 ,	3.7	1
37	Colonization and decomposition of litter produced by invasive Acacia dealbata and native tree species by stream microbial decomposers. 2022 , 41, 1		
36	Expansion by native shrub Euryops floribundus affects soil and vegetation in Machubeni communal land, South Africa. <i>Scientific African</i> , 2022 , 16, e01134	1.7	1
35	Fynbos vegetation recovery twelve years after removal of invasive Eucalyptus trees. <i>South African Journal of Botany</i> , 2022 , 147, 764-773	2.9	O
34	Exploring the Phytochemicals of R. Br <i>Plants</i> , 2021 , 10,	4.5	1
33	Site-specific risk assessment enables trade-off analysis of non-native tree species in European forests <i>Ecology and Evolution</i> , 2021 , 11, 18089-18110	2.8	О
32	Guiding restoration of riparian ecosystems degraded by plant invasions: Insights from a complex social-ecological system in the Global South <i>Ambio</i> , 2021 , 51, 1552	6.5	1
31	Plant Invasions in Africa. 2022 , 225-252		1
30	Data_Sheet_1.docx. 2020 ,		
29	Plant functional traits best explain invasive species performance within a dynamic ecosystem - A review. <i>Trees, Forests and People</i> , 2022 , 8, 100260	1.8	1
28	Microsite Drivers of Natural Seed Regeneration of Eucalyptus globulus Labill. in Burnt Plantations. <i>Forests</i> , 2022 , 13, 889	2.8	
27	Invasive Species as Rivals: Invasive Potential and Distribution Pattern of Xanthium strumarium L <i>Sustainability</i> , 2022 , 14, 7141	3.6	1

26	Invasive Alien Plants in the Montane Areas of South Africa: Impacts and Management Options. 2022 , 169-180	1
25	Active restoration in South African fynbos 🖪 long-term perspective from the Agulhas Plain. Transactions of the Royal Society of South Africa, 1-11	O
24	Effects of Dual Symbiotic Interactions Performed by the Exotic Tree Golden Wreath Wattle (Acacia cyanophylla Lindl.) on Soil Fertility in a Costal Sand Dune Ecosystem. <i>Frontiers in Environmental</i> 4.8 <i>Science</i> , 10,	0
23	Rivers as a potential dispersing agent of the invasive tree Acacia dealbata. <i>Revista Chilena De Historia Natural</i> , 2022 , 95,	
22	Invasive alien aquatic plant species management drives aquatic ecosystem community recovery: An exploration using stable isotope analysis. <i>Biological Control</i> , 2022 , 173, 104995	
21	Synergetic use of unmanned aerial vehicle and satellite images for detecting non-native tree species: An insight into Acacia saligna invasion in the Mediterranean coast. 10,	1
20	Effects of Elevated Temperature and High and Low Rainfall on the Germination and Growth of the Invasive Alien Plant Acacia mearnsii. 2022 , 11, 2633	0
19	Invader-induced soil abiotic and biotic conditions have little impact on the competitive interactions between a native and an invasive legume. 2022 , 151, 591-603	O
18	Invasive alien acacias rapidly stock carbon, but threaten biodiversity recovery in young second-growth forests. 2023 , 378,	O
17	Chemical and Functional Characterization of Extracts from Leaves and Twigs of Acacia dealbata. 2022 , 10, 2429	О
16	An invasive seagrass drives its own success in two invaded seas by both negatively affecting native seagrasses and benefiting from those costs.	O
15	Scaling up restoration efforts by simulating the effects of fire to circumvent prescribed burns when preparing restoration sites in South African fynbos ecosystems.	O
14	Patterns of secondary invasion in the understory of exotic, invasive timber stands.	О
13	From canopy to single flowers: a downscale approach to flowering of the invasive species. 2022 , 70, 539-548	O
12	Itching for an Answer: Gall-Forming Biological Control Agent Contains an Itch Mite Species Found at Localities Known for Periodic B ite Outbreaks[1 2023 , 15, 73	0
11	Modeling and detection of invasive trees using UAV image and machine learning in a subtropical forest in Brazil. 2023 , 74, 101989	1
10	Managing an invasive tree in coastal dunes: The importance of follow-up treatments to improve the recovery of protected habitats. 11,	0
9	Role of Microorganisms in the Remediation of Toxic Metals from Contaminated Soil. 2023 , 231-259	O

CITATION REPORT

8	Local peoplesIknowledge and perceptions of Australian wattle (Acacia) species invasion, ecosystem services and disservices in grassland landscapes, South Africa. 2023 , 19,	1
7	Rodents and reptiles as bioindicators for assessing coastal dune restoration success following invasive acacia removal.	O
6	The Diversity of Alien Plant Species in South Africal National Botanical and Zoological Gardens. 2023 , 15, 407	O
5	Bases para el manejo adaptativo de la le li sa invasora Acacia melanoxylon (Fabaceae) en la Reserva Natural Privada Paititi, sierras del Sistema de Tandilia, Argentina. 2023 , 58,	O
4	Metabolic groups of plants in neotropical hyperseasonal savannas threatened by Australian Acacia invasion.	O
3	Patterns of understory invasion in invasive timber stands of a tropical sky island. 2023 , 13,	o
2	Gene drives focusing on agriculture. 2023 , 101-136	О
1	Changes in Soil Physicochemical and Water Properties in Response to Exotic Acacia Invasion in a Bornean Coastal Heath Forest.	O